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Abstract

Time series models are widely used and studied. However time series of counts have only
recently garnered much interest. In this thesis we look at both univariate and multivariate
count time series that are approached thorough the generalized linear models framework.
Specifically we look at copula based multivariate models with Poisson marginals, and models
including covariates time series. We examine large sample properties of the models by
simulation. Furthermore, we use the models to study corporate defaults in the US, where
we find evidence for contagion effects. By contagion effect is meant, one firms defaulting
impact on other firms defaulting. We find that contagion effects are present even after
controlling for financial covariats that explain the systematic risks that the firms face.
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1. Introduction

Counts in time occur frequently in nature and therefore count time series is an interesting
topic of research. Models of count time series have been applied in different fields both in
social and natural sciences. See for example, Agosto, Cavaliere, Kristensen, and Rahbek,
2016 for a financial application, A. M. Schmidt and Pereira, 2011 for a medical application
and Ravishanker, Venkatesan, and Hu, 2015 for a marketing application. However, despite
count time series being interesting topic of research, the theory and methods to study them is
not as very well established as for continuous-valued time series. Focusing on autoregressive
models, the more obvious challenge lies in obtaining a model that results in a non-negative
integer-valued process. Consider the autoregressive model

Yt =

p∑
i=1

φiYt−i + εi (1.1)

where both {Yt} and {εi} are assumed to be continuous-valued and both possibly taking
negative and positive values. An approach that carries over the autoregressive structure
to discrete valued time series in the so called integer-valued autoregressive process, INAR,
introduced by McKenzie, 1985 and Alzaid and Al-Osh, 1988. Since the above recursion
cannot be applied to the integer-valued case, Because the multiplication of an integer by a
real number usually results in a non-integer value. Thus, one needs to replace the scalar
multiplication in the recursion (1.1) by a different operation with similar properties, such
operations are thinning operations. A simple example is the INAR(1) model, that is based
on the Binomial thinning operation process, defined by the recursion

Yt = α ◦ Yt−1 + εt (1.2)

where

α ◦ Yt−1 =

Yt−1∑
i=1

Xi.

The variables Xi, i ∈ N are independent and identically distributed (IID) Bernoulli variables
with success probability α ∈ [0, 1], independent of the innovations {εt}. Thus, conditionally
on Y being given, α ◦ Y is a binomial variable. A through review of thinning operators is
given in Weiß, 2008. The Binomial thinning operator is the most common amongst others,
because it is particularly suited for Poisson marginal and has an intuitive interpretation.
Consider a population of size Y at a some time t. If the population have shrunk when
observed at a letter point in time, say t+ 1, which means that some individuals have died
in the interval [t, t + 1]. If the probability of death is independent for individuals in the
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1. Introduction

population, then the probability of dying in the interval [t, t+1] for each individual is 1−α.
Then the number of survivors is given by α ◦ Y .

However the INAR approach is still restrictive in comparison to (1.1). For example the
correlation is always positive and multivariate analogues of the models are not straight
forward. In this thesis we work with an alternative approach of modeling count time series,
namely generalized linear models. These models belong the class of observation driven
models. We describe the approach in more detain in section 2. With this approach it is
possible to construct models that allow for negative correlation and allow covariates to enter
the model in a straight forward manner. See Kedem and Fokianos, 2005 for more on time
series that follow generalized linear models.

The rest of the thesis is structured as follows; In sections 3 and 4 we discuss the linear
and the log-linear models respectively, Key references are Fokianos, Rahbek, and Tjøstheim,
2009 and Fokianos and Tjøstheim, 2011. Sections 5 - 6 are preliminaries, where we introduce
copulas, automatic differentiation, and local Gaussian correlation. A reader familiar with
these concepts may skip these sections. In section 8 we study the multivariate analogues of
the latter models by simulation, including extensions of the models that include covariates.
In section 9 we provide application examples, specifically applications to counts of stocks
Coca-cola and corporate defaults in the US. In section 10 an attempt is made to estimate
copula parameters using a novel approach based on local Gaussian correlation suggested by
Fokianos, Støve, Tjøstheim, Doukhan, et al., 2020.
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2. Generalized Linear Models

Generalized linear models first introduced by Nelder and Wedderburn (1972) relaxes many
of the assumptions in linear regression models. Particulary the assumption that the re-
sponse variable is normally distributed. There are also cases where the response variable is
categorical or counts, in which the simple linear regression is not suitable. In the generalized
linear models one assumes that the response variable y is independently distributed with a
distribution that belongs to the exponential family, i.e the distribution can be represented
in the following form;

f(y) = c(y, φ)exp(
yθ − b(θ)

φ
) (2.1)

Generalized linear models have generally the following theree componenets

• Random Component.Specifies the distribution of the response variable, that belongs
to the exponential family.

• Systematic Componenet. This is the same as the right hand side in linear regression.
ηi = xTi β, where xi is a vector of covariates and β is a vector of model parameters.

• Link Function. As the name suggests this is a function g that connects the random
component to the systematic component.

Thus a generalized linear model has the form,

g(µi) = xTi β, where µi = E(yi) (2.2)

2.1. Generalized Linear Models and Time Series

As mentioned above generalized linear models do away some of the restrictions encountered
in simple linear regression models. Although generalized linear models were originally meant
for independent data, the approach can still be extended to dependent data under some
appropriate assumptions. There is a comprehensive treatment of generalized linear models
for time series data in Kedem and Fokianos, 2005.

In order to extend generalized linear models ideas to time series, let us start by defining
some components. let {Yt} be a time series of interest and let

Zt−1 = (Z(t−1)1, ..., Z(t−1)p)
T
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2. Generalized Linear Models

be the corresponding p-dimensional vector of past explanatory variables or covariates, t =
1, ..., N . In addition let

Ft−1 = σ{Yt−1, Yt−2, ...,Zt−1,Zt−2, ...}

denote all information available at time t − 1. Then the aim is to relate the conditional
expectation of the response variable given past information,i.e µ = E(Yt|Ft−1) to the co-
variates.

We proceed by extending the key concepts of generalized linear models, exponential
family of distributions and monotone link functions to time series data as we did in the
case of independent data. Thus time series following generalized linear models have, using
the same terminology a random component,that is the distribution of the response given
past information belongs to the exponential family. That is, it can be represented in the
following form

f(yt; θt, φ|Ft−1) = exp
{ytθt − b(θt)

αt(φ)
+ c(yt;φ)

}
(2.3)

Furthermore it has a systematic component and a link function that relates the conditional
mean to the systematic component as follows (see ch.1,2 Kedem and Fokianos, 2005)

g(µt) = ηt =

p∑
i=1

βiZ(t−1)i = ZT
t−1β (2.4)

2.2. Modified Likelihood functions

In extending the generalized linear models framework to dependent data, the main challenge
can be obtaining a convenient likelihood function. Likelihood function defined as the joint
distribution of the observed data given unknown parameters can be difficult to obtain,
particularly when the data are dependent, and the nature of dependence is not understood.
To resolve this problem one seeks to modify the likelihood function by means of some
clever conditioning(Kedem and Fokianos, 2005). An example of such conditioning is partial
likelihood, which is advanced by Cox, 1975. Here we follow Kedem and Fokianos, 2005
to motivate the partial likelihood. Suppose we have a time series data {Yt, t = 1, ..., N}
with a joint density fθ(y1, ..., yn), where θ is a vector of parameters. Let also I be auxiliary
information known to the observer in the period of observation. Then the likelihood function
is defined by

fθ(y1, ..., yN |I) = fθ(y1|I)
N∏
t=2

fθ(yt|y1, ..., yt−1, I) (2.5)

When auxiliary information is not available or is not useful, the likelihood function reduces
to the following eqation.

fθ(y1, ..., yN ) = fθ(y1)
N∏
t=2

fθ(yt|y1, ..., yt−1) (2.6)

9



2. Generalized Linear Models

The main challenge with (2.6) is that if no other additional assumptions are made, as
the number of observations increases so does the number of parameters. This raises the
issue of consistency, as well as modelling issues. This however is resolved if the conditional
dependence in the time series is limited and we have a fixed number of parameters.

Some assumptions and modifications are needed to make (2.6) also suitable for dependent
data. A Markov dependence of some order would result in limiting the conditional depen-
dence. suppose we have a first order markov process Yt, t = 1, 2, ..., N with joint density
fθ(y1, ..., yN ) where θ is a fixed parameter vector. The density reduces to

fθ(y1, ..., yN ) = fθ(y1)
N∏
t=2

fθ(yt|yt−1) (2.7)

by the markov assumption. If we we ignore the fist term of (2.7) since it does not depend
on N, inference about θ can be made from the product term. This term is a product of
conditional densities, thus constitutes a conditional likelihood.

Now consider partial likelihood due to Cox et al., 1981, an idea based on only using part
of (2.6), that is a factorization that consists of only on odd numbered conditional denstities
(Kedem and Fokianos, 2005). consider a pair of jointly observed time series (Xt, Yt) where
Xt is a covarite series. Then similar to (2.6) the likelihood function is given by

fθ(x1, y1, ..., xN , yN ) = fθ(x1)
[ N∏
t=2

fθ(xt|dt)
][ N∏

t=1

fθ(yt|ct)
]

(2.8)

where dt = (y1, x1, ..., yt−1, xt−1) and ct = (y1, x1, ..., yt−1, xt−1, xt). Then inference concern-
ing θ can be made just from the second product term of (2.8). There is loss of information
from the ignored factor, however this loss is small according to Kedem and Fokianos, 2005.
This leads to a form of a likelihood function that does not require specification of the entire
joint distribution of the data and of eventually the covariates. Below is a definition of such
likelihood that has fixed number of parameters as a product of conditional densities .

Definition 2.2.1. Let Ft, t = 0, 1, ... be an increasing sequence of σ-fields, F0 subsetF1 ⊂
F2..., and let Y1, Y2, ... be a sequence of random variables on some common probability
space such that Yt is Ft measurable. The partial likelihood function relative to θ, Ft, and
the data Y1, ..., YN is given by the product

L(θ; y1, ..., yN ) =
N∏
t=1

fθ(Yt|Ft−1) (2.9)
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3. Linear Model

let {Yt} be a time series of count and consider the model given by

Y |FY,λt−1 ∼ Poisson(λt) where λt = d+ aλt−1 + bYt−1, t ≥ 1 (3.1)

The parameters d,a and b are assumed to be positive and satisfy 0 < a+ b < 1. FY,λt−1 is the
σ-field generated by {Ys, s ≤ t− 1;λs, s ≤ t}.

While Poisson distribution is the most prevalent in modeling counts, it is sometime
unsuitable because of its property that the conditional mean and variance are equal, i.e
E(Yt|FY,λt−1) = Var(Yt|FY,λt−1) = λt. When this is the case one may want to try other distribu-
tions than the Poisson, this is more easily achieved in the GLM framework for time series as
introduced above. Bosowski, Ingle, and Manolakis, 2017 models US-monthly nuclear tests
using the Negative binomial distribution.

In order to see some properties of the linear model, we can represent (3.1) as follows

Yt = λt + (Yt − λt)
= λt + εt

= d+ aλt−1 + bYt−1 + εt−1

= d+ a(εt−1 − Yt−1) + bYt−1 + εt−1

= d+ (a+ b)Yt−1 + (εt−1 − aεt−1)

Where εt is a white noise process with E(εt) = 0 and cov(εt, εh−1) for all h. From which we
obtain an ARMA type innovations representaion

Yt − µ = (a+ b)Yt−1 + εt − aεt−1 (3.2)

Where

µ = E(Yt) =
d

1− (a+ b)
(3.3)

It has been shown that the Model (3.1) is stationary if 0 < a + b < 1 (Fokianos et al.,
2009 and references therein). It has also been shown that the autocovariance function for
Yt, with mean E(Yt) = E(λt) ≡ µ = d/1− (a+ b) , is given by

Cov[Yt, Yt+h] =


(1−(a+b)2+b2)µ

1−(a+b)2
, h = 0

b(1−a(a+b))(a+b)h−1µ
1−(a+b)2

, h = 1
(3.4)

It is also important to point out as Tjøstheim, 2012 does, There is a conceptual distinction
between model (3.1) and an AR model, while the later can be characterized by second order
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3. Linear Model

properties, the former is essentially a probabilistic model where the autocovariance function
is of less importance.

Following the classification method of Non-Gaussian time series by Cox et al., 1981,
where one has a general exponential family formulation, such models can either be obser-
vation driven or parameter driven. Let yt be a time series and Y (t−1) = (Yt−1, Yt−2, ...).
Suppose Θt is a parameter at time t. In an observation driven model

Θt = Θ(Y t−1, ηt)

where ηt is a random innovation at time t. On the other hand in a parameter driven model

Θt = Θ(Θt−1, ηt)

where ηt is a pure noise innovations process and Θt forms a markov process. After repeated
substitution we can rewrite model (3.1)

λt = d+ aλt + bYt−1

= d+ ad+ a2λt−2 + abYt−2 + bYt−1

= d+ ad+ a2d+ a3λt−3 + a2bYt−3 + abYt−2 + bYt−1

...

λt = d
1− at

1− a
+ atλ0 + b

t−1∑
i=0

ailog(Yt−j−1)

We can see from the latter equation that the unobserved process λt can be expressed in
terms of past values of the observed process Yt. Therefore the linear model belongs to
observation driven models by Cox et al., 1981 terminology.

The model (3.1) is rephrased slightly differently in Fokianos et al., 2009 to make it more
convenient for the proofs of the results shown therein, such as, ergodicity of the process and
asymptotic normality of maximum likelihood estimates of the model. In particular they
consider the first part of (3.1) which is a sequence of independent Poisson drawings more
explicitly in terms of random variables. To that end, for each time point t, it is introduced
a Poisson process Nt(·) of unit intensity. Then the first part of (3.1) is expressed in terms
of these Poisson processes by assuming that Yt = Nt(λt) is equal to the number of events
in the time interval [0, λt]. Thus, for a sequence of independent random Poisson processes
of unit intensity,{Nt(·), t = 1, 2, ...}, (3.1) can be restated as

Yt = Nt(λt) λt = d+ aλt−1 + bYt−1 (3.5)

for t ≥ 0 and Y0 and λ0 fixed.
The model (3.1 or 3.5) fits in the GLM framework discussed in the previous section. In

particular, the random component is the Poisson distribution and belong to the exponential
family. The systematic component is given by ηt = ZT

t−1β where Zt−1 = (1, λt−1, Yt−1)T
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3. Linear Model

and β is a vector of parameters. The functions that connects these to components is the
identity link, in the next section, we discuss the model with the canonical link.

In order to prove geometric ergodicity of the bivariate process {(Yt, λt)} Fokianos et al.,
2009 considers the perturbed version of the chain {Y m

t , λmt } defined by

Y m
t = Nt(λ

m
t ), λmt = d+ aλmt−1 + bY m

t−1 + εt,m (3.6)

with λm0 ,Y m
0 fixed and

εt,m = Cm1(Yt−1 = 1)Ut, Cm ≥ 0, Cm −→ 0, as m −→∞

where 1(·) is an indicator function and where {Ut} is a sequence of i.i.d uniform random
variables on (0, 1) such that {Ut} is independent {Nt(·)}. Without going into any detail,
(3.1) obtain the following result

1. Consider model (3.6) and suppose that 0 < a+b < 1. Then the process {(Y m
t , λmt , Ut), t ≥

0} is a V(Y,U,λ) -geometrically ergodic Markov chain with VY,U,λ(Y,U, λ) = 1 + Y k +

λk + Uk

2. If 0 < a + b < 1, then as m −→ ∞such that cm −→ 0, the perturbed model can be
made arbitrarily close to the unperturbed model.

3.1. Partial Likelihood Inference and Estimation

let θ be a three dimensional vector of parameters, θ = (d, a, b)T and the true values of the
parameter be θ0 = (d0, a0, b0). Then the conditional likelihood function for θ given the
time series data Y1, ..., Yn is

L(θ) =
n∏
t=1

exp(−λt(θ)Ytt (θ)

Yt!
(3.7)

Where the intensity process λt(θ) = d+aλt−1(θ)+bYt−1 is defined as in model(3.1). Hence
the corresponding log-likelihood function is given by

l(θ) =
n∑
t=1

lt(θ) =
n∑
t=1

(Ytlog(λt(θ))− λt(θ)) (3.8)

We find the score function by differentiating the log-likelihood function, ans we obtain,

Sn(θ) =
∂l(θ)

∂θ
=

n∑
t=1

∂lt(θ)

∂θ
=

n∑
t=1

(
Yt

λt(θ)
− 1)

∂λt(θ)

∂θ
(3.9)

Where the last term ∂λt
∂θ is differentiation with respect to each component of the parameter

vector, given by

∂λt
∂d

= 1 + a
∂λt−1

∂d
,

∂λt
∂a

= λt−1 + a
∂λt−1

∂a
,

∂λt
∂b

= Yt−1 + a
∂λt−1

∂b
(3.10)
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3. Linear Model

The solution of to the equation Sn = 0 gives the the parameter θ denoted by θ̂ that
maximizes the conditional maximum likelihood, provided that it exists. we can also obtain
the Hessian matrix by differentiating the log-likelihood function one more time

Hn(θ) = −
n∑
t=1

∂2lt(θ)

∂θ∂θT

=
n∑
t=1

Yt
λ2
t (θ)

(∂λt(θ)

∂θ

)(∂λt(θ)
∂θ

)T
−

n∑
t=1

( Yt
λ− t()θ

− 1
)∂2λt(θ)

∂θ∂θT
(3.11)

Similarly the likelihood function for the perturbed model,Lm is given by

Lm =
n∏
t=1

exp(−λmt (θ))(λmt (θ))Y
m
t

Y m
t !

n∏
t=1

fu(Ut) (3.12)

where fu(·) is the uniform density and λmt−1 is defined as in (3.6). Here, the product is due
to the Independence assumption between {Ut} and Nλmt−1

. The corresponding log likelihood
function is given by,

lm(θ) =
n∑
t=1

lmt (θ) =
n∑
t=1

(Y m
t logλmt (θ)− λmt (θ)) +

n∑
t=1

logfu(Ut) (3.13)

Furthermore, the score function is almost identical to the score function of the unperturbed
model given by the following

Smn (θ) =
∂lm(θ)

∂θ
=

n∑
t=1

∂lmt (θ)

∂θ
=

n∑
t=1

(
Y m
y

λmt (θ)
− 1

)
∂λmt (θ)

∂θ
(3.14)

The last term of the latter equation is a vector consisting of the following components

∂λt
∂d

= 1 + a
∂λmt−1

∂a
,

∂λmt
∂a

= λmt−1 + a
∂λmt−1

∂a
,

∂λmt
∂b

= Y m
t−1 + a

∂λmt−1

∂b
.

The solution to the equation Smn = 0, if it exists is denoted by θ̂m. By differentiating the
log likelihood function once more, the Hessian matrix is obtained,

Hm
n (θ) = −

n∑
t=1

∂2lmt (θ)

∂θ∂θT

=

n∑
t=1

Y m
t

(λmt (θ))2

(
∂λmt (θ)

∂θ

)(
∂λmt (θ)

∂θ

)T

−
n∑
t=1

(
Y m
t

λmt (θ)
− 1

)
∂2λmt (θ)

∂θ∂θT
(3.15)

Asymptotic properties of the maximum likelihood estimator θ̂ of the linear model are
obtained by Fokianos et al., 2009. To state the result obtained, define lower and upper
bounds for the components of the parameter θ,

O(θ0) = {θ|0 < δL ≤ d ≤ δU , 0 < αL ≤ a ≤ αU , and 0 < βL ≤ b ≤ βU}
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3. Linear Model

Theorem 3.1.1. Consider model (3.1) and suppose that at the true value θ0, 0 < a0 +b0 <
1. Then, there exists a fixed open neighborhood O = O(θ0) of θ0-see (3.1)-such that
with probability tending to one, as n −→ ∞, the log likelihood function (3.8) has a unique
maximum point θ̂. Furthermore, θ̂ is consistent and asymptotically normal:

√
n(θ̂ − θ0)

d−→ N(0,G−1),

where the matrix G is defined by

G(θ) = E

(
1

λt

(
∂λt
∂θ

)(
∂λt
∂θ

)T)

A consistent estimator of G is given by G
n ,where

G(θ) =

n∑
t=1

var[
∂lt(θ)

∂θ
] =

n∑
t=1

1

λt

(
∂λt
∂θ

)(
∂λt
∂θ

)T

The proof the the above theorem and other details (such as, lemmas that show how the
score function, the information matrix and the third derivative of the likelihood function of
the perturbed model tend to their count part of the unperturbed model, and the respective
proofs) are found in Fokianos et al., 2009.
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4. Log-linear Model

It is argued in Fokianos and Tjøstheim, 2011 that the linear model discussed in the previous
section has two main disadvantages. Firstly, since Cov[Yt, Yt+h] > 0 because 0 < a+ b < 1,
the model is not suitable for modeling negatively correlated time series. The second is the
difficulty of incorporating explanatory variables into the model. The linear model can only
admit covariates that result in a positive regression term, Otherwise the poisson intensity
process,λt, will be negative. However, count time series are often observed along side a
covariate series, for instance the number of claims that occur of car crushes for an insurance
company could be correlated with the number of rainy days in a month. Then it beneficial
to be able to put all the information together in a model.

Moreover, the log linear model fits with the generalized linear model approach as described
above, with the canonical link function. Let νt ≡ log(λt), and FY,λt−1 be the σ-field generated
by {Y0, ..., Yt, ν0}. The model is given by

Yt|FY,λt−1 ∼ Poisson(λt), νt = d+ aνt−1 + blog(Yt−1 + 1), t ≥ 1 (4.1)

Equivalently, by repeated substitution, we can write model(4.1) as

νt = d+ aνt−1 + blog(Yt−1 + 1)

= d+ a(d+ aνt−2 + blog(Yt−2 + 1)) + blog(Yt−1 + 1)

= d(1 + a) + a2νt−2 + ablog(Yt−2 + 1) + blog(Yt−1 + 1)

= d(1 + a+ a2) + a3νt−3 + b(a2log(Yt−3 + 1) + alog(Yt−2 + 1) + log(Yt−1 + 1))

...

= d
1− at

1− a
+ atν0 + b

t−1∑
i=0

ailog(Yt−i−1 + 1) (4.2)

Similar to the intensity process of the linear model, νt can also be expressed by past value
of the observed process Yt, therefore the log linear model belongs to the class of observation
driven models as well.

Following a similar approach as Fokianos et al., 2009, that is by first studying the ergodic
properties of the perturbed model, Fokianos and Tjøstheim, 2011 show that the maximum
likelihood estimator of the model is consistent and asymptotically normal.

The perturbed model is defined by

Y m
t = Nt(λ

m
t ) = Nt(exp(νmt )), νmt = d+ aνmt−1 + blog(Y m

t−1 + 1) + εt,m (4.3)
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4. Log-linear Model

εt,m = cm1(Y m
t−1 = 1)Ut, cm > 0, cm −→ 0, a s m −→∞

with νm0 , Y
m

0 fixed, where {Nt(·)} is as defined in the previous section, 1(·) is an indicator
function and where {Ut} is a sequence of i.i.d uniform random variables in (0, 1) which are
indepent from {Nt(·)}.

Proposition 4.0.1. Assume model (4.3) and suppose that |a| < 1. In addition, assume
that when b > 0 then |a + b| < 1, and when b < 0 then |a||a + b| < 1. Then, the following
conclusions hold:

1. The process {νmt , t ≥ 0} is a geometrically ergodic Markov chain with finite moments
of order k, for an arbitrary k.

2. The process {(Y m
t , Ut, ν

m
t , t ≥ 0)} is a VY,U,ν-geometrically ergodic Markov chain with

VY,U,λ(Y,U, ν) = 1 + log2k(1 + Y ) + ν2k + U2k, k being a positive integer.

4.1. Partial Likelihood Inference and Estimation

Once more suppose that θ is a three dimensional vector of unknown parameters,that is,
θ = (d, a, b)T . let θ0 be the true value of the unknown parameter. Then we define the
conditional likelihood function for θ for the log-linear model, where the intensity of the
Poisson process is given by, νθ = d+ aνt−1(θ) + bYt−1, given the data Y1,...,Yn

L(θ) =
n∏
t=1

exp(−eνt(θ))eν(θ)Yt

Yt!
(4.4)

Furthermore, the log likelihood is defined by

l(θ) =
n∑
t=1

lt(θ) =
n∑
t=1

lt(Ytνt(θ)− exp(νt(θ))) (4.5)

Differentiating the log likelihood function with respect ot the parameter vector, we obtain
the score function, given by

Sn(θ) =
n∑
t=1

∂lt(θ)

∂θ
=

n∑
t=1

(Yt − exp(νt(θ))
∂νt(θ)

∂θ
(4.6)

where ∂νt(θ)
∂θθ is differentiation of the log intensity process with respect to each component

of the parameters vector, given by

∂λt
∂d

= 1 + a
∂λt−1

∂d
,

∂λt
∂a

= λt−1 + a
∂λt−1

∂a
,

∂λt
∂b

= log(Yt−1 + 1) + a
∂λt−1

∂b
(4.7)

The solution of to the equation Sn = 0 gives the the parameter θ denoted by θ̂ that
maximizes the conditional maximum likelihood, provided that it exists. we can also obtain
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4. Log-linear Model

the Hessian matrix by differentiating the log-likelihood function one more time, such that

Hn(θ) = −
n∑
t=1

∂2lt(θ)

∂θ∂θT

=

n∑
t=1

exp(νt(θ))
(∂νt(θ)

∂θ

)(∂νt(θ)

∂θ

)T
−

n∑
t=1

(Yt − exp(νt(θ))
∂2νt(θ)

∂θ∂θT
(4.8)

Similarly, the likelihood function for the perturbed log linear model is defined by (3.12),
keeping in mined that νt ≡ log(λt). The score function is then defined by

Smn =
∂lm(θ)

∂θ
=

n∑
t=1

∂lmt (θ)

∂θ
=

n∑
t=1

(Y m
t − exp(νmt (θ)))

∂νmt (θ)

∂θ
(4.9)

The solution to the equation Smn = 0 denoted by θm. The connection between between θm

and θ is made through proposition ??. The following result is obtained about the maximum
likelihood estimator of (4.1), where the neighborhood O(θ0) is as defined in the paragraph
before 3.1.1.

Theorem 4.1.1. Consider model (4.1) and suppose that at the true value θ0, |a0 + b0| < 1
if a0 and b0 have the same sign, and a2

0 + b20 < 1 if a0 and b0 have different sign. Then,
there exists a fixed open neighborhood O = O(θ0) -such that with probability tending to 1,
as n −→ ∞, the log-likelihood function (4.5) has a unique maximum point θ. Furthermore,
θ is a consistent and asymptotically normal,

√
n(θ̂ − θ0)

d−→ N(0,G−1),

where the matrix G is defined by

G(θ) = E

(
exp(νt(θ))

(
∂νt
∂θ

)(
∂νt
∂θ

)T)

A consistent estimator of G is given by G
n ,where

G(θ) =
n∑
t=1

var[
∂lt(θ)

∂θ
] =

n∑
t=1

exp(νt(θ))

(
∂νt
∂θ

)(
∂νt
∂θ

)T
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5. Introduction to Copulas

Copulas have wide range of application in statistics, finance, insurance and other areas.
Intuitively copulas are functions that connect multivariate distributions to their marginal
distributions. Alternatively copulas can be viewed as multivariate distribution functions
whose one-dimensional margins are uniform in the interval (0,1). In Jaworski, Durante,
Hardle, and Rychlik, 2010 copulas are characterized formally in the following definition and
conditions.

Definition 5.0.1. A d-dimensional copula C : Id → d is a function which is a cumulative
distribution function with uniform marginals.

Any distribution function satisfies the following conditions and since a copula is defined
to be a cumulative distribution function it satisfies these as well.

1. for every j ∈ {1, 2, ..., d}, C(u) = uj when all the components of u are equal to 1 with
the exception of the j th one that is equal to uj ∈ I;

2. C is isotonic, i.e. C(u) ≤ C(v) for all u, v ∈ Id,u ≤ v;

3. C is d-increasing.

The opposite is also true, any function that satisfies these properties is a copula.
We recall, the inverse transform method, a well known procedure for generating random

variables of an arbitrary distribution function from the uniform distribution. Which is based
on the following result. Let the generalized inverse of a distribution function F, be defind
as

F←(x) := inf{v : F (v) ≥ x}

Proposition 1. If U ∼ U [0, 1] and FX is a CDF, then

P (F←(U) ≤ x) = FX(x)

conversely , if X has a continious CDF , then FX(X) ∼ U [0, 1]

Now suppose we have X = (X1, .., Xd) a multivariate random vector with CDF FX . Then
by the definition of copula and Proposition 1, the joint distribution of FX1(X1), ..., FXd(Xd)
is a copula. An expression for the copula can be found by noting that

CX(u1, ..., ud) = P (FX1 ≤ u1, ..., FXd ≤ ud)
= P (X1 ≤ F−1

X1
(u1), ..., Xd ≤ F−1

Xd
(ud))

= FX(F−1
X1

(u1), ..., F−1
Xd

(ud))
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5. Introduction to Copulas

If we as in Proposition 1 let uj = FXj (x), then

FX(x1, ..., xd) = C(FX1(x1), ..., FXd(xd))

This is part of the following important theorem by Sklar(1959), which establishes a funda-
mental step in modeling dependence structures in multivariate distribution.

Theorem 5.0.1 (Sklar’s theorem). Let F be a d-dimensional distribution function. with
univariate margins F1, F2, ..., Fd. Let Aj denote the range of Fj , Aj := Fj(R)j = 1, 2, ..., d.

Then there exists a copula C such that for all (x1, x2, ..., xd) ∈ Rd,

F (x1, x2, ..., xd) = C(F1(x1), F2(x2), ..., Fd(xd)) (5.1)

Such a C is uniquely determined on A1 × A2 × · · · × Ad and, hence, it is unique when
F1, F2, ..., Fd are all continuous.

Hoeffding and Fréchet discovered independently that any copula lies between two extreme
cases of dependence, lower and upper bounds.

Theorem 5.0.2 (Fréchet-Hoeffding bounds). [section] Conside a copula C(u) = C(u1, ..., ud),
then

max{
d∑
i=1

ui + 1− d, 0} ≤ C(u) ≤ min{u1, ..., ud} (5.2)

These upper and lower bounds are themselves copulas in the bivariate case. However
whereas the comonotonic copula(upper bound) has a d-dimensional extension,there is no
such extension of countermonotonicity(lowe bound) copula in the case of dimensions greater
than two. The bounds still hold in a higher dimension whether or not the lower bound is
also copula, T. Schmidt, 2007.

5.1. Some Special Copulas

5.1.1. Independence copula

A d-dimensional independence copula is given by

C(u1, ..., ud) =

d∏
i=1

ui

Which means the copula function C is just a constant. An immediate consequence of
Sklar’s theorem is that, Any two or more random variables are independent if and only if
the copula that relates them to each other is an independence copula,i.e a constant. If a
copula is sufficiently differentiable, its density function can be computed by

c(u) :=
∂dC(U1, ..., Ud)

∂u1 · · · ∂ud
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5. Introduction to Copulas

5.1.2. Gaussian copula

As the name suggests a gaussian copula is a copula derived from the gaussian distribution.
According to T. Schmidt, 2007 for elliptical distributions, such as multivariatete normal
distribution, the dependence structure is fully described by the correlation between the
random variables. Thus for non-elliptical distribution other measures of dependence may
be required. Thus if we evaluate (5.1) at uj = F←i (xi) we obtain

c(u1, ..., ud) = F (F←1 (u1), ..., F←d (ud)) (5.3)

Then for X ∼ Nd(0, σ), where Σ is the correlation matrix, The corresponding copula is the
Gaussian copula given by

CGΣ = ΦΣ(Φ−1(u1), ...,Φ−1
d (ud)) (5.4)

where Φ denotes the cummulative distribution function of the standard normal distribution.
The Gaussian copula can be used to model the three fundamental dependence structures
by varying copula parameter. If ρ = 0 the Gaussian copula is the dependence copula,
monotonicity if ρ, and countermonotonicity if ρ = −1.

5.1.3. Clayton copula

In contrary to the Gaussian copula and other parametric copulas that are derived from a
certain distribution, the Clayton copula is stated directly by;

CClytonθ = (max{u−θ1 + · · ·+ u−θd − d+ 1, 0})−
1
θ (5.5)

It can be shown that the Clyaton copula can be used to model different forms of dependence,
from both extremes, monotonicity in the limit as θ → ∞, independence as θ → 0, and
comonotonicity if θ = −1.

Figure 5.1 shows the density functions of the copulas that are mentioned in this section.
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Figure 5.1.: Top, left and right show PDF and CDF og independent copula respectively,
Bottom, left and right show PDF’s of Gaussian(with correlation coefficient
ρ = 0.5) and Clayton(with parameter θ = 0.5) copulas respectively
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6. Template Model Builder

In the preceding sections, we will study the two models discussed in the previous sections and
their multivariate extensions by simulation. The simulation of the processes and estimation
of parameters is done in the free and open source R (Team et al., 2013). Particularly we will
use the template model builder, TMB (Kristensen, Nielsen, Berg, Skaug, and Bell, 2015)
package. The package allows for quick implementation of complex non-linear random effects
models. Although, Here we are only working with observation driven models.

TMB calculates derivatives of a differentiable objective function by automatic differentia-
tion. This eliminates the need for writing and maintaining derivative codes. AD should not
be confused with symbolic differentiation and numerical differentiation. AD decomposes
expressions into elementary operations, on which differentiation rules from calculus can be
applied, then the derivatives are merged together using the chain rule. TMB does not im-
plement AD from first principles rather it uses the general purpose AD package CppAD
(Bell, 2012) available from C++. For good example with AD applied to linear regression
model and general discussion around AD see, sections (2.1) and (2.2) of Fournier et al.,
2012.

In TMB the user defines the objective function as a c++ template, for our purpose
the negative quasi likelihood function given by (8.5), denoted by log(L∗(θ)). Then TMB
provides the exact gradient and Hessian matrix which are calculated by automatic differen-
tiation. All other operations are performed in R, such as reading data and optimizing the
objective function, possibly by gradient-based optimization algorithm. By reporting the
parameters (using ADREPORT() in the C++ template) the parameter estimates and their
corresponding standard deviations are obtained. For non-random effects models TMB re-
ports the standard deviations of θ or any differentiable function of φ(θ), that are calculated
by the standard delta-method.

V (φ(θ̂)) = −∇θφ(θ)[H(θ)]−1∇θφ(θ)>|θ=θ̂ (6.1)

where H(θ) = ∇2
θlogL∗(θ) is the Hessian matrix. The above covariance matrix can be

reprted from a TMB object, It can also be calculated by inverting the Hessian matrix with
respect to the MLE θ̂. For examples of C++ templates that are used in this thesis see A
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7. Local Gaussian Correlation

Here we distinguish between local dependence measures and global dependence measure.
The latter one describes the correlation between two random variables in terms of a scalar
value. Pearson correlation is a widely used example of such a measure, which gives a
single scalar value ρ meant to characterize the entire joint distribution of a two dimensional
random variable X = (X1, X2). On the other hand, the local Gaussian correlation is an
example of a local measure, where, in principle, the dependence is characterized in terms of
correlation at each point, i.e by ρX1,X2(x1.x2). Here we briefly describe what local Gaussian
correlation is, a detailed account is found in Tjøstheim and Hufthammer, 2013.

The idea is to approximate the density fX1,X2(x1, x2) locally in a neighbourhood of each
point x = (x1, x2) by a Gaussian bivariate density of the

ψ(v, µ(x),Σ(x)) =
1

2π|Σ|1/2
exp
[
− 1

2
(v − µ(x)>Σ−1(v − µ(x))

]
(7.1)

where v = (v1, v2)> is a running variable, µ(x) = (µ1(x), µ2(x))> is the local mean vector
and Σ(x) = (σij(x)) is the local cavariance matrix. With σ2

i = σii(x), the local Gaussian

correlation at the point x is defined by ρ(x) = σ12(x)
σ1(x)σ2(x) . Then the above equation (7.1)

becomes

ψ(v, µ1(x), µ2(x),σ2
1, σ

2
2, ρ(x)) =

1

2πσ1(x)σ2(x)
√

1− ρ2(x)
exp
{
− 1

2(1− ρ2(x))
×
[(v1 − µ1(x)

σ1(x)

)2
(7.2)

− 2ρ(x)
(v1 − µ1(x)

σ1(x)

(v2 − µ2(x)

σ2(x)
+
(ν2 − µ2(x)

σ2(x)

)2]}
However (7.2) is not very well defined unless some conditions are imposed. The Gaussian
approximation needed is the one that approximates f(x) in the neighborhood x such that
(7.2) holds at x. It is shown in Tjøstheim and Hufthammer, 2013 for a fixed bandwidth
parameter b, the local population parameter θ(x) = (µ1(x), µ2(x), σ2

1(x), σ2
2(x), ρ(x)) can

be obtained by minimizing the penalty function

q =

∫
Kb(v − x)[ψ(v, θ(x))− logψ(v, θ(x))f(v)]dv (7.3)

The minimizer θb(x) should then satisfy the integral equation∫
Kb(v − x)

∂

∂θj
logψ(v, θ(x))[f(v)− ψ(v, θ(x))]dv = 0, j = 1, ..., 5 (7.4)
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7. Local Gaussian Correlation

Furthermore, Tjøstheim and Hufthammer, 2013 show that if a unique population vector
θb(x) exists then, for a shrinking bandwidth parameter, i.e letting b −→ 0, population vector
θx can be estimated by using a local log-likelihood function defined by

L(X1, ..., Xn) = n−1
∑
i

Kb(Xi − x)logψ(Xi, θb(x))−
∫
Kb(v − x)ψ(v, θb(x))dv (7.5)

for a given observations X1, ..., Xn. They also show that θn,b(x) −→ θb(x) for b-fixed, and
θn,b −→ θ(x) almost surely as b = bn tending to zero.

Local Gaussian correlation have been applied to study financial contagion , that is,
whether the cross-market linkages in financial markets increase after a shock to a country,
see Støve, Tjøstheim, and Hufthammer, 2014. Here, In section 10, we use local Gaussian
correlation to capture the nonlinear dependence between marginals of a bivariate count
time series. We use localgauss (Geir Drage Berentsen, Kleppe, and Tjøstheim, 2014) an R
package in order to calculate local Gaussian correlation between the marginal time series.
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8. Multivariate Autoregressive Models

In this section we look at multivariate count time series, and the multivariate extensions
of the linear and log-linear models discussed in previous sections. The main reference for
this section is Fokianos et al., 2020, which in many ways builds up on Fokianos et al.,
2009. A challenging aspect of modelling multivariate count time series is the specification
of the joint distribution. A natural idea is to generalize the univariate Poisson probability
mass fucntion (PMF), However the resulting distribution of the multivariate Poisson discrete
random vector is of a complicated functional form. Therefore, maximum likelihood inference
can be difficult both theoretically and numerically. This is circumvented by Fokianos et al.,
2020 using a copula based construction of the multivariate distribution. The copula function
is imposed on a vector of continuous random variables, and the resulting multivariate count
time series retains Poisson properties marginally.

8.1. Multivariate Linear Model

In order to extend the univariate linear model to the corresponding multivariate linear
model , suppose {Yt = Yi,t, i = 1, 2, ..., p, t = 1, 2, ...} denotes a p-dimensional count time
series. Let the p-dimensional intensity process corresponding to each univariate marginal
of Y be denoted by {λt = λi,t, i = 1, 2, ..., p, t = 1, 2, ...}. Let also FY ,λt be the σ-field
generated by {Y0, ...,Yt,λ0}, then the multivariate linear model can be stated as

Yi,t|FY ,λt−1 is marignally Poisson(λi,t), λt = b+Aλt−1 +BYt−1 (8.1)

where d-is a p-dimensional parameter vector, and A, and B are p× p unknown parameter
matrices. As in the case of the univariate linear model all components of d,A, and B are
assumed to be positive, to ensure that λi,t ≥ 0.

Looking at (8.1), it suggests that each Yi,t is a Poisson process, however {Yt} itself is
not necessarily distributed with multivariate Poisson distribution. Fokianos et al., 2020
suggest the following data generating scheme, see Algorithm [1], that keeps the Poisson
properties marginally, assuming there are some starting values λ0 = λ1,0, ..., λp,0 available.
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8. Multivariate Autoregressive Models

Algorithm 1: Algorithm for generating marginally Poisson distributed multivari-
ate random variables

//Initialize
Y ←− matrix(N,p)
λ←− matrix(N,p)
// since we have the starting values, insert to the matrix
λ←− λ0

d←− vector(p))
A←− matrix(p,p)
B ←− matrix(p,p)
U ←− Generate a sample from a p-dimensional copula, matrix[k, p]
X ←− Combine columns : (−logU[, 1]/λ(1, t), ...,−logU(, 1)/λ(p, t))
Y (, 0)←− max1≤k≤K{

∑k
l=1Xi,l ≤ 1}, i = 1, 2, ..., p

for t←− 1 to N do
1) λ[, t]←− d+A ∗ λ(, t− 1) +B ∗ Y (, t− 1)
2) U ←− Generate a sample from a p-dimensional copula, matrix(k, p)
X ←− Combine columns : (−logU[, 1]/λ(1, t), ...,−logU(, 1)/λ(p, t))
3) Y [, t]←− max1≤k≤K{

∑k
l=1Xi,l ≤ 1}, i = 1, 2, ..., p

end

The above algorithm utilizes a fundamental property of the Poisson process at step 2,
that is the inter-arrival times of events in the Poisson process are exponentially distributed.
Thus the marginal distribution of say Xi,l = −log(Ui,l)/λi,0, l = 1, 2, ...,K is exponential
with parameter λi,0. It is from these exponential inter-arrival times the Poisson processes
are obtained. It is also on these variables the dependence structure is imposed, more
specifically, the copula is imposed on the continuous uniform random variables that are
used to generate the exponential variables. Therefore it is important to note that the
instantaneous correlation between vectors of counts is not equal to the correlation induced
by the copula imposed on the waiting times.

we can then rephrase (8.1) as it was done for the univariate linear model

Yt = Nt(λt), λt = d + Aλt−1 + BYt−1 (8.2)

where {Nt} is a sequence of independent p-variate copula-Poisson process which counts the
number of events in [0, λ1,t]× ...× [0, λp,t].

Ym
t = Nt(λ

m
t ), λmt = d + Aλmt−1 + BYm

t−1 + εmt (8.3)

In the following we denote by ‖x‖d = (
∑p

i=1 |xi|d)1/d the ld-norm of a p-dimensional vector
x. For a q × p matrix A = aij , i = 1, ..., q, j = 1, ..., p, we let |||A|||d denote the generalized
matrix norm = |||A|||d = max‖x‖d=1‖Ax‖d. If d = 1, then |||A|||1 = max1≤j≤p

∑q
i=1 |aij |,

and when d = 2, |||A|||2 = ρ1/2(ATA) where ρ(·) denotes the spectral radius. Employing
the perturbation approach they obtain the following results
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1. Consider model (8.3) and suppose that |||A + B|||2 < 1. Then the process {λt, t > 0}
is geometrically ergodic Markov chain with finite r’the moments, for any r > 0. where
εmt cmVt. Here, the sequence cm is strictly positive and tends to zero, as m −→∞, and
Vt is a p-dimensional vector, where each component are positive random variables
and have a bounded support of the form [0,M ] for M > 0.

2. If |||A + B||| < 1, then cm −→ 0 as m −→∞, then the difference between the perturbed
model (8.3) and the unperturbed model (8.1) can be made arbitrarily small.

8.1.1. Quasi Likelihood Inference

Let {Yt} be a given multivariate time series of counts, and denote a vector of unknown
parameters by θ such that θ> = (d, vec>(A), vec>(B)), where vec(·) denotes the vector-
ization of a matrix,i.e a linear transformation which converts the matrix into a column
vector. Then consider the following conditional qusi-likelihood function, given λ0, for the
parameter vector θ,

L(θ) =

n∏
t=1

p∏
i=1

[exp(−λi,t(θ))λ
yi,t
i,t (θ)

yi,t!

]
(8.4)

l(θ) =

n∑
t=1

p∑
i=1

(yi,tlogλi,t(θ)− λi,t(θ)) (8.5)

and the score function is given by

Sn(θ) =
n∑
t=1

p∑
i=1

( yi,t
λi,t(θ)

−1
)∂λi,t(θ)

∂θ
) =

n∑
t=1

∂λ>t (θ)

∂θ
D−1
t (θ)(Yt−λt(θ)) ≡

n∑
t=1

st(θ) (8.6)

The differentiation term in the score function leads to these recursions which are similar to
the ones we have seen in the uni variate case.

∂λt
∂d>

= Ip + A
∂λt−1

∂d>

∂λt
∂vec>(A)

= (λt−1 ⊗ Ip)
> + A

∂λt−1

∂vec>(A)

∂λt
∂vec>(B)

= (λt−1 ⊗ Ip)
> + A

∂λt−1

∂vec>(B)

where ⊗ denotes the Kronecker’s product. By further differentiation we obtain the Hessian
matrix, which is given by

Hn =

n∑
t=1

p∑
i=1

yi,t
λ2
i,t(θ)

∂λi,t(θ)

∂θ

∂λi,t(θ)

∂θ>
−

n∑
t=1

p∑
i=1

( yi,t
λi,t(θ)

− 1
)∂2λi,t(θ)

∂θ∂θ>
(8.7)

Toward obtaining asymptotic results Fokianos et al., 2020 follow Fokianos et al., 2009. They
use the sufficient conditions for ergodicity and stationarity for the perturbed model and then
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show that the unperturbed and perturbed versions are ”close”(see Lemma 3.1,Fokianos et
al., 2020). Furthermore, they show that the score function, the Hessian information matrix
and the third derivative of the log likelihood function, of the perturbed model tend to their
corresponding counterpart of the unperturbed model. Thereby, obtaining the following
result concerning the quasi maximum likelihood estimator θ̂.

Theorem 8.1.1. Consider model (8.2). Let θ ∈ Θ ⊂ Rd. Suppose that Θ is compact and
assume that the true value θ0 belongs to the interior of Θ. Suppose that at the true value
θ0 the condition |||A + B||| < 1 holds true. Then there exists a fixed open neighborhood,
say O(θ0) = {θ : ||θ − θ0||2 < δ},of θ0 such that with probability tending 1 as n −→∞, the
equation Sn(θ) = 0 has a unique solution, say θ. Furthermore, θ̂ is strongly consistent and
asymptotically normal,

√
n(θ̂ − θ0)

d−→ N(0,H−1GH−1) (8.8)

where the matrices G(θ) and H(θ) are defined by

G(θ) = E[
∂λ>t (θ)

∂θ
D−1
t (θ)Σt(θ)D−1

t (θ)
∂λt(θ)

∂θ>
] (8.9)

H(θ) = E[
∂λ>t (θ)

∂θ
D−1
t (θ)

∂λt(θ)

∂θ>
] (8.10)

and expectation is taken with respect to the stationary distribution of {Yt}

we investigate the above result by simulation where the gradient is calculated by auto-
matic differentiating.

8.1.2. Simulation study for the linear model

Here we consider the model (8.2) with p = 2. The bivariate count series (Yt,λt) is gener-
ated according to Algorithm[1]. We generate 500 and 1000 realizations of the process by
using the Clayton copula, which are simulated 1000 times. To obtain initial values for the
maximization algorithm, first we fit each marginal series to an ARMA(1,1) (see 3.2) model
and fit a univariate linear model. Secondly, using (d̂, â, b̂) we predict the hidden intensity
process. Finally, we fit a multivariate regression model, regressing the response (the bivari-
ate count series) against lagged values of the predicted hidden process and the lagged values
of the response itself.

Model parameter estimates averaged over the 1000 simulations is reported below in table
(8.1). the table reports results, both where we have used automatic differentiation to
obtain the score function and where the score function is calculated analytically . The true
parameters used to generate the data are the following

A =

(
0.3 0.05
0.1 0.25

)
,B =

(
0.5 0.05
0.1 0.4

)
and d = (0.5, 1) (8.11)

Note that the above parameter satisfy the ergodicity conditions, i.e |||A + B||| = 0.89. The
averaged parameter estimates are reasonably close to the true parameters for both values
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Table 8.1.: Compare Simulation results for the multivariate linear model (8.1), where pa-
rameters are estimated in R and parameters estimated in TMB. Here n denotes
the sample size of the simulations,and φ denotes the parameter of the Clayton
copula used to generate marginally Poisson counts.

R

n φ d̂1 d̂2 â11 â22 b̂11 b̂22 â12 â21 b̂12 b̂21

500
0

0.871 1.421 0.289 0.222 0.493 0.396 0.087 0.167 0.051 0.098
(0.205) (0.349) (0.071) (0.084) (0.049) (0.050) (0.082) (0.077) (0.045) (0.049)

0.5
0.772 1.116 0.279 0.200 0.494 0.395 0.083 0.161 0.051 0.099

(0.170) (0.264) (0.074) (0.087) (0.051) (0.085) (0.081) (0.050) (0.052) (0.0494)
TMB

500
0

0.784 1.406 0.288 0.158 0.504 0.407 -0.005 0.116 0.065 0.104
(0.283) (0.406) (0.088) (0.115) (0.047) (0.047) (0.081) (0.091) (0.04) (0.049)

0.5
0.68 1.15 0.289 0.209 0.502 0.400 0.023 0.112 0.055 0.105

(0.221) (0.279) (0.092) (0.115) (0.047) (0.050) (0.089) (0.101) (0.044) (0.050)

R

1000
0

0.803 1.316 0.295 0.222 0.498 0.400 0.083 0.166 0.052 0.099
(0.134) (0.236) (0.052) (0.057) (0.036) (0.032) (0.054) (0.054) (0.030) (0.036)

0.5
0.733 1.056 0.286 0.207 0.497 0.396 0.082 0.157 0.048 0.100

(0.118) (0.181) (0.055) (0.061) (0.037) (0.037) (0.057) (0.054) (00.035) (0.037)
TMB

1000
0

0.725 1.32 0.290 0.178 0.507 0.408 0.006 0.105 0.060 0.105
(0.204) (0.286) (0.063) (0.082) (0.034) (0.033) (0.059) (0.065) (0.031) 0.034

0.5
0.632 1.12 0.294 0.215 0.501 0.404 0.027 0.111 0.053 0.100

(0.152) (0.210) (0.062) (0.074) (0.034) (0.033) (0.063) (0.07) (0.031) (0.036)
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of the copula parameter. Furthermore, we find from Figure (8.1) support for the result
that the quasi maximum likelihood estimator, θ̂ is asymptotically normal. We also see that
the parameter estimate, d̂ approaches normality unsatisfactorily. However, see Figure (8.2)
with increasing sample sizes it tends closer to normality, which supports, that θ̂ is also
consistent. Similar situation is observed for d̂ also for different copula parameters.

8.2. Multivariate Log-linear Model

The multivariate analogue of the univariate Log-linear model is defined by

Yi,t|FY ,λt−1 is marignally Poisson(λi,t), νt = b+Aνt−1 +B(log(Yt−1 + 1) (8.12)

Where, as oppose to the linear model, we do not need to impose assumption passivity on
elements of the unknown parameters. As previously mentioned in the case the univariate
log-linear model, the model (8.12) is also expected to be a better model for count data
than its linear counterpart. That is due to its ability to incorporate covaraite time series,
and is suitable when negative correlation is observed. Including covariates into the model
Fokianos et al., 2020 propose the following model, here the sigma field generated is expanded
to incluse {xt}. As in the case of the multivariate linear model it is useful to rephrase 8.12
as follows

Yt = Nt(νt), νt = d + Aνt−1 + Blog(Yt−1 + 1p) (8.13)

where the process {Nt} is defined as before a sequence of independent p-variate copula-
Poisson process which counts the number of events in [0, exp(ν1,t)]×·· ·× [0, exp(νp,t)], since
νt ≡ logλt. And the perturbed version of the model is given by

Ym
t = Nt(ν

m
t ), νt = d + Aνmt−1 + Blog(Ym

t−1 + 1p) + εmt (8.14)

The log-likelihood function for the log-linear model is

l(θ) =

n∑
t=1

p∑
i=1

(yi,tνi,t(θ)− exp(νi,t(θ))) (8.15)

we denote by θ̂ the quasi maximum likelihood estimator that maximizes l(θ). The score
function is by differentiating the log-likelihood function given by

Sn(θ) =
n∑
t=1

p∑
i=1

(yi,t − exp(νi,t(θ)))
∂νi,t(θ)

∂θ
=

n∑
t=1

∂ν>t (θ)

∂θ
(Yt − exp(νt(θ))) (8.16)

the term ∂νt(θ)/∂ν> leads to the following recursions used to calculate the QMLE

∂νt
∂d>

= Ip + A
∂νt−1

∂d>

∂νt
∂vec>(A)

= (νt−1 ⊗ Ip)
> + A

∂νt−1

∂vec>(A)

∂νt
∂vec>(B)

= (log(Yt−1 + 1p)⊗ Ip)
> + A

∂λt−1

∂vec>(B)
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Figure 8.1.: QQ-plots of the standardized sampling distribution of θ̂ for the multivariate
linear model with true parameter values given by (8.11) with a sample size of
500. Data have been generated by a Clayton copula with φ = 0.5. Result is
based on 1000 simulations.
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Figure 8.2.: QQ-plots of the standardized sampling distribution of θ̂ for the multivariate
linear model with true parameter values given by 8.11 with a sample size of
1000. Data have been generated by a Clayton copula with φ = 0.5. Result is
based on 1000 simulations.
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and differentiating the log-likelihood once more the Hessian matrix is obtained

Hn(θ) =
n∑
t=1

p∑
i=1

exp(νi,t(θ))
∂νi,t(θ)

∂θ

∂νi,t(θ)

∂θ>
−

n∑
t=1

p∑
i=1

(yi,t − exp(νi,t(θ)))
∂2νi,t(θ)

∂θ∂θ>
(8.17)

Analogous to the linear model, similar results about the properties of the log-linear model
are also obtained. The approach taken to show these results is similar to that of the linear
model. In summary the following results hold true for the log-linear model

1. Consider (8.14) and suppose that |||A|||2 + |||B|||2 < 1. Then the process {νmt , t > 0} is
geometrically ergodic Markov chain with finite rth moments, for any r > 0

2. Consider the perturbed model (8.14) and the unperturbed model (8.13). If |||A|||2 +
|||B|||2 < 1 the difference between (8.13) and (8.14) can be made arbitrarily close as
cm −→ 0 as m −→∞.

3. Consider model (8.13). Under the conditions of Theorem 8.1.1, the equation Sn(θ) =
0, where Sn(·) is defined by (8.16), has a unique solution, say θ̂. And that θ̂ is strongly
consistent and asymptotically normal as in Theorem 8.1.1, where the matrices G(θ)
and H(θ) are defined by

G(θ) = E
[∂ν>t (θ)

∂θ
Σt(θ)

∂νt(θ)

∂θ>

]
, H(θ) = E

[∂ν>t (θ)

∂θ
Dt(θ)

∂νt(θ)

∂θ>

]
(8.18)

and expectation is taken with respect to the stationary distribution of {Yt}.

8.2.1. Simulation study for the log-linear model

A simulation study for the log-linear model proceeds the same way as the case of the linear
model. The aim is to obtain quasi maximum likelihood estimator of the model parameters
and to investigate the asymptotic properties of the θ̂. Towards that end, we generate data
by Algorithm [1], making the necessary changes so that the the data generated follows
(8.12). First, we look at the case where the parameters A and B are non-diagonal matrices.
We obtain starting values for maximization of the log-likelihood function (8.15) as follows;

• Fit univariate log linear model including covariate time series to each series. We fit a
Poissson regression to each series on the lagged log response, i.e log(Yt−1 + 1) and the
covariate series. Hence, obtain estimates of (d,b), say (d̃,b̃), then initiate optimization
algorithm by taking (d̃,0,b̃) as the initial value for the unknown parameter vector.

• Calculate the predictions

ν̂1,t(θ) = ν1,t(θ̂) = d̂1 + â1ν1,t−1(θ̂) + b̂1log(Y1,t−1 + 1)

ν̂2,t(θ) = ν2,t(θ̂) = d̂2 + â2ν2,t−1(θ̂) + b̂2log(Y2,t−1 + 1)+
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• Then run a vector generalized linear model regressing the response against its lagged
log response, i.e log(Yt−1+1), the predicted intensity process, i.e ν̂t(θ) = (ν1,t(θ̂), ν2,t(θ̂))
and the covariate time series.

The estimated coefficient matrices from the later regression are used as starting values for
the optimization.

The true parameter values used to generate the process are

A =

(
0.3 0.05
0.1 0.25

)
, B =

(
0.5 0.05
0.1 0.4

)
, d = (0.3, 0.5) (8.19)

Table (8.2) shows the result the simulation where we have used the Gaussian copula with
φ = 0 and φ = 0.5. We can see that the results are reasonably close to the true parameters
and improving for larger sample sizes. Furthermore, figure (8.3) and figure (8.4) support the
asymptotic normality of the estimators, where once again d̂ deviates more from normality
relative to the other parameter estimates.

8.2.2. Simulation study for the Log-linear model with covariates

As mentioned previously one of the arguments in favour of the log-linear model versus
the linear model is its ability to include time dependent covariates with more ease. More
specifically, let {Xt} be some covariate time series, then a log-linear model that includes
covariate time series is given by

Yt|FY,X,νt−1 ∼ Poisson(λt), νt = d+ aνt−1 + blog(Yt−1 + 1) + cXt (8.20)

where c is a a real valued parameter and FY,X,νt−1 is the sigma field generated by σ =
(Ys, Xs, ν0, s ≤ t). It should be noted that a model such as the above one can only be cast
within the framework developed by Fokianos et al., 2009 if cXt > 0. However Agosto et al.,
2016 looks at the following more general model that includes multiple lags and covariates,

λt = d+

p∑
i=1

aiYt−i +

q∑
i=1

biλt−1 + f(Xt−1, γ) (8.21)

where X enters the intensity process thorough the link function f(·, γ). The link function
allows for a function such that negative covariates can be included. In addition, f is re-
quired to be Lipschitz so as to exclude some functions such as the exponential one. They
also provide conditions for stationarity and asymptotic results for the maximum likelihood
estimators.

Here we look at the bivariate extension of the log-linear model that includes covariates.
The model is given by

Yi,t|FY,X,,λ
t−1 is marginally Poisson(λi,t), νt = Aνt−1 + Blog(Yt−1 + 1p) + CXt (8.22)
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Table 8.2.: Compare Simulation results for the log linear model (8.12) defined by (8.19),
where parameters are estimated in R and parameters estimated in TMB. Here
n denotes the sample size of each simulation,and φ denotes the parameter of the
Gaussian copula used to generate the data.

R

n φ d̂1 d̂2 â11 â22 b̂11 b̂22 â12 â21 b̂12 b̂21

500
0

0.319 0.391 0.304 0.220 0.491 0.401 0.164 0.039 0.100 0.059
(0.199) (0.198) (0.076) (0.079) (0.049) (0.046) (0.069) (0.070) (0.044) (0.046)

0.5
0.294 0.491 0.290 0.192 0.492 0.405 0.159 0.059 0.098 0.060

(0.162) (0.157) (0.075) (0.084) (0.048) (0.052) (0.071) (0.082) (0.049) (0.050)
TMB

500
0

0.279 0.457 0.162 0.168 0.573 0.478 0.050 0.050 0.117 0.166
(0.232) (0.230) (0.110) (0.100) (0.060) (0.057) (0.107) (0.091) (0.060) (0.051)

0.5
0.319 0.550 0.163 0.159 0.557 0.465 0.060 0.057 0.109 0.152

(0.185) (0.185) (0.108) (0.103) (0.056) (0.059) (0.114) (0.094) (0.059) (0.054)

R

1000
0

0.332 0.399 0.315 0.220 0.498 0.404 0.157 0.015 0.101 0.063
(0.116) (0.136) (0.055) (0.059) (0.034) (0.032) (0.044) (0.035) (0.029) (0.031)

0.5
0.314 0.492 0.308 0.188 0.491 0.405 0.165 0.037 0.096 0.059

(0.105) (0.104) (0.053) (0.055) (0.037) (0.035) (0.054) (0.050) (00.035) (0.035)
TMB

1000
0

0.246 0.439 0.205 0.2098 0.551 0.449 0.068 0.072 0.089 0.136
(0.158) (0.161) (0.078) (0.076) (0.042) (0.040) (0.079) (0.063) (0.043) 0.037

0.5
0.296 0.529 0.203 0.189 0.541 0.444 0.073 0.081 0.081 0.125

(0.125) (0.128) (0.074) (0.072) (0.042) (0.039) (0.077) (0.063) (0.040) (0.038)
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Figure 8.3.: QQ-plots of the standardized sampling distribution of θ̂ for the multivariate
log-linear model with true parameter values given by (8.19) with a sample size
of 500. Data have been generated by a Gaussian copula with φ = 0.5. The
result is based on 1000 simulations.
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Figure 8.4.: QQ-plots of the standardized sampling distribution of θ̂ for the multivariate
log-linear model with true parameter values given by (8.19) with a sample size
of 1000. Data have been generated by a Gaussian copula with φ = 0.5. The
result is based on 1000 simulations.
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8. Multivariate Autoregressive Models

where the covariate time series {Xt} is taken to be a two dimesional ccc-log-garch(1,1), see
Sucarrat, Grønneberg, and Escribano, 2016, which here is allowed to be negative. Simula-
tion from this model is performed in the same way as for the the models in the previous
section. The bivariate count time series that depends on on {Xt} is generated by Algorithm
1, that is, given {Xt} and making appropriate changes at step 1 of the algorithm. Each of
generated bivariate count time series depend on the same {Xt} covariate time series.

The true parameter values used to generate the process are

A =

(
0.3 0.05
0.1 0.25

)
, B =

(
0.5 0.05
0.1 0.4

)
, C =

(
0.2 0.05
0.1 0.2

)
d = (0.3, 0.5) (8.23)

The resulting estimates displayed in Table 8.3 are based on 500 runs and the reported
estimates are obtained by averaging the result for all the simulations. Each of the 500
runs depend on the same covariate time seris {Xt}, and the standard errors correspond
to the sampling standard errors of the estimates obtained by the simulation. Parameter
estimates are close to the true parameter used to generete the process. Furthermore figure
8.5 appears to suggest that the MLE θ̂ is asymptotically normal. Halliday and Boshnakov,
2018 study a similar multivariate Poisson autoregressive model with covariates, that is said
to inherit similar properties as the univariate case studied by Agosto et al., 2016. Similar
to (8.22), the model they look at is also copula based. However they impose the copula
structure on the marginal time series, such that the resulting multivariate distribution is
jointly Poisson. While here, copula structure is imposed on the waiting times, and the
resulting joint distribution isn’t necessarily Poisson. They obtain conditions for the process
to be stationary and ergodic, but parameters are not estimated by method of inference
function and not by maximum likelihood.
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Figure 8.5.: QQ-plots of the standardized sampling distribution of θ̂ for the multivariate
log-linear model with true parameter values given by (8.23) with a sample size
of 500. Data have been generated by a Gaussian copula with φ = 0.5. The
result is based on 500 simulations.
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8. Multivariate Autoregressive Models

Table 8.3.: Parameter estimates of the log-linear model including covariates, with the cor-
responding standard errors of the estimators. The sample size is 500 and the
data is generated by Gaussian copula with copula parameter φ = 0.5

parameter true estimated ŜE

d1 0.3 0.308 0.062
d2 0.5 0.510 0.063
a11 0.3 0.304 0.064
a12 0.05 0.052 0.061
a21 0.1 0.104 0.063
a22 0.25 0.250 0.062
b11 0.5 0.491 0.050
b12 0.05 0.048 0.046
b21 0.1 0.099 0.048
b22 0.4 0.393 0.047
c11 0.2 0.199 0.010
c12 0.05 0.050 0.010
c21 0.1 0.100 0.009
c22 0.2 0.200 0.010

41



9. Application to Real Data

9.1. Application to counts of Stocks

In this section we look at application of the linear and log-linear models to real world
data. Particularly we fit the models to a bivariate count time series which consists of
number of transactions in 15 seconds of Coca-Cola Company (KO) and IBM stocks on
September 19th 2005. Both of these are heavily traded stocks. It is therefore interesting to
see how stocks from different sectors influence each other. The data has 1440 observations,
registered from 09:30 to 16:30, and excluding observation if the first 15 minutes and the
last 15 minutes of transaction. The reason for the exclusion is that there are usually more
transaction at the opening and closing of a given trading day. This can then influence
measurements of auto-and cross correlations. Table 9.1 below provides descriptive statistics
for the data. Figure (9.2) shows the autocorrelation and cross-autocorrelation functions.

Table 9.1.: summary statistics

min max 1st Qu. median 3rd Qu. mean variance

IBM 0 39 2 4 7 4.854 13.78

Coca-Cola 0 22 2 4 6 4.276 10.70

Which reveal that there is high correlation among observations of each transaction series
and across the series. Furthermore, Figure (9.1) shows the time series plot of the data with
the corresponding predictions from each model, the linear and the log-linear model. The
predictions are calculated by Ŷi,t = λi,t(θ̂) for i = 1 and 2. We compare the models using
root mean square error (RMSE) of predictions, we find the RMSE for the linear model to
be 180.01 and 183.25 for the log-linear model. This indicates that the linear model provides
a better fit to the data than the log-linear model.

Table (9.2) shows parameter estimates and their corresponding standard errors. Here we
can see that our estimates where we have used TMB, where the score function is calculated
by automatic differentiation are close. However the RMSE that resulted from our estimates
are slightly lower than those obtained by Fokianos et al., 2020 which are 190.06 and 193.25
for the linear and log-linear model respectively. This difference is likely due to the fact TMB
calculates the exact gradient which allows for improved speed and accuracy of maximization
of the quasi-likelihood function by means of gradient-based optimization methods. Here,
we have opted for an unconstrained BFGS, an algorithm that belongs to the class of
quasi-Newton methods. It is available in R from optim or optimr. The standard errors in
Fokianos et al., 2020 are calculated by the robust estimator of the covariance matrix given
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Figure 9.1.: Number of transactions per 15 seconds for IBM (top) and Coca-Cola (bottom),
along side the predicted number of transaction by the linear model (red lines)
and log-linear model (yellow lines)
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Figure 9.2.: Auto-and cross correlation function of the transaction data
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9. Application to Real Data

Table 9.2.: Parameter estimates of the linear model and log-linear model in R and TMB,
Standard errors are given in the parentheses

Fitted model d̂1 d̂2 â11 â22 b̂11 b̂22 â12 â21 b̂12 b̂21

R

Linear
0.388 0.348 0.625 0.611 0.126 0.145 0.015 0.103 0.062 0.035

(1.110) (0.713) (0.173) (0.001) (0.001) (0.148) (0.005) (0.001) (0.004) (0.005)

TMB

Linear
0.371 0.329 0.864 0.874 0.086 0.081 -0.072 -0.068 0.042 0.040

(0.085) (0.080) (0.024) (0.024) (0.011) (0.011) (0.023) (0.018) (0.011) (0.009)

R

Log-
linear

0.110 0.149 0.830 0.720 0.104 0.141 -0.008 -0.032 0.035 0.026
(0.001) (0.152) (0.085) (0.035) (0.143) (0.056) (0.003) (0.001) (0.012) (0.0005)

TMB

Log-
linear

0.220 0.190 0.758 0.868 0.120 0.101 -0.078 -0.174 0.56 0.079
(0.100) (0.085) (0.084) (0.027) (0.020) (0.014) (0.029) (0.072) (0.016) (0.022)

by Hn(θ̂)−1Gn(θ̂)Hn(θ̂)−1. Whereas in TMB, for non-random effect models the standard
delta-method is used to calculate the covariance matrix of transformed parameters, see (6).

The models provide a reasonably good fit to the data. In order to access goodness of
fit of the models, we use Pearson residuals defined by ei,t = (Yi,t − λi,t)/

√
λi,t for i = 1

and 2. We replace λi,t(θ) by λi,t(θ̂) to obtain êi,t. Under the correct model the sequence
ei,t is a white noise sequence with constant variance. This can be investigated by means
of cumulative periodograms . If the residuals are white noise the periodogram is a set of
iid exponential random variables, asymptotically. So, the cumulative periodogram should
look like a straight line at a 45 degree angle. see Figure (9.3), which supports the marginal
whiteness of the residuals.

9.2. Application to corporate defaults

A well known fact about corporate defaults is that they tend to cluster overtime. Which is a
phenomena that many have sought to explain using different approaches. These have often
attempted to distinguish between contagion effects, by which “one firm’s default increases
the probability of other firms defaulting” and systematic risk, where risk to the solvency of
firms are caused by common underlying macroeconomic and financial factors. Both of these
factors may affect the clustering of corporate defaults separately or jointly. Agosto et al.,
2016 proposes 8.21 for describing and forecasting aggregate number of corporate defaults;
that is, the number of defaults within a given time period. More recently, Geir D Berentsen,
Bulla, Maruotti, and Støve, 2018 propose a Markov-switching model, where some of the
model parameters depend on the state of an unobserved Markov chain.
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9. Application to Real Data

9.2.1. Model Inteperatation

Here, we apply the bivariate model given by (8.22) for describing aggregate number of cor-
porate defaults. Interpretation of the model is best approached by considering the following
representation of the univariate model which was shown in (4.2) by repeated substitution.
Here it is just augmented by a covariate term.

νt = d
1− at

1− a
+ atν0 + b

t−1∑
i=0

ailog(Yt−i−1 + 1) + c
t−1∑
i=0

aiXt (9.1)

Then through this model the systematic risks that firms face that are rooted in common
macroeconomic and financial factors are represented by c

∑t−1
i=0 a

iXt, while b
∑t−1

i=0 a
ilog(Yt−i−1+

1) captures possible feedback effects from past defaults, which is related to overall contagion
effects. The parameter d can be thought as to fix the overall intensity. A similar interpre-
tation is possible for the multivariate case as well. Consider the bivariate model which can
be written as

ν1,t = d1 + a11ν1,t−1 + a12ν2,t−1 + b11log(Y1,t−1 + 1) + b12log(Y2,t−1 + 1) + c1Xt

ν2,t = d2 + a21ν1,t−1 + a22ν2,t−1 + b21log(Y1,t−1 + 1) + b22log(Y2,t−1 + 1) + c2Xt

From the above, we can see for each marginal intensity there is feedback from past defaults
coming from, first from its own past, and second from the other marginal , i.e for ν1,t

the feedback effects are captured through b11log(Y1,t−1 + 1) and b12log(Y2,t−1 + 1). While
a11ν1,t−1 and a12ν2,t−1 parsimoniously capture the dependence on previous lags of Yt as
well as the overrates Xt. Supposing for example that 1 and 2 are two different regions,
the model can capture possible dependence of defaults in one region on defaults in another
region. In the case a12 = b12 = 0, ν1,t depends only on its own past and covariates.

9.2.2. Model fitting and variable selection

We look at corporate default data from the US. The data contains all of the more than one-
thousand large public companies that have filed bankruptcy cases since October 1, 1979. A
company is consider ”public” if it filed an Annual Report (form 10-K or form 10) with the
Securities and Exchange Commission for a year ending not less than three years prior to
the filing of the bankruptcy case. A company is considered ”large” if that Annual Report
reported assets worth $100 million or more, measured in 1980 dollars .

we obtain a bivariate count time series by counting the number of companies that filed
for bankruptcy each month for each year from 1980 to 2017, where one series is the number
of corporate defaults per month for the blue states, and similarly the other one for the
red states. Red states are the states that traditionally vote republican and similarly blues
stated are the states that traditionally vote democratic. The financial and macroeconomic
covariates we consider are; the industrial production index (indpro), new housing permits
(permit), civilian unemployment rate (unrate), Moody’s seasoned baa corporate bond yield
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(baa), 10-years treasury constant maturity rate (gs10), federal funds rate (fedfunds), pro-
ducer price index by commodity for final demand: finished goods (ppifgs), and produce
price index: fuels and related energy (ppieng). In addition, s&p500 annualized returns
(sp500ret) and s&p500 annualized return volatility (sp500vol).

Corporate defaults in the US have been studied by autoregressive count time series mod-
els, notably by Agosto et al., 2016 and Geir D Berentsen et al., 2018, where however different
the approaches are both fit univariate models. Here we fit bivariate models. The motivation
is, Political and cultural polarization in the United States is widely discussed, but there may
also be economic disconnection among states. Ishise and Matsuo, 2015, who studied the
border effect between red states and blue states find that border effect is robustly confirmed
for the 2000s, while not so robustly detected for the 1990s. Border effect can be defined
as the additional reduction in the trade between different regions or countries, which is
not explainable by simply the size and the distance between the regions or the considered
countries. The Border effect is an important indicator for a potential dismantling of the eco-
nomic connectivity in the United States. Table 9.3 below shows some descriptive statistics
for corporate defaults in each group of states.

Table 9.3.: summary statistics

min max 1st Qu. median 3rd Qu. mean variance

red states 0 7 0 1 1 0.9625 1.642

blue states 0 11 0 1 2 1.461 2.917

The mean and variance of the number of defaults in red and blue states states are 0.962
and 1.64 and in 1.46 and 2.91, respectively, displaying overdispersion, a classical property of
count data. Figure 9.6 shows time series plot of defaults in red and blue states, and figure
9.4 displays the auto and cross correlation functions of defaults in red and blue states . The
figures reveal some well known facts about defaults, first, the presence of default clustering
over time, and second, the high temporal dependence in default counts.

We start by fitting univariate models, both with and without covariates. Table 9.6 shows
the resulting parameter estimates for models without covariates and table 9.5 shows pa-
rameter estimates for models with covariates. For the univariate log-linear model without
covariates, b̂ = 0.431, which suggest strong feedback from past defaults on current de-
fault counts, therefore strong contagion. The models with covariates allow us to control
for financial and macroeconomic factors, representing systematic risk. Particularly, we
find the model that includes the the financial market covarite, annualized return volatility
(sp500vol), provides the better fit to the data. we find that when including financial covari-
ates, specifically sp500vol and sp500ret, the contagion effect decreases. That is b̂ decreases
from 0.431 to b̂ = 0.376 and b̂ = 0.262, when including sp500vol and sp500ret in to the
model, respectively. Therefore, the dependence over time in default counts can partially be
explained by systematic risk present in the economy, However dependence of conditional
intensity on past defaults counts is still present.

Furthermore, we fit bivariate linear and log-linear models without covariates, with these
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Figure 9.4.: auto and cross correlation functions of defaults in the US

models defaults in each state depends only on past defaults. The bivariate models without
covariates perform better in terms of in-sample predictions than their univariate counter-
part. The parameter estimates for these models with their corresponding standard errors is
given in table 9.6. The assumption about elements of d,A, and B being positive is not met
for the linear model, and the resulting estimates lead to some negative intensities. Thus,
we further consider only the log-linear model and an extension of the model that includes
covariates. Figure 9.5 shows cumulative periodogram and autocorrelation functions of the
Pearson residuals resulting from the log-linear fit, both support the marginal whiteness of
the residuals.

Moreover, we fit different bivariate models, each model including different and only one
univariate covariate time series. Table 9.4 shows the resulting model parameter estimates for
each covariate considered. The bivarite model including covariates, particularly annualized
returns (sp500ret), annualized return volatility (sp500vol) and industrial production index
(indpro) predict the observed process better than their univariate counterpart. Model
selection in this case is difficult through the measures AIC and BIC, as models with lower
AIC or BIC do not necessarily result in an improved prediction of the processes. Thus we
further examine the models that achieve lower AIC, BIC and prediction error by looking at
the resulting Pearson residuals. We find the model with the covariate annualized returns
(sp500ret) results in residuals that best approach a white noice, as figure 9.8 shows, and is
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Table 9.4.: Parameter estimates of the log-linear model with covariates from all covariates
considered

indpro permit ppifgs-up piend unrate baa fedfunds gs10 sp500ret sp500vol

d1 -0.153 -0.997 -0.245 -0.290 -0.351 -0.312 -0.326 -0.182 -0.182 -0.205

d2 0.055 -0.343 -0.168 0.164 -0.054 -0.204 0.266 -0.109 -0.109 -0.076

a11 1.000 0.349 0.794 0.794 0.714 0.849 0.905 1.06 1.067 1.046

a12 -0.226 0.631 -0.225 -0.208 -0.139 -0.308 -0.321 -0.480 -0.480 -0.281

a21 0.105 -0.231 -0.107 -0.073 -0.024 -0.030 0.015 0.183 0.183 0.153

a22 0.743 1.23 0.695 0.699 0.845 0.631 0.582 0.395 0.395 0.731

b11 0.165 0.177 0.256 0.290 0.292 0.283 0.275 0.232 0.232 0.098

b12 .162 0.317 0.286 0.266 0.287 0.315 0.311 0.270 0.270 0.169

b21 0.033 0.069 0.054 0.045 -0.089 0.096 0.127 0.130 0.131 -0.070

b22 0.165 0.0929 0.392 0.368 0.249 0.363 0.401 0.325 0.225 0.139

c1 -0.007 -0.001 -0.016 -0.002 0.027 -0.017 -0.048 -0.010 -0.002 0.114

c2 -0.009 -0.001 -0.011 -0.001 0.049 -0.022 -0.053 -0.013 -0.001 0.116

AIC 566.83 486.88 538.78 547.13 620.93 561.06 611.99 591.08 662.73 571.18

BIC 555.06 475.11 527.00 535.36 609.16 549.29 600.23 579.31 650.96 559.41

RMSE 35.10 10600 36.21 36.05 35.55 38.81 35.68 35.55 35.09 34.79

thus the preferred model.
With respect to disconnection between the two economies, total disconnection would

result in independent marginal intensities, i.e the off-diagonal elements of â12, â21, b̂12 and
b̂21 all being equal to zero. However we find that these are non-zero as Table 9.6 shows.
There is rather strong dependence in defaults across red and blues states as Figure 9.4 also
shows.

Moreover, We find that for the log-linear model without covariates, b̂12 = 0.283 , so that
the feedback from past defaults on current defaults in red states, comes from past defaults
from both red and blue states. Similarly b̂21 = 0.114, which means current defaults in blue
states get feedback from past defaults from red states. Moreover, this suggests that the
feedback from past defaults in blue states on current counts of defaults in red states is more
than twice stronger than the feedback from past defaults in red states on current counts of
defaults in blue states, more simply b̂12 > 2b̂21.

Furthermore, we look at how (b̂11 + b̂12) and (b̂21 + b̂22) change when covariates (sp500ret)
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Figure 9.5.: Cumulative periodogram plots of the Pearson residuals from the log-linear fit
defaults in red states (left) and blue states (right),and autocorrelation functions
Pearson residuals resulting from the model fit, respectively top and bottom
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Table 9.5.: Parameter estimates of the univariate log-linear model with covariates from all
covariates considered

indpro permit ppifgs-up piend unrate baa fedfunds gs10 sp500ret sp500vol

d -0.299 -0.0727 -0.311 -0.084 -0.123 -0.058 -0.294 -0.108 -0.086 -0.165

a 0.098 0.681 0.121 0.611 0.543 0.714 0.239 0.587 0.617 0.722

b 0.902 0.312 0.878 0.374 0.450 0.281 0.758 0.406 0.376 0.262

c -0.013 -0.001 -0.005 -0.001 0.027 0.031 -0.043 -0.022 -0.006 0.107

AIC 1571.85 1589.99 1589.06 1592.50 1595.75 1595.03 1596.04 1598.40 1582.61 1565.48

BIC 1576.08 1594.22 1593.29 1596.73 1599.97 1599.26 1600.27 1602.27 1586.84 1569.72

RMSE 36.45 37.22 36.87 37.04 37.67 37.58 37.52 37.70 36.96 36.02

0
1

2
3

4
5

6
7

Time

C
or

po
ra

te
 d

ef
au

lts
 in

 R
ed

 s
ta

te
s

1980 1990 2000 2010

0
2

4
6

8
10

12

C
or

po
ra

te
 d

ef
au

lts
 in

 B
lu

e 
st

at
es

1980 1990 2000 2010

Figure 9.6.: Number of corporate defaults per month inn red states (Top) and blue states
(Bottom). The grey line is time series plot of the data. The Green line from
log-linear model (8.12) fit to the data, and the red line from log-linear model
including covariates (sp500ret) (8.20) fit to the data
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Figure 9.7.: Observed zeroes red and probability of having zeroes predicted by the model
with sp500ret (blue crosses)
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Table 9.6.: Univariate and bivariate fits without covariates

linear SE log-linear SE linear SE log-linear SE

d 0.094 (0.045) -0.203 (0.035) d1 -0.225 (0.269) -0.326 (0.079)

a 0.692 (0.059) 0.661 (0.048) d2 -1.70 (0.220) -0.254 (0.077)

b 0.261 (0.046) 0.432 (0.059) a11 -1,90 (0.809) 0.876 (0.138)

a12 1.79 (0.703) -0.240 (0.097)

a21 -2.47 (0.763) -0.012 (0.239)

a22 2.43 (0.628) 0.695 (0.111)

b11 0.233 (0.041) 0.270 (0.069)

b12 0.117 (0.034) 0.283 (0.092)

b21 0.243 (0.038) 0.114 (0.066)

b22 0.145 (0.033) 0.346 (0.081)

AIC 1602.76 1624.39 AIC 1201.18 1215.21

BIC 1609.00 1630.62 BIC 1193.41 1207.45

RMSE 37.79 38.36 RMSE 35,49 35.79

are included to the model. We find that the feedback from past defaults decrease for both
red and blue states, (b̂11 + b̂12) = 0.502, (b̂21 + b̂22) = 0.355, respectively, when covariates
are included, from what they were when leaving covariates out, (b̂11 + b̂12) = 0.553 and
(b̂21 + b̂22 = 0.460). Decrease in the feedback from past defaults on current defaults is
observed for some other covariates considered as well, see 9.4. Even though the feedback
decreases when including covariates, it however does not vanish, as it was the case in the
univariate model as well. This is in agreement with the results reported in Agosto et
al., 2016. Thus conditional on the correct financial and macroeconomic covariates being
included this result provides evidence for contagion effects.

To further assess the preferred model (sp500ret), we look at the marginal time series, i.e
defaults in red and blue state, which appear to be zero inflated, particularly in the beginning
of the 1980s, see figure 9.6. However the model assumes that the multivariate time series
is marginally Poisson distributed. Therefore to assess if this assumption holds, we compare
the the observed zero counts and the model implied probabilities of observing zeroes, i.e
P̂ (Yi,t = 0|Ft−1) = λ̂i,t. Though there are many zero counts, figure 9.7 shows that there
is clear correspondence between observed zero counts and model implied probabilities of
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observing zero count.

9.2.3. Out of sample prediction

we found in the previous subsection that the preferred model provides a relatively good
in-sample performance. In this subsection we further examine the model for out-of-sample
performance. To that end, we perform a pseudo-out-of-sample forecasting exercise for the
preferred model, and the simpler log-linear model, that is without covariates. We split
the sample in to two, where we use the first part to obtain initial estimates, i.e we use
Yt = Y1, ..., YT0=269 to obtain initial estimates and the rest YT0+1, ..., YT are used for one
step ahead prediction. Then given MLE θ̂t for t ≥ T0 we compute the corresponding one-
step- ahead prediction λt+1 based on information only up to time t, that is λ̂t+1 = λt+1(θ̂).
Practically we have done this by fitting the model repeatedly for ascending data, starting
at T0 from the first split.

we evaluate the out-of-sample performance by a mean-square forecasting error,defines by

MSFEt =
1

t− T0

t∑
s=T0

p∑
i=1

(Yi,s+1 − λ̂i,s+1) (9.2)

and the average logarithmic forcasting score, given by

FSt =
1

t− T0

t∑
s=T0

p∑
i=1

(Yi,s+1logλ̂i,s+1 − λ̂i,s+1) (9.3)

For both measures smaller values indicates better forecasting ability for the model. The
MSFE measures how well the model does in terms of forecasting defaults, while FS evaluates
how well the model does in forecasting the distribution of defaults. Figure 9.9 shows the
models out of sample performance, It shows that log-linear model (red line) lies below the
lies consistently lower achieving better out of sample performance, despite the covariates
model doing best in terms of in-sample prediction. The figure also shows that FS is is the
measure that best displays the difference in forecasting performance of the models.

Structural instabilities of model parameters were found in Agosto et al., 2016, which are
also present in the models we have fitted here. From figure 9.9 we can see that out-of-sample
prediction errors are high in the early 2000s, and again right after the 2008 financial crises.
A rolling window for the log-linear model is displayed by figure 9.10, which also supports
the structural instabilities. we do not formally test if indeed the parameters vary over time,
but it is apparent that the parameters react strongly to the 2008 financial crisis. Agosto
et al., 2016 find that during 2007-2011 contagion effects vanish and that default counts are
explained by systematic risk. We also fit the bivaraite models on such sub samples, however
the models suffer from convergence problems, and the results are not trustworthy, therefore
not reported here.
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Figure 9.8.: Top: Cumulative periodogram plots of the Pearson residuals from from the
log-linear fit including covarites (sp500ret), of defaults in red States (left) and
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the model fit of defaults in red and blue stated respectively.
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10. Copula Estimation

The log-likelihood function (8.5) seems to suggest independence between the marginal series.
However dependence is captured through (8.2) and (8.13) on which (8.5) depends. The
copula structure does not explicitly appear in (8.5), even though it does indirectly because
of the conditional innovations Yt|λt. In this section we aim to determine dependence
among marginal series. Considering how (8.2) and (8.13) are defined the task reduces to
identifying the copula structure and parameter. To that end, One has to compare the
conditional distribution of Yt|λt with Y∗t |λt, where the former is a parametric bootstrap
sample for example generated by the data generating process described in Algorithm 1.
Fokianos et al., 2020 suggest an approach based on local Gaussian correlation.

10.1. Copula estimation on simulated data

Fokianos et al., 2020 (see, supplement) suggest the following parametric bootstrap procedure
to simulate bivariate count time series and retrieve the copula structure and parameter used
to generate the process.

1. Given the observations Y1,t and Y2,t, t = 1, ..., n estimate θ̂ and compute λ̂t.

2. For a given copula structure and copula parameter generate Y ∗1,t, Y
∗

2,t, based on θ̂ from
step 1 by the data generating process described in Algorithm 1.

3. Compute the local Gaussian correlation ρn,b(·) between Y1,tandY2,t and the local Gaus-
sian correlation ρ∗n,b(·) between Y ∗1,tandY ∗2,t on a pre-defined grid (uj , vj), j = 1, ...,m.

4. Compute the distance measure Dm = 1
m

∑m
j=1[ρn,b(·)− ρ∗n,b(·)]2

5. Repeat steps 2 to 4 for different copula structures and over a grid of values for the
copula parameter. The estimate of the copula structure and corresponding copula
parameter,φ̂, is the one that minimizes Dm.

Here we use this same approach to retrieve the copula structure and parameter for the log-
linear model including covariate time series given by (8.23). Specifically, we generate 100
realizations of bivariate count time series and steps 2-5 are executed for each realization. we
only choose between Clayton and Gaussian copulas, which constitutes a pair of simulations.
The true parameters used to generate the process is 0.5 for in the Gaussian copula case
and 4 for the Clayton copula. Step 5 i executed over a grid of copula parameter values
ranging from -1 to 1 and from 0.5 to 8, for the the Gaussian copula and the Clayton copula
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10. Copula Estimation

Table 10.1.: Simulation results for the parametric copula estimation and copula structure
identification for the given model. Results are based on 100 runs, where the
distance measure is based on local Gaussian correlation

copula sample size parameter std.error identified

log-linear model with covariates, where parameters are given by 8.23

Guassian
with φ = 0.5

500 0.361 0.274 73
1000 0.424 0.215 63

Clayton with
φ = 4

500 2.67 1.81 64
1000 2.38 1.72 71

log-linear model, where parameters are given by 8.19

Guassian
with φ = 0.5

500 0.458 0.122 76
1000 0.458 0.082 79

Clayton with
φ = 4

500 3.65 0.978 78
1000 3.77 0.772 83

respectively. The local Gaussian correlations are calculated over a diagonal, i.e (uj = vj)
grid starting from 1 and up to the maximum value in the generated Poisson process in step
1. The bandwidths are calculated as the standard deviation of the same process multiplied
with 1.1, Table 10.1 shows the result of the simulation.

Furthermore, we here also look at the copula estimation utilizing the global dependence
measure and the most frequently used dependence measure, the Pearson correlation. we
make adjustment to the above method as follows; At step 3, Compute the Pearson correla-
tion ρn between Y1,t and Y2,t and the Pearson correlation ρ∗n(·) between Y ∗1,t(·) and Y ∗2,t. At
step 4, Compute the distance measure D = |ρn(·)− ρ∗n(·)| and proceed to step 5 as before.

The result of the copula estimation based on Pearson’s correlation are given in table
10.2. Copula parameter estimates based on local Gaussian correlation, er close to the true
parameter values for the Gaussian copula and not as well for the Clayton copula. However
both copula structures are well identified with this methodology. we also see that for
increasing sample size copula parameter estimates improve. On the other hand, Copula
parameter estimates based Pearson’s correlation are more inconsistent. The number of
times the copula structure is identified and the copula parameter estimates don’t improve for
increasing sample size. With both of these distance measures the Clayton copula parameter
is not very well estimated. The procedure works well, however a more comprehensive
measure of distance between the sample and the bootstrapped sample may improve its
performance.

10.2. Copula estimation on real data

Here we estimate the copula parameter and identify the copula structure for the multivari-
ate log-linear model with covarites fitted to the default data in section (9). The Pearson
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10. Copula Estimation

Table 10.2.: Simulation results for the parametric copula estimation and copula structure
identification for the given model. Results are based on 100 runs, where the
distance measure is based on Pearson correlation

copula sample size parameter std.error identified

linear model, where parameters are given by 8.11

Guassian
with φ = 0.5

500 0.353 0.404 58
1000 0.489 0.206 58

Clayton with
φ = 4

500 6.18 1.52 82
1000 5.76 1.74 79

log-linear model, where parameters are given by 8.19

Guassian
with φ = 0.5

500 0.468 0.065 73
1000 0.477 0.050 70

Clayton with
φ = 4

500 3.52 0.573 80
1000 3.54 0.393 81

correlation between defaults in red and blue states in 0.443. The local Gaussian correlation
is however between 0.259 annd -0.984, and highly nonlinear as figure (10.1) shows. For
this model the Gaussian copula is selected 52 times out of 100 and the copula parameter is
estimated to be 0.182. The standard error is of the estimates 0.222, which is not too high.
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Figure 10.1.: Estimated local Gaussian correlation between defaults in red and blues states
on a diagonal grid
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11. Conclusion

In this thesis, we have simulated from bivariate linear, log-linear and log-linear with co-
varites count time series that are marginally Poisson. By simulation we find that the log-
linear model with covariates appears to inherit the large sample properties of the log-linear
model, i.e maximum likelihood estimators of the models parameters are asymptotically nor-
mal. Furthermore, we have used these models to study corporate defaults in the US. We
find across region contagion effects are present in the entire sample period, from 1980 to
2017. More specifically, feedback effect coming from past default counts in blue states have
stronger impact on current default counts in red states than the other way around. It is
however important to note that an economic analysis of contagion and default clustering,
such as ours, may sufferer from missspecification error due to the fact that our chosen co-
variates may not capture all the systematic risk present in the economy, that the firms face.
Similarly we have ignored possible feedback from past default counts to the set of covariates.

The two real world application given in this thesis are in finance. For future work,
interesting and relevant to current state of the world is to apply the models to COVID-19
data, that are often recorded as aggregated number of confirmed cases. The multivariate
models we have discussed can be a great tool to study, say ”infection contagion” across
regions, with the possibility of including covariates, these covariates can be mitigation
strategies taken in the different regions considered. Furthermore, Here we have assumed the
conditional distribution Yt|Ft−1 is marginally Poisson. A natural next step can be to try
other marginal conditional distribution,such as negative binomial, that can be generated
from continuous waiting times. For example Fokianos et al., 2020 suggest a way to generate
count vector whose marginal distribution is mixed Poisson.
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A. TMB examples

A.1. Template for a Poisson log-linear model with covariates

1 #include <TMB.hpp>

2 // Likelihood for a linear count model (model 1)

3 template<class Type>

4 Type objective_function<Type>::operator() ()

5 {

6

7 // Data: univariate time series and exogeneous covariate time series,

8 DATA_VECTOR(y);

9 DATA_VECTOR(x);

10 // Model parameters

11

12 PARAMETER(d);

13 PARAMETER(a);

14 PARAMETER(b);

15 PARAMETER(c);

16

17 // Set starting values to the expectation of the stationary distribution

18 Type ny0 = d/(1 - a - b);

19 Type y0 = exp(ny0);

20 // define

21 int n = y.size();

22 vector<Type> ny(n);

23 vector<Type> lambda(n);

24 Type nll = 0.0;

25

26

27 // ADREPORT on a, b, d, to obtain standard errors after optimization

28 ADREPORT(d);

29 ADREPORT(a);

30 ADREPORT(b);

31 ADREPORT(c)

32

33 // t=1
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34 ny(0) = d + a*ny0 + b*log(y0 + 1);

35 lambda(0) = exp(ny(0));

36 nll -= dpois(y(0), Type(lambda(0)), true);

37

38 // t = 2,...,n

39 for(int i = 1; i < n; i++){

40 ny(i) = d + a*ny(i - 1) + b*log(y(i - 1) + 1) + c*x(i);

41 lambda(i) = exp(ny(i));

42 nll -= dpois(y(i), Type(lambda(i)), true);

43 } //end of i

44 return nll;

45 }

A.2. Template for a bivariate Poisson log-linear model with
covarites

1 #include <TMB.hpp>

2 // Likelihood for a bivariate poisson log linear model including covariates.

3 template<class Type>

4 Type objective_function<Type>::operator() ()

5 {

6 // bivariate posisson distributed count time series,Nx2 matrix, with a bivariate covariate t.s

7 DATA_MATRIX(Y);

8 DATA_MATRIX(X);

9 // parameters

10 PARAMETER_VECTOR(p);

11

12 // split the data into two column vectors,

13 vector<Type> Y1 = Y.col(0); // 1st col of Y

14 vector<Type> Y2 = Y.col(1); // 2dn col of Y

15 vector<Type> X1 = X.col(0); // 1st col of X

16 vector<Type> X2 = X.col(1); // 2dn col of X

17

18 int n = Y1.size(); // Length of the data

19 vector<Type> loglik1(n);

20 vector<Type> loglik2(n);

21 vector<Type> loglik(n);

22

23 // report parameter estimates with standard errors

24 ADREPORT(p);
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25

26 vector<Type> nu1(n);

27 vector<Type> nu2(n);

28 vector<Type> lambda1(n);

29 vector<Type> lambda2(n);

30 //Some initial values

31 loglik1(0) = 0;

32 loglik2(0) = 0;

33 loglik(0) = 0;

34 nu1(0) = 0;

35 nu2(0) = 0;

36 lambda1(0) = 1;

37 lambda2(0) = 1;

38 for(int t=1;t<n;t++){

39 nu1(t) = p(0) + p(2)*nu1(t-1) + p(4)*nu2(t-1) +

40 p(6)*log(Y1(t-1)+1) + p(8)*log(Y2(t-1)+1)+ p(10)*X1(t)+p(12)*X2(t);

41 lambda1(t) = exp(nu1(t));

42 nu2(t) = p(1) + p(3)*nu1(t-1) + p(5)*nu2(t-1) +

43 p(7)*log(Y1(t-1)+1) + p(9)*log(Y2(t-1)+1)+p(11)*X1(t)+p(13)*X2(t);

44 lambda2(t) = exp(nu2(t));

45 if(lambda1(t)<=0){

46 loglik1(t)=0;

47 }

48 else if(lambda1(t)>0){

49 loglik1(t) = -Y1(t)*log(lambda1(t)) + lambda1(t);

50 }

51 if(lambda2(t)<=0){

52 loglik2(t) = 0;

53 }

54 else if(lambda2(t)>0){

55 loglik2(t) = -Y2(t)*log(lambda2(t)) + lambda2(t);

56 }

57 loglik(t) = loglik1(t) + loglik2(t);

58 }

59 return(loglik.sum());

60 }
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