
Thickness Distribution of
Boolean Functions in 4 and 5

Variables

Mathias Hopp

Master’s thesis in Software Engineering at

Department of Computing, Mathematics and Physics,
Bergen University College

Department of Informatics,
University of Bergen

May 2020

Abstract
This thesis explores the distribution of algebraic thickness of Boolean functions
in four and five variables, that is, the minimum number of terms in the ANF of
the functions in the orbit of a Boolean function, through all affine transforma-
tions. The calculation is completed computationally, and the designed programs
are explained thoroughly, and listed as appendices in full. A class of Boolean
functions is defined, the rigid functions, that is relevant to algebraic thickness,
and – as will be shown – is very useful in revealing the algebraic thickness dis-
tribution. From rigid functions within the same orbit, the minimum function is
chosen as a representative, and the method of this choice is presented. Addition-
ally, a complete analysis of some complexity properties (e.g., nonlinearity) of all
relevant orbits of Boolean functions is calculated and listed, with comparisons
to a lower number of variables. Some properties of these rigid functions are also
presented, and proven.

Acknowledgements
First of all, I want to thank my supervisors, Constanza S. Riera and Pål
Ellingsen, for their guidance, support, and help in understanding and solving
this problem, and in writing this thesis. Next, I want to give a special thank
you to Pantelimon Stănică, for taking an interest in my project, for all the
time and energy he spent on aiding me, and for fruitful discussions. Further-
more, thank you to all my friends and family for allowing me to rant about
Boolean functions and their importance, for pushing me when I needed it, and
for supporting me through this project. Specifically, I would like to thank Stine,
Anne-Marit, Mats, Ane, Annar, and Sigurd, for listening to me and for all your
advice. Thank you to Yngve, Erlend, Hannah, Oliver, and Thomas, for sharing
your experiences, for our lively discussions, and for your friendship. Thank you,
Gunhild, for convincing me to start this project and for believing that I would
succeed.

And finally, thank you to my father, Ole Kristian, who did not get to see
me finish, but who I know would be proud, and joyful for me, and who I will
always carry with me.

Thank you.

i

Contents

1 Introduction 1
1.1 Problem Description . 4
1.2 Thesis Outline . 4

2 Theoretical Background 6
2.1 Mathematical Foundation . 6

2.1.1 Set Theory . 6
2.1.2 Combinatorics . 9
2.1.3 Abstract Algebra . 10
2.1.4 Linear Algebra . 11
2.1.5 Boolean Algebra . 13
2.1.6 Cryptography . 14

2.2 Boolean Functions . 16
2.3 Related Work . 23

2.3.1 Algebraic Thickness . 23
2.3.2 Known Bounds on Algebraic Thickness 24

2.4 Methodology . 25

3 Calculating thickness distribution for n = 4 26
3.1 SageMath and computational strategy 26
3.2 Program: Brute-force implementation for n = 2,3,4 28

3.2.1 Constructing all Boolean functions 28
3.2.2 Generating invertible matrices and vectors 29
3.2.3 Calculating Algebraic Thickness, n = 2,3,4 32

4 Calculating thickness distribution for n = 5 35
4.1 Rigid functions . 35

4.1.1 Examples of rigid functions 38
4.2 Representative functions . 39

4.2.1 Examples of choosing representative functions 40
4.3 Focusing on monomial counts . 41
4.4 Program: Finding representatives in n = 5 44

4.4.1 Constructing relevant Boolean functions 45
4.4.2 Generating invertible matrices and vectors 45
4.4.3 Searching for representatives in n = 5 46
4.4.4 Execution time . 49

ii

5 Analysis and Assessment 50
5.1 Results and analysis for n = 4 53

5.1.1 Property distribution in n = 4 56
5.1.2 Bent functions in n = 4 59
5.1.3 Balanced functions in n = 4 60

5.2 Results and analysis for n = 5 61
5.2.1 Property distribution in n = 5 61
5.2.2 Semi-Bent functions in n = 5 66
5.2.3 Balanced functions in n = 5 67
5.2.4 Functions with maximum thickness in n = 5 69
5.2.5 Details of orbit lengths in n = 5 70

5.3 General Results and Analysis . 72
5.3.1 Symmetric Property of Thickness Distribution 72

5.4 Validity of shown programs and results 74

6 Conclusions 75
6.1 Further Work . 77

6.1.1 Rotation Symmetric functions 77
6.1.2 Thickness Sequences . 78
6.1.3 Orbit lengths and function pairs 79
6.1.4 Generating representative functions 80
6.1.5 Similar implementation for n > 5 81
6.1.6 Conjectures . 82

A Data: n = 2 Raw Data 86

B Program: Brute-force calculation, n = 4 87

C Program: Representatives collection for n = 5 90

D List: x1x2x3-form of representatives 94

E List: Representatives in n = 4 96

F List: Representatives in n = 5 98

iii

List of Figures

2.1 Representation of an m× n matrix 12
2.2 Identity matrix I3 . 13
2.3 Example: a simple LFSR . 14

3.1 Code: Variable declaration of programs 28
3.2 Code: Generation of Boolean functions 29
3.3 Code: Dividing number of functions into iterations, n ≤ 4 29
3.4 Code: Matrix maps and vector generation in n ≤ 4 31
3.5 Code: Calculating thickness distribution for n = 4 34

4.1 Code: Mapping a function into its lowest indexed form 45
4.2 Code: Matrix maps and vector generation in n = 5 46
4.3 Code: Method for calculating thickness in n = 5 48

5.1 Upper- and lower bound of maximum T vs. Fibonacci 51
5.2 Distribution of representatives in n = 2, 3, 4 72
5.3 Distribution of representatives in n = 5 73

v

List of Tables

2.1 Examples of named Boolean functions 13
2.2 Distribution of Boolean functions in n variables 14
2.3 Basic operators for Boolean functions 16
2.4 Number of affine transformations in n variables 19

3.1 Brute-force: number of mapped functions in n variables 32

4.1 Number of rigid functions in n ≤ 5 variables 37
4.2 Number of equivalence classes in the affine group 39
4.3 Distribution of monomials in n ≤ 5 variables 43
4.4 Distribution of variable-permutation unique functions in B5 . . . 44
4.5 Execution time of iterations . 49

5.1 Distribution of representatives, n ≤ 5 50
5.2 Distribution of number of f ∈ Bn with given N -value, n ≤ 5 . . . 52
5.3 Distribution of number of orbits with given N -value, n ≤ 5 . . . 53
5.4 All representatives in n ≤ 4 . 55
5.5 Property distribution: T = 1, n = 4 56
5.6 Property distribution: T = 2, n = 4 57
5.7 Property distribution: T = 3, n = 4 57
5.8 Property distribution: T = 4, n = 4 57
5.9 Property distribution: T = 5, n = 4 58
5.10 Property distribution: Summary, n = 4 58
5.11 Property distribution: T = 1, n = 5 61
5.12 Property distribution: T = 2, n = 5 62
5.13 Property distribution: T = 3, n = 5 62
5.14 Property distribution: T = 4, n = 5 63
5.15 Property distribution: T = 5, n = 5 63
5.16 Property distribution: T = 6, n = 5 64
5.17 Property distribution: T = 7, n = 5 64
5.18 Property distribution: T = 8, n = 5 65
5.19 Property distribution: Summary, n = 5 65
5.20 All semi-bent representatives in n = 5. 66
5.21 All balanced orbits in n = 5. 68
5.22 All orbits with maximum orbit length 70
5.23 The 52 unique orbit lengths in n = 5 71

6.1 Relisting of Table 5.1 . 75

vii

Chapter 1

Introduction

Let us say that Alice and Bob want to send each other messages, and they do
not want anyone else to know the content of them. To do this, they put a cable
between their houses and send the messages through it. Say, then, that there
is a third person – Eve – who is very nosy, and who sees the cable connecting
the two houses. Eve knows cables, and manages to join a new cable with the
existing one, such that anything sent through the cable also comes out on Eve’s
side, meaning Eve now can see any message sent.

Eve

BobAlice

In order for Alice and Bob to avoid Eve being able to read their messages,
they can encrypt the information, by following a very specific set of rules that
they themselves agreed upon, before transmission. Upon receiving a message,
they can then decrypt it, by (for instance, depending on what rules they chose)
following this rule set in the reverse order, revealing the original information. If
the encryption is efficient, Eve may have a hard time in discovering the secret
message.

If, however, the rules that Alice and Bob uses are too simple, Eve can deploy
an attack, which could expose the message.

The concepts introduced here are the main motivators for a field of math-
ematics called Cryptology, which can be divided into Cryptanalysis and Cryp-
tography, and envelops, among other subjects, secure communication through
unsecure channels – this may be over the internet, as letters, or any other sort
of indirect communication form. This thesis is centered around some important
concepts within Cryptography.

1

Throughout history, there has been a need for secure communication between
various parties, and the methods used to achieve this have been improved upon
continuously – from 2000 B.C., when the Egyptians used non-standard “secret”
hieroglyphs, to Roman times using the famous Caesar cipher , up to today
– and they are always evolving [21]. In modern society, secure channels for
communications are used multiple times each day, by most people – be it over
phone lines or the internet; on smart phones, or computers.

A message without any encryption is referred to as the plaintext, which is
readable to anyone who knows the language it is written in. After encryption,
the resulting encrypted message is called the ciphertext, and may consist of
any symbols, depending on the encryption method used. When the intended
recipient receives the ciphertext, they need to decrypt it, and to do this, a key is
often used. This key will contain, in some form, the correct configuration of the
encryption method, making the translation from ciphertext back to plaintext
simple.

If someone is eavesdropping, as Eve did in the text above, they may be
able to collect the ciphertext and attempt to decrypt it without the original
senders awareness. If the methods of encryption are not complex enough, or
if the number of possible solutions is too small, a brute-force attack can be
attempted, which means that all possible configurations of the methods used
are applied to the ciphertext. One of the principles of modern cryptography is
to guarantee that using such a brute-force attack would take too long, effectively
making it impossible to attempt.

The techniques we use today for achieving secure communication are, in gen-
eral, all following the fundamental concepts coined by Claude Shannon: confu-
sion and diffusion (cf. [10, 21]). The aim of confusion is to conceal the structure
of the system, attempting to avoid letting parts of the system be exploitable by
attackers. Diffusion ensures that a small change in the plaintext or in the key
spreads out over the whole ciphertext.

The study of Boolean functions in relation to Cryptography has been of in-
terest since they were introduced for use in combination with linear feedback
shift registers (LFSRs). They are applicable and central in several cryptographic
algorithms today, both in stream- and block ciphers – represented by combina-
tions of LFSRs and Substitution boxes (S-boxes, cf. AES, DES, and more).
Furthermore, it has been shown that they provide both confusion and diffusion
in cryptographic systems [10]. Confusion is achieved by the complexity of the
related functions, which can be described by several properties, but this thesis
is related to two main concepts: the algebraic degree and nonlinearity of said
functions. These criteria describe, in their own way, the difference between any
given function and the affine functions – that is, linear functions with or without
a constant – as Claude Carlet phrased it, in [9]. Affine functions are consid-
ered ineffective for cryptographic purposes, and should be avoided as much as
possible – in fact, Carlet states that all cryptographic functions must have high
algebraic degree and high nonlinearity.

As an addition to these known complexity criteria, Carlet defined – in [8] –
the concept of algebraic thickness, referring to work by W. Meier and O. Staffel-
bach in [19]. In noting that some functions with a high number of terms in

2

their corresponding algebraic normal form (ANF)1 behave similarly to func-
tions with few terms, Carlet states that the number of terms of a function is not
itself a satisfactory complexity criteria. Rather, the function with the lowest
amount of terms, in its orbit through affine transformations, is of interest, and
has implications for all other functions in its orbit.

0 32768

3

5

7

9

11

13

Functions in the orbit of f , as numerical values

T
er

m
s

in
A

N
F

The orbit of f = x1x2x3 + x1x4 + x2 ∈ B4

1

The continued application of all affine transformations in n variables to
a given function f ∈ Bn (where Bn is the set of all Boolean functions in
n variables), reveals the orbit of f . Given in the figure above is an illus-
tration of the number of terms in the ANF of all functions in the orbit of
f = x1x2x3 + x1x4 + x2 – the largest orbit of B4. There are 10 080 functions
plotted in this graph, with a wide range of terms (lowest is three, highest is thir-
teen) – but the functions of interest here are at the bottom of the graph. These
are the functions in the orbit of f with the lowest number of terms, named in
this thesis as the rigid functions, which determine the algebraic thickness of the
orbit, and – as will be explained – can all be represented by f .

The concept of algebraic thickness of Boolean functions is the main subject of
this thesis, and will be explored thoroughly for all Boolean functions in four and
five variables, with implications for further study in larger numbers of variables.
In the following text, the definitions and concepts used are first defined, then
used in practice to design two programs in Python. After collection of the
results of the first program, a connection to work done by Harrison in the 1960s
(cf. [16]) was found, and is used to further discuss all orbits of Boolean functions
in the relevant variables.

1This concept, as well as the other technical terms in this section, are defined in Section 2.2.

3

1.1 Problem Description
As mentioned, and which will be more rigorously defined (in Section 2.2), this
thesis appertains to the concept of algebraic thickness – i.e. the minimum num-
ber of terms of all Boolean functions in the orbit of any one Boolean function,
through all affine transformations – and aims to reveal the distribution of alge-
braic thickness of all Boolean functions in four and five variables.

Specifically, when the project was first started, the main goal was to iterate
through every Boolean function f(x1, . . . , xn) in n = 4, 5 variables, and check
the number of terms in the ANF of f(A(x1, . . . , xn)+b), for every n×n invertible
matrix A and every vector b – in other words, checking every invertible affine
transformation of f .

The minimum number of terms in the transformations of f is the algebraic
thickness T (f) of f , as defined by Carlet in [8, 4], given here in Definition 2.10.
With an interest for determining patterns that could relate to a higher number
of variables (than n = 4, 5), the specific A and b that maps f to a function with
the minimum number of terms should be stored as well. A complete distribution
for every f would then be the outcome of the thesis.

As will be discussed in the coming chapters, by using an exhaustive search,
the calculation of this distribution for n ≤ 4 variables is at best a trivial, and
at worst a lengthy – but manageable – assignment. There are 22

n

Boolean
functions in n variables, which means, for n = 4, this number is 65 536. This
is not a large number in terms of computer science, but, given that there are
322 560 different affine transformations needed to be checked for each Boolean
function, the calculation of algebraic thickness for all Boolean functions in four
variables – when visiting all functions – is a time consuming task. The result of
this iteration would then be a set of 22

4

data points to be analysed for patterns
and validity.

However, in moving from four to five variables, this number grows more
than exponentially. The total number of unique Boolean functions is 4 294 967
296, and the number of different affine transformations is 319 979 520. One
of the sub-goals of the thesis was to find an efficient method able to handle
the magnitude of the product of these two large numbers, and another was to
effectively handle and analyse the resulting data set of n = 5.

The concepts and numbers mentioned here, and in the introduction above, will
be further explained, defined, and discussed (mainly) in Chapter 2. Additionally,
throughout the thesis, when discussing functions n ≤ 5, we omit the trivial cases
n = 0, 1, unless specified.

1.2 Thesis Outline
In the interest of this thesis being self-contained, Chapter 2 serves as a com-
pilation of the definitions relevant to – and used in – this thesis, based on the
definitions and explanations of the cited books. Section 2.1 introduces basic
concepts within a variety of fields of mathematics (a similar foundation can be
seen in [2]), which builds the foundation for the definitions given in Section 2.2,
as well as other sections throughout the thesis.

4

Section 2.3 mentions the related works and known results from scientific liter-
ature, and in Section 2.4 the methodology of relevance to the thesis is discussed
briefly.

Chapter 3 contains a description and discussion of the brute-force program
used to calculate the full distribution of algebraic thickness in n = 4 variables,
which includes the various methods of the program used to accomplish this. The
methods of importance are explained in detail, and the full program is given in
Appendix B.

Next, in Chapter 4, the results from Chapter 3 are discussed relative to ex-
tension from four to five variables. From pattern analysis of these, two concepts
are defined: rigid functions and representative functions. The proven properties
of these concepts are used in the design of a program (in Section 4.4) able to
calculate the full distribution of algebraic thickness in n = 5 variables, in a rea-
sonable time. After the program has been discussed in full (i.e., the important
methods, the full program is given in Appendix C), the execution time of the
program is listed, and a comparison to the brute-force method is made.

The results of the listed programs, and analysis thereof, are gathered in
Chapter 5, including a property distribution overview sorted by algebraic thick-
ness, for Boolean functions in both n = 4 (Section 5.1) and n = 5 (Section 5.2)
variables.

Finally, in Chapter 6, a summary of all findings is given, with a concluding
report. Further work that may be of interest is given in Section 6.1, including
concepts that could be expanded upon, or comments on further implementa-
tion. At the end, in Section 6.1.6, a discussion about possible properties related
to algebraic thickness that we could not prove at this time, is presented as
conjectures.

The appendices of this thesis contain information deemed of interest. In
Appendix A, the full data set of n = 2 is given, calculated by the brute-force
program described in Chapter 3 – included to show how the results of the
program were stored. The same data sets for n = 3, 4 are not included, because
of their respective size. (The data set for functions in 3 variables could arguably
be listed, as there are only 254 lines – however, we believe the important data
has been summarized adequately in the given property analysis, in Chapter 5.)

As mentioned above, Appendices B and C contain the full programs de-
scribed in Chapters 3 and 4, respectively. These programs are exactly as they
were when they were run for data collection purposes, except for the removal of
some method calls for printing and saving of position data, and time elapsed.
This is further specified in the respective chapters.

Appendices D, E and F contain full lists of the representative functions, as
defined in Section 4.2, which are discussed in Section 5.1 and 5.2. The repre-
sentative functions are of vital importance to this thesis, and allow discussion
of the distribution of algebraic thickness.

5

Chapter 2

Theoretical Background

2.1 Mathematical Foundation

2.1.1 Set Theory: the basis for modern mathematics
As a general basis for this thesis, set theory – and its concepts – will be used,
as it is considered to be the best approach to a bedrock of modern mathemat-
ics, and is therefore widely used (other approaches exist, e.g. category theory).
Technically, a distinction is made between axiomatic set theory (introduced
by Zermelo and Fraenkel, also called ’contemporary set theory’) and naïve set
theory, wherein the former avoids some paradoxes (cf. the Barber Paradox,
proposed by Bertrand Russel) which the latter fails to accommodate. However,
for the intents and purposes of this thesis, the naïve approach gives an intu-
itive understanding of sets, which will suffice in this case – for more on the
axiomatic approach, refer to [11]. The following section is a brief explanation of
the concepts that will be used further in the text. All the definitions are taken
from [15], which is recommended for a more complete introduction to set theory
and its applications.

A set – in simple terms – is a collection of objects of any kind, which are
referred to as the elements of the set. These elements are in no particular
order, and each element in the set is unique, meaning there is only one of each
element within the set. Although a set can contain anything, most sets used
in this thesis will be comprised of numbers, or other mathematical concepts. A
set is usually denoted by a capital letter for reference purposes, and listing all
elements in a given set is accomplished by separating each element by commas,
and containing them within two braces { }; e.g. A = {1, 2, 3}, which is the
set containing the numbers 1, 2, and 3. We say the set, because any other set
B = {1, 2, 3} that contains all and only the same elements as in A, will be equal
(i.e. A = B), and therefore they are the same set.

Claiming an object is contained within a set is one of the fundamental
statements in set theory, and is represented by ∈, e.g. for a set A = {a}
where a and b are objects, and a 6= b: a ∈ A is true, but b ∈ A is not
true (the latter case is denoted b 6∈ A). Notation for the generation of sets,
where the elements in the set have certain properties, is commonly written as
{property of x | set containing x}, or similar – as should be understood through
context. E.g. {x < 3 | x ∈ {1, 2, 3, 4}} = {1, 2}.

6

Example 2.1. Some commonly used sets in mathematics are

the natural numbers N = {1, 2, 3, . . . },
the integers Z = {. . . ,−2,−1, 0, 1, 2, . . . },

the rational numbers Q =
{a
b
| a, b ∈ Z

}
, and

the real numbers R,

where the latter includes both the rational and irrational numbers (e.g. π,
√

2,
etc.), that is, R contains all decimals. Note that some texts may include 0 in N.

Two sets can be combined to form a third, either by use of the union ∪
operation – the new set will contain all elements in the first set and all elements
in the second – or by the intersection operation ∩ – the new set will contain all
elements present in both sets.

A set can also be a subset of another set, written A ⊆ B, if all elements
in A are in B. If A ⊆ B and B ⊆ A, then A = B. In the case that A ⊆ B
and it is known that A 6= B, this may be denoted by A ⊂ B, i.e. A is a strict
subset of B. The notation A (B can also be used for this, in the case that it
is important to mark that A 6= B.

The Cartesian product of sets, denoted by A × B, forms a new set of what
is called tuples (a, b) where a ∈ A, b ∈ B, such that each element of A is in a
tuple with each element of B. Tuples are denoted by the use of parentheses,
and show a relation between elements in sets, a concept used in several fields of
mathematics. The Cartesian product A × A is often referred to as A2, and in
general A× · · · ×A = An when referring to the n-th Cartesian product of A.

Example 2.2. Let a, b, c be objects, and let A = {a, b}, B = {b, c}, and C = {c}
be sets. Then,

A ∪B = {a, b, c},
A ∩B = {b},
A× C = {(a, c), (b, c)}.

Also, C ⊆ B and C ⊆ A ∪B, but C 6⊆ A ∩B.

The size of a set A is often written |A| (called the cardinality of A), and
is equal to the number of objects within the set. Some sets are of infinite size
(both countable and uncountable), but this thesis will (in most cases) work with
sets of finite size. The cardinalities of the resulting sets after application of the
operations discussed above are, for |A| = n, |B| = m, where n,m ∈ N ∪ {0}:

• max(n,m) ≤ |A ∪B| ≤ n+m,

• 0 ≤ |A ∩B| ≤ max(n,m), and

• |A×B| = nm,

where max takes any set of comparable objects and outputs the maximum
object.

When mathematical operators (e.g. ∪ and ∩, but also addition and multipli-
cation, with more) are defined on a set, there are a number of properties these

7

operators may have, of which three will be listed here, as they are relevant to
definitions further down in the text. Let +, ? be two operators defined on a set
S, and let a, b, c ∈ S.

1. If + is associative, then a+ (b+ c) = (a+ b) + c.

2. If + is commutative, then a+ b = b+ a.

3. Finally, the left and right distributive laws hold if

a ? (b+ c) = (a ? b) + (a ? c) and

(b+ c) ? a = (b ? a) + (c ? a), respectively.

A specific subset of the relations mentioned above is used in much of math-
ematics, with some restrictions imposed on the tuples that can occur. In the
definition below, a binary relation, as used here, refers to the fact that there are
only two elements in the relation.

Definition 2.1. (Function) [15]
A function from a set A to a set B is a binary relation in which every element
of A is associated with a uniquely specified element of B. In other words, for
each a ∈ A, there is precisely one pair of the form (a, b).

In mathematical notation, a function f from a set A to a set B may be
expressed as

f : A→ B,

where A, in this case, is called the domain of the function f , and B is called the
co-domain. The range of f is the set of images of all the elements of A under
f , where the image of an element of A under f is an element of B – defined
f(A) = {f(x) | x ∈ A}.

There are some properties of functions that are important to note. For a
function f : A → B, where a1, a2 ∈ A, f is called injective (or one-to-one)
when f(a1) = f(a2) implies a1 = a2. If the range of f is equal to the co-
domain of f , then f is called surjective (or onto). If f is both injective and
surjective, f is called bijective, and then f is invertible – i.e. there exists a
function f−1 : B → A such that f−1(f(a)) = a and f(f−1(b)) = b. The
function f−1 is called the inverse of f .

Given two functions f : A → B and g : B → C, the composite relation
g ◦ f between A and C consists of pairs of the form (a, c), where a ∈ A, c ∈ C,
such that, for some b ∈ B, (a, b) ∈ f and (b, c) ∈ g. Since both of f, g are
functions, b = f(a) is uniquely determined by a, and c = g(b) is uniquely
determined by b. Thus, c = g(f(a)) is uniquely determined by a, and therefore
the composition of f and g is also a function, denoted by g ◦ f : A → C, such
that (g ◦ f)(x) = g(f(x)) [15].

When discussing functions and their outputs, the term map or mapping may
be used. By this it is meant that when f(a) = b, then f maps a to b, which is
denoted a 7→ b by f . The termmapping may also be used instead of substitution,
as the concepts are related. This should be understood from context.

8

2.1.2 Combinatorics
Combinatorics is a field of mathematics concerned with counting, and is based
on set theory. One of the building stones of this field is the multiplication
principle, which states:

If an activity consists of k stages, and the ith stage can be carried out in αi
different ways, irrespective of how the other stages are carried out, then the

whole activity can be carried out in α1α2 . . . αk ways.

More on this principle – and the rest of this subsection – can be found in [1].

Binary numbers are numbers in the base-2 numeral system, using the set
{0, 1} as a base, where the binary numbers ‘0’, ‘1’, ‘10’, ‘11’, and ‘100’ are,
respectively, 0, 1, 2, 3, and 4, in the decimal system. The multiplication principle
stated above can be used to find, for instance, the number of different binary
numbers of length k (where ‘1’ is represented by ‘01’ when forced to be length
2), as there are two choices for each entry of the number (so α1 = α2 = · · · =
αk = 2). The number of different binary numbers is, then, by the multiplication
principle,

2 ∗ 2 ∗ · · · ∗ 2 = 2k,

i.e. 2 multiplied with itself k times. E.g. for length 2, there are 22 = 4 different
binary numbers: ‘00’, ‘01’, ‘10’, ‘11’. In numbers such as these, repetition of
objects is allowed (‘00’), and there is an order of the objects in the list (that is,
‘10’ 6= ‘01’).

If, however, we cannot repeat objects – i.e. choosing one means we cannot
choose it again at a later point – it means the number of choices decreases for
each choice we make. Say there are k choices in total of some arbitrary list of
objects to be put in an order. Then we have k choices among the objects for
the first entry of the order, and (k − 1) choices for the second entry, and so on,
until at the very last entry there is only one choice left: the object that has not
been chosen yet. Mathematically, this is named factorial, and is denoted by an
exclamation point, ‘ !’. It can be defined as

n! = n ∗ (n− 1) ∗ (n− 2) · · · 2 ∗ 1. (2.1)

The number of different permutations (i.e., a re-ordering of elements) of a list
is equal to n!.

Removing the restriction of there being an order to the objects, but main-
taining the restriction of no repetitions being allowed, we have what we call a
combination, a selection, or more formally: the binomial coefficient. It is defined(

n

k

)
=

n!

k!(n− k)!
(2.2)

and can be read as “from n choose k”.

On another note, but within combinatorics, is the sequence of numbers dis-
covered by Fibonacci when he supposedly was investigating the growth of rabbit

9

populations. It is a sequence that shows up in many areas – not only mathe-
matics – and is defined recursively, i.e. in terms of itself:

Fn = Fn−1 + Fn−2, (2.3)

where F0 = 0 and F1 = 1. The first few numbers of the sequence are

0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

The summation (using ‘+’, i.e. regular addition) of multiple terms defined
iteratively from i to n, where i, n ∈ Z : i ≤ n, is often written with Σ (capital
sigma), e.g.:

n∑
i=0

2i = 20 + 21 + · · ·+ 2n−1 + 2n,

and multiplication is usually denoted by Π (capital pi), e.g.:

n∏
i=1

i = 1 ∗ 2 ∗ · · · ∗ (n− 1) ∗ n = n!

2.1.3 Abstract Algebra
The following basic concepts of abstract algebra are written in [13], which serves
as a good introduction for this subject. Further explanations and examples can
be found there.

The closure of an operation defined on a set means that the application of
the operator on the elements of the set always yields an element which is also
in the set. In abstract algebra, a group 〈G,+〉 is a set G which is closed under
a binary operation +, that satisfy the following axioms:

1. + is associative.

2. there is an identity element 0 ∈ G such that, for any x ∈ G:

0 + x = x+ 0 = x

3. For any a ∈ G there is a corresponding inverse element a−1 ∈ G, where:

a+ a−1 = a−1 + a = 0

A group is abelian if the binary operation is commutative.
Furthermore, a ring 〈R,+, ∗〉 consists of a set of elements R and two opera-

tions defined on that set, called addition (+) and multiplication (∗), such that
the following axioms hold:

1. 〈R,+〉 is an abelian group (i.e. + is commutative).

2. Multiplication is associative.

3. Both the left- and right distributive laws apply.

10

If a ring has unity, there is a multiplicative identity element (denoted by 1 ∈ R),
where, for some a, a−1 ∈ R, if a∗a−1 = a−1∗a = 1, then a−1 is the multiplicative
inverse of a.

Building on this, a field is a ring with unity where also multiplication is
commutative, and all non-zero elements in R has a multiplicative inverse.

In many cases the set of elements is infinite – if it is not, the field is commonly
called a finite field, and the operations are defined with modulo n, where n is the
number of elements in the set. Modulo (mod, for short) is simply the remainder
after division by n, e.g. 16 ≡ 2 mod 7, or (4 + 6) ≡ 3 mod 7.

The two-element (finite) field F2 is the set of integers {0, 1} together with
multiplication and addition modulo 2. For a, b ∈ F2, where a 6= b, addition
is represented by (the XOR-operation) ⊕, where a ⊕ a = 0 and a ⊕ b = 1,
and multiplication is represented by (the AND-operation) ∗, defined a ∗ a =
a and a ∗ b = 0 [10, 13]. In some cases, when the operation is obvious from the
context, the symbol ∗ may be omitted, such that a ∗ b := ab.

2.1.4 Linear Algebra
The following concepts refer to [17], and further examples and information can
be found there. Linear algebra is the study of linear equations and systems
of linear equations, and the field introduces basic concepts such as vectors and
matrices, that are highly important for modern Computer Science.

A vector is, simply put, an ordered list of numbers. They are contained
within the Cartesian product of a set of numbers, e.g. R3 = {(x, y, z) | x, y, z ∈
R}. For any set of numbers A, a vector v ∈ An has length n, and can be
written as an n-tuple v = (v1, v2, . . . , vn), where each vi ∈ A (for i = 1, . . . , n).
A scalar is a number c ∈ A. Multiplication by scalars for vectors is defined: for
v ∈ An : cv = (cv1, cv2, . . . , cvn).

For two vectors v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn), addition is
defined as v+w = (v1 +w1, v2 +w2, . . . , vn +wn), or, representing the vectors
as column vectors: 

v1
v2
...
vn

+


w1

w2

...
wn

 =


v1 + w1

v2 + w2

...
vn + wn


The dot product (or sometimes inner product or scalar product) of two vectors

is similar to addition of vectors, but with multiplication instead. It is represented
by (·) and is defined v ·w = v1w1 + v2w2 + · · ·+ vnwn ∈ A, for v,w ∈ An, that
is, the result is a scalar.

A vector space V is a non-empty set of vectors, along with two operations
defined on the set, called addition and multiplication by scalars, on which each
of the following axioms hold: There is closure of the operations, addition is
commutative, both addition and multiplication is associative, and both the left
and right distributive laws apply. Also, for u,v,w ∈ V, there exists a zero vector
0 such that u+0 = u and for each u ∈ V there exists −u such that u+(−u) = 0.
Finally, multiplication with the scalar 1 is the identity operation (1u = u). In
short, a vector space is defined over a field, as defined in Section 2.1.3.

11



a1,1 · · · a1,j · · · a1,n
...

...
...

ai,1 · · · ai,j · · · ai,n
...

...
...

am,1 · · · am,j · · · am,n


Figure 2.1: A representation of an m× n matrix, with indices shown

As shown in Section 2.1.2, summation over multiple terms can be denoted
by Σ when using +. In F2, with multiplication and addition modulo 2 (⊕)
defined as in Section 2.1.3, we can substitute Σ with ⊕ and sum modulo 2
over many elements. For instance, if there is a need to sum all vectors in a set
V = {(0, 1, 0), (1, 0, 0), (1, 0, 1)} ⊂ F3

2, this would be denoted:⊕
v∈V

v = (0, 1, 0)⊕ (1, 0, 0)⊕ (1, 0, 1) = (0, 1, 1),

wherein the iterator v ∈ V determines which objects to sum over, but says
nothing about the order of which they are summed. Since ⊕ (as well as common
addition, and multiplication) is commutative, this is of no consequence.

A matrix of sizem×n may be represented as an array of entries, and consists
of m rows (horizontal) and n columns (vertical), where each row of the matrix is
a list of numbers, sometimes called row-vectors. See Figure 2.1 for an overview
of a general matrix of size m× n.

Addition of two matrices A and B can be defined as addition of each row-
vector of the corresponding matrices, that is,[

a1 b1
c1 d1

]
+

[
a2 b2
c2 d2

]
=

[
a1 + a2 b1 + b2
c1 + c2 d1 + d2

]
and multiplying a matrix with a scalar is merely multiplying each entry of the
matrix with said scalar.

Multiplying an m × n matrix A with a vector b = (b1, . . . , bn), is done by
scalar multiplying each of the n scalars in b with each column a1, . . . ,an in A:

Ab = b1a1 + · · ·+ bnan,

which equals a vector of length m.
If B is anm×n matrix, and A is an n×p matrix with columns a1, . . . ,ap, the

product BA (matrix multiplication) is the resultingm×p matrix whose columns
are Ba1, . . . , Bap [17]. Note that matrix multiplication is not commutative, and
such AB 6= BA, that is, the two are not necessarily equal.

If the number of rows equals the number of columns of a matrix, it is referred
to as an n × n matrix, or a square matrix. The identity matrix, often denoted
as In (where the subscript n refers to the number of rows and columns), is a
matrix of which the diagonal entries ij,j for j ∈ {1, . . . , n} are all 1, and all

12

1 0 0

0 1 0

0 0 1



Figure 2.2: Identity matrix I3

other entries are 0 (see Figure 2.2). The main property of the identity matrix
is that Inx = x for all vectors of length n, and ImA = A = AIn, for an m × n
matrix A.

A square (n × n) matrix A is said to be invertible if there exists an n × n
matrix C such that

CA = In and AC = In.

This C is in fact unique and is determined by A, and is therefore called the
inverse of A, denoted by A−1. A matrix that is not invertible is called a
singular matrix, and sometimes an invertible matrix may therefore be called
non-singular.

2.1.5 Boolean Algebra

P Q True False ¬P P ∧Q P ⊕Q P ∨Q
0 0 1 0 1 0 0 0
0 1 1 0 1 0 1 1
1 0 1 0 0 0 1 1
1 1 1 0 0 1 0 1

Table 2.1: Examples of named Boolean functions with zero, one, or two variables

An important concept in Cryptography, which will be discussed in great detail
further in this thesis, are Boolean functions – named after George Boole (1815-
1864), who laid the foundation for what is now called Boolean Algebra [10],
and are usable in a range of fields (not only in mathematics, cf. logic gates in
Electrical Engineering). They are based on the concept of a preposition being
true or false, also denoted 1 or 0, respectively, in Computer Science [15]. Two
preposition variables P,Q can be used together with a logic operator to form a
logical sentence, which makes a statement in the relevant context. E.g., if we
let P = “it is raining”, Q = “it is wet”, then the sentence “not(P) or Q” states
“it is not raining, or it is wet (or both)” – using the logic operators not and or,
first of which takes one variable, second takes two. These logical operators can
be represented as Boolean functions, that map values from the domain Fn2 to
co-domain F2, i.e. Fn2 → F2, where n is the number of variables of the functions.
(As mentioned below, this will be further discussed and defined in Section 2.2.)

The Boolean functions in n = 0, 1, 2 variables are the building blocks of
larger functions, and as such they all have been named: the 0-variable constant
functions True and False, the one-variable negation function not, and the two-
variable functions and, exclusive or, and inclusive or, etc. The value mappings

13

n Boolean Functions
0 2
1 4
2 16
3 256
4 65 536
5 4 294 967 296
6 18 446 744 073 709 551 616

Table 2.2: The number of different Boolean functions in n variables

of the functions mentioned here are shown respectively in Table 2.1, and each
column is a truth table of the respective functions, which can be represented by
a vector of length 2n. Any two Boolean functions with the same truth table are
said to be equal. Since there are 2k different vectors of length k, (cf. binary
numbers, Section 2.1.2), and the truth tables are of length k = 2n, it should be
clear that the number of different Boolean functions in n variables is equal to
22

n

. An overview of how many functions there are in n ≤ 6 variables, following
this formula, is given in Table 2.2.

A more specific definition of Boolean functions in the context of crypto-
graphic Boolean functions and this thesis, is given in Section 2.2 (i.e. Defini-
tion 2.2).

2.1.6 Cryptography

S0S1S2 output

Figure 2.3: Example: a simple LFSR, from [21]

In Computer Science, a bit is one digit of information, usually represented by
a 0 or 1. The plaintext of any message can be transformed to bits, which can
then be encrypted and decrypted, for secrecy. Encrypting each bit in a given
plaintext individually is called a stream cipher, while encrypting an entire block
of plaintext bits at a time is called a block cipher. In practice, the length of
a block can vary in size, but is often at a length of 128 bits (AES) or 64 bits
(DES, 3DES) [21].

A linear feedback shift register (LFSR) is a type of sequential logic circuit
consisting of clocked storage elements and a feedback path, whose input bit is
the output of a linear function of (two or more of) its previous states [10, 21].
Provided an initial input string, an LFSR generates a sequence of bits which can
be used in a variety of cryptographic systems, although, since there are finite
possible states, the sequence must eventually be periodic. However, nonlinearity

14

of the system can be attained using combinations of LFSRs.
Any LFSR can be represented by a linear Boolean function. The sequence

of the example given in Figure 2.3 (listed in [21]) is determined by the function
S2 = S1 ⊕ S0, and starts to repeat after clock cycle 6. LFSRs are often used in
stream ciphers.

No matter the implementation and chosen method of security, strong cryp-
tographic systems must obtain the principles of confusion and diffusion, as de-
scribed by Shannon, where confusion is the principle of obscuring the relation-
ship between key and ciphertext, and diffusion spreads the influence of one
plaintext symbol over many ciphertext symbols, the goal being to hide statisti-
cal properties of the plaintext [21].

The confusion principle can be achieved with the use of S-boxes (Substitution
boxes), where an m×n S-box can be defined as a function S : Fm2 → Fn2 , i.e. an
n-tuple of Boolean functions on Fm2 [10]. S-boxes satisfy various cryptographic
properties (e.g. highly nonlinear, correlation immunity, etc.), which stems from
the Boolean functions within. S-boxes are especially used in block ciphers, for
instance in the AES algorithm (also known as Rijndael), or DES [21]. Although
they relate mainly to the principle of confusion, choosing Boolean functions
that satisfy the Strict Avalanche Criterion (SAC) may improve the diffusion of
the cryptosystem [6]. A Boolean function f(x) in n variables is called a SAC
function if changing any one of the n bits in the input x results in the output
of the function being changed for exactly half of the 2n−1 vectors x with the
changed input bit [10].

The term brute-force is applied to problem solving wherein all possible con-
figurations of a problem is checked. A brute-force attack is an attempt at break-
ing1 cryptographic systems by iteration through all possible states, such that
the encrypted information is deciphered. In theory, brute-force can be applied
to any system, and the only guard against such an attack, in practice, is time.
Although power of computation in modern computers is growing at a high rate,
it is a rather simple task to ensure the solution space of a cryptographic system
is of such a size where it would take years to check every possibility.

As an answer to this, there is a high variety of other attacks that can be
deployed on a cryptographic system. These (non-brute-force) attacks take ad-
vantage of any weakness that can be found, ranging from mathematical proper-
ties (e.g. linearity of the system) to social engineering (e.g. abusing the trust of
end-users of the system). For this thesis, the former type of attacks are relevant,
revolving around analysis of properties of Boolean functions that can help in
avoiding algebraic attacks, correlation attacks, higher-order differential attacks,
with more [4].

These attacks attempt to exploit or break parts of the cryptographic systems
by various means and methods. To avoid such attacks, the designers of the
algorithms must choose good cryptographic Boolean functions which show high
complexity, determined by, for instance, the nonlinearity and algebraic degree
(defined in Section 2.2) – among others – of the functions. Another feature of
Boolean functions is also the number of terms in each function, but, as Carlet
points to in [4], the complexity of functions with a high number of terms can be
equal to the complexity of some function with a lower number of terms.

1In the sense of searching for and finding a solution.

15

x1 x2 1 0 x1 ⊕ 1 x1x2 x1 ⊕ x2
0 0 1 0 1 0 0
0 1 1 0 1 0 1
1 0 1 0 0 0 1
1 1 1 0 0 1 0

Table 2.3: Basic operators for Boolean functions

2.2 Boolean Functions
In this thesis there are a number of concepts used that build on the concepts
defined in the previous section. Many of these definitions are explained in
more detail in [10], a recommendation for the interested reader new to this
subject. As the subject of this thesis revolves around the complexity of Boolean
functions as cryptographic tools, the following section serves to define such
functions – and a number of properties of them – in precise and rigorous terms.
Therefore, the following definition is given for Boolean functions (in more detail
than Section 2.1.5). Recall that F2 is the finite field defined over the set {0, 1},
with multiplication and addition modulo 2.

Definition 2.2. (Boolean Function) [4, 10]
A Boolean function f in n variables, where n is any positive integer, is a function
from the vector space Fn2 to the finite field F2, i.e. f : Fn2 → F2. The set of all
Boolean functions in n variables is denoted by Bn, and the symbol ⊕ denotes
addition modulo 2, in F2, Fn2 , and Bn.

The variables of Boolean functions in this thesis will be denoted by a vector
x = (x1, . . . , xn), where n is the number of variables. The operators used on
these variables are ⊕ for addition and (∗) for multiplication (when explicitly
needed, in most cases the variables are concatenated, i.e. put together), where
the order of operations is as usual: first multiplication, then addition – e.g.,
for ab ⊕ c, ab is first multiplied, then added to c. Value mappings of the basic
operators used are given in Table 2.3 (cf. Table 2.1, excluding the right-most
column, and substituting P with x1 and Q with x2).

Any Boolean function in Bn can be expressed as a polynomial in

F2[x1, . . . , xn]/(x21 − x1, . . . , x2n − xn)

(see [10, 7]), consisting of one or more terms (except the constant 0 function,
defined to contain zero terms) summed over ⊕. These terms are the product of
one or more variables in {x1, . . . , xn}, that is

n∏
i=1

xui
i = xu1

1 ∗ · · · ∗ xun
n

where u is a vector in F2
n, and where the zero-vector yields the constant term,

i.e. x01 · · ·x0n = 1. E.g. let n = 3 such that the variables are {x1, x2, x3} and let
u = (0, 1, 1). Then

n∏
i=1

xui
i = x01 ∗ x12 ∗ x13 = 1 ∗ x2 ∗ x3 = x2x3.

16

These terms are also referred to as monomials (mono means one and poly
means many in Greek, thus a polynomial consists of many terms, where the
monomial is only one term), and the polynomial representation of a Boolean
function is described in the following definition:

Definition 2.3. (Algebraic Normal Form) [4, 10]
Every Boolean function f has a unique representation called its algebraic normal
form (ANF) as a polynomial over F2 in n variables, whose degree relative to
each variable xi is at most 1:

f(x) =
⊕
u∈Fn

2

cu

(
n∏
i=1

xui
i

)
=
⊕
u∈Fn

2

cux
u,

where each cu ∈ F2, u = (u1, . . . , un) and x = (x1, . . . , xn).

The existence and uniqueness of the ANF of every Boolean function is fur-
ther discussed in [6], using an equivalent definition. Each Boolean function
discussed in this thesis will be presented in its corresponding ANF. The number
of variables in the highest-order monomial with nonzero coefficient (i.e., that is
present in the ANF) is called the algebraic degree of a function. If all monomials
of a function each have the same individual number of variables, the function is
called homogeneous [10].

An affine function `u,c is a function with algebraic degree at most 1, which
takes the form

`u,c(x) = u · x⊕ c = u1x1 ⊕ · · · ⊕ unxn ⊕ c, (2.4)

where u = (u1, . . . , un) ∈ Fn2 and c ∈ F2. If c = 0, such that `u,0 only consists of
monomials of algebraic degree 1, and no constant, then it is a linear function [10].

Definition 2.4. (Affine Transformation) [17]
An affine transformation T : Fn2 → Fn2 is a transformation of the form T (x) =
Ax + b, with A an n× n matrix, and b in Fn2 .

By matrix multiplication, the affine transformations map each xi in x =
(x1, . . . , xn) to an affine function given by xj =

∑
ai,jxi + bj , for each i, j ≤ n,

where ai,j is the entry of A in column i, row j.
The matrices considered are invertible, such that the affine transformations

are invertible, meaning no information is lost in the transformation. (E.g.,
mapping all variables xj to 0 is a non-invertible affine transformation, since
all information is lost). In the remainder of the text, when discussing affine
transformations, only those that are invertible are included. This thesis does
not concern itself with non-invertible affine transformations, and when referring
to all affine transformations, it is implied that these are invertible.

In practice, an affine transformation on a Boolean function f transforms f
into another Boolean function g, via a map T (x) = Ax+b = (x1 7→ t1, . . . , xn 7→
tn), such that f(t1, . . . , tn) = g(x1, . . . , xn). This transformation Ax + b =
(t1, . . . , tn) = t is a mapping of each individual variable xi in f to an affine
function

ti = ai,1x1 ⊕ · · · ⊕ ai,nxn ⊕ bi,

17

where ai,j is the entry at row i, column j of A, and the same i indicates the
index in b, and t itself. This g, that f can be mapped to through such an affine
transformation, is said to be equivalent to f through affine transformations. An
example of affine transformations is given towards the end of this section (see
Example 2.3).

Iteration through all affine transformations on a specific Boolean function,
and storing all functions found, yields what we call the orbit of said Boolean
function. This orbit is disjoint from any other orbit in Bn, meaning no orbits
share any functions. This topic will be further discussed in Chapter 4, where it
is related to the work [16] of Harrison on equivalence classes.

Remark. A variable permutation of a Boolean function f is an affine trans-
formation Ax + b where each row in the matrix A only contains one entry of
1, with 0 in the remaining entries (i.e., A is a permutation of In, the identity
matrix), and b = 0, i.e. the zero-vector. This means we are only exchanging
the positions of the variables of f . E.g., for a function f(x1, x2, x3) = x1x3 +x2,
we permute the variables as such:

x1 7→ x2

x2 7→ x1

x3 7→ x3

and the resulting function is g(x1, x2, x3) = x2x3 + x1 = f(x2, x1, x3), which is
equivalent to f over affine transformations. The number of variable permutation
transformations is n! (see Section 2.1.2, specifically (2.1)).

The general affine group of transformations is defined over the field F2, and
is applied as a transformation group to Boolean functions [16]. The elements
of this group are the affine transformations as explained above. The complete
number of all (invertible) affine transformations in n variables is the number
of n × n invertible matrices multiplied with the number of vectors in Fn2 . As
proven in [12], the number of n× n invertible matrices over F2 is:

n−1∏
i=0

(2n − 2i), (2.5)

which is mentioned also in [16] (for more information on the general affine group,
refer to this article). The number of vectors in Fn2 is known to be 2n (cf. binary
numbers, described in Section 2.1.2). A complete overview of the number of
invertible matrices and vectors in n ≤ 5 variables is given in Table 2.4, together
with the number of possible affine transformations. Note that the application
of two different affine transformations on a function f may result in the same
function, e.g. f(x1, x2) = x1, and f(x1, x1 + x2) = x1 = f(x1, x2 + 1).

18

n Invertible matrices Vectors Affine Transformations

2 6 4 24
3 168 8 1344
4 20 160 16 322 560
5 9 999 360 32 319 979 520

Table 2.4: Overview of number of elements in the listed sets, in n variables

Definition 2.5. (Hamming Weight and Distance) [10]

1. The Hamming weight of a vector x ∈ Fn2 is denoted by wt(x) and is equal
to the number of 1’s in the vector x.

2. For a Boolean function f on Fn2 , let Ωf = {x ∈ Fn2 | f(x) = 1} be the
support of f . The Hamming weight of f is then |Ωf |, or equivalently, the
weight of the vector of its truth table.

3. The Hamming distance between two functions f, g : Fn2 → F2, denoted by
d(f, g), is defined as

d(f, g) = wt(f ⊕ g)

Noted in Section 2.1.5, there are 2n entries (or, rows in its truth table) in a
Boolean function f in n variables. If wt(f) = 2n−1, this means there are 2n−1

vectors in Fn2 mapped by f to 1, and therefore 2n−1 mapped to 0. In this
case (where these two values are equal), we say that f is balanced, which is an
important property for cryptographic Boolean functions [10, 5].

Another property of Boolean functions is the number of monomials in the
ANF of the function. The minimum number of monomials a function can have
is 0, and this is only true for the constant 0 function, f(x) = 0. Any other
function in Bn has a number of monomials in the range of {1, . . . , 2n} in their
ANF. There is only one function in n variables with 2n monomials, and this
function is equal to

∏n
i=1(xi + 1).

The term monomial count will, in this thesis, be a shorthand for the number
of monomials of a function in its ANF. That is, from Definition 2.3, for each f ,
the monomial count is the sum of each cu ∈ F2 that determines the ANF of f .
In short, it is the number of nonzero terms in the ANF of the function. Since the
ANF of a function f is unique, the monomial count of f is well-defined. More on
the monomial counts of Boolean functions is discussed in Section 4.3, including
a distribution of how many functions have a certain number of monomials in
their corresponding ANF (see Table 4.3).

Each Boolean function f : Fn2 → F2 is associated with a sign function,
denoted by f̂(x) : Fn2 → R∗, i.e. the sign function of f , defined by

f̂(x) = (−1)f(x) (2.6)

such that, for a specific x,

if f(x) = 0 then f̂(x) = (−1)0 = 1, and

if f(x) = 1 then f̂(x) = (−1)1 = −1.

19

This function is related to the Walsh transform, given in the next definition [10].

Definition 2.6. (Walsh Transform) [10]
The Walsh transform of a function f on Fn2 is the map W (f) : Fn2 → R, defined
by

W (f)(w) =
∑
x∈Fn

2

f(x)(−1)w·x

where w ∈ Fn2 , and w · x is the dot product, as defined in Section 2.1.4.

Applying the Walsh transform to f̂ is often referred to as Walsh-Hadamard
transform, or sometimes just Hadamard transform. By application of Defini-
tion 2.6 and (2.6):

W (f̂)(w) =
∑
x∈Fn

2

f̂(x)(−1)w·x =
∑
x∈Fn

2

(−1)f(x)⊕w·x

The list of numbers attained by iteration over all w ∈ Fn2 and collecting
W (f̂)(w) is called the Walsh-Hadamard spectrum. If the absolute value of
W (f̂)(w) for all w is either equal to 0 or 2

n+s
2 , for a fixed integer s, f is

called s-plateaued [23].

If an affine function (see (2.4)) is used in the encryption of data, there are
known attacks that can take advantage of the linearity and break the encryption
faster than brute-force [4]. If a function is not affine, it is called nonlinear, and
the lowest Hamming distance from a Boolean function f to any affine function
φ is called the nonlinearity of f .

Definition 2.7. (Nonlinearity) [10]
The nonlinearity of a function f , denoted by Nf , is defined as

Nf = min
φ∈An

d(f, φ)

where An is the class of all affine functions on Fn2 , and min is the minimum-
function, outputting the minimum element in a set of comparable objects.

Note that when speaking of nonlinearity in general, and not for a specific f ,
only the symbol N will be used.

An equivalent definition of nonlinearity, based on the interpretation that
W (f̂)(w) is equal to the number of 0’s minus the number of 1’s in the binary
vector f ⊕ `w, is given in [10], and states that

Nf = 2n−1 − 1

2
max
w∈Fn

2

|W (f̂)(w)| (2.7)

This definition is used in some programming language libraries, as it is clearly
more efficient than checking the distance to all affine functions – for instance,
this is what is used in SageMath ([25], see source code for boolean_function),
which will be expanded upon in Chapter 3. A full distribution of the nonlinearity
of functions in n ≤ 5 variables is given in Chapter 5, see Table 5.2.

20

The nonlinearity Nf of any Boolean function f in n variables satisfies

Nf ≤ 2n−1 − 2
n
2−1 (2.8)

[4, 10]. The functions that achieve equality to the right-hand side of (2.8) are
functions with the highest nonlinearity possible, and denote a special class of
functions, called bent functions. These functions have many interesting proper-
ties – not only for cryptographic purposes – on which much literature has been
written.

Definition 2.8. (Bent Boolean functions) [10]
A Boolean function f in n variables is called bent if and only if the Walsh
transform coefficients of f̂ are all ±2

n
2 , that is, W (f̂)2 is constant.

From this definition, it is easy to see that bent functions only exist for even
dimensions, i.e. n = 2k, for some integer k, since 2

n
2 is not an integer for odd

n; and that all bent functions are plateaued (with s = 0).

For odd n, where n = 2k + 1, the question regarding how close one can get
to this value is not completely answered to this day. A class of functions related
to this, that always achieve high nonlinearity in odd n, is the class of semi-bent
functions [10, 19, 9]. The following definition is used for this thesis, as it is
the most general case of this type of function. Below the definition is a remark
about a more restricted class, which is defined in [10].

Definition 2.9. (Semi-Bent Boolean functions) [23]
In odd n, if a Boolean function f ∈ Bn is s-plateaued with s = 1, such that
|W (f̂)(w)| ∈ {0, 2n+1

2 } for all w in Fn2 , then f is a semi-bent function.

Letting s = 2, this class of functions can be found in even n as well, but the
definition as it stands suits the purposes of this thesis, and the focus is rather
put on bent functions for even n.

Remark. The mentioned stricter class of semi-bent functions given in [10] is
concerned with semi-bent functions of a special form: for an integer k, such a
function in 2k+1 variables is the concatenation of f0 and f1, where f0 is a bent
function in n = 2k variables and f1 = f0(Ax⊕ b)⊕ 1 (for a nonsingular n× n
matrix A over F2 and a vector b ∈ Fn2). In this form, the semi-bent functions are
balanced and have N = 22k − 2k. In this thesis, this restricted form will not be
explored further, but is mentioned here because these two differing definitions
have been the cause of some confusion. Note that by using Definition 2.9, not
all semi-bent functions are balanced, as will be shown in Chapter 5.

The maximum algebraic degree for a bent function is n
2 , and for a semi-bent

function (as in Definition 2.9) it is n+1
2 [14].

Carlet defines in [4] a property related to the monomial count of Boolean
functions, which he claims plays an important role – on level with nonlinearity
and algebraic degree – in resisting cryptographic attacks against both stream
ciphers and block ciphers. He introduces this property by stating that the
number of monomials of a function’s ANF is itself not satisfactory, as functions
with high monomial count sometimes behave similarly with some functions with
low monomial count. This definition is one of the main definitions for this thesis,
and is what the following programs are designed to calculate.

21

Definition 2.10. (Algebraic Thickness) [4]
The algebraic thickness T (f) of a Boolean function f is the minimum number of
monomials with non-zero coefficients in the ANF of the functions f ◦ A, where
A ranges over the general affine group, i.e. all affine transformations.

In other words, for a Boolean function f , the algebraic thickness T (f) is
equal to the minimum monomial count of the functions that f can be mapped to
through all possible affine transformations. As this thesis will discuss functions
in a different number of variables – and in the interest of being unambiguous
when confusion may occur – the sometimes added subscript Tn will refer to
(algebraic) thickness in n variables.

Example 2.3. In n = 3 variables, there are 168 3× 3 invertible matrices, and
23 = 8 vectors; therefore 168 ∗ 8 = 1344 affine transformations. Let

f(x1, x2, x3) = x1x2x3 + x1x2 + x1 + x2x3 + x3 + 1 ∈ B3,

a function with 6 monomials. We want to calculate T (f).
To do this, we iterate through all affine transformations of f , mapping the

function by the affine transformations represented by the matrices and vectors.
For each resulting function after transformation of f , we check the number of
monomials in its ANF. Through this search, one of the transformations found
is: 1 0 1

0 1 0

0 1 1

x1x2
x3

+

0

0

0


which maps the variables of f as such:

x1 7→ x1 + x3,

x2 7→ x2,

x3 7→ x2 + x3.

Thus, we can easily calculate what f is mapped to through this transformation
(with algebra in B3):

f(x1 + x3, x2, x2 + x3) = (x1 + x3)x2(x2 + x3) + (x1 + x3)x2 + x1+

x3 + x2(x2 + x3) + x2 + x3 + 1

= x1x2x3 + x1x2 + x1x2 + x2x3 + x2x3 + x2x3+

x2x3 + x1 + x2 + x2 + x3 + x3 + 1

= x1x2x3 + x1 + 1,

a function which ANF has three monomials. In our iteration through affine
transformations, we find no other function in the orbit of f with fewer mono-
mials, thus T (f) = 3.

22

If a property of a Boolean function is preserved through all affine trans-
formations, then this property is an affine invariant, or invariant under affine
transformation [6]. In relation to algebraic thickness, the number of monomials
in the ANF of a Boolean function is not an affine invariant, arguing that a high
monomial count is not a satisfactory complexity criteria for use in cryptography,
and why it is interesting to find the minimum number in the orbit of a function.
Properties of Boolean functions of relevance to this thesis that are invariant
under affine transformation are the well-known:

1. Algebraic degree

2. Nonlinearity

3. Balancedness

4. Algebraic thickness

Surely, (1) can be seen to be true by observing that the algebraic degree of
any nonzero affine function is – by definition – equal to 1, and the same is true
for any one variable. Thus, mapping the variables of a function to (nonzero)
affine functions does not change the degree of any monomial in the ANF of the
function, and therefore the function itself preserves its degree. This is mentioned
briefly in [4, 7].

For (2), it has been shown that the Walsh-Hadamard spectrum is invari-
ant under affine transformation, and therefore all properties related to it, e.g.
nonlinearity, bentness and semi-bentness. See [26, 19] for more on this. This
means that if a function is bent (or semi-bent), all affine transformations of this
functions will also be bent (or semi-bent) functions. In Chapter 5, the number
of orbits that are bent for n = 4 (and semi-bent for n = 5) are listed, and are
referred to as bent orbits (respectively, semi-bent orbits).

Next, (3) can be shown to be invariant under affine transformation by the
observation that the transformation is merely a permutation of the vectors in Fn2
– this results in the truth table of the function to be permuted, but not otherwise
altered, therefore the Hamming weight of the truth table is preserved. As with
bent functions, the number of balanced orbits for n = 4, 5 is given in Chapter 5.

Finally, (4) is invariant by its definition, as algebraic thickness relates directly
to the orbit of a function through affine transformations.

2.3 Related Work

2.3.1 Algebraic Thickness
The work of Claude Carlet in [8] and [4] is the genesis of algebraic thickness,
and these articles are therefore crucial to this project.

The former article defines algebraic thickness, and discusses lower and up-
per bounds on its maximum value (see Section 2.3.2). It also includes further
discussion on the relation that algebraic thickness has with other complexity
criteria (e.g. nonlinearity, algebraic degree, etc.). The latter article improves
some of the work done in the former, and further expands on the properties of
algebraic thickness.

The algebraic thickness of affine functions (i.e. functions with algebraic
degree 1 or lower) is at most 1 [4, 3]. The quadratic functions (i.e. functions

23

with algebraic degree 2) are also well understood, due to a theorem by Dickson,
summarized by Boyar and Find in [3]:

Theorem 2.1. (Dickson) Let f : Fn2 → F2 be quadratic. Then there exist an
invertible n × n matrix A, a vector b ∈ Fn2 , t ≤ n

2 , and c ∈ F2 such that for
y = Ax + b one of the following two equations holds:

f(x) = y1y2 + y3y4 + · · ·+ yt−1yt + c, or
f(x) = y1y2 + y3y4 + · · ·+ yt−1yt + yt+1.

Furthermore A, b, and c can be found efficiently.

Also of relevance to this thesis is the work [26] of Sertkaya and Doğanaksoy,
wherein they write about affine equivalence and preservation of nonlinearity of
Boolean functions through bijective mappings. Knowing this proved useful for
the analysis of nonlinearity in this thesis, as described at the end of Section 2.2.
Also, Table 5.2 (calculated independently) shows the distribution of nonlinearity
of all functions in n = 2, 3, 4, 5 variables, which is confirmed by their work in [26],
as they list the very same table.

2.3.2 Known Bounds on Algebraic Thickness
For Boolean functions in n variables, it is of interest to determine the maximum
value possible for Tn, for any f ∈ Bn, i.e. maxf∈Bn

(T (f)) – and specifically,
the growth of this value. As the maximum number of terms in the ANF of any
f in n variables is smaller or equal to 2n, maxf∈Bn

(T (f)) ≤ 2n serves as the
trivial upper bound. Determining whether the maximum T is polynomial or
exponential in n can have indications for weaknesses of ciphers using Boolean
functions [8]. Studies on both lower and upper bounds on this value have been
conducted, and are summarized here.

For the lower bound of maxf∈Bn
(T (f)), Carlet showed in [8] that, for every

number λ < 1
2 and positive n, the density in Bn of the subset

{f ∈ Bn | T (f) ≥ λ2n}

is greater than 1−22
nH2(λ)−2n+n2+n, where H2(x) = −xlog2(x)−(1−x)log2(1−

x) is the entropy function. In the words of Carlet, they deduced that almost all
Boolean functions have algebraic thickness greater than λ2n. (See [8] for more
on this.) Furthermore, in [4], they improved upon this result, and showed that
almost all Boolean functions have algebraic thickness greater than

2n−1 − n2
n−1
2 ,

and a theorem describing this – and proof thereof – can be found in said paper.
As of now, the best upper bound on algebraic thickness is proven by induc-

tion by Carlet in [8], stating that, for every Boolean function f in Bn,

T (f) ≤ 2

3
2n,

a bound which Carlet says could be improved on, listing it as an open problem.

24

2.4 Methodology
This project is a quantitative simulation case study, and concerns analysis and
calculations of mathematical concepts. The validity of a mathematical simu-
lation is grounded in the validity of the mathematical concepts used (given in
Sections 2.1 and 2.2), as the simulation explores mathematics quantitatively.
More on simulation studies can be found in [2].

In Chapters 3 and 4, the programs used in the calculation of the algebraic
thickness distribution for n ≤ 5 are listed, and a discussion of the efficiency
and execution time of the methods and programs is given when relevant. The
validity of the results of these programs is discussed in Section 5.4.

Continuous testing of the programs – both in results and in logic flow –
was key to developing programs that were efficient and correct in their execu-
tion. The tests written were based on the mathematical concepts defined in
Sections 2.1 and 2.2, using the built-in packages of the tools used (cf. SageMath
[25], further discussed in Section 3.1).

The SOLID-principles – coined by Robert C. Martin and described in [18]
– were applied throughout the development process, when applicable. For in-
stance, the Single-Responsibility Principle is reflected here in that each method
is focused on one task (e.g. matrix and vector generation, function generation,
etc.). This further supports the Open-Closed Principle (i.e., “open for expan-
sion, closed for modification”), in that each method is programmed once, but
re-used for multiple testing- and analysis-programs, without modification. Ad-
ditionally, each method is written for any n, leaving room for further expansion
from the lower number of variables to the higher, and re-using the source code.
The methods are therefore explained in detail individually, as they were used
in combination for several different testing- and analysis-programs, both before
and after the distribution was completed.

The compilation of the methods when the intention of the constructed pro-
gram was to compute the final algebraic thickness distribution, is given in Ap-
pendices B and C – this is mentioned in more detail in the chapters, stated
above. The various programs used to conduct the analysis (which is listed and
discussed in Chapter 5) of the results, are not given in full. Those programs
are merely different combinations of the listed methods, with some smaller (and
rather trivial) extensions, that would not be of great interest to the point being
made (i.e., how the distribution was calculated).

25

Chapter 3

Calculating thickness
distribution for n = 4

3.1 SageMath and computational strategy
SageMath [25] is an open-source mathematics software system, which builds on
several existing open-source packages, and runs on Python. It includes soft-
ware for calculations in calculus, linear algebra, abstract algebra, and much
more. Source code written in SageMath is parsed into Python code before be-
ing compiled and run as a Python program. Updates are rolled out fairly often,
as during the writing of this thesis, there have been updates about every 2-3
months, starting with 8.6 in January 2019, 8.7 March 2019, 8.8 June 2019, 8.9
September 2019, and 9.0 January 2020. The versions before 9.0 runs on Python
2, while 9.0 runs on Python 3. The programs and methods discussed in this
thesis should run on all versions before 9.0, but were written and used with 8.8
and 8.9.

SageMath was chosen for this project because of the existing interfaces
for interaction with Boolean rings and Boolean functions, and the built-in
matrix manipulation. SageMath contains a package for Boolean functions –
sage.crypto.boolean_function – but early in the process it was found that this
package did not suit the requirements this project needed, as a memory leak
occurred anytime more than approximately 900 Boolean functions were turned
into ANF. By checking the source code of this package, it became apparent
that the error stemmed from the method of converting Boolean functions (from
boolean_function) into Boolean polynomials (in the pbori -package), which is
used for ANF. Because of this, the computational implementation of Boolean
functions in this thesis are constructed directly in ANF as Boolean polynomials
using the pbori -package, and the boolean_function-package is used only for its
nonlinearity calculation method. Chapter 5 – where the analysis of the results
from the programs to be explained is given – contains data and results that have
been collected and analysed by use of the methods from these packages.

To our knowledge, there has not been any previous work conducted on calcu-
lation of the distribution of algebraic thickness, in a similar manner as this thesis
will describe. As such, when this project was first undertaken, a foundation of
data was needed for an initial analysis of patterns. In this first data collec-

26

tion, the brute-force method of iterating through every Boolean function and
calculating their respective thickness would be applied, in the hope that there
would be implications for use with the higher n (specifically, in n = 5). This
brute-force program would calculate the distribution of thickness in n = 2, 3, 4,
and is described and discussed in Section 3.2. From the patterns found by
analysis of the collected data, the definitions given in Sections 4.1 and 4.2 were
defined, and these were used for calculating the thickness distribution in n = 5
variables. The program implementing these are given in Chapter 4. For the
interested reader, the full programs implementing the thickness calculation are
attached to the thesis as appendices (see Appendices B (brute-force) and C
(using the to-be-discussed strategy)).

The algebraic thickness calculation programs for n = 4, 5 are both created
to be run in iterations. This is because of the sizes of both functions sets,
even after optimization for n = 5 (which will be discussed later). Several of
these program iterations were run simultaneously on each computer available,
where one iteration processed one part of the complete function set, with no
functions in common with the other sets. The limiting factors for this approach
were the amount of processors (CPUs) and the amount of memory (RAM)
in each available computer. Attempts were made to utilize parallel processing
in Python, but as of SageMath 8.9 this is implemented poorly – at least for
the purposes needed in this project. Testing was done for n = 2, 3 with a
method that managed to implement parallel processing, but the time it took
far exceeded the time it took to run an equal non-parallel method on the same
data set. Upgrading the following programs with a working parallel processing
method would be an improvement, but it could not be done at this time, due
to the implementation of parallel processing in SageMath 8.8 and 8.9. (Note:
In January 2020, SageMath 9.0 was released, which uses Python 3 instead of
Python 2. By this time, the final data collection of this thesis was ongoing, and
therefore no changes were made nor attempts to implement this. In the release
log (found in [25]), there are notes on changes to the Parallel processing module,
which may be of interest in the continuation of the work done in this thesis.)

Remark. All the methods given have been cleaned up in some parts, i.e. re-
moval of various “quality-of-life”1 method calls that print to the terminal. E.g.,
printing which function is being processed, and the time it took to process it;
printing the number of matrices and vectors generated (for program validity
assurance), the time elapsed, etc. The removal of these method calls is done
for the readability of the programs, such that only the logic and flow of the
programs can remain.

1This term is used here in its colloquial manner, and refers to aspects of the design that
are not necessary for the calculations, but indeed necessary for estimating the completion of
the programs as they are run.

27

3.2 Program: Brute-force implementation for
n = 2,3,4

1 n = int(raw_input("n = ")) # variable integer
2 ring = BooleanPolynomialRing(n, "x") # F_2
3 x_vars = ring.gens() # List of x1, x2 , ...
4 m_space = MatrixSpace(GF(2), n) # Matrix Space
5 x_vec = vector(ring , x_vars) # Variable vector

Figure 3.1: Code: Variable declaration of programs

In the programs listed in the following, there is a standard setup in the main
method, consisting of choosing an integer n for number of variables, setting up
the Boolean polynomial ring, matrix spaces, etc. Figure 3.1 shows this setup,
using the available built-in concepts of SageMath. In the full programs, after
this setup, there are method calls using these variables, i.e. calls for the methods
described below.

3.2.1 Constructing all Boolean functions
Generation of the algebraic normal form (ANF, see Definition 2.3) of all possible
Boolean functions in n variables Bn, can be efficiently generated by construction
from the set containing all possible Boolean functions in (n−1) variables Bn−1,
and the new variable for Bn: xn; together with multiplication (∗) and addition
(⊕) in F2. Then,

Bn = {g ∗ xn ⊕ h | g, h ∈ Bn−1}. (3.1)

where B0 = {0, 1}. This holds, because every variable in an arbitrary function
f ∈ Bn appears with exponent 1, and so, one can gather all monomials in the
ANF of f that involve xn, and factor it out, creating a function g that can only
depend on x1, . . . , xn−1. The monomials that does not involve xn obviously does
not depend on xn either, and create another function h. Thus, g, h ∈ Bn−1, and
we obtain f(x1, . . . , xn) = g(x1, . . . , xn−1) ∗ xn ⊕ h(x1, . . . , xn−1).

In SageMath, by using BooleanPolynomialRing and the corresponding vari-
ables in it, this can be accomplished as shown in Figure 3.2 – where the input
for the method on display is the list of variables declared in Figure 3.1, line 3.

Remark. An alternative function generation was first used, where binary num-
bers of length n were used to first combine all variables into all possible mono-
mials (including 0, 1), and then a new set of binary numbers of length 2n were
used for summing all combinations of monomials into all possible Boolean func-
tions. Testing revealed that this method of generation was far more inefficient
than the algorithm in (3.1) – by a whole two days in n = 5 variables. Because
of this inefficiency, it will not be listed here.

As mentioned in the start of this chapter, both the program for n ≤ 4 and
the program for n = 5 are designed to work with several iterations, to save
time. For the brute-force program, this was solved by – in each iteration – first

28

1 def generate_functions(variables):
2 generated_funcs = [0, 1] # n = 0
3

4 # iterate through variables {x_1 ,.., x_n}
5 for new_x in variables:
6 temp_funcs = []
7 for f1 in generated_funcs:
8 for f2 in generated_funcs:
9 temp_funcs.append(f1*new_x + f2)

10 generated_funcs = temp_funcs
11

12 return generated_funcs

Figure 3.2: Code: Generation of Boolean functions

generating all Boolean functions, then dividing the list up into segments, with
a given start and an end, where the function at index end is not included. A
method implementing a formula for the division of the number of functions per
iteration is shown in Figure 3.3. Since generation of all functions in ≤ 4 variables
takes seconds, this solution was chosen – but as it is inefficient compared to
other solutions, it was changed for n = 5, discussed in Section 4.4.1. Line 12 in
Figure 3.3 refers to code not relevant to this concept, and can be viewed in full
in Appendix B.

1 ## Division of functions per iteration
2 division = 16 # because this was what was available
3 current_session = input("Iteration (0..%d)?: " % (division -1))
4 function_iterations = range(0, 2^2^n, 2^2^n/division)
5

6 start = function_iterations[current_session]
7 if (current_session == division -1):
8 end = 2^(2^n)
9 else:

10 end = function_iterations[current_session +1]
11

12 # [...]
13

14 ## SETUP: Construction of Boolean Polynomials
15 bool_pols = generate_functions(x)[start:end]

Figure 3.3: Code: Dividing number of functions into iterations, n ≤ 4

3.2.2 Generating invertible matrices and vectors
Any n× n matrix over F2 can be represented by a n2-length binary number by
concatenation of the rows of the matrix, e.g. for n = 3:a1 a2 a3

a4 a5 a6
a7 a8 a9

 = [a1, a2, a3, a4, a5, a6, a7, a8, a9,],

where a1, . . . , a9 ∈ F2. In SageMath, this is one of the approaches for the
construction of a matrix, and was chosen for its simplicity. As there are 2k

29

binary numbers of length k (see Section 2.1.2), for k = n2 there are then 2n
2

possible n × n matrices over F2. A method to generate all invertible n × n
matrices over F2 was needed, and two main algorithms were analysed:

1. Computational (brute-force):
Generate all 2n

2

possible matrices and use the built-in is_invertible()-
method in SageMath as a filter.

2. Mathematical:
Generate all independent vector combinations and constructing the ma-
trices from said vectors.

In both cases, the correct number of invertible matrices was generated (see Ta-
ble 2.4), but the methods were inefficient, especially for n > 4 – and a method
that could be used efficiently for both n = 4, 5 was preferred. Therefore, a
hybrid method based on the two approaches was designed, using the filtering
method from the computational approach, and the vector combination from the
mathematical approach. In this method, which is given in Figure 3.4, the inde-
pendency criteria of the mathematical approach is disregarded, and instead, all
vector permutations are combined. Then, using the built-in method to filter out
those combinations that are dependent, the invertible matrices are found. This
reduces the generation time down (for n = 5) from a few hours to approximately
35 minutes, on the resources that were available at the time. A better solution
to matrix generation may exist, but the solution presented here is satisfactory
for its use related to this thesis.

Generation of all vectors in Fn2 is a trivial task, and is merely the generation
of all binary numbers in the inclusive range [0, 2n − 1].

For the brute-force implementation of thickness calculation, the main re-
quirement was to store each function f and the minimal function fmin that f
was mapped to. An additional requirement was to store each matrix A and
vector b which provide the affine transformation that maps f into fmin. At
first, the n2-length binary number of the matrix, and the n-length binary num-
ber of the vector was stored, but tests showed that this made each output-file
very large, and both slowed down the full program and the analysis programs.
Instead, a method called matrix_value was programmed, using the integers in
base-10 that generates each vector – when converted to a binary number – to
calculate the integer in base-10 that would generate each matrix, also when
converted to a binary number.

In addition, to avoid multiplying each matrix with the vector containing all
variables (i.e. x = (x1, . . . , xn)) every time a function would be analysed, the
calculation of Ax was stored instead of the matrix itself, saving up to(

n−1∏
i=0

(2n − 2i)

)
∗ (22

n − 1)

operations, where the left term here is the number of invertible matrices in n
variables, from (2.5) – in short, the given formula describes that the matrix
maps are calculated once instead of once for each function.

However, the operation of adding the matrix maps with the vectors b that
combine into the affine transformations required, is done once per function.
This choice was made because of the resulting size of the list containing the

30

1 def generate_invertible_matrices_and_vectors(n_var , M, x_vector):
2 binary_list = []
3 base = [’0’] * n_var
4 vectors = [(0, vector(GF(2), base))]
5

6 # Vector generation
7 for index in range (2^ n_var)[1:]:
8 binary = list(bin(index))[2:]
9 vec = base[len(binary):] + binary

10 binary_list.append ((index , vec))
11 vectors.append ((index , vector(GF(2), vec)))
12

13 # Vector permutations
14 permutations = Arrangements(range ((2^ n_var) -1), n_var).list()
15

16 # Invertible matrix generation
17 matrices = []
18 for permutation in permutations:
19 accumulator = []
20 value_list = []
21 for index in permutation:
22 value_list.append(binary_list[index][0])
23 accumulator += binary_list[index][1]
24 inv_matrix = M.matrix(accumulator)
25 if inv_matrix.is_invertible ():
26 generating_int = matrix_value(n_var , value_list)
27 matrix_map = inv_matrix*x_vector # matrix maps
28 matrices.append ((generating_int , matrix_map))
29 return matrices , vectors
30

31 # Calculate generating integer for given matrix
32 def matrix_value(n_var , value_list):
33 return sum([(value_list[i] * 2^(n_var*(n_var -i-1)))
34 for i in range(len(value_list))])

Figure 3.4: Code: Matrix maps and vector generation in n ≤ 4

affine transformations (see Table 2.4 for the numbers of such) – when tests were
run to attempt to store all of them, the computers available at the time crashed,
because of memory errors.

The method for matrix and vector generation, and the method for matrix
value calculation is given in Figure 3.4. In the following n = 5 program, this
method was changed slightly, as the requirement of storing which matrix and
vector that created the map was abandoned, as they were deemed not of interest.

In Figure 3.4, vector generation is accomplished in Lines 3–11, appending
a tuple consisting of (generating integer, vector) to a list, which – when the
process is completed – contains all vectors. Line 10 contains the vectors used
for matrix generation further below.

The permutations created in Line 14 is using SageMath’s built-in method
Arrangements(), and consists of all possible permutations of indices 0..(2n − 1)
of length n. This is used in the following for-loop to check all combinations of
vectors of whether they combine into an invertible matrix or not. If they do, the
generating base-10 integer of the matrix is calculated, and a map is created by
multiplying the matrix with the variable-vector. Each matrix map is stored as a

31

tuple: (generating integer, matrix map). Note that there is a known issue with
the Permutation module in SageMath (discussed in the documentation of its
package, found in [25]), but rigorous testing confirmed this issue did not affect
its use with this method.

3.2.3 Calculating Algebraic Thickness, n = 2,3,4

n Number of mapped functions

2 384
3 344 064
4 21 139 292 160
5 1 374 301 573 789 777 920

Table 3.1: Brute-force: number of transformations to check in n variables

Having all invertible matrix maps, all vectors, and all Boolean polynomials
generated, the calculation of algebraic thickness of each function consists of
creating an affine transformation map for each vector with all matrix maps,
then applying said map to each function – and finally checking the number of
monomials in each resulting mapped function, storing the minimal monomial
count.

Given in Table 2.4 is the complete number of affine transformations needed
to be iterated through for each Boolean function in n ≤ 5 variables. The total
number of functions to check the monomial count of, for n variables, is given in
Table 3.1, using the formula

Number of mapped functions = 22
n ∗ 2n ∗

(
n−1∏
i=0

2n − 2i

)

where the first term is the number of Boolean functions, the second is the
number of vectors, and the third is the number of invertible matrices. Note that
these resulting functions are not necessarily unique, in fact most of them are
duplicates. This is mentioned briefly following Definition 2.4, i.e. for a function
f(x1, x2) = x1, there are many instances where there is no change under affine
transformation, e.g. f(x1, x1 + x2) = x1 = f(x1, x2 + 1). Nevertheless, the
resulting functions must all be checked in relation to the function being mapped.

Iteration through all of these functions is a trivial task for n = 2, 3, and a
rather lengthy – but still manageable – task for n = 4. Initial tests approximated
the execution time to 32 days, which is why the iteration approach was used.
The corresponding time frame for n = 5 variables was calculated by timing
the brute-force program when applying all affine transformations to 10 Boolean
functions of various degrees and monomial counts in B5, and then averaging the
time spent. The average time found was approximately 5 hours, which resulted
in a time estimate of 2 450 000 years – when the brute-force program is run
on one iteration. While this estimate is not at all precise, it served its purpose
to show that a better method of calculating thickness was needed, discussed in
Chapter 4.

32

Programmed method of thickness calculation

The method given in Figure 3.5 is the method incorporating the algebraic thick-
ness calculation for each function in n = 4 variables – and also n = 2, 3, trivially,
although Line 24 must then be modified. The input variables of the method are
(1) all Boolean polynomials sorted by algebraic degree, (2) all invertible matrix
maps, and (3) all vectors; as generated by the methods described above. The
functions are sorted by degree in this program, because – at the time – it was
suspected that this could be of use for n = 5, inspired by Dickson’s theorem (as
mentioned in Section 2.3, showing that quadratic functions are well-understood).
Missing from this program are the previously mentioned quality-of-life sections,
not relevant to the logic of the program.

The method iterates through each degree from 1 . . . n, storing information
about the current minimal number of monomials in each mapped function,
which matrix and vector was used, and the mapped function itself. When the
lists of matrices and vectors have been exhausted (or the function was mapped
to the absolute minimal number of terms possible for a nonzero function, i.e.
1), nonlinearity is calculated for the function, using the previously mentioned
boolean_function-package, at Line 42. Then each result is printed to a text
file, which is saved and closed – in case of power failure, or other unexpected
problems, during this time consuming process.

Line 25 in Figure 3.5 uses the built-in method .monomials(), which creates
a list containing all the monomials in the function. Counting the size of this
list then gives the monomial count of the function. Later on, it was discovered
that using the built-in function .set() is much faster, and is used in programs
for n = 5. Other minor improvements to the program can also be done, e.g.
changing the initialisation of the minimal monomial count (Line 13) to the
original f ’s monomial count, and the same corresponding change tomin_new_f,
in Line 16. All of these changes were addressed and implemented for n = 5.

For n = 4, because this program would have had to run for approximately
32 days, it was run as 16 iterations, where each iteration calculated thickness
for 65536

16 = 4096 functions. These iterations were then run on various available
computers, and the full process took approximately 6 days to complete. The
resulting data sets where zipped together and checked for validity – i.e., a pro-
gram verified that all Boolean polynomials where iterated through, and that
the stored matrix and vector integers in actuality mapped the functions to the
saved functions in the data set, before analysis was started.

After analysis of the data set (gathered in Chapter 5, see Section 5.1), and
inspection of what functions were being mapped to, it was found that, in most
cases, the functions of the same thickness were mapped to the same – or in some
cases, a small number of similar – function(s). These were then collected and
further analysed, the results of which introduced a property that was used for
calculation of the thickness distribution in n = 5 variables. This is the subject
of the following chapter.

33

1 from sage.crypto.boolean_function import BooleanFunction
2

3 def calc_thickness(bool_pols_by_deg , matrices , vectors):
4 n_matrices = len(matrices)
5 n_vectors = len(vectors)
6

7 for bool_pols in bool_pols_by_deg:
8 n_bool_pols = len(bool_pols)
9

10 for f in bool_pols:
11 iter_mat = 0
12

13 min_mapped_monomials = 2^n + 1 # global var n
14 min_matrix = 0
15 min_vector = 0
16 min_new_f = 0
17

18 while (iter_mat < n_matrices):
19 iter_vec = 0
20 while (iter_vec < n_vectors):
21 # Map the function , for n = 4
22 map_ = matrices[iter_mat][1] +
23 vectors[iter_vec][1]
24 new_f = f(map_[0], map_[1], map_[2], map_ [3])
25 mapped_monomials = len(new_f.monomials ())
26

27 # Check if fewer monomials
28 if (mapped_monomials < min_mapped_monomials):
29 min_mapped_monomials = mapped_monomials
30 min_matrix = matrices[iter_mat][0]
31 min_vector = vectors[iter_vec][0]
32 min_new_f = new_f
33

34 # Move on, if minimal monomials
35 if (mapped_monomials == 1):
36 iter_mat = n_matrices
37 iter_vec = n_vectors
38 iter_vec += 1
39 iter_mat += 1
40

41 # Write data to file
42 nonlin = BooleanFunction(min_new_f).nonlinearity ()
43 toText = open(file_name , ’a’)
44 toText.write("%d|%d|%d|%d|%s|%s\n" %
45 (min_mapped_monomials , nonlin , min_vector , min_matrix ,

f, min_new_f))
46 toText.close ()
47 return

Figure 3.5: Code: Calculating thickness distribution for n = 4

34

Chapter 4

Calculating thickness
distribution for n = 5

From the data collected by execution of the program discussed in Chapter 3, the
Boolean functions that showed the most promise were the functions with the
same monomial count (in their ANF) as their corresponding algebraic thickness.
Naturally, any Boolean function can be mapped to (at least) one of these, fol-
lowing the definition of algebraic thickness (see Definition 2.10). Further study
of this class of Boolean functions showed promise in relation to calculation of
algebraic thickness in higher numbers of variables. In Section 4.1, this class of
functions is defined and explored, and is further applied in the definition of a
related concept, in Section 4.2. Together, these two associated concepts built
the foundation of calculating the distribution of algebraic thickness for n = 5.

Remark. This thesis does not claim these definitions as new concepts within the
realm of Boolean functions – attempts were made to find equivalent definitions in
related work, that define these concepts clearly in relation to algebraic thickness,
but none could be found. Carlet defines algebraic thickness to be “the minimum
number of monomials with non-zero coefficients in the ANF of the functions
f ◦ A”, and as described in Section 4.1, the class of functions defined relates
specifically to the functions with the mentioned minimum number of monomials.
The following concepts may not be ground-breaking, but – as will be presented
– proved helpful in the work at hand.

4.1 Rigid functions
Given a Boolean function f , the algebraic thickness T (f) – by Definition 2.10
– is the minimum number of terms in the ANF of the affine transformations of
said function. Let fmin be (one of) the function(s) with minimum number of
terms in its ANF that f can be mapped to, through an affine transformation.
The algebraic thickness of fmin itself is then, clearly, the number of terms in
the ANF of itself.

35

Definition 4.1. (Rigid Boolean functions)
A Boolean function f with m monomials in its ANF, where T (f) = m, is a rigid
function.

In other words, a rigid function is any Boolean function f where the mono-
mial count of f is equal to the algebraic thickness of f . By this definition, a
rigid Boolean function cannot be mapped to a function with lower monomial
count, through any affine transformation, by the very definition of algebraic
thickness. Furthermore, any Boolean function can be mapped to a rigid func-
tion. The reason for this should be clear, but for completion, this short proof
is included:

Proof. Given a Boolean function f ∈ Bn, let g be a function in the orbit of
f (through affine transformations), where the monomial count of g is equal to
T (f). If g is not a rigid function, then g does not have the minimum monomial
count in its orbit. Suppose h is in the orbit of g, and has lower monomial
count than g. Since f maps to g and g maps to h, then by composition of
transformations, f maps to h as well. Thus, we reach a contradiction.

The set of all rigid functions in n variables will be denoted by Sn. Experi-
mentally, it was found that Sn ⊂ Sn+1, for n ≤ 3, and – by further examination
– this was found to be true for any n, as summarized in the following theorem.

Theorem 4.1. All rigid functions in n variables are also rigid functions in
(n+ 1) variables, i.e. Sn ⊂ Sn+1.

Remark. As is customary in this area (for easy writing), in the following proof,
we disregard the usual linear algebra convention of matrix-vector multiplication
and regard x and b both as a row- and a column vector, when there is no danger
of confusion.

Proof. Let f ∈ Sn with T (f) = t. We embed f in n + 1 variables, and we
denote its embedding by f̃ , such that f̃(x1, . . . , xn, xn+1) = f(x1, . . . , xn). Let
a non-zero affine transformation of the input of f̃ be given by x 7→ Ãx + b,
where Ã is a (n+ 1)× (n+ 1) matrix. We label the first n rows and n columns
in Ã by A and so,

Ã =

 a1,n+1

A
...

an+1,1 · · · an+1,n+1

 .

Thus,

Ãx + b =

 Ax + xn+1

a1,n+1

...
an,n+1

+

b1...
bn


an+1,1x1 + · · ·+ an+1,n+1xn+1 + bn+1

 ,

and so

f̃(Ãx + b) = f

Ax + xn+1

a1,n+1

...
an,n+1

+

b1...
bn


 ,

from which our claim is inferred.

36

n Number of rigid functions
0 2
1 3
2 6
3 28
4 588
5 211 259

Table 4.1: Number of rigid functions in n ≤ 5 variables

In summary, the introduction of xn+1 does not induce any further monomial
eliminations not already possible in n variables. Therefore, for a rigid function
f with monomial count t,

Tn(f) = t = Tn+1(f).

Furthermore, an immediate result of this theorem is given in Corollary 4.1.1.

Corollary 4.1.1. For any Boolean function f in n variables:

Tn(f) = Tn+1(f)

Proof. Given a rigid Boolean function f in n variables, letAn(f) be the the orbit
of f through all nonzero affine transformations, and let Tn(f) = t. As we know,
from the definition of algebraic thickness, any Boolean function g ∈ An(f)
satisfies Tn(g) = t, as well. Since f is rigid, Tn+1(f) = t, by Theorem 4.1.
Clearly, then, An(f) ⊆ An+1(f), by the very same affine transformations as in
n variables (leaving the new variable xn+1 mapped to itself), and therefore all
functions in An(f) have thickness t in n+ 1 variables, as well.

The definition for rigid functions is closely related to Carlet’s definition for
algebraic thickness, given in Definition 2.10. A property of algebraic thickness
in relation to its distribution, is given in the following lemma.

Lemma 4.2. Given all Boolean functions with monomial count k in n variables:
if there are no rigid functions with k monomials, then there are no functions in
n variables with Tn = k.

In other words, in n variables, if there are no rigid functions with monomial
count k, then there are no functions in n variables with algebraic thickness k.

Lemma 4.2 is easily shown by studying Definitions 2.10 and 4.1, observing
that if all functions of a certain size can be mapped to another function with
fewer monomials, then the algebraic thickness cannot be that specific size.

The realization of this lemma, after defining the concept of rigid functions,
was the inception of the program described in Section 4.3, and the program given
(partially) in Section 4.4 (and in full in Appendix C). Therefore it is stated as
a lemma, here.

The distribution of the number of rigid functions in n ≤ 5 variables is listed
in Table 4.1, where: for n ≤ 4 variables, these numbers were collected from

37

analysis of the data sets calculated by brute-force, and for n = 5, the number
was (along with double-checking values for n < 5) collected from analysis of the
data sets calculated by the program described in Section 4.4.

Having the concept of rigid functions clearly defined can be helpful in the
search for the distribution of algebraic thickness for n > 4, because of the size
(and growth in n+1) of Bn. Instead of iterative calculations through all Boolean
functions (which can be considered impossible for n > 5 by modern computing
standards), searching for rigid functions and – most importantly – disregarding
non-rigid functions, should improve the efficiency of any program (at the very
least, it improves the program given in Chapter 3) attempting this calculation
by a similar method, effectively increasing the potential search space.

Regarding the analysis of the algebraic thickness of Boolean functions, rigid
functions are important – both in relation to the definition of algebraic thick-
ness, and for use in programs analysing Boolean functions, as argued above. De-
termining which functions are rigid functions in n variables yields information
regarding the thickness distribution in n+ 1 variables as well, by Theorem 4.1.
Furthermore, by Corollary 4.1.1, unveiling the distribution of all functions in
Bn immediately gives the distribution of 22

n

functions in Bn+1 – which may be
a small portion compared to 22

n+1

, but is nonetheless a start.
However, since some of the rigid functions found shared a similar structure,

further analysis showed that some of them were affinely equivalent. Another
definition was needed for thickness calculation in 5 variables, which is given in
Section 4.2.

Further properties of rigid functions and algebraic thickness are discussed
and presented as conjectures in Section 6.1.6.

4.1.1 Examples of rigid functions
The functions in S0,S1,S2 (i.e., the rigid functions in n = 0, 1, 2 variables) are
shown here in full:

S0 = {0, 1}
S1 = {0, 1, x1}
S2 = {0, 1, x1, x2, x1x2, (x1x2 + 1)}

Since the sets S3,S4 are of rather large sizes (28 and 588, respectively), they
will not be listed here. However, a select few examples will be presented in
Section 4.2.1.

38

4.2 Representative functions

n Number of equivalence classes
1 3
2 5
3 10
4 32
5 382
6 15 768 919

Table 4.2: Number of equivalence classes in the affine group, from [16]

For a given Boolean function f , the orbit through affine transformations of
this function consists of all Boolean functions that f can be mapped to, through
all affine transformations – as described in Section 2.2. Any function in Bn is
contained in only one orbit, thus the orbits are equivalence classes, as they
divide the set Bn into disjoint subsets (the intersection of any two such is the
empty set). The number of equivalence classes in the general affine group (i.e.,
under affine transformations, as mentioned in Section 2.2) is given in Table 4.2,
as presented by Harrison in [16].

By uncovering one function φ for each of these orbits, every function in
n variables can be generated from a corresponding φ, by iteration through all
affine transformations for each one. Calculating the algebraic thickness of each
φ yields the thickness distribution for all functions in Bn, as T is (trivially)
an affine invariant. Since these φ would be representing their orbits, the name
representative function was chosen. As the rigid functions are the functions with
the minimum number of monomials in their ANF, these representative functions
were chosen to be the smallest rigid functions in their orbit. The following
definition contains what was used for choosing such a function, defining what
‘smallest’ would mean.

Definition 4.2. (Representative Boolean functions)
Let f be any Boolean function in n variables. In the orbit of f through all affine
transformations, there exists at least one rigid function fmin. The representative
function is chosen among the rigid functions in the orbit of f , using the following
method:

I If fmin is the only rigid function in the orbit, then fmin is the representative
function of the orbit of f .1

II If there are more than one rigid function in the orbit, we choose the smallest
rigid function – i.e. the function with minimal sum of the degrees of each
monomial in its ANF – to be the representative function.

III If there are still more than one function to choose from, we choose the
smallest function (as in II) that can be represented by the lowest indexed
variables, in lexicographical order, in descending order by degree of mono-
mials.

1This is only applicable for the trivial cases, i.e. the functions 0, 1, and x1 · · ·xn. All other
representatives will have more than one rigid function in their orbit, by variable permutation.

39

Part III of this definition is purely implementation specific and the choice of
representative from the rigid functions of the orbit will not affect any properties
related to algebraic thickness. The last sentence of this part (in italics) is further
explained in Example 4.2. As with rigid functions, the set of all representative
functions will be denoted as Rn for representatives in n variables. Trivially,
Rn ⊆ Sn.

Representative functions can be a tool both for reducing the set of functions
to discuss in the context of algebraic thickness, without losing valuable infor-
mation, and to help in attempts at finding patterns for the generation of rigid
functions.

4.2.1 Examples of choosing representative functions
As with the rigid functions, the first three sets of representatives can be shown
in full as examples:

R0 = S0 = {0, 1}
R1 = S1 = {0, 1, x1}
R2 = {0, 1, x1, x1x2, (x1x2 + 1)},

that is, R2 = S2 − {x2}. Because both x1 and x2 are in the same orbit, x1 is
chosen as the representative function, because of the lower indexing.

The full list of representatives for n ≤ 4 can be seen in Appendix D. For
now, examples of how the representatives are chosen will be listed, for n = 3
variables.

Example 4.1. For n = 3, T3 = 3:
In the only orbit with maximum thickness in n = 3 variables, there are 9 rigid
functions:

1. x1x2x3 + x3 + 1

2. x1x2x3 + x2 + 1

3. x1x2x3 + x1 + 1

4. x1x2x3 + x2 + x3

5. x1x2x3 + x1 + x3

6. x1x2x3 + x1 + x2

7. x1x2x3 + x2x3 + x1

8. x1x2x3 + x1x3 + x2

9. x1x2x3 + x1x2 + x3

Since there are more than one rigid function, Part I of Definition 4.2 does not
apply. For Part II, we find that in (7)–(9), the sum of monomial degree of each
function is 6; for (4)–(6), the sum is 5; and in (1)–(3), it is 4. Thus, by Part II,
one of the functions in (1)–(3) is the representative function.

The monomial with highest degree is equal for all three functions (for an
instance where this is not the case, refer to Example 4.2), thus the monomial

40

with second-highest degree is examined. Of these, x1 is lowest indexed, and
therefore the function in (3) is the representative of its orbit, by Part III in
Definition 4.2.

Example 4.2. For n = 3, T3 = 2:
In one of the orbits with T3 = 2, there are three rigid functions:

1. x1x2 + x3

2. x1x3 + x2

3. x2x3 + x1

These three rigid functions all have the same sum of degrees of each monomial,
and as such, are all possible representatives. However, the lowest indexed vari-
ables of these functions could be ambiguous here, which is why it is specified,
in Part III of Definition 4.2 (in italics), that the lowest index for the monomials
with higher degrees is preferred. Thus the monomials x1x2 < x1x3 < x2x3, and
therefore x1x2 + x3 < x1x3 + x2 < x2x3 + x1. Thus, the chosen representative
is x1x2 + x3, given in (1), here.

In short, all 22
n

Boolean functions in n variables can be mapped to one (and
only one) representative function – the representative function is a representative
of its orbit, and therefore there are the same number of representative functions
in n variables as there are orbits in n variables, which is equal to the number of
equivalence classes under action of the general affine group. A further discussion
on this subject will be continued in Chapter 5.

4.3 Focusing on monomial counts
When the algebraic thickness distribution for n = 2, 3, 4 was calculated (as dis-
cussed in Chapter 3), the focus was put on the algebraic degree of the functions
– both because algebraic degree is an affine invariant, and the known results
regarding quadratic functions, as given in Section 2.3 – when iterating through
all elements of B4. However, having the concept of rigid functions defined, it
became clear that focusing on the number of monomials in the ANF of the func-
tions would prove to be more efficient in the context of revealing the distribution
of algebraic thickness.

Defined in Section 2.2, the term monomial count of a Boolean function is
used in this thesis to refer to the number of monomials in a function’s ANF.
The number of Boolean functions in n variables that have exactly m monomials
in their ANF is

(
2n

m

)
, since this number equals the number of ways of “choosing”

m nonzero coefficients among the possible 2n monomials. (See Section 2.1.2 for
the definition of the binomial coefficient, given in (2.2)). Similarly, the number
of Boolean functions with at least m monomials is the sum of the binomial
coefficients

(
2n

i

)
, where i ≥ m, that is,

2n∑
i=m

(
2n

i

)
. (4.1)

41

A full distribution of the number of functions with monomial count m in n =
2, 3, 4, 5 variables is given in Table 4.3. The binomial coefficient distribution fol-
lows a normal distribution, which is seen in that the highest number of Boolean
functions have m = 2n−1 monomials (midpoint), and the number of functions
decreases at the same rate for m± 1,m± 2,

Inspired by the formula given in (4.1), all functions in n = 5 variables with
monomial count greater than or equal to

⌊
2
325
⌋

= 21 were checked experi-
mentally for rigidness (i.e., whether the functions were rigid or not), based on
Carlet’s upper-bound for algebraic thickness in n variables (see Section 2.3.2).
As expected, no rigid functions were found – and unexpectedly, this process
took a few hours.

Continuing this process, all monomial counts of descending values were
checked, and it was found that – as the values decreased – the time spent
on checking the functions increased. However, not because of the increase in
the number of functions (m = 16 was completed surprisingly fast). Rather, it
was because the number of functions with lower monomial counts decreased as
well – thus the time spent to find a function with lower monomial count for
each function increased (the time to execute the program for 9 monomials took
significantly much longer than 10, which again took longer than 11, etc.). The
program used for this calculation is what the program described in Section 4.4
is based on, and will therefore not be explained further.

Ultimately, the first monomial count where a rigid function could be found,
was m = 8 (i.e., first, in descending order). Thus, the maximum thickness of
n = 5 is 8, by Lemma 4.2.

42

Monomial
count n = 2 n = 3 n = 4 n = 5

0 1 1 1 1
1 4 8 16 32
2 6 28 120 496
3 4 56 560 4 960
4 1 70 1820 35 960
5 - 56 4368 201 376
6 - 28 8008 906 192
7 - 8 11 440 3 365 856
8 - 1 12 870 10 518 300
9 - - 11 440 28 048 800
10 - - 8008 64 512 240
11 - - 4368 129 024 480
12 - - 1820 225 792 840
13 - - 560 347 373 600
14 - - 120 471 435 600
15 - - 16 565 722 720
16 - - 1 601 080 390
17 - - - 565 722 720
18 - - - 471 435 600
19 - - - 347 373 600
20 - - - 225 792 840
21 - - - 129 024 480
22 - - - 64 512 240
23 - - - 28 048 800
24 - - - 10 518 300
25 - - - 3 365 856
26 - - - 906 192
27 - - - 201 376
28 - - - 35 960
29 - - - 4 960
30 - - - 496
31 - - - 32
32 - - - 1
Sum 16 256 65 536 4 294 967 296

Table 4.3: Distribution of functions in n ≤ 5 variables over monomial count

43

4.4 Program: Finding representatives in n = 5

Monomial
count Number of functions
0 1
1 6
2 28
3 134
4 625
5 2 674
6 10 195
7 34 230
8 100 577
9 258 093

Table 4.4: Distribution of variable-permutation unique functions in B5

In having found the maximum thickness of functions in n = 5 variables,
and changing the focus of thickness calculations from algebraic degree to the
monomial count of functions in B5, there is a total of

8∑
i=0

(
25

i

)
= 15 033 173

Boolean functions to search through for rigid functions (see Table 4.3, in column
n = 5, sum of rows 0–8). Although this number of functions is significantly
smaller than |B5| = 22

5

, it is still of considerable size.
However, as mentioned in the remark found below Definition 2.4 (affine

transformations), variable permutations of Boolean functions is a subset of all
affine transformations – therefore, the removal of duplicate functions, after map-
ping all functions to their lowest indexed variable version2, will not remove any
possible representatives. The total number of variable permutations in 5 vari-
ables is 5! = 120, which is relative small in comparison with the number of affine
transformations in total (see Table 2.4), and can be completed in a compara-
tively short amount of time. Therefore, by mapping all 15 033 173 functions
with monomial count 8 or lower to their lowest indexed function – which can be
considered a variable-permutation representative – the number of functions to
search through for rigid functions is lowered to 148 470. The distribution of the
number of these variable-permutation unique functions within each monomial
count value, is shown in Table 4.4. Note that 148 470 is the sum of rows 0–8 –
row 9 is included only to show how the number of variable-permutation unique
functions grows.

The program for processing the functions in these nine (0–8) monomial count
values will be described in detail in the section below, and is shown in full in
Appendix C. After completion, the output were the 382 representative functions
as desired (cf. Table 4.2), which will be further discussed in Chapter 5.

2As in Definition 4.2 Part III, using the code given in Figure 4.1.

44

1 # Maps function to lowest indexed form
2 def map_to_smallest_index(f):
3 smallest = f
4 for f_map in x_map: # x_map is global variable , see App. C
5 mapped_f = f(f_map[0], f_map [1], f_map[2],
6 f_map [3], f_map [4])
7

8 if (mapped_f > smallest): # note: x1 > x2 in .pbori
9 smallest = mapped_f

10 return smallest

Figure 4.1: Code: Mapping a function into its lowest indexed form

4.4.1 Constructing relevant Boolean functions
The Boolean functions that were analysed, by the program described in Sec-
tion 4.4.3, were generated by the same method shown in Section 3.2.1, i.e. Fig-
ure 3.2 – however, as explained, only those functions with monomial count less
than or equal to 8 were collected; discarding all others. The evaluation of mono-
mial count was accomplished by using the built-in method f.set(), and checking
the length of the resulting set, where type(f) = pbori.BooleanPolynomial, in
SageMath [25]. This method was used instead of the previously mentioned
f.monomials() in Chapter 3, as tests showed a significant improvement in effi-
ciency, and both methods served the same purpose.

The complete list of the 15 033 173 functions mentioned above were then
re-mapped to their lowest indexed variable equivalent function, using the code
shown in Figure 4.1, resulting in a list of size 148 470, which was divided and
written into one text-file for each monomial count value. Trivially, the only
function in monomial count 0, and the six functions in monomial count 1, were
already in representative form, after this variable permutation process. The full
program in Appendix C was run on the remaining seven (2–8) functions sets.

Collection of Boolean functions from the text files created was done by meth-
ods listed in the appendix, i.e. converting a string into a Boolean polynomial.
This could also have been done by using the built-in conversion method in Sage-
Math – but the listed method (convert_to_boolpol()) was found to be faster for
the purposes in this context.

4.4.2 Generating invertible matrices and vectors
The affine transformations required for each function were generated as in the
brute-force implementation, but with some minor adjustments (see Figure 4.2):

1. Removed the method matrix_value() and the variables involved with it,
as the requirement of storing what matrices and vectors map the functions
to their representative was abandoned.

2. Used ints for generation of vectors instead of strings

3. Changed conversion of binary number-strings into vectors to use the built-
in function map(), as ints were used.

In total, this improved the matrix generation time from 35 minutes to 25 min-
utes, when run on the available resources (for n = 5).

45

1 def generate_invertible_matrices_and_vectors(n_var , M, x_vector):
2 binary_list = []
3 base = [0] * n_var
4 vectors = [vector(GF(2), base)] # 0-vector added here
5

6 for index in range(1, 2^n_var):
7 binary = map(int , bin(index)[2:])
8 vec = base[len(binary):] + binary
9 binary_list.append(vec)

10 vectors.append(vector(GF(2), vec))
11

12 permutations = Arrangements(range ((2^ n_var) -1), n_var).list()
13

14 matrices = []
15 for permutation in permutations:
16 accumulator = []
17 for index in permutation:
18 accumulator += binary_list[index]
19 inv_matrix = M.matrix(accumulator)
20 if inv_matrix.is_invertible ():
21 matrix_map = inv_matrix*x_vector
22 matrices.append(matrix_map)
23 return matrices , vectors

Figure 4.2: Code: Matrix maps and vector generation in n = 5

4.4.3 Searching for representatives in n = 5
In the folder where the program was stored, a complete list of all representatives
currently found was kept and updated regularly, as a text file. After collecting
the functions with a specific monomial count value (as in Section 4.4.1), the
program collected all current representatives and stored them in a set() – i.e.
the built-in data structure set() in Python. This structure was used, because
“A set object is an unordered collection of distinct hashable objects” [22], which
allows efficient “element in set” computation. This made it possible to check
if the current function had already been found as a representative, without
significant impact on the run time of the program.

The code shown in Figure 4.3 is the method used for analysis of all functions
in a set monomial count value, and contains two global variables: n_monoms,
the monomial count of the current iteration; and representatives, a set() con-
taining all currently found representatives with monomial count values equal to
the specified n_monoms. As with the methods described in Chapter 3, vari-
ous “quality-of-life” method calls for printing out current positions – and saving
the positions of the iterations, in case of power failure – have been omitted for
readability.

The method (in Figure 4.3) makes an initial assumption, for each function f ,
that f is rigid, and attempts to disprove this assumption by checking the mono-
mial count of each affine transformation of said function. A variable min_f is
initialised, which stores the smallest rigid function f can be mapped to through
the process that follows (smallest, as in Definition 4.2 Part II – Part III is ap-
plied further below). Then, three important checks are made, for all fmap that
f maps to through any affine transformation:

46

1. (Lines 17–21): If f can indeed be mapped to a function with a lower mono-
mial count value, the function is proven not to be rigid, and is abandoned.

2. (Lines 23–28): If fmap equals a representative that is already found, f is
abandoned.

3. (Lines 30–34): If none of the above are true, in which case f may be rigid,
a check is made to see if fmap is smaller than the current minimal function
f maps to, as explained above.

Iteration through the affine transformations is accomplished through the use
of while-loops, because of the added benefit of being able to break out of the
loop. In general, breaking out of a loop is not good code practice (mainly for
readability, as it can disrupt the flow), but because the difference in time elapsed
per function between exhausting the set and breaking out of the loop can be
more than 10 hours, this feature is a vital part of the algorithm.

After the complete set of affine transformations has been exhausted – or,
if f was proven not to be rigid – a final check is made for f ’s rigidness. If f
is indeed rigid (and because of Lines 23–28 it hasn’t been found previously),
min_f is mapped to its lowest indexed variable form (see Figure 4.1), reflecting
Part III of Definition 4.2. The resulting representative is then saved to a text
file, and added to the set()-structure containing all current representatives.

Remark. The “bottleneck” of finding representatives of functions in five vari-
ables is the number of affine transformations to go through for each function –
but also the fact that the number of affine transformations is much larger than
the number of functions in any orbit (cf. the pigeonhole principle). This means
that there are several affine transformations that, for each f , maps f to the
same function. However, since there is no way of predicting, as far as we know,
which transformations will do this, it cannot be avoided.

In an attempt to work around this, a set() object containing all functions f
had previously been mapped to, together with a check for each fmap of whether
it had been checked previously, was added; and tests were run for a test set
containing a few functions in n = 5 variables. It was found that, compared to a
program without this set, the computation time was almost unaffected, but the
memory usage was increased drastically. Because of this, it was not included in
the final program.

The final program used for finding all 382 representatives in n = 5 variables is
listed in Appendix C. This program – as the brute-force program for n = 4 – runs
on iterations, such that several iterations can be run simultaneously, effectively
speeding up the calculation time. However, since each iteration has its own set
of representatives, this meant that some of the iterations found and analysed
the same representatives – a problem that would be fixed were the methods
implemented using parallel processing (see the introduction of Chapter 3 for a
short discussion of why this was not implemented). For the purposes of this
thesis, this only posed a minor problem. Any two representatives found were
equal, and all duplicates in the data set were removed. The additional time spent
was, in any such case, much less than the execution time of only running one
process. (See Section 4.4.4 for a discussion on execution time of this program.)
For the reader interested in how these iterations were further calculated, please
view the main-section of the program listed in Appendix C.

47

1 def calculate_thickness(functions , matrices , vectors , file_write):
2 for f in functions:
3 min_f = f
4 rigid_function = True # Assume rigid , attempt to disprove
5

6 iter_mat = 0
7 while (iter_mat < n_matrices):
8 iter_vec = 0
9 while (iter_vec < n_vectors):

10 # Apply map to function f
11 f_map = matrices[iter_mat] + vectors[iter_vec]
12

13 mapped_f = f(f_map[0], f_map [1], f_map[2],
14 f_map [3], f_map [4])
15 mapped_monomials = len(mapped_f.set())
16

17 # If function not rigid , skip to next function
18 if (mapped_monomials < n_monoms):
19 rigid_function = False
20 iter_mat = n_matrices
21 iter_vec = n_vectors
22

23 # If representative already found ,
24 # skip to next function
25 elif (mapped_f in representatives):
26 rigid_function = False
27 iter_mat = n_matrices
28 iter_vec = n_vectors
29

30 # If function may be rigid ,
31 # check if better representative
32 elif (mapped_monomials == n_monoms):
33 if (mapped_f < min_f):
34 min_f = mapped_f
35

36 iter_vec += 1
37 iter_mat += 1
38

39 if (rigid_function):
40 # Map to lowest indexed version
41 min_f_rep = map_to_smallest_index(min_f)
42

43 # Save results for each viable function to file
44 text_file = open(file_write , ’a’)
45 text_file.write("%s|\n" % min_f_rep)
46 text_file.close()
47

48 # Add found representative to set
49 representatives.add(min_f_rep)
50 return

Figure 4.3: Code: Method for calculating thickness in n = 5

48

Mon. count Functions/Iterations Min. time Max. time Total time (add.)
2 28 / 3 4h 4h 12h
3 134 / 4 6h 12h 1d 12h
4 625 / 4 1d 3h 1d 7h 4d 21h
5 2674 / 8 4d 10h 5d 5h 38d 14h
6 10 195 / 14 1d 14h 3d 19h 39d 17h
7 34 230 / 15 1d 4h 3d 15h 36d 16h
8 100 577 / 20 24s 5d 1h 11d 20h

Total 19d 15h 131d 16h

Table 4.5: Execution time of the iterations completed by Chapter 4’s program

4.4.4 Execution time
As noted in Chapter 3, if the brute-force program listed there was run for n = 5
variables, it would take approximately 2 450 000 years – or 24 500 years, if run
on 100 simultaneous iterations. As previously explained, this rough calculation
was estimated by averaging the time elapsed for each function to 5 hours, and
multiplying with |B5| = 22

5

. Although this estimate is not at all precise, it
successfully shows the magnitude of the problem, and may serve as a reference
point for comparison.

Listed in Table 4.5 is an overview of the time spent on each monomial count
value, by the designed program. It shows the number of functions together with
the number of iterations the functions were divided over, and the minimum &
maximum time spent on any one iteration within that monomial count value.
The rightmost column is the additive time spent, i.e. addition of all the time
values of each iteration – showing an estimate of how long the program would
take when run as one iteration. In practice, because the iterations of any one
monomial count value were run simultaneously, the actual execution time of a
specific monomial count value was the elapsed time of the longest iteration. The
time spent in total of all monomial count values is shown in the bottom row,
under the column for maximum time. Note that only the time for executing
the method for thickness calculation (given in Figure 4.3) is included, all other
methods are excluded (i.e., collection of functions and affine transformation
generation).

The shortest iteration took only 24 seconds, and most of the iterations for
eight monomials were executed quickly (14 of the iterations finished in less than
30 minutes). Even though there were 5028 functions to process for each iteration
running on monomial count value 8, all functions in some of these iterations
could be shown very quickly not to be rigid. However, in the iterations that did
indeed find rigid functions for this monomial count, the time spent was much
longer, i.e. at most 5 days 1 hour.

Even though the complete run time of the program was 19 days 15 hours, it
stands as a great reduction compared to the original estimate by brute-force.

The results of the stated program are the 382 representatives of their orbit
over affine transformations in B5. The full distribution and properties of their
orbits will be discussed in the next chapter, in Section 5.2.

49

Chapter 5

Analysis and Assessment

T n = 0 n = 1 n = 2 n = 3 n = 4 n = 5

0 1 1 1 1 1 1
1 1 2 3 4 5 6
2 - - 1 4 10 19
3 - - - 1 10 46
4 - - - - 5 81
5 - - - - 1 111
6 - - - - - 81
7 - - - - - 33
8 - - - - - 4

Sum 2 3 5 10 32 382
max(Tn) 1 1 2 3 5 8

Table 5.1: Distribution of representatives within each thickness value

The full distribution of algebraic thickness of the representative functions in n ≤
5 variables is given in Table 5.1, summarizing the results of the data collection
conducted by use of the program explained in Chapter 4. The distribution of
number of functions within each thickness value is further detailed and described
in Sections 5.1 and 5.2.

The Sum-row of Table 5.1 shows the total amount of representatives, which
is equal to the number of equivalence classes under affine transformation in n
variables [16, 20]. As discussed in Section 4.2, this is true for any n.

The maximum thickness for each n ≤ 5 (bottom row of Table 5.1) follows
the Fibonacci-sequence (see (2.3) of Section 2.1.2), that is

max(Tn) = F (n+ 1), for n ≤ 5. (5.1)

50

1 2 3 4 5 6 7 8 9

0
5

10
15
20
25
30
35
40
45
50
55

n variables

R

(5.2)
F (n+ 1)

(5.3)

Figure 5.1: Plot of upper- and lower bound of maximum T versus Fibonacci

As a reminder, in [8, 4] Carlet proved that the upper- and lower bounds of
maxf∈Bn

(T (f)) are:

Upper bound:
2

3
2n, (5.2)

Lower bound: 2n−1 − n2
n−1
2 , (5.3)

that is, for any given n > 0: (5.2) the algebraic thickness of any Boolean function
is 2

32n or lower, and (5.3) there exists1 a Boolean function f with Tn(f) greater
than 2n−1 − n2

n−1
2 . (See Section 2.3 for further reference.)

Although the improvement of the bounds stated here would be of great
interest, following the apparent Fibonacci-pattern would most likely not yield
any results, as it can be shown that the Fibonacci-sequence for (n + 1) is only
greater than the lower bound of maxf∈Bn

(T (f)) for n < 8. For any n ≥ 8, the
lower bound exceeds F (n+ 1), and thus there must exist a Boolean function f
with Tn(f) > F (n+1); simultaneously showing that maxf∈Bn

(T (f)) cannot be
equal to F (n+ 1) for all n, and that (5.3) is the better lower bound.

Calculation of these values is a trivial task, and Figure 5.1 is given here to
illustrate how the Fibonacci-sequence is contained within the bounds for n < 8,
but is then exceeded by the lower bound at n = 8, a trend which continues for
higher n. (That is, (5.3) grows faster than F (n+ 1).)

Returning back to Table 5.1, the columns for variables n = 0, 1, 2 were first
manually calculated, before the columns for n ≤ 4 variables were calculated
by the brute-force program from Chapter 3; and finally, using the program
given in Appendix C, discussed in Chapter 4, all representatives for n ≤ 5 were
calculated. The manual calculation was done to confirm that the brute-force
program gave correct results, and all variables were input to the program from
Chapter 4 to confirm both programs gave the same results for n < 5 – which
they did, indeed.

1In fact, according to Carlet in [4], almost all Boolean functions have Tn greater than this.

51

N n = 2 n = 3 n = 4 n = 5

0 8 16 32 64
1 8 128 512 2048
2 - 112 3840 31 744
3 - - 17 920 317 440
4 - - 28 000 2 301 440
5 - - 14 336 12 888 064
6 - - 896 57 996 288
7 - - - 215 414 784
8 - - - 647 666 880
9 - - - 1 362 452 480
10 - - - 1 412 100 096
11 - - - 556 408 832
12 - - - 27 387 136

max(N) 1 2 6 12

Table 5.2: Distribution of number of f ∈ Bn with given N -value, n ≤ 5

A full overview of all representatives in n ≤ 4 variables is given in Section 5.1,
followed by an analysis of what properties are present for any functions within
each algebraic thickness value (e.g. how many of the functions in n = 4 vari-
ables with T4 = 3 are bent). This analysis is based on data collected by iteration
through each of the orbits of every representative, counting the various proper-
ties by use of various programs based on the methods given in Chapters 3 and 4.
This data set for n = 4 is given in full in Appendix E.

For n = 5, the same property analysis is given in Section 5.2. As there
are 382 representatives – spanning 10 pages – they are only listed in full in
Appendix F, together with the full data set of the orbit analysis.

The full distribution of how many functions in n variables have which value
of nonlinearity (N) is given in Table 5.2. This table has been calculated through
an exhaustive search using SageMath, by visiting every function in Bn, for n ≤ 5,
confirming the results listed in [26]. Columns for n = 2, 3 are not strictly relevant
to the following property analysis, but are included for completeness. (Note: the
functions in n = 0, 1 are all linear, i.e. have N = 0.)

Furthermore, the distribution of the number of orbits within each possible
N -value (i.e., the distribution of nonlinearity of the representatives) is shown in
Table 5.3 – recall that nonlinearity is an affine invariant, described in Section 2.2.
E.g., from the table, there are 16 representatives (and therefore orbits) in n = 5
variables where N = 5. Further, we can see that there are two orbits with
maximum nonlinearity in n = 4 (and therefore two orbits that contain all bent
functions in n = 4), and 14 orbits with maximum nonlinearity in n = 5 (N = 6
and N = 12, respectively). Refer to the mentioned appendix F for more specific
details regarding which representatives that have which N -value.

As noted in Section 3.1, the properties of Boolean functions in this chapter
have all been calculated using SageMath’s packages related to Boolean func-

52

N n = 2 n = 3 n = 4 n = 5

0 3 3 3 3
1 2 4 4 4
2 - 3 5 5
3 - - 6 6
4 - - 8 12
5 - - 4 16
6 - - 2 31
7 - - - 46
8 - - - 68
9 - - - 72
10 - - - 73
11 - - - 32
12 - - - 14

Table 5.3: Distribution of number of orbits with given N -value, n ≤ 5

tions, i.e. the pbori -package for Boolean polynomials, and the boolean_function-
package (mainly used for its nonlinearity()-method).

5.1 Results and analysis for n = 4
After the completion of the execution of the program explained in Section 3.2,
a full algebraic thickness distribution of each function in B2, B3, and B4 was
stored in text files, where each file consisted of 14, 254, 65 534 lines each,
respectively (constant functions 0 and 1 were omitted). The full data set for
n = 2 is given (and explained) in Appendix A. The full data sets for B3 and B4
are too large to be shown in this thesis – however, an attempt to summarize the
interesting details of the orbits of n = 4, 5 are given in the following sections
(Sections 5.1.1 and 5.2.1). The analysis of the text file for n = 4 was the
inception of the definitions of rigid- and representative functions, as explained
in the introduction of Chapter 4.

The representatives for each unique orbit of Boolean functions are, by Defi-
nition 4.2, the minimal function of its orbit, both in number of monomials and
degree of each monomial. As shown in Examples 4.1 and 4.2, in most cases there
are more than one such function (e.g. x1x2 and x2x3), which is why Part III of
Definition 4.2 specifies that the function with the lowest indices in its variables
is chosen (so, x1x2 represents its orbit, here).

However, since it is the structure of the representatives that should be of
interest, not the trivial implementation specifics (for instance, indices may start
with 0, not 1) this last remark of the definition can be avoided by replacing
the variables {x1, x2, x3, . . . } with capital letters {A, B, C, . . . } (by choosing
a bijective map between the sets, i.e. never mapping the same variable to
more than one capital letter), and sorting by alphabetical order within the
monomials. Thus, the smallest rigid functions from Example 4.1, Section 4.2.1,

53

can be mapped:

x1x2x3 + x3 + 1 ≡ BCA + A + 1 = ABC + A + 1,
x1x2x3 + x2 + 1 ≡ BAC + A + 1 = ABC + A + 1,
x1x2x3 + x1 + 1 ≡ ABC + A + 1,

by corresponding bijective maps, and are all represented by the same repre-
sentative function. In this thesis, the term “ABC-form” will denote the capital
letter representation of the representatives, while x1x2x3-form will denote the
classical form, i.e., using x-variables.

The ABC-form may serve to better show the emerging patterns in the struc-
ture of the representatives (this is further discussed in Section 6.1.4). In Ta-
ble 5.4 the representatives in n = 0, 1, 2, 3, 4 are all listed in this form. Addition-
ally, in the interest of avoiding letting the representation of the representative
functions distract from what is interesting, the x1x2x3-form of Table 5.4 have
been included in appendix D. To reiterate, this presentation is purely cosmetic.

54

T n = 0 n = 1 n = 2 n = 3 n = 4

0 0 0 0 0 0
1 1 1 1 1 1

A A A A
AB AB AB

ABC ABC
ABCD

2 AB + 1 AB + 1 AB + 1
AB + C AB + C

AB + CD

ABC + 1 ABC + 1
ABC + A ABC + A

ABC + D
ABC + AD

ABCD + 1
ABCD + A
ABCD + AB

3 AB + CD + 1

ABC + A + 1 ABC + A + 1
ABC + AD + 1
ABC + AD + B
ABC + AB + CD

ABCD + A + 1
ABCD + AB + 1
ABCD + AB + A
ABCD + AB + C
ABCD + AB + CD

4 ABC + AB + CD + 1

ABCD + AB + A + 1
ABCD + AB + C + 1
ABCD + AB + CD + 1
ABCD + AB + CD + A

5 ABCD + AB + CD + A + 1

Table 5.4: Representatives in n ≤ 4: sorted by thickness, clustered by degree

55

Properties Nonlinearity Degrees
Number of functions 307 0 31 0 1
Homogeneous functions 52 1 16 1 30
Rigid functions 16 2 120 2 140
Balanced functions 30 3 0 3 120
Bent functions 0 4 140 4 16
Orbits 5 5 0
Bent orbits 0 6 0
Balanced orbits 1

Table 5.5: Property distribution of functions in B4 with T4 = 1

5.1.1 Property distribution in n = 4, sorted by thickness
Given in Tables 5.5–5.9 is a distribution of the properties listed below, for all
functions in n = 4 variables with the stated thickness. The property distribu-
tions may serve as a summary of what properties the functions with the listed
algebraic thickness have. Since B2 ⊂ B3 ⊂ B4 – and that the focus of this thesis
is n = 4, 5 variables – the property distributions for functions in n < 4 variables
are excluded.

The properties collected (refer to Section 2.2 for definitions) in this analy-
sis are: the complete number of functions with the given algebraic thickness,
the number of homogeneous-, rigid-, balanced-, and bent functions; the number
of orbits (cf. representatives), bent orbits and balanced orbits (as these are
affine invariants); and an overview of the nonlinearity-, and the algebraic degree
distribution of the functions. Table 5.10 is a summary of all the property distri-
butions of Tables 5.5–5.9, i.e. a complete property distribution of all functions
in B4, not dependent on algebraic thickness.

In both Sections 5.1.1 and 5.2.1, the property distribution of thickness zero
has been omitted, as there is only one function in Tn = 0 (for any n), namely
f(x) = 0. Trivially, but stated here for completeness, this means that the
property distribution of Tn = 0 will contain 1 homogeneous function, 0 (semi-)
bent functions, 0 balanced functions; the nonlinearity of f(x) = 0 is 0, and
the algebraic degree is 0. (Note: in some programming languages, for instance
SageMath, the algebraic degree of f(x) = 0 is defined as (−1).) There is 1 rigid
function, and therefore 1 representative function: f(x) = 0 itself. This property
distribution is equal for any n, since no non-zero function can be mapped to 0
through an invertible affine transformation.

Remark. In the interest of avoiding confusion, please remark that this property
analysis is not only of the representatives, but all functions in Bn. For instance,
let f ∈ B4 with ANF:

f = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4.

The algebraic thickness of f is 3, and therefore it belongs to Table 5.7, the
overview of functions with T4 = 3. (Also note that this is the only homogeneous
function with T4 > 2.)

56

Properties Nonlinearity Degrees
Number of functions 6804 0 0 0 0
Homogeneous functions 42 1 256 1 0
Rigid functions 64 2 2880 2 1428
Balanced functions 2760 3 560 3 4560
Bent functions 448 4 2660 4 816
Orbits 10 5 0
Bent orbits 1 6 448
Balanced orbits 2

Table 5.6: Property distribution of functions in B4 with T4 = 2

Properties Nonlinearity Degrees
Number of functions 33 448 0 0 0 0
Homogeneous functions 1 1 240 1 0
Rigid functions 188 2 840 2 448
Balanced functions 10 080 3 8960 3 19 320
Bent functions 448 4 18 480 4 13 680
Orbits 10 5 4480
Bent orbits 1 6 448
Balanced orbits 1

Table 5.7: Property distribution of functions in B4 with T4 = 3

Properties Nonlinearity Degrees
Number of functions 22 288 0 0 0 0
Homogeneous functions 0 1 0 1 0
Rigid functions 271 2 0 2 0
Balanced functions 0 3 8400 3 6720
Bent functions 0 4 6720 4 15 568
Orbits 5 5 7168
Bent orbits 0 6 0
Balanced orbits 0

Table 5.8: Property distribution of functions in B4 with T4 = 4

57

Properties Nonlinearity Degrees
Number of functions 2688 0 0 0 0
Homogeneous functions 0 1 0 1 0
Rigid functions 48 2 0 2 0
Balanced functions 0 3 0 3 0
Bent functions 0 4 0 4 2688
Orbits 1 5 2688
Bent orbits 0 6 0
Balanced orbits 0

Table 5.9: Property distribution of functions in B4 with T4 = 5

Properties Total amount
Number of functions 65536
Homogeneous functions 96
Rigid functions 588
Balanced functions 12 870
Bent functions 896
Orbits 32
Bent orbits 2
Balanced orbits 4

Table 5.10: Summary of the property distribution of n = 4

58

5.1.2 Bent functions in n = 4 (and n = 2)
The 896 bent functions (as defined in Section 2.2, refer to Definition 2.8) in
n = 4 are divided equally between thickness 2 and 3 (see Tables 5.6 and 5.7).
This is because there are only two bent orbits of n = 4, represented by (excerpt
from Appendix E):

Representative H Rigids Orbit length
AB + CD 27 3 448
AB + CD + 1 1 3 448

where ‘H’ is the number of homogeneous functions, and ‘Rigids’ is the number
of rigid functions, in their orbits. None of the bent orbits in B4 are balanced.
Both representatives also have the same orbit lengths, perhaps because the
two functions are the complement of each other (i.e., the complement of f is
f̄ = f + 1, see Section 6.1.3 for further notes on orbit lengths of such “pairs”).
The nonlinearity of the bent functions in n = 4 is 6, equal to the right-hand side
of the equation given in (2.8) (maximum bound of N) – that is 6 = 24−1−2

4
2−1.

For comparison, there are eight bent Boolean functions in n = 2, also divided
over two orbits, whose representative is shown here:

Function Representative
x1x2 AB
x1x2 + 1 AB + 1
x1x2 + x1 AB
x1x2 + x2 AB
x1x2 + x1 + 1 AB + 1
x1x2 + x2 + 1 AB + 1
x1x2 + x1 + x2 AB + 1
x1x2 + x1 + x2 + 1 AB

The nonlinearity of any bent function in n = 2 is 1, all (eight) other functions
in B2 have N = 0.

As there are no bent functions in odd n, a corresponding analysis for semi-
bent functions is given in Section 5.2.2.

59

5.1.3 Balanced functions in n = 4 (and n = 2)
Since the truth table of a Boolean function in n variables has 2n entries, and a
balanced function will have exactly 2n−1 ones, the number of balanced Boolean
functions equals the number of ways of inserting 2n−1 ones in the possible 2n

positions. Hence the number of balanced Boolean functions is exactly
(

2n

2n−1

)
, as

observed also for n = 4, 5. Thus, there are 12 870 balanced functions in n = 4
variables, and these functions belong to four different balanced orbits:

Representative N H Rigids Orbit length
A 0 15 4 30
AB + C 4 10 12 840
ABC + D 2 0 4 1920
ABC + AD + B 4 0 24 10080

The maximum algebraic thickness of a balanced function in B4 is, then, T4 = 3.

Again, for comparison, in B2 there are 6 balanced functions, in only one
balanced orbit: the orbit represented by A (or x1):

Function Representative
x1 A
x2 A
x1 + x2 A
x1 + 1 A
x2 + 1 A
x1 + x2 + 1 A

Their nonlinearity is 0, as implied in Section 5.1.2.

60

Properties Nonlinearity Degrees
Number of f 2451 0 63 0 1
Homogeneous f 203 1 32 1 62
Rigid f 32 2 496 2 620
Balanced f 62 3 0 3 1240
Semi-Bent f 0 4 1240 4 496
Orbits 6 5 0 5 32
Semi-Bent orbits 0 6 0
Balanced orbits 1 7 0

8 620
9 0
10 0
11 0
12 0

Table 5.11: Property distribution of functions in B5 with T5 = 1

5.2 Results and analysis for n = 5
When the program explained in Chapter 4 was completed, the results where
the 382 representative functions in n = 5 variables, as desired. Because of the
number of pages needed to contain all Boolean functions in n = 5 (the number
of pages would be in the realm of 100 million), the choice was made not to
list the full distribution of all functions, and rather focus on the representatives
and the properties of their respective orbits, effectively summarizing the full
distribution. All 382 representatives are listed in Appendix F, in their ABC-
form.

As with the representatives in n = 4, all orbits of the representatives in
n = 5 were iterated through, counting various properties, using the same tools
as in the previous section. Along with the representatives in Appendix F is
also the data set resulting from said analysis, containing the number of rigid
functions in each orbit, the length of each orbit, etc. This is also summarized
in Section 5.2.1, for each value of algebraic thickness.

5.2.1 Property distribution in n = 5, sorted by thickness
The following section contains the property distribution analysis for n = 5,
using the same tools and definitions as for n = 4 in Section 5.1.1 – the only
difference in properties being that, as no function is bent in odd dimensions,
the definition for semi-bent functions is used instead.

Tables 5.11–5.18 are listed on the next pages, containing a full overview of
the properties of all functions in the orbits with the given algebraic thickness
value. The complete data set is given in Appendix F, which was calculated by
iteration through all affine transformations of all representative functions.

61

Properties Nonlinearity Degrees
Number of f 695 796 0 0 0 0
Homogeneous f 987 1 1024 1 0
Rigid f 336 2 23 808 2 23 188
Balanced f 84 072 3 4960 3 466 736
Semi-Bent f 13 888 4 104 160 4 194 928
Orbits 19 5 0 5 10 944
Semi-Bent orbits 1 6 45 136
Balanced orbits 3 7 4960

8 180 420
9 0
10 317 440
11 0
12 13 888

Table 5.12: Property distribution of functions in B5 with T5 = 2

Properties Nonlinearity Degrees
Number of f 31 424 328 0 0 0 0
Homogeneous f 859 1 992 1 0
Rigid f 2480 2 7440 2 41 664
Balanced f 4 228 896 3 158 720 3 7620792
Semi-Bent f 874 944 4 1 536 360 4 22 119 120
Orbits 46 5 34 720 5 1 642 752
Semi-Bent orbits 3 6 2 138 752
Balanced orbits 6 7 853 120

8 15 323 920
9 317 440
10 9 900 160
11 277 760
12 874 944

Table 5.13: Property distribution of functions in B5 with T5 = 3

62

Properties Nonlinearity Degrees
Number of f 240 101 200 0 0 0 0
Homogeneous f 61 1 0 1 0
Rigid f 11 520 2 0 2 0
Balanced f 15 582 336 3 153 760 3 23 290 176
Semi-Bent f 2 499 840 4 659 680 4 168 597 840
Orbits 81 5 1 416 576 5 48 213 184
Semi-Bent orbits 2 6 10 731 952
Balanced orbits 6 7 17 541 536

8 112 334 080
9 18 213 120
10 63 162 624
11 10 888 192
12 4 999 680

Table 5.14: Property distribution of functions in B5 with T5 = 4

Properties Nonlinearity Degrees
Number of f 1 086 598 112 0 0 0 0
Homogeneous f 0 1 0 1 0
Rigid f 47 220 2 0 2 0
Balanced f 187 210 240 3 0 3 27 664 896
Semi-Bent f 2 666 496 4 0 4 763 701 120
Orbits 111 5 7 936 992 5 295 232 096
Semi-Bent orbits 1 6 42 413 952
Balanced orbits 11 7 53 524 352

8 364 837 760
9 193 162 240
10 375 614 848
11 40 608 512
12 8 499 456

Table 5.15: Property distribution of functions in B5 with T5 = 5

63

Properties Nonlinearity Degrees
Number of f 1 842 215 424 0 0 0 0
Homogeneous f 0 1 0 1 0
Rigid f 59 760 2 0 2 0
Balanced f 308 646 912 3 0 3 7 999 488
Semi-Bent f 7 999 488 4 0 4 951 105 792
Orbits 81 5 3 499 776 5 883 110 144
Semi-Bent orbits 2 6 2 666 496
Balanced orbits 9 7 96 827 136

8 154 990 080
9 694 122 240
10 788 449 536
11 88 660 992
12 12 999 168

Table 5.16: Property distribution of functions in B5 with T5 = 6

Properties Nonlinearity Degrees
Number of f 935 273 472 0 0 0 0
Homogeneous f 0 1 0 1 0
Rigid f 64 470 2 0 2 0
Balanced f 85 327 872 3 0 3 0
Semi-Bent f 0 4 0 4 174 655 488
Orbits 33 5 0 5 760 617 984
Semi-Bent orbits 0 6 0
Balanced orbits 2 7 46 663 680

8 0
9 436 638 720
10 174 655 488
11 277 315 584
12 0

Table 5.17: Property distribution of functions in B5 with T5 = 7

64

Properties Nonlinearity Degrees
Number of f 158 656 512 0 0 0 0
Homogeneous f 0 1 0 1 0
Rigid f 25 440 2 0 2 0
Balanced f 0 3 0 3 0
Semi-Bent f 0 4 0 4 0
Orbits 4 5 0 5 158 656 512
Semi-Bent orbits 0 6 0
Balanced orbits 0 7 0

8 0
9 19 998 720
10 0
11 138 657 792
12 0

Table 5.18: Property distribution of functions in B5 with T5 = 8

Properties Total amount
Number of functions 4 294 967 296
Homogeneous functions 2111
Rigid functions 211 259
Balanced functions 601 080 390
Semi-Bent functions 14 054 656
Number of orbits 382
Semi-Bent orbits 9
Balanced orbits 38

Table 5.19: Summary of the property distribution of n = 5

65

T Representative Balanced Orbit length
2 AB + CD - 13 888
3 AB + CD + 1 - 13 888
3 AB + CD + E Y 27 776
3 ABC + AD + BE - 833 280
4 ABC + AD + BE + 1 - 833 280
4 ABC + AD + BE + C Y 1 666 560
5 ABC + ABD + ACE + BC + DE - 2 666 496
6 ABC + ABD + ACE + BC + DE + 1 - 2 666 496
6 ABC + ABD + ACE + BC + DE + A Y 5 332 992

14 054 656

Table 5.20: All semi-bent representatives in n = 5.

5.2.2 Semi-Bent functions in n = 5 (and n = 3)
In total, there are 9 semi-bent orbits in n = 5, as defined in Definition 2.9. The
representatives of these orbits are listed in Table 5.20, with an overview of which
of these orbits are balanced, and their respective orbit lengths. In total there
are 14 054 656 semi-bent functions in n = 5 variables (as seen in Table 5.19),
i.e. the sum of the orbit lengths of the semi-bent orbits.

As the orbits shown in Table 5.20 are semi-bent, they all have the maximum
nonlinearity in n = 5, i.e. N = 12. There are five other orbits with the same
nonlinearity that are not semi-bent (excerpt from Appendix F):

T Representative D N H Ba Rigids Orbit length
4 ABCD + ABE + AC + BD 4 12 0 - 60 2 499 840
5 ABCD + ABE + AC + BD + 1 4 12 0 - 60 2 499 840
5 ABCD + ABE + AC + BD + E 4 12 0 - 60 3 333 120
6 ABCD + ABE + AC + BD + E + 1 4 12 0 - 600 3 333 120
6 ABCD + ABE + AC + BD + C + D 4 12 0 Y 180 1 666 560

where ‘D’ is algebraic degree, ‘H’ is homogeneous functions, ‘Ba’ designates a
balanced orbit, ‘Rigids’ is the number of rigid functions, and the rest should be
self-explanatory.

Common in all of the orbits listed here is their algebraic degree being equal
to 4. As stated in Section 2.2, from [14], it is known that the maximum algebraic
degree of a semi-bent function is n+1

2 , for an odd n. The results shown above
and below, and in Table 5.20, are in accordance with this.

For comparison, the number of semi-bent functions in n = 3 variables is 112,
and there are three semi-bent orbits, where one orbit is balanced:

T Representative D N H Ba Rigids Orbit length
1 AB 2 2 6 - 3 28
2 AB + 1 2 2 0 - 3 28
2 AB + C 2 2 1 Y 3 56

66

5.2.3 Balanced functions in n = 5 (and n = 3)
As seen in the summary of the property distribution for n = 5 (Table 5.19),
there are 38 balanced orbits in B5. These balanced orbits are represented by
the representative functions listed in Table 5.21, which is an excerpt from Ap-
pendix F. (Note that this table is quite large, and is therefore given on the next
page.)

As before, ‘D’ is algebraic degree, N denotes nonlinearity, ‘H’ is the number
of homogeneous functions, ‘Be’ is the number of semi-bent orbit, ‘R’ is the
number of rigid functions, and ‘O’ is the orbit length.

Indicated in Section 5.2.2, there are three balanced orbits that are semi-bent
as well. All 601 080 390 balanced functions in B5 are represented by one of
the orbits listed here. The maximum thickness for balanced functions in n = 5
variables is T5 = 7 (where there are two balanced orbits, listed at the bottom
of Table 5.21).

In n = 3 variables, there are 70 balanced functions over two balanced orbits:

T Representative D N H Be R O
1 A 1 0 7 - 3 14
2 AB + C 2 2 1 Y 3 56

67

T Representative D N H Be R O
1 A 1 0 31 - 5 62
2 AB + C 2 8 65 - 30 8680
2 ABC + D 3 4 0 - 20 59520
2 ABCD + E 4 2 0 - 5 15872
3 AB + CD + E 2 12 252 Y 15 27776
3 ABC + AD + E 3 8 0 - 60 833280
3 ABC + AD + B 3 8 0 - 120 312480
3 ABCD + AE + B 4 8 0 - 60 1666560
3 ABCD + AB + E 4 6 0 - 30 555520
3 ABCD + ABE + C 4 4 0 - 60 833280
4 ABC + AD + BE + C 3 12 0 Y 60 1666560
4 ABC + CDE + AB + C 3 8 0 - 30 555520
4 ABCD + AB + CE + D 4 10 0 - 60 6666240
4 ABCD + AB + CD + E 4 10 0 - 15 444416
4 ABCD + ABE + AC + D 4 8 0 - 120 4999680
4 ABCD + ABE + AC + B 4 8 0 - 120 1249920
5 ABC + CDE + AB + A + D 3 8 0 - 1380 9999360
5 ABCD + ABE + CD + C + E 4 10 0 - 240 13332480
5 ABCD + ABE + CDE + A + C 4 8 0 - 180 39997440
5 ABCD + ABE + ACE + BD + C 4 8 0 - 120 19998720
5 ABCD + ABE + CDE + AB + E 4 6 0 - 30 8888320
5 ABCD + ABC + ADE + B + E 4 6 0 - 1680 9999360
5 ABCD + ABC + ADE + BE + D 4 8 0 - 120 9999360
5 ABCD + ABC + ADE + BD + E 4 10 0 - 120 9999360
5 ABCD + ABC + CDE + AB + C 4 8 0 - 330 1666560
5 ABCD + ABC + ABE + DE + C 4 8 0 - 980 53329920
5 ABCD + ABC + ABE + DE + A 4 8 0 - 1380 9999360
6 ABC + ABD + ACE + BC + DE + A 3 12 0 Y 300 5332992
6 ABCD + ABE + CDE + A + C + 1 4 8 0 - 1380 39997440
6 ABCD + ABE + AC + BD + C + D 4 12 0 - 180 1666560
6 ABCD + ABE + CDE + AB + AC + E 4 10 0 - 360 79994880
6 ABCD + ABE + ACE + AB + DE + C 4 10 0 - 120 39997440
6 ABCD + ABC + ADE + BD + C + E 4 10 0 - 1260 19998720
6 ABCD + ABC + ADE + BD + CE + A 4 10 0 - 420 39997440
6 ABCD + ABC + CDE + AB + C + 1 4 8 0 - 420 1666560
6 ABCD + ABC + ABE + AC + DE + B 4 10 0 - 1740 79994880
7 ABCD + ABE + CDE + AC + BD + A + B 4 10 0 - 720 31997952
7 ABCD + ABE + CDE + AB + AC + BD + E 4 10 0 - 900 53329920

Table 5.21: All balanced orbits in n = 5.

68

5.2.4 Functions with maximum thickness in n = 5
As detailed previously (in Section 2.2, with mentions elsewhere in this thesis),
the complexity criteria for “good” cryptographic Boolean functions (for use in
cryptographic systems) are often attributed to the algebraic degree and nonlin-
earity of the functions [8], and whether or not they are balanced [10]. (Other
criteria not mentioned here also exist, cf. nonnormality.) The functions with
the highest nonlinearity (in even n) are the bent functions, which is why the
distribution of such was given and discussed in Section 5.1.2. For odd n, we
instead focus on semi-bent functions, as this class of functions, in general, has
high nonlinearity (See Definition 2.9, refer to [23]). While there are only one
orbit with maximum algebraic thickness in all n < 5 variables, in n = 5 there
are four:

Representative N Rigids Orbit length
ABCDE + ABC + ADE + AB + DE + A + D + 1 9 12960 19998720
ABCDE + ABC + ABD + ACE + BC + DE + B + 1 11 4260 53329920
ABCDE + ABC + ABD + ACE + BC + DE + A + 1 11 2160 31997952
ABCDE + ABC + ABD + ACE + BC + DE + A + B 11 6060 53329920

All of the four orbits with T5 = 8 have maximum algebraic degree. However,
none of them are balanced, or semi-bent – indeed, none of them have the max-
imum nonlinearity. (As a note, we also include that none of them contain any
homogeneous functions.)

From all orbits with maximum thickness in 2 < n ≤ 5 variables, we observe
that this pattern seems to be a common factor for representatives with maximum
thickness. In n = 3, the representative ABC + A + 1 has maximum algebraic
degree, is not balanced, is not semi-bent, and has nonlinearity 1 (maximum is
2, refer to Table 5.3). In n = 4, the representative ABCD + AB + CD + A
+ 1 also has maximum algebraic degree, is not balanced, is not bent, and has
nonlinearity 5 (maximum is 6; for a full property analysis of this representative,
refer to Table 5.9, or Appendix E).

This could have implications for functions of higher numbers of variables,
however, further study is needed.

Remark. Three of the here listed representatives in n = 5 contain a constant.
What happens to the only representative without a constant when a constant
is added to it, is further discussed in Section 6.1.3.

69

T Balanced N Rigids Representative
5 - 10 180 ABCD + ABE + AC + DE + C
6 - 10 420 ABCD + ABE + AC + DE + C + 1
6 - 10 360 ABCD + ABE + CDE + AC + AE + B
6 Y 10 360 ABCD + ABE + CDE + AB + AC + E
6 - 10 1500 ABCD + ABE + CDE + AB + AC + B
6 Y 10 1740 ABCD + ABC + ABE + AC + DE + B
6 - 9 360 ABCDE + ABC + ADE + BD + CE + B
6 - 9 660 ABCDE + ABC + CDE + AB + AD + E
6 - 9 120 ABCDE + ABCD + ABE + CDE + AC + B
7 - 9 4110 ABCDE + ABC + ADE + AB + DE + C + D
7 - 9 1320 ABCDE + ABC + ABD + CDE + AC + DE + B
7 - 9 360 ABCDE + ABCD + ABE + CDE + AC + B + 1

Table 5.22: All orbits in n = 5 with maximum orbit length (79 994 880)

5.2.5 Details of orbit lengths in n = 5
The orbits in n = 5 with the largest length (i.e., the largest numbers of different
Boolean functions in the orbit of a representative) are listed in Table 5.22, the
length being 79 994 880. In this table, the algebraic thickness is listed in the
leftmost column, followed by whether the orbits are balanced or not, then the
nonlinearity of the orbit, and the number of rigid functions in the orbit. None
of the orbits are semi-bent (as can be seen from their N -value), and none of the
orbits contain any homogeneous functions.

In total there are 52 unique orbit lengths, detailed in Table 5.23. As this
table shows, the orbit length of the most representatives (43) is 6 666 240. The
five orbits that have unique orbit lengths are:

Representative Orbit Length
A 62
ABCD + E 15 872
ABC + D 59 520
ABC + AD + B 312 480
ABC + ABD + ACE + BC + DE + A 5 332 992

The orbits of smallest lengths are trivially the constant f(x) = 0 and f(x) =
1 functions, where both orbits only contain themselves. The second shortest
lengths are 32, represented by ABCDE and (ABCDE + 1). Further work on
orbit lengths is discussed in Section 6.1.3.

70

Length Orbits Length Orbits
6 666 240 43 317 440 4
39 997 440 26 208 320 4
19 998 720 26 104 160 4
9 999 360 25 52 080 4
1 666 560 19 4960 4
3 333 120 18 8 888 320 3
833 280 18 1 249 920 3

26 664 960 14 8680 3
2 222 080 14 952 320 2
4 999 680 13 624 960 2
79 994 880 12 83 328 2
2 499 840 10 17 360 2
444 416 9 14 880 2
416 640 8 13 888 2
277 760 8 7440 2

53 329 920 6 1240 2
2 666 496 6 992 2
166 656 6 620 2
138 880 6 496 2
119 040 6 32 2
34 720 6 1 2

31 997 952 5 5 332 992 1
13 332 480 5 31 2480 1

27 776 5 59 520 1
4 444 160 4 15 872 1
555 520 4 62 1

Table 5.23: The 52 unique orbit lengths in n = 5

71

5.3 General Results and Analysis
In general, for n ≤ 5 variables, the number of representatives with maximum
algebraic thickness is low compared to the other thickness values (and especially
compared to |Bn|). In n < 5 there is one such representative, and in n = 5 there
are four. A common property shown in all values of n ≤ 5 is that none of the
functions with maximum algebraic thickness are balanced nor bent (or semi-bent
if odd n). However, in both n = 4 and n = 5, there are orbits with maximum
thickness that have the second-highest nonlinearity.

Boolean functions used in cryptographic systems should, as Carlet details
in [9] and [5], have high algebraic degree, high nonlinearity, and be balanced. In
relation to algebraic thickness, all functions with maximum thickness (at least
for n ≤ 5, but this seems to be a general case) have maximum algebraic degree,
and none of them have maximum nonlinearity (although, the nonlinearity is still
high). The balanced functions in n = 4 only have a maximum thickness of 3
out of 5, but in n = 5 they can be found to have 7 out of 8.

5.3.1 Symmetric Property of Thickness Distribution

0 1 2 3 4 5

1

2

3

4

5

6

7

8

9

10

Thickness values

N
um

be
r
of

re
pr
es
en
ta
ti
ve
s

Figure 5.2: Visual representation of distribution of representatives in n = 2, 3, 4

As discussed in Section 4.3 and shown in Table 4.3, the number of Boolean
functions with m monomials, for m ∈ {0, . . . , 2n}, follows a normal distribution,
as the number is related to the binomial coefficient

(
2n

m

)
. When the distribution

of representatives in n = 2, 3, 4 was discovered – following the completion of the
brute-force program – the first obvious pattern to notice, shown in Table 5.1 in
the columns for n = 2, 3, 4, was that the distribution was symmetric:

n Distribution
2 1, 3, 1
3 1, 4, 4, 1
4 1, 5, 10, 10, 5, 1

72

0 1 2 3 4 5 6 7 8
1

20

40

60

80

100

120

Thickness values

N
um

be
r
of

re
pr
es
en
ta
ti
ve
s

Figure 5.3: Visual representation of distribution of representatives in n = 5

This symmetry is shown visually in Figure 5.2.
However, after the completion of the program for n = 5, this was shown not

necessarily to be the case for higher values of n, as can be seen in the distribution
of the column for n = 5 in Table 5.1, which is illustrated here in Figure 5.3.
This apparent symmetry in the distribution of representatives in n = 2, 3, 4
is therefore thought to be coincidental, perhaps as a result of the low amount
of orbits in the lower values of n. It is worth noting that the distribution
of representatives in n = 1 is also not symmetric, which could indicate that
the symmetry only holds for even n, as it is the case that some properties do
not hold for Boolean functions in odd n (e.g. bent functions), and that the
distribution for n = 3 is the coincidence – this, however, is only speculation.
It would be of interest to inspect the distribution of n = 6, to see if this could
reveal information regarding this subject. (See Section 6.1.2 for thoughts on
further work related to calculation of sequences in the distribution of algebraic
thickness.)

73

5.4 Validity of shown programs and results
All built-in methods in SageMath were rigorously tested, and studied in the
source code of their packages, to make sure the data collected was as intended.
The generation of all Boolean functions (Section 3.2.1) follows its mathematical
definition, but even then the resulting sets of functions where checked, ensuring
that all functions were unique and accounted for. By having these complete
function sets, all orbits of all representative functions were checked, and shown
to be unique and non-intersecting.

Since the sum of all calculated orbit lengths in n ≤ 5 variables (given in
Tables 5.10 and 5.19, for n = 4, 5; respectively) is equal to 22

n

– which is the
size of |Bn| – it is reasonable to conclude that the shown orbits are correct, since
the intersection of the produced sets are empty. Additionally, when collecting
the data given in Sections 5.1.1 and 5.2.1, the monomial count of each function
in the orbit of the representatives was checked, ensuring that the stated algebraic
thickness was indeed correct. (Some of this data was used for the illustration of
the orbit of f = x1x2x3 + x1x4 + x2, given in the introduction of this thesis.)

The nonlinearity distribution shown in Table 5.2, by iteration through all
functions in Bn and with calculation in SageMath (using the previously men-
tioned boolean_function-package), is equal to the distribution listed in [26],
thereby further confirming the calculation of nonlinearity is correct.

Furthermore, as noted in Section 2.4, the validity of the programs is con-
nected to the validity of the respective mathematical definitions, which are given
in Sections 2.1 and 2.2.

74

Chapter 6

Conclusions

T n = 0 n = 1 n = 2 n = 3 n = 4 n = 5

0 1 1 1 1 1 1
1 1 2 3 4 5 6
2 - - 1 4 10 19
3 - - - 1 10 46
4 - - - - 5 81
5 - - - - 1 111
6 - - - - - 81
7 - - - - - 33
8 - - - - - 4

Sum 2 3 5 10 32 382
max(Tn) 1 1 2 3 5 8

Table 6.1: Relisting: Distribution of representatives within each thickness value.

In summary, the main results and definite conclusions of this thesis, are sum-
marized in Table 5.1, re-listed here in Table 6.1 – only for convenience. This
table includes the total distribution of algebraic thickness for n ≤ 5 variables,
with the number of orbits and maximum thickness listed.

Each orbit through affine transformations can be represented by one Boolean
function: the representative function, which is the smallest function in its orbit,
i.e., it has the minimum sum of degrees in its ANF, and is represented by the
lowest indexed variables; further defined in Section 4.2, Definition 4.2. The
number of equivalence classes in Bn is given by Harrison in [16], which is equal
to the number of orbits (and thus, representatives) for any n, as discussed in
Section 4.2.

By using the concepts of rigid- and representative functions defined in Sec-
tions 4.1 and 4.2, the thickness distribution of n ≤ 5 can be calculated in
significantly less time than the time estimation of a brute-force application, by
(roughly) 2 ∗ 106 years.

75

The complete overview of all (orbit) representatives in n = 4 variables is
given in Appendix E. Correspondingly, the complete overview of all represen-
tatives in n = 5 variables is given in Appendix F. These overviews include a
full analysis of each orbit – by the definitions given in Section 2.2 – which in-
cludes: the algebraic degree and nonlinearity of the given orbits, the number of
homogeneous functions, the number of rigid functions, whether the orbits are
balanced, and whether the orbits are bent (respectively semi-bent); and the full
size of each orbit.

The representatives are given in the ABC-form, discussed in Section 5.1,
with the intention to avoid having implementation specifics obscure the results,
and for ease of reading. Correspondingly, the list of all representatives in n ≤ 4
variables is given in the commonly used x1x2x3-form in Appendix D.

Regarding nonlinearity, the maximum in 4 variables is 6 and the maximum
in 5 variables is 12, and it is known that there are 896 functions in B4 with
N = 6, and 27 387 136 functions in B5 with N = 12. (cf. [26], and Table 5.2)

Since nonlinearity is an affine invariant (see Section 2.2), the nonlinearity
of a representative ρ equals the nonlinearity of any affine transformation of ρ.
Therefore, the nonlinearity distribution of all orbits in n = 2, 3, 4, 5 variables is
given in Table 5.3 (n = 0, 1 excluded, as they are linear), comparing lower to
higher numbers of variables. From this table, we see that there are two orbits
in B4 with the maximum nonlinearity, referred to as the two bent orbits of B4.
In B5, there are 14 orbits with the maximum nonlinearity, and by the analysis
shown in Section 5.2, nine of these are semi-bent (by Definition 2.9). In total
there are 14 054 656 semi-bent functions in B5.

None of the orbits with maximum algebraic thickness have the maximum
nonlinearity, in n = 4, 5 variables.

The 12 870 balanced functions in B4 all belong to one of four balanced orbits,
as shown in Section 5.1.3, where the maximum nonlinearity of these orbits is 4
(i.e., there are no bent functions), and the maximum algebraic thickness is 3.

The 601 080 390 balanced functions in B5 belong to 38 orbits, and are given
in Section 5.2.3. Of these 38 orbits, four have maximum nonlinearity, where
three are semi-bent. The maximum algebraic thickness of a balanced function
in B5 is 7.

None of the orbits with maximum algebraic thickness are balanced, in n =
4, 5 variables.

The designed programs listed and explained in Chapters 3 and 4 show two
distinct strategies of calculating algebraic thickness distribution in n variables:
the former using brute-force, checking every function; and the latter using the
rigid (and representative) functions as a tool to quickly dismiss functions not
of interest. Also used are the variable permutations (as remarked below Def-
inition 2.4) to further lower the size of the set to be searched. For instance,
as described in Section 4.3, to check if there are any rigid functions with 8
terms in their ANF (monomial count) in five variables, there are

(
25

8

)
= 10 518

300 functions, which can be reduced to 100 577 after variable permutation. A
significantly lower number than 22

5

.

In short, the concept of the program used for n = 5 can be summarized
as such: (1) Any function that can be mapped through affine transformations

76

to a function with lower monomial count can immediately be discarded. (2) If
no rigid functions are found in a given monomial count m, then there are no
functions with thickness m.

6.1 Further Work
Having the distribution for algebraic thickness determined for functions in n ≤ 5
variables may have implications for larger values of n, and the rigid (and repre-
sentative) functions of these function sets can be a tool for further exploration.
In a simple sense, the obvious future projects of interest would be to determine
the algebraic thickness distribution in n = 6, 7, 8, with special interest in the
maximum T of these variable counts, and determining the individual distribu-
tions of representatives within each T -value.

With a focus on the monomial counts of the Boolean functions in n variables,
as explained in Section 4.3, the total number of functions to check can be reduced
significantly. For instance, as shown in Section 4.4, there are

(
25

9

)
= 28 048 800

functions in five variables with nine terms in their ANF, and this number can
be reduced down to 258 093 functions by variable permutation – as mentioned,
this was part of proving that the maximum T5 < 9.

However, because of the (more than exponential) growth of the size of Bn,
attempts to reveal the distribution of these function sets may require alter-
native methods of implementation and calculation. Thoughts related to this
are discussed in Sections 6.1.1 and 6.1.5 below, and a method for generating
representative functions is discussed in Section 6.1.4.

In this thesis, it is shown that the number of representatives in n variables
is equal to the number of equivalence classes under affine transformations, but
the full distribution of algebraic thickness within each specific thickness value in
n variables could be explored further. This concept is discussed in Section 6.1.2
below.

Explored briefly in Chapter 5, specifically in Section 5.2.5, and listed for each
orbit in n = 4, 5 variables in Appendices E and F, are the orbit sizes (or lengths)
of the representatives. A pattern found appertaining to these is described in
Section 6.1.3, with some examples. There is potential for further study of these.

Finally, in Section 6.1.6, two conjectures are stated with regards to rigid
functions, of which no proof has been found as of this time. Proving these
conjectures could have implications for further use in revealing the algebraic
thickness distribution of higher values of n. In the first conjecture, a weaker
lemma is proved, which might be of aid in proving the conjecture itself.

6.1.1 Rotation Symmetric functions
Exploring various classes of Boolean functions in n > 5 variables may be a good
first approach. The rotation symmetric functions can be a first step in this, a
class of functions defined in [10] as the following.

77

First, let (x1, x2, . . . , xn) ∈ Fn2 , and for 1 ≤ k ≤ n, define

ρkn =

{
xi+k if i+ k ≤ n,
xi+k−n if i+ k > n.

(cf. the modulo operation.) This definition is then further extended to tuples
and monomials, and is used to define the rotation symmetric functions:

Definition 6.1. (Rotation Symmetric Functions) [10]
A Boolean function f is rotation symmetric if and only if for any (x1, . . . , xn) ∈
Fn2 ,

f(ρkn(x1, . . . , xn)) = f(x1, . . . , xn)

for any 1 ≤ k.

In other words, rotation symmetric functions are invariant under shifting
indices, i.e. the cyclic group. In this case, the size of the sets of Boolean
functions of interest is reduced significantly, i.e. instead of 22

n

functions to
check, there are 26, 28, 214, and 220 functions, for respectively n = 4, 5, 6, 7. For
more on rotation symmetric functions, refer to [10].

6.1.2 Thickness Sequences
Number sequences can be dangerous1 to attempt to analyse, especially without
enough data. The fact that the number of representatives for each value of n is
equal to the number of equivalence classes in the same n, should be quite clear.
But, for instance, observing the maximum thickness value for n ≤ 5, it could be
tempting to attempt to prove that this sequence follows the Fibonacci-sequence
– as discussed and disproved in the beginning of Chapter 5.

Nonetheless, it may be interesting to study some of the sequences of the
number of representatives within each algebraic thickness value as n grows, and
there are two trivial number sequences in Table 5.1, listed here:

1. The number of representatives in Tn = 0, which by definition will only
contain one function: the constant 0 function, f(x) = 0. No other function
will have zero monomials.

2. The number of representatives in Tn = 1, which can be seen to grow by 1
as n grows, is equal to (n+1). This is, of course, because the only functions
with one monomial after variable permutations are x1, . . . , x1 · · ·xn, of
which there are n possibilities, plus the constant 1 function, f(x) = 1.
Thus, the number of representatives in Tn = 1 is n+ 1.

The remaining number sequences of Table 5.1 are harder to analyse without
further data at this time. From the work of Harrison, in [16] (see Table 4.2 for
a full overview of the sizes in n ≤ 6 variables), it is known that the number
of equivalence classes in n = 6 is 15 768 919, and thus the number of orbits
(and therefore representatives) is the same. Since this number is quite high
in comparison with the lower n (i.e., n < 6), it is fair to assume that the
distribution of orbits in n = 6 within each thickness value will be higher as well.
Thus, the number of orbits in – for instance – T6 = 2 could be much higher than
one would expect from the current growth of Tn = 2 for n < 6:

1Or at least, a potential waste of valuable time.

78

0, 0, 1, 4, 10, 19.

However, there are only
(
64
2

)
= 2016 functions with monomial count 2 in

n = 6 variables, and
(
128
2

)
= 8128 in n = 7. Determining the number of

representatives with Tn = 2, in n = 6, 7 should be possible – by using the
techniques described in this thesis – and may give a pointer to what the sequence
of Tn = 2 could be, for any n. (See Section 6.1.5 for some notes on implementing
methods from this thesis for higher n.)

6.1.3 Orbit lengths and function pairs
Many of the representative functions listed in Appendices E and F come in
“pairs”, where a representative ρ with no constant (i.e., ρ consists of various
monomials with algebraic degree minimum 1) has a twin representative with a
constant, i.e. ρ+ 1, where, when both ρ and ρ+ 1 are representative functions,
Tn(ρ+ 1) = Tn(ρ) + 1. The orbit lengths of these twins are equal. Examples of
this can be found in the referenced appendices: choose a representative without
a constant, and check if it has a “pair partner”; if it does, then observe the orbit
lengths. This seems to be a general case.

The only representative of T5 = 8 in n = 5 that does not have a constant,
as given in Section 5.2.4 (for reference, we call it φ), is:

φ = ABCDE + ABC + ABD + ACE + BC + DE + A + B

The orbit length of φ is 53 329 920, and the twin of φ, by the logic explained
above, is then:

φ+ 1 = ABCDE + ABC + ABD + ACE + BC + DE + A + B + 1

Naturally, φ+ 1 (as given here) is not a representative, since that would imply
it was a rigid function of monomial count 9 – which is impossible in n = 5.
Mapping φ+1 to its x1x2x3-form, by the inverse of the map given in Appendix D,
and finding its representative, yields:

ABCDE + ABC + ABD + CDE + AC + BE + D,

which has T = 7 and indeed has the same orbit length as φ – of course, with a
lower thickness, because φ+ 1 is itself not a representative.

However, there is also another representative with similar structure to φ:

ψ = ABCDE + ABC + ABD + ACE + BC + DE + B

where φ = ψ + A. These two orbits also have the same length. We suspect,
therefore, that it could be the case that given any function f with orbit length
m, then the orbit length of (f + `) is c ∗m, where ` is any affine function, and
c > 0 is an integer – and when ` = 1, c = 1 as well. E.g., in n = 5, AB has
length 140, AB + 1 has length 140, AB + C has length 840 = 6 ∗ 140. This has
not been checked further than shown here, and therefore needs verification and
specification before any projects are attempted.

The patterns in the structure of the representatives may prove to be useful
for continued generation of representatives, and may be used in revealing the
thickness distribution for n > 5. In this case, further study is needed. (Refer to
Section 6.1.4 for more on this.)

79

Remark also that all non-trivial (i.e., excluding constant 0 and 1 representa-
tives) orbit lengths in n = 4, 5 are divisible by 2, which can be seen in Table 5.23,
or in the respective representative appendices. The reason for this is currently
unknown to us, and working on this could not be prioritized at this time – which
is why it is given here, as a potential future project for further study.

6.1.4 Generating representative functions
By studying the representatives in R4 and R5, listed in Appendices E and
F, there are some patterns emerging immediately, one of which is described in
Example 6.1. Determining an exact algorithm for construction of representative
functions in Rn+1 given Rn, encompassing these patterns, may be a method
for uncovering the distribution of thickness in larger values of n. Generation of
functions within specific classes is not a new concept for Boolean functions, for
instance the construction of bent Boolean functions, where much literature has
been written on their construction (see [10] for further reference, and examples).

Example 6.1. In Tn = 2 for n = 4, 5, the representatives with algebraic degree
2 are:

1. AB + 1,

2. AB + C,

3. AB + CD.

From this, it is clear to see that in all three representatives the first term is
the monomial with degree 2, while the second term is (1) zero variables (i.e.
x0i = 1), (2) one variable, and (3) two variables. In all three instances, the
second term does not contain a variable given in the first. These three instances
are the same for n = 4, 5, and we believe these are the only representatives in
any n where Tn = 2 and the algebraic degree is 2. Looking further into Tn = 2,
for algebraic degree 3, the representatives are

1. ABC + 1, (n = 4, 5)

2. ABC + A, (n = 4, 5)

3. ABC + D, (n = 4, 5)

4. ABC + AD, (n = 4, 5)

5. ABC + DE, (n = 5)

6. ABC + ADE. (n = 5)

Here, (3) conforms to the pattern mentioned previously, where the second term
is not contained in the first, but in (2), this is not true. A few attempts were
made while working on this thesis to define and construct these patterns, but as
none of them bore fruit, they were abandoned and other work was prioritized.

Defining a language (and algebra?) for discussion surrounding these pat-
terns, and generating all representatives in n ≤ 5, then attempting to generate
all 15 768 919 representatives in n = 6 could be a possible way to reveal the
complete distribution of T6.

80

6.1.5 Similar implementation for n > 5
A project similar to this thesis could be attempted for values of n > 5, using
the concepts and claims as defined and explained earlier. In undertaking such
a task, there are some challenges which will be discussed here, with possible
solutions, or otherwise items to consider.

The size of Bn for such values can be quite intimidating. Conducting an
exhaustive search and visiting all functions in n = 6, 7, 8 variables can be con-
sidered impossible, even with a supercomputer available. As discussed in Sec-
tion 4.3, a focus on searching for rigid functions within the specific monomial
count values of the functions as a strategic approach can prove to be useful,
and – in that case – only checking the rigidness of variable permutation unique
functions should be of interest, as done in this thesis. For n variables there are
n! permutation maps, which for n < 8 should not be too large.

Instead of generating all functions in Bn and from the generated set picking
the functions with the specified monomial count, one can modify the construc-
tion of Boolean functions (see (3.1) in Section 3.2.1) such that only the functions
of interest are generated. This is a simple task, and would generate the needed
functions efficiently.

In searching for the maximum thickness within n variables, taking the mid-
point of Carlet’s lower- and upper-bounds for T as a starting point, then con-
tinuously choosing a midpoint up or down the monomial count values based on
rigid functions being found or not, should be a good start. E.g. for n = 7, the
lower bound is 8 and upper bound is 85. Choose monomial count 46 as starting
point. If no rigid functions are found, take the next midpoint lower down, that
is, 27. If rigid functions are found here, check the next midpoint higher up
(between 27 and 46), which is 36. Continue this process until rigid functions are
found in m monomials, but none exist in (m+ 1). (See also Conjecture 6.2, in
Section 6.1.6, for a possible applicable property, which (if proven) would speed
up this process further.)

If there are no rigid functions in a given monomial count value – especially
if said value is far off from the maximum – the iteration through all such func-
tions processes quickly, as evidenced in Section 4.4.4. (Several iterations that
processed thousands of functions took a few seconds.)

Other methods can also be implemented. There is still more work to be done
regarding rigid- and representative functions, some of which is presented in the
next section (see Section 6.1.6).

The main issue with an implementation similar to the programs presented in
this thesis, will be the storing and creation of affine transformations. Here, these
were generated and stored through invertible matrices and vectors over F2. Us-
ing the method presented in Section 4.4.2, all (invertible) affine transformations
in n = 4 are generated in seconds, and in n = 5 are generated in approximately
25 minutes. Additionally, keeping these transformations in memory, per pro-
gram, used less than 1 GB of RAM for n = 4, and 12-15 GB for n = 5 – showing
that this number grows fast.

For n > 5, an alternative method for construction and/or storing of affine
transformations may be needed. In this project, a "low memory" approach was
also designed, for use on resources with low amount of available RAM. This
approach successfully reduced the RAM needed down to 4 GB for n = 5, but
was time consuming (as the transformations were generated once per function).

81

6.1.6 Conjectures
While studying the rigid and representative functions as defined in Chapter 4,
many patterns were found and explored briefly, as previously mentioned. Anal-
ysis of some of these patterns resulted in the formulated theorem, corollary, and
lemma given in Section 4.1, and in other cases the patterns either did not yield
any interesting results, or were proven to not be the case quite quickly (e.g. the
Fibonacci-sequence). Presented as conjectures in the following are the patterns
found that could not yet be explored further, because of time constraints, but
could be interesting to prove or disprove.

Multiplication with new variable conserves thickness

From Section 4.1, following the definition of rigid functions, (i.e. Definition 4.1),
it is known that all rigid functions in Bn are also rigid functions in Bn+1, by
Theorem 4.1. And in the corollary that follows, for f ∈ Bn, Tn(f) = Tn+1(f) as
well. (Recall, from below Definition 2.10, that the subscript of Tn(g) denotes the
algebraic thickness of g ∈ Bn, i.e. in specifically n variables.) These properties
give insight into the distribution of algebraic thickness in (n+1) variables, when
the distribution for n variables is known.

A similar concept that was discovered during this project, is summarized
in the following conjecture. As of this moment, the general consensus (after
a lengthy discussion) is that the conjecture is false, as there may be instances
where the new variable introduces new eliminations that could not occur in
lower amounts of variables – but no such instance is yet to be found, possibly
because of the low amount of choices for n ≤ 3. Therefore, it is listed here as
further work, as it could be interesting to see if a proof could be found, either
in proving or disproving the conjecture.

Conjecture 6.1 (Thickness conservation). Given the vector of variables x =
(x1, ..., xn), for any Boolean function f ∈ Bn, let xn+1 be the new variable for
Boolean functions introduced in Bn+1. Then:

Tn+1(f ∗ xn+1) = Tn(f).

Experimentally, the conjecture has been checked for all functions f ∈ Bn for
n = 2, 3, i.e. all functions in two variables have been multiplied and thickness
calculated in their corresponding three-variable form – and the same for all
functions in three variables. Some functions have also been checked for n = 4,
but because of the calculation time for checking algebraic thickness of f ∗ x5,
only a select few have been checked – of those checked, all were found to hold
true.

A weaker version of this conjecture is given in the proof below:

Lemma 6.1. Given the vector of variables x = (x1, ..., xn), for any Boolean
function f ∈ Bn, let xn+1 be the new variable for Boolean functions introduced
in Bn+1. Then:

Tn+1(f ∗ xn+1) ≤ Tn(f).

82

Proof. : Given a Boolean function f ∈ Bn, with known algebraic thickness
Tn(f) = t, with variables (x1, . . . , xn), let fmin ∈ Bn be the representative
function with monomial count t of the orbit of f , and let π denote the affine
transformation such that π(f) = fmin. As before, xn+1 is the new variable
introduced in Bn+1.

In Bn+1, then, π′(f ∗ xn+1) = fmin ∗ xn+1, by the transformation π′(xj) =
π(xj), for j < (n+ 1), and π′(xn+1) = xn+1. Since fmin has monomial count t,
fmin ∗ xn+1 also has monomial count t, and therefore Tn+1(f ∗ xn+1) ≤ Tn(f).

Proven here, then, is that the thickness of a given function in higher variable
counts cannot be higher than in lower counts. As for the stronger claim of
equivalence, i.e., that the thickness can also not be lower, no proof is yet to be
found, nor have we found a counter-example. Therefore it is given here as a
conjecture.

There are no gaps in thickness distribution

From observing the algebraic thickness distributions listed in Table 5.1, visual-
ized in Figures 5.2 and 5.3, it is trivial to see that, for n ≤ 5 and m > 0, if there
exists a representative with Tn = m, then there exists a representative with
Tn = (m−1), and conversely: if there are no representatives with Tn = (m−1),
then there are no representatives with Tn = m. The following conjecture is an
extension of Lemma 4.2.

Conjecture 6.2. For any n, in any given monomial count m ≤ 2n: if there are
no rigid functions with m monomials, then for any f ∈ Bn,

Tn(f) < m.

The idea here is that if there are no rigid functions in a set monomial count
m, then there are no rigid functions in any monomial count M , where M >
m. Proving this would have implications for further attempts at determining
maximum algebraic thickness (and the following thickness distribution) using
the methods described in this thesis, as finding no rigid functions in n variables
with monomial count (e.g.) 2n−1 would imply there are no rigid functions with
monomial count greater than 2n−1, thus eliminating half of the set of functions
to search through. (Cf. the implementation discussed in Section 6.1.5.)

83

Bibliography

[1] Anderson, I., A First Course in Discrete Mathematics, Springer-Verlag
London Ltd., 2001.

[2] Bourque, P., and Fairley, R. E., Guide to the Software Engineering Body
of Knowledge (SWEBOK(R)): Version 3.0. IEEE Computer Society Press,
Washington, DC, United States, 2014.

[3] Boyar, J., and Find, M. G., Constructive Relationships Between Algebraic
Thickness and Normality. In Fundamentals of Computation Theory, Lec-
ture Notes in Comput. Sci., 9210, Springer, Cham. 2015, pp. 106—117. doi:
10.1007/978-3-319-22177-9_9.

[4] Carlet, C., On the Degree, Nonlinearity, Algebraic Thickness, and Nonnor-
mality of Boolean Functions, With Developments on Symmetric Functions
IEEE Trans. on Inf. Theory 50:9 (September 2004), pp. 2178–2185.

[5] Carlet, C., Correlation Immune and Resilient Boolean Functions. In: van
Tilborg H.C.A., Jajodia S. (eds) Encyclopedia of Cryptography and Secu-
rity (2011). Springer, Boston, MA.

[6] Carlet, C., Boolean Functions for Cryptography and Error Correcting Codes
Chapter of the monography "Boolean Models and Methods in Mathemat-
ics, Computer Science, and Engineering", (2010) pp. 257–397. Cambridge
University Press, Yves Crama and Peter L. Hammer (eds.).

[7] Carlet, C., Boolean Functions. In: van Tilborg H.C.A., Jajodia S. (eds)
Encyclopedia of Cryptography and Security, (2011) pp. 162–164. Springer,
Boston, MA.

[8] Carlet, C., On Cryptographic Complexity of Boolean Functions. In: Proc.
6th Conf. Finite Fields With Applications to Coding Theory, Cryptography
and Related Areas., G. L. Mullen, H. Stichtenoth, and H. Tapia-Recillas,
Eds., Springer, 2002, pp. 53–69.

[9] Carlet, C., On the confusion and diffusion properties of Maio-
rana–McFarland’s and extended Maiorana–McFarland’s functions. Journal
of Complexity 20:2 (2004), pp. 182–204. Elsevier.

[10] Cusick, T. W., and Stănică, P., Cryptographic Boolean Functions and
Applications (2nd ed.). Elsevier-Academic Press, 2017.

[11] Devlin, K., The Joy of Sets: Fundamentals of Contemporary Set Theory –
2nd ed., Springer-Verlag New York, Inc., 1992.

84

[12] Dummit, D. S., and Foote, R. M., Abstract Algebra (3rd ed.) Hoboken, N.J.
2004.

[13] Fraleigh, J. B., A First Course in Abstract Algebra (7th ed.), Pearson Ed-
ucation Ltd. 2014.

[14] Gangopadhyay, S., Pasalic, E., and Stănică, P., A note on generalized bent
criteria for Boolean functions. IEEE Trans. Inf. Theory, vol. 59, no. 5, pp.
3233-3236. May 2013.

[15] Haggarty, R., Discrete Mathematics for Computing., Pearson Education
Ltd. 2002.

[16] Harrison, M. A., On the classification of Boolean functions by the general
linear and affine groups, Journal of the Society for Industrial and Applied
Mathematics, vol. 12, no. 2, pp. 285–299, 1964.

[17] Lay, D. C., Linear Algebra and Its Applications (International 4th Ed.),
Pearson Education Inc., 1994.

[18] Martin, R. C., Agile Software Development, Principles, Patterns, and Prac-
tices (International Ed.), Pearson Education Limited, 2013.

[19] Meier, W., and Staffelbach, O., Nonlinearity criteria for cryptographic func-
tions, in Advances in Cryptology, EUROCRYPT’ 89 (Lecture Notes in
Computer Science). Berlin, Germany: Springer-Verlag, 1990, vol. 434, pp.
549–562.

[20] Online Encyclopedia of Integer Sequences - Sloan.
https://oeis.org/search?q=3%2C5%2C10%2C32. First Accessed: 2020-02-
05.

[21] Paar, C., and Pelzl, J., Understanding Cryptography, Springer-Verlag Berlin
Heidelberg, 2009.

[22] Python Documentation.
https://docs.python.org/. First Accessed: 2019-03-10.

[23] Riera, C., Sole, P., and Stănică, P., A complete characterization of plateaued
Boolean functions in terms of their Cayley graphs, Proc. Africacrypt
(Marrakesh-Morroco), LNCS, Springer-Verlag LNCS 10831, 2018, pp. 3-
10.

[24] Rout, R. K., Choudhury, P. P., and Sahoo, S., Classification of Boolean
Functions Where Affine Functions Are Uniformly Distributed. Journal
of Discrete Mathematics, 2013. (Article ID 270424) (2013), 12 pages.
doi:10.1155/2013/270424.

[25] SageMath- Open-Source Mathematical Software System.
http://www.sagemath.org/. First Accessed: 2019-03-10.

[26] Sertkaya, I. and Doğanaksoy, A. (2010). On the Affine Equivalence
and Nonlinearity Preserving Bijective Mappings. IACR Cryptology ePrint
Archive. 2010. 655.

[27] Werman, M. Affine Invariants. In: Ikeuchi K. (eds) Computer Vision.
Springer, Boston, MA. 2014

85

Appendix A

Data: n = 2 Raw Data

The results for n = 2 is listed below, as generated by the program listed in
Appendix B – results for n = 3, 4 consist of too many lines to be shown. Each
line consists of six entries, each entry separated by "|", and the entry indices
0..5 represents a data point for all (22

n − 2) functions (the Boolean polynomials
f(x) = 0 and f(x) = 1 were excluded from these data sets):

Index Data point
0 Algebraic Thickness
1 Nonlinearity
2 Vector Generating Integer
3 Matrix Generating Integer
4 Boolean Polynomial
5 Mapped Boolean Polynomial

The raw data for n = 2 therefore consists of the 14 lines as shown, and we
can see that there are four Boolean polynomials with thickness 2, and ten with
thickness 1. Please note that this data was generated before the concept of
representatives was defined, and therefore the mapped functions are only rigid
functions, not necessarily representative functions.

1 1|0|0|6| x1|x2
2 1|0|2|6| x1 + 1|x2
3 1|0|0|6| x2|x1
4 1|0|1|6| x2 + 1|x1
5 1|0|0|7| x1 + x2|x1
6 1|0|1|7| x1 + x2 + 1|x1
7 1|1|0|6| x1*x2|x1*x2
8 2|1|0|6| x1*x2 + 1|x1*x2 + 1
9 1|1|1|6| x1*x2 + x1|x1*x2

10 2|1|1|6| x1*x2 + x1 + 1|x1*x2 + 1
11 1|1|2|6| x1*x2 + x2|x1*x2
12 2|1|2|6| x1*x2 + x2 + 1|x1*x2 + 1
13 2|1|3|6| x1*x2 + x1 + x2|x1*x2 + 1
14 1|1|3|6| x1*x2 + x1 + x2 + 1|x1*x2

E.g., the vector generated by 2 is (1, 0) and the matrix generated by 7 is

[0, 1, 1, 1] =

[
0 1

1 1

]

86

Appendix B

Program: Brute-force
calculation, n = 4

The following code is discussed in Chapter 3. The results of this program
is discussed and analysed in Chapter 5, specifically Section 5.1, and listed in
Appendix E.

1 from sage.crypto.boolean_function import BooleanFunction
2

3 ####### MATRIX GENERATION #######
4

5 # Generates invertible matrix maps and vectors
6 def generate_invertible_matrices_and_vectors(n_var , M, x_vector):
7 binary_list = []
8 base = [’0’] * n_var
9 vectors = [(0, vector(GF(2), base))]

10

11 for index in range (2^ n_var)[1:]:
12 binary = list(bin(index))[2:]
13 vec = base[len(binary):] + binary
14 binary_list.append ((index , vec))
15 vectors.append ((index , vector(GF(2), vec)))
16

17 permutations = Arrangements(range ((2^ n_var) -1), n_var).list()
18

19 matrices = []
20 for permutation in permutations:
21 accumulator = []
22 value_list = []
23 for index in permutation:
24 value_list.append(binary_list[index][0])
25 accumulator += binary_list[index][1]
26 inv_matrix = M.matrix(accumulator)
27 if inv_matrix.is_invertible ():
28 generating_int = matrix_value(n_var , value_list)
29 matrix_map = inv_matrix*x_vector
30 matrices.append ((generating_int , matrix_map))
31 return matrices , vectors
32

33 # Calculate generating integer for given matrix
34 def matrix_value(n_var , value_list):
35 return sum([(value_list[i] * 2^(n_var*(n_var -i-1)))
36 for i in range(len(value_list))])

87

37

38 ####### POLYNOMIAL GENERATION #######
39 def generate_functions(variables):
40 generated_funcs = [0, 1] # n = 0
41

42 # iterate through variables {x_1 ,.., x_n}
43 for new_x in variables:
44 temp_funcs = []
45 for f1 in generated_funcs:
46 for f2 in generated_funcs:
47 temp_funcs.append(f1*new_x + f2)
48 generated_funcs = temp_funcs
49

50 return generated_funcs
51

52 def sort_by_degree(func_list):
53 bool_pols = [[] for i in range(n)]
54 add_function = lambda i: bool_pols[i-1]. append
55 for f in func_list:
56 f_deg = f.degree ()
57 if (f_deg > 0):
58 add_function(f_deg)(f)
59 return bool_pols
60

61 ####### MAIN METHOD #######
62 def calc_thickness(bool_pols_by_deg , matrices , vectors):
63 n_matrices = len(matrices)
64 n_vectors = len(vectors)
65

66 for bool_pols in bool_pols_by_deg:
67 n_bool_pols = len(bool_pols)
68

69 for f in bool_pols:
70 iter_mat = 0
71

72 min_mapped_monomials = 2^n + 1 # global var n
73 min_matrix = 0
74 min_vector = 0
75 min_new_f = 0
76

77 while (iter_mat < n_matrices):
78 iter_vec = 0
79 while (iter_vec < n_vectors):
80 # Map the function , for n = 4
81 map_ = matrices[iter_mat][1] +
82 vectors[iter_vec][1]
83 new_f = f(map_[0], map_[1], map_[2], map_ [3])
84 mapped_monomials = len(new_f.monomials ())
85

86 # Check if fewer monomials
87 if (mapped_monomials < min_mapped_monomials):
88 min_mapped_monomials = mapped_monomials
89 min_matrix = matrices[iter_mat][0]
90 min_vector = vectors[iter_vec][0]
91 min_new_f = new_f
92

93 # Move on, if minimal monomials
94 if (mapped_monomials == 1):
95 iter_mat = n_matrices
96 iter_vec = n_vectors
97 iter_vec += 1
98 iter_mat += 1

88

99

100 # Write data to file
101 nonlin = BooleanFunction(min_new_f).nonlinearity ()
102 toText = open(file_name , ’a’)
103 toText.write("%d|%d|%d|%d|%s|%s\n" %
104 (min_mapped_monomials , nonlin , min_vector , min_matrix ,

f, min_new_f))
105 toText.close ()
106 return
107

108

109 ############## PROGRAM ##############
110

111 ####### SETUP PHASE #######
112 # When running this program with several instances ,
113 # start instance i+1 at the same number as instance i ended on.
114 # i.e., start=x starts at x, and
115 # end=y is "up to but not including y"
116

117 n = 4
118

119 ## Division of functions per iteration
120 division = 16 # because this was what was available
121 print "Dividing functions into %d equal parts." % division
122 current_session = input("Which calculation iteration to run (0..%d)

?: "
123 % (division -1))
124 function_iterations = range(0, 2^2^n, 2^2^n/division)
125

126 start = function_iterations[current_session]
127 if (current_session == division -1):
128 end = 2^(2^n)
129 else:
130 end = function_iterations[current_session +1]
131

132 file_folder = "" # Add folder if needed
133 file_alias = "results_n =% d_from_%d_to_%d.txt" % (n, start , end)
134 file_name = file_folder + file_alias
135

136 M = MatrixSpace(GF(2), n)
137 B_ring = BooleanPolynomialRing(n, ’x’)
138 x = B_ring.gens()
139 xvec = vector(B_ring , x)
140

141 ## SETUP: Generation of matrices and vectors
142 matrices , vectors = generate_invertible_matrices_and_vectors(n, M,

xvec)
143

144 ## SETUP: Construction of Boolean Polynomials
145 bool_pols = generate_functions(x)[start:end]
146 bool_pols_by_deg = sort_by_degree(bool_pols)
147

148

149 ####### MAIN PHASE: Thickness calculation
150

151 calc_thickness(bool_pols_by_deg , matrices , vectors)
152

153 ####### CLOSING PHASE: Summary printing
154 # [...] # Various printouts of summaries
155 # that are removed from this version.

89

Appendix C

Program: Representatives
collection for n = 5

The following code is discussed in Chapter 4. The results of this program
is discussed and analysed in Chapter 5, specifically Section 5.2, and listed in
Appendix F.

1 # Method for converting a string into a Boolean Polynomial
2 def convert_to_boolpol(func_str , R):
3 if (len(func_str) == 1):
4 return R(func_str)
5

6 # Remove whitespace , and split each monomial up
7 monomials = func_str.replace(" ", "").split("+")
8

9 # Convert each monomial string into a function monomial
10 func_monomials = []
11 add_monomial = func_monomials.append
12 for mon in monomials:
13 temp_monom = R(1)
14 # if no * in string , return the single monomial
15 if (mon.find("*") == -1):
16 if (mon == "1"):
17 temp_monom = R(1)
18 else:
19 temp_monom = x[int(mon [1])]
20 # else go through monomial , multiplying each variable
21 else:
22 mult_mons = mon.split("*")
23 for variable in mult_mons:
24 temp_monom *= x[int(variable [1])]
25

26 add_monomial(temp_monom)
27

28 # Sum each function monomial into a complete function
29 return sum(func_monomials)
30

31 # Collecting already -found representatives
32 def collect_funcs_of_size_from_file(mon_count , file_name):
33 funcs = set()
34

35 # Usable for Windows and Linux implementations
36 file_stop = set(["\n", "\r", "\r\n", ""])

90

37

38 try:
39 data_file = open(file_name , ’r’)
40 inp_string = data_file.readline ()
41 while (inp_string not in file_stop):
42 line = inp_string.split(’|’)
43 f = convert_to_boolpol(line[0], ring)
44

45 if (len(f.set()) == mon_count):
46 funcs.add(f)
47 inp_string = data_file.readline ()
48 data_file.close()
49 except IOError:
50 print "No file: %s" % file_name
51 print "Collected %d representatives with size %d."
52 % (len(funcs), mon_count)
53 return funcs
54

55 # Collecting relevant functions for this iteration
56 def collect_remapped_functions(file_name):
57 funcs = []
58 file_stop = set(["\n", "\r", "\r\n", ""])
59

60 try:
61 data_file = open(file_name , ’r’)
62 inp_string = data_file.readline ()
63 while (inp_string not in file_stop):
64 line = inp_string.split(’|’)
65 f = convert_to_boolpol(line[0], ring)
66 funcs.append(f)
67 inp_string = data_file.readline ()
68 data_file.close()
69 except IOError:
70 print "No file: %s\n\nABORT !\n" % file_name
71 print "Collected %d remapped functions." % len(funcs)
72 return funcs
73

74 def generate_invertible_matrices_and_vectors(n_var , M, x_vector):
75 binary_list = []
76 base = [0] * n_var
77 vectors = [vector(GF(2), base)] # 0-vector added here
78

79 for index in range(1, 2^n_var):
80 binary = map(int , bin(index)[2:])
81 vec = base[len(binary):] + binary
82 binary_list.append(vec)
83 vectors.append(vector(GF(2), vec))
84

85 permutations = Arrangements(range ((2^ n_var) -1), n_var).list()
86

87 matrices = []
88 for permutation in permutations:
89 accumulator = []
90 for index in permutation:
91 accumulator += binary_list[index]
92 inv_matrix = M.matrix(accumulator)
93 if inv_matrix.is_invertible ():
94 matrix_map = inv_matrix*x_vector
95 matrices.append(matrix_map)
96 return matrices , vectors
97

98

91

99 def calculate_thickness(functions , matrices , vectors , file_write):
100 for f in functions:
101 min_f = f
102 rigid_function = True # Assume rigid , attempt to disprove
103

104 iter_mat = 0
105 while (iter_mat < n_matrices):
106 iter_vec = 0
107 while (iter_vec < n_vectors):
108 # Apply map to function f
109 f_map = matrices[iter_mat] + vectors[iter_vec]
110

111 mapped_f = f(f_map[0], f_map [1], f_map[2],
112 f_map [3], f_map [4])
113 mapped_monomials = len(mapped_f.set())
114

115 # If function not rigid , skip to next function
116 if (mapped_monomials < n_monoms):
117 rigid_function = False
118 iter_mat = n_matrices
119 iter_vec = n_vectors
120

121 # If representative already found ,
122 # skip to next function
123 elif (mapped_f in representatives):
124 rigid_function = False
125 iter_mat = n_matrices
126 iter_vec = n_vectors
127

128 # If function may be rigid ,
129 # check if better representative
130 elif (mapped_monomials == n_monoms):
131 if (mapped_f < min_f):
132 min_f = mapped_f
133

134 iter_vec += 1
135 iter_mat += 1
136

137 if (rigid_function):
138 # Map to lowest indexed version
139 min_f_rep = map_to_smallest_index(min_f)
140

141 # Save results for each viable function to file
142 text_file = open(file_write , ’a’)
143 text_file.write("%s|\n" % min_f_rep)
144 text_file.close()
145

146 # Add found representative to set
147 representatives.add(min_f_rep)
148 return
149

150 ## x_permutations is global variable , defined further down!
151 def map_to_smallest_index(f):
152 smallest = f
153 for f_map in x_permutations:
154 mapped_f = f(f_map[0], f_map [1], f_map[2],
155 f_map [3], f_map [4])
156

157 if (mapped_f > smallest): # note: x1 > x2 in .pbori
158 smallest = mapped_f
159 return smallest
160

92

161 ##### COLLECTING INPUTS #####
162 n_monoms = int(raw_input("Monomial count = "))
163 division = -1
164 while (division < 3):
165 division = int(raw_input("Division of functions (>2): "))
166 iteration = -1
167 while (iteration not in range(division)):
168 iteration = int(raw_input("Iter (0..%d): " % (division -1)))
169

170 ##### BASIC SETUP #####
171 n = 5
172 ring = BooleanPolynomialRing(n, "x")
173 x = ring.gens()
174 m_space = MatrixSpace(GF(2), n)
175 x_vec = vector(ring , x)
176 x_permutations = Arrangements(x, n) # permutations of variables
177

178 file_folder = "" # Add as needed
179 file_read_name = file_folder + "n=%d_m=% d_functions.txt"
180 % (n, n_monoms)
181 functions_total = collect_remapped_functions(file_read_name)
182 n_functions = len(functions_total)
183

184 ##### ITERATIONS #####
185 print "Dividing %d functions into %d parts.\n"
186 % (n_functions , division)
187 each_iteration = int(n_functions/division)
188

189 # If divisible by division variable , two ends must be added
190 if (mod(n_functions , division) == 0):
191 function_iterations = range(each_iteration ,
192 n_functions -each_iteration , each_iteration) +
193 [n_functions -each_iteration , n_functions]
194

195 # otherwise: only add the last end
196 else:
197 function_iterations = range(each_iteration ,
198 n_functions -each_iteration , each_iteration) +
199 [n_functions]
200

201 if (iteration == 0):
202 start = 0
203 else:
204 start = function_iterations[iteration -1]
205 end = function_iterations[iteration]
206 functions = functions_total[start:end]
207

208 ##### COLLECTING FOUND REPRESENTATIVES #####
209 file_reps = file_folder + "n=% d_representatives_list.txt" % n
210 representatives = collect_funcs_of_size_from_file(n_monoms ,

file_reps)
211

212 ##### AFFINE TRANSFORMATIONS #####
213 matrices , vectors = generate_invertible_matrices_and_vectors(n,

m_space , x_vec)
214 n_matrices = len(matrices)
215 n_vectors = len(vectors)
216

217 ############## FINDING REPRESENTATIVES ##############
218 file_write_name = file_folder + "n=%d_m=% d_it_%d_%d-% d_reps.txt"
219 % (n, n_monoms , iteration , start , end)
220 calculate_thickness(functions , matrices , vectors , file_write_name)

93

Appendix D

List: x1x2x3-form of
representatives

The representatives are – in the thesis and in the following appendices (Appen-
dices E and F) – presented in their ABC-form. As explained in Chapter 4, to
avoid the visual aspect of the presentation being a problem, they are listed here
in their x1x2x3-form, as Boolean functions are usually presented in scientific
literature.

Table D.1 is listed on the next page (because of its size) and is equal to
Table 5.4, by the bijective substitution map:

A 7→ x1,

B 7→ x2,

C 7→ x3,

D 7→ x4;

as should be expected.

94

T n = 0 n = 1 n = 2 n = 3 n = 4

0 0 0 0 0 0
1 1 1 1 1 1

x1 x1 x1 x1
x1x2 x1x2 x1x2

x1x2x3 x1x2x3
x1x2x3x4

2 x1x2 + 1 x1x2 + 1 x1x2 + 1
x1x2 + x3 x1x2 + x3

x1x2 + x3x4
x1x2x3 + 1 x1x2x3 + 1
x1x2x3 + x1 x1x2x3 + x1

x1x2x3 + x4
x1x2x3 + x1x4
x1x2x3x4 + 1
x1x2x3x4 + x1
x1x2x3x4 + x1x2

3 x1x2 + x3x4 + 1
x1x2x3 + x1 + 1 x1x2x3 + x1 + 1

x1x2x3 + x1x4 + 1
x1x2x3 + x1x4 + x2
x1x2x3 + x1x2 + x3x4
x1x2x3x4 + x1 + 1
x1x2x3x4 + x1x2 + 1
x1x2x3x4 + x1x2 + x1
x1x2x3x4 + x1x2 + x3
x1x2x3x4 + x1x2 + x3x4

4 x1x2x3 + x1x2 + x3x4 + 1
x1x2x3x4 + x1x2 + x1 + 1
x1x2x3x4 + x1x2 + x3 + 1
x1x2x3x4 + x1x2 + x3x4 + 1
x1x2x3x4 + x1x2 + x3x4 + x1

5 x1x2x3x4 + x1x2 + x3x4 + x1 + 1

Table D.1: Lowest indexed representatives (x1x2x3-form) in n = 0, 1, 2, 3, 4 –
sorted by thickness, clustered by degree

95

Appendix E

List: Representatives in n = 4

The following list contains the 32 representative functions in n = 4 variables.
The orbit of each representative has been analysed and checked for the seven
following properties:

1. D: The algebraic degree of the orbit

2. N: The nonlinearity of the orbit

3. H: Number of homogeneous functions in the orbit

4. Be: Whether the orbit is bent or not (Y = bent)

5. Ba: Whether the orbit is balanced or not (Y = balanced)

6. R: Rigid functions in the orbit

7. O: Number of functions in the orbit

Representative D N H Be Ba R O
Thickness 0
0 0 0 1 - - 1 1

Thickness 1
1 0 0 1 - - 1 1
A 1 0 15 - Y 4 30
AB 2 4 25 - - 6 140
ABC 3 2 10 - - 4 120
ABCD 4 1 1 - - 1 16

Thickness 2
AB + 1 2 4 0 - - 6 140
AB + C 2 4 10 - Y 12 840
AB + CD 2 6 27 Y - 3 448
ABC + 1 3 2 0 - - 4 120
ABC + D 3 2 0 - Y 4 1920

96

Representative D N H Be Ba R O
ABC + A 3 2 0 - - 12 840
ABC + AD 3 4 5 - - 12 1680
ABCD + 1 4 1 0 - - 1 16
ABCD + A 4 1 0 - - 4 240
ABCD + AB 4 3 0 - - 6 560

Thickness 3
AB + CD + 1 2 6 1 Y - 3 448
ABC + A + 1 3 2 0 - - 36 840
ABC + AD + 1 3 4 0 - - 12 1680
ABC + AD + B 3 4 0 - Y 24 10080
ABC + AB + CD 3 4 0 - - 42 6720
ABCD + A + 1 4 1 0 - - 14 240
ABCD + AB + 1 4 3 0 - - 6 560
ABCD + AB + C 4 3 0 - - 12 6720
ABCD + AB + CD 4 5 0 - - 3 4480
ABCD + AB + A 4 3 0 - - 36 1680

Thickness 4
ABC + AB + CD + 1 3 4 0 - - 54 6720
ABCD + AB + C + 1 4 3 0 - - 130 6720
ABCD + AB + CD + 1 4 5 0 - - 3 4480
ABCD + AB + A + 1 4 3 0 - - 42 1680
ABCD + AB + CD + A 4 5 0 - - 42 2688

Thickness 5
ABCD + AB + CD + A + 1 4 5 0 - - 48 2688

97

Appendix F

List: Representatives in n = 5

The following list contains the 382 representative functions in n = 5 variables.
The orbit of each representative has been analysed and checked for the seven
following properties:

1. D: The algebraic degree of the orbit

2. N: The nonlinearity of the orbit

3. H: Number of homogeneous functions in the orbit

4. Be: Whether the orbit is semi-bent or not (Y = semi-bent)

5. Ba: Whether the orbit is balanced or not (Y = balanced)

6. R: Rigid functions in the orbit

7. O: Number of functions in the orbit

Representative D N H Be Ba R O

Thickness 0
0 0 0 1 - - 1 1

Thickness 1
1 0 0 1 - - 1 1
A 1 0 31 - Y 5 62
AB 2 8 90 - - 10 620
ABC 3 4 65 - - 10 1240
ABCD 4 2 15 - - 5 496
ABCDE 5 1 1 - - 1 32

Thickness 2
AB + 1 2 8 0 - - 10 620
AB + C 2 8 65 - Y 30 8680
AB + CD 2 12 600 Y - 15 13888

98

Representative D N H Be Ba R O
ABC + 1 3 4 0 - - 10 1240
ABC + D 3 4 0 - Y 20 59520
ABC + DE 3 10 0 - - 10 317440
ABC + A 3 4 0 - - 30 8680
ABC + AD 3 8 75 - - 60 52080
ABC + ADE 3 6 232 - - 15 27776
ABCD + 1 4 2 0 - - 5 496
ABCD + E 4 2 0 - Y 5 15872
ABCD + A 4 2 0 - - 20 7440
ABCD + AE 4 8 0 - - 20 119040
ABCD + AB 4 6 0 - - 30 17360
ABCD + ABE 4 4 15 - - 30 34720
ABCDE + 1 5 1 0 - - 1 32
ABCDE + A 5 1 0 - - 5 992
ABCDE + AB 5 7 0 - - 10 4960
ABCDE + ABC 5 3 0 - - 10 4960

Thickness 3
AB + CD + 1 2 12 16 Y - 15 13888
AB + CD + E 2 12 252 Y Y 15 27776
ABC + DE + 1 3 10 0 - - 10 317440
ABC + A + 1 3 4 0 - - 90 8680
ABC + DE + A 3 10 0 - - 30 2222080
ABC + AD + 1 3 8 0 - - 60 52080
ABC + AD + E 3 8 0 - Y 60 833280
ABC + AD + B 3 8 0 - Y 120 312480
ABC + AD + BE 3 12 15 Y - 60 833280
ABC + ADE + 1 3 6 0 - - 15 27776
ABC + ADE + B 3 6 0 - - 60 833280
ABC + ADE + BD 3 10 210 - - 60 1666560
ABC + ADE + A 3 6 6 - - 15 27776
ABC + AB + CD 3 8 0 - - 210 208320
ABC + CDE + AB 3 8 360 - - 60 277760
ABCD + A + 1 4 2 0 - - 70 7440
ABCD + AE + 1 4 8 0 - - 20 119040
ABCD + AE + B 4 8 0 - Y 60 1666560
ABCD + AB + 1 4 6 0 - - 30 17360
ABCD + AB + E 4 6 0 - Y 30 555520
ABCD + AB + C 4 6 0 - - 60 208320
ABCD + AB + CE 4 10 0 - - 60 3333120
ABCD + AB + CD 4 10 0 - - 15 138880
ABCD + AB + A 4 6 0 - - 180 52080
ABCD + ABE + 1 4 4 0 - - 30 34720
ABCD + ABE + E 4 4 0 - - 30 555520

99

Representative D N H Be Ba R O
ABCD + ABE + C 4 4 0 - Y 60 833280
ABCD + ABE + CE 4 8 0 - - 60 6666240
ABCD + ABE + CD 4 10 0 - - 30 2222080
ABCD + ABE + CDE 4 8 0 - - 15 4444160
ABCD + ABE + A 4 4 0 - - 60 104160
ABCD + ABE + AC 4 8 0 - - 120 624960
ABCD + ABC + DE 4 8 0 - - 80 119040
ABCD + ABC + ADE 4 6 0 - - 210 416640
ABCDE + A + 1 5 1 0 - - 20 992
ABCDE + AB + 1 5 7 0 - - 10 4960
ABCDE + AB + C 5 7 0 - - 30 138880
ABCDE + AB + CD 5 11 0 - - 15 277760
ABCDE + AB + A 5 7 0 - - 70 14880
ABCDE + ABC + 1 5 3 0 - - 10 4960
ABCDE + ABC + D 5 3 0 - - 20 119040
ABCDE + ABC + DE 5 9 0 - - 10 317440
ABCDE + ABC + A 5 3 0 - - 30 34720
ABCDE + ABC + AD 5 7 0 - - 60 416640
ABCDE + ABC + ADE 5 7 0 - - 15 277760
ABCDE + ABC + AB 5 5 0 - - 90 34720

Thickness 4
ABC + DE + A + 1 3 10 0 - - 90 2222080
ABC + AD + BE + 1 3 12 0 Y - 60 833280
ABC + AD + BE + C 3 12 0 Y Y 60 1666560
ABC + ADE + B + 1 3 6 0 - - 210 833280
ABC + ADE + BD + 1 3 10 0 - - 60 1666560
ABC + ADE + BD + C 3 10 0 - - 120 9999360
ABC + ADE + A + 1 3 6 0 - - 15 27776
ABC + ADE + BD + A 3 10 0 - - 60 1666560
ABC + AB + CD + 1 3 8 0 - - 270 208320
ABC + CDE + AB + 1 3 8 0 - - 60 277760
ABC + CDE + AB + D 3 8 60 - - 330 3333120
ABC + CDE + AB + C 3 8 0 - Y 30 555520
ABCD + AB + C + 1 4 6 0 - - 650 208320
ABCD + AB + CE + 1 4 10 0 - - 60 3333120
ABCD + AB + CE + D 4 10 0 - Y 60 6666240
ABCD + AB + CD + 1 4 10 0 - - 15 138880
ABCD + AB + CD + E 4 10 0 - Y 15 444416
ABCD + AB + A + 1 4 6 0 - - 210 52080
ABCD + AB + CD + A 4 10 0 - - 210 83328
ABCD + ABE + E + 1 4 4 0 - - 120 555520
ABCD + ABE + CE + 1 4 8 0 - - 60 6666240
ABCD + ABE + CE + D 4 8 0 - - 60 26664960

100

Representative D N H Be Ba R O
ABCD + ABE + CD + 1 4 10 0 - - 30 2222080
ABCD + ABE + CD + E 4 10 0 - - 30 2222080
ABCD + ABE + CDE + 1 4 8 0 - - 15 4444160
ABCD + ABE + CDE + E 4 8 0 - - 15 4444160
ABCD + ABE + A + 1 4 4 0 - - 90 104160
ABCD + ABE + CE + A 4 8 0 - - 120 19998720
ABCD + ABE + CD + A 4 10 0 - - 60 6666240
ABCD + ABE + CDE + A 4 8 0 - - 60 26664960
ABCD + ABE + AE + B 4 6 0 - - 60 833280
ABCD + ABE + AC + 1 4 8 0 - - 120 624960
ABCD + ABE + AC + E 4 8 0 - - 120 4999680
ABCD + ABE + AC + D 4 8 0 - Y 120 4999680
ABCD + ABE + AC + DE 4 10 0 - - 120 19998720
ABCD + ABE + AC + C 4 8 0 - - 180 1249920
ABCD + ABE + AC + B 4 8 0 - Y 120 1249920
ABCD + ABE + AC + BD 4 12 0 - - 60 2499840
ABCD + ABE + CDE + AB 4 6 1 - - 280 444416
ABCD + ABC + DE + 1 4 8 0 - - 100 119040
ABCD + ABC + DE + A 4 8 0 - - 420 833280
ABCD + ABC + ADE + 1 4 6 0 - - 210 416640
ABCD + ABC + ADE + E 4 6 0 - - 270 1666560
ABCD + ABC + ADE + D 4 6 0 - - 60 833280
ABCD + ABC + ADE + B 4 6 0 - - 480 4999680
ABCD + ABC + ADE + BD 4 10 0 - - 300 4999680
ABCD + ABC + ADE + A 4 6 0 - - 270 416640
ABCD + ABC + AB + DE 4 10 0 - - 420 833280
ABCD + ABC + CDE + AB 4 8 0 - - 300 1666560
ABCD + ABC + ABE + DE 4 8 0 - - 920 3333120
ABCDE + AB + C + 1 5 7 0 - - 340 138880
ABCDE + AB + CD + 1 5 11 0 - - 15 277760
ABCDE + AB + CD + E 5 11 0 - - 15 444416
ABCDE + AB + A + 1 5 7 0 - - 80 14880
ABCDE + AB + CD + A 5 11 0 - - 210 166656
ABCDE + ABC + D + 1 5 3 0 - - 130 119040
ABCDE + ABC + DE + 1 5 9 0 - - 10 317440
ABCDE + ABC + DE + D 5 9 0 - - 110 952320
ABCDE + ABC + A + 1 5 3 0 - - 60 34720
ABCDE + ABC + DE + A 5 9 0 - - 30 2222080
ABCDE + ABC + AD + 1 5 7 0 - - 60 416640
ABCDE + ABC + AD + E 5 7 0 - - 60 6666240
ABCDE + ABC + AD + D 5 7 0 - - 120 833280
ABCDE + ABC + AD + B 5 7 0 - - 120 2499840
ABCDE + ABC + AD + BE 5 11 0 - - 60 9999360
ABCDE + ABC + AD + A 5 7 0 - - 650 416640

101

Representative D N H Be Ba R O
ABCDE + ABC + ADE + 1 5 7 0 - - 15 277760
ABCDE + ABC + ADE + B 5 7 0 - - 60 3333120
ABCDE + ABC + ADE + BD 5 9 0 - - 60 9999360
ABCDE + ABC + ADE + A 5 7 0 - - 15 277760
ABCDE + ABC + AB + 1 5 5 0 - - 90 34720
ABCDE + ABC + AB + D 5 5 0 - - 210 833280
ABCDE + ABC + AB + DE 5 9 0 - - 120 2222080
ABCDE + ABC + AB + C 5 5 0 - - 30 138880
ABCDE + ABC + AB + CD 5 9 0 - - 90 1666560
ABCDE + ABC + CDE + AB 5 7 0 - - 60 2222080
ABCDE + ABC + AB + A 5 5 0 - - 210 104160
ABCDE + ABC + ADE + AB 5 5 0 - - 210 166656
ABCDE + ABCD + ABE + E 5 5 0 - - 30 138880
ABCDE + ABCD + ABE + CE 5 9 0 - - 60 833280
ABCDE + ABCD + ABE + CDE 5 7 0 - - 15 444416

Thickness 5
ABC + ADE + BD + C + 1 3 10 0 - - 840 9999360
ABC + ADE + BD + A + 1 3 10 0 - - 150 1666560
ABC + CDE + AB + D + 1 3 8 0 - - 630 3333120
ABC + CDE + AB + A + D 3 8 0 - Y 1380 9999360
ABC + ABD + ACE + BC + DE 3 12 0 Y - 240 2666496
ABCD + AB + CD + A + 1 4 10 0 - - 240 83328
ABCD + ABE + CE + D + 1 4 8 0 - - 480 26664960
ABCD + ABE + CE + C + E 4 8 0 - - 60 3333120
ABCD + ABE + CD + E + 1 4 10 0 - - 120 2222080
ABCD + ABE + CD + C + E 4 10 0 - Y 240 13332480
ABCD + ABE + CDE + E + 1 4 8 0 - - 15 4444160
ABCD + ABE + CE + A + 1 4 8 0 - - 180 19998720
ABCD + ABE + CD + A + 1 4 10 0 - - 90 6666240
ABCD + ABE + CDE + A + 1 4 8 0 - - 90 26664960
ABCD + ABE + CDE + A + E 4 8 0 - - 60 26664960
ABCD + ABE + CDE + A + C 4 8 0 - Y 180 39997440
ABCD + ABE + AE + CD + B 4 8 0 - - 60 3333120
ABCD + ABE + CDE + AE + B 4 6 0 - - 60 6666240
ABCD + ABE + AC + E + 1 4 8 0 - - 900 4999680
ABCD + ABE + AC + DE + 1 4 10 0 - - 120 19998720
ABCD + ABE + AC + C + 1 4 8 0 - - 300 1249920
ABCD + ABE + AC + DE + C 4 10 0 - - 180 79994880
ABCD + ABE + CDE + AC + E 4 8 0 - - 60 39997440
ABCD + ABE + AC + DE + B 4 10 0 - - 120 39997440
ABCD + ABE + AC + BE + E 4 10 0 - - 480 4999680
ABCD + ABE + AC + BE + D 4 10 0 - - 180 9999360
ABCD + ABE + AC + BD + 1 4 12 0 - - 60 2499840

102

Representative D N H Be Ba R O
ABCD + ABE + AC + BD + E 4 12 0 - - 60 3333120
ABCD + ABE + CDE + AC + BD 4 10 0 - - 30 26664960
ABCD + ABE + AC + DE + A 4 10 0 - - 720 19998720
ABCD + ABE + ACE + BD + C 4 8 0 - Y 120 19998720
ABCD + ABE + CDE + AB + 1 4 6 0 - - 280 444416
ABCD + ABE + CDE + AB + E 4 6 0 - Y 30 8888320
ABCD + ABE + CDE + AB + C 4 6 0 - - 980 6666240
ABCD + ABE + CDE + AB + AC 4 10 0 - - 900 19998720
ABCD + ABC + DE + A + 1 4 8 0 - - 1620 833280
ABCD + ABC + ADE + E + 1 4 6 0 - - 630 1666560
ABCD + ABC + ADE + B + 1 4 6 0 - - 2310 4999680
ABCD + ABC + ADE + B + E 4 6 0 - Y 1680 9999360
ABCD + ABC + ADE + BE + D 4 8 0 - Y 120 9999360
ABCD + ABC + ADE + BD + 1 4 10 0 - - 300 4999680
ABCD + ABC + ADE + BD + E 4 10 0 - Y 120 9999360
ABCD + ABC + ADE + BD + C 4 10 0 - - 120 9999360
ABCD + ABC + ADE + BD + CE 4 10 0 - - 120 39997440
ABCD + ABC + ADE + A + 1 4 6 0 - - 270 416640
ABCD + ABC + ADE + BD + A 4 10 0 - - 1020 4999680
ABCD + ABC + ADE + AD + BE 4 8 0 - - 1740 9999360
ABCD + ABC + AB + DE + 1 4 10 0 - - 480 833280
ABCD + ABC + AB + DE + C 4 10 0 - - 540 3333120
ABCD + ABC + CDE + AB + 1 4 8 0 - - 300 1666560
ABCD + ABC + CDE + AB + E 4 8 0 - - 360 26664960
ABCD + ABC + CDE + AB + D 4 8 0 - - 120 3333120
ABCD + ABC + CDE + AB + C 4 8 0 - Y 330 1666560
ABCD + ABC + AB + DE + A 4 10 0 - - 2130 2499840
ABCD + ABC + CDE + AB + A 4 8 0 - - 1740 9999360
ABCD + ABC + ABE + DE + 1 4 8 0 - - 920 3333120
ABCD + ABC + ABE + DE + C 4 8 0 - Y 980 53329920
ABCD + ABC + ABE + CDE + E 4 6 0 - - 360 2666496
ABCD + ABC + ABE + DE + A 4 8 0 - Y 1380 9999360
ABCD + ABC + ABE + AC + DE 4 10 0 - - 1500 39997440
ABCD + ABC + ABE + AB + DE 4 8 0 - - 1200 3333120
ABCD + ABC + ABD + CE + D 4 10 0 - - 60 3333120
ABCDE + AB + CD + E + 1 5 11 0 - - 280 444416
ABCDE + AB + CD + A + 1 5 11 0 - - 240 166656
ABCDE + ABC + DE + D + 1 5 9 0 - - 120 952320
ABCDE + ABC + DE + A + 1 5 9 0 - - 60 2222080
ABCDE + ABC + DE + A + D 5 9 0 - - 420 6666240
ABCDE + ABC + AD + E + 1 5 7 0 - - 1040 6666240
ABCDE + ABC + AD + D + 1 5 7 0 - - 180 833280
ABCDE + ABC + AD + B + 1 5 7 0 - - 1140 2499840
ABCDE + ABC + AD + B + D 5 7 0 - - 1110 2499840

103

Representative D N H Be Ba R O
ABCDE + ABC + AD + BE + 1 5 11 0 - - 60 9999360
ABCDE + ABC + AD + BE + C 5 11 0 - - 60 19998720
ABCDE + ABC + AD + A + 1 5 7 0 - - 650 416640
ABCDE + ABC + AD + BE + A 5 11 0 - - 960 9999360
ABCDE + ABC + ADE + B + 1 5 7 0 - - 150 3333120
ABCDE + ABC + ADE + B + D 5 7 0 - - 60 4999680
ABCDE + ABC + ADE + BD + 1 5 9 0 - - 60 9999360
ABCDE + ABC + ADE + BD + C 5 9 0 - - 120 39997440
ABCDE + ABC + ADE + BD + CE 5 9 0 - - 30 19998720
ABCDE + ABC + ADE + BD + B 5 9 0 - - 720 9999360
ABCDE + ABC + ADE + A + 1 5 7 0 - - 15 277760
ABCDE + ABC + ADE + BD + A 5 9 0 - - 60 9999360
ABCDE + ABC + AB + D + 1 5 5 0 - - 1020 833280
ABCDE + ABC + AB + DE + 1 5 9 0 - - 120 2222080
ABCDE + ABC + AB + DE + D 5 9 0 - - 1230 6666240
ABCDE + ABC + AB + DE + C 5 9 0 - - 30 8888320
ABCDE + ABC + AB + CD + 1 5 9 0 - - 90 1666560
ABCDE + ABC + AB + CD + E 5 9 0 - - 90 6666240
ABCDE + ABC + AB + CD + C 5 9 0 - - 510 1666560
ABCDE + ABC + CDE + AB + 1 5 7 0 - - 60 2222080
ABCDE + ABC + CDE + AB + D 5 7 0 - - 150 13332480
ABCDE + ABC + CDE + AB + C 5 7 0 - - 30 2222080
ABCDE + ABC + AB + A + 1 5 5 0 - - 300 104160
ABCDE + ABC + AB + DE + A 5 9 0 - - 270 6666240
ABCDE + ABC + CDE + AB + A 5 7 0 - - 180 6666240
ABCDE + ABC + ADE + AB + 1 5 5 0 - - 210 166656
ABCDE + ABC + ADE + AB + DE 5 9 0 - - 750 6666240
ABCDE + ABC + ADE + AB + C 5 5 0 - - 60 1666560
ABCDE + ABC + ADE + AB + B 5 5 0 - - 660 3333120
ABCDE + ABC + ADE + AB + A 5 5 0 - - 240 166656
ABCDE + ABC + ABD + CE + D 5 9 0 - - 60 26664960
ABCDE + ABCD + ABE + CE + 1 5 9 0 - - 60 833280
ABCDE + ABCD + ABE + CE + D 5 9 0 - - 60 6666240
ABCDE + ABCD + ABE + CD + E 5 9 0 - - 30 8888320
ABCDE + ABCD + ABE + CDE + 1 5 7 0 - - 15 444416
ABCDE + ABCD + ABE + CDE + E 5 7 0 - - 15 444416
ABCDE + ABCD + ABE + CE + A 5 9 0 - - 120 2499840
ABCDE + ABCD + ABE + CDE + A 5 7 0 - - 60 6666240
ABCDE + ABCD + ABE + CDE + AC 5 9 0 - - 60 6666240
ABCDE + ABCD + ABC + ADE + E 5 5 0 - - 120 1666560

Thickness 6
ABC + ABD + ACE + BC + DE + 1 3 12 0 Y - 240 2666496
ABC + ABD + ACE + BC + DE + A 3 12 0 Y Y 300 5332992

104

Representative D N H Be Ba R O
ABCD + ABE + CDE + A + E + 1 4 8 0 - - 840 26664960
ABCD + ABE + CDE + A + C + 1 4 8 0 - Y 1380 39997440
ABCD + ABE + CDE + A + C + E 4 8 0 - - 120 39997440
ABCD + ABE + AC + DE + C + 1 4 10 0 - - 420 79994880
ABCD + ABE + AC + DE + B + 1 4 10 0 - - 1800 39997440
ABCD + ABE + AC + BE + E + 1 4 10 0 - - 660 4999680
ABCD + ABE + AC + BD + E + 1 4 12 0 - - 600 3333120
ABCD + ABE + AC + BD + C + D 4 12 0 - Y 180 1666560
ABCD + ABE + CDE + AC + BD + 1 4 10 0 - - 30 26664960
ABCD + ABE + CDE + AC + BD + E 4 10 0 - - 30 39997440
ABCD + ABE + AC + DE + A + 1 4 10 0 - - 720 19998720
ABCD + ABE + CDE + AC + BE + A 4 10 0 - - 180 6666240
ABCD + ABE + CDE + AC + AE + B 4 10 0 - - 360 79994880
ABCD + ABE + CDE + AB + C + E 4 6 0 - - 540 2666496
ABCD + ABE + CDE + AB + AC + 1 4 10 0 - - 900 19998720
ABCD + ABE + CDE + AB + AC + E 4 10 0 - Y 360 79994880
ABCD + ABE + CDE + AB + AC + B 4 10 0 - - 1500 79994880
ABCD + ABE + ACE + AB + DE + C 4 10 0 - Y 120 39997440
ABCD + ABC + ADE + BD + C + E 4 10 0 - Y 1260 19998720
ABCD + ABC + ADE + BD + CE + 1 4 10 0 - - 120 39997440
ABCD + ABC + ADE + BD + A + 1 4 10 0 - - 1200 4999680
ABCD + ABC + ADE + BD + CE + A 4 10 0 - Y 420 39997440
ABCD + ABC + ADE + AD + BE + 1 4 8 0 - - 2340 9999360
ABCD + ABC + CDE + AB + E + 1 4 8 0 - - 1110 26664960
ABCD + ABC + CDE + AB + C + 1 4 8 0 - Y 420 1666560
ABCD + ABC + AB + DE + A + 1 4 10 0 - - 3330 2499840
ABCD + ABC + CDE + AB + A + 1 4 8 0 - - 2040 9999360
ABCD + ABC + ABE + AC + DE + 1 4 10 0 - - 1620 39997440
ABCD + ABC + ABE + CDE + AC + E 4 10 0 - - 780 39997440
ABCD + ABC + ABE + AC + DE + B 4 10 0 - Y 1740 79994880
ABCD + ABCE + ABD + CDE + AD + BE 4 10 0 - - 180 2666496
ABCDE + ABC + DE + A + D + 1 5 9 0 - - 1170 6666240
ABCDE + ABC + AD + B + D + 1 5 7 0 - - 2490 2499840
ABCDE + ABC + AD + BE + D + E 5 11 0 - - 300 6666240
ABCDE + ABC + AD + BE + C + 1 5 11 0 - - 1290 19998720
ABCDE + ABC + AD + BE + A + 1 5 11 0 - - 1080 9999360
ABCDE + ABC + ADE + B + D + 1 5 7 0 - - 900 4999680
ABCDE + ABC + ADE + BD + C + 1 5 9 0 - - 540 39997440
ABCDE + ABC + ADE + BD + C + E 5 9 0 - - 300 39997440
ABCDE + ABC + ADE + BD + CE + 1 5 9 0 - - 30 19998720
ABCDE + ABC + ADE + BD + B + 1 5 9 0 - - 720 9999360
ABCDE + ABC + ADE + BD + B + E 5 9 0 - - 960 39997440
ABCDE + ABC + ADE + BD + CE + B 5 9 0 - - 360 79994880
ABCDE + ABC + ADE + BD + A + 1 5 9 0 - - 120 9999360

105

Representative D N H Be Ba R O
ABCDE + ABC + ADE + BD + CE + A 5 9 0 - - 30 19998720
ABCDE + ABC + ADE + BD + A + B 5 9 0 - - 1020 9999360
ABCDE + ABC + AB + DE + D + 1 5 9 0 - - 1350 6666240
ABCDE + ABC + AB + DE + C + D 5 9 0 - - 1020 26664960
ABCDE + ABC + AB + CD + C + 1 5 9 0 - - 690 1666560
ABCDE + ABC + CDE + AB + D + 1 5 7 0 - - 300 13332480
ABCDE + ABC + CDE + AB + C + 1 5 7 0 - - 90 2222080
ABCDE + ABC + CDE + AB + DE + C 5 7 0 - - 30 444416
ABCDE + ABC + AB + DE + A + 1 5 9 0 - - 390 6666240
ABCDE + ABC + AB + DE + A + D 5 9 0 - - 4530 19998720
ABCDE + ABC + CDE + AB + A + 1 5 7 0 - - 240 6666240
ABCDE + ABC + CDE + AB + A + D 5 7 0 - - 420 39997440
ABCDE + ABC + CDE + AB + A + C 5 7 0 - - 900 6666240
ABCDE + ABC + CDE + AB + AD + E 5 9 0 - - 660 79994880
ABCDE + ABC + CDE + AB + AD + B 5 9 0 - - 300 39997440
ABCDE + ABC + ADE + AB + DE + 1 5 9 0 - - 750 6666240
ABCDE + ABC + ADE + AB + DE + D 5 9 0 - - 3060 19998720
ABCDE + ABC + ADE + AB + DE + C 5 9 0 - - 90 26664960
ABCDE + ABC + ADE + AB + B + 1 5 5 0 - - 1920 3333120
ABCDE + ABC + ADE + AB + DE + B 5 9 0 - - 1140 13332480
ABCDE + ABC + ADE + AB + A + 1 5 5 0 - - 240 166656
ABCDE + ABC + ADE + AB + DE + A 5 9 0 - - 480 6666240
ABCDE + ABC + ADE + AB + AD + CE 5 11 0 - - 180 6666240
ABCDE + ABC + ABD + CDE + CE + D 5 7 0 - - 180 6666240
ABCDE + ABC + ABD + ACE + BC + DE 5 11 0 - - 240 31997952
ABCDE + ABCD + ABE + CE + A + 1 5 9 0 - - 180 2499840
ABCDE + ABCD + ABE + CDE + A + 1 5 7 0 - - 90 6666240
ABCDE + ABCD + ABE + CDE + A + C 5 7 0 - - 60 6666240
ABCDE + ABCD + ABE + AC + DE + C 5 11 0 - - 180 6666240
ABCDE + ABCD + ABE + CDE + AC + 1 5 9 0 - - 60 6666240
ABCDE + ABCD + ABE + CDE + AC + E 5 9 0 - - 60 6666240
ABCDE + ABCD + ABE + CDE + AC + B 5 9 0 - - 120 79994880
ABCDE + ABCD + ABC + ADE + BE + C 5 9 0 - - 240 39997440
ABCDE + ABCD + ABC + CDE + AB + E 5 9 0 - - 150 26664960
ABCDE + ABCD + ABC + ADE + AB + CE 5 11 0 - - 270 6666240

Thickness 7
ABCD + ABE + CDE + AC + BD + E + 1 4 10 0 - - 1170 39997440
ABCD + ABE + CDE + AC + BD + A + B 4 10 0 - Y 720 31997952
ABCD + ABE + CDE + AB + AC + C + E 4 10 0 - - 1740 39997440
ABCD + ABE + CDE + AB + AC + BD + E 4 10 0 - Y 900 53329920
ABCD + ABE + CDE + AB + AC + A + C 4 10 0 - - 1560 6666240
ABCD + ABCE + ABD + CDE + AD + BE + 1 4 10 0 - - 180 2666496
ABCDE + ABC + AD + BE + D + E + 1 5 11 0 - - 1620 6666240

106

Representative D N H Be Ba R O
ABCDE + ABC + ADE + BD + B + E + 1 5 9 0 - - 4080 39997440
ABCDE + ABC + ADE + BD + A + B + 1 5 9 0 - - 1800 9999360
ABCDE + ABC + AB + DE + A + D + 1 5 9 0 - - 8430 19998720
ABCDE + ABC + CDE + AB + A + D + 1 5 7 0 - - 7980 39997440
ABCDE + ABC + CDE + AB + A + C + 1 5 7 0 - - 1620 6666240
ABCDE + ABC + CDE + AB + AD + DE + C 5 9 0 - - 240 6666240
ABCDE + ABC + ADE + AB + DE + D + 1 5 9 0 - - 3630 19998720
ABCDE + ABC + ADE + AB + DE + C + D 5 9 0 - - 4110 79994880
ABCDE + ABC + ADE + AB + DE + B + 1 5 9 0 - - 1650 13332480
ABCDE + ABC + ADE + AB + DE + B + D 5 9 0 - - 4380 39997440
ABCDE + ABC + ADE + AB + DE + A + 1 5 9 0 - - 960 6666240
ABCDE + ABC + ADE + AB + DE + A + D 5 9 0 - - 9030 19998720
ABCDE + ABC + ADE + AB + AD + CE + 1 5 11 0 - - 210 6666240
ABCDE + ABC + ADE + AB + AD + CE + B 5 11 0 - - 360 19998720
ABCDE + ABC + ABD + CDE + AC + CE + D 5 9 0 - - 810 19998720
ABCDE + ABC + ABD + CDE + AC + DE + B 5 9 0 - - 1320 79994880
ABCDE + ABC + ABD + CDE + AC + BE + D 5 11 0 - - 120 53329920
ABCDE + ABC + ABD + ACE + BC + DE + 1 5 11 0 - - 240 31997952
ABCDE + ABC + ABD + ACE + BC + DE + B 5 11 0 - - 3780 53329920
ABCDE + ABC + ABD + ACE + BC + DE + A 5 11 0 - - 180 31997952
ABCDE + ABCD + ABE + AC + DE + C + 1 5 11 0 - - 360 6666240
ABCDE + ABCD + ABE + CDE + AC + B + 1 5 9 0 - - 360 79994880
ABCDE + ABCD + ABC + ADE + AB + CE + 1 5 11 0 - - 270 6666240
ABCDE + ABCD + ABC + ADE + AB + CE + D 5 11 0 - - 120 19998720
ABCDE + ABCD + ABC + ADE + AB + CE + B 5 11 0 - - 420 19998720
ABCDE + ABCD + ABCE + ADE + AB + CD + E 5 11 0 - - 120 19998720

Thickness 8
ABCDE + ABC + ADE + AB + DE + A + D + 1 5 9 0 - - 12960 19998720
ABCDE + ABC + ABD + ACE + BC + DE + B + 1 5 11 0 - - 4260 53329920
ABCDE + ABC + ABD + ACE + BC + DE + A + 1 5 11 0 - - 2160 31997952
ABCDE + ABC + ABD + ACE + BC + DE + A + B 5 11 0 - - 6060 53329920

Functions 4294967296
Homogeneous functions 2111
Rigid functions 211259
Balanced functions 601080390
Semi-bent functions 27387136
Orbits / Representatives 382
Semi-bent orbits 14
Balanced orbits 38

107

	Introduction
	Problem Description
	Thesis Outline

	Theoretical Background
	Mathematical Foundation
	Set Theory
	Combinatorics
	Abstract Algebra
	Linear Algebra
	Boolean Algebra
	Cryptography

	Boolean Functions
	Related Work
	Algebraic Thickness
	Known Bounds on Algebraic Thickness

	Methodology

	Calculating thickness distribution for n = 4
	SageMath and computational strategy
	Program: Brute-force implementation for n = 2,3,4
	Constructing all Boolean functions
	Generating invertible matrices and vectors
	Calculating Algebraic Thickness, n = 2,3,4

	Calculating thickness distribution for n = 5
	Rigid functions
	Examples of rigid functions

	Representative functions
	Examples of choosing representative functions

	Focusing on monomial counts
	Program: Finding representatives in n = 5
	Constructing relevant Boolean functions
	Generating invertible matrices and vectors
	Searching for representatives in n = 5
	Execution time

	Analysis and Assessment
	Results and analysis for n = 4
	Property distribution in n = 4
	Bent functions in n = 4
	Balanced functions in n = 4

	Results and analysis for n = 5
	Property distribution in n = 5
	Semi-Bent functions in n = 5
	Balanced functions in n = 5
	Functions with maximum thickness in n = 5
	Details of orbit lengths in n = 5

	General Results and Analysis
	Symmetric Property of Thickness Distribution

	Validity of shown programs and results

	Conclusions
	Further Work
	Rotation Symmetric functions
	Thickness Sequences
	Orbit lengths and function pairs
	Generating representative functions
	Similar implementation for n > 5
	Conjectures

	Data: n = 2 Raw Data
	Program: Brute-force calculation, n = 4
	Program: Representatives collection for n = 5
	List: x1x2x3-form of representatives
	List: Representatives in n = 4
	List: Representatives in n = 5

