
University of Bergen
Department of Informatics

Computational searches for

quadratic APN functions with

subfield coefficients

Author: Simon K. Berg

Supervisor: Nikolay S. Kaleyski

June, 2023

1

Abstract

Almost perfect nonlinear (APN) functions are important in fields such as algebra,

combinatorics, cryptography, etc. Finding new APN functions is of special importance

in cryptography. This is because when used in modern block ciphers, they are optimal

against differential cryptanalysis. In this thesis, we discuss how the matrix approach for

constructing quadratic APN functions developed by Yu et al. can be adapted to the

case of functions over F2n with coefficients in a subfield F2k . This adaptation allows us

to search for functions of this form and using the notion of linear equivalence, we can

significantly restrict the search space. Using this method, we classify all quadratic APN

functions with coefficients in F22 over F28 up to CCZ-equivalence. To the best of our

knowledge, no such search has been carried out before. The classification resulted in

27 CCZ-equivalence classes covering all quadratic APN functions with coefficients in F22

over F28 of which one seems to be new.

i

Acknowledgements

I would like express my sincere gratitude to the University of Bergen and the Selmer center

for introducing me to the field of cryptography and Boolean functions. In particular, I

want to thank my supervisor Nikolay Kaleyski for helping me with all aspects of my

thesis, from formulating it, to providing invaluable input and always being available to

help me. I would also like to thank my friends and family for their support throughout

my studies here in Bergen.

Simon K. Berg

Thursday 1st June, 2023

Contents

1 Introduction 1

2 Background 5

2.1 Vectorial Boolean functions . 5

2.1.1 Algebraic normal form . 6

2.1.2 Univariate representation . 7

2.1.3 The scale of Boolean functions . 8

2.2 Cryptographic properties . 9

2.2.1 Differential uniformity and APNness 9

2.2.2 Nonlinearity . 10

2.3 Equivalence of vectorial Boolean functions 11

2.3.1 Affine and Linear equivalence . 12

2.3.2 EA-equivalence . 12

2.3.3 CCZ-equivalence . 12

2.3.4 Checking functions for equivalence 13

2.4 Quadratic APN matrices . 15

2.4.1 Definition and construction . 15

2.4.2 The structure of a derivative matrix over a normal basis 17

2.4.3 The submatrix method . 19

2.4.4 EA-equivalence between derivative matrices 21

3 Contribution 23

3.1 Using orbits to restrict variables . 24

3.2 Search for QAMs in F28 with coefficients in F22 29

3.2.1 The orbits of our search parameters 30

3.3 Results . 31

3.3.1 Time estimate of brute force search 32

3.3.2 Time estimate of submatrix search 32

3.3.3 Time estimate of our method . 33

i

3.3.4 The time it took to perform the classification 34

3.3.5 Functions found . 35

4 Conclusion 40

4.1 Future work . 40

Bibliography 42

ii

Chapter 1

Introduction

Cryptography, the science of secure communication, is more important than ever in to-

day’s digital age. With the increasing reliance on digital technologies for communication,

commerce, and storage of sensitive information, the need to protect the confidentiality,

integrity, and authenticity of data has become paramount.

The study of Boolean functions is especially important for cryptographic purposes

due to their usage in symmetric cryptography. Block ciphers such as the Data Encryp-

tion Standard (DES) and the Advanced Encryption Standard (AES) both use vectorial

Boolean functions as their S-boxes, which is a key part in providing confusion in their

schemes. The choice of vectorial Boolean functions as S-boxes heavily determines the

level of vulnerability of these block ciphers to many cryptanalytic attacks. Among these

attacks are some of the most dangerous ones known to date, the linear- and differential

attack.

Almost Perfect Nonlinear (APN) functions were introduced as a countermeasure to

the differential attack [2, 15] and have been heavily researched by the cryptography

community since their introduction. The reason APN functions are optimal against

differential cryptanalysis is due to their low differential uniformity, but this property also

makes it hard to find and study APN functions by mathematical means. Due to the large

search space, it is not feasible to find all possible APN functions over a given field by

exhaustive search. This is why targeted computational searches are an important tool

for investigating and classifying APN functions.

A new method to efficiently search for quadratic APN functions was introduced by Yu

et al. [18] in which they made use of a matrix structure, called the Quadratic APN Matrix

1

(QAM), to efficiently find new APN functions by modifying the QAM of a known APN

function. By using their new method, they were able to increase the number of known

APN functions in F27 from 19 [9, 10] to 470 functions. Additionally, they found more than

1000 new functions in F28 , which was a significant increase from the 23 previously known

ones. These results led to further research into QAMs. In 2020, Yu et al. adapted the

QAM method for the special case when the APN functions had prime field coefficients.

They did this by showing that the search space can be significantly reduced in this case.

They used their adapted QAM method to perform a full classification of quadratic APN

functions over F2n with coefficients in F2 for dimensions up to n = 9 [19]. Later, in 2022, a

generalization of QAMs for any quadratic function over Fpn , called the derivative matrix,

was introduced by Davidova and Kaleyski [8]. They also discussed a method of restricting

the elements of the finite field to equivalence classes by considering functions up to linear

equivalence, which reduced the search space. Both these techniques were then used to

classify all planar functions with prime field coefficients over F3n up to n = 7.

In this thesis, we improve upon the above work by expanding upon the notion of us-

ing linear equivalence to restrict the search space in computational searches for functions

with coefficients in F2k over F2n using the QAM method. Then we show how significant

an improvement this brings by performing a computational classification of all quadratic

APN functions in F28 with coefficients in the subfield F22 , which to the best of our knowl-

edge has not been done before. We performed our search using the Magma programming

language [3] because of its ease of use, especially in representing complex mathematical

structures, such as finite fields, polynomial rings and matrices, as well as its built-in

features for operations on said structures. The classification resulted in finding 196863

APN functions that fell into 27 CCZ-equivalence classes. One of those classes seems to

be new and can be represented by a 3-to-1 function, which we provide as part of our

results. The classification works as a proof of concept for our improved search method.

Hopefully, our results will pave the way for new searches over Fpn with coefficients in Fpk

for higher values of p, n and k. To this end, we also show a method for approximating

the complexity of such a search.

In Chapter 2, we introduce definitions and theorems necessary to understand our

adaptation of the QAM method. The topics that will be covered are vectorial Boolean

functions and their properties, such as differential uniformity and equivalence relations.

We will also cover the theory of and surrounding the QAM.

In Chapter 3, we describe how to restrict the search space by considering linear equiv-

alence between functions, as done in [8]. Then we show how our adapted method works

2

and how significant of an improvement it brings by a simple example in F24 . We then

show how to construct a QAM for quadratic APN functions with coefficients in F22 over

F28 and how to use our adapted method for said field. Lastly, we present the results of

the classification of quadratic APN functions with coefficients in F22 over F28 .

In Chapter 4, we draw our conclusion of the usefulness of our adapted method and

discuss some future work that could benefit from implementing it.

3

4

Chapter 2

Background

In this chapter, we present background information needed for understanding crypto-

graphic Boolean functions. We discuss topics such as vectorial Boolean functions, Al-

most Perfect Nonlinear (APN) functions, the quadratic APN matrix (QAM), equivalence

relations between functions and their invariants.

2.1 Vectorial Boolean functions

Let F2 = {0, 1} denote the binary finite field and Fn
2 denote the n-dimensional vector space

over F2 for some positive integer n. A Boolean function F : Fn
2 → F2 is a function

from the n-dimensional vector space Fn
2 to F2, and is also called an (n, 1)-function.

In many scenarios, it is more natural to work with functions that give an entire vector

of bits instead of a single bit as output, which leads to the introduction of vectorial

Boolean functions. A vectorial Boolean function (VBF) F : Fn
2 → Fm

2 is a function

that takes a Boolean vector of length n as input and output a Boolean vector of length

m. A VBF is also called an (n,m)-function and can be expressed as

F (x1, x2, ..., xn) = (f1(x1, x2, ..., xn), ..., fm(x1, x2, ..., xn)), x1, ..., xn ∈ Fn
2 ,

where f1, ...fm : Fn
2 → F2 are called the coordinate functions of F . The nonzero linear

combinations of the coordinate functions are called the component functions of F and

are denoted by Fb, for b ∈ F2m \ {0}.

5

Example 1 Suppose we have a function F = (f1, f2, f3), then its component functions

are f1, f2, f3, f1 + f2, f1 + f3, f2 + f3 and f1 + f2 + f3.

The simplest way to represent a vectorial Boolean (n,m)-function is by its truth

table, also called the look-up table, which lists every possible input to F and its

corresponding output.

Example 2 The truth table of a (3, 2)-function with coordinate functions f1(x1, x2, x3) =

x1 + x2 and f2(x1, x2, x3) = x2 + x3 can be seen in Table 2.1.

(x1, x2, x3) F (f1(x1, x2, x3), f2(x1, x2, x3))
(0, 0, 0) (0, 0)
(0, 0, 1) (0, 1)
(0, 1, 0) (1, 1)
(0, 1, 1) (1, 0)
(1, 0, 0) (1, 0)
(1, 0, 1) (1, 1)
(1, 1, 0) (0, 1)
(1, 1, 1) (0, 0)

Table 2.1: Truth table of a (3, 2)-function.

Although this is a simple way to represent a VBF, it becomes quite lengthy as n

increases, since the size grows exponentially in n.

2.1.1 Algebraic normal form

The truth table is not always the most useful form of representing vectorial Boolean

functions in cryptography, because the cryptographic properties of a vectorial Boolean

function are not easily captured by such a representation. What is often used, is the

following representation. The Algebraic normal form, or ANF of a vectorial Boolean

(n,m)-function is the n-variable polynomial representation, of the form

F (x1, x2, ..., xn) =
∑

I⊆{1,...,n}

αI

(∏
i∈I

xi

)
, x1, x2, ..., xn ∈ F2

with coefficients αI ∈ Fm
2 . We define the algebraic degree d◦(F) of a function F as

the degree of its ANF, which is equal to the highest number of variables in any term with

a nonzero coefficient.

6

Example 3 Let F be the function from Example 2. The ANF of F is as follows:

F (x1, x2, x3) = (0, 1)x3 + (1, 1)x2 + (1, 0)x1.

Since every term of F with a nonzero coefficient has degree equal to 1, we have d◦(F) = 1.

Suppose we have an (n,m)-function F . If d◦(F) ≤ 1, as in Example 3, then F is

called affine and satisfies

F (x+ y + z) = F (x) + F (y) + F (z)

for all x, y, z ∈ F2n . In the special case when F is affine and F (0, ..., 0) = (0, ..., 0), then

F is also called linear and satisfies

F (x+ y) = F (x) + F (y)

for all x, y ∈ F2n . If d
◦(F) ≤ 2, then F is called quadratic and if d◦(F) ≤ 3, F is called

cubic.

2.1.2 Univariate representation

In the special case when a function F : Fn
2 → Fm

2 satisfies m | n, by identifying the vector

space Fn
2 with a finite field F2n , F can be expressed as a univariate polynomial

F (x) =
2n−1∑
i=0

cix
i, ci ∈ F2n .

This is one of the representations of vectorial Boolean functions that will primarily be

used in this thesis alongside the QAM, which we define later. To calculate the algebraic

degree of a univariate polynomial, we simply look at the exponent with the highest

Hamming weight. The Hamming weight of an integer i, denoted by w2(i), is defined

as the number of nonzero entries in the binary expansion of i. We can then calculate the

algebraic degree of a univariate polynomial F as follows:

d◦(F) = max
0≤i<2n, ci ̸=0

w2(i).

7

If we have a univariate function F : Fn
2 → Fm

2 of the form

F (x) =
n−1∑
i=0

cix
2i , ci ∈ F2n ,

then F is linear. We can see that the algebraic degree of F is equal to 1, because the

Hamming weight of 2i is equal to 1 for any positive i. A univariate function F : Fn
2 → Fm

2

is quadratic if it can be expressed of the form

F (x) =
n−1∑
i=0

n−1∑
j=0,j ̸=i

ci,jx
2i+2j + A(x)

for some affine function A(x) : Fn
2 → Fm

2 .

2.1.3 The scale of Boolean functions

In this section, we showcase the reason why finding new Boolean functions and VBFs

with certain cryptographic properties is a hard problem, especially as n increases.

Let the set of all Boolean functions over Fn
2 be denoted by BFn and let |BFn| denote its

cardinality. The Boolean functions used in cryptography satisfying desirable conditions

can not be determined or studied by an exhaustive computer investigation with current

technology, because the number of n-variable Boolean functions |BFn| = 22
n
increases

exponentially with n, as can be seen in Table 2.2. This problem is even more pronounced

when we look at the set of all vectorial Boolean (n, n)-functions BF n
n , as the number of

functions |BF n
n | = (2n)2

n
increases even faster, with some examples given in Table 2.3.

To give some perspective on how large the search space is, it is estimated that there exist

approximately 1080 atoms in the known universe.

Computational searches are possible, but because the search space is so large, we need

to restrict it as much as we can. In later sections, we will revisit how we restricted our

search.

n 4 5 6 7 8

|BFn| 65536 4294967296 1.84× 1019 3.40× 1038 1.16× 1077

Table 2.2: Growth of |BFn| as n increases

8

n 4 5 6 7

|BF n
n | 1.84× 1019 1.46× 1048 3.94× 10115 5.28× 10269

Table 2.3: Growth of |BF n
n | as n increases

2.2 Cryptographic properties

Boolean functions and vectorial Boolean functions play an important part in representing

the transformation of data in computer systems. Because of this, they have become a

widely researched topic within the field of cryptography. One of the main objectives

in studying such functions is to find functions F : F2n → F2m that can be used in an

encryption scheme, such that the scheme cannot easily be decrypted by malicious actors.

Vectorial Boolean functions are one of the fundamental aspects of modern day block

ciphers, such as AES and DES, as they are used as S-boxes within the round function.

Therefore, these S-boxes have to be constructed in a way that cryptanalytic attacks, such

as the differential and linear attack, have as few properties to exploit as possible. The

choice of S-boxes is crucial to the level of security of a block cipher, because they are the

only nonlinear component in it.

2.2.1 Differential uniformity and APNness

The differential attack proposed by Biham and Shamir in [2] exploited the distribution

of the difference between outputs y0, y1 ∈ F2n for some difference between inputs x0, x1 ∈
F2n , x0 ̸= x1. The output differential b is the difference between the outputs y0 and y1,

i.e. b = y0 ⊕ y1. Similarly, the input differential a is the difference between the inputs

x0 and x1, i.e. a = x0 ⊕ x1. The larger the measured probability of getting b from a,

which is the number of pairs with input differential a that produce output pairs with

output differential b over all possible pairs, the more efficient the attack is. This leads

to a criterion on the S-box functions, namely that the output differentials for any fixed

input differential need to be as uniformly distributed as possible.

Let DaF (x) denote the derivative of F in direction a:

DaF (x) = F (x) + F (x+ a), x, a ∈ F2n , a ̸= 0

9

and let δF (a, b) denote the number of solutions to the equation DaF (x) = b:

δF (a, b) = |{x ∈ F2n : DaF (x) = b}|.

The differential uniformity of F , denoted by δF , is defined as the maximum value

of δF (a, b) over all choices of a, b ∈ F2n , a ̸= 0. If F has differential uniformity δ, F is

called differentially δ-uniform.

The differential uniformity δF is necessarily even, because if x is a solution to F (x) +

F (x + a) = b then x + a is also a solution. As shown by Nyberg in [15], the lower δF ,

the better the contribution of F to the resistance against the differential attack when

used in an encryption scheme. When a function F is differentially 2-uniform, it is called

Almost Perfect Nonlinear (APN). APN functions provide the strongest resistance

against differential attacks.

The differential spectrum DF of a function F is defined as the multiset of the

values of δF (a, b) over all a, b ∈ F2n , a ̸= 0 and can symbolically be represented as

DF = [δF (a, b) : ∀a, b ∈ F2n , a ̸= 0],

where we use square brackets to denote a multiset. A function is APN if and only if its

differential spectrum contains no value higher than 2. The differential spectrum will be

revisited later when we discuss invariants.

Searching for new APN functions is a hard problem, which is why the main goal of

this thesis is to investigate a computational method based on the work of Yu et al. in

[18] for finding new APN functions.

2.2.2 Nonlinearity

The linear attack is another powerful attack against block ciphers and was proposed by

Matsui in [14]. The idea of the linear attack is to approximate the VBF used in a cipher

by an affine function, and use that approximation to attack the cipher. The reason for

this is that affine functions behave predictably and are a well studied topic, making them

easy to analyze. To ensure that ciphers are as safe as possible against the linear attack,

only VBFs that have minimal correlation with any affine function should be used. We

measure a function’s resistance to linear attacks by its nonlinearity [6], which we will

10

define in a bit. First, let us define the Hamming distance between two (n, n)-functions

F and G as

dH(F,G) = |{x ∈ F2n : F (x) ̸= G(x)}|.

Two functions are considered “close” to one another if the Hamming distance between

those functions is low, in which case they are easy to approximate by one another. Now,

let us define the nonlinearity of an (n, 1)-function f as

NL(f) = min{dH(f, l) : l ∈ An},

where An denotes the set of all affine (n, 1)-functions. We define the nonlinearity of an

(n, n)-function F as the minimum nonlinearity of all its component functions Fb:

NL(F) = min{NL(Fb) : b ∈ F2n \ {0}}.

We know that the nonlinearity of any (n, n)-function is upper-bounded [5] by

NL(F) ≤ 2n−1 − 2
n−1
2 ,

and if F attains this upper bound, then F is said to beAlmost Bent (AB). AB functions

are the most resilient functions against linear cryptanalysis, which is why it is optimal

for VBFs used as S-boxes to be AB, as well as APN. All AB functions are APN as well,

but not vice versa, except in the case when n is odd and F is quadratic [5].

2.3 Equivalence of vectorial Boolean functions

When a large set of objects needs to be studied, one way to approach it is to introduce

an appropriate equivalence relation and then partition the set into classes under said

relation. Then, every object belonging to the same class are considered equivalent and

when studying them we only consider one representative from each class. This is the

approach we take when studying APN functions. When we classify these functions up to

some equivalence relation, it is desirable that the classes are as big as possible in order to

reduce the number of functions we need to consider. At the moment, CCZ-equivalence

is the most general known equivalence relation that preserves APNness. Therefore, APN

functions are classified up to CCZ-equivalence and a function is only considered new if

it is CCZ-inequivalent to the known ones. Hence, it is crucial that potential new APN

functions are checked for CCZ-equivalence against the known CCZ-classes.

11

In this section, we will present the most commonly used equivalence relations between

vectorial Boolean functions. These include Linear equivalence, Affine equivalence,

Extended Affine (EA) equivalence and Carlet-Charpin-Zinoviev (CCZ) equiv-

alence. All these equivalence relations preserve APNness and Nonlinearity. We will also

present the hierarchy of these equivalence relations, as well as how to simplify testing

CCZ-equivalence between two APN functions by using invariants.

2.3.1 Affine and Linear equivalence

Two functions F and G over F2n are said to be Affine equivalent if there exist some

affine permutations A1, A2 : F2n → F2n such that

F = A1 ◦G ◦ A2.

In the special case when A1 and A2 are linear permutations, F and G are called Linear

equivalent.

2.3.2 EA-equivalence

Some functions F and G over F2n are said to be EA-equivalent if they satisfy

F = A1 ◦G ◦ A2 + A

for some affine permutations A1, A2 : F2n → F2n and some affine function A : F2n → F2n .

2.3.3 CCZ-equivalence

CCZ-equivalence is currently the most general known form of equivalence that preserves

APNness, which is why APN functions are usually classified with regards to it. The

concept of CCZ-equivalence is to compare the graphs of some functions F and G. The

graph of an (n, n)-function F is defined as

ΓF = {(x, F (x)) : x ∈ F2n},

12

such that ΓF is a set of elements belonging to F22n . The functions F and G are said to

be CCZ-equivalent [12] if there exists an affine (2n, 2n)-permutation A(x) such that

{A(x) : x ∈ ΓF} = ΓG.

The hierarchy between the equivalence relations mentioned so far is as follows: linear

equivalence is a special case of affine equivalence, which implies that if two functions

are linear equivalent, then they are also affine equivalent, but not necessarily vice versa.

Similarly, affine equivalence is a special case of EA-equivalence, and EA-equivalence is a

special case of CCZ-equivalence. This hierarchy will become important, because in the

special case of two quadratic APN functions (the type of APN functions we search for),

they are EA-equivalent to one another if and only if they are CCZ-equivalent as well. We

will use this property later when we classify the APN functions we find in our search up

to CCZ-equivalence.

2.3.4 Checking functions for equivalence

When classifying newly found APN functions, it is crucial to check whether the functions

do not lie in the CCZ-equivalence class of some known function. We do this with the use

of linear codes, as shown in [11].

Given an (n, n)-function F , we can associate with it a linear code CF given by the

parity-check matrix

MF =

 1 1 1 1 ... 1

0 1 α α2 ... α2n−2

F (0) F (1) F (α) F (α2) ... F (α2n−2)

 ,

where α is a primitive element of F2n . Note that MF is a binary code, in which every

element of F2n is expanded to its n-dimensional binary vector with respect to a basis

of F2n over F2. Given a function G associated with a linear code CG, F and G are

CCZ-equivalent if and only if their respective linear codes CF and CG are isomorphic.

Recall that isomorphism means that there exists a permutation π of {1, 2, ..., 2n} such that

(x1, x2, ..., xn) is a codeword of CF if and only if (xπ(1), xπ(2), ..., xπ(n)) is a codeword of CG.

The advantage of using these linear codes is that coding theory is a well-developed field

and algorithms for testing code isomorphism already exist. When we test two functions

for CCZ-equivalence in our research, we reduce the problem to a code isomorphism one

13

and make use of the already existing test for code isomorphism in Magma. The downside

with using this test is that it is rather slow, which is why ortho-derivatives are frequently

used to speed up the process.

Ortho-derivatives

The notion of an ortho-derivative of a function was introduced in [4, 16] and is used

to induce a number of invariants. These invariants can be used to distinguish between

inequivalent quadratic APN function with respect to EA-equivalence. An invariant is a

property of a function that is preserved by some equivalence relation. Ortho-derivatives

are a powerful tool to use because the invariants they induce are fast to compute [12] and

are highly accurate at distinguishing between inequivalent functions.

Let F be a quadratic function over F2n and let x ·y denote the scalar product of x and

y for some x, y ∈ F2n . An ortho-derivative [4] of F is defined as any (n, n)-function πF

such that πF (0) = 0 and

πF (a) · (F (x+ a) + F (x) + F (a) + F (0)) = 0

for all x, a ∈ F2n . A quadratic function F : F2n → F2n is APN if and only if it has a

unique ortho-derivative πF such that πF (a) ̸= 0 for all nonzero a ∈ F2n [4].

Ortho-derivatives have the property that if two functions F and G over F2n are EA-

equivalent via

F = A1 ◦G ◦ A2 + A

for some affine permutations A1, A2 over F2n and some affine function A over F2n , their

ortho-derivatives πF and πG satisfy

πF = A−1
1 ◦ πG ◦ A2,

meaning πF and πG are affine equivalent. Ortho-derivatives become useful when we

consider their differential spectra as an invariant. Let the ortho-derivative differential

spectrum (ODDS) of a function F be defined as the differential spectrum of πF . We

then note that the ODDS takes distinct values on almost all EA-inequivalent classes of

quadratic APN functions [4]. This is one of the advantages of using ortho-derivatives as

a tool to classify quadratic APN functions. The other reason to use ortho-derivatives, is

that the ODDS is quickly computed compared to other invariants, such as the Γ- and

14

∆-rank [12]. The drawback of using ortho-derivatives is that this only works for quadratic

APN functions, whereas other invariants can be used as a tool to classify non-quadratic

APN functions as well. This is not an issue for us, as we consider only quadratic APN

functions in our search and classifying functions up to CCZ-equivalence (recall that EA-

equivalence coincide with CCZ-equivalence in this case) is ideally done with the help of

ODDS.

There are other invariants which can be used to distinguish between CCZ-inequivalent

functions. Some of these invariants are, as previously mentioned, the Γ-rank and the ∆-

rank, as well as theMultiplier Group |M(GF)| and the extended Walsh spectrum

WF . As the invariants induced by ortho-derivatives are more useful in the case of this

thesis, we do not define them formally here, but instead refer the reader to [12].

2.4 Quadratic APN matrices

The Quadratic APN matrix (QAM) was introduced by Yu et al. in [18] and is a matrix

structure that can represent quadratic APN functions and be used to search for new APN

functions. In [18], Yu et al. found 470 new classes of CCZ-inequivalent quadratic APN

functions over F27 and over 1000 new classes over F28 by using QAMs. Their work was

followed up by Yu and Perrin in [17], where they found 5412 new classes of quadratic

APN functions over F28 . Another paper by Yu et al. [19] was also published, where

they introduced restrictions on QAMs corresponding to functions over F2n with prime

field coefficients. They used this restriction to reduce the search space and to classify

all quadratic APN functions over F2n with coefficients in F2 up to F29 . Further research

into QAMs was done by Davidova and Kaleyski in [8]. In their paper, the derivative

matrix was introduced, which is a generalization of the notion of a QAM over Fpn for

any characteristic p. The derivative matrix could also represent any quadratic function,

not just the ones that were APN. This generalization was used to classify all quadratic

planar functions over F3n for n ≤ 7. In this section, we present the state of knowledge

behind derivative matrices and QAMs, which will lay the foundation for the work done

in this thesis.

2.4.1 Definition and construction

Before we define what a derivative matrix is, it is necessary that we introduce some

terminology. Let M ∈ Fm×r
2n denote a matrix with m rows and r columns that contains

15

elements in F2n and let Mi,j denote the entry in the i-th row and j-th column of M , for

0 ≤ i ≤ m− 1 and 0 ≤ j ≤ r − 1.

We will now present the concept of a derivative matrix and show how to construct it

from a quadratic function F . Let F : F2n → F2n be a quadratic function of the form

F (x) =
∑

1≤t<i≤n

ci,tx
2i−1+2t−1

, ci,t ∈ F2n (2.1)

and let B = {b1, b2, ..., bn} be a basis of F2n over F2. We define the derivative matrix

[8] of F with respect to B as the matrix MF ∈ Fn×n
2n given by

MF =


∆b1F (b1) ∆b1F (b2) . . . ∆b1F (bn)

∆b2F (b1) ∆b2F (b2) . . . ∆b2F (bn)
...

...
. . .

...

∆bnF (b1) ∆bnF (b2) . . . ∆bnF (bn)

 ,

where ∆aF (x) = F (a+ x) + F (x) + F (a) is a derivative.

We now know how to construct the derivative matrix MF of a quadratic function F

by evaluating the derivatives of F on the basis elements. When we perform computa-

tional searches using derivative matrices, it is necessary to also be able to reconstruct the

univariate form of F given some derivative matrix MF . To do this, we use the coefficient

matrix CF of F , which can be obtained by:

MF = V T
B CFVB.

Here, VB is the Vandermonde matrix [13] of the basis B:

VB =


b1 b2 . . . bn

b21 b22 . . . b2n
...

...
. . .

...

b2
n−1

1 b2
n−1

2 . . . b2
n−1

n

 ,

CF is the coefficient matrix of F :

CF =


0 c1,2 . . . c1,n

c1,2 0 . . . c2,n
...

...
. . .

...

c1,n c2,n . . . 0


16

and V T
B is the transpose of VB. Once we have CF , we can reconstruct F by using Equation

(2.1).

A very useful property of derivative matrices is that we can use them to characterize

APN functions. We do this by introducing the notion of a quadratic APN matrix (QAM).

To define what it means for a matrix to be QAM, we first need to define the rank of a

vector. Let V = (v1, v2, ..., vm) be a vector in Fm
2n . Following [18], we define the rank of

V to be the dimension of the subspace spanned by its elements {v1, v2, ..., vm} over F2.

Now, let M ∈ Fn×n
2n be an n× n matrix defined on F2n . Then M is called a Quadratic

APN Matrix (QAM) [18] if:

1. M is symmetric and the elements in its main diagonal are all zeros.

2. Every nonzero linear combination of the n rows (or columns, since M is symmetric)

of M has rank n− 1.

As shown in [8], a quadratic function F is APN if and only if its derivative matrix MF is

a QAM.

2.4.2 The structure of a derivative matrix over a normal basis

As shown in [8, 19], if a derivative matrix is constructed from a normal basis, it will have

a certain structure which can be taken advantage of in a search for new APN functions.

Let BN = {b, b2, b22 , ..., b2n−1} be a normal basis of F2n over F2 and let F : F2n → F2n

be a quadratic function. We define the normal derivative matrix of F to be the

derivative matrix MF with respect to BN given by:

MF =


∆bF (b) ∆bF (b2) . . . ∆bF (b2

n−1
)

∆b2F (b) ∆b2F (b2) . . . ∆b2F (b2
n−1

)
...

...
. . .

...

∆b2n−1F (b) ∆b2n−1F (b2) . . . ∆b2n−1F (b2
n−1

)

 .

Now, if all coefficients ci of F belong to a subfield F2k , we know that

ci ∈ F2k , c2
k

i = ci.

17

This property will be useful for restricting MF , but first, let us recall that when we are

in a finite field F2n , we have by the freshmans’ theorem:

(a+ b)2 = a2 + b2.

Then we recall that any function F can be written as

F (x) =
2n−1∑
i=0

cix
i, ci ∈ F2n .

Now, if the coefficients of F belong to a subfield F2k , we can show that:

F (x)2
k

=

(
2n−1∑
i=0

cix
i

)2k

=
2n−1∑
i=0

(cix
i)2

k

=
2n−1∑
i=0

c2
k

i (xi)2
k

=
2n−1∑
i=0

ci(x
i)2

k

= F (x2k).

When we apply this to a derivative ∆aF (x), we get:

∆
a2k

F (x2k) = F (x2k + a2
k

) + F (x2k) + F (a2
k

)

= F (x+ a)2
k

+ F (x)2
k

+ F (a)2
k

= (F (x+ a) + F (x) + F (a))2
k

= (∆aF (x))2
k

.

(2.2)

Let M be the normal derivative matrix of a quadratic function F : F2n → F2n with

coefficients in F2k . By using Equation (2.2), we see that if the value at Mi,j is known,

then the value at Mi+k,j+k is simply (Mi,j)
2k . If i + k ≥ n or j + k ≥ n, we simply take

i+ k modulo n or j + k modulo n respectively. This is because for any element bi ∈ BN ,

we have b2
n

i = bi, so we get

(Mn−k,n−k)
2k = M0,0.

Example 4 Suppose we have some quadratic F : F24 → F24 with coefficients ci ∈ F2,

then due to the properties stated above, the normal derivative matrix MF of F could be

written as follows:

MF =


0 A B A23

A 0 A2 B2

B A2 0 A22

A23 B2 A22 0

 , (2.3)

for some variables A ∈ F24 , B ∈ F22 , A,B ̸= 0 (B belongs to F22 because we can see that

18

B22 = B). If the coefficients of F belonged to F22 instead, MF could be written as:

MF =


0 A B C22

A 0 C D

B C 0 A22

C22 D A22 0

 ,

for A,C ∈ F24 , B,D ∈ F22 , A,B,C,D ̸= 0.

To see how much this reduces the search space, let us consider the general case where

we do not have any additional information about the coefficients of F . In this case, MF

would have to be a regular derivative matrix and could be written as follows:

MF =


0 A B C

A 0 D E

B D 0 F

C E F 0

 ,

for some variables A,B,C,D,E, F ∈ F24 \ {0}. Not only do we have more variables to

consider, but none of these variables are restricted to any subfield.

As we can see from Example 4, by choosing to construct the derivative matrix from

a normal basis, we can significantly reduce the search time of computational searches for

new APN functions with coefficients in a subfield. Another consequence of constructing

the derivative matrix from a normal basis is that we are able to rule out some values of

variables early. If A is the first variable set into the matrix MF from Equation (2.3), then

for certain values of A it is already known that MF will not be QAM for any value of B.

Since every linear combination of every row of MF has to have rank n− 1 for MF to be

QAM, one can already see after inserting A = 1, that row 1 and 2 of MF will not attain

this condition.

2.4.3 The submatrix method

When we search for new APN functions by using derivative matrices, we can make use of

submatrices to reduce the amount of matrices that we have to check for being QAM. Let

M ∈ Fn×n
2n be a derivative matrix and let 0 < m, r ≤ n. The matrix M is QAM if and

only if every submatrix S ∈ Fm×r
2n of M is proper, for all m, r. We define S as proper if

every nonzero linear combinations of the m rows has rank at least r − 1.

19

When searching for quadratic APN functions with coefficients in F2k , due to the

structure of the normal derivative matrices, submatrices can be found by taking values

at specific row and column indices, as shown in [8].

Example 5 Let MF ∈ F8×8
28 be the normal derivative matrix of some function F : F28 →

F28 with coefficients in F22 and let A,B be the first two variables we would consider in a

computational search for new QAMs:

MF =



0 A B − − − − −
A 0 − − − − − −
B − 0 − − − − −
− − − 0 − − − −
− − − − 0 − − −
− − − − − 0 − −
− − − − − − 0 −
− − − − − − − 0


.

Because of the subfield the coefficients belong to, we know that F (x22) = F (x)2
2
. Hence,

we can derive the following values:

MF =



0 A B − − − B26 −
A 0 − − − − − −
B − 0 A22 B22 − − −
− − A22 0 − − − −
− − B22 − 0 A24 B24 −
− − − − A24 0 − −
B26 − − − B24 − 0 A26

− − − − − − A26 0


.

By looking at the submatrices S1 and S2 corresponding to the values taken at row and

column indices ({0, 4}, {2, 6}) and ({0}, {1, 2, 4}) respectively, the submatrices

S1 =

[
B B26

B22 B24

]

and

S2 =
[
A B B26

]
20

can be constructed. Since every submatrix of MF have to be proper for MF to be QAM,

we can already determine early in a search if certain values of variables will not produce

QAMs.

In a computational search, as we guess more variables, we can construct even more

submatrices. This will let us filter out values of variables that generate submatrices that

are not proper early, which helps limit the search time.

2.4.4 EA-equivalence between derivative matrices

The submatrix method is important in a search for new QAMs, but it is not the only

method that can be used to limit the search time. Linear functions, more specifically,

linear permutations, can also be used. Let M ∈ Fn×n
2n be the QAM of some quadratic

APN function F : F2n → F2n and let l be any linear permutation on F2n . Following

Theorem 3 in [18], any matrix M ′ such that

M ′
i,j = l(Mi,j) for all 0 ≤ i, j ≤ n− 1

will be the QAM of some function F ′ that is EA-equivalent to F . The reason for this

is that if M ′ = l ◦M , then F ′ = l ◦ F . This is an important notion that we will use in

Chapter 3.

21

22

Chapter 3

Contribution

In previous work, computational classifications of quadratic APN functions using the

QAM method [18] were only done for functions with coefficients restricted to the prime

field F2 [19] or F3 [8]. This thesis is dedicated to exploring the possibility of performing

computational classifications with coefficients restricted to a larger subfield. In order to

do this, we consider the method of restricting the values of one of the variables in the

derivative matrix based on orbits used in [8]. We take this method further by applying

it to more than one variable of the derivative matrix. We will explain how we use orbits

in more detail later. We then propose a method of approximating the time complexity

of this type of search. Using this method, we identify that it is feasible to perform a

full classification of all quadratic APN functions with coefficients in F22 over F28 , which

has never been done before to the best of our knowledge. The classification also serves

as a proof of concept that our method can be extended to even larger dimensions in the

future, and that the method that we propose for estimating the time complexity can be

used to assess the feasibility of such searches.

In this chapter, we explain how we restrict our search space by partitioning the finite

field into orbits under the action of a set of linear permutations. We then estimate how

much improvement this method brings. Finally, we give the classification of quadratic

APN functions with coefficients in F22 over F28 and we observe that one of these functions

is new.

23

3.1 Using orbits to restrict variables

The notion of using orbits to restrict the search space of a computational search is one of

the core concepts explored in this thesis. In this section, we define an orbit and explain

how orbits can be used to restrict a search space.

Let X be a set of elements and G be a group acting on X. Recall that a group action

of G onX is a mapping α : G×X → X satisfying α(e, x) = x and α(g, α(h, x)) = α(gh, x)

for any x ∈ X and any g, h ∈ G, where e is the identity of G. The orbit [1] of an element

x ∈ X under the action of G is defined as the set

Orb(x,G) = {g ◦ x : g ∈ G}.

Since G is a group, we know that the set of orbits of X under the action of G form a

partition of X into equivalence classes.

Now, we observe that a finite field F2n is a set of elements and that a set of linear

(n, n)-permutations L is a group acting on F2n . We can define the orbit of an element

ai ∈ F2n under the action of L as

Orb(ai, L) = {l(ai) : l ∈ L}.

In a computational search for quadratic APN functions over F2n using the QAM method,

we can use orbits to restrict the number of values we need to check for one entry in a

derivative matrix. Let M ∈ Fn×n
2n be a derivative matrix and A ∈ F2n \{0} be the variable

at M0,1. Now, we can restrict A to orbits under the action of L, such that we only need

to consider one value from each orbit of A. The reason for this is that there exists a

linear permutation l ∈ L such that l(u) = u′ for any elements u, u′ from the same orbit.

By Theorem 3 in [18], for any derivative matrix M whose entry at M0,1 is equal to u,

there exists a derivative matrix M ′ whose entry at M ′
0,1 is equal to u′ such that M and

M ′ represent EA-equivalent functions. Recall that a function is only considered new if it

is CCZ-inequivalent to the known functions, and that EA-equivalent functions are also

CCZ-equivalent. Therefore, it is enough to consider only one value from each orbit for

the entry at position M0,1, which greatly reduces the search space.

In our search, we only consider quadratic functions F : F2n → F2n with coefficients in a

subfield F2k , because the derivative matrix MF of F has a certain structure which reduces

the number of variables we need to consider. The problem we face when we restrict a

24

variable in some MF to orbits is that a derivative matrix M ′
F ′ = l(MF) for some linear

(n, n)-permutation l does not necessarily have the same structure as MF . The reason for

this is that the composition of a linear permutation and a function with coefficients in a

subfield is not necessarily going to have coefficients in that same subfield. Similarly to

what was done in [8], we solve this problem by only choosing linear permutations with

coefficients in F2k

L = {c0x+ c1x
2 + ...+ cn−1x

2n−1 | c0, c1, ..., cn−1 ∈ F2k}, (3.1)

since a composition of two functions with coefficients in the same subfield also has coef-

ficients in that subfield. Suppose we are performing a search over all derivative matrices

by exhaustively going over all possible values of these matrices entry by entry. Let

M ∈ Fn×n
2n be the derivative matrix, constructed from a normal basis, of a quadratic

function F : F2n → F2n with coefficients in a subfield F2k and let A ∈ F2n \ {0} be the

variable in M0,1. To restrict A, we take the set of linear permutations in (3.1) and use it

to partition all possible values of A into orbits:

{Orb(ai, L) : ai ∈ F2n \ {0}}.

We then only need to evaluate one value from every orbit to obtain all possible CCZ-

inequivalent quadratic APN functions with coefficients in F2k over F2n .

Utilizing a set of linear permutations to restrict a single variable to orbits is what

was done in [8]. Continuing forward, we will improve upon this method of using orbits

to restrict the search space of a computational search. We do this by taking it further,

not only restricting a single variable, but multiple variables, and we show just how big

an improvement in efficiency this brings.

Let us start with the simple case of restricting a variable pair (A,B) to orbits. First,

we start by using the set of linear permutations L in (3.1) to restrict the first variable A

as shown previously. We then pick one representative from each orbit. We denote the set

of representatives as AR = {a1, a2, ..., at}, where t denotes the number of orbits. Now,

for each representative ai in AR, we restrict the values of B by partitioning the field into

orbits under the action of the stabilizer of ai

Lai = {l ∈ L | l(ai) = ai}.

This results in the creation of t unique pairs of (A = ai, B), each corresponding to a

set of linear permutations Lai , from which we restrict B. Since every linear permutation

25

l ∈ Lai must fix ai, when we restrict B to orbits, we do not change the value of A. When

we restrict some variable V to orbits, we call those orbits for the orbits of V .

Example 6 Suppose we are constructing a normal derivative matrix M ∈ F4×4
24 of some

quadratic function F : F24 → F24 with coefficients ci in F22, then M could be written as

follows after considering the first variable A ∈ F24 \ {0}:

M =


0 A − −
A 0 − −
− − 0 A22

− − A22 0

 .

When restricting A to orbits we use all the linear permutations of the form

c0x+ c1x
2 + c2x

22 + c3x
23 , c0, ..., c3 ∈ F22 ,

which gives us the orbits in Table 3.1.

Orbit number Orbit values
1 1, a5, a10

2 a, a2, a3, a4, a6, a7, a8, a9, a11, a12, a13, a14

Table 3.1: Orbits of the variable A. The orbit values are the elements of F24 \ {0}.

We then choose the smallest value of each orbit as its representative, which gives us

the following set of representatives:

AR = {1, a}.

Instead of checking through 15 values, only 2 values need to actually be checked for the

variable A, reducing the number of matrices we need to evaluate.

After considering the second variable B, M could look as follows:

M =


0 A − B22

A 0 B −
− B 0 A22

B22 − A22 0

 .

26

Now, if A is fixed to the representative of its first orbit, A = 1, the orbits of B would

then be defined by using the stabilizer of 1:

L1 = {l ∈ L | l(1) = 1}.

From L1, the orbits of (A = 1, B) are the ones we see in Table 3.2.

Orbit number Orbit values
1 1
2 a, a2, a4, a8

3 a11, a12, a13, a14, a3, a6, a7, a9

4 a5, a10

Table 3.2: Orbits of the variable B for A = 1. The orbit values are the elements of
F24 \ {0}.

The orbits of (A = 1, B) could be represented by {1, a, a3, a5}. As we can see, instead

of checking 15 values of B when A = 1, we only need to check 4 values. By performing the

same process for A = a, we find that there are 6 orbits of (A = a,B), with representatives

{1, a, a2, a3, a4, a5}.

After considering all variables in M , it could be written as follows:

M =


0 A C B22

A 0 B D

C B 0 A22

B22 D A22 0

 ,

where A,B ∈ F24 , C,D ∈ F22 , A,B,C,D ̸= 0 (C22 = C and D22 = D due to M being

symmetric). After having restricted the variables A and B to orbits, we can see that

instead of having to check 152×32 = 2025 matrices for being QAM, we only need to check

4× 32 + 6× 32 = 90 matrices.

Extending this method to triples (A,B,C), we define the orbits of C given some fixed

ai, bi,∈ F2n \ {0}, we use the stabilizer subset of Lai with respect to bi:

Lai,bi = {l ∈ Lai | l(bi) = bi}.

Since all l ∈ Lai already satisfy the property l(ai) = ai, we only need to check the

condition l(bi) = bi. Now, we repeat this process for an arbitrary amount of variables

27

(A,B,C,D, ...) until the number of orbits does not offer any notable improvement. Since

we are continually taking subsets of linear permutations as we restrict more variables to

orbits, this usually happens when there are few or no linear permutations which satisfy

the stabilizer conditions. Because of this, our method typically works better the larger

the initial set of linear permutation L from Equation (3.1).

We can visualize the orbit representatives of some variables A,B,C, ... ∈ F2n \ {0}
created by our method as a tree, which we will call an orbit tree. In this orbit tree, the

branches connected to the root would be the orbit representatives AR of the first variable

A, then the branches from each ai ∈ AR would be the orbit representatives BR of the

respective orbits (ai, B) and so forth. The leaves of the tree would be the matrices we

need to check for being QAM in a computational search. Figure 3.1 partly shows how

such a tree representation would look for the orbits in Example 6.

Figure 3.1: The first two levels of the orbit tree of the search from Example 6. The
branches from the root are the orbit representatives of A, the next level of branches are
the orbit representatives of B. The remaining branches are left out, as the figure would
become too large.

Now, we propose a method to calculate an upper bound on the number of leaves in

such a tree we must check for being QAM in a computational search for quadratic APN

functions with coefficients in F2k over F2n , where k | n. Let M ∈ Fn×n
2n be a normal

derivative matrix of some quadratic function F over F2n , and let A,B,C, ... ∈ F2n \ {0}
denote the variables in M . We can calculate how many matrices we must check by

recursively traversing the orbit tree and counting the number of leaves of the tree. To do

this, we start by defining orbits of A from the set of linear permutations L from (3.1).

We then traverse the orbit representatives AR of A and define orbits of (ai, B), ai ∈
AR. Similarly, we traverse every set of orbit representatives (ai, BR) and define orbits

of (ai, bi, C), bi ∈ BR. We repeat this process recursively until it becomes inefficient

to continue defining orbits, in which case we backtrack and count the number of leaves

from that branch to be all possible values of the remaining variables. In Algorithm 1,

we present the pseudocode of such a method. The pseudocode makes use of an auxiliary

28

function called Orbits, which takes as inputs some value u ∈ F2n \ {0} and a set of linear

permutations L and outputs a set of orbit representatives of the orbits defined by Lu,

as well as the set Lu itself. It also makes use of some parameters, called maxdepth and

orbitRepLimit, which respectively determine how many levels of recursion we perform

before backtracking and at what point it becomes inefficient to continue defining orbits.

Algorithm 1 Estimating how many matrices must be checked for being QAM after
implementing orbits.

1: Input: Orbit representatives of the first variable: As, Linear permutations: L, re-
maining variables: r

2: Output: The number of matrices that must be checked
3: Parameters: maxdepth, orbitRepLimit
4: Aux. functions: Orbits(value, perms)
5: Run Est(As, L, r, 1)
6: function Est(orbitReps, perms, r, level)
7: if level ≥ maxdepth then
8: return |orbitReps| × (2n − 1)r

9: total = 0
10: for value in orbitReps do
11: nextOrbitReps, nextPerms← Orbits(value, perms)
12: if |nextOrbitReps| > orbitRepLimit then
13: total← total + (2n − 1)r

14: else
15: total← total + Est(nextOrbitReps, nextPerms, r − 1, level + 1)

16: return total

3.2 Search for QAMs in F28 with coefficients in F22

Suppose we are constructing normal derivative matrices for quadratic functions F : F28 →
F28 with coefficients in F22 . The structure of such matrices follows a certain pattern, as

shown in Section 2.4.2. Let M ∈ F8×8
28 be a normal derivative matrix representing some

function F : F28 → F28 with coefficients ci ∈ F22 and let A be the variable in M at

position M0,1. As shown in [19], we already know that the value at position M2,3 is equal

to A22 and that the value at position M4,5 is equal to A24 and so forth. Because of this,

all normal derivative matrices corresponding to quadratic functions F : F28 → F28 with

29

coefficients ci ∈ F22 can be written as follows:

M =



0 A B C D E B26 F

A 0 F 22 G E24 H C26 G26

B F 22 0 A22 B22 C22 D22 E22

C G A22 0 F 24 G22 E26 H22

D E24 B22 F 24 0 A24 B24 C24

E H C22 G22 A24 0 F 26 G24

B26 C26 D22 E26 B24 F 26 0 A26

F G26 E22 H22 C24 G24 A26 0


,

where the variables A,B,C,E, F,G can take every value of F28 \ {0}. Note that because
the QAM is always symmetric, we have D = D24 and H = H24 in this case, which implies

D,H ∈ F24 \ {0}.

If we were to go through all functions that could be represented by M by checking all

possible value combinations of A,B, ..., H, we would have to check 2556×152 ≈ 6.19×1016

different matrices. It takes approximately 0.010 seconds on our server in the worst case

to check an 8×8 matrix for being QAM, which means that checking all possible matrices

without placing any restrictions on the search would take approximately 6.19 × 1015

seconds, or 196283612 years. This is why it is crucial to optimize the search algorithm in

some way if we want to perform a classification with these parameters.

3.2.1 The orbits of our search parameters

Since our search was performed for quadratic functions with coefficients in F22 over F28 ,

we present some data on the orbits of this special case here. Unfortunately, since the orbit

tree expands so quickly for this dimension, it is not possible to show the tree structure

visually like it was for Example 6. However, by taking the average number of orbits

created from a set of orbit representatives, we can give some insight into how quickly the

orbit tree branches nonetheless.

The orbits of the first variable A were constructed from the set of linear permutations

of the form:

c0x+ c1x
2 + c2x

22 + c3x
23 + c4x

24 + c5x
25 + c6x

26 + c7x
27 , c0, c1, ..., c7 ∈ F22 ,

30

Orbit number Number of elements in orbit Representative element of orbit
1 3 1
2 192 a
3 48 a7

4 12 a17

Table 3.3: The orbits of the variable A over F28 with coefficients in F22

of which there were 24576. By using these permutations, we found 4 orbits for the first

variable A, which we show in Table 3.3. From these representatives of A, we obtain the

number of orbits of B and an average number of orbits of C, which we show in Table 3.4.

We can see in Table 3.4 that the number of orbits seems to increase quite fast, but later

A Number of orbits of B Average number of orbits of C
1 8 22.1
a 30 56.7
a7 22 43.5
a17 14 41.5

Table 3.4: Representative elements of the orbits of A, the number of orbits of B and the
average number of orbits of C, taken over all orbits of B

we will use Algorithm 1 to give an upper bound on how many matrices we need to check

for our search.

3.3 Results

In this section, we give time estimates of what we will call a brute force search and a

submatrix search for QAMs. We give these estimates as a comparison to how long it

took to finish our classification, using our method. After that, we compare the difference

between restricting only a single variable to orbits and our method of restricting multiple

variables. We then show the results of our classification, which include the time it took

to complete and the functions we found. All the following results are of searches done

in the finite field F28 with coefficients in F22 . We run our searches on a server with a

single core speed of 3.2 GHz and 500 GB of memory. We ran 20 cores in parallel when

performing our classification.

31

3.3.1 Time estimate of brute force search

We define a brute force search for QAMs in F28 with coefficients in F22 as a search where

every possible value combination of the variables A,B,C,E, F,G ∈ F28 \ {0}, D,H ∈
F24 \ {0} is checked. In the previous section, we gave a worst case scenario of it taking

196283612 years to perform such a search. Here, we will give a more accurate time

estimate by running a brute force search on our server for 24 hours and taking a timestamp

at every iteration of the variable E. We then calculate the average time between these

timestamps to get an estimate of how long it takes to check all QAMs for one value of

E. Finally, we multiply this estimate by the number of possible choices of A,B,C,D,E

to get our final time estimate of the search. The results were as follows:

Let TI denote the average time it takes to check all QAMs for one value of E:

TI = 146.31529610814582 seconds.

We multiply TI by the number of possible values of A,B,C,D,E:

TI × 2554 × 15.

This gives us an estimated search time of 294262 years, which is comparable to the

estimate we got from the worst case scenario.

3.3.2 Time estimate of submatrix search

We define a submatrix search as we did a brute force search, but with the added condition

of checking if every submatrix is proper. Estimating the search time after implementing

the submatrix method was done similarly to how it was done with the brute force search.

The difference is that we have to take into account that we do not check every possible

value combination of the variables {B,C,D}, because some values of those variables will

form submatrices that are not proper.

The results were as follows:

TI = 16.594500768019856 seconds,

32

where TI is defined as for the brute force case. We pre-computed that approximately

37.5% of the values of {B,C,D} are skipped in total due to forming submatrices that

are not proper. Computing

TI × (2552 × 15× 0.625)× 2552

gives us an estimated search time of 20859 years. While this is significantly faster than

the brute force estimate, it is still not optimal.

3.3.3 Time estimate of our method

For this method, it is not as straightforward to estimate the time of a search as with the

two previous ones. The reason is that some branches of the orbit tree may take a lot

longer to search through than others, which means that an average time interval taken

at for example the variable E (as done in the previous two methods) will not necessarily

give an accurate measurement. Which is why for this method, we use Algorithm 1,

which we implemented in Magma, to estimate how many matrices we need to check after

implementing our method. We then compare it with the number of matrices we need to

check in the brute force search.

Let us start by showing how much improvement in search time we get by restricting

one variable to orbits. This is simple to calculate, as we know from Table 3.3 that there

are 4 orbits of the first variable A. We then calculate that there are

2556 × 152

4× 2555 × 152
= 63.75

times fewer matrices that we need to check for being QAM than in the brute force method.

Knowing this, we apply this factor to the brute force search time estimate to get a new

search time estimate of
294262

63.75
= 4615 years.

Now, to get an upper bound on how many matrices we must check using our method,

we run Algorithm 1. We run it with a maxdepth of 5 and an orbitRepLimit of 0.8× |F28|
for the variables {A,B,C,E, F} (D is skipped due to only belonging to F24). This gives

us an upper bound of 3439404274500 matrices that we need to check. We compare this

with the number of matrices we need to check when performing a brute force search,

which gives us a factor of
2556 × 152

3439404274500
= 17986. (3.2)

33

After applying this factor to the time estimate of the brute force search, we get the time

estimate of our method:
294262

17986
= 16.36 years.

There is the question of how much extra time is needed to compute all these orbits.

In fact, this takes a negligible amount of time. It took 1355 seconds on our server to run

our implementation of Algorithm 1 with the parameters we gave in the above paragraph,

in which all orbits needed to get a search time of 16.36 years were computed.

While this approximation of 16.36 years is a good reduction in time from the 294262

years of a brute force search, it is still not optimal, as the submatrix method was not

considered here. In the next part, we will discuss using both orbits and the submatrix

method, as we discuss the results of our classification.

3.3.4 The time it took to perform the classification

We performed an exhaustive search over all possible matrices corresponding to CCZ-

inequivalent quadratic APN functions with coefficients in F22 over F28 , distributed over

20 cores which ran in parallel. The search ran for approximately 1.5 months. Some

branches of the orbit tree took longer to search through than others, see Table 3.5 for

details.

Orbit Cores Time
A = 1 4 40 hours
A = a 20 1 month
A = a7 20 10 days
A = a17 8 7 days

Table 3.5: Orbit, cores used and time spent

The parallelization of the search was managed such that the 20 cores used would each

work on one part of a branch. In that way, after every core finished, said branch would

be completely searched through. Before starting the search, we would also estimate the

search time of the different orbit paths. This was done to decide how many cores needed

to be allocated for a certain path. We estimated the time of a path similarly to how we

did it for the submatrix method, the difference being we took into account the number

of orbits in the path.

34

Variable Without orbits With orbits
B 97.7% 77.0%
C 97.1% 83.9%
D 65.8% 43.9%
E 62.0% 40.5%
F 10.9% 7.6%
G 10.0% 9.4%

Table 3.6: Values that were not filtered out by the submatrix method for each variable,
given as a percentage.

One factor that contributed to the speed of the search, was that using our method

seemed to synergize well with the submatrix method. In Table 3.6, we see how many

values of a variable had to be checked after using the submatrix method, with and without

orbits.

3.3.5 Functions found

In total, 196863 quadratic APN functions were found in our search, with 27 unique ortho-

derivative differential spectra. A list of all functions sorted by CCZ-equivalence can be

found on https://github.com/Simon-Berg/thesis. The ODDS found can be seen in

Table 3.8 and representative polynomials of those ODDS can be seen in Table 3.7. All

functions with equal ODDS were tested for CCZ-equivalence using the test from [11] and

were verified to be CCZ-equivalent. After the classification, we established that one of

the functions we found is new and is also 3-to-1. A representative polynomial of this new

function and its ODDS is highlighted with bold text in Table 3.7 and 3.8 respectfully.

Additionally, we provide some of the invariants of this new function in Table 3.9.

The ODDS are represented by a list of integers raised to some power. Recall that the

differential spectrum of a function is a multiset of values defined by:

DF = [δF (a, b) : a, b ∈ F2n , a ̸= 0].

We represent such a multiset by the integers that occur in the multiset, raised to the

power of how many times they occur. For example, the ODDS at index 1 in Table 3.8 is:

[035700, 226520, 43060]

which denotes the multiset in which the value 0 occurs 35700 times, 2 occurs 26520 times

and 4 occurs 3060 times.

35

https://github.com/Simon-Berg/thesis

36

Index Representative functions
1 x192 + x96 + x72 + x33 + x3

2 a170x144 + a85x72 + a85x48 + a85x24 + a85x12 + x9 + x3

3 x72 + x66 + x48 + x36 + a170x33 + x18 + x9 + a170x6 + a85x3

4 a170x192 + a85x144 + a85x132 + a170x66 + a85x48 + x33 + x24 + a170x18 + a85x6 + x3

5 a170x144 + a85x132 + x96 + a170x72 + a170x36 + x33 + a85x24 + x12 + x3

6 a170x192 + a85x132 + a170x66 + a170x24 + a170x18 + a170x12 + x6 + x3

7 a85x192 + a170x144 + a170x96 + a85x72 + a170x66 + x36 + x12 + x3

8 a85x144 + a170x129 + a170x72 + a170x18 + x12 + a85x9 + x3

9 a170x132 + a170x96 + a85x72 + a85x66 + x48 + a170x18 + x6 + x3

10 a85x96 + a85x72 + a170x24 + x18 + a85x12 + a85x9 + x6 + x3

11 x132 + a85x96 + a170x72 + a85x48 + x33 + x24 + a170x12 + a170x6 + x3

12 a170x144 + a85x132 + x72 + a170x48 + a170x24 + x18 + a170x12 + x3

13 a85x144 + a85x66 + a170x65 + a85x48 + x36 + a170x33 + a170x20 + a170x18 + x9 + x3

14 a170x160 + a85x144 + a85x132 + a85x96 + a85x80 + a85x68 + a85x66 + a85x48 + x18 + a170x5 + x3

15 a85x160 + a85x136 + a85x96 + a170x40 + a85x36 + a85x34 + x20 + a85x17 + x12 + x9 + x3

16 x160 + a170x144 + a85x129 + a170x96 + a170x68 + a170x40 + x20 + a85x18 + a170x12 + x9 + x3

17 a85x192 + a85x160 + a85x132 + a170x72 + x48 + x40 + x34 + x33 + x18 + a170x10 + x3

18 a85x136 + a85x132 + x96 + a170x72 + a85x68 + a85x66 + x48 + x33 + a85x17 + x3

19 a170x192 + a85x132 + x129 + a85x80 + a85x68 + x48 + x24 + x20 + x10 + a85x5 + x3

20 a170x144 + a170x136 + x132 + a170x80 + a85x66 + a170x65 + a170x34 + a170x33 + x24 + a170x18 + x9 + a85x6 + x3

21 a170x144 + x136 + x129 + a85x68 + a85x66 + x65 + a170x48 + a170x40 + a85x36 + x33 + a170x17 + a170x12 + x3

22 x192 + a85x144 + a85x68 + a170x65 + a85x48 + a170x40 + a85x24 + a170x20 + a170x18 + a85x17 + a170x10 + x3

23 a85x192 + a85x144 + x36 + x33 + a170x24 + a170x18 + x12 + x6 + x3

24 x192 + x160 + a85x130 + a85x96 + a170x72 + x66 + a170x48 + x40 + a85x33 + a85x18 + x5 + x3

25 a85x192 + a170x160 + x144 + x130 + a170x129 + x65 + a170x40 + a85x34 + a85x24 + a170x20 + a170x18 + a170x9 + x3

26 a85x129 + a85x96 + x72 + a85x66 + x12 + a170x9 + x6 + x3

27 a170x160 + a170x136 + a85x132 + a170x129 + a85x68 + a170x40 + x33 + a85x24 + a85x9 + a170x6 + x3

Table 3.7: Representatives up to CCZ-equivalence of all quadratic APN functions with
coefficients in F22 over F28 . Bold text denotes the new function.

37
Index ODDS

1 035700, 226520, 43060

2 036420, 225080, 43780

3 037872, 222788, 44068, 6492, 860

4 037980, 222272, 44716, 6312

5 038004, 222614, 44008, 6630, 1024

6 038040, 222461, 44218, 6513, 836, 1012

7 038160, 222104, 44536, 6456, 824

8 038160, 222164, 44428, 6492, 836

9 038184, 222179, 44338, 6531, 848

10 038196, 222008, 44608, 6456, 812

11 038256, 222116, 44230, 6648, 830

12 038592, 221426, 44590, 6654, 818

13 038844, 220974, 44764, 6654, 844

14 038880, 221165, 44230, 61005

15 039174, 220513, 44756, 6749, 876, 108, 124

16 039290, 220399, 44686, 6774, 8112, 1015, 124

17 039408, 220072, 44922, 6798, 870, 1010

18 039408, 220218, 44692, 6838, 8104, 1012, 128

19 039444, 220042, 44912, 6762, 8112, 108

20 039446, 220067, 44896, 6718, 8138, 1015

21 039504, 220127, 44674, 6801, 8138, 1027, 166, 183

22 039544, 219996, 44752, 6841, 8130, 1012, 122, 141, 182

23 039600, 219680, 45220, 6600, 8180

24 039692, 219752, 44756, 6978, 872, 1026, 124

25 039750, 219641, 44876, 6845, 8136, 1029, 142, 181

26 039780, 221930, 63570

27 039840, 219707, 44644, 6900, 8120, 109, 1460

Table 3.8: The ortho-derivative differential spectra of all quadratic APN functions with
coefficients in F22 over F28 . Bold text denotes the ODDS of the new function. We omit
the square brackets around the ODDS for aesthetic reasons.

f(x) a170x192 + a170x144 + a85x48 + x36 + a170x24 + a170x18 + x12 + x6

ODDS 038196, 222008, 44608, 6456, 812

Γ-rank 14034

∆-rank 438

|M(GF)| 3072

NL 112

WF −322380,−1620400, 016320, 1623120, 323060

Table 3.9: Invariants of the new function, see Section 2.3.4 for details.

Orbits Fs ODDS
A = 1 3360 24
A = a 144379 27
A = a7 40720 27
A = a17 8404 27

Table 3.10: Orbits of A, number of APN functions found and number of ODDS found.

Now, let us look at the distribution of all the functions we found over the orbits of A

and some of its implications. As we can see in Table 3.10, although many more functions

were found for the largest orbit A = a than for the orbits A = a7 and A = a17 (recall

Table 3.3), we can see that functions having the same ODDS were found regardless of

which representative was chosen to be the value of A. While this may only be the case

for this particular search, it may also imply that we do not need to search through every

orbit of A to find all CCZ-inequivalent functions for other searches as well.

38

39

Chapter 4

Conclusion

In this thesis, we have developed an improved method of using orbits to significantly

speed up the running time of computational searches for quadratic APN functions with

coefficients in a subfield, based on the QAM method by Yu et al. [18]. Previously, orbits

had only been used to restrict the values of a single variable in a normal derivative matrix.

Our method extended its use to restricting multiple variables, which greatly reduces the

number of matrices that have to be checked. We used our improved method to classify

all quadratic APN functions with coefficients in F22 over F28 , which has never been done

before to the best of our knowledge. The classification resulted in finding a new 3-to-1

APN function. Additionally, the classification serves as a proof of concept for our method,

which can be applied to other searches, as described in the following section.

4.1 Future work

As for future work, we suggest exploring the possibility of using our method to perform

a computational search for functions with coefficients in F24 over F28 , F23 over F29 and

F22 over F210 . We also suspect that our method would work well for a computational

search for planar functions (planar functions were not discussed in this thesis, but we

refer the reader to [7] for details), which are defined over Fpn for odd p. Additionally,

our method might be used in a search for interesting functions, such as differentially

4-uniform functions.

40

41

Bibliography

[1] Michael Aschbacher. Finite group theory, volume 10. Cambridge University Press,

2000.

[2] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems. J.

Cryptology, 4:3–72, 1991. doi: 10.1007/BF00630563.

[3] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system I:

The user language. Journal of Symbolic Computation, 24(3-4):235–265, 1997.

[4] Anne Canteaut, Alain Couvreur, and Léo Perrin. Recovering or testing extended-

affine equivalence. IEEE Transactions on Information Theory, 68(9):6187–6206,

2022. doi: 10.1109/TIT.2022.3166692.

[5] Claude Carlet, Pascale Charpin, and Victor Zinoviev. Codes, bent functions and

permutations suitable for DES-like cryptosystems. Designs, Codes and Cryptography,

15:125–156, 1998.

[6] Florent Chabaud and Serge Vaudenay. Links between differential and linear crypt-

analysis. In Advances in Cryptology—EUROCRYPT’94: Workshop on the Theory

and Application of Cryptographic Techniques Perugia, Italy, May 9–12, 1994 Pro-

ceedings 13, pages 356–365. Springer, 1995.

[7] Robert S Coulter and RexWMatthews. Planar functions and planes of Lenz-Barlotti

class II. Designs, Codes and Cryptography, 10(2):167–184, 1997.

[8] Diana Davidova and Nikolay Kaleyski. Classification of all DO planar polynomials

with prime field coefficients over GF (3n) for n up to 7. Cryptology ePrint Archive,

2022.

[9] John F Dillon. APN polynomials: an update. In International Conference on Finite

fields and applications-Fq9, 2009.

42

[10] Yves Edel and Alexander Pott. A new almost perfect nonlinear function which is

not quadratic. Cryptology ePrint Archive, 2008.

[11] Yves Edel and Alexander Pott. On the equivalence of nonlinear functions. In En-

hancing cryptographic primitives with techniques from error correcting codes, pages

87–103. IOS Press, 2009.

[12] Nikolay S Kaleyski. Invariants for EA-and CCZ-equivalence of APN and AB func-

tions. Cryptography and Communications, 13:995–1023, 2021.

[13] Allen Klinger. The vandermonde matrix. The American Mathematical Monthly, 74

(5):571–574, 1967.

[14] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Advances in

Cryptology—EUROCRYPT’93: Workshop on the Theory and Application of Cryp-

tographic Techniques Lofthus, Norway, May 23–27, 1993 Proceedings 12, pages 386–

397. Springer, 1994.

[15] Kaisa Nyberg and Lars Ramkilde Knudsen. Provable security against a differential

attack. Journal of Cryptology, 8:27–37, 1995.

[16] Léo Perrin. How to take a function apart with sboxu. In BFA 2020-The 5th Inter-

national Workshop on Boolean Functions and their Applications, 2020.

[17] Yuyin Yu and Léo Perrin. Constructing more quadratic APN functions with the

QAM method. Cryptography and Communications, 14(6):1359–1369, 2022.

[18] Yuyin Yu, Mingsheng Wang, and Yongqiang Li. A matrix approach for constructing

quadratic APN functions. Designs, codes and cryptography, 73:587–600, 2014.

[19] Yuyin Yu, Nikolay Kaleyski, Lilya Budaghyan, and Yongqiang Li. Classification of

quadratic APN functions with coefficients in F2 for dimensions up to 9. Finite Fields

and Their Applications, 68:101733, 2020.

43

	Introduction
	Background
	Vectorial Boolean functions
	Algebraic normal form
	Univariate representation
	The scale of Boolean functions

	Cryptographic properties
	Differential uniformity and APNness
	Nonlinearity

	Equivalence of vectorial Boolean functions
	Affine and Linear equivalence
	EA-equivalence
	CCZ-equivalence
	Checking functions for equivalence

	Quadratic APN matrices
	Definition and construction
	The structure of a derivative matrix over a normal basis
	The submatrix method
	EA-equivalence between derivative matrices

	Contribution
	Using orbits to restrict variables
	Search for QAMs in F28 with coefficients in F22
	The orbits of our search parameters

	Results
	Time estimate of brute force search
	Time estimate of submatrix search
	Time estimate of our method
	The time it took to perform the classification
	Functions found

	Conclusion
	Future work

	Bibliography

