
University of Bergen
Department of Informatics

Inferring Gene Expression Values In

Causal Directed Acyclic Graphs

Using Graph Neural Networks

Author: Bendik Akselsen Solev̊ag

Supervisors: Ramin Hasibi and Tom Michoel

August, 2023

Abstract

Inferring gene expression values is helpful in determining important characteristics about

an individual. Existing methods in gene expression inference mostly rely on linear meth-

ods creating separate models for each gene. This thesis hypothesises that a graph neural

network can be used to model interactions between genes, and serve as a universal ap-

proximator for gene expression values. The research goals of this thesis are stated in the

following four points.

1. Does prediction accuracy improve when also providing genome variation data in

the dataset?

2. Can the graph feature autoencoder architecture be applied to predict missing gene

expression values in a masked dataset?

3. Can a graph neural network be applied to predict missing gene expression values

in a masked sample?

4. Can dataset gene expression values be extrapolated using only genome variation

data?

An experiment was set up to answer this list of questions. The results indicate that

prediction accuracy does improve when providing genome data, and the graph feature au-

toencoder architecture was applied successfully. This thesis was not able to create a graph

neural network able to predict gene expression values in a masked sample. This thesis

was not able to reliably extrapolate gene expression data using only genome variation

data.

Acknowledgements

You have my sincerest gratitude.

Erik Hystad,

Ramin Hasibi,

Tom Michoel,

Gutama Ibrahim Mohammad,

Malin Strøm,

And the rest of you.

Bendik Solevåg

Monday 21st August, 2023

Contents

1 Introduction 1

2 Background 4

2.1 Graphs . 4

2.1.1 Vertices and Edges . 4

2.1.2 Central Graph Properties . 5

2.2 Machine Learning . 7

2.2.1 Linear Regression . 8

2.2.2 Loss . 9

2.2.3 Activation functions . 10

2.2.4 Neural Networks . 11

2.2.5 Forward Pass . 12

2.2.6 Optimization Step . 12

2.2.7 Autoencoders . 15

2.3 Graph Neural Networks . 16

2.3.1 Matrix Representation of Graphs 16

2.3.2 Permutation invariance and equivariance 17

2.3.3 Aggregation layer variations . 19

2.4 Genome . 20

2.4.1 Genes . 20

2.4.2 Loci . 20

2.4.3 SNPs and eQTLs . 21

2.4.4 Effect on health . 21

2.4.5 Causal Inference in Gene Expression Prediction 22

3 Project Motivation and Goals 26

3.1 Existing work in gene expression inference 26

3.2 Research Questions . 28

3.3 Linear and Graph-based Approach Motivations 29

i

4 Experiment Setup 31

4.1 The Geuvadis Dataset . 31

4.2 Dataset Analysis . 32

4.3 Dataset Featurization . 34

4.3.1 Graph Generation . 34

4.3.2 Preprocessing . 35

4.3.3 Linear Models Dataset . 36

4.3.4 Compact Graph-based Dataset 37

4.3.5 Sparse graph-based Dataset . 38

4.4 Linear Training Setup . 39

4.5 Compact Training Setup . 39

4.6 Sparse Training Setup . 41

4.7 Models and Architectures . 43

5 Experiment Results and Evaluation 48

5.1 Evaluation of MSE Score . 48

5.2 Evaluation of MSE Per Vertex . 49

5.3 Evaluation of R2 Score . 50

5.4 Prediction distributions . 52

6 Disucssion 59

6.1 Sparse GNN Parameter Convergence . 59

6.2 Research Questions . 60

6.3 Further work . 62

Glossary 64

Bibliography 65

A Gene Names and Indices 70

B Proof of the Existence of a Vertex With No Incoming Edges in a Di-

rected Acyclic Graph 74

C All Hyperparameters 75

D Random Graph Generation 76

E Model Architecture Illustrations 78

ii

List of Figures

2.1 Linear regression illustrated . 9

2.2 Different loss functions applied to the same prediction function 11

2.3 Parameter Gradients . 13

2.4 Autoencoder Architecture Illustrated . 16

2.5 Illustration of a single aggregation layer applied to vertex u. 18

2.6 A Directed Acyclic Graph in which purple vertices represent protein-coding

genes and blue vertices represent eQTLs. Graph edges refer to the source

vertex’s value affecting the target vertex’s value. 22

2.7 The Findr tool secondary linkage test . 24

2.8 The Findr tool controlled test . 25

4.1 Histograms for selected vertices and the distribution of gene expression

values over all samples for the given gene. 33

4.2 Scatter plot of each gene’s mean expression value and its standard devia-

tion . 34

4.3 The datasets presented in section 4.3.3 37

4.4 Compact graph-based dataset . 38

4.5 Gene expression values over which validation- and test loss is calculated. 40

4.6 Model input mask and training loss mask 41

4.7 Compact heterogeneous model architecture 45

4.8 Sparse homogenous model architecture. 46

4.9 Sparse heterogeneous model architecture. 46

5.1 Sparse Heterogeneous MSE per node and histogram. 50

5.2 Illustrated difference between overall R2 and median R2 52

5.3 Linear Regression model’s prediction distribution against the ground truth

distribution of gene expression values using the ’both’ dataset. 54

5.4 Linear Regression model’s prediction distribution against the ground truth

distribution of gene expression values using the ’genotype’ dataset. 54

iii

5.5 Linear Regression model’s prediction distribution against the ground truth

distribution of gene expression values using the ’expression’ dataset. . . . 55

5.6 Heterogeneous Compact GNN model’s prediction distribution against the

ground truth distribution of gene expression values using the ’both’ dataset. 56

5.7 Heterogeneous Compact GNN model’s prediction distribution against the

ground truth distribution of gene expression values using the ’genotype’

dataset. 56

5.8 Heterogeneous Compact GNN model’s prediction distribution against the

ground truth distribution of gene expression values using the ’expression’

dataset. 57

5.9 Heterogeneous Sparse GNN model’s prediction distribution against the

ground truth distribution of gene expression values using the ’both’ dataset. 57

5.10 Heterogeneous Sparse GNN model’s prediction distribution against the

ground truth distribution of gene expression values using the ’genotype’

dataset. 58

5.11 Heterogeneous Sparse GNN model’s prediction distribution against the

ground truth distribution of gene expression values using the ’expression’

dataset. 58

E.1 Compact heterogeneous model architecture 79

E.2 Sparse heterogeneous model architecture 80

E.3 Sparse homogeneous model architecture 81

iv

List of Tables

4.1 A selection of the samples in the Geuvadis dataset. Each row corresponds

to a sample, and each column contains sample metadata. 32

4.2 Sample names along the columns, gene names along the rows. Each cell

contains one sample’s expression value for one gene. 32

4.3 Sample names along the columns, eQTL names along the rows. Each cell

contains one sample’s categorical mutation value for one gene. 33

5.1 Mean Squared Error loss over all vertices. 49

5.2 Median Mean Squared Error loss, grouped by vertex. 49

5.3 R2-score over all predictions . 52

5.4 Mean R2-score, grouped by vertex . 53

6.1 Sparse Heterogeneous model’s trained model parameters using the ’expres-

sion’ dataset. 61

A.1 Gene names and their respective indices, part 1 71

A.2 Gene names and their respective indices, part 2 72

A.3 Gene names and their respective indices, part 3 73

v

Listings

D.1 Psuedocode for random graph generation 77

vi

Chapter 1

Introduction

Gene expression levels are interesting to study due to their effect on human health.

Extracting gene expression levels from sources where sampling is not trivial is therefore

an active area of research. Existing methods mainly utilise whole blood gene expression

levels, as well as genome mutations, to reason about tissue-specific expression levels.

This thesis incorporates the interactions between gene expression levels in order to make

predictions about downstream genes, a method which in gene expression inference is

relatively unexplored. In this thesis, Graph Neural Networks will be utilised to model

these interactions.

This chapter will provide an introduction to the background materials used in this

thesis. The motivation behind the approach applied in this thesis will be presented.

Furthermore, a set of research questions are presented, which the work in this thesis will

aim to answer. Finally, this chapter will present the structure of the thesis.

Background

The human Genome consists of 23 pairs of chromosomes, containing over 20 000 protein-

encoding genes. Proteins are responsible for the function of the cell. The level at which

a protein-encoding produces its protein varies from person to person, and is measured

by the gene’s expression level. Gene expression levels are a complex interactive system

of values dependent on many variables, such as the individual’s sex, ethnicity, age and

genome mutations. One common such mutation is known as an eQTL. DNA is a double

helix structure containing pairs of nucleotides. A SNP is a common variation in a single

1

nucleotide pair. SNPs that are known to affect the expression levels of genes are known

as eQTLs.

Gene expression levels are interesting to study due to how they affect human health.

Variation in gene expression levels is an important factor in determining if an individ-

ual will develop disease. Genetic variation may contribute to disease largely through

misregulation of gene expression[27]. Predicting misregulated gene expression values in

tissue where obtaining sample is not trivial is therefore useful in determining a person’s

likelihood of developing or suffering from disease.

Motivation

Obtaining gene expression values from readily available sources such as blood is trivial.

Often times, however, it is more interesting to obrain expression values from tissue in

which obtaining samples is difficult. Existing methods utilise principal components of

whole blood expression values as well as general information about the sample (age, sex,

ethnicity), and the gene’s eQTLs.

The interactions between gene expression levels, however, is largely unexplored.

Genome variation data has been hypothesised to act as a causal anchor in predicting

downstream gene expression values. This thesis therefore takes the approach of generat-

ing a causal graph over gene expression interactions, representing genes as vertices and

causal interactions as directed edges.

Graph neural networks are then applied to reason about gene expression values as fea-

ture values of vertices in the graph. Graph Neural Networks are a subcategory of neural

networks within artificial intelligence specialised in reasoning about properties of graph

structures. A separate approach for graph learning is useful due to the the isomorphism

property of graphs, meaning that a single graph may be represented in machine-readable

format in numerous ways. The created GNN model will be benchmarked against ex-

isting methods in gene expression inference using both existing graph neural network

architectures as well as linear regression.

Research Questions

This thesis presents a set of 4 research questions that the thesis experiment will attempt to

provide answers for. Research questions 1 and 4 are stated generally, and will be evaluated

2

using all of the machine learning models defined in this thesis. Research questions 2 and 3

pertain to specific model architectures, and will place special focus on variations of graph

neural networks. Overall, the research questions serve as a framework to thoroughly

explore the predictive capabilities of graph neural networks.

1. Does prediction accuracy improve when also providing genome variation data in

the dataset?

2. Can the graph feature autoencoder architecture be applied to predict missing gene

expression values in a masked dataset?

3. Can a graph neural network be applied to predict missing gene expression values

in a masked sample?

4. Can dataset gene expression values be extrapolated using only genome variation

data?

Thesis structure

This chapter has introduced general topic of the thesis, and a set of research questions

this thesis aims to answer. This chapter has also introduced the neural network variant

applied to the research questions. Chapter 2 will introduce the necessary background

material this thesis is based on, including concepts from machine learning, graph theory

and biology. Chapter 3 introduces existing methods in gene expression inference, and

explains the motivation behind the selected approach in this thesis. Chapter 4 provides a

detailed explanation of the dataset used in this thesis, featurization process of the data,

the training setup for the various models, as well as the model architectures used in this

thesis. Chapter 5 contains the results obtained from the experiment detailed in chapter 4,

presenting a series of statistics to provide a nuanced view of the results obtained. Chapter

6 contains a discussion of the insights gained from the experiment and its result.

3

Chapter 2

Background

This chapter introduces the background material relevant for the experiment which will

be outlined in chapter 4. To begin the chapter, section 2.1 introduces central concepts

from graph theory, which will become useful in modelling gene interactions. Section 2.2

introduces machine learning. In section 2.3, the machine learning topic is expanded upon

to apply to graph structures. Section 2.4 introduces central genome concepts, such as

gene expression values and genome variation data. Section 2.4.5 introduces an existing

tool to generate a Directed Acyclic Graph from gene expression data.

2.1 Graphs

The work in this thesis relies on graph theory. This section begins by in 2.1.1 defining

vertices and edges, the two components of a graph. Subsection 2.1.2 then introduces the

following graph concepts: neighborhoods, directed graphs, connectedness, DAGs, isomor-

phism, and adjacency matrices. The concepts introduced will be used in the experiment

setup later in this thesis.

2.1.1 Vertices and Edges

A graph consists of a pair of two sets V and E [11].

G = (V , E) (2.1)

4

The items of set V are commonly named vertices or nodes. For the purposes of

this thesis, the term vertices will be used. Each vertex may contain arbitrarily shaped

information, giving an indication of what the current vertex represents.

v = [v0, v1, ..., vn], v ∈ V (2.2)

The items of set E are called edges. Each edge must be an item in the cartesian

product of the set of vertices with itself [11]. Where vertices typically aims to provide

information about the graph elements, edges show some relation between the graph el-

ements, connecting the elements. As with vertices, edges may also contain arbitrarily

shaped information, giving an indication of the current edge’s representation.

E ⊆ V × V (2.3)

2.1.2 Central Graph Properties

Neighborhoods

The term neighborhood in graph theory refers to a subset of the full graph. Given a

graph G (using the notation defined in equation (2.1) , each graph vertex’s neighborhood,

denoted NG(vj), is the subset of all vertices in which every vertex vi shares an edge with

vj and vi ̸= vj [3]. This property fulfills equation (2.4). Depending on what a given graph

is modelling, a vertex’s neighborhood may be interesting to consider, as vertices that are

closely connected may share similar properties.

∀{vi,vj}∈V×V

(
{vi, vj} ∈ E ∧ vi ̸= vj ↔ vi ∈ NG(vj))

)
(2.4)

Directed Graphs

A graph may be directed or undirected [11]. In an undirected graph edges have no

direction. If an edge exists between vn and vm, an edge must also exist between vm

and vn. One vertex’s relation to the connected vertex is equal to its mirror connection.

In a directed graph, this is not the case. In a directed graph, edges have a source

vertex and target vertex. Observing an edge from vertex vn to vertex vm, from vertex

vn’s perspective, vm is defined as vn’s child vertex. From vertex vm’s perspective, vn is

defined as vm’s parent vertex[37].

5

Directed Graph Neighborhoods

In the directed graph case, when discussing a specific vertex neighborhood, more specifi-

cation is required. Three sets could be considered to be the vertex’s neighborhood. The

sets are specified and mathematically defined in the following list.

1. The set of parent vertices for vertex vj

∀(vi,vj)∈V×V

(
vi ̸= vj ∧ (vi, vj) ∈ E ↔ vi ∈ NG(vj)

)
2. The set of child vertices for vertex vi

∀(vi,vj)∈V×V

(
vi ̸= vj ∧ (vi, vj) ∈ E ↔ vj ∈ NG(vi)

)
3. The set of child and parent vertices for vertex vj

∀(vi,vj)∈V×V

(
vi ̸= vj ∧

(
(vi, vj) ∈ E ∨ (vj, vi) ∈ E

)
↔ vi ∈ NG(vj)

)

For the purposes of this thesis, the set of parent vertices is considered to be the current

vertex’s neighborhood.

Connected Graph

In an undirected graph, the term connected graph is used for graphs in which from every

vertex, every other vertex is reachable from the source vertex by traversing the edges of

the graph [11]. In the directed case, this definition is split in two. A graph is said to

be weakly connected if from every vertex, every other vertex is reachable from the source

vertex by traversing the edges of the graph, ignoring the edge direction. A graph is said

to be strongly connected if from every vertex, every other vertex is reachable from the

source vertex by traversing the edges of the graph in their true direction.

Directed Acyclic Graphs

The term cycle refers to a property found on certain graphs. A cycle exists in a graph if

starting in some vertex vn, visiting no vertices more than once, it is possible to traverse

edges until the starting vertex is reached. In the directed case, edges must be traversed

in their true direction until the starting edge is reached. If this traversal does not exist,

the graph is a directed acyclic graph (DAG) [4].

6

When a graph is a DAG, there must exist at least one vertex with no incoming edges,

as shown in appendix B. At least one vertex with no outgoing edges must also exist. It

is possible to sort the graph vertices in the order of graph traversal, starting from a root

vertex with no incoming edges. In this representation, a vertex with no incoming edges

must be the first element in the sorted array of vertices, and a vertex with no outgoing

edges must be the last. For each element in the sorted array, the vertex found in the

current element may only have outgoing edges toward vertices found at a greater index

in the sorted array. This kind of sorting is referred to as topological sorting.

Isomorphism

In section 2.1.1 graphs were defined as an ordered pair of a set of vertices and a set

of edges. As vertices are defined as elements in a set, it follows that vertices have no

order. Even in the case that a graph is a DAG, the topologically sorted order may not

be unique. Any permutation of the list of vertices remains a valid representation of the

graph, as long as the list of edges are permutated accordingly. Two graphs which after a

permutation of their vertices and corresponding edges can turn into the same graph are

called ’isomorphic’.

Adjacency Matrices

Viewing the edge definition provided in equation (2.3), one can plot a table in which each

row and column is indexed by a single element subset of the vertex set. The table will

then provide an overview of the cartesian product of the vertices. This representation of

edges is called the adjacency matrix. Typically, each cell in the adjacency matrix table

contains either a 0 or 1 value, determining if an edge exists between the pair of vertices.

2.2 Machine Learning

This section introduces the subject machine learning, as well as the main concepts re-

quired in training neural networks. The section begins with a general explanation of

the term machine learning. Section 2.2.1 goes on to introduce linear regression. Section

2.2.2 introduces a measure of the ’wrongness’ of a machine learning model’s predictions.

Section 2.2.3 introduces activation functions, allowing neural networks to approximate

7

non-linear functions. Section 2.2.4 introduces neural networks. Sections 2.2.5 and 2.2.6

introduce the concepts allowing the training of neural network model parameters. Section

2.2.7 introduces a special neural network architecture known as an autoencoder.

As a term, Machine Learning is a subcategory if the umbrella term ’Artificial Intel-

ligence’. Machine Learning takes a set of input (training) data, and attempts to reason

about some quality of the input, without the author of the program explicitly telling the

program what quality of the input data we are interested in reasoning about. Instead,

the author provides the Machine Learning model with their optimal target for the given

input, and the model must generalize over, and update its trainable parameters to fit the

target [25].

This approach can be useful in problems where discovering the target based on the

model input becomes computationally intractable, or when the target cannot be deter-

mined as a direct consequence of the input.

2.2.1 Linear Regression

As a first study in the implementation of machine learning, linear regression is presented.

An example in a two dimensional, euclidean space is considered.

f(x) = w0x+ b0 (2.5)

Given a set of input data values X, each input value xi ∈ X has a corresponding

output value yi ∈ Y . Each input value can be plotted with its corresponding output

value as coordinates. To describe a function that best maps the given inputs with their

related outputs, introduce two single-value real number variables w0 and b0. Define a

function to map input values to their corresponding output.

L =
1

|X|

|X|∑
i=0

(
yi − f(xi)

)2
(2.6)

The loss function is a measure of how well equation (2.5) maps input to its corre-

sponding output is also introduced. As function variables w0 and b0 are tuned to better

map input to its corresponding output, the measure will decrease. There exists values

8

(a) Input x values plotted against their
corresponding y values

(b) Function (2.6) applied to function (2.5)
with optimized function variables w0 and b0

Figure 2.1: Linear regression illustrated
The colored dots in both figures represent the data our model is attempting to

approximate. The colored squares in the right figure illustrate the individual squared
errors of the model predictions. The line in the right figure represent the model

prediction for each value of x.

for our variables w0 and b0 such that the measure defined in equation (2.6) reaches its

lowest possible value. |X| denotes the number of elements in the set X.

X ∈ Rm, {b} ∈ Rn,W ∈ Rnxm

f(X) = WX + b
(2.7)

The function defined in equation (2.5) is arbitrary. Additional function variables can

be added or removed depending on the prediction task. Equation (2.5) applies linear

regression to single-dimensional inputs and single-dimensional outputs, but the same

method can be applied to inputs and outputs of higher dimensions. The method can also

be applied when the inputs and outputs are of different dimensions, by applying linear

transformations, multiplying the input with matrices in dimensions to produce output in

desired dimensions. A general formula for linear regression is defined in equation (2.7)

2.2.2 Loss

In the previous section, a measure of how ’wrong’ a mapping of input points to their

corresponding output points was defined. This measure is commonly referred to as the

9

loss function[18]. The loss function defined in equation (2.6) is named MSE loss [18], due

to the fact that it is defined by the mean of the squared difference between our function’s

predictions and the true values.

It is possible to define different loss functions. For the purposes of this thesis, a loss

function is a measure of the distance between a model’s prediction and a ground truth

value. For this reason, a loss function must be non-negative for all input values. Different

loss functions will interpret the performance of a functions mapping of the given input

data to its corresponding output in different ways. The difference can be illustrated

by observing the result of applying the loss function defined in equation (2.8), typically

referred to as MAE (mean absolute error) loss [18], as opposed using MSE.

L =
1

|X|

|X|∑
i=0

√(
yi − f(xi)

)2
(2.8)

While MSE loss sums over the squares of errors, MAE sums over the absolute errors.

As a consequence, MAE will place equal weight emphasis on each prediction’s error. MSE

will place more emphasis on predictions that are further from the true output values.

Different loss functions can therefore be applied to different problems to find different

solutions. Figure (2.2) illustrates an example of different loss functions being applied

to the same prediction function. In this example, the optimal function parameters were

found using the MAE operator. When the MSE operator is applied to the same function

parameters, the MSE operator does not produce its lowest possible value.

2.2.3 Activation functions

Activation functions are non-linear functions that are utilised in neural networks to allow

the networks to approximate non-linear functions. Any non-linear mapping of input

values, defined on all real numbers, will function as an activation function.

ReLU

The (Re)ctified (L)inear (U)nit maps any given input value to a value greater than 0,

with no upper limit [24]. The ReLU non-linearity has become the norm when selecting

non-linearity between neural network layers[35]. One of ReLU’s strengths in comparison

10

(a) The MAE loss function (2.8) applied to
function (2.5) with optimized function

variables w0 and b0

(b) The MSE loss function (2.6) applied to
function (2.5) with function variables w0 and

b0 optimised using loss function (2.8)

Figure 2.2: Different loss functions applied to the same prediction function

to alternative activation functions lies in its derivative. The derivative of ReLU is largely

unaffected by the value of its input. This property is not found in other common activation

functions, and may be a factor in creating vanishing gradients.

ReLU(x) =

0, if x < 0

x, if x ≥ 0
(2.9)

2.2.4 Neural Networks

The multidimensional linear regression formula defined in equation (2.7) is one common

building block of neural networks, and defines what is typically referred to as a linear

layer. A neural network can consist of a series of linear layers performing a linear trans-

formation of the output of the previous layer. The shape of the each linear layer’s weight

and bias matrix is determined by the previous layer’s output shape, as well as the desired

input for the next layer. Each linear layer is most commonly followed by an activa-

tion function. The final layer may serve as the neural network output, or an activation

function can be applied.

The neural network model becomes a better predictor of output data as a cycle of

forward and backward passes is repeated until the neural network’s weight matrices con-

verge at a set of values. Due to the non-linearity introduced by the activation functions,

11

it is obvious that such a model has much greater expressivity than its predecessor; the

linear regression model.

2.2.5 Forward Pass

During the forward pass, input data is passed through all the layers and activation func-

tions constituting a Neural Network. Matrix multplications followed by activation func-

tions are applied to the input data, until an output value is calculated following the last

layer.

As defined in section 2.2.2, a loss function is then applied to the output of the linear

layer, yielding a measure of the accuracy of the neural network’s approximated output,

and the desired output. The initial forward passes of any neural network with a given

architecture will return a random output in dimensions specified by the architecture.

2.2.6 Optimization Step

The process of optimizing a neural network model is commonly referred to as the ’opti-

mization step’. The goal of the optimization step is to optimize the model parameters

such that for any given input, the model approximates the desired output. One common

algorithm is the Gradient Descent algorithm[2]. In this thesis, the Gradient Descent algo-

rithm will be used to discuss the implementation of the optimization step. Furthermore,

successors of Gradient Descent will be introduced.

Gradient Descent

The Gradient Descent algorithm utilises the gradient of the model’s output in relation

to every model parameter to update each parameter. This idea is illustrated in figure

2.3. As there exists a measure of the accuracy of the neural network’s prediction and

the desired value, it is possible to quantify each model parameter’s effect on the resulting

output. This value is given by the derivative of the loss, in relation to the given model

parameter.

12

(a) A model parameter’s current value as well
as it’s derivative, headed towards the global

minimum.

(b) A model parameter’s current value as
well as it’s derivative, headed towards a local

minimum.

Figure 2.3: Parameter Gradients

Chain Rule

Though calculating the derivative of the loss function in regard to any model parameter

may seem like a difficult task, it is in fact elementary. To calculate the derivative of

a given parameter, we utilise the chain rule of derivatives from calculus. Rodriguez &

Fernández provides the following defintion of the chain rule [19].

Assume some function g(c), differentiable at c, and some function f(g(c)), differen-

tiable at g(c). Then, f ◦ g is differentiable at c, and (f ◦ g)′(c) = (f ′ ◦ g)(c) · g′(c) [19]

For the purposes of this thesis, with the same functions and variables as described above,

this formulation is rewritten in Leibniz notation, given in equation (2.10).

∂f

∂c
=
∂f

∂g
· ∂g
∂c

(2.10)

Backpropagation and PyTorch Autograd

Implementations of the gradient descent algorithm should utilise dynamic programming

to avoid excess computation. One such implementation is PyTorch’s automatic differen-

tiation system named Autograd.

Autograd allows circumventing the computation of the derivatives as they are needed.

Instead, as input data is passed through the model, each operation performed using the

model parameters are recorded.

13

A directed acyclic graph with edges pointing towards the root will be generated. The

current iteration’s training input, as well as all model parameters, will appear as leaf

vertices in the tree. Mathematical operations performed on the model input, as well as

the intermediate states between the operations will be represented as the child vertices of

the described leaf vertices. In each intermediate vertex, the previous vertex’s values will

be saved in a context variable. The calculated loss will be the represented by the tree’s

root.

This structure allows the PyTorch library to efficiently perform the backward pass.

It needs only to perform the instructions specified at each intermediate vertex. Values

utilised more than once in the backward pass will only be computed once. This makes

PyTorch’s Autograd system an efficient implementation of calculating the gradients, while

still utilising the chain rule.

Stochastic Gradient Descent

Though the Gradient Descent algorithm does converge at a set of model parameters,

the algorithm is flawed. The algorithm requires the model to iterate over all samples

before computing the gradient and performing the parameter update. This process is

computationally expensive, and may take a long time.

Rather than iterating over training input, the Stochastic Gradient Descent selects a

subset of the training data. The dataset is shuffled, and at every iteration, a selected

number of samples are selected. The number of samples used in every iteration is a

hyperparameter. The data is passed through the model, and the loss function is calculated

over this quantity.

Subsets of input data are passed through the model, and parameter updates are

performed, until all input data has been passed through the model. This process may

then be repeated until the model parameters converge.

Adam

For the work presented in this thesis, the Adam optimiser[21] is used. The Adam op-

timiser is a successor of the stochastic gradient descent algorithm. Adam differentiates

itself from the stochastic gradient descent algorithm in that it includes the momentum

term, which is an exponential moving average of the gradient.

14

θt ← θt−1 − α · m̂t/(
√
v̂t + ϵ) (2.11)

Adam’s update function is given by equation (2.11), in which ϵ is a small constant

used to avoid dividing by 0. α denotes the learning rate for the algorithm, typically set to

0.001. θ denotes the trainable model parameters. m̂t denotes the bias-corrected moving

average of the gradients’ first moment. v̂t denotes the bias-corrected moving average of

the gradients’ second moment[21]. The exponential moving averages are calculated using

the functions defined in equation (2.12), in which both mt and vt are functions of both

the gradient at the current iteration and their respective values at previous iterations.

mt = β1 ·mt−1 + (1− β1) · gt
vt = β2 · vt−1 + (1− β2) · g2t

(2.12)

Given an unlimited amount of time and computation resouce, any of the optimization

algorithms mentioned in section 2.2.6 should converge at a locally optimal set of param-

eters. When creating a neural network, the choice of optimization function will affect the

speed at which the network weights converge.

2.2.7 Autoencoders

An autoencoder is a neural network that is trained to copy its input to its output. In-

ternally, it has a hidden layer h that describes a code used to represent the input [14].

An autoencoder typically consists of two parts. The first part is a set of neural network

layers which produces a code, and is a learned function h = f(x), commonly referred to

as the encoder -part of an autoencoder. The second part is another set of neural network

layers which reconstructs the original input: r = g(h). This type of neural network is

illustrated in figure 2.4.

The autoencoder’s reconstructed input is rarely interesting on its own. The traditional

use for the autoencoder architecture was to create a lower-dimensional representation with

which the input data can be approximately reconstructed. Autoencoders were introduced

as a non-linear alternative for traditional methods for performing principal components

analysis[23]. In this thesis, a graph neural network version of the the autoencoder is used

to infer missing gene expression values in a masked sample.

15

encoder decoder

Figure 2.4: Autoencoder Architecture Illustrated

2.3 Graph Neural Networks

This section serves as an extension to section 2.2, in which a framework to perform ma-

chine learning on graph structures. The framework introduced in this section is based

on Bronstein et al.’s Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and

Gauges[8]. Section 2.3.1 introduces a common way to represent graphs in machine a

machine readable format, and the problem with applying machine learning to these rep-

resentations. Section 2.3.2 introduces permutation equivariance, a solution to the out-

lined permutation problem. Section 2.3.3 introduces the implementation of permutation

equivariance used in this thesis.

2.3.1 Matrix Representation of Graphs

A common way to represent a graph in code form is by using a pair of matrices. One

matrix represents vertex data as a (n×m)-matrix, where n denotes the number of vertices

in the graph, and m denotes the number of samples for each vertex.

Graph edges are often represented by edge lists. This method creates a (2 × |E|)
element matrix, in which |E| is the total number of edges in the graph. Each i < |E|-th
element in the adjacency list references the edge’s parent vertex in the first list and child

vertex in the second list.

16

This representation of graph data is possible to pass as input to a neural network

consisting of linear layers, given that the architecture is designed with the two inputs

in mind. This approach has a disadvantage, as it does not consider any isomorphic

permutation of the input nodes to be equal to the given input nodes. This architecture

therefore requires every permutation of the input data to be trained separately. This is

impractical as it is computationally inefficient.

2.3.2 Permutation invariance and equivariance

As a consequence of the problem of isomorphic permutations illustrated in section 2.3.1,

the neural network introduced in section 2.2.4 is no longer sufficient when attempting to

learn from graph structured data. To remediate this issue, Bronstein et al. introduces

the concept of permutation invariant functions [8]. A permutation invariant function has

the desirable property that for any two isomorphic graphs, the output of the function

is identical. This property is described by equation (2.13), in which f is a permutation

invariant function, X is the function input, and P is a permutation matrix over the input.

f(PX) = f(X) (2.13)

Permutation invariance can be easily achieved when evaluating a graph by ignoring

the graph edges, and treating the vertices as a set. One method of achieving this property

is by using the sum operator, as described in equation (2.14), in which ψ is a function over

the individual vertex features, and ϕ is a function over the aggregated vertex features.

f(X) = ϕ
(∑

v∈V

ψ(Xv)
)

(2.14)

Equation (2.14) provides a permutation invariant output over the sum of all of the

graph vertices. This formulation is not useful in many applications, where the goal is to

reason about individual vertex features. As an alternative, the permutation equivariant

function is introduced. This property is given in equation (2.15). The resulting vertex

features should be updated in the same manner whether the permutation matrix P is

applied to the vertices before or after the vertices are passed through function f .

Pf(X) = f(PX) (2.15)

17

Figure 2.5: Illustration of a single aggregation layer applied to vertex u.
Information is accumulated from each vertex v in u’s neighborhood. Some function is

applied to the aggregated node input, and u’s value is updated.

This definition can be expanded to include graph edges by incorporating the adjacency

matrix, as defined in section 2.1.2. A function f over graph data X and adjacency matrix

A is permutation equivariant if it fulfills equation (2.16).

f(PX,PAP⊺) = Pf(X, A) (2.16)

One way of achieving this property is by rather than aggregating all graph vertices,

as in equation (2.14), performing a permutationally invariant function over each vertex’s

neighborhood, as described in section 2.1.2.

Bronstein et al. provides the general formula given in equation (2.17) as a gen-

eral blueprint for neighborhood aggregating perutation equivariant function for reasoning

about graph nodes. hu is the updated feature value of vertex u, xu is the current input

vertex features, xv is the current neighbor vertex’s input features, ψ is a function over

the individual vertex features, ϕ is a function over the aggregated vertex features, and
⊕

is some permutation invariant aggregation operator, such as the sum or mean operator.

hu = ϕ
(
xu,

⊕
v∈NG(u)

ψ(xv)
)

(2.17)

Given input data X with shape (n×m), each vertex in the input data can be updated

by passing it as argument to equation (2.17). At each iteration, the individual graph

vertex will accumulate data from vertices at a distance equal to the number of iterations

performed.

18

2.3.3 Aggregation layer variations

Graph Convolutional Network

The aggregation function introduced in equation (2.17) serves as a general blueprint from

which more complex aggregation methods can be built. Contextualise first this blueprint

by applying it to the layer which is attributed as the first in the emerging series of graph

neural network layers, namely the Kipf & Welling’s 2016 model Graph Convolutional

Networks [22].

The model layer introced’s vertex-wise formulation is given in equation (2.18), in which

W is a trainable weight matrix, ev,u is the edge weight between the current neighbour

and the target vertex, and d is given by d̂i = 1 +
∑

j∈NG(i)
ej,i.

hu = W
∑

v∈NG(u)∪{u}

ev,u√
d̂vd̂u

xv (2.18)

In this case, the ϕ function from blueprint (2.17) is implemented as the trainable

weight matrix W,
⊕

is implemented as the sum operator, ψ is implemented as a scaled

function of the edge weight, and xu is moved into the aggregation operation. In a case

where edge weights are not given, equation (2.18) can be simplified as in equation (2.19).

hu = W
∑

v∈NG(u)∪{u}

xv√
d̂vd̂u

(2.19)

SAGEConv

While the graph convolutional network operator requires the size of every vertex neigh-

bourhood, a variant of the SAGEConv algorithm can be viewed as an extension of the

GCN framework to the inductive setting [16]. The basic variant of the SAGEConv ag-

gregator variant is described in equation (2.20) [12].

hu = W1xu +W2 ·meanv∈NG(u)xv (2.20)

19

2.4 Genome

This section introduces central biological properties relevant in predicting gene expression

values. The section begins by providing a general introduction to the human genome.

Section 2.4.1 introduces the concept gene expression. Sections 2.4.2 and 2.4.3 introduce

genetic variation. Section 2.4.4 explain gene expression values’ effect on the health of an

individual. Section 2.4.5 introduces a system to model gene interactions as DAG, as well

as an existing framework which may be applied to create the DAG.

2.4.1 Genes

The human genome consists of 23 pairs of chromosomes[6] containing over 20 000 protein

encoding genes [34]. An individual’s genome is a complex system of interacting elements,

which determines many things about the individual, such as eye color, height, health

conditions, or the individual’s response to certain medications [20]. In this section, several

important elements from the genome are introduced. These elements, as well as the

interactions between them, are crucial to the work presented in this thesis.

The traditional definition of the term gene referred only to what is today known

as protein-encoding genes. Protein-encoding genes are sections of an organism’s genome

which encodes sequences of amino acids, which in turn are the building blocks of proteins.

Proteins are responsible for the function of the cell[7]. The level at which each protein-

encoding gene produces its corresponding protein varies from person to person. The term

gene expression level denotes the level at which a gene produces proteins from its DNA.

2.4.2 Loci

The term locus (plural: loci), refer to a specific location in an organism’s genome. Though

this term in some cases is used synonymously with the term gene, for the purposes of this

thesis, the distinction between them is clarified. Every segment in an organism’s genome

is associated with a locus. A locus refers to the specific location at which a genome

segment is located. This segment may contain protein-coding gene, or it may contain a

non-coding part of the genome.

20

2.4.3 SNPs and eQTLs

An organism’s genome consists of a double helix structure. Each helix contains a series of

nucleotide pairs, in which each nucleotide is connected to one helix. Both protein-coding

genes as well as the general non-encoding genome are series of base pairs.

A Single-Nucleotide Polymorphism (SNP) is a variation at a single position in the

DNA sequence in an organism. To be qualified as a SNP, the variation must occur in

at least 1% of individuals in a given population. SNPs may be found in protein-coding

genes, or in the non-coding part of the genome[29].

Certain SNPs are known to be associated with an altering of the gene expression

of one or multiple genes. Loci associated with altered gene expression are known as

Expression Quantitative Trait Loci (eQTLs) [30]. Genome-wide association studies have

demonstrated that SNP variants that are associated with increased risk of disease are

most commonly found in the non-coding loci in the genome, and are therefore likely to

be involved in gene regulation. [30] An eQTL may affect one or multiple genes. Tong

et al. have shown that genes sharing a regulatory eQTL show correlated changes in

expression linked to the variant’s genotype across tissues [31].

eQTLs are characterised as either cis or trans, depending on the distance between

the eQTL and the gene it’s affecting, measured in the number of nucleotide pairs from

the eQTL to the gene. Pierce et al. state that trans-eQTLs are more difficult to identify

than cis-eQTLs because trans effects are generally weaker than cis effects and because

a huge number of tests must be conducted to comprehensively search the genome for

trans-eQTLs, resulting in the use of stringent significance thresholds[33].

Wang and Michoel state that it is believed that genetic variation can be used to infer

the causal directions of regulation between coexpressed genes, based on the principle that

genetic variation causes variation in nearby gene expression and acts as a causal anchor

for identifying downstream genes [40].

2.4.4 Effect on health

While the direct effects of protein-coding genes on health has been well documented,

newer research places more emphasis on non-coding regions of the genome [39]. Variation

in gene expression level is an important factor in determining if an individual will develop

21

Figure 2.6: A Directed Acyclic Graph in which purple vertices represent protein-coding
genes and blue vertices represent eQTLs. Graph edges refer to the source vertex’s value
affecting the target vertex’s value.

disease, as well as in its general health. The contribution of genetic variation to disease is

based on its effect on gene expression levels [27]. For instance, the c-Myc gene is believed

to regulate the expression level of 15% of all genes[13]. In lung cancer, dysregulated gene

expression levels of the c-Myc gene is frequently associated with higher mortality rate [9].

Lee & Young state that diabetes mellitus is a group of metabolic diseases in which a

person has elevated blood sugar, either because the pancreas fails to produce adequate

amounts of insulin, or because cells do not respond properly to the insulin that is pro-

duced. Mutations in pancreatic master transcription factors and the sequences they bind

have been implicated in diabetes[27].

Being able to affect specific genes’ expression level is naturally therefore an interesting

problem to consider in preventing disease and developing medicine.

2.4.5 Causal Inference in Gene Expression Prediction

As stated in sections 2.4.1 and 2.4.3, an organism’s protein-coding gene’s expression is a

complex system in which each each gene’s expression value is dependent on the expression

values of other genes. It is possible to create a graph in which each vertex represents an

individual protein-coding gene. The node’s feature value is given by the current gene’s

22

expression levels. A graph edge is drawn if a gene’s expression value is shown to affect

the target gene’s expression value.

Recorded eQTLs for the given genes can also be represented by vertices in the DAG,

with the eQTL’s given mutation as the vertex’s value. As eQTLs are known to alter the

expression values of their corresponding genes, edges can be drawn from eQTL vertices

to their corresponding gene expression vertices. The graph will then consist of a set of

protein-coding genes, and a set of eQTLs, where any edge between the sets are directed

from the set of eQTL vertices to the set of gene expression vertices. The resulting graph

is represented in figure 2.6.

The Findr tool

The work in this thesis requires a graph from which to reason about neighbouring vertices’

expresison values. The generation of this graph is dependent on Wang & Michoel’s Findr

tool [40].

The Findr tool works by performing a series of Log Likelihood Ratio tests over a set

of hypotheses, determining the existence of a causal relationship between a pair of genes

and a potential eQTL. The tool performs a total of six tests, from a correlation test,

to causality tests taking hidden confounders into account. The tool’s workflow can be

summarized in the following four points [40].

1. For robustness against outliers, every continuous variable is converted into standard

normally distributed N(0, 1) values using a rank-based inverse normal transforma-

tion across all samples.

2. A null- and an alternative hypothesis are proposed for each likelihood ratio test.

Model parameters set to their maximum likelihood estimators to obtain the log

likelihood ratio between the null- and alternative hypothesis.

3. The analytical expression for the probability density function of the log likelihood

ratio when samples follow the null hypothesis is derived.

4. Log likelihood ratios are converted into posterior probabilities of the hypothesis.

A total of six likelihood ratio tests are performed. For the purposes of this thesis,

tests 2 and 5 are the most interesting to consider. A and B denote a pair of genes for

which causality is tested. E denotes the best eQTL for gene A.

23

The secondary linkage test

Figure 2.7: The Findr tool secondary linkage test

The secondary linkage tests checks whether E regulates the expression value of B.

The test defines the null hypothesis as B being independent of E, while the alternative

hypothesis defines B as being regulated by E, shown in equation 2.21. The relationship

is illustrated in figure 2.7

H(2)
null ≡ E B

H(2)
alt ≡ E → B

(2.21)

For H(2)
alt , E → B is modelled as B following a normal distribution whose mean is

determined categorically by E, as shown in equation 2.22.

Bi|Ei ∼ N(µEi
, σ2

B) (2.22)

From the total likelihood over all samples, the MLE (Maximum Likelihood Estimate)

model parameters are given in equation 2.23, in which nj is the sample count by genotype

category.

µ̂j =
1

n

n∑
i=1

BiδEj

σ̂2
B = 1−

nb∑
j=0

nj

n
µ̂2
j

(2.23)

As the null hypothesis states that B is drawn from a standard normal distribution

independent of E, the LLR (Log Likelihood Ratio) for test 2 can be defined as in equation

2.24.

LLR(2) = −n
2
ln σ̂2

B (2.24)

24

The alternative hypothesis can then be accepted or rejected with posterior proba-

bility according to equation (2.25)[40]. This probability is calculated by simulating the

probability of obtaining the observed LLR(2) by the distribution of LLR(2) under the

null hypothesis. The distribution of LLR(2) is simulated by repeatedly sampling from the

assumed distribution under the null hypothesis, and building a histogram based on the

simulated LLR(2) values. The generated histogram is compared to the true distribution of

the LLR(2). P (H(2)
null) can then be determined by aligning P (H(2)

null|LLR(2)) with the real

distribution P (LLR(2)) at the LLR(2) → 0+ side. All prerequisites to perform Bayesian

inference to obtain the value in equation 2.25 are then provided[40].

P (E → B) = P (H(2)
alt |LLR

(2)) (2.25)

The control test

Figure 2.8: The Findr tool controlled test

Following the result of the secondary linkage test, E can be verified not to regulate A

and B independently, by defining the null- and alternative hypothesis as in equation 2.26.

The log-likelihood ratio can then be defined as in equation (2.27)[40]. The relationship

is illustrated in 2.8.

H(5)
null ≡ E → A ∧ E → B H(5)

alt ≡ E → A ∧ E → B ∧ A→ B (2.26)

LLR(5) = −n
2
ln(σ̂2

Aσ̂
2
B − (ρ+ σAB − 1)2) +

n

2
lnσ̂2

Aσ̂
2
B (2.27)

25

Chapter 3

Project Motivation and Goals

The chapter aims to use the background material defined in chapter 2 to contextualise

the problem that this thesis attempts to solve. The list of research questions also provide

a clear scope for the work in this thesis. This chapter begins by in section 3.1 explaining

existing methods in gene expression inference, and the methodology applied as well as

the variables used to perform inference. Section 3.2 goes on to introduce a set of re-

search questions this thesis aims to answer. Section 3.3 outlines the two model training

approaches that will be used in chapter 4.

3.1 Existing work in gene expression inference

Similar approaches using causal models and gene expression levels to infer related gene

expression levels have previously been applied in related work. This section aims to break

down a selection of these applications.

Predicting Tissue-Specific Gene Expression From Whole Blood

Transcriptome

A first study in this causal approach Basu et al’s regression approach in their paper Pre-

dicting Tissue-Specific Gene Expression From Whole Blood Transcriptome [5], in which

it is proposed that gene expression levels in tissue may be inferred from whole-blood

26

expression values. Such a model is useful, as obtaining expression samples from various

tissues is not a trivial task, and may involve invasive medical procedures.

The paper finds that an individual’s whole blood expression levels is able to signifi-

cantly— predict (based on a likelihood-ratio test with a false discovery rate threshold of

5%) tissue-specific expression levels for 60% of the genes on average across 32 tissues.

”The tissue-specific expression inferred from the blood transcriptome is almost as good as

the actual measured tissue expression in predicting disease state for six different complex

disorders, including hypertension and type 2 diabetes, substantially surpassing the blood

transcriptome” (Basu et al.)[5].

Basu et al. propose a set of three linear models to perform this task. To achieve

such a high degree of accuracy, rather than providing the proposed linear models with all

whole-blood gene expression levels, the top ten principal components of the whole-blood

expression data (top twenty principal components for whole-blood splicing) was provided

as input, as the authors found that this set of values were able to explain up to variance

as features [5]. Also provided as input to the resulting linear regression model are other

useful confounders, such as the given sample’s age, sex and race.

The resulting, top performing linear model is a combination of all of the data described

above, and can be viewed in equation 3.1, in which g denotes the current gene index,

j denotes the current sample index, and k denotes the principal component index. Ŷgj

denotes the predicted gene expression value, β0
g , β

1
gk, β

2
gk, δg, γg, and σg denote trainable

weights. PCjk represents the k’th principal components for the given sample. WBGE

denotes whole blood gene expression, and WBSp denotes whole blood gene splicing [5].

Ŷgj = β0
g +

M∑
k=1

β1
gkPCjk(WBGE) +

N∑
k=1

β2
gkPCjk(WBSp) + δgAgej + γgSexj + σgRacej

(3.1)

Blood-Based Multi-Tissue Gene Expression Inference with Bayesian

Ridge Regression

Leng et al. present a similar motivation as the one presented in section 3.1 in their

2020 paper Blood-Based Multi-Tissue Gene Expression Inference with Bayesian Ridge

Regression [41], citing the difficulty of collecting samples from various tissues.

27

Leng et al. performs dimensionality reduction to their gathered data by quantifying

the linear dependencies of target genes in predicted tissue Tk on feature genes in B,

and selecting the B most relevant features for each target gene. The dependencies are

quantified by computing the variation of each feature, ranking them in descending order,

and selecting the top 10% most varied[41].

The dataset is then used to train a bayesian ridge regression model for each targeted

gene expression value, for each targeted tissue. The predicted expression value is drawn

from a distribution as specified in equation 3.2, in which q denotes the current gene index,

w and b denote trainable weight parameters, x denotes input data, and α denotes an error

term drawn from a gaussian distribution.

ŷ ∼ N(wT
(q)x

1
(q) + bq, α

−1I) (3.2)

3.2 Research Questions

Gene expression levels have been shown to be an indicator of healthy or diseased processes

in organs of the human body ,refer to section 2.4.4. It is difficult obtain sample data from

tissue in an individual’s internal organs. It is however, possible to obtain a person’s eQTL

variation data from accessible sources, such as blood, skin, urine, or saliva. Existing

methods in predicting gene expression values utilise this genome variation data, as well

as metadata such as age, sex or ethnicity, and other samples’ expression values, as causal

indicators in order to make their predictions.

In section 2.4.5, a causal DAG over genes was hypothesised, and section 2.4.5 intro-

duced an existing tool with which such a DAG can be discovered. Genome variation data

has been hypothesised to be able to act as a causal anchor when predicting downstream

gene expression values ,refer to section 2.4.3. This thesis therefore hypothesises that gene

expression values may be inferred using a causal DAG which models gene-gene interac-

tions as well as eQTL-gene interactions. Therefore, the aim is to answer the following

list of research questions to determine if graph neural networks can be used to infer gene

expression values.

1. Does prediction accuracy improve when also providing genome variation data in

the dataset?

28

2. Can the graph feature autoencoder architecture be applied to predict missing gene

expression values in a masked dataset?

3. Can a graph neural network be applied to predict missing gene expression values

in a masked sample?

4. Can dataset gene expression values be extrapolated using only genome variation

data?

Answering these will add to existing knowledge about graph neural networks in the

context of gene expression inference, which we propose as an alternative to existing meth-

ods in gene expression inference.

3.3 Linear and Graph-based Approach Motivations

This section breaks down the need for different dataset featurization, as different regressor

models are able to process different inputs. The models applied to the Geuvadis dataset,

which will be introduced in section 4.1, are split into two groups. Linear models, and

Graph Neural Networks.

Linear models

Linear regression is not a permutation-equivariant function. As the task that is being

performed centers around inferring gene expression data based on their respective causal

parents’ expression data, there cannot exist a general linear model for this task, as the

number of input features the linear model is required to handle is of variable length.

There exists genes with no input edges, and there exists genes with multiple input edges.

One approach for solving this probem is to generate a separate linear model for each

gene, as each gene has a set number of causal parents.

A common technique when featurizing the dataset for linear model usage is to perform

feature extraction or dimensionality reduction, see section 3.1. For the purposes of the

work presented in this thesis, this process was omitted. This decision was made due to

the fact that the linear models provide a better benchmark for the graph-based models

(as will be introduced in section 3.3) if their causal neighborhoods are identical. As will

29

be discussed in the graph-based approach section, a goal when featurizing the input data

was therefore to keep some degree of similarity between the featurized datasets. When

reading the results of the work presented in this thesis, this fact should be kept in mind,

as the dataset was prepared to fit the training of graph-based models, not the training of

linear models.

Graph-based models

As an alternative to the linear models discussed in section 3.1, a possible approach in-

volves utilising graph based learning, as was discussed in section 2.3. The advantage of

this approach lies in the fact that it circumvents the problem of a graph’s high number

of isomorphic permutations, discussed in section 3.3. If a graph-based approach can suc-

cessfully be applied, a single model may perform the same task for which hundreds are

needed in the linear case. It is therefore also reasonable to think that if a graph-based

approach is able to model the causal interactions between vertices in the graph, the model

would be a well-performing estimator of additional vertices added to the graph, whereas

the linear approach would have no way of predicting for the introduced gene without

training a separate model.

Inferring gene expression values based on causal neighbours using graph neural net-

works was the approach made by Hasibi & Michoel in their 2021 paper A Graph Feature

Auto-Encoder for the prediction of unobserved node features on biological networks [17].

Hasibi & Michoel present a model for missing data imputation using a graph neural

network model, which is able to outperform a standard, multi-linear layer approach as

described in section 2.2.

30

Chapter 4

Experiment Setup

In this chapter the experiment setup is explained. The chapter starts in section 4.1

by providing a detailed introduction to the Geuvadis dataset. In section 4.2, a simple

analysis is performed in order to determine helpful statistical properties of the dataset.

Section 4.3 details how the Geuvadis dataset is transformed from a set of matrices to

the three dataset types used for training the machine learning models used in this thesis.

Sections 4.4, 4.5 and 4.6 explain the training process of the different types of models

used in this thesis. Section 4.7 introduces the model architectures used to perform gene

expression inference.

4.1 The Geuvadis Dataset

The Geuvadis dataset[26] is a genome dataset containing both gene expression values as

well as eQTL data for hundreds of samples over a group of populations. In this section,

the Geuvadis dataset will be introduced. An analysis of the dataset will be provided, and

central properties of the dataset will be discussed.

The 1000 Genomes project, which was an effort to provide a comprehensive description

of common human genetic variation by applying whole-genome sequencing to a diverse set

of individuals from multiple populations. In total, the project reconstructed the genomes

of 2,504 individuals from 26 populations [1].

The Geuvadis dataset is a 462 individual subset of the 1000 Genomes dataset in which

the functional variation in human genomes is characterized by RNA-sequencing[26]. The

31

Geuvadis dataset limited its scope to the Finnish (FIN, 93 samples), British (GBR, 94

samples), Cephalonian (CEU, 87 samples), Toscani (TSI, 89 samples) and Yoruba (YRI,

89 samples) populations.

To discover genetic regulatory variants, eQTLs were mapped to to transcriptome traits

of protein-coding genes separately in the European and Yoruba populations[26]. For this

reason, in the featurization step of the model pipeline, the Yoruba population was left out.

Therefore, the resulting dataset contains 373 individual samples. Information related to

each sample can be viewed in table 4.1.

Sample Sex Biosample ID Code Name Code SName Elastic ID
HG00271 male SAME123417 FIN Finnish EUR European FIN
HG00276 female SAME123424 FIN Finnish EUR European FIN
HG00308 male SAME124161 FIN Finnish EUR European FIN
HG00310 male SAME124338 FIN Finnish EUR European FIN
HG00315 female SAME124335 FIN Finnish EUR European FIN

Table 4.1: A selection of the samples in the Geuvadis dataset. Each row corresponds to
a sample, and each column contains sample metadata.

Table 4.2 presents a subset of the gene expression data provided by the Geuvadis

dataset. Gene indices are presented as table row headers, and sample indices are presented

as table column headers. Each cell then corresponds to the given gene/sample pair’s gene

expression value.

HG00096 HG00097 HG00099 HG00100 HG00101 HG00102 HG00103 HG00104
ENSG00000136237.12 3.78850273139249 2.05096276937706 4.00031300285966 3.27161920134705 1.79821591847768 1.51668840574531 2.50033276871929 4.50927680966078
ENSG00000247157.2 0.0884028135135502 0.0357747754321161 0.0726643060416082 0.0533120112696138 0.159740096605739 0.358860016741265 0.396625831510976 0.304475150546142
ENSG00000137411.10 10.843283852078 12.7943342635096 6.74071971232153 17.0852204261215 24.1415882515112 14.3186281484009 12.0850364077074 16.399592813196
ENSG00000099804.2 11.9757350714476 12.4334611904074 8.12649262405 14.5744648248122 13.3328763642751 12.4474527797221 14.0457935113571 11.5981889781581
ENSG00000186952.10 0.179027511445971 0.219267027613899 0.208353389630347 0.452498531975494 0.386209586874843 0.214801647294066 0.176780891869511 0.166011816642241

Table 4.2: Sample names along the columns, gene names along the rows. Each cell
contains one sample’s expression value for one gene.

Table 4.3 presents a subset of the genome variation data also presented to the models

in some of the research tasks. eQTL indices are presented as table row headers, and

sample indices are presented as table column headers. Each cell then corresponds to the

given eQTL/sample pair’s categorical eQTL value.

4.2 Dataset Analysis

In this section, an analysis of the dataset is performed. Various statistical properties of

the dataset are visualised and explored, using histograms over gene expression values,

32

HG00105 HG00107 HG00115 HG00132 HG00145 HG00157 HG00181 HG00308
rs12405651 0 0 0 1 0 0 0 0
rs148649543 0 0 0 0 0 0 1 0
rs138277764 0 0 0 1 0 0 1 0
rs28821228 0 0 0 0 0 0 1 0
rs28463291 1 0 0 2 2 1 1 1

Table 4.3: Sample names along the columns, eQTL names along the rows. Each cell
contains one sample’s categorical mutation value for one gene.

scatter plots over means and standard deviations, and the Pearson correlation coefficient.

Causal reasoning between inferred properties of the dataset and their respective statistical

properties are also explored, to gain insight into properties that should exist in the fitted

machine learning models’ output space.

Single gene expression value distribution

As a first step in the analysis of the Geuvadis dataset, the goal is to achieve some intuition

of the distribution of samples for a given gene. To achieve this, a histogram of gene

expression values was illustrated for a given gene. This histogram will be used later in

this thesis as model predictions will be plotted against the ground truth expression value

distributions.

(a) Vertex id: 199 (b) Vertex id: 200

Figure 4.1: Histograms for selected vertices and the distribution of gene expression values
over all samples for the given gene.

All Gene Expression Value Distribution

The square roots of the featurized Geuvadis dataset genes’ mean expression values are

plotted against the square root of the genes’ corresponding standard deviations. By

33

Figure 4.2: Scatter plot of each gene’s mean expression value and its standard deviation

visually inspecting the figures, genes with a high gene expression value tend to also have

a high standard deviation. This assumption is substantiated by calculating the Pearson

correlation coefficient between the list of mean gene expression values and the mean

gene standard deviation. Performing the calculation yields a correlation coefficient of

0.9257, indicating a high correlation between genes’ mean expression values and standard

deviations.

4.3 Dataset Featurization

This section aims to explain how this thesis organised its datasets, which the models

utilised in the prediction tasks introduced in section 4.7 were trained on. The research

questions specified in section 3.2 state that the dataset must be featurized in a number of

ways to account for the different approaches made in their respective research questions.

4.3.1 Graph Generation

As the research questions defined in section 3.2 require training graph neural network

models, a graph on which inference may be performed must be generated.

34

The Geuvadis data was passed to the Findr tool, as introduced in section 2.4.5. The

Findr tool returns a 2-dimensional matrix in which the i-th item along the first axis and

the j-th item along the second axis correspond to their respective gene indices. Each

candidate edge (i, j) consists of a floating point number bound between 0 and 1. This

value represents the Findr tool’s predicted probability of the edge existing in the true

causal graph.

The returned edge probability matrix was then passed back to the Findr tool, where

the predicted edge probabilities were ranked by their significance, and only edges with a

calculated probability greater than 0.80 were accepted. Edges were skipped if adding the

given edge would cause a loop to appear in the graph. The generated causal DAG cannot

be guaranteed to be weakly connected, as edges are selected in their order of significance.

Using the NetworkX tool, the connected components of the graph were iterated over. Only

the largest connected component is kept, vertices not in this component were dropped.

The resulting graph is then guaranteed to be a connected DAG. In this experiment, it

consists of 340 vertices and 344 edges.

Separate vertices are added to the graph to represent eQTL variation data. Edges are

drawn from eQTL vertices to their affected gene expression vertices, based on the RNA

sequencing data in the Geuvadis dataset.

4.3.2 Preprocessing

Train-, Validation-, and Test Split

To ensure fair testing across the ’linear’, ’compact’ and ’sparse’ approaches, the dataset

samples are split into training, validation, and test sets to ensure that the same sam-

ples appear in the datasets for the different approaches. The split was done via

the sklearn.model selection.train test split() function[32]. The resulting three

datasets allocated 20% of dataset samples to the ’test’ dataset, 76% to the training

dataset, and 4% to the ’validation’ dataset.

Scaling

Before passing gene expression data to the selected machine learning models, the training-

, validation- and test datasets were scaled to have zero mean and standard deviation

35

equal to one. For each gene i and sample j, gene expression value xi,j were updated using

equation 4.1. The resulting rescaled gene expression values zi,j were kept for use in model

training. The sklearn.preprocessing.StandardScaler() implementation was used to

perform the scaling[32].

zi,j =
(xi,j −mean(X))

SD(X)
,∀xi,j ∈ X (4.1)

4.3.3 Linear Models Dataset

Having generated a graph which is guaranteed to be weakly connected, the data may

be reformatted into datasets appropriate for the linear model approach. To benchmark

the performance of the neural networks presented in this thesis, a featurization of the

dataset appropriate for training linear models is required, as the featurizations which will

be presented in the coming sections are not appropriate for models which do not have

the permutation equivariance property.

The resulting output of the causal inference step performed in section 4.3.1 will provide

a set of 340 genes with a variable number of causal parents. As was discussed in section

3.3, as a consequence of the variable number of inputs, there exists no single linear model

which is able to make a prediction for all genes. This thesis therefore selects the approach

of training a separate linear model for each gene with associated parent gene expression

values, with a total of 269 models (due to the dataset containing 71 vertices with no

parent genes).

In total, three distinct variations of the linear models dataset are created. Each

dataset consists of in total 373 samples, available to use for training, validating and

testing the models. The ’expression’ linear models dataset for a given gene’s input value

consists of the gene’s causal parents’ gene expression values. Each dataset item’s input

value has its corresponding true output value.

The ’eQTL’ linear models dataset for a given gene’s input value consists of the gene’s

eQTL variation data for the given gene. The dataset items’ corresponding output remains

the same, being the true expression value of the current gene. A ’both’ linear models

dataset is also created for each gene, combining the inputs defined for datasets ’expression’

and ’eQTL’. Again, each sample is also provided with its true output value.

36

Figure 4.3: The datasets presented in section 4.3.3

A) corresponds to the ’expression’ dataset. B) corre-
sponds to the ’eQTL’ dataset. C) corresponds to the
’both’ dataset. In this case, the gene for which the model
is predicting has two parent eQTL vertices, and two par-
ent gene expression vertices.

4.3.4 Compact Graph-based Dataset

In section 3.2, research question 1) was to apply the graph feature autoencoder archi-

tecture. As the research questions differ, their corresponding dataset implementations

must differ accordingly. The autoencoder-architecture transforms the set of features into

a lower dimensional space (as described in section 2.2.7). To test the Graph Feature

Autoencoder Architecture, a dataset in which all sample data is available to the model

concurrently is required. As a consequence, where the approach in the linear models

datasets specified in section 4.3.3 required creating separate datasets for each gene, the

compact graph-based dataset is the same for each gene. Furthermore, whereas the each

linear dataset consists of 373 samples, the compact dataset consists only of a single sam-

ple. As in section 4.3.3, the three variations keep their labels ’expression’, ’eQTL’ and

’both’.

Existing models which serve as a baseline for the work presented in this thesis rep-

resent their model input in a similar fashion [17]. The approach presented in this thesis

differentiates itself however in including eQTL data. To achieve this, two different ap-

proaches may be used. One option consists of concatenating the two matrices along

the vertical axis, and thereby creating a separate graph vertex for each for each eQTL.

Though this is a sufficient solution, the a consequence of the approach is that a single

model layer would have to train on two different feature types, one categorical and one

real.

Another approach involves utilising PyTorch Geometric’s heterogeneous learning

framework[12]. In this approach, the data is kept as a separate pair of matrices. This ap-

proach involves multiple aggregation operators at each model layer, using the aggregation

37

operator to ensure graph features have the same shape in the latent space, concatenating

the outputs of the different layer aggregation operators, and performing a linear trans-

formation of the set to produce the layers’ output. Using this approach increases the

expressivity of the trained graph neural network, as it introduces a greater number of

trainable parameters.

This thesis has applied this approach when performing the experiments designed to

evaluate the research questions defined in section 3.2. In the ’expression’ case, only the

expression vertices with their respective values and (expression− expression) edges are
supplied. In the ’eQTL’ case, eQTL-vertices with their respective values and (eQTL −
expression) edges are supplied. In the ’both’ case, naturally, all vertices with their

respective values, and all edge indices are supplied. Figure 4.4 displays the data matrices

which are supplied to the neural network model in the compact case.

(a) Scaled dataset expression values in the
matrix format in which they are passed to the

model.

(b) Categorical eQTL values in the matrix
format in which they are passed to the model

Figure 4.4: Compact graph-based dataset

4.3.5 Sparse graph-based Dataset

One further dataset is required to provide experimients that answer the research questions

defined in section 3.2. The dataset defined in section 4.3.4 implicitly provides all dataset

samples to the model concurrently. Unless explicitly alleviated, this means that the model

may potentially learn its vertex prediction from the same vertex in a different sample. To

circumvent this issue, a sparse graph-based dataset is defined. Where the dataset defined

in section 4.3.4 provides expression values for all samples to the model concurrently, the

sparse dataset provides expression values for a single sample at each training iteration.

38

The discussion of whether to use a concatenation- or heterogeneous approach from

section 4.3.4 is also applicable to this dataset. The heterogeneous approach was also

selected for this dataset, due to its hypothesised improvement in model expressivity.

4.4 Linear Training Setup

For each gene for which the model should be able to predict a gene expression value, the

373 item dataset is randomly split into a training-, validation- and test dataset. Using

the training dataset, a linear model is instantiated for each gene in the dataset. The

instantiated model’s trainable parameters are fitted to best map the training dataset

input to its ground truth corresponding output.

The resulting training loop is far less efficient than its graph-based counterparts, as

the number of models needed to be fitted their corresponding sample data is far greater

than for both the compact and the sparse approaches.

4.5 Compact Training Setup

The featurized the compact model dataset in section 4.3.4 can be used to define an

approach for training the compact model. The training approach used in this model

follows the approach used to train Hasibi & Michoel’s Graph Feature Autoencoder [17].

A boolean mask is generated in the same shape as the expression value matrix from figure

4.4a. Each data point’s probability of being included in the boolean mask is given as a

hyperparameter, the value of which can be found in Appendix C.

A copy is made of the boolean mask. A filter is then applied to the copied mask,

where the mask cells in all vertices in all samples that do not appear in the validation

set from the preprocessing step (as described in section 4.3.2) are set to the value 0.

As one goal of this thesis is to use a vertex’s causal parent to reason about its feature

values, predicting the expression values for vertices with no causal parents will be useless.

As this thesis utilises the causal DAG generated in section 4.3.1, at least one vertex with

no incoming edges must exist. The ’in’-degree of vertices is therefore studied, and set to

0 for all sample values in all masks if the vertex has no incoming ’expression’ edges.

39

(a) Mask applied to the model output.
Validation is calculated over datapoints at the

yellow dots.

(b) Mask applied to the model output. Test
loss is calculated over datapoints at the

yellow dots.

Figure 4.5: Gene expression values over which validation- and test loss is calculated.

The resulting boolean mask is referred to as Mvalidation. This process is repeated using

the samples that do not appear in the test set. The resulting boolean mask is referred to

as Mtest. The masks are illustrated in figure 4.5.

The logical or operation is applied to Mvalidation and Mtest. The logical not operation

is then applied to the joint mask. The resulting mask will be applied to the expression

data and is used as the model input. This mask is referred to as Minput. Then, the

mask value is set to 0 for all samples values where a vertex has no incoming ’expression’

edges. The resulting mask is referred to as Mtrain

By defining Mcause as a boolean mask in the same shape as the previous masks, with

value 1 for all samples in vertices with no incoming ’expression’ edges, 0 otherwise, the

crucial property of equation (4.2) can be guaranteed.

Mtrain ≡ ¬(Mval ∪Mtest ∪Mcause) (4.2)

Loss Calculation

Recall from section 4.7 describing model architectures, that a feature autoencoder is used

in the compact case. As a consequence of this, the graph features are projected into a

lower-dimensional feature space. The goal during model training is to reconstruct the

given input data. Loss is therefore calculated as the mean of squared difference over the

40

(a) Yellow dots represent expression values
provided to the model at every training

iteration.

(b) Yellow dots represent expression values
over which training loss is calculated.

Figure 4.6: Model input mask and training loss mask

predicted gene expression values and actual expression values over only the true vertices

in the boolean train mask Mtrain.

The compact graph-based dataset differentiates itself from the typical machine learn-

ing dataset in that rather than providing a single sample at a time, all sample data is

provided to the model at every training iteration, until the model parameters converge.

At each training step, validation loss is also calculated. Validation loss is calculated over

the same output as training loss, however the validation mask is applied instead. At every

epoch, the current model parameters replace the current ’best’ model if the calculated

validation loss is less than the ’best’ validation loss.

In the evaluation step, having trained the best possible model with the given input and

model architecture, the model is once again supplied with the same model input. In this

scenario however, the test loss is evaluated only over the datapoints with corresponding

true values in the test mask Mtest.

4.6 Sparse Training Setup

In sections 4.4 and 4.5, two different approaches in how to train their corresponding

machine learning models were discussed. In this section, a final training approach will

be discussed. In this experiment, a graph neural network model in which only gene

expression data from the current sample is available to the model is required, in order

to meed research questions 2. Can a graph based model be applied to predict

41

missing gene expression values in a masked sample and 4. Can dataset gene

expression values be extrapolated using only genome variation data?.

The training setup made in the sparse graph-based case is one which bears similarity

to both the approaches made in sections 4.4 and 4.5. The sparse graph-based dataset

consists of 373 samples all containing the same graph structure (refer to section 4.3.5),

but with differing expression values, and differing eQTL values if they are relevant for

the current task. As in the linear training setup from section 4.4, the dataset is split into

three subsets, known as the train-, validation- and test set.

Rather than initialising a separate linear model for each ’expression’-vertex in the

dataset, a single graph-based model is initialised. Similarly to the compact case, there is

still no obvious prediction target. This approach therefore also leverages the boolean mask

approach made in the compact case, albeit somewhat simpler. The compact graph-based

case is set up to utilise the autoencoder-architecture, and the measure of successfully

training a model is therefore in how well the model is able to reconstruct itself. The

sparse graph-based model cannot utilise an autoencoder-architecture, as each vertex con-

tains only a single feature. The sparse graph-based training setup therefore bases itself

on a more traditional prediction task. Where the compact graph-based case was able to

maintain the same set of boolean masks for the training-, validation and test cases, the

sparse graph-based case will have to generate a new boolean mask for each training iter-

ation, as the model should be able to make a good prediction of any vertex in the graph,

as long as at least one causal parent exists for the given vertex. In the work presented in

this thesis, a series of masking approaches are attempted in an effort to discover one with

good convergence properties, and which performs well in model evaluation. The results

of applying the different approaches will be discussed in chapter 5.

Mask Percentage

A boolean mask Mtrain in the same shape as the expression value matrix is generated,

in which a random subset of the vertices are given the value 0, and the rest are given

the value 1. The generated mask selects a percentage of vertices with causal parents.

The percentage values is given as a hyperparameter. The values of all hyperparameters

can be found in Appendix C. The current sample’s expression value matrix is multiplied

with the generated boolean mask, and masked input is generated. This masked input

is passed to the model, the model predicts some value for the masked vertices. A loss

function is applied to the difference between the predicted values and the true values

42

found in the sample. The calculated loss is passed to the optimizer, which calculates the

gradients, and updates the weights accordingly. The loss function used in training the

sparse graph-based model was MSE Loss as defined in section 2.2.2. The optimizer used

was the Adam optimizer, as defined in section 2.2.6.

This process repeated over a number epochs defined as a hyperparameter, until conver-

gence. Though this process deviates from the training stage for the compact graph-based

case, it is identical to how the compact graph-based case calculates its validation- and

test loss.

L =
∑
v∈V

(ŷv − yv)2 · ((Mtrain
v + 1) mod 2) (4.3)

An edge case of the % mask is setting the percentage hyperparameter to 0. In this

case, a one-hot mask will be generated.

4.7 Models and Architectures

Section 4.3 defined a set of datasets with which the research questions defined in section

3.2 can be answered, a set of machine learning models are needed. The following list

provides an overview over the models which were used in attempting to fulfill the research

questions proposed in section 3.2.

Many of the models presented require a set of hyperparameters which affect model

performance. For each model, a list of possible hyperparameter combinations were cre-

ated. Each model was initialised, trained and produced a loss measure over the validation

set a series of times, at each iteration testing a separate set of hyperparameters. This

process is known as Grid Search [28]. All hyperparameters for all models can be found

in Appendix C.

• Linear Models

– Linear Regressor

• Compact Graph-based Models

– Graph Feature Autoencoder

– Heterogeneous Graph Feature Autoencoder

43

• Sparse Graph-based Models

– Homogenous Sparse Graph Neural Network

– Heterogeneous Sparse Graph Neural Network

For linear regression, the implementation from the scikit-learn library was used[32].

For all graph based models, the PyTorch Geometric library was used[12].

Homogenous Graph Feature Autoencoder

The compact graph-based model for the ’expression’ compact dataset is a graph fea-

ture autoencoder model. This architecture is taken from Hasibi & Michoel’s Graph

Feature Autoencoder. The implemented Graph Feature Autoencoder consists of four

graph-aggregating layers and a single linear layer.

• The first layer is a GraphSAGE layer, first performing the aggregation function,

then performing a linear transformation changing the dimension of the 373 features-

per-vertex input, projecting it to a 64 features-per-vertex output. The ReLU func-

tion is then applied to the output.

• The second layer performs the same operation as the first. It performs the aggre-

gation function, then projects the 64 features-per-vertex input to a 32 features-per-

vertex output. The ReLU function is then applied to the output.

• The third layer is a linear layer is applied to the encoded data, keeping the 32

features-per-vertex dimensionality. The ReLU function is then applied to the out-

put.

• The fourth layer is a GraphSAGE layer, performing the aggregation function over

the encoded data, then performing a linear transformation of the aggregated data to

a 64 features-per-vertex output. The ReLU function is then applied to the output.

• The fifth layer is a GraphSAGE layer, aggregating the output of the previous layer,

then performing a linear transformation of the data to a 373 features-per-vertex

output. This output serves as the output of the GNN.

Heterogeneous Graph Feature Autoencoder

The compact graph-based model shared for the ’both’ and ’genotype’ compact dataset

are also based on the Graph Feature Autoencoder. The main difference is that each

aggregation layer adds a separate aggregator for genotype data.

44

Figure 4.7: Compact heterogeneous model architecture
A larger version of this illustration is available in Appendix E.

• The first layer is a GraphSAGE layer, for each vertex performing the aggregation

function over the incoming ’expression’ vertices, then performing a linear trans-

formation changing the dimension of the 373 features-per-vertex input, projecting

it to a 64 features-per-vertex output. Then, using a separate GraphSAGE layer,

for each ’expression’ vertex, performing the aggregation function over incoming

’eQTL’ vertices, changing the dimension of the 373 features-per-vertex input to a

64 features-per-vertex output. The two generated outputs are concatenated, trans-

formed into a single 64 features-per-vertex output. The ReLU function is applied

to this output.

• The following layers function the same way as the homogeneous model described in

section 4.7. In the second layer, the output of the previous layer is aggregated, and

a linear transformation projects the 64 features-per-vertex input to a 32 features-

per-vertex output. The ReLU activation function is then applied to the output.

• The third layer is a linear layer applied to the encoded data, keeping the 32 features-

per-vertex dimensionality. The ReLU function is applied to the output.

• The fourth layer is a GraphSAGE layer, performing the aggregation function over

the encoded output of the linear layer, then performing a linear transformation

transforming the 32 features-per-vertex aggregated input to a 64 features-per-vertex

output.

• The fifth layer is a GraphSAGE layer, performing the aggregation function over the

64 features-per-vertex output over the previous layer. A linear transformation then

projects the input to a 373 features-per-vertex output. This serves as the output

of the GNN.

Homogeneous Sparse GNN

The homogeneous sparse GNN is designed to fit the sparse ’expression’ dataset. It can

be viewed as a simplification of the autoencoder-based models described in sections 4.7

and 4.7.

45

Figure 4.8: Sparse homogenous model architecture.
A larger version of this illustration is available in Appendix E.

• The fist layer is a GraphSAGE layer. As the sparse dataset splits samples, the layer

performs the aggregation function over a 1 features-per-vertex input. The aggre-

gated input is then subject to a linear transformation, keeping its single dimension

in the output.

• The above layer is repeated 4 times, with the ReLU activation function applied

between the layers. The final layer serves as the output of the GNN.

Heterogeneous Sparse GNN

Figure 4.9: Sparse heterogeneous model architecture.
The updated gene expression value is provided as input to each model layer. The
ground truth eQTL data is provided at each model layer. A larger version of this

illustration is available in Appendix E.

• The first layer consists of two GraphSAGE layers. Using one GraphSAGE layer, for

each ’expression’ vertex, the aggregation function is performed over the incoming

’expression’ vertices. A linear transformation is applied to the aggregated data,

preserving its single dimension. Using a separate GraphSAGE layer, for each ’ex-

pression’ vertex, the aggregation function is performed over the incoming ’eQTL’

vertices. A linear transformation is applied, preserving the aggregated data’s single

dimension. The two generated outputs are concatenated and transformed into a

single features-per-vertex output. The ReLU function is applied to this output.

• The second layer consists of a single GraphSAGE layer. For every ’expression’

vertex, the aggregation function is performed over all incoming ’expression’ vertices.

A linear transformation is then applied to the aggregated data, preserving its single

dimension. The ReLU function is applied to this output.

• The third layer consists of a single GraphSAGE layer. For every ’expression’ vertex,

the aggregation function is performed over all incoming ’expression’ vertices. A

46

linear transformation is then applied to the aggregated data, preserving its single

dimension. The ReLU function is applied to this output.

• The fourth layer consists of a single GraphSAGE layer. For every ’expression’

vertex, the aggregation function is performed over all incoming ’expression’ vertices.

A linear transformation is then applied to the aggregated data, preserving its single

dimension. This serves as the GNN’s output.

47

Chapter 5

Experiment Results and Evaluation

In this chapter the results from the experiment from chapter 4 are presented. First,

in section 5.1 the MSE error over all vertices is presented. To provide some nuance to

the general MSE statistic, in section 5.2 the median MSE error per vertex is presented.

Section 5.3 presents the R2 statistic, both overall and per vertex. The chapter ends by

plotting the model prediction distributions in section 5.4, and comparing them to the

ground truth distribution of gene expression values.

5.1 Evaluation of MSE Score

Table 5.1 displays each model’s mean squared error loss over each vertex in the test set

with at least one incoming vertex. The table rows each correspond to one of the models

tested in the experiment. In parentheses, the model category of the given model is also

denoted, being one of ’linear’, ’sparse’ and ’compact’. The table columns shows the task

category for the given model. For the sparse and compact models, a single model is not

able to make predictions for all three task categories. Task categories for which a model

cannot make a prediction is denoted by a single ’-’.

The table shows that over all models tested over all tasks, the best performing model is

the set of linear regression models. As expected, the linear regression models performed

better when providing both expression data and genotype data to the model, due to

an increased number of input values to use in output prediction. Though the overall

performance of the various machine learning models vary, this statement remains true for

most models tested.

48

Model Expression Genotype Both
Linear Regression 0.0366 0.0298 0.0282
Compact Homogenous 0.0453 - -
Compact Heterogeneous - 1.2659 0.0523
MLP 0.0769 - -
Sparse Homogenous 1.2791 - -
Sparse Heterogeneous - 1.2296 1.3137

Table 5.1: Mean Squared Error loss over all vertices.

Table 5.1 also shows that the trained sparse GNN models’ performance do not seem

to be able to converge towards a set of parameters capable of performing helpful approx-

imations of gene expression values.

5.2 Evaluation of MSE Per Vertex

The result identified in section 5.1 is not without nuance. As the goal of this project

has been to create a universal approximator of gene expression values, it is interesting to

analyze the models’ prediction accuracy per vertex. Rather than viewing MSE loss over

all vertices, table 5.2 displays the median MSE loss grouped by target vertex. Viewing

this statistic as well as the total MSE over all vertices gives some additional insight into

the distribution of error over individual vertices.

Model Expression Genotype Both
Linear Regression 0.0008 0.0008 0.0009
Compact Homogenous 0.0013 - -
Compact Heterogeneous - 0.0942 0.01
MLP 0.008 - -
Sparse Homogenous 0.0183 - -
Sparse Heterogeneous - 0.2057 0.3933

Table 5.2: Median Mean Squared Error loss, grouped by vertex.

The table shows that the set of linear regression models remain the top performer.

The table illustrates the large difference between the total MSE, and the median MSE

49

per vertex for all tested models. This comparison suggests that there exists a subset of

vertices for which making predictions is more difficult than others.

(a) (b)

Figure 5.1: Sparse Heterogeneous MSE per node and histogram.

To further re-affirm this assumption, figure 5.1 is presented. Figure 5.1a illustrates

the MSE loss for each predictable vertex in the test set using the sparse heterogeneous

approach. The vertex indices in figure 5.1a remain the same as displayed throughout

section 4.2. The gene names for each vertex index can be found in appendix A. Figure

5.1b illustrates the same data, but instead presents the data as a histogram over vertex

loss. From the figure, it is obvious that the model is able to make good predictions for

the majority of vertices, while it performs terribly for a smaller subset of vertices.

5.3 Evaluation of R2 Score

Though a number of the models have been shown to be able to make predictions with

relatively high accuracy, this measure does not capture the distribution of errors in com-

parison with the ground truth distribution of gene expression values for a given vertex.

The term determination refers to the model’s ability to mirror any vertex’s distribution

of true gene expression values in the model’s predictions.

R2 = 1−
∑

i(yi − f(xi))2∑
i(yi − ȳi)2

(5.1)

As a measure of model determination, the R2-score for each model is presented, com-

monly referred to as the ’coefficient of determination’. The formula for R2 is presented in

50

equation (5.1). A mean approximator, having no variance in its predictions, will produce

a R2-score of 0. A model which generates a squared error of 0 for each test sample,

thereby exactly mirroring the distribution of the ground truth dataset, will achieve a

R2-score of 1. In this case, 100% of the variance in the ground truth dataset is modelled

by the model.[36] By this definition, a model which produces a prediction distribution

with greater squared error than a mean estimator will achieve a negative R2-score.

As with the MSE case from sections 5.1 and 5.2, though the linear models continue

to be the top performing models, the R2-score must be presented in a series of ways to

provide more insightful analysis of the actual result.

Table 5.3 shows the calculated R2-score using all predictions and true values, regard-

less of which vertex any prediction belongs to. Given this presentation, the linear models

are able to achieve a score of 0.9767. However, the linear models are dependent on a

large set of models to be able to provide this level of determination.

Viewing table 5.4 provides a better insight into the predictive performance of each

individual linear model’s determination, with the linear regression given the ’both’ dataset

being the top performing linear model, achieving a mean R2-score of 0.14 . Though the

set of linear regression models remains the top performing model, this is no longer what

would commonly be considered an acceptable R2 for a predictive model.

This difference between the overall R2 value over all vertices and the per vertex median

R2 value is illustrated in figure 5.2. The variation in the distribution of each individual

gene’s expression values is less than the distribution of gene expression values over all

vertices. Therefore, though by the definition of R2, a mean approximator should produce

an R2 of 0, measuring the R2 value over all genes using separate mean approximators for

each gene will produce an artificially high R2-score.

The tendency observed in the top performing linear regression model also holds for the

compact graph-based model. While the compact heterogeneous model is able to achieve

an R2-score of 0.9601 using the ’expression’ dataset and 0.9569 when using the ’both’

dataset, when measuring by all vertices’ predictions and true values. When calculating

the R2-score by grouping the predictions and true values for each vertex, the mean R2-

score achieved is indicative of a model with minimal determination. Regarding this result

as it correlates to the compact heterogeneous ’both’-result from table 5.2 indicates that

the predictive determination of this model is poor.

This statement remains true when observing the R2-scores generated by the sparse

models. Though the models are able to achieve acceptable prediction accuracy for a

51

Figure 5.2: Illustrated difference between overall R2 and
median R2

subset of vertices as per the result from table 5.2, the models’ determination are obviously

unacceptably low when viewing tables 5.3 and 5.4.

Model Expression Genotype Both
Linear Regression 0.9697 0.9753 0.9767
Compact Homogenous 0.9601 - -
Compact Heterogeneous - -0.0018 0.9569
MLP 0.9397 - -
Sparse Homogenous -0.0575 - -
Sparse Heterogeneous - -0.0157 -0.0856

Table 5.3: R2-score over all predictions

5.4 Prediction distributions

In section 4.2, when illustrating the distribution of gene expression values, any vertex’s

distribution of expression values was shown to roughly follow a gaussian distribution. It

therefore follows that given the definition of the term determination, an optimally de-

termined model’s predictions should therefore also follow a gaussian distribution as the

number of test samples grows indefinitely. In this section the term expressivity refers

52

Model Expression Genotype Both
Linear Regression 0.0183 -0.0027 0.1451
Compact Homogeneous -0.2472 - -
Compact Heterogeneous - -94.952 -8.2793
MLP -5.2656 - -
Sparse Homogeneous -16.6702 - -
Sparse Heterogeneous - -196.5096 -437.243

Table 5.4: Mean R2-score, grouped by vertex

to the predictive distribution for a given model. This term differs from the determina-

tion term defined in section 5.3, as in this seciton, only the variance of a given model’s

predictions are studied, while errors are ignored.

Throughout this section, each model’s predictive distribution over an example vertex is

illustrated and discussed. As the figures illustrate tendencies in model predictions, model

performance should not be judged based only on this measure. As the GNN models aim

to generalize over all vertices, any given vertex’s prediction distribution may be a good

example for one model, while a poor example for another. Overall model expressivity

should therefore not be based on the following illustrations, but rather tables 5.3 and 5.4

Linear Regression

As an study in the tested models’ expressivity, the distribution of vertex predictions over

the test set using the ’both’ dataset and the linear regression models is illustrated in figure

5.3. Vertex 200 was selected to illustrate this distribution because its expression values

are one of the distributions illustrated in section 4.2. From the illustration it is obvious

that even using the best scenario, the approach is unable to reconstruct the ground truth

distribution of gene expression values.

Figure 5.4 shows the distribution of predicted gene expression values for vertex 200

using the linear regression model and the ’genotype’ dataset. As the vertex has only

a single categorical eQTL parent value, it comes as no surprise that the model is less

expressive than its ’both’-dataset counterpart from figure 5.3.

Figure 5.5 displays the distribution of predicted gene expression values for vertex 200

sing the linear regression model and the ’expression’ dataset. As one may hypothesise

53

54

Figure 5.3: Linear Regression model’s prediction distribution against the ground truth
distribution of gene expression values using the ’both’ dataset.

Figure 5.4: Linear Regression model’s prediction distribution against the ground truth
distribution of gene expression values using the ’genotype’ dataset.

from table 5.4, the model is able to more accurately reconstruct the distribution of vertex

199 using the ’expression’ dataset than the ’genotype’ dataset, but not as well when using

the ’both’ dataset.

Figure 5.5: Linear Regression model’s prediction distribution against the ground truth
distribution of gene expression values using the ’expression’ dataset.

Compact GNN

Figures 5.6, 5.7 and 5.8 display the compact GNN approach’s prediction distribution

using respectively the ’both’, ’genotype’, and ’expression’ datasets. A pattern similar to

what was found using the linear models is found in these distributions. Again, the model

is best able to reconstruct the expression distribution using the ’both’ dataset

Sparse GNN

Figures 5.9, 5.10 and 5.11 shows that the sparse GNN approach is not able to produce a

distribution of predictions which mirrors the ground truth distribution of gene expression

values when given any of the ’both’, expression’ or ’genotype’ datasets. This conclusion

supported by tables 5.3 and 5.4’s calculated R2-scores.

55

56

Figure 5.6: Heterogeneous Compact GNN model’s prediction distribution against the
ground truth distribution of gene expression values using the ’both’ dataset.

Figure 5.7: Heterogeneous Compact GNN model’s prediction distribution against the
ground truth distribution of gene expression values using the ’genotype’ dataset.

57

Figure 5.8: Heterogeneous Compact GNN model’s prediction distribution against the
ground truth distribution of gene expression values using the ’expression’ dataset.

Figure 5.9: Heterogeneous Sparse GNN model’s prediction distribution against the
ground truth distribution of gene expression values using the ’both’ dataset.

58

Figure 5.10: Heterogeneous Sparse GNN model’s prediction distribution against the
ground truth distribution of gene expression values using the ’genotype’ dataset.

Figure 5.11: Heterogeneous Sparse GNN model’s prediction distribution against the
ground truth distribution of gene expression values using the ’expression’ dataset.

Chapter 6

Disucssion

This chapter concludes the work presented in this thesis. The chapter begins by in

section 6.1 analysing the poor performance of the sparse GNN model. The research

questions defined in section 3.2 outlined the requirements of the experiment described

in chapter 4, the results of which was presented in chapter 5. These results provide

sufficient groundwork to answer the research questions posed, given the approach made

by this thesis. The questions are answered in section 6.2. Section 6.3 discusses what

steps may be taken in the future to improve the gene expression inference capabilities of

the created models.

6.1 Sparse GNN Parameter Convergence

This section provides an analysis into the poor performance achieved utilising the sparse

graph-based approach. Studying the reason behind this model’s lack of performance is

essential, as a major goal of this thesis was to use graph neural networks to predict gene

expression values based only on its causal parents’ expression values. The analysis will

be made by studying the trained parameters used predicting the test vertices.

In an effort to create a universally approximating graph neural network model for gene

expressions using the ’sparse’ dataset, a varied set of model architectures were explored.

In the graph, the longest path contains 5 edges. As a consequence, any Graph Neural

Network with greater than 5 layers will not aggregate any unseen vertex information,

but may still serve as a non-linear transformation of the aggregated vertex information.

59

For this reason, during the experiment to determine the optimal number of model layers,

network models with depths ranging from 1 to 6 layers were tested. The testing showed

no substantial difference between the number of layers. The four layer model was used

as it was the marginally highest performing model.

6.2 Research Questions

Does prediction accuracy improve when also providing genome variation data

in the dataset?

Illustrated in tables 5.1 and 5.3, this thesis concludes that providing genome variation

data does improve prediction accuracy for the linear models and the compact graph-

based model. Providing genome variation data does not improve prediction accuracy in

the sparse graph-based model.

Can the Graph Feature Autoencoder architecture be applied to predict miss-

ing gene expression values in a masked dataset?

In answering this question, the ’compact’ rows from tables 5.3 and 5.4 are studied. Over

all predictions, the compact heterogeneous model is able to produce an R2-score of 0.96

using the ’both’ and ’expression’ datasets. This result indicates a model in which 96%

of variation in the dependent variable can be described by the model. From tables 5.1

and 5.2, we are able to tell that this model suffers the problem of being a good predictor

of most vertices, while being unable to make good predictions for a smaller subset of

vertices discussed in sections 5.1 and 5.2. The compact heterogeneous model achieves a

MSE of 0.04 when using the ’expression’ dataset. As previously mentioned, the median

MSE per vertex value achieved is far better. Grouped by vertex, the median MSE the

model achieves is 0.0013.

This research question is meant to serve as a reference to Hasibi & Michoel’s 2021

paper A Graph Feature Auto-Encoder for the prediction of unobserved node features on

biological networks [17]. The proposed Graph Feature Autoencoder proposed in this

paper is able to serve as a universal approximator of masked graph vertices, obtaining

MSE loss values of 0.025, 0.023, 0.025, and 0.003, depending on the dataset used.

60

Though this thesis provides a model which makes accurate predictions for a large

number of vertices, this thesis has not been able to fit a universal approximator to the

dataset created. This thesis must therefore conclude that using the approach described

in chapter 4, the graph feature autoencoder architecture cannot be applied to predict

missing gene expression values in a masked dataset in this experiment.

Can a graph neural network be applied to predict missing gene expression

values in a masked sample, only given its causal parents’ values?

A central research question posed in section 3.2 is whether a graph based model was

able to predict missing gene expression values in a masked sample, only given its causal

parents’ gene expression and genome variation values. Tables 5.1, 5.2, 5.3 and 5.4 forms

the basis of this thesis’ conclusion.

As a universal approximator for all vertices in the causal graph identified in section

4.3.1, the sparse graph-based approach fails. From figure 5.1a, the sparse graph-based

approach is shown to perform poorly for a subset of vertices. This causes the overall MSE

error of the sparse graph-based approach to be the worst of all models tested. Though

this overall performance is nuanced by the fact that a majority of vertices are predictable

by the model, this thesis cannot conclude that the project detailed in this thesis resulted

in a universal approximator for all vertices.

In explaining why the sparse graph-based approach was unable to serve as a universal

approximator for all vertices, the model as it was described in section 4.7 is studied. The

model parameters used in prediction over the test vertices are presented in table 6.1.

Layer Weight Bias
Layer 1 -0.7956 0.3972
Layer 2 0.4583 -0.4583
Layer 3 0.0334 -2.0066
Layer 4 -1.5201 -0.7233

Table 6.1: Sparse Heterogeneous model’s trained model parameters using the ’expression’
dataset.

This thesis concludes that the downside of having only two trainable parameters at

each network layer is the leading cause of the poor performance of the graph based sparse

model. The limited number of parameters is a consequence of the featurization of the

dataset, with each vertex containing only a single feature, as a consequence of limiting

61

the model input to a single individual’s gene expression values. Note that the weight

parameter at layer 3 is close to 0. This tendency suggests that the model in a large

degree discards the propagated expression values found in layers 1-3 and largely bases its

output prediction on a normalized guess.

Can dataset gene expression values be extrapolated using only genome vari-

ation data?

To answer the question of whether gene expression values may be extrapolated using only

genome variation data, the results presented in tables 5.3 and 5.4 forms the base of this

thesis’ conclusion.

The linear regression model using only genome variation data achieved a mean R2-

score of -0.0027. This means that on average, none of the variance of the prediction

targets in the test set is accounted for using the linear models approach. This thesis

therefore concludes that using the method outlined in chapter 4, gene expression values

cannot be extrapolated only using causal parents’ genome variation data.

In regards to the graph-based models, the sparse approach achieved a R2-score of

-196.5096 when only supplied with genome variation data. The compact approach

achieved a R2-score of -94.95. This thesis therefore concludes that using the experi-

ment outlined in section 4.6, a graph based model could not accurately extrapolate gene

expression values for a given gene given only its causal parents’ genome variation data

in this experiment. We hypothesise that the categorical input space, limits the possible

expressivity in the output space. This limitation is expanded by the aggregation function

performed over eQTL vertices.

In our experiment to determine if graph neural networks are an effective alternative

to existing linear approaches in gene expression inference, we found that the graph neural

networks proposed in this experiment were not a viable replacement to existing methods.

6.3 Further work

Inferring gene expression values in tissue where obtaining samples is not trivial remains

an interesting topic of research, as it may be helpful in determining an individual’s prob-

ability of developing disease. The experiment outlined in this thesis was unsuccessful in

62

inferring masked gene expression values. It is possible to make a number of changes in

the experiment setup outlined in chapter 4.

The changes suggested by this thesis largely pertain to the graph structure used to

make predictions. In this thesis, a DAG was used. The same experiment could be

attempted using an undirected graph in which cycles were allowed. In this case, vertices

may be able to receive feedback on messages passed to downstream genes, mimicking real

life biological networks.

In the featurization step, only the largest connected graph component was kept when

building the graph. This step could have been omitted, and the resulting graph would

have remained a valid input to the graph neural networks used in this thesis. This would

provide the graph-based models with a higher number of vertices over which predictions

could be made.

Related work in gene expression inference used samples’ age, sex and ethnicity in the

regression models in order to make predictions. These values could have been added to

the graph, represented by vertices with directed edges to all ’expression’ vertices.

The models used in this thesis all used the SAGEConv aggregation operator. Other

operators, such as Corso et. al’s Principal Neighbourhood Aggregation operator [10],

could be used in order to potentially improve prediction accuracy.

63

Glossary

adjacency matrix A 2-dimensional matrix with number of rows and columns equal to

the number of vertices in the graph. If an edge is present between a pair of vertices

(i, j), the j-th column of the i-th row will be equal to 1, 0 otherwise..

causal anchor Directed Acyclig Graph vertex with no incoming vertices. eQTLs serve

as causal anchors as their variation values are unaffected by the gene expression

values..

eQTL Expression Quantitative Trait Loci.

Gene expression The rate at which a gene produces the protein it encodes..

Genome An organism’s genetic material..

Graph Neural Networks A type of neural network specialised in performing inference

on graph structures..

LLR Log Likelihood Ratio, a statistic used to compare hypotheses in statistical hypoth-

esis testing..

locus A specific location in the genome..

MAE Mean Absolute Error.

MLE Maximum Likelihood Estimate.

MSE Mean Squared Error.

permutation equivariant A function where the result of applying any permutation

matrix to a function’s input yields the same output as applying the permutation

matrix to the function output with the true input..

permutation invariant A function where the result of applying any permutation ma-

trix to a function’s input yields the same output..

SNP Single Nucleotide Polymorphism.

topological sorting A way so sort graph vertices in a directed graph such that at any

point, moving right in the sort order gurantees the next vertex is not a parent of

the current vertex..

64

Bibliography

[1] 1000 Genomes Project Consortium, Adam Auton, Lisa D Brooks, Richard M Durbin,

Erik P Garrison, Hyun Min Kang, Jan O Korbel, Jonathan L Marchini, Shane

McCarthy, Gil A McVean, and Gonçalo R Abecasis. A global reference for human

genetic variation. Nature, 526(7571):68–74, October 2015.

[2] Solveig Badillo, Balazs Banfai, Fabian Birzele, Iakov I. Davydov, Lucy Hutchin-

son, Tony Kam-Thong, Juliane Siebourg-Polster, Bernhard Steiert, and Jitao David

Zhang. An introduction to machine learning. Clinical pharmacology and therapeutics,

107(4):871–885, 2020. ISSN 0009-9236.

[3] R. Balakrishnan and K. Ranganathan. A textbook of graph theory, page 3–3. Springer,

2012.

[4] Jørgen Bang-Jensen. Digraphs: Theory, algorithms, and applications, 2000.

[5] Mahashweta Basu, Kun Wang, Eytan Ruppin, and Sridhar Hannenhalli. Predicting

tissue-specific gene expression from whole blood transcriptome. Science Advances, 7

(14):eabd6991, 2021. doi: 10.1126/sciadv.abd6991.

URL: https://www.science.org/doi/abs/10.1126/sciadv.abd6991.

[6] Sarah A. Bates. Chromosome, 2023.

URL: https://www.genome.gov/genetics-glossary/Chromosome. Accessed 02-04-2023.

[7] Boundless. The genetic code - the relationship between genes and proteins, 2022.

URL: https://bio.libretexts.org/Bookshelves/Introductory and General Biology/Book%

3A General Biology (Boundless)/15%3A Genes and Proteins/15.01%3A The Genetic Code -

The Relationship Between Genes and Proteins#:~:text=Protein%2Dencoding%20genes%

20specify%20the,life%20as%20we%20know%20it. Accessed 02-04-2023.

[8] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric

deep learning: Grids, groups, graphs, geodesics, and gauges, 2021.

65

https://www.science.org/doi/abs/10.1126/sciadv.abd6991
https://www.genome.gov/genetics-glossary/Chromosome
https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%3A_General_Biology_(Boundless)/15%3A_Genes_and_Proteins/15.01%3A_The_Genetic_Code_-_The_Relationship_Between_Genes_and_Proteins#:~:text=Protein%2Dencoding%20genes%20specify%20the,life%20as%20we%20know%20it.
https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%3A_General_Biology_(Boundless)/15%3A_Genes_and_Proteins/15.01%3A_The_Genetic_Code_-_The_Relationship_Between_Genes_and_Proteins#:~:text=Protein%2Dencoding%20genes%20specify%20the,life%20as%20we%20know%20it.
https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%3A_General_Biology_(Boundless)/15%3A_Genes_and_Proteins/15.01%3A_The_Genetic_Code_-_The_Relationship_Between_Genes_and_Proteins#:~:text=Protein%2Dencoding%20genes%20specify%20the,life%20as%20we%20know%20it.
https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%3A_General_Biology_(Boundless)/15%3A_Genes_and_Proteins/15.01%3A_The_Genetic_Code_-_The_Relationship_Between_Genes_and_Proteins#:~:text=Protein%2Dencoding%20genes%20specify%20the,life%20as%20we%20know%20it.

[9] PITHI CHANVORACHOTE, NICHARAT SRIRATANASAK, and NONGYAO

NONPANYA. C-myc contributes to malignancy of lung cancer: A potential an-

ticancer drug target. Anticancer Research, 40(2):609–618, 2020. ISSN 0250-7005.

doi: 10.21873/anticanres.13990.

URL: https://ar.iiarjournals.org/content/40/2/609.

[10] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Velickovic.

Principal neighbourhood aggregation for graph nets. CoRR, abs/2004.05718, 2020.

URL: https://arxiv.org/abs/2004.05718.

[11] Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics.

Springer Nature, Berlin, Heidelberg, fifth edition edition, 2017. ISBN 3662536226.

[12] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch

geometric. CoRR, abs/1903.02428, 2019.

URL: http://arxiv.org/abs/1903.02428.

[13] John Gearhart, Evanthia E. Pashos, and Megana K. Prasad. Pluripotency redux

— advances in stem-cell research. New England Journal of Medicine, 357(15):1469–

1472, 2007. doi: 10.1056/NEJMp078126.

URL: https://doi.org/10.1056/NEJMp078126. PMID: 17928593.

[14] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT Press,

2016.

[15] Aric Hagberg, Pieter Swart, and Daniel Chult. Exploring network structure, dynam-

ics, and function using networkx. 01 2008.

[16] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learn-

ing on large graphs, 2018.

[17] Ramin Hasibi and Tom Michoel. A graph feature auto-encoder for the prediction of

unobserved node features on biological networks. BMC Bioinformatics, 22(1):525,

2021. doi: 10.1186/s12859-021-04447-3.

URL: https://doi.org/10.1186/s12859-021-04447-3.

[18] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics.

Springer New York, New York, NY, second edition edition. ISBN 0387848576.

[19] Omar Hernandez Rodriguez and Jorge Fernández. A semiotic reflection on the di-

dactics of the chain rule. The Montana Mathematics Enthusiast, 7:321–332, 07 2010.

doi: 10.54870/1551-3440.1191.

66

https://ar.iiarjournals.org/content/40/2/609
https://arxiv.org/abs/2004.05718
http://arxiv.org/abs/1903.02428
https://doi.org/10.1056/NEJMp078126
https://doi.org/10.1186/s12859-021-04447-3

[20] National Human Genome Research Institute. Human genomic variation, 2023.

URL: https://www.genome.gov/about-genomics/educational-resources/fact-sheets/

human-genomic-variation. Accessed: 14-08-2023.

[21] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,

2017.

[22] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convo-

lutional networks. CoRR, abs/1609.02907, 2016.

URL: http://arxiv.org/abs/1609.02907.

[23] Mark A. Kramer. Nonlinear principal component analysis using autoassociative

neural networks. Aiche Journal, 37:233–243, 1991.

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. Imagenet classification with

deep convolutional neural networks. Neural Information Processing Systems, 25, 01

2012. doi: 10.1145/3065386.

[25] Miroslav Kubat. An Introduction to Machine Learning. Springer Nature, Cham, 2nd

ed. 2017 edition, 2017. ISBN 9783319639130.

[26] Tuuli Lappalainen, Michael Sammeth, Marc Friedländer, Peter Hoen, Jean Mon-

long, Manuel Rivas, Mar Gonzàlez Porta, Natalja Kurbatova, Thasso Griebel,

Pedro Ferreira, Matthias Barann, Thomas Wieland, Liliana Greger, Maarten

Iterson, Jonas Almlöf, Paolo Ribeca, Irina Pulyakhina, Daniela Esser, Thomas

Giger, and Emmanouil Dermitzakis. Transcriptome and genome sequencing uncov-

ers functional variation in humans. Nature, 501, 09 2013. doi: 10.1038/nature12531.

URL: https://www.researchgate.net/publication/256611581 Transcriptome and genome sequencing uncovers functional variation in humans.

[27] Tong Ihn Lee and Richard A Young. Transcriptional regulation and its misregulation

in disease. Cell, 152(6):1237–1251, March 2013.

[28] Petro Liashchynskyi and Pavlo Liashchynskyi. Grid search, random search, genetic

algorithm: A big comparison for nas. 2019.

[29] nature.com. Snp.

URL: https://www.nature.com/scitable/definition/snp-295/. Accessed 02-04-2023.

[30] Alexandra C Nica and Emmanouil T Dermitzakis. Expression quantitative trait loci:

present and future. Philos. Trans. R. Soc. Lond. B Biol. Sci., 368(1620):20120362,

May 2013.

67

https://www.genome.gov/about-genomics/educational-resources/fact-sheets/human-genomic-variation
https://www.genome.gov/about-genomics/educational-resources/fact-sheets/human-genomic-variation
http://arxiv.org/abs/1609.02907
https://www.researchgate.net/publication/256611581_Transcriptome_and_genome_sequencing_uncovers_functional_variation_in_humans
https://www.nature.com/scitable/definition/snp-295/

[31] Tong P, Monahan J, and Prendergast JGD. Shared regulatory sites are abun-

dant in the human genome and shed light on genome evolution and disease

pleiotropy. PLoS Genet 13(3): e1006673., 03 2017. doi: https://doi.org/10.1371/

journal.pgen.1006673.

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-

peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in

Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[33] Brandon L. Pierce, Lin Tong, Lin S. Chen, Ronald Rahaman, Maria Argos,

Farzana Jasmine, Shantanu Roy, Rachelle Paul-Brutus, Harm-Jan Westra, Lude

Franke, Tonu Esko, Rakibuz Zaman, Tariqul Islam, Mahfuzar Rahman, John A.

Baron, Muhammad G. Kibriya, and Habibul Ahsan. Mediation analysis demon-

strates that trans-eqtls are often explained by cis-mediation: A genome-wide

analysis among 1,800 south asians. PLOS Genetics, 10(12):e1004818, 2014. doi:

10.1371/journal.pgen.1004818.

URL: https://app.dimensions.ai/details/publication/pub.1021600128.

https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1004818type=printable.

[34] Leslie Pray. Eukaryotic genome complexity. Nature Education 1(1):96, 2008.

URL: https://www.nature.com/scitable/topicpage/eukaryotic-genome-complexity-437/

#.

[35] Andrinandrasana David Rasamoelina, Fouzia Adjailia, and Peter Sinčák. A review of

activation function for artificial neural network. 2020 IEEE 18th World Symposium

on Applied Machine Intelligence and Informatics (SAMI), 01 2020. doi: 10.1109/

SAMI48414.2020.9108717.

[36] Olivier Renaud and Maria-Pia Victoria-Feser. A robust coefficient of determination

for regression. Journal of Statistical Planning and Inference, 140(7):1852–1862, 2010.

ISSN 0378-3758. doi: https://doi.org/10.1016/j.jspi.2010.01.008.

URL: https://www.sciencedirect.com/science/article/pii/S0378375810000194.

[37] Kenneth H Rosen. Discrete mathematics and its applications, 2019.

[38] Robert Sedgewick and Kevin Wayne. Algorithms (4th edition), 2011.

[39] S.P. Simna and Zongchao Han. Prospects of non-coding elements in genomic DNA

based gene therapy. Current Gene Therapy, 22(2):89–103, April 2022. doi: 10.2174/

68

https://app.dimensions.ai/details/publication/pub.1021600128
https://www.nature.com/scitable/topicpage/eukaryotic-genome-complexity-437/#
https://www.nature.com/scitable/topicpage/eukaryotic-genome-complexity-437/#
https://www.sciencedirect.com/science/article/pii/S0378375810000194

1566523221666210419090357.

URL: https://doi.org/10.2174/1566523221666210419090357.

[40] Lingfei Wang and Tom Michoel. Efficient and accurate causal inference with hidden

confounders from genome-transcriptome variation data. PLOS Computational Biol-

ogy, 13(8):1–26, 08 2017. doi: 10.1371/journal.pcbi.1005703.

URL: https://doi.org/10.1371/journal.pcbi.1005703.

[41] Wenjian Xu, Xuanshi Liu, Fei Leng, and Wei Li. Blood-based multi-tissue gene

expression inference with Bayesian ridge regression. Bioinformatics, 36(12):3788–

3794, 04 2020. ISSN 1367-4803. doi: 10.1093/bioinformatics/btaa239.

URL: https://doi.org/10.1093/bioinformatics/btaa239.

69

https://doi.org/10.2174/1566523221666210419090357
https://doi.org/10.1371/journal.pcbi.1005703
https://doi.org/10.1093/bioinformatics/btaa239

Appendix A

Gene Names and Indices

70

71

1 ENSG00000178585.10 41 ENSG00000136280.10 81 ENSG00000164414.11
2 ENSG00000163584.13 42 ENSG00000075239.9 82 ENSG00000107537.9
3 ENSG00000158623.10 43 ENSG00000119950.14 83 ENSG00000165832.4
4 ENSG00000182512.4 44 ENSG00000133195.6 84 ENSG00000084623.7
5 ENSG00000160213.5 45 ENSG00000161217.6 85 ENSG00000090432.5
6 ENSG00000171103.6 46 ENSG00000100983.5 86 ENSG00000153933.5
7 ENSG00000131148.3 47 ENSG00000167634.6 87 ENSG00000174652.12
8 ENSG00000160781.9 48 ENSG00000177946.4 88 ENSG00000141295.8
9 ENSG00000197956.4 49 ENSG00000113812.9 89 ENSG00000164190.11
10 ENSG00000254470.2 50 ENSG00000186184.11 90 ENSG00000196267.6
11 ENSG00000112697.10 51 ENSG00000163002.8 91 ENSG00000181027.5
12 ENSG00000085415.10 52 ENSG00000115306.10 92 ENSG00000055211.7
13 ENSG00000154889.11 53 ENSG00000101444.7 93 ENSG00000180185.7
14 ENSG00000204149.4 54 ENSG00000110108.3 94 ENSG00000135336.8
15 ENSG00000197498.7 55 ENSG00000090054.8 95 ENSG00000118217.5
16 ENSG00000012124.9 56 ENSG00000031698.8 96 ENSG00000117362.8
17 ENSG00000261311.1 57 ENSG00000131042.9 97 ENSG00000179934.5
18 ENSG00000085982.8 58 ENSG00000182749.5 98 ENSG00000145386.5
19 ENSG00000013503.4 59 ENSG00000196365.5 99 ENSG00000147853.10
20 ENSG00000125445.5 60 ENSG00000125637.10 100 ENSG00000172500.8
21 ENSG00000204632.7 61 ENSG00000130513.3 101 ENSG00000233610.1
22 ENSG00000163875.11 62 ENSG00000245532.2 102 ENSG00000141759.9
23 ENSG00000169245.4 63 ENSG00000231507.1 103 ENSG00000132196.8
24 ENSG00000101181.12 64 ENSG00000259705.1 104 ENSG00000089693.6
25 ENSG00000104972.10 65 ENSG00000171045.10 105 ENSG00000109084.8
26 ENSG00000167740.3 66 ENSG00000167081.10 106 ENSG00000157557.7
27 ENSG00000168894.5 67 ENSG00000188223.7 107 ENSG00000087157.11
28 ENSG00000155463.7 68 ENSG00000086289.7 108 ENSG00000177721.3
29 ENSG00000189339.7 69 ENSG00000153898.8 109 ENSG00000167173.13
30 ENSG00000166548.10 70 ENSG00000006075.10 110 ENSG00000164253.8
31 ENSG00000204525.8 71 ENSG00000105618.8 111 ENSG00000185127.5
32 ENSG00000171469.6 72 ENSG00000105063.12 112 ENSG00000198231.6
33 ENSG00000183291.11 73 ENSG00000226742.2 113 ENSG00000105245.4
34 ENSG00000169660.10 74 ENSG00000108666.4 114 ENSG00000171940.8
35 ENSG00000197771.8 75 ENSG00000132819.12 115 ENSG00000160949.11
36 ENSG00000106771.7 76 ENSG00000155275.14 116 ENSG00000106772.11
37 ENSG00000126246.4 77 ENSG00000167965.12 117 ENSG00000147684.3
38 ENSG00000185164.10 78 ENSG00000164284.10 118 ENSG00000164933.5
39 ENSG00000104894.6 79 ENSG00000137841.7 119 ENSG00000109519.7
40 ENSG00000053501.7 80 ENSG00000148335.8 120 ENSG00000198624.7

Table A.1: Gene names and their respective indices, part 1

72

121 ENSG00000106153.12 161 ENSG00000183570.9 201 ENSG00000119599.12
122 ENSG00000105928.9 162 ENSG00000216937.5 202 ENSG00000140105.11
123 ENSG00000101577.4 163 ENSG00000180901.5 203 ENSG00000232703.1
124 ENSG00000040199.13 164 ENSG00000089250.13 204 ENSG00000218739.4
125 ENSG00000164978.12 165 ENSG00000221923.3 205 ENSG00000115216.8
126 ENSG00000175354.11 166 ENSG00000118640.6 206 ENSG00000108294.3
127 ENSG00000108433.10 167 ENSG00000184517.7 207 ENSG00000196756.5
128 ENSG00000144034.10 168 ENSG00000161265.6 208 ENSG00000148841.10
129 ENSG00000186468.8 169 ENSG00000165714.6 209 ENSG00000099282.4
130 ENSG00000084070.6 170 ENSG00000189409.7 210 ENSG00000136810.8
131 ENSG00000131238.10 171 ENSG00000204084.6 211 ENSG00000196367.7
132 ENSG00000196700.3 172 ENSG00000121691.4 212 ENSG00000186020.7
133 ENSG00000125430.4 173 ENSG00000177283.4 213 ENSG00000180616.3
134 ENSG00000117335.13 174 ENSG00000246273.2 214 ENSG00000205038.7
135 ENSG00000141141.9 175 ENSG00000185963.9 215 ENSG00000256771.1
136 ENSG00000224565.1 176 ENSG00000162384.7 216 ENSG00000011105.7
137 ENSG00000132423.6 177 ENSG00000171135.9 217 ENSG00000134077.10
138 ENSG00000204227.4 178 ENSG00000155307.13 218 ENSG00000101197.8
139 ENSG00000125753.8 179 ENSG00000154864.6 219 ENSG00000143149.8
140 ENSG00000159593.9 180 ENSG00000186226.7 220 ENSG00000179294.5
141 ENSG00000170542.5 181 ENSG00000122481.12 221 ENSG00000087191.7
142 ENSG00000148296.5 182 ENSG00000198171.7 222 ENSG00000111875.6
143 ENSG00000246174.2 183 ENSG00000142684.7 223 ENSG00000162396.5
144 ENSG00000182500.7 184 ENSG00000136436.9 224 ENSG00000111328.2
145 ENSG00000164615.3 185 ENSG00000185236.6 225 ENSG00000112584.8
146 ENSG00000154035.6 186 ENSG00000167182.10 226 ENSG00000179603.12
147 ENSG00000160953.8 187 ENSG00000132274.10 227 ENSG00000166529.9
148 ENSG00000168028.8 188 ENSG00000114054.9 228 ENSG00000236756.3
149 ENSG00000125319.8 189 ENSG00000102445.13 229 ENSG00000132842.8
150 ENSG00000119431.5 190 ENSG00000144199.6 230 ENSG00000143157.7
151 ENSG00000226479.3 191 ENSG00000259243.1 231 ENSG00000001630.10
152 ENSG00000006695.5 192 ENSG00000186470.7 232 ENSG00000179119.9
153 ENSG00000104835.8 193 ENSG00000141452.3 233 ENSG00000171790.11
154 ENSG00000133106.10 194 ENSG00000145934.11 234 ENSG00000146574.10
155 ENSG00000136448.6 195 ENSG00000176472.5 235 ENSG00000065000.9
156 ENSG00000117226.7 196 ENSG00000107745.10 236 ENSG00000075975.11
157 ENSG00000116983.7 197 ENSG00000174586.4 237 ENSG00000172893.10
158 ENSG00000174007.7 198 ENSG00000205181.2 238 ENSG00000134851.7
159 ENSG00000132199.11 199 ENSG00000253140.1 239 ENSG00000130309.4
160 ENSG00000177000.6 200 ENSG00000135842.12 240 ENSG00000162734.8

Table A.2: Gene names and their respective indices, part 2

73

241 ENSG00000138028.9 274 ENSG00000181396.7 307 ENSG00000188186.6
242 ENSG00000105875.9 275 ENSG00000196329.5 308 ENSG00000182108.5
243 ENSG00000144021.2 276 ENSG00000167748.5 309 ENSG00000105609.11
244 ENSG00000092010.10 277 ENSG00000124145.5 310 ENSG00000142102.11
245 ENSG00000104964.9 278 ENSG00000127220.3 311 ENSG00000159202.11
246 ENSG00000185187.7 279 ENSG00000078142.4 312 ENSG00000260804.1
247 ENSG00000064666.7 280 ENSG00000225339.1 313 ENSG00000118162.8
248 ENSG00000103199.8 281 ENSG00000086504.10 314 ENSG00000136982.5
249 ENSG00000085721.8 282 ENSG00000173113.2 315 ENSG00000184716.9
250 ENSG00000138035.9 283 ENSG00000181004.5 316 ENSG00000197457.5
251 ENSG00000246731.2 284 ENSG00000167720.7 317 ENSG00000148484.12
252 ENSG00000244165.1 285 ENSG00000135972.4 318 ENSG00000130758.2
253 ENSG00000122359.11 286 ENSG00000151552.7 319 ENSG00000176986.10
254 ENSG00000108389.4 287 ENSG00000105656.4 320 ENSG00000165672.5
255 ENSG00000127399.10 288 ENSG00000125450.5 321 ENSG00000180817.6
256 ENSG00000115946.3 289 ENSG00000085644.9 322 ENSG00000108592.9
257 ENSG00000204642.7 290 ENSG00000139044.6 323 ENSG00000168765.10
258 ENSG00000144655.9 291 ENSG00000046604.7 324 ENSG00000111850.5
259 ENSG00000204920.4 292 ENSG00000213246.1 325 ENSG00000165661.10
260 ENSG00000120088.9 293 ENSG00000162688.11 326 ENSG00000176912.2
261 ENSG00000228789.2 294 ENSG00000170425.2 327 ENSG00000103550.9
262 ENSG00000254614.1 295 ENSG00000134070.4 328 ENSG00000081665.7
263 ENSG00000197563.4 296 ENSG00000116514.11 329 ENSG00000196605.2
264 ENSG00000067057.10 297 ENSG00000101220.11 330 ENSG00000248099.2
265 ENSG00000010310.3 298 ENSG00000141562.11 331 ENSG00000152558.10
266 ENSG00000132623.10 299 ENSG00000171848.7 332 ENSG00000125735.5
267 ENSG00000179918.14 300 ENSG00000197863.3 333 ENSG00000065308.4
268 ENSG00000196449.3 301 ENSG00000168116.9 334 ENSG00000140403.7
269 ENSG00000116120.8 302 ENSG00000135211.5 335 ENSG00000198113.2
270 ENSG00000039650.4 303 ENSG00000181458.6 336 ENSG00000112218.5
271 ENSG00000082212.6 304 ENSG00000138801.4 337 ENSG00000003056.3
272 ENSG00000167671.6 305 ENSG00000138297.8 338 ENSG00000214447.3
273 ENSG00000105401.1 306 ENSG00000161091.7 339 ENSG00000119632.3

340 ENSG00000144231.5

Table A.3: Gene names and their respective indices, part 3

Appendix B

Proof of the Existence of a Vertex With No Incoming Edges in

a Directed Acyclic Graph

Given a directed acyclic graph G consisting of a set of n vertices V and a set of directed

edges E , each with consisting of a parent vertex vi and a child vertex vj, i, j < n. Assume

a scenario in which all vertices have at least one incoming vertex.

Select an arbitrary vertex v0 from V . As each vertex is assumed to have at least one

incoming vertex, select one parent vertex v1 of v0. Repeat this process until reaching

vertex vn. At this point at least one vertex must have been visited more than once. This

is a contradiction, however, as the graph is acyclic.

74

Appendix C

All Hyperparameters

Sparse Models

Sparse Expression

epochs: 30, learning rate: 0.1, weight decay: 0, mask percentage: 0.0

Sparse Genotype

epochs: 30, learning rate: 0.1, weight decay: 0, mask percentage: 0.0

Sparse Both

epochs: 30, learning rate: 0.1, weight decay: 0, mask percentage: 0.0

Compact Models

Compact Expression

epochs: 400, learning rate: 0.05, weight decay: 0.0001, mask percentage: 0.1

Compact Genotype

epochs: 400, learning rate: 0.05, weight decay: 0.0001, mask percentage: 0.1

Compact Both

epochs: 400, learning rate: 0.05, weight decay: 0.0001, mask percentage: 0.1

75

Appendix D

Random Graph Generation

At an earlier point in the project, to benchmark the performance of the models introduced

in this thesis, a system for generating random graphs was introduced. Supplying the

models with a randomly generated graph at each training iteration, resulting in worsening

predictive performance of the model, verifies that the model benefits from the graph

structure.

Results obtained using the randomly generated graphs at each iteration have been

omitted, in favor of reviewing the converged model parameters to determine on what

basis models make their predictions.

The algorithm should return a graph with the same vertex data as the input graph,

but with randomised edges. The number of edges in the output graph should be of

the same order of magnitude to be a fair reflection of the input graph. The resulting

algorithm was heavily influenced by Kruskal’s algorithm[38], psuedocode for which can

be viewed in listing D.1.

A new Graph object is instantiated using the NetworkX-framework for Python[15],

with vertices imported from the DAG generated by the Findr tool. In this state, the new

graph consists of a set of single vertex directed acyclic subgraphs with size equal to the

number of vertices in the Findr DAG. Until the set of directed acyclic subgraphs has size

1, the following loop is performed.

Two unconnected directed acyclic subgraphs are selected from the remaining set at

random. From each selected subgraph, a random vertex is selected. A new, directed, edge

is drawn between the pair of selected edges, such that one subgraph becomes a parent of

the other subgraph. A new subgraph is then created, which keeps the DAG-property.

76

When only one subgraph remains, the resulting graph is guaranteed to be a DAG.

At this state, however, the randomly generated DAG’s set of edges has size equal to

the size of the set of vertices minus 1. To make the generated DAG comparable to the

ground truth graph generated by the Findr tool, the random graph’s vertices are first

topologically sorted. We now utilise the property of DAGs that drawing an edge from

one vertex in the graph to another will not create a cycle, if the from-vertex appears

before the to-vertex in its topologically sorted order.

While the number of edges in the randomly generated graph is less than the number of

edges in the ground truth Findr graph, the following loop is performed. A random vertex

is selected from the topologically sorted set of vertices not containing the last vertex in

the list. Another random vertex is then selected from the set of vertices appearing after

the previously selected vertex in the topologically sorted order. If no edge already exists

between the two vertices, an edge is drawn.

The resulting graph is a guaranteed to be a DAG, with a number of edges equal to

the given ground truth graph. If a somewhat variable number of graph edges is desired,

the algorithm could trivially be modified to that effect, by performing the last loop until

the desired number of edges is added, decided as a hyperparameter or drawn from some

distribution.

Listing D.1: Psuedocode for random graph generation
1
2 def generate_random_graph(ground_truth_graph):
3 """
4 @param ground_truth_graph <Graph >: Graph object returned by

↪→ the Findr tool.
5
6 @returns random_graph <Graph >: Graph object with vertex values

↪→ equal to the input graph , but with randomised edges.
7 """
8 vertices = ground_truth_graph.vertices
9 random_graph = new Graph(vertices)
10 while not random_graph.is_weakly_connected ():
11 all_components = random_graph.weakly_connected_components ()
12 from_subgraph = random.select_and_remove(all_components)
13 from_vertex = random.select(from_subgraph)
14 to_subgraph = random.select_and_remove(all_components)
15 to_vertex = random.select(to_subgraph)
16 random_graph.add_edge(from_vertex , to_vertex)
17
18 toposorted_vertices = random_graph.topologically_sorted_vertices ()
19 while len(random_graph.edges) < len(ground_truth_graph.edges):
20 from_vertex_index = random.number(0, len(toposorted_vertices))
21 from_vertex = toposorted_vertices[from_vertex_index]
22 to_vertex_index = random.number(from_vertex_index ,

↪→ len(toposorted_vertices))
23 to_vertex = toposorted_vertices[to_vertex_index]
24 if random_graph.has_edge(from_vertex , to_vertex):
25 continue
26 random_graph.add_edge(from_vertex , to_vertex)
27
28 return random_graph

77

Appendix E

Model Architecture Illustrations

78

F
ig
u
re

E
.1
:
C
om

p
ac
t
h
et
er
og
en
eo
u
s
m
o
d
el

ar
ch
it
ec
tu
re

79

F
ig
u
re

E
.2
:
S
p
ar
se

h
et
er
og
en
eo
u
s
m
o
d
el

ar
ch
it
ec
tu
re

80

F
ig
u
re

E
.3
:
S
p
ar
se

h
om

og
en
eo
u
s
m
o
d
el

ar
ch
it
ec
tu
re

81

	Introduction
	Background
	Graphs
	Vertices and Edges
	Central Graph Properties

	Machine Learning
	Linear Regression
	Loss
	Activation functions
	Neural Networks
	Forward Pass
	Optimization Step
	Autoencoders

	Graph Neural Networks
	Matrix Representation of Graphs
	Permutation invariance and equivariance
	Aggregation layer variations

	Genome
	Genes
	Loci
	SNPs and eQTLs
	Effect on health
	Causal Inference in Gene Expression Prediction

	Project Motivation and Goals
	Existing work in gene expression inference
	Research Questions
	Linear and Graph-based Approach Motivations

	Experiment Setup
	The Geuvadis Dataset
	Dataset Analysis
	Dataset Featurization
	Graph Generation
	Preprocessing
	Linear Models Dataset
	Compact Graph-based Dataset
	Sparse graph-based Dataset

	Linear Training Setup
	Compact Training Setup
	Sparse Training Setup
	Models and Architectures

	Experiment Results and Evaluation
	Evaluation of MSE Score
	Evaluation of MSE Per Vertex
	Evaluation of R2 Score
	Prediction distributions

	Disucssion
	Sparse GNN Parameter Convergence
	Research Questions
	Further work

	Glossary
	Bibliography
	Gene Names and Indices
	Proof of the Existence of a Vertex With No Incoming Edges in a Directed Acyclic Graph
	All Hyperparameters
	Random Graph Generation
	Model Architecture Illustrations

