
Applying Gamification and Virtual
Reality to an MRSA Infection

Control Guideline

Bråten, Oskar Elias
Igesund, Trygve Eide

Master’s thesis in Software Engineering at

Department of Computing, Mathematics and Physics,
Western Norway University of Applied Sciences

Department of Informatics,
University of Bergen

June 2020

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is a group of harmful
bacteria with resistance to many important antibiotics. Infections are hard
to treat and often result in prolonged hospital stays, leading to increased
costs and mortality. Like with many other bacteria and diseases, healthcare
practitioners follow carefully developed clinical practice guidelines on how to
test for and handle occurrences.

In this thesis, we present an experimental study on applying gamification prin-
ciples to transform an MRSA infection control guideline into a virtual reality
game. Our approach consists of designing and developing a fully functional
game, describing our process and outlining the challenges associated with this.
We also set out to find out how VR and gamification affect practitioner motiva-
tion through user testing. Throughout development, we discovered challenges
with transforming the guideline into a game that can be used nationally while
fully retaining its content. We also found that applying gamification while
still staying true to the clinical practice guideline was a difficult balancing
act.

Acknowledgements

First and foremost, we would like to express our gratitude to our supervisors
at Western Norway University of Applied Sciences (HVL), Harald Soleim and
Atle Geitung for their guidance, support and valuable insights throughout our
work on this thesis. Their frequent feedback, as well as their eagerness to help
us make useful connections, has helped us tremendously and has made this
work possible.

We would also like to thank our external supervisors at Helse Vest IKT, Eva C.
Backer, H̊akon Garfors and Thomas F. Larsen, for providing us with the oppor-
tunity of exploring the use of gamification and virtual reality. They have con-
tributed significantly to this thesis with their support and feedback throughout
the development process, and it has been a joy working with them.

Furthermore, we would like to thank Grete O. Hole and Daniel Patel for their
invaluable input on the thesis, and for writing a research paper about our
project, co-authored by Harald Soleim, Atle Geitung, Eva C. Backer and us.
The paper has been accepted to the EDEN Annual Conference of 2020. We
greatly appreciate your involvement with this thesis.

We also thank Bodil Moss for giving us advice on academic writing and invit-
ing us to present our master’s thesis at ”Forsking i fyr og flamme”. Also,
thanks to Marianne Sævik at Haukeland Hospital who showed us around in
the infection control ward, as well as arranging user testing with the nurses
(even if unforeseen circumstances made them impossible!).

Last but not least, we are truly grateful to our friends and fellow classmates,
Bendik, Jonas, Kolbein, Lauritz, Magnus, Per and more, for all the fun we
have had throughout this past year.

i

Division of Work

Our contributions to this thesis mostly overlap. In the overview below, we use
our names to indicate the parts where one of us did most of the writing.

Chapter 1 - Introduction - Both

Chapter 2 - Background

� 2.1 - Methicillin-resistant Staphylococcus aureus - Br̊aten

� 2.2 - CPGs and simulation - Igesund

� 2.3 - Gamification - Igesund

� 2.4 - Computer graphics - Br̊aten

� 2.5 - Virtual reality - Both

� 2.6 - Game engine - Br̊aten

Chapter 3 - Design and Implementation

� 3.1 - From guideline to game - Br̊aten

� 3.2 - Gameplay - Both

� 3.3 - Architecture - Igesund

� 3.4 - Game logic - Both

� 3.5 - VR interface

– 3.5.1 - Level design - Br̊aten

– 3.5.2 - Cross-platform support - Igesund

– 3.5.3 - Input and interactors - Br̊aten

– 3.5.4 - Interactables - Igesund

– 3.5.5 - Feedback - Igesund

– 3.5.6 - Patients - Br̊aten

� 3.6 - Balancing gamification and accuracy - Both

ii

� 3.7 - Assets - Igesund

� 3.8 - Internationalisation - Igesund

� 3.10 - Performance and optimization - Br̊aten

Chapter 4 - Results - Both

Chapter 5 - Conclusion - Both

Chapter 6 - Further work - Igesund

iii

Contents

List of Figures vi

Glossary ix

1 Introduction 1
1.1 Motivation . 1
1.2 Origin of the thesis . 3
1.3 Goal and research questions . 3
1.4 Scope and limitations . 4
1.5 Methodology . 5
1.6 Related work . 5

2 Background 7
2.1 Methicillin-resistant Staphylococcus aureus 7
2.2 CPGs and simulation . 8
2.3 Gamification . 11

2.3.1 Gamification in Healthcare 12
2.3.2 Technology and the learning effect 13

2.4 Computer graphics . 13
2.4.1 Geometric primitives . 13
2.4.2 Real-time rendering . 14
2.4.3 Animations . 16

2.5 Virtual reality . 19
2.5.1 Technology . 19
2.5.2 Applications . 20
2.5.3 Concerns and challenges 21
2.5.4 Best practices . 22
2.5.5 Standardization efforts 23

2.6 Game engine . 24
2.6.1 Why Unity? . 24
2.6.2 Editor . 25
2.6.3 Virtual Reality support 26

3 Design and Solution 29
3.1 From guideline to game . 29

iv

3.2 Gameplay . 31
3.3 Top-level architecture . 34
3.4 Game logic . 35
3.5 VR interface . 37

3.5.1 Level design . 37
3.5.2 Cross-platform support 39
3.5.3 Input and interactors 40
3.5.4 Interactables . 44
3.5.5 Feedback . 45
3.5.6 Patients . 47

3.6 Balancing gamification and accuracy 51
3.7 Assets . 54
3.8 Internationalisation . 55
3.9 Performance and optimization 56

4 Results and Discussion 60
4.1 Iterative testing . 60
4.2 Planned tests . 62
4.3 Final tests . 64
4.4 Numerical measurements of performance 66

5 Conclusion 69
5.1 What are the challenges with developing a virtual reality game

based on the clinical practice guideline? 69
5.2 How does the use of virtual reality, and gamification affect prac-

titioner motivation? . 72
5.3 Creating a publishable game . 72

6 Further Work 74
6.1 Generalising for other CPGs . 74
6.2 Expanding to other platforms 74
6.3 Adaptive gameplay . 75

Appendices 77

A MRSA Infection Control Guideline 77

B System Usability Scale 81

v

List of Figures

1.1 Proportion of MRSA human blood isolates from participating
countries in 2008 and 2017 [1]. 2

1.2 A screenshot from Stopp sepsis. The player needs to choose
whether the patient should be screened for Sepsis or not. 6

2.1 MRSA,
National Institute of Allergy and Infectious Diseases, NIH. CC
BY NC 2.0 . 7

2.2 In-game screenshot from Surgera VR [2]. The white downwards
facing arrow above the hand is an indicator that shows up at
every step of the surgery, showing where to focus next. 10

2.3 Screenshots from RCSI Medical Training Sim [3]. The first
picture shows options of different factors you can assess. In the
second picture, the player has chosen a chest drain insertion
and must place it correctly by pressing the correct circle. . . . 10

2.4 An example of a completed task on Duolingo. Here the user has
translated a sentence from Russian to English and can continue
with the series of tasks . 12

2.5 A model of a monkey head triangulated and rendered in Blender 14
2.6 Simplified overview of a rasterization based pipeline (based on

Figure 2.2 from [4]) . 15
2.7 Ray tracing: Simple shadows example 16
2.8 Animation editor (screenshot from the Unity 2019.3 editor) . . 16
2.9 Vertex blending: On the left the bone has not been rotated,

in the middle the bone has been rotated, on the right vertex
weights are visualized with a gradient 17

2.10 Example of using blend shapes to close the eyelids of a hu-
manoid model (composited screenshots from Unity 2019.3 editor) 18

2.11 HTC Vive VR headset, photo by Jesper Aggergaard at Unsplash 19
2.12 Oculus Quest, courtesy of Oculus 21
2.13 Side by side comparison of how a game looks like with and

without a HUD. Screenshots from shooter game Counter-Strike:
Global Offensive. 22

2.14 OpenXR standardization effort before and after (figure from
Khronos Group) . 23

vi

http://creativecommons.org/licenses/by-nc/2.0/deed.no
http://creativecommons.org/licenses/by-nc/2.0/deed.no
https://www.khronos.org/openxr/
https://www.khronos.org/openxr/

2.15 Unity build settings showing targetable platforms (screenshot
from the Unity 2019.3 editor) 25

2.16 Unity 2019.3 editor: Overview 26
2.17 Unity XR Tech Stack (from Unity 2019.3 documentation, ac-

cessed: 19/05/2020) . 27

3.1 Screening criteria diagram from Helse Bergen’s guideline (Ap-
pendix A, translated to English). 30

3.2 Gameplay flow diagram . 31
3.3 Patient selection (in-game screenshot) 31
3.4 Anteroom with hand sanitizer and protective equipment (in-

game screenshot) . 32
3.5 Overview of available tools . 33
3.6 Screening (in-game screenshot) 33
3.7 The last room after having completed the game as seen from

the corner . 34
3.8 Top-level architecture diagram 35
3.9 Game logic class diagram . 35
3.10 Game logic class diagram: Enumerations 36
3.11 Top-down overview of rooms 37
3.12 Level design: Prototype and final 38
3.13 Level design: Door component 39
3.14 Level design: Introductory text on wall in lobby 40
3.15 How buttons on the HTC Vive and Oculus Touch controllers

have been mapped with Unity’s XR Interaction Toolkit 41
3.16 Top-down view of the teleport area, which is represented by a

mesh (highlighted in blue) tailored to the scene 42
3.17 Teleport beam while pointing at a valid location and on an

invalid location . 42
3.18 Teleport Area Grid: Unity shader parameters 43
3.19 Interactable select events . 44
3.20 Various types of buttons in the game 45
3.21 Holding a swab in front of the mouth of a patient prompts the

patient to open their mouth. After leading the swab down the
throat, you see the result of the screening attempt as the patient
closes the mouth. 46

3.22 Side by side comparison of rewarding and punishing points when
selecting patients for screening. In both cases the text is floating
upwards and slowly fading out. 46

3.23 Colliders attached to the patient form a compound collider . . 47
3.24 Unity editor: Editing animator 49
3.25 Screenshot of trigger spheres in the patients nostrils 52
3.26 Example of collected sample being put in a tube. 53
3.27 Low poly hospital assets . 54
3.28 Modelling a coat in Blender 2.8 [5] 55

vii

https://docs.unity3d.com/2019.3/Documentation/Manual/XRPluginArchitecture.html

3.29 The user can choose between English and Norwegian. 56
3.30 Perspective camera viewing frustum, Martin Kraus. CC BY-SA

3.0 . 57
3.31 Example of frustum culling in the game: On the left we see

the camera and its frustum and how other objects that do not
intersect with it are not drawn 58

3.32 Example of portal culling in the game, the green circle with P
marks the location of the player. 59

4.1 Holding a patient journal. In-game screenshot from an early
iteration of the game. 61

4.2 The prototype with a patient selector. The player can browse
the patients and select one, as well as read the same information
that is on the journals spread among the patients. This is an
in-game screenshot from an early iteration of the game. 62

4.3 Instructions after having chosen the correct patient 65
4.4 Oculus Quest without culling 67
4.5 Oculus Quest with culling . 68

viii

https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0

Glossary

β-lactam antibiotics The term used for antibiotics that contain a β-lactam
ring in their molecular structure. Examples include penicillin derivatives
such as methicillin. 1, 7

Anteroom The small room through which one must pass in order to reach
the isolation room. Its purpose is to prevent infectious pathogens from
being passed into or out of the isolation room. 31, 51, 58, 59, 70

Asset Within game development, assets can refer to a variety of content such
as 3D models, animations, audio files, textures and even shaders and
scripts. 26, 54, 57

Clinical practice guideline (CPG) Systematically developed recomenda-
tions and statements for healthcare practitioners on how to diagnose
and/or treat a medical condition [6]. 1–3, 5, 8, 12, 29, 53, 54, 69, 70

Extended Reality (XR) An umbrella term used for technology which ex-
tends human experiences, usually referring to augmented reality, vir-
tual reality and mixed reality but also future technology. The tech-
nology it refers to is situated somewhere on the reality-virtuality con-
tinuum, a concept introduced by Paul Milgram et al. [7], which is a
one-dimensional representation consisting of the two extremes: reality
and virtuality, and everything between. 19, 23, 40

Frame rate (FPS) The rate at which consecutive images appear on a dis-
play. 14

Graphics processing unit (GPU) A specialized hardware component for
performing highly parallel workloads. 14, 18, 67

Head-mounted display (HMD) A display device worn on the head, typ-
ically consisting of one or two display units (one for both eyes, or one
per eye). 19, 20, 22, 27, 40, 56, 62, 71, 74

ix

Heads-up display (HUD) In games, it is a graphical view showing the
player some information in the user interface while in-game. 22

JSON JavaScript Object Notation, a programming language independent
format that allows storage of data in a serialisable way. 36, 66, 74

Methicillin A narrow-spectrum β-lactamase resistant antibiotic of the peni-
cillin class. 7

Methicillin-resistant Staphylococcus aureus (MRSA) A type of pathogenic
Staphylococcus aureus which is resistant to methicillin and other β-
lactam antibiotics, and often also multi-resistant, i.e. resistant to other
antibiotics. i, 1–3, 7, 8, 12, 29, 37, 61, 66, 69, 72–74

OpenVR An application programming interface and runtime which allows
access to virtual reality hardware from multiple vendors [8]. 23, 26, 28,
40

Sepsis A life-threatening condition where the body’s response to an infec-
tion causes harm to its own tissues and organs [9]. Often called blood
infection or blood poisoning. vi, 5, 6

Staphylococcus aureus (S. aureus) A potentially pathogenic bacterium,
often causing minor skin and post-operative wound infections. 1, 7

Virtual reality (VR) Generally refers to the use of technology to alter and/or
replace real world stimulus in order to create a virtual reality. May also
refer directly to the technology being used. 2–4, 9, 12, 19–24, 26–30, 34,
37, 39, 40, 47, 51, 52, 54, 60, 62–65, 68, 69, 71–76

x

Chapter 1

Introduction

In this chapter, we start by introducing the motivation and origin of this thesis.
Next, we formulate a goal with accompanying research questions, followed by
our methodology explaining how we intend to answer those questions. Then
we introduce the thesis scope and limitations, and finally related work.

1.1 Motivation

Staphylococcus aureus (S. aureus) is a type of bacteria commonly found among
humans [10]. For a healthy person, the bacteria rarely does any harm, and
around 20 - 40% of the population can be a carrier of the bacteria over long
timespans. However, in healthcare institutions where patients undergo medical
procedures and have weakened immune systems, the bacteria poses a threat.
MRSA refers to S. aureus strains that are resistant to β-lactam antibiotics
and that are also potentially multi-resistant (i.e. resistant to other types of
antibiotics) [10]. If the bacteria were to become common in hospitals, the
treatment of S. aureus could become less effective and more costly. Also, an
increase could force a change in the use of antibiotics, which could further
increase the occurrence of resistant bacteria. For these reasons, Norwegian
hospitals implement special measures against MRSA.

A recent study on the temporal evolution of MRSA in Norway shows that
its prevalence, although low compared to the rest of Europe, has increased
over the last decade. Additionally, the study shows that a large number of
occurrences can be attributed to tourism and in recent years to an increase in
immigration [11]. Figure 1.1 shows the proportion of MRSA in human blood
isolates in countries in Europe. As we can see, the Nordic countries have a
fairly low number of occurrences compared to the rest of Europe.

Healthcare practitioners must be able to detect and handle infections in or-
der to prevent the spread of MRSA. Clinical practice guidelines (CPGs) are
meant to assist healthcare practitioners by providing systematically developed

1

Legend
No Data
< 1 %
1 - 5 %
5 - 10 %
10 - 25 %
25 - 50 %
> 50 %

Legend
No Data
< 1 %
1 - 5 %
5 - 10 %
10 - 25 %
25 - 50 %
> 50 %

Figure 1.1: Proportion of MRSA human blood isolates from participating countries in
2008 and 2017 [1].

recommendations. One such CPG is Helse Bergen’s MRSA infection control
guideline, the guideline describes, among other things, which patients to screen
for MRSA and how to perform the screening. If a practitioner is not familiar
with the recommended practice, it could result in further spreading of the
bacteria.

In recent years Virtual reality (VR) technology has seen tremendous improve-
ment, in part thanks to improved tracking, display technology and compu-
tational power. At the time of writing, we observe three main categories of
application:

� Games, where the goal is for the player to have fun.

� Simulators, where the goal is to mimic real-world scenarios closely.

� Non-interactive experiences, where the player mainly acts as an observer,
as if on a visit to a museum.

Gamification can be described as a combination of the two first categories,
where one applies game design to a variety of processes with the goal of in-
creasing player motivation, which in turn can help increase engagement and
time spent playing [12]. A plethora of such applications can be found on mo-
bile platforms [13] [14] [15]. These are often used for learning things like lan-
guages, mathematics and programming. In these applications, you typically
complete tasks for points. The common factor for these learning activities
is that they lack physical interaction. Such abstract learning activities are,
therefore, unlikely to benefit as much from applying VR compared to more
physical activities. Within healthcare, a large number of physically involved
activities are performed as part of clinical practice. These interactions can
be more accurately simulated with VR technology than, for example, on a
smartphone.

VR technology, as an educational tool, has been the topic of several studies. A

2

meta-analysis from 2013 examined a number of studies within the categories of
games and virtual worlds. It suggests that VR-based instruction is an effective
means of improving learning outcomes [16].

Helse Vest is one of the four regional healthcare agencies in Norway. As part
of the agency’s innovation plan, it asserts the goal of increasing knowledge and
use of innovative game technology, as well as a need for closer cooperation with
universities and university colleges [17]. In addition, the agency’s strategic
plan states that new digital solutions play an essential role in future patient
treatment and that practitioners, therefore, must have fundamental digital
competence. Furthermore, they want to increase the number of employees
with high digital competence in order to contribute to innovation, service
development, and training of colleagues, patients and relatives [18]. These
aims show that there is an apparent demand for innovative technology in
Norwegian healthcare institutions. The use of games for learning purposes is
one such potential innovation. In this thesis, we seek to apply gamification
and virtual reality to the problem of MRSA to meet this demand.

1.2 Origin of the thesis

The idea of creating a learning-game about antibiotics was first discussed in
Helse Vest IKT’s work with the game ”Stopp Sepsis” (see Section 1.6). In
discussion with one of the partners of the working group, head of the regional
patient security programme Anne G. Kvalvik mentioned that ”screening for
MRSA” would be a very relevant subject for a learning-game.

Helse Vest IKT’s first game, ”Stopp Sepsis”, was a great success among health-
care practitioners and other stakeholders within the health services in Norway.
When the opportunity of developing a new learning-game together with the
authors of this thesis arose, the innovation working group put forth the idea of
developing a game involving ”screening for MRSA”. Innovation advisor and
nurse Eva C. Backer further developed the idea, and together with technical
advisors H̊akon Garfors and Thomas F. Larsen, they later presented it to the
authors of this thesis.

1.3 Goal and research questions

Together with our consultants at Helse Vest IKT, we formed the goal of de-
veloping a VR game that expresses the national guidelines that healthcare
workers must follow to detect occurrences of MRSA in patients. We chose
to base the game on the CPG from Helse Bergen (Appendix A), which is a
well-established guideline used by Haukeland hospital. The goal of this the-
sis is for the game to function as a light-hearted entry-level learning tool for
practitioners, which can be published and used at numerous healthcare in-
stitutions in Norway and in turn bring widespread attention to the problem.

3

For this reason, we base the game on guidelines that apply to as many prac-
titioners as possible. In doing so, we intend to answer the following research
questions:

� What are the challenges with developing a virtual reality game based on
the clinical practice guideline?

� How does the use of virtual reality, and gamification affect practitioner
motivation?

By answering these questions, we hope to understand better how to develop
usable and useful VR games based on healthcare guidelines.

1.4 Scope and limitations

As mentioned, the goal is for the game to be relevant for a wide array of
healthcare practitioners. Because of this, the game can not contain recom-
mendations that are local to an area or institution, which could otherwise
prevent the adoption of the game. Here we can draw a parallel to an ear-
lier game published by Helse Vest IKT called Stopp Sepsis (see Section 1.6).
Although the game was successful and had a broad reach, concept developer
Eva C. Backer, mentioned that the game was not adopted in a particular area
because of local adaptations. Furthermore, it is of interest that the end prod-
uct is as complete as possible seeing as Helse Vest IKT intends to publish
the game. Reducing the scope of the thesis is necessary to make this possible
within our time and resource constraints. As a result, we are restricting the
game to follow a single flow, designed to capture the essence of the material,
without going into details that are specific to a scenario or a particular health-
care institution. By a single flow, we mean that the game consists of a single
general chain of tasks, as opposed to multiple specific chains of tasks for all
possible scenarios. At the same time, we also employ gamification to make
the game more enjoyable, which has the potential of increasing the learning
effect of the game and its popularity. The details of how the scope affects
the design and implementation become apparent throughout the development
process, and we describe it in more detail at various places in Chapter 3, 4
and 5.

Unfortunately, due to the outbreak of COVID-19 scheduled user testing with
10 nurses from the infection control ward at Haukeland Hospital had to be can-
celled. Additionally, planned tests with nursing students at Western Norway
University of Applied Sciences (HVL) were cancelled due to the university cam-
pus being shut down. As an alternative, we instead opted for more in-depth
testing with 2 domain experts and also used data gathered from domain ex-
pert tests conducted throughout the development process. We describe these
limitations and the alternatives in detail in Chapter 4.

4

1.5 Methodology

We intend to answer the research questions by developing a fully functioning
VR game based on Helse Bergen’s CPG for MRSA infection control. Through-
out the development process, various challenges arise in areas such as cross-
platform compatibility; identifying and implementing gamified aspects of the
guideline; user interaction design; performance and optimisation; and more.
When faced with such challenges, we consult existing literature and research
within the respective fields as well as consulting and performing tests with
our external domain experts. Finally, we perform user testing, as described in
Chapter 4, to evaluate the resulting game.

In Chapter 3, we describe the design and solution of the game. In Chapter 4 we
look at the results from user testing and how they correspond to the different
challenges we have tackled and the possible trade-offs between different solu-
tions. Where possible, we present measurements of relevant metrics. Finally,
in Chapter 5 we discuss and conclude on our results.

1.6 Related work

The IT department of the Western Norway Regional Health Authority, Helse
Vest IKT, has previously published a game revolving around medical proce-
dures called Stopp Sepsis [19]. The player is presented with short information
snippets on Sepsis symptoms and treatments, after which they are tasked
with following the procedures. The game utilizes gamification principles heav-
ily. The player is punished or rewarded with every decision, depending on
whether they correctly follow the procedures or not. The rewards take form
as health points illustrated as cute dogs, stars popping up on the screen and
triumphant sounds. When the player makes a mistake, a gunshot is heard and
one of the health points, in the form of a dog, dissipates into red flowers. The
player must keep at least one dog to win the game.

In a blog post from February of 2019, concept developer and scriptwriter Eva
C. Backer wrote a blog post on how Stopp Sepsis came to be [20]. In the post,
she writes that they have received 70 000 site hits since April of 2018 and that
the game has been used as a course in medical learning resources throughout
Norway.

5

Figure 1.2: A screenshot from Stopp sepsis. The player needs to choose whether the
patient should be screened for Sepsis or not.

6

Chapter 2

Background

2.1 Methicillin-resistant Staphylococcus aureus

Figure 2.1: MRSA,
National Institute of Allergy and Infec-
tious Diseases, NIH. CC BY NC 2.0

S. aureus is a potentially harmful bac-
terium, often causing minor skin and
post-operative wound infections [21]. In
the early 1940s, before penicillin had
gained widespread use, the mortality
rate of infected individuals was around
80%. Two years later, in 1942, the
first penicillin-resistant S. aureus was ob-
served in a hospital. In 1960, around
the time when methicillin (a peni-
cillin derivative) was introduced, approx-
imately 80% of S. aureus strains were
resistant to penicillin. Only two years
later, S. aureus developed methicillin-
resistance. Since then, MRSA has spread throughout the world.

The antibiotic methicillin is seldom used these days; instead, MRSA as a term
now refers to S. aureus strains that are resistant to β-lactam antibiotics in
general while also potentially being multi-resistant (i.e. resistant to other types
of antibiotics) [10]. The majority of infections occur in hospitals. Infections
are costly, result in extended hospital stays, and more importantly, increased
mortality [21]. Additionally, delayed initiation of care and treatment further
increases mortality, meaning general awareness and well-trained practitioners
is of utmost importance.

In 2008 the Norwegian Institute for Public Health published several recom-
mendations on how to combat the spread of MRSA [10]. The stated goal of the
publication is to prevent MRSA from establishing and becoming a significant
part of the bacterial flora in Norwegian hospitals and nursing homes. The

7

http://creativecommons.org/licenses/by-nc/2.0/deed.no

publication contains guidelines for all Norwegian healthcare practitioners to
follow. The guidelines range from standard precautions like hand hygiene to
specific procedures for sampling bacteria and what to do with unexpected dis-
coveries in patients. Helse Bergens MRSA infection control guideline is based
on the publication.

A possible connection with COVID-19 mortality

Some sources have noted that countries with a high rate of MRSA also tend
to have a high mortality rate from COVID-19 [22] [23]. While other factors
such as population density and the testing capacity have a significant effect
on outcomes, there is also speculation that the secondary infections that the
coronavirus paves the way for, when caused by antibiotic-resistant bacteria,
can not be adequately treated. Which suggests that MRSA may play a role
in the COVID-19 mortality rate.

2.2 CPGs and simulation

A clinical practice guideline (CPG) is a collection of systematically developed
recommendations to assist practitioner and patient make decisions about the
appropriate health care for a particular circumstance [24]. They can be de-
signed as a series of steps to follow, either for patients or healthcare profes-
sionals. They are often searchable in medical databases for quick access when
needed.

When developing a CPG, a committee should be formed and cover all the
essential aspects of the medical condition in question [6]. Ideally, the CPG
should be based on up-to-date scientific knowledge, and it should be possible
to follow the recommendations in daily healthcare practice. While some CPGs
are made for the patient to read, most are meant for healthcare professionals.
A healthcare professional’s knowledge of a CPG is crucial for the patient’s
health.

In a report published by the Norwegian Institute of Public Health (NIPH),
Fretheim et al. note that results from systematic overviews of CPGs are not
consistently effective [25]. They write that the Norwegian healthcare personnel
do not necessarily change practice as soon as the Norwegian Directorate of
Health publishes a CPG. In fact, they find many examples of deviations from
clinical practice and the official CPGs. Fretheim et al. do not go into detail
about what causes these deviations. One factor could be that the health
professionals are unwilling to follow all of the advice in the CPG based on
local deviations or own experience. Another factor could be that the CPG is
not adequately conveyed to the practitioners. In the latter example, it is an
issue of learning. One of the ways they learn CPGs in healthcare is through
simulation.

8

Simulation

Simulation in healthcare is a way of practising a scenario in a controlled en-
vironment. Procedures ranging from trivial tasks such as hand hygiene to
highly critical procedures such as responding to heart failure can be trained
in simulations. The use of simulation in medical education has been traced as
far back as early in the 18th-century [26]. Simulation can be thought of as a
technique rather than a technology, although newer technology has opened up
different ways to do it.

Norwegian medical students use simulation extensively in their education. The
simulations are often performed with real tools and props such as mannequins,
and sometimes in VR. Typically, current simulations try to mimic reality as
closely as possible, leaving no room for gamification.

VR simulation

Healthcare simulations in VR is still a young topic, although some applications
have been made for different procedures. Surgera VR is a free to play simulator
of a surgical operation available for computer-powered VR headsets [2]. As
the patient is lying on the hospital bed, you as the player must pick the
correct tools from the table on the side and cut the throat open and perform
the surgery correctly. The simulation is not gamified like the examples in
Section 2.3 are, but more like a guided simulation. The closest thing to a
gamification element in the application is a type of ”Game over” event if you
perform too poorly. In that case, you are informed that the operation failed
and you can choose to exit or restart the game. As seen in Figure 2.2, there
are indicators and text to help you along the way in every step of the surgery.
The indicators show you what tools to pick up and where to use them. Text
popups always give an exact description of what you need to do.

A different type of healthcare simulation in VR is the RCSI Medical Train-
ing Sim [3]. Developed on behalf of the Royal College of Surgeons in Ireland
(RCSI), it is a surgeon simulator available for the Oculus Go and phone pow-
ered Samsung VR headsets. You take the role as an emergency physician that
has to treat a trauma patient. In stark contrast to Surgera VR, this is not a
guided simulation; instead, you have the freedom to make independent deci-
sions. As time is ticking, you have to figure out what is wrong with the patient
while you are quizzed every step of the way to test your medical knowledge.
As seen in the first picture of Figure 2.3, there are many options from which
you can collect information about the patient’s health. You are presented with
choices on how to do collect information and also how to assess that informa-
tion. The second picture of Figure 2.3 is an example of such a choice. There is
some instant feedback in that there is an indication of whether your decision
was correct or not. Different sounds will play depending on the result, and
the colour of the correct answer will turn green, while for the incorrect will
turn yellow. If you make a fatal mistake, you will be shown that the patient

9

Figure 2.2: In-game screenshot from Surgera VR [2]. The white downwards facing arrow
above the hand is an indicator that shows up at every step of the surgery, showing where
to focus next.

has died. The game does, however, continue in the same place, now with the
wrong option in red text, indicating that it can not be chosen again. If you
pick the wrong answer that is not fatal, the game moves on, meaning you do
not get to see the correct answer. At the end of the game, you will see a
summary of the simulation, showing how many correct and incorrect decisions
you made, how many times the patient ”died”, as well as time spent. This
simulation is definitely more gamified than Surgera VR, in that you have to
make decisions that are wrong or right, and you get some instant feedback on
your choices.

Figure 2.3: Screenshots from RCSI Medical Training Sim [3]. The first picture shows options
of different factors you can assess. In the second picture, the player has chosen a chest drain
insertion and must place it correctly by pressing the correct circle.

10

2.3 Gamification

The term gamification has seen a surge in use since about 2010, but has been
around for a long time. It is the application of game design principles in other
areas than entertainment. It can be used in education or by people learning
for leisure, often on mobile or web apps. The idea is that through the extra
added motivation to complete tasks, the users will spend more time learning
or simply be more engaged while doing it.

In 2014, three Finnish researchers conducted a meta-study on the effectiveness
of gamification titled ”Does Gamification work?” [12]. The paper looked at
24 empirical studies on the topic, and found that most papers noted positive
effects when it came to behavioural outcomes. Mentioned effects in the edu-
cation context were increased motivation and engagement. The topic of gami-
fication is young, academically and otherwise, and the knowledge collected on
the topic is still evolving.

Common for gamified apps are tasks that you have to complete for some re-
ward. There are gamified apps for learning things like languages [13], program-
ming [14] and mathematics [15]. On the language learning platform Duolingo
and while learning mathematics on Khan Academy, you typically complete a
series of tasks in a row about a specific subject. In these examples, the tasks
typically consist of translating a sentence or solving math problems. When
you complete all the tasks, you are rewarded with points and can move on to
a new set of tasks on a different subject or keep practising the same subject.
On HackerRank, you can choose between many tasks. Unlike Duolingo and
Khan Academy, solving a task can be time-consuming, even for more straight-
forward tasks, so you are only asked to complete a single task before returning
to the menu. You can complete a task by submitting a written piece of code
that must pass several tests.

On these platforms, there is often a view to show your progress. As you
practice different subjects, the ”levels” will be marked as finished. Marking
larger portions of the level menu gives the satisfaction of visual progress. On
Duolingo, there is a graphical view that is particularly similar to a level menu
known from regular games. When beginning to learn a new language, most
levels are locked. Completing some subjects will unlock others, and in this way,
you can progress through the level tree similarly to a regular game. Getting
to the end of a language tree is comparable to beating a game.

On Duolingo you can follow other users, they can be someone you know from
real life or someone who has interacted on their forums. You can see a weekly,
monthly and all-time leaderboard listing the points scored by all users you are
following. This social aspect is designed to incentivise competition and can
lead to more learning. On HackerRank, there is a global leaderboard instead,
showing all users.

11

Figure 2.4: An example of a completed task on Duolingo. Here the user has translated
a sentence from Russian to English and can continue with the series of tasks

2.3.1 Gamification in Healthcare

Gamification and healthcare is not a new combination. Nyameino et al. [27]
have outlined a model for making games for teaching CPGs. Their method
involves a knowledge engineer who creates clinical models which are parsed and
fed to a game engine which presents the players with questions. To prove the
usefulness of this approach, the researchers developed a prototype e-learning
system for mobile platforms. The game takes form as a quiz which gives the
player instant feedback on every answer submitted as well as a summary and
score in the end. This approach is useful in that it can cover a vast range of
CPGs.

The limitation of the model-driven approach becomes apparent when one
wants to introduce procedure-specific interfaces. An example from the MRSA
screening procedure is practising bacteria screening with the help of a phys-
ical tool. In that case, a VR interface could be helpful, but such interfaces
are difficult to combine with a model-driven approach. The reason for this
is that the development of these types of game interfaces is expensive. Con-
sidering the cost of development, each interface should ideally be reused for
different CPGs. If a procedure in a CPG is too specific, an advanced interface
will have to be developed specifically for that procedure. As a result, many
healthcare procedures can not easily be gamified in VR and integrated into a
model-driven system. We discuss the possibility further in Section 6.1.

12

A videogame meant to teach medical students how to perform home visits was
developed at the McGill Molson Medical Informatics Project. The game uses
simulation to render a house of an older adult where the player must identify
risk factors for harmful events. Clicking on objects either gives or removes
points and at the end of the game the player receives a summary of correctly
and incorrectly identified risk factors. The game was made with Flash and
can be played in the browser using a computer mouse. Researchers from the
same project conducted a peer-reviewed study on the motivation of medical
students while playing the game [28]. When asked if the use of ”edutainment”
had improved their learning, the majority of the 56 participants answered
positively. 78% of them would recommend the use of edutainment in other
ways.

2.3.2 Technology and the learning effect

A typical argument for technology in learning is the added interactivity it
allows. This is not necessarily the case in healthcare simulations, as the users
would be interacting anyway. On the other hand it does facilitate things like
continuous feedback and quick change of environment in the simulation, while
providing unstaffed measurement of how the user is doing. This could free
up time for the supervisors of the simulation, if the application itself provides
feedback to the user.

In a meta-study from 2018, Kang et al. investigated whether using web-
based nursing educational programs increases a participant’s basic knowledge
and clinical performance [29]. Their results confirm the effectiveness of web-
based nursing education programs. They mention that advantages include
accelerated feedback to the learner and that such programs are convenient for
those who cannot enrol in a traditional education environment.

2.4 Computer graphics

Computer graphics is the study of synthesizing, representing and manipulating
visual content, and is considered a sub-field of computer science. The end
product usually comes in the form of two- or three-dimensional images and is
mostly viewed on a planar surface such as a computer monitor or television
screen. However, other display methods exist as well, such as volumetric
displays (e.g. holograms) [30]. Computer graphics as a subject covers a wide
variety of topics including, visualizing geometry, user interfaces, computer
vision and image processing.

2.4.1 Geometric primitives

Geometric primitives, within computer graphics, is a term loosely defined as
the irreducible geometric entities that a system can represent and visualize.

13

Common primitives are points, lines, triangles, planes and spheres. In real-
time rendering, the most common primitive is the triangle. Triangles are useful
because they are guaranteed to be planar, unlike other polygons, and can be
used to approximate any shape, while also being efficient to render. Figure 2.5
shows the head of a monkey represented with triangles.

Figure 2.5: A model of a monkey head triangulated and rendered in Blender

2.4.2 Real-time rendering

Real-time rendering as the name suggests is concerned with producing graph-
ics at an interactive rate [4]. We define the rate as the number of images
rendered per second, i.e. frames per second (FPS). The number of frames
that a program produces is not synonymous with the refresh rate (Hertz) of
the display medium. The refresh rate, often expressed in Hertz, of a display
is the rate at which it can refresh the currently viewed image. Under optimal
conditions, the program produces frames at the same rate as the monitor re-
freshes the image, which results in the least amount of latency, i.e. the least
amount of delay between the program rendering the image and the viewer
seeing the results.

Rendering 3-dimensional geometry is a highly parallelizable task. A Graphics
processing unit (GPU) is a specialized hardware component that is exception-
ally well suited for performing massive amounts of computations in parallel.
Using a GPU allows us to achieve interactive frame rates.

Numerous techniques are deployed within real-time rendering to achieve good
looking results while remaining interactive. The predominant form of render-
ing is at the time of writing through a rasterization based pipeline. Figure 2.6
shows a simplified example of such a pipeline. The pipeline is based on the
concept of rendering each object in the scene independently one after another.
The application usually submits a draw-command to the GPU per object in
the scene. In the geometry processing stage, the vertices that form the ge-
ometry can be transformed, usually based on the object’s transform and the
camera viewing it. After this stage, the resulting geometry is passed on to

14

the rasterization stage. In this stage, the pipeline determines which pixels in
the viewport the geometry covers. Lastly, the pixel processing stage calculates
the final colour of the pixels in the image. The geometry and pixel processing
stages are typically programmable via graphics APIs.

Application Geometry
Processing Rasterization Pixel Processing

Figure 2.6: Simplified overview of a rasterization based pipeline (based on Figure 2.2
from [4])

While the rasterization pipeline excels at performing computations locally to
each object in the scene, global effects such as transparency, shadows and
reflections can be hard to implement and often result in physically inaccu-
rate approximations. We refer to these effects as global illumination, and
to compute them accurately requires information about other objects in the
scene.

An alternative to rasterization is ray tracing. The concept of ray tracing is
not new; the painter Albrecht Dürer (1471 - 1528) described the technique as
early as 1525 [31], nearly 500 years ago. The concept is widely used within
offline-rendering, such as for animated movies and visual effects, because it
can achieve highly realistic results and because slow rendering times are not
as much of an issue. Ray tracing follows an entirely different paradigm than
rasterization. Instead of considering one individual object in the scene at
a time and deciding which pixels of the screen to colour, ray tracing starts
by deriving a ray based on the position of the pixel on the screen and the
properties of the camera, and then asks the question: which object, if any,
does this ray intersect with and where?.

One significant benefit of ray tracing is that it drastically simplifies the com-
putation of global effects. For example, let us consider a simplified case of
computing shadows. As shown in Figure 2.7, once the ray hits a surface we
derive a new ray from the intersected position and the direction towards the
light, we then check if the ray intersects with any objects before reaching the
light and if it does then it must be in shadow. We can improve this further
by taking the normal of the surface into account, which allows us to trivially
reject any surface that is facing away from the light. Note, however, that this
form of ray tracing does not achieve realistic-looking results. To achieve a
realistic result, one must also consider the material properties of the surface
and various types of light sources, as well as allowing the ray to bounce several
times.

Ray tracing has not seen widespread use within real-time rendering because of
its heavy computational demands. The computational demands are primarily

15

Camera Light source

Figure 2.7: Ray tracing: Simple shadows example

due to ray-primitive intersection and can be improved significantly through the
use of a bounding-volume hierarchy or a similar space partitioning scheme. In
recent years however hardware acceleration has arrived on the consumer mar-
ket, and the interest for real-time ray tracing seems to be growing. However,
for now, the use of ray tracing in real-time applications is mainly limited to
a technique called lightmapping. The idea is pre-computing in-direct lighting
and storing the results in textures called lightmaps, which can be read and
used to efficiently shade objects at run-time [4].

2.4.3 Animations

Figure 2.8: Animation editor (screenshot from the Unity 2019.3 editor)

Animations are an essential part of creating an interactive and visually pleasing
game. Multiple techniques are used to create animations. The simplest way
of animating something, at least for a software engineer, is through code. One
typical example is to interpolate between two values, over a certain amount of
time or a certain number of frames, in a function that is called every frame.
This technique is useful when the animations are straightforward, for example,
when opening and closing a sliding door. However, for more advanced anima-
tions, a more comprehensive and designer-friendly system is useful. Figure 2.8
shows the animation editor in the Unity game engine. Through this inter-

16

face, multiple properties of the selected object can be animated. A keyframe
consists of the value of a property at a given point in time. Diamond sym-
bols indicate keyframes on the timeline. Properties such as position, rotation,
and scale, are smoothly interpolated between keyframes, while others, such as
whether the object can collide, are not.

Animations are not limited to the properties of objects. Often we also want
to animate the geometry of an object. One näıve implementation is storing all
the vertices for each frame of our animation. This technique is analogous to
drawing each frame of a 2D animated film and imposes virtually no restrictions
on the artist. However, while this works great for meshes with few vertices, the
memory bandwidth requirement can be prohibitively high for detailed meshes
[4]. Instead, two other techniques are commonly used: vertex blending and
morphing.

Vertex blending

Vertex blending is a common technique used to animate and pose models [4].
The technique consists of two parts: the skin (mesh) and the bones which
form a skeleton. The application of this technique is also often referred to
as skinning because the geometry forms something akin to a skin around the
virtual bones. As shown in Figure 2.9, a series of virtual bones are placed in
the mesh. The virtual bones are represented by transforms at each joint, and
form a hierarchy. The skin consists of vertices along with weights defining how
much each vertex is affected by the virtual bones.

Figure 2.9: Vertex blending: On the left the bone has not been rotated, in the middle
the bone has been rotated, on the right vertex weights are visualized with a gradient

As we can see in the right part of Figure 2.9, rotating the joint where the
two bones connect moves the surrounding vertices accordingly. Notice the
smooth transition to the lower bone. The uppermost vertices are affected
entirely by the transform of the upper bone, but as we move down towards
the lower bone, we see the vertices being gradually affected more by the lower
bone’s transform. The hierarchical nature of this setup lends itself well to

17

model vertebrates. For example, rotating the spine of a humanoid will not
only result in the surrounding geometry moving but also the entire upper
body.

The process of adding virtual bones to a mesh is often referred to as rigging,
while the process of assigning weights to the vertices is called skinning. A
mesh is rigged when virtual bones have been added. Skinning can be done
through manual assignment but can also be done more efficiently through a
process similar to painting [32].

Morphing

Morphing is another common way of animating models [4]. The technique
works by interpolating between multiple sets of vertices. One problem that
must be solved to apply this technique is figuring out which vertices in one
set correspond to which vertices in another set. One common way to solve, or
rather avoid, this problem is to require a one-to-one relationship between the
sets of vertices. In other words, the number of vertices must be equivalent, and
each vertex must be at the same relative location in memory. With this setup,
vertices can be passed to the GPU and interpolated on a per-vertex basis. One
common variant of morphing is blend shapes or morph targets. This technique
works by choosing a set of base vertices and, rather than storing the other
sets of vertices as is, storing the displacement or difference between the base
vertices and the other vertices. A weight is assigned to each set of vertices
representing how much impact those vertices have on the final result.

Figure 2.10: Example of using blend shapes to close the eyelids of a humanoid model
(composited screenshots from Unity 2019.3 editor)

In Figure 2.10 we see the humanoid blinking as a consequence of increasing the
weight of the blend shape. A model can have many blend shapes. Blending
between an arbitrary number of blend shapes is not always possible due to
performance limitations. Hence, the implementation typically blends between
a limited number of the blend shapes based on which are weighed most heavily
at that moment. The weights can be modified programmatically. Blend shapes
can be used, among other things, to impart a more lifelike quality to characters,
for example, by making them react to the player’s actions.

18

2.5 Virtual reality

VR technology has seen tremendous improvement over the last few years. VR
allows the user to experience and interact with computer generated simulations
in a highly immersive manner. It primarily does so by providing alternative
visual stimuli while reducing external visual stimulation, usually through the
use of a head-mounted display. Immersion can be increased further by provid-
ing other types of sensory stimuli, such as auditory and haptic. VR is covered
by the umbrella term Extended Reality or XR for short, which includes the
entire spectrum of the reality-virtuality continuum [7].

Figure 2.11: HTC Vive VR headset, photo by Jesper Aggergaard at Unsplash

2.5.1 Technology

Modern VR is usually experienced through a Head-mounted display (HMD).
The HMD is worn on the head similarly to how a helmet is worn. The entire
field of view is engrossed by the inside of the HMD, which has one or more
screens on the inside, with one lens per eye. A variety of HMDs are available
on the market, some are powered by a computer or a smartphone while others
are entirely standalone.

Smartphone powered VR systems consists of an enclosure for the smartphone
which can be mounted to the head. Some of these smartphone powered HMDs
have additional input devices, such as Samsung Gear VR [33], which allows
you to use peripherals such as controllers. Others are even simpler, where there
are no controllers and the only way to provide input is through head move-
ment. These kinds systems are usually limited to three degrees of freedom

19

in the form of rotational tracking. This essentially means that translational
movement is not tracked, so applications are usually enjoyed while station-
ary. Perhaps the largest drawback of the smartphone powered approach is
the limited graphical processing power. In a field where performance is very
important (see Section 2.5.3), users may opt to invest more to get a more
powerful VR experience.

The Oculus Quest (shown in Figure 2.12) is an example of an entirely stan-
dalone VR system. The hardware in the device is similar to a smartphone in
capability, and even runs the same operating system (Android), but is adapted
and tailored specifically for VR. The device provides tracking with six degrees
of freedom, which means that both rotational and translational movement can
be accounted for. This in turn means that experiences are not limited to a sta-
tionary setup, but can also be room-scale. Room-scale experiences allow the
player to move and play more freely, albeit restricted to a predefined bound-
ary. The obvious benefit of this kind of device is the ease-of-use. No external
trackers are necessary meaning the headset can be brought around and used at
a variety of locations. Similarly to smartphone powered headsets this kind of
headset comes with the drawback of having fairly limited graphical processing
power.

Finally, there are the computer powered VR systems. These systems rely on a
connection to a computer and sometimes additional external hardware in the
form of trackers. One example of this is the HTC Vive (Figure 2.11) which
requires the Lighthouse Trackers [34] from Valve in order to operate. Certain
headsets do not require external trackers and instead use a form of inside-out
tracking. The Oculus Rift S, for example, uses a combination of 5 cameras
and an accelerometer, on the HMD, and AI to produce tracking data [35].
The VR system is connected to a computer and relies on the computer to do
the processing. One can therefore use high end CPU and GPU hardware to
render more detailed and higher quality scenes at an acceptable frame rate.
The drawback however is that the player must be tethered to the computer,
making the setup less portable and the player potentially less mobile. This can
be alleviated somewhat with wireless technology, but still requires a computer
for its processing power.

2.5.2 Applications

There are a lot of commercially available VR titles currently on the market. A
filtered search on Steam, which at the time of writing is one of the most popular
video game marketplaces, shows that there are over five thousand applications
with VR support [36]. The vast majority of these support the HTC Vive,
with Valve Index and Oculus Rift trailing behind while still supported by the
majority of applications. Windows Mixed Reality is by far the least supported
out of the four filter options.

Due to the standalone nature of the Oculus Quest a regular user is typically

20

Figure 2.12: Oculus Quest, courtesy of Oculus

restricted to the Oculus Store, which is a platform-specific marketplace. In
an article published by UploadVR, tech journalist Harry Baker could find 170
apps on the Oculus Quest Store in April of 2020 [37]. However, a marketplace
called SideQuest is available, which contains a large number of applications
and games. SideQuest provides a less restrictive platform than the Oculus
Store for developers, but it requires the end user to enable developer-mode on
the device to install applications [38]. Additionally, as of November 2019, the
headset also supports tethering with Oculus Link, meaning certain PC-based
marketplaces are available as well [39].

2.5.3 Concerns and challenges

In Real-time Rendering [4, pp. 915], Akenine-Möller et al. sums up the chal-
lenges of VR as the difficulty of balancing performance, comfort, freedom of
movement, price and other factors. Many of these are hardware related chal-
lenges, like creating comfortable head-gear with good tracking and making
effective input devices that are intuitive. However, a software developer de-
veloping for VR must also be aware of the limitations and effects the software
can have on the people using it. Since one is so immersed in the scene when
using a VR headset, it is important to keep in mind that when the world does
not act as the user expects it to, the senses will be confused.

One particularly large concern is that latency has a much stronger adverse
effect on a user in an immersive virtual reality than it would have on a standard
display monitor. The effects are often called simulation sickness and can
involve dizziness and nausea. The problem arises when the display does not
match the expectation caused by the other senses, such as the inner ear’s
vestibular system of balance and motion.

21

Michael Abrash at Valve Software, in a much-cited blog post, anecdotally
stated that latency of 20 milliseconds is too much and that the threshold for
”too much latency for VR” lies between 7 and 20 milliseconds [40]. Latency
can arise from several sources. Getting the tracking data from the HMD
and controllers is one such source. Another source is the refresh rate of the
display. The HTC Vive Pro has a hardware-locked display refresh rate of 90
Hz, which equates to a minimum latency of approximately 11 milliseconds
[41]. Developers of VR applications must be mindful of performance as not to
cause latency beyond these thresholds.

2.5.4 Best practices

Designing an interface for VR is different from designing it for a standard
display monitor. Visual elements like a Heads-up display (HUD) in a game
may have to be displayed differently. A HUD can show information such as
a map, player resources, equipment and a list of current objectives. On a
standard display monitor, the HUD is usually fixed in place no matter which
angle the player is looking. Figure 2.13 shows what a game with and without a
HUD looks like. For games played on traditional screens, this is a very effective
way of showing information to the player at all times. However, the fact that
HUDs follow the camera angle all times turns out to be annoying in VR [42].
Since the screens are very close to the eyes, players get a stronger feeling of
the HUD being ”in the way”. Additionally, players who want to read parts of
the HUD that are placed on the side of the view will often instinctively turn
their heads to look at it. Since the HUD follows the camera angle, it will be
pushed away from the view of the player.

Figure 2.13: Side by side comparison of how a game looks like with and without a HUD.
Screenshots from shooter game Counter-Strike: Global Offensive.

Developers should instead place important information around in the scene,
for example, on walls or following the player character at a certain distance. If
it does follow the player, it should not follow the view angle vertically. This is
only one example of a design choice that have been established by experienced
VR developers; advice on these issues have been put together by companies

22

with a large investment in VR development, such as Oculus and Unity [43]
[44].

2.5.5 Standardization efforts

As software developers, we would often like to target multiple platforms and
do so without having to increase the amount of work. The same goes for de-
velopment for VR. At the time of writing, the VR ecosystem is in the midst
of a standardization effort. The ecosystem consists of multiple hardware ven-
dors, such as HTC, Valve, and Oculus. These vendors provide drivers for their
hardware along with various APIs, such as SteamVR (OpenVR) and Oculus
VR PC. Game engines often provide abstractions over these APIs and offer a
single consolidated API, which means that the effort of targeting multiple plat-
forms is left to the engine developers. However, projects that do not utilize
a pre-existing game engine must potentially implement such an abstraction
from scratch.

Figure 2.14: OpenXR standardization effort before and after (figure from Khronos
Group)

In July 29th 2019 the Khronos Group released an open standard for access
to XR platforms and devices [45]. The standard seeks to reduce fragmenta-
tion, simplify development and enable applications to target a wide array of
platforms without having to be rewritten. Figure 2.14 shows the intention of
the standard. As we can see on the left, without OpenXR, applications and
game engines must interact with a large number of interfaces. In contrast,
with OpenXR, as shown on the left, this work is reduced to programming
against a single interface. An additional possible benefit of the standard is
that it makes it easier for hardware developers to enter the market because
software developers will not have the burden of writing code specifically for
that hardware. At the time of writing, all major VR hardware vendors have
given their support to the standard.

23

https://www.khronos.org/openxr/
https://www.khronos.org/openxr/

2.6 Game engine

The process of developing a graphics engine from scratch is a highly demanding
and costly endeavour. Numerous techniques, such as shadow mapping and
global illumination that require much work to implement, are often taken for
granted. Taking it a step further, developing a game engine requires even more
resources because of the many complicated systems that need to fit together.
With a growing interest in serious games, where development teams often have
somewhat limited resources, existing game engines can offer the ground-work.
Modern game engines exist to make the development of games faster and more
cost-effective. They do so by providing implementations for techniques that are
ubiquitous across a large number of genres. Few games are made entirely from
scratch anymore, as game studios have realized that reuse of base engines are
often more cost-effective. This statement is undoubtedly true for many small
game studios, but many large game studios also reuse either in-house game
engines or utilise commercial ones. The engine reduces the complexity for the
developer, providing an uncomplicated API that supports standard features,
such as rendering, physics simulation, audio, and animation. Implementing
all of these lower level features is left for the game engine developers.

Additionally, popular game engines often come with a built-in editor with an
interface where developers can quickly create scenes with game objects and
add their components to it. These components can be several different things;
one example is geometry, which can be rendered by the engine; another is a
script for controlling behaviour in the scene. Using a game engine is a natural
choice for this thesis as it provides many features that would otherwise have
to be implemented from the ground up, which is neither feasible within the
given time and resource constraints nor relevant to our goal.

2.6.1 Why Unity?

At the start of the project, we had to choose a game engine. Initially, we
considered two popular engines: Unity and Unreal Engine. Both engines
sport all necessary features required for this project and have large developer
communities. We chose Unity for two reasons. Firstly, both authors have
prior experience with using the engine, which meant that we spent less time
getting a working prototype up and running. Secondly, using the same engine
as the other VR projects that were working alongside us made it possible to
share tips and tricks throughout the development process.

At the time of writing Unity[46] is one of the most popular game engines on
the market. It is especially popular among small game studios and amateurs,
as well as developers targeting mobile platforms. Being able to deploy to
multiple platforms is an integral part of many game engines, and Unity is no
exception. As shown in Figure 2.15, we can target the three major desktop
operating systems, Android (which includes Android-based VR headsets like
the Oculus Quest), videogame consoles, web browsers with WebGL, and more.

24

Figure 2.15: Unity build settings showing targetable platforms (screenshot from the
Unity 2019.3 editor)

Depending on the application, building for various platforms will require few
changes to the code.

2.6.2 Editor

An integral part of Unity is the editor. The game engine consists of several
systems (such as physics, rendering and audio) that work together. The editor
provides a graphical user interface for working with all these systems and using
them to create a game. In Figure 2.16, we see that the editor is divided into
multiple panels. The panels can be added, adjusted and closed by the user.
A tab in one of the panels can host a window that exposes some functionality
to the user. In the centre, we see the Scene-view. This window is arguably
the most important one and allows the user to move around, view and edit
a scene. On the left, we see the Hierarchy, which shows the entire scene as
a hierarchical list and allows the user to modify and organize the scene. The
right panel hosts the Inspector. The user can use the Inspector to modify
objects in the scene. For instance, the user can modify the position, rotation
and scale of the object, as well as add and remove various components.

Components allow us to add functionality to our game. All objects have a
Transform-component which represents the position, rotation and scale. Unity
comes with numerous built-in components which expose the features of the
game engine. On example is the rendering related components MeshFilter and
MeshRenderer, which makes it possible to add and render geometry. Another
example is various physics components such as BoxCollider and RigidBody.
In addition to the built-in components, the developer can program custom

25

ones in C# by extending the MonoBehaviour -class. The class exposes several
methods that can be overridden. One commonly used method is Update,
which is called once every frame by the engine. Custom components can be
thought of as the glue that binds together a game with its gameplay systems
and mechanics.

Figure 2.16: Unity 2019.3 editor: Overview

Another part of the Unity editor is an online marketplace called the Asset
Store[47]. The Asset Store an integrated part of the editor. Here developers
can browse for assets to use in their projects. Unity Technologies themselves
publish some assets, but third-party developers publish the majority of the
assets. Publishers can put a price on their asset or give them away for free.
assets vary widely in form, with the largest category being 3D models, and
often come in collections. As a small development team, having an easy way to
acquire relevant assets can be invaluable. In our case, with our programming-
heavy skill set and a lack of modelling and content creating skills, most assets
we have acquired are in the form of 3D models and audio.

2.6.3 Virtual Reality support

Support for VR in Unity has gone through some changes throughout our
project. Most notably, when we upgraded the project from Unity version
2019.2 to 2019.3. Version 2019.2 had built-in native support for various VR
devices, such as OpenVR and Oculus. In 2019.3 the move was made to a
plugin-based architecture, an overview is shown in Figure 2.17.

As we can see on the bottom part of the figure, with this architecture, hard-
ware vendors must implement a plugin that interfaces with Unity’s XR SDK.
At the time of writing, OpenVR does not provide such a plugin and instead

26

Figure 2.17: Unity XR Tech Stack (from Unity 2019.3 documentation, accessed:
19/05/2020)

relies on the deprecated built-in implementation from 2019.2. Therefore our
project must use the deprecated implementation. Over time, if the standard-
ization efforts mentioned in Section 2.5.5 are successful, this architecture can
be simplified because multiple plugins will no longer be necessary to interface
with the hardware.

Unity exposes the API for accessing the capabilities of a VR headset in the
UnityEngine.XR-namespace. We can access the various classes and enumera-
tions in this namespace through scripts (written in C#). One notable example
is the XRSettings-class. The class exposes global properties (with the static
keyword in C#) such as supportedDevices, loadedDeviceName, isDeviceActive,
as well as a global function called LoadDeviceByName which can be used to
load a specific device. With a device loaded, global functions in the Input-
Devices-class can be used to acquire an input device, such as an HMD or
controller. Given an input device that supports tracking, a script can access
values such as position, rotation and acceleration and use it, for example, to
move the camera or a virtual controller. Using this API directly works fine;
however, much of the functionality needed for an application in VR is com-
mon to many applications. Instead, we can use a framework which provides
common VR functionality.

The SteamVR Unity Plugin [48] is one such framework which provides com-
mon functionality such as various forms of hand interaction and player move-

27

https://docs.unity3d.com/2019.3/Documentation/Manual/XRPluginArchitecture.html

ment. Also, the framework provides a more advanced feature called skeleton
input, which enables a detailed representation of the player’s hands based on
controller input. How detailed the player’s hands are represented depends
of course on the capability of the controller hardware. Although the plugin
works with a wide array of VR headsets, it does require the SteamVR runtime,
provided by Valve, to be installed and running, which means that standalone
headsets such as the Oculus Quest are not supported. Oculus Integration [49]
is another similar framework. The framework initially only targeted Oculus
devices, but later extended support to OpenVR. As shown in Figure 2.17,
Unity also provides a framework called the XR Interaction Toolkit [50]. Sim-
ilarly to the previously mentioned frameworks, this framework also provides
commonly-used functionality but is entirely platform-independent.

28

Chapter 3

Design and Solution

In this chapter we describe the steps required to design and implement a VR
game based on Helse Bergen’s CPG for MRSA infection control (Appendix
A). We begin by providing a high-level overview of how and why we transform
various parts of the guideline into the game. Next, we present the resulting
gameplay. After which, we propose a top-level architecture for the game.
Finally, we go into detail about how we implemented the components of this
architecture and how we solved the various challenges that arose.

3.1 From guideline to game

A clinical practice guideline (CPG) is a collection of systematically developed
recommendations to assist practitioner and patient make decisions about the
appropriate health care for a particular circumstance [24]. As mentioned in
Section 1.3 and 1.4, we base the game on recommendations that apply to as
many practitioners as possible. Naturally, Helse Bergen’s CPG (Appendix A,
[51]) consists of some recommendations that are particular to Bergen. Parts of
the guideline that contain these local recommendations are left out. Together
with our domain expert, Eva C. Backer, we identified two parts of the guideline
as suitable, and they became core components of the game. This decision was
made, firstly, because they are crucial for preventing the spread of MRSA,
and secondly, because there is little variation in how practitioners apply the
recommendations. The first part we identified is the criteria for screening a
patient (Figure 3.1).

Next is the list of the locations from where the practitioner must collect sam-
ples, which holds the following entries:

� Both nostrils (same swab)

� Throat including tonsils

� Perineum (the space between the anus and scrotum or vulva)

29

> 12 months ago

Anyone who has:

been diagnosed as MRSA-postive (even though later
control tests show negative), or
lived in same household as MRSA-positive, or
been in close contact with MRSA-postive without
protective gear

Anyone who has:

been diagnosed as MRSA-positive,
and later not had 3 negative control
tests

Anyone that have been outside Scandinavia and:

been admitted to a health institution, or
received extensive examination or treatment in a health
institution, or
worked as a health worker, or
stayed in an orphanage or refugee camp

Anyone who has a wound or skin infection, chronic skin
disorder or medical device penetrating through skin or
mucosa, and who has:

stayed continuously outside Scandinavia for more than
6 weeks

MRSA-
screening
on
admission
or patient-
directed
work in
hospitals

last 12 months

The following patients are screened upon admission to the hospital:

Figure 3.1: Screening criteria diagram from Helse Bergen’s guideline (Appendix A,
translated to English).

� Wounds, eczema, puss, scars from infection or active skin diseases

� Around insertion site for foreign matter (such as a catheter, drainage
and tracheostomy)

� Urine from catheter

In addition to the reasons mentioned above, the latter part, i.e. collecting
samples from the patient, appeared to fit well with the physical aspect of VR.
Having the player physically carry out the task of collecting samples allows us
to make the most of the properties of VR.

As well as consulting our domain expert, we also visited a nurse at the infection
control ward at Haukeland hospital. Through this visit, we identified another
part of the guideline as relevant to the game, namely droplet-transmission
precautions. Droplet-transmission precautions are precautions a practitioner
must take when faced with diseases and germs that can be spread through
small droplets in the air as a result of coughing and sneezing. When interacting
with and screening a patient, the precautions typically involve isolation of the
patient, proper hand hygiene and the use of protective equipment such as a
coat, mask and gloves.

The next step is turning the three identified parts into gameplay elements.
As mentioned in Section 1.4, in the interest of developing a publishable end
product, the game should consist of a single flow. The flow for the game was de-
vised based on the most natural order in which a practitioner applies each part.
First, the practitioner uses the screening criteria to decide whether or not to

30

screen a patient. Next, they must follow the proper droplet-transmission pre-
cautions. Finally, they collect the appropriate samples from the patient.

3.2 Gameplay

Select patient to screen
based on provided

information

Yes

No

Correct

Lose points

Proceed to anteroom and
put on protective

equipment

YesCorrect
order

No

Lose points

Collect sample from
patient

Yes

Already sampled

Correct

No

Lose points

Not complete

Complete

Yes

Victory!

Figure 3.2: Gameplay flow diagram

Figure 3.2 shows the flow of the gameplay. The first task is to select the
patient that needs to be screened using the screening criteria (see Figure 3.1).
The player is presented with a set of patients with an accompanying short
description. The player’s task is to select the patient that fulfils the criteria
based on the patient’s description. Upon choosing the correct patient, the
player can proceed to the anteroom. Choosing the wrong patient results in
a loss of points, but the player can attempt several times until the correct
patient is selected.

Figure 3.3: Patient selection (in-game screenshot)

As shown in Figure 3.3, while browsing the patients, the currently viewed
one can be seen in the other room through a window. To reach the patient,
once the correct one has been selected, the player must first pass through the
anteroom. Upon entering the anteroom, the door behind is closed. The player
must now perform necessary droplet-transmission precautions, which consists
of applying hand sanitizer, equipping a coat and mask, and finally putting
on gloves. The player must do so in the correct order; not doing so results

31

in a loss of points and a prompt appearing, which reminds the player that it
needs to be done correctly. Once the player has successfully performed the
necessary droplet-transmission precautions, the last door opens, leading the
player to the patient.

Figure 3.4: Anteroom with hand sanitizer and protective equipment (in-game screen-
shot)

The final task is to collect the appropriate samples from the patient. The
player must collect samples from the nostrils, throat and perineum. Addition-
ally, if the patient has a wound, it must also be sampled, and if the patient
has a urinary catheter, then urine must be collected. For a collected sample
to be correct, certain conditions must be met. The correct tool must be used
at the correct location, for example, a swab for the nostrils or a syringe for
the urinary catheter. The tool can not have been contaminated from touching
a different surface beforehand. Lastly, the location can not already have been
sampled. However, there is no punishment if you do sample the same spot
twice. Instead, you are just given feedback that it is already done.

This gameplay element is implemented with physical interaction with a pa-
tient. The patient is lying on the hospital bed, as seen in Figure 3.6. Near the
bed, there is a table with some tools the player can grab. Only some of the
tools are necessary; others are not suitable and only lead to a loss of points
if used. Figure 3.5 shows an overview of the tools. The irrelevant tools are
meant to make the player think through their choice of tools and can also work
as a humoristic element. The locations for where to collect samples are repre-
sented by a set of targets on the patient’s body. To collect a sample, the player
must grab a tool and use it to interact with a target physically. A successfully
collected sample rewards the player with points. Also, the location shows up
on a visible list so that the player can track their progress. An unsuccessful
sampling attempt results in a loss of points, the playback of a negative sound
effect, as well as removal of the tool from the player’s hand.

Once all samples have been collected, a prompt appears. It informs the player

32

Figure 3.5: Overview of available tools

Figure 3.6: Screening (in-game screenshot)

how samples should be labelled before they are dispatched for testing. Upon
closing the prompt, the room transforms into an informational discotheque,
as seen in Figure 3.7. The tools disappear, the patient dances on the floor
instead of lying on the bed, disco music starts playing, and the ceiling light
starts looping colourfully. The party atmosphere is intended to give the player
a sense of achievement for being victorious, as well as to help shift focus to
other regions of the room. A rolling projection screen rolls down, presenting
the player with their score, a rough assessment of how they did in plain words,
and a disclaimer that they should follow the guidelines of their workplace.
Additionally, a summary of the guideline appears on the wall, consisting of the
screening criteria and locations. The purpose of this is to make sure the player
understands why what they did was correct or incorrect. The only interaction
left in the room is the ”Play again” button, which allows the players to play
through the game again with a new set of patients.

33

Figure 3.7: The last room after having completed the game as seen from the corner

3.3 Top-level architecture

The top-level architecture of the game consists of two parts, the game logic
and the VR interface. The game logic is an implementation of the gameplay
functionality, as shown in Figure 3.2. It exposes the functions and variables
that are necessary to play through the game and keeps track of the progress
and score of the player. The VR interface is the implementation of every-
thing necessary to play the game through VR. It is responsible for converting
input from the player to the relevant interactions with the game logic and
showing the resulting feedback. Keeping the game logic separated from the
VR interface, makes it possible to target other platforms by adding new in-
terfaces. While the VR interface of the game is tightly coupled to the game
logic, the game logic has no coupling to the VR interface. Therefore the game
logic can be reused for very different interfaces such as a website or a mobile
application.

In the Unity editor, it is easy to place objects around in the scene that can call
functions to a singular object like the game logic. To do the opposite, when
you want the objects in the scene to react to events that happen in the game
logic, it is more complicated. We set up an event system using UnityEvents
[52] for the game logic. The game logic triggers these events based on player
progression. Every object in the scene can listen and react to these events.
Figure 3.8 shows the communication both ways with the full list of functions
and events.

The function calls to the game logic already have return values, but that is
often not enough. If we consider the example of selecting a patient to be
screened, that call is made by a UI board. That board needs to know when
the player has chosen the correct patient, but so does many other objects in

34

Game	logicVR	Interface

Methods

SelectPatient(Patient):	bool

SanitizeHands():	bool

EquipCoatAndMask():	EquipResult

EquipGloves():	EquipResult

SampleSelectedPatient(Tool,	Target):	Result

ProceedToNextRound():	bool

Events

OnSelectPatient(Patient,	bool)

OnSamplePatient(Tool,	Target,	ScreeningResult)

OnScoreChange(Score)

OnComplete()

Figure 3.8: Top-level architecture diagram

the scene. For instance, the patient reacts with a celebratory animation, the
door to the next room opens, and the score on the scoreboard changes. If
it were the UI board’s task to bring the information to all these objects, we
would have a highly coupled interface. If every component that triggers such
events had such a high coupling, the code would end up unnecessarily intricate
and hard to manage. By using events, we avoid this problem.

3.4 Game logic

Game

+	score:	Score

-	rounds:	List<Round>

-	currentRound:	int	=	0

GetCurrentRoundPatients():	List<Patient>

SelectPatient(Patient):	bool

SampleSelectedPatient(Tool,	Target):	Result

SanitizeHands():	bool

EquipCoatAndMask():	EquipResult

EquipGloves():	EquipResult

IsCurrentRoundDone():	bool

ProceedToNextRound():	bool

IsComplete():	bool

0..n

1..n

0..n

Round

+	patients:	List<Patient>

+	anteroomStatus:	AnteroomStatus

-	screenings:	Map<Patient,	Screening>

-	currentScreening:	Screening

SelectPatient(Patient):	bool

SampleSelectedPatient(Tool,	Target):	Result

IsDone():	bool

Screening

+	subject:	Patient

-	status:	Status

Sample(Tool,	Target):	Result

IsDone():	bool

AnteroomStatus

+	sanitizedHands:	bool

+	equippedCoatAndMask:	bool

+	equippedGloves:	bool

Score

+	value:	int

+	contaminatedSafetyEquipment:	bool

+	incorrectSamplesTaken:	List<(Tool,	Target)>

+	incorrectSelectedPatients:	List<Patient>

Status

+	nose:	bool

+	throat:	bool

+	perineum:	bool

+	wound:	bool

+	urinaryCatheter:	bool

IsDone():	bool

Patient

+	name:	string

+	male:	bool

+	description:	string

+	hasUrinaryCatheter:	bool

+	hasWounds:	bool

+	shouldBeScreened:	bool

Figure 3.9: Game logic class diagram

The game logic is the implementation of the gameplay functionality, as shown
in Figure 3.2. It exposes functions to play the game and keeps track of the
progress and score of the player. At the core of the game logic is the Game-
class, as shown in Figure 3.9. This class has several methods that correspond to
the actions that the player can perform. Performing an action can result in the
player making progress, as well as an increase or decrease in the score.

35

Enumerations

<<enumeration>>
EquipResult

Success

Failure

AlreadyEquipped

<<enumeration>>
Target

Nose

Throat

Perineum

Wound

UrinaryCatheter

Other

<<enumeration>>
Tool

Swab

Syringe

Other

<<enumeration>>
Result

Success

Failure

AlreadyDone

Figure 3.10: Game logic class diagram: Enumerations

A Game-instance consists of several rounds, each Round having its own set
of patients that the player should correctly screen. When all the rounds are
completed, the player has completed the game. The final version of the game
consists of only one round. One round was found as the most suitable number
of rounds through testing with our advisors at Helse Vest IKT. The reason
was that we found that the amount of time spent to complete the game was
adequate. Note, however, that the functionality for having multiple rounds is
still present, which allows for having multiple rounds in future versions.

For every round, a set of four patients are picked randomly from a predefined
collection of patients. The idea of having four patients came from the ear-
lier work by Helse Vest IKT, Stopp Sepsis (see Section 1.6), and was found,
through testing, to work well. The predefined patients are loaded from a JSON
file. Predefined patients can be added, removed and modified by maintainers
of the game. As shown in Figure 3.9, a patient has a description containing
essential information needed to determine whether they should be screened or
not. Additionally, they have information that affects the screening itself, such
as whether they have wounds or a urinary catheter. Lastly, they have some
characteristics like a name and sex to make them uniquely identifiable.

Every patient that should be screened is referenced by a Screening-object,
as shown in figure 3.9. This object keeps track of what locations remain to
be sampled at any given time. Due to the nature of the procedure, this can
differ between patients based on their medical information. For example, only
patients with wounds must have their wounds sampled. When a patient is
sampled, the screening considers the tool and target and returns one of three
results, as shown in the Result-enumeration in Figure 3.10. The combination
of tool and target can be incorrect, which results in the Failure-variant. If
the target has already been sampled, it will result in the AlreadyDone-variant.
Otherwise, the sampling is correct, and the result is the Success-variant. In
addition to returning the result to the caller, the player loses or gains points,
and relevant events, such as OnScoreChange, are invoked.

A Score-instance represents how the player is performing in the game. The

36

value-field is the number of points. Whether or not the player made a mistake
with regards to droplet-transmission precautions is stored in the contaminat-
edSafetyEquipment-field. Incorrectly selected patients, as well as sampling
attempts where the combination of tool and location was incorrect, are stored
in lists. Keeping track of these mistakes makes it possible to adapt the game-
play in various ways. We discuss this possibility further in Section 6.3.

3.5 VR interface

The VR interface is what makes it possible for the player to play the game
with a VR headset. It consists of systems to handle tracking and controller
input and all the elements that form the virtual scene that the gameplay takes
place in, including the code that interacts with the game logic. In this section,
we will describe these elements and how they work together to form the virtual
experience.

3.5.1 Level design

Patient
selector

HUD

GlovesCoat &
Mask

Hand
sanitizer

PatientPlayer

3. Screen the patient1. Select patient

2. Perform droplet-
transmission precautions

From
lobby

Figure 3.11: Top-down overview of rooms

The level consists of three primary rooms, as illustrated in Figure 3.11. Each
room corresponds to a task in the gameplay flow diagram (Figure 3.2). The
first room is where the player selects the patient that must be screened for
MRSA. The second room is where the player must perform the necessary
droplet-transmission precautions, and the third is where samples are collected.
The three rooms are physically connected by doors to and from the anteroom
as illustrated by the dashed lines. Also, there is a fourth room, the lobby, which
leads to the other rooms. This design was inspired by our visit to the infection
control ward at Haukeland Hospital. It was however heavily simplified and
modified to fit better with the gameplay. During the development process

37

we found that we had to adjust the dimensions of the rooms. While testing
with one of our advisors at Helse Vest IKT he noted that he felt that the
rooms were too big and that it led to excessive amounts of locomotion. We
subsequently readjusted the scale of the rooms so that they are closer to the
actual dimensions seen in a hospital.

We started the level design process by prototyping the level with ProBuilder
[53]. ProBuilder is a package for Unity which adds tools for constructing
geometry directly in the Unity editor. The initial design consisted of scaling
and placing boxes of various dimensions for the floors, ceilings and walls. This
kind of design was great because it allowed for rapid modification while also
being relatively efficient from a rendering perspective due to the low polygon
count. After reaching a suitable design, we recreated the level in the modelling
software Blender, which allowed for greater flexibility and made it easier to
optimize the geometry.

Figure 3.12: Level design: Prototype and final

Figure 3.12 shows the prototype and the final results. In the prototype, the
walls, ceilings and floors consisted of boxes, which is evident from the thickness
of the walls. Also, it did not have a lobby. In the final version of the level,
the structure of each room, i.e. walls, ceilings, and floors, have been combined
into a single mesh. A single mesh per room is more efficient than multiple
boxes because it reduces the number of draw calls. At some point, however,
if the meshes become very complex, it can be more efficient to split it up in
order to perform culling. An additional benefit of a combined mesh is that
light baking quality is improved because there are fewer places where leaks
can occur.

Props

In addition to the structure of the rooms, the level also consists of various
props related to healthcare. For instance, the lobby has a bench, a folding
screen and a drip stand. We added these props in response to feedback from
user testing, and subsequent feedback was positive. By being relatable, the
props can add to the player’s level of immersion. We acquired the props from
the Unity Asset Store, which is described in more detail in Section 3.7.

38

Lighting strategy

Choosing an appropriate lighting strategy is especially important when work-
ing with VR. Our final strategy is a combination of lightmapping, light probes
and real-time spotlights, with only a few of the lights in the scene being real-
time. The strategy yields excellent performance, which is crucial on mobile
hardware, while still providing good looking results. We found our strategy
through trial and error and from Unity’s VR Best Practices tutorial [44]. This
strategy works well because most of the objects in the scene are static. We
found that real-time shadows from the spotlights to positively affect the visuals
when dealing with dynamic objects such as tools.

Doors

Figure 3.13: Level design: Door com-
ponent

Doors separate the three rooms. To sim-
plify animation work, we opted for slid-
ing doors. The functionality of a door
is implemented as a component. Fig-
ure 3.13 shows the component in the
Unity editor. We achieve a sliding ac-
tion with a linear interpolation between
the original position of the object and an
offset over a certain amount of time. An
audio clip plays when the door opens and
closes. Finally, the component also ex-
poses two events, OnOpened and OnClosed, which can be used to call a func-
tion when a door starts opening or has been fully closed.

Static information

It is necessary to provide information to the player at the start and upon
completing of the game. Figure 3.14 shows the introductory text in the lobby.
We found that placing the text on the wall gave adequate readability, while
also avoiding the pitfalls of having visual elements tied directly to the camera,
which according to Unity’s VR Best Practices [44] tutorial can negatively affect
the player’s experience.

3.5.2 Cross-platform support

As mentioned in Section 2.6, several frameworks that provide common VR
functionality exist for the Unity game engine. Early in the development pro-
cess, we chose to use the SteamVR framework [48]. The reason for this was
that documentation and examples were abundant, which meant that the re-
quired effort to get a prototype up and running was fairly low. Also, the
framework was and is very feature-complete. However, later in the develop-
ment process focus shifted to making the game accessible to more platforms.

39

Figure 3.14: Level design: Introductory text on wall in lobby

The shift in focus was due to the goal of deploying the game at several VR-
labs around the country. Which means it must be able to run on all widely
available HMDs. Because the SteamVR framework is limited to computer-
tethered systems (with support for OpenVR), we made the change to a differ-
ent framework. We found Unity’s XR interaction toolkit [50] to be a suitable
replacement. Unity’s XR Interaction Toolkit is a component-based interac-
tion system which abstracts away the platform-specific code. It also supports
mobile HMDs such as the Oculus Quest. Changing from the SteamVR frame-
work to the XR interaction toolkit was fairly straightforward, due their simi-
larities.

3.5.3 Input and interactors

The XR Interaction Toolkit consists of three primary concepts, Interactor -
components, Interactable-components, and an Interaction Manager [50]. An
Interactor -component is typically attached to and controlled by a VR con-
troller. An object with an Interactable-component is something in the world
with which the player can interact using an Interactor. The Interaction
Manager keeps track and manages Interactor - and Interactable-components
and allows them to interact in the world. The toolkit also provides a Con-
troller -component which handles input data and translates it to interaction
states.

The Unity engine provides cross-platform mappings from hardware buttons to
virtual inputs on controllers of various XR systems [54]. When configuring a
Controller -component, the virtual input for selecting and grabbing an Inter-
actable can be defined. Through testing, it became apparent that a significant
source of confusion came from having multiple ways of interacting. Therefore,
we chose a minimalistic approach. In the end, only two physical buttons are
ever necessary to interact with the world, while most controllers have more
than double that available. One of these buttons is the teleport-button, which

40

Figure 3.15: How buttons on the HTC Vive and Oculus Touch controllers have been
mapped with Unity’s XR Interaction Toolkit

is used to move around in the scene. The other is the previously mentioned
select-button, which is used to interact with things in the scene. Figure 3.15
shows how these interactions are mapped to the physical buttons on the HTC
Vive and Oculus Touch controllers.

Locomotion

As shown in Figure 3.17, while pressing the teleport-button, a beam is cast
from the controller into the environment. On release, the player teleports to
the location where the beam hits a surface if it is accessible. Not adequately
restricting where the player can teleport can easily result in breakage of immer-
sion. One example we saw early in testing, was that a player would teleport
very close to a wall and then clip through that wall, either revealing the ad-
jacent room or the empty void outside the scene. The player rarely did so on
purpose, which led to much confusion. In order to restrict the teleport area,
we created a mesh that covers just the parts of the floor throughout the game
to where the player should be able to teleport (see Figure 3.16). When the
beam hits somewhere on the surface of this mesh, the location is considered
accessible.

Indicating to the player what areas are accessible is an integral part of making
the interaction intuitive. There are multiple ways of doing so. Some notable
examples are found in Valve’s games The Lab [55] and Half-Life: Alyx [56].
Additionally, the SteamVR Unity framework comes with built-in support for
this. Unity’s XR Interaction Toolkit, however, only partially supports this
with the ability to assign a mesh that will be placed at the surface hit by the
beam when it is an accessible area. As seen in Figure 3.17, a cylindrical mesh

41

Figure 3.16: Top-down view of the teleport area, which is represented by a mesh (high-
lighted in blue) tailored to the scene

Figure 3.17: Teleport beam while pointing at a valid location and on an invalid location

with a gradient is placed on the location the beam hits. The framework also
visualizes the beam itself, which can change colour depending on where it hits.
In order to also highlight accessible areas, we implemented a custom shader,
as shown in Figure 3.17. Shading the accessible area is an effective means of
communicating to the player where they can move and is a technique employed
in most games with teleportation (one example being The Lab [55]).

The shader (Listing 1) is written in HLSL and is applied to the teleport area
mesh shown in Figure 3.16. The world-space position of the vertices are inter-
polated via the rasterization pipeline. In the fragment shader, the alpha value
is calculated based on the X- and Y-components of the interpolated world
space position, such that the final result is a grid (as seen in Figure 3.17). As
shown in Figure 3.18, the shader takes five parameters that can be used to
adjust how the grid looks. The Pointer Falloff parameter enables or disables
a radial falloff based on the Pointer Position parameter. This parameter is
updated per frame based on where the beam hits the mesh. With the falloff
enabled, the alpha value is inversely proportional to the distance from that
position in the XY-plane. The Pointer Falloff Distance parameter is the dis-
tance where the alpha value reaches zero, i.e. how far from the position the
grid remains visible.

42

1 float2 distanceToNearestGrid(float2 v) {

2 float2 f = frac(v); // Get fractional part

3 return float2((f.x < 0.5) ? f.x : (1.0f - f.x), (f.y < 0.5) ? f.y

: (1.0f - f.y));↪→

4 }

5

6 fixed4 frag(v2f input) : SV_Target

7 {

8 fixed4 col = _Color;

9 float2 dist =

distanceToNearestGrid(abs(input.worldSpacePosition.xz) *

_Scale);

↪→

↪→

10 float2 delta = fwidth(dist); // anti-aliasing

11 float2 factor = 1.0f - smoothstep(_Thickness - delta, _Thickness,

dist);↪→

12

13 float distanceFalloff = 1.0f - clamp(distance(_PointerPosition.xz,

input.worldSpacePosition.xz) / _PointerFalloffDistance, 0.0,

1.0);

↪→

↪→

14

15 col.a *= max(factor.x, factor.y); // Grid

16 col.a *= (_PointerFalloff == 1.0f) ? distanceFalloff : 1.0f;

17

18 return col;

19 }

Listing 1: Teleport Area Grid: Shader code

Figure 3.18: Teleport Area Grid: Unity shader parameters

Interactors

Selecting and grabbing are the primary means of interacting in the game.
Pressing a button or performing actions in the anteroom are examples of se-
lecting. Picking up an Interactable, such as a tool when screening the pa-
tient, is an example of grabbing. These interactions are all performed with

43

an Interactor. More specifically each of the player’s controllers has a XRDi-
rectInteractor -component. This component makes it possible to interact with
interactable objects in the scene directly. A XRDirectInteractor requires that
a collision volume, i.e. Collider, is specified. We chose to use a sphere which
is attached to the player’s virtual controller.

3.5.4 Interactables

The player can interact with certain objects in the scene, called ”interacta-
bles”. To make an object interactable, we need to add an Interactable-
component. The XR Interaction Toolkit provides several types of interactable
components, such as the XRSimpleInteractable and XRGrabInteractable. As
shown in Figure 3.19, an interactable exposes an OnSelectEnter - and OnSe-
lectExit-event. It also exposes other events such as the OnHoverEnter and
OnHoverExit events. We can attach event listeners, i.e. methods, that are
invoked when an Interactor (such as the player’s controller) hovers and se-
lects the Interactable. In this example (Figure 3.19), when the select-button
is pressed the Interactable is animated and upon release the language of the
game is set to Norwegian.

Figure 3.19: Interactable select events

Buttons

Throughout the game, the player must use various types of buttons. All
buttons use the XRSimpleInteractable-component to handle interactions with
the controllers. The first button in Figure 3.20 is meant to resemble a physical
button.

The second type of buttons is the UI buttons. These are placed in the scene on
boards which consist of a black and slightly see-through background with white
text. Upon hovering over a UI button, i.e. intersecting it with the controller,
it lights up just as UI buttons typically do in response to mouse hovering
in regular 2D user interfaces. This effect gives off a responsive quality and
communicates that the button is pressable. Some of the boards appear when

44

Figure 3.20: Various types of buttons in the game

certain game events are triggered. They often have a short and informative
text with a single button to close it. Such boards orient themselves to face
the player, making the text readable from every angle.

Other boards are fixed in place and do not rotate to face the player. These can
be purely informational, such as the one besides the patient, which displays
successfully collected samples. Another example is the one that is used for
selecting a patient. It has three buttons, two to browse the set of patients and
one to select a patient for screening.

Finally, there are the items on the wall in the anteroom. Although these do
not look like buttons, their functionality is similar to the other buttons.

Tools

Tools, unlike buttons, need to be grabbed and held by the player, which is
achieved with the XRGrabInteractable-component. As the players encounter
the tools, they will float suggestively in the air. The player can reach out and
grab them by holding in the select-button on the controller. As a tool is picked
up, the hand controller becomes hidden such that only the tool is in focus,
and upon dropping the tool, the hand controller reappears. Additionally, the
tool is removed when intersected with a target on the patient, as can be seen
in Figure 3.21.

3.5.5 Feedback

When a player is rewarded or loses points, it is indicated by spawning a textual
representation which gradually fades away while floating upwards. A reward
is indicated by a plus sign followed by the number of points in with green
text colour. The punishment has a red colour and uses a minus sign instead.

45

Figure 3.21: Holding a swab in front of the mouth of a patient prompts the patient to open
their mouth. After leading the swab down the throat, you see the result of the screening
attempt as the patient closes the mouth.

Figure 3.22: Side by side comparison of rewarding and punishing points when selecting
patients for screening. In both cases the text is floating upwards and slowly fading out.

The text slowly floats up before fading out after a few seconds. The text is
spawned by a specific object which is placed close to where the player has
acted. For instance, every screening target on the patient has a spawner in its
centre. Thus, when the player uses a tool on the target, there will be instant
feedback where they are already looking. When the target has already been
screened, there is no change in the score, which is indicated with the text
”already screened” and a dark text colour.

Another way to give feedback to the player’s decisions is through audio. The
player will hear a positive-sounding ”pling” sound every time the player is
rewarded with points. Similarly, a negative ”error” sound is played when
they are punished. Using audio like this is common in traditional games,
and generally, users can easily recognise some sounds as ”good” and others as
”bad”. The combination of green text, a plus sign, and a recognisable ”positive
sound” should leave little to the imagination as to whether you made the right
decision or not. This can also strengthen the emotional value of the feedback

46

and can leave a satisfactory impression when hearing positive sounds. In this
way, it can feed into the gamification idea of motivation. Many gamification
platforms also use audio feedback like this, such as Duolingo [13] and Khan
Academy [15].

3.5.6 Patients

In order to be able to collect samples from the selected patient, it must be
represented in the scene. The visual representation of a patient in the game
consists of a model, i.e. the rendered geometry. We use a custom component,
the Patient-component, to manage the patient. This component is respon-
sible for initializing the physical representation of the patient based on its
information as well as performing certain animations. We chose to use one
model for female patients and one for male patients. To give patients a unique
look, both models can have one of several hairstyles. Upon initialization, a
hairstyle is randomly selected. The hairstyle is an effective way to make each
patient unique, even if their bodies are identical. Also, wounds can be at sev-
eral possible locations on the body. A random one is enabled if the patient
has a wound. With the Unity editor, new hairstyles and wounds can easily be
added in the Patient-component in their respective lists.

Physics

Figure 3.23: Colliders attached to the
patient form a compound collider

Depending on the application, physical
interactions can be an especially impor-
tant aspect of VR. By physical interac-
tion, we are in this case, referring to a
virtual interaction that makes the player
feel or at least get the impression that an
actual physical interaction has occurred.
Tools for collecting samples are repre-
sented in the physics engine and respond,
for instance, to gravity and collisions
with other objects in the scene. How-
ever, in early versions of the game, the
patient was not physically represented,
except for the sample-targets. Therefore,
tools would pass through the geometry.
In tests, players noted that the lack of a
response from the tool touching the pa-
tient felt awkward and reduced their feel-
ing of immersion.

To make an object in Unity’s physics system interact with other physical
objects, we add a Collider -component. Various types of colliders exist, such
as spheres, boxes and capsules. A collider can also consist of geometry if a more

47

accurate representation is required, but this kind of collider is computationally
expensive. Instead, we used the primitive colliders, i.e. spheres, capsules and
boxes, which are more efficient. As seen in Figure 3.23, by carefully placing
multiple such primitive colliders, we can create a compound collider for the
patient. How many colliders that are needed depends on the application,
and in our case, we needed a moderately accurate representation because the
player performs interactions up close. To make the colliders animate with the
geometry, we assigned them to the skeletal hierarchy (which was described in
Section 2.4.3). That way, the colliders are transformed properly throughout
animations.

The resulting compound collider worked well, and although it deviated from
the mesh at certain places, it was still accurate enough to give the illusion of
proper physical interaction. We did, however, notice, through testing, that
players would inadvertently touch colliders in the facial area with the swab,
leading to contamination. We adjusted the problematic colliders out of the
way, to the detriment of accuracy and betterment of gameplay.

As a side note, we found it necessary to set the physics update rate to the
refresh rate of the display (as shown in Listing 2). Without doing so, the
tools would visibly stutter while being moved. The physics update rate is
the number of times physics calculations are performed per second by the
engine.

1 if (XRDevice.isPresent)

2 {

3 Time.fixedDeltaTime = 1.0f / XRDevice.refreshRate;

4 }

Listing 2: Setting physics update rate based on device refresh rate

Skeletal animations

In early versions of the game, the patients lacked any form of animation, which
was often noted in feedback from user testing. The participants said they felt
that there was a lack of response to their actions and that the inanimate
patients made for a dull experience. To correct this, we added various forms
of animations.

The first animation we added was an idle laying animation for the patient.
This animation gives the impression of the patient being alive by adding subtle
motions such as breathing. The animation is of the skeletal type (as mentioned
in Section 2.4.3), and was added to the patient through Unity’s animation
system with an Animation Controller. An animation controller is essentially a
state machine which allows for controlling various transitions between multiple
animation clips. An animation controller is represented as an Animator, and
Figure 3.24 shows it in the Unity editor. The laying idle animation loops
seamlessly.

48

Figure 3.24: Unity editor: Editing animator

When the player is browsing the patients as part of their first task, they can
see the patients through a window. Initially, all patients were lying idle on
the hospital bed, which meant that the unique visual characteristics of the
patients was their sex, hairstyle and possibly wounds. To add more to their
uniqueness, we added dance animations. Each patient is assigned a dance
when the game is initialized. When viewing a patient, their dance is played.
All dances loop seamlessly. When the player selects a patient if the choice
is correct, the patient transitions to a positive reaction animation, and if the
choice is incorrect, the patient transitions to a negative reaction animation,
this additional animation is meant to supplement the other feedback that the
player gets. Through further testing with our advisors, we found that these
animations worked well. One of our advisors noted that although the dances
are not very representative of a real scenario, they help make the game more
enjoyable.

Procedural animations

In the idle pose of the patient mesh, the mouth is closed. In early versions of
the game, this meant that the player had to push the swab through the mesh
so that it would touch the trigger sphere. Users noted that the interaction felt
unresponsive and that it made the experience less immersive. A form of pro-
cedural animation using blend shapes (as mentioned in Section 2.4.3) greatly
improved the interaction. The animation consists of opening the patient’s
mouth when a swab is in close proximity.

Listing 3 shows the event listeners that linearly interpolates the weight of the
blend shape for the mouth. As we can see in the onTriggerEnter -listener, the
weight of the blend shape is interpolated to 90 over 350 milliseconds. In the
onTriggerExit-listener the weight is interpolated back to zero in 250 millisec-

49

1 mouthProximityTrigger.onTriggerEnter.AddListener((Collider other) =>

2 {

3 // ...

4 openTween = DOTween.To(() =>

this.body.GetBlendShapeWeight(mouthBlendShapeIndex), (x) =>

this.body.SetBlendShapeWeight(mouthBlendShapeIndex, x), 90.0f,

0.35f);

↪→

↪→

↪→

5 // ...

6 });

7

8 mouthProximityTrigger.onTriggerExit.AddListener((Collider other) =>

9 {

10 // ...

11 closeTween = DOTween.To(() =>

this.body.GetBlendShapeWeight(mouthBlendShapeIndex), (x) =>

this.body.SetBlendShapeWeight(mouthBlendShapeIndex, x), 0.0f,

0.25f);

↪→

↪→

↪→

12 // ...

13 });

Listing 3: Procedural animation: Opening and closing mouth with blend shapes

onds. The interpolation durations were adjusted until they felt adequately
smooth while still being responsive, but this is something that can be im-
proved further. Alternative ways of deciding when and how fast the blend
shapes are adjusted can be explored further. Additionally, more blend shapes
can be utilized to give the patient more expressive power.

Another procedural animation we implemented is blinking with eye rotation.
We use a coroutine to perform the animation, as shown in Listing 4 by the sig-
nature of the Blinking-function. The coroutine starts with a delay by waiting
the specified number of seconds. After the delay, the eyelids are closed with an
interpolation, followed by a change in eye rotation (omitted to save space), fol-
lowed by the eyelids opening again. Next, it calculates the time until the next
blink based on the averageBlinksPerMinute- and randomBlinkFactor -variable,
followed by a recursive call of the coroutine.

50

1 private IEnumerator Blinking(float delay = 0.0f)

2 {

3 yield return new WaitForSeconds(delay);

4

5 var close_tween = DOTween.To(() =>

this.body.GetBlendShapeWeight(blinkBlendShapeIndex), (x) =>

this.body.SetBlendShapeWeight(blinkBlendShapeIndex, x), 90.0f,

0.05f);

↪→

↪→

↪→

6 yield return close_tween.WaitForCompletion();

7

8 // Change eye rotation slightly

9

10 var open_tween = DOTween.To(() =>

this.body.GetBlendShapeWeight(blinkBlendShapeIndex), (x) =>

this.body.SetBlendShapeWeight(blinkBlendShapeIndex, x), 0.0f,

0.1f);

↪→

↪→

↪→

11 yield return open_tween.WaitForCompletion();

12

13 float fixed_delay = (60.0f / averageBlinksPerMinute);

14 float offset = fixed_delay * randomBlinkFactor;

15 float random_delay = Random.Range(fixed_delay - offset,

fixed_delay + offset);↪→

16

17 StartCoroutine(Blinking(random_delay));

18 }

Listing 4: Procedural animation: Blinking with eye rotation

3.6 Balancing gamification and accuracy

The development of a gamified application for VR is, in some sense, a balanc-
ing act between accuracy and entertainment. Attempting to recreate every
interaction method precisely as it is in reality, might make it difficult for a
player to complete the challenges with the restrictions of using VR hand-held
controllers. The gameplay might end up being frustrating, as some of the
interaction methods would be too tedious to do with the inherently limited
precision of the controllers. On the other hand, for every interaction method
that is simplified, we stray further from the actual procedure. Additionally, a
simplified version could end up rewarding the players for executing the pro-
cedure sloppily or even downright incorrectly. The developers are therefore
forced to make difficult decisions that can make the game more entertaining
or accurate, sometimes to the detriment of the other.

One example is putting on protective equipment in the anteroom. When
having close contact with a patient that has been isolated on suspicion of
being MRSA positive, nurses are expected to put on a coat, gloves and a face
mask [57]. The instructions for putting on the coat, for instance, are well
described and goes into details that require finger precision [58]. Mirroring

51

this directly in a VR application is challenging due to the restrictions imposed
by hand-held controllers. The same goes for putting on gloves and masks. In
the end, for the gameplay’s sake, the choice was made to simplify this segment.
The act of physically equipping the coat and mask is instead represented by a
click followed by the coat and mask being removed from the hanger. A similar
simplification is applied to the gloves.

Figure 3.25: Screenshot of trigger
spheres in the patients nostrils

Another example is collecting samples
from the patient’s nose. Perfectly mod-
elling interactions with the patient’s nos-
trils would require accuracy down to a
very low scale. Seeing as the scale of
the nostril is at around 0.5 - 1cm and
with the occasional jittering of the VR
headsets tracking occurring, such an im-
plementation would be impractical and
possibly tedious for the player. Instead,
we opted for a simplified version where
interaction with a nostril is summarised
as a sphere intersection test. Figure 3.25
shows the positioning of the two trigger
spheres that represent the simplified in-
teraction method. In addition to considering the physical interactions, we also
considered whether sampling of the nostrils could be combined into a single
interaction. The guideline states that when collecting samples from the nose,
a single swab needs to be used for both nostrils. However, this could be a
little tedious for the player, as we could imagine players putting the swab into
one nostril and being confused by the lack of a positive response. On the
other hand, if they do receive a visual reward from sampling one nostril, they
might think they are done with that swab. We ultimately ended up with the
less simplified version, with the player having to sample both nostrils. Haptic
feedback is used to indicate that an interaction has occurred, but that the task
is not yet completed. It should be noted that the more simplified version was
used when undergoing the final tests and that the change was a consequence
of the responses. More on this in Chapter 4.

After the player has collected a sample from the patients’ body, the ques-
tion is how to handle that sample. In the case of collecting a sample with a
swab, nurses typically put it in a screw cap tube and label it with pertinent
information such as the patients name and the location from where the sam-
ple was collected, after which the sample is sent to a lab for analysis. This
is another example of where the precision requirement is fairly high, both
with regards to current tracking hardware and to the physical simulation in
the game. Therefore an attempt at perfectly recreating such an interaction
would possibly result in a tedious experience for the player. There are multi-
ple ways of implementing this such as to balance accuracy and gamification,

52

Figure 3.26: Example of collected sample being put in a tube.

and to better account for the restrictions imposed by the hardware. One way
would be to include the interaction, but to simplify it to a ”snap-in-place”
action. Instead of fully simulating the physical interaction between the swab
and the tube, simply touching the tube, at the correct spot, with the swab
could initiate an automated placement of the sample in the tube. That way
the interaction would be restricted to a simple intersection test between the
swab and a segment of the tube, and thus the precision requirement lowered.
Another alternative would be to not include this interaction at all and instead
consider a sample collected once the swab touches the appropriate target on
the patients body. Due to resource constraints and prioritization the latter
was chosen, and the first option was left for further work. After putting the
sample in the tube the nurse needs to, as mentioned, label it with the correct
information. A concern was raised by a nurse while we were visiting Hauke-
land Hospital that incorrect labelling of samples occasionally occurred and was
problematic. Therefore as an addition after having collected all samples, the
player is informed through a prompt about what information the samples have
to be labelled with. This could of course be extended further by requiring the
player to perform the labelling. However, as we were later informed by our
domain expert consultant, routines for labelling samples can vary somewhat
between institutions, and because the game targets a variety of institutions a
specific implementation would not be viable.

There are a number of elements in the game that are only there for enter-
tainment purposes. As you choose the patient to screen, the patient can be
seen dancing on the hospital bed behind a glass window. The patients have
humorous names, often puns. When you are done with the entire screening
procedure, the patient will dance again. This time there will also be disco
music and colourful flashing lights in the room creating a party atmosphere.
Such ”silly” elements serve no purpose in mirroring the accuracy of the CPG,

53

but is a part of the gamification of the application. The players are supposed
to feel like they are doing something more fun than going through a real life
simulation, to keep their attention. There is a fine line, however, as too much
silliness can actually be detrimental to the players’ attention. We must make
sure the silly things do not take all of the focus away from the tasks important
to practice the CPG. Selecting the correct patient for screening is an impor-
tant part of the CPG, and during the ”disco party” there is important text
on the walls, like an ”answer sheet” with whom to screen and how to do it.
Ideally, the entertaining elements should not distract from any of that, but
rather help motivate the players to pay extra attention to the game.

3.7 Assets

Figure 3.27: Low poly hospital assets

To create the game, we used various assets. We needed 3D models such as
patients, hospital beds and various props and more. Certain assets were cre-
ated from scratch, and others were collected from the internet. As a team of
two software developers whose skillsets consist mainly of programming, the
availability of assets on the internet proved to be useful. We obtained a col-
lection of low poly hospital models 3.27 from the Unity Asset Store. Low
poly refers to an art style where the geometry intentionally consists of a low
number of polygons. As a side note, the low number of polygons means that
the models are quicker to render, which fits well with one of the targeted VR
headsets where the performance requirements are stringent (more on this in
section 3.9). We placed the models in the different rooms to make them look
better and also make them more relatable to the player.

When the necessary 3D models could not be found online, we instead modelled
them in Blender [5]. We created models such as the coat, swab, syringe, patient
bed, soap dispenser and urinary catheter. The models were then imported into
the game engine. Materials were created and applied in the game engine for

54

compatibility reasons. In some cases, the required models were so simple that
we instead combined primitives such as cylinders and cubes directly in Unity.
One example of this is the projection screen at the end of the game.

Figure 3.28: Modelling a coat in
Blender 2.8 [5]

The patients were made with a special-
ized application called Character Cre-
ator 3 [59]. With this application, we
made cartoony low poly patients that
fit somewhat with the style of the rest
of the game. Exported models are al-
ready rigged and ready to be animated in
Unity. We acquired the character anima-
tions from Mixamo [60] and applied them
in Unity. Patients have unique dance an-
imations which they perform when the
player browses them and at the end of the
game. A patient also performs a celebra-
tory animation when correctly selected
and a sulking animation when incorrectly
selected. Also, they have an idle pose
when lying down. The idle pose only
consists subtle of breathing, but it gives
a much more lifelike feel to it than if the
patients had no movement at all.

We acquired audio clips from Freesound [61], a website that lets people upload
audio and tag it with any Creative Commons license. For our purpose, we
avoided the audio clips that were not allowed to be used commercially, and
we only used two clips that had to be credited. The artists of the songs were
credited in the ”lobby”, the first room the players see as they start the game.
Two of the audio clips are soundtracks. The first one is some relaxing music
which is playing in the background while the player is selecting the patient
to screen, and the other is a piece of celebratory disco music which is played
upon completing the game.

3.8 Internationalisation

All text in the game is loaded from human-readable files. The files are named
with two-letter language codes, like ”en” for English or ”no” for Norwegian.
By default, the system language on the device the application runs on is
used to determine which file to load. Additionally, the user can select the
language in the game, and the language choice persists. This design is called
internationalisation and makes it easy to add support for other languages, i.e.
to perform localisation. Naturally, the patient journal information must also be
localised. A similar scheme is applied by dynamically loading the information
from the JSON file that ends with the correct language code.

55

At the time of writing, the game has support for two languages, Norwegian
and English. The user can choose their preferred language in a language picker
located in the first room of the game. As seen in Figure 3.29, the language
picker is a collection of buttons, one for each language. Pressing any of these
buttons reloads the scene with the chosen language.

Figure 3.29: The user can choose between English and Norwegian.

If the game needs to be localised to another language, medical experts profi-
cient in that language could help translate the text. When the new files are
added, a simple addition of a new button to the language picker will let the user
pick that language too. Adding another language picker in the Unity editor
will not require changes to the code. These simple buttons work well with few
languages, as is our case. However, if the game needed to support a lot more
languages, a different language picker design could be better suited.

3.9 Performance and optimization

As mentioned in Section 3.5.2 the game needs to support various hardware and
software configurations. For the user experience to remain consistent across
these configurations a certain amount of optimization is necessary. We chose
to optimize for the least capable HMD, namely the standalone Oculus Quest.
This is primarily because it is considered the preferred headset by Helse Vest
IKT for this project, but also because it is orders of magnitude less powerful
than the desktop powered headsets which would make it less practical to go
the other way around.

The Oculus Developer Centre provides recommendations for their HMDs with
regards to performance and optimization, and they present the following target
metrics for the Oculus Quest [62]:

� 72 frames per second

56

� 50 - 100 draw calls per frame (for comparison the recommendation for
the Oculus Rift is 500 - 1000)

� 50,000 - 100,000 triangles or vertices per frame

The display has a refresh rate of 72 hertz, meaning it is able to update the
presented image 72 times per second. Therefore the game should optimally
be able to produce enough frames to stay at that limit. In order to achieve
this one should aim for 50 - 100 draw calls per frame and 50,000 - 100,000
triangles or vertices per frame. The primary way to achieve these targets is
by keeping the number of instantiated assets in the scene low and with a low
number of vertices where possible. A draw call is essentially one command
from the CPU to the GPU saying that it should render something. In order
render one frame the CPU must tell the GPU to render something multiple
times. For example, the CPU must the the GPU to render the floor, a table,
the patient, etc., until all required objects have been rendered. With a näıve
approach the number of draw calls per frame is directly proportional to the
number of meshes in the scene. However, we will now look at two common
techniques we employed to reduce this number significantly.

Frustum culling

The camera in the scene has a viewing frustum, the volume of space that is
visible to the viewer once projected onto the display, as shown in Figure 3.30.
Depending on the direction the camera is pointed certain objects will be visible
and certain objects will not. Additionally, some objects may be partly visible
because they partly overlap with the frustum.

Figure 3.30: Perspective camera viewing frustum, Martin Kraus. CC BY-SA 3.0

Frustum culling is a technique where objects that are not in the frustum
are omitted dynamically [4]. It is often done by building a hierarchical spatial
structure which allows one to quickly decide which objects to draw. Unity and
most other game engines already provides this kind of culling. In Figure 3.31
we can see the camera with its view frustum, and how objects that are not
inside it are not being drawn. We only see a few remnants of the objects in the
form of baked shadows in the environment. Notice that the environment i.e.

57

https://creativecommons.org/licenses/by-sa/3.0

the rooms are still being rendered. This is because the floor, walls and ceiling
have been combined into one mesh in order to further reduce the number
of draw calls. In this case, having combined the room into one mesh, will
not negatively affect the performance because the meshes consist of very few
vertices. If on the other hand the meshes were very complex it would probably
be better to split them in multiple pieces in order to reduce the number of
vertices that would have to be processed in the vertex stage on the GPU.

Figure 3.31: Example of frustum culling in the game: On the left we see the camera
and its frustum and how other objects that do not intersect with it are not drawn

Portal/room occlusion culling

Since the scene is separated into several rooms, and the player is only located
in one room at a time, objects that are in another room where the door has
been closed will not be visible to the player. Therefore we can stop rendering
those objects. This type of culling is a form of occlusion culling because the
objects in the other rooms have be occluded by the door, and it is called portal
occlusion culling. Our implementation is based on the fact that as the player
progresses throughout the game, actions will trigger doors to open and as the
players enter the next room the door closes behind them and that only the
room that the player is in, is visible. In Figure 3.32 we can see the technique
in effect. As the player moves from the lobby to the office we can see that the
office room and the patient room have been enabled and that the lobby room
has been disabled. The same applies for when the player moves from the office
to the anteroom and from the anteroom to the patient room. Notice however
that the office is disabled when the player has entered the patient room, this
is because the window used to view the patient room from the office acts as
a one way window, which makes the game perform better in the most critical
phase of the game.

We implemented this technique by grouping objects in the scene under scene
graph nodes representing each room. The nodes are enabled through the
use of event-listeners attached to the doors. A door can fire two types of

58

Figure 3.32: Example of portal culling in the game, the green circle with P marks the
location of the player.

events OnOpen and OnClose. In the OnOpen-event the next room is enabled
and in the OnClose-event, which fires right after the door is fully closed, the
previous room is disabled. The opening of a door is in turn triggered by
some form of player action. For instance, in the office selecting the correct
patient will trigger the next door to open, while in the anteroom washing
hands and equipping the protective gear acts as the trigger. Triggers in the
form of volumes are placed inside each room so that the players presence can
be detected, thus closing the door behind.

59

Chapter 4

Results and Discussion

In the previous chapter, we looked at how we went from a clinical practice
guideline to a VR game and the various challenges involved with such an en-
deavour. In this chapter, we look at the results of the tests we have performed.
First, we look at the functional aspects of the game, such as how well the game
does at reproducing information from the guideline and its perceived useful-
ness and effect. Afterwards, we look at the measurements of performance and
optimization.

How well the game reproduces the information in the guideline and how a
practitioner should apply such information, is an indicator of how well our
methodology is for creating a VR game from the guideline. We make an as-
sessment based on data recorded from user tests conducted throughout the
development process, as well as data from a final round of testing with do-
main experts. Furthermore, we conducted another test with our external con-
sultants at Helse Vest IKT after having modified the game based on feedback
from the final tests. We will now look at the results from these tests.

4.1 Iterative testing

From the beginning of the development, we have had regular meetings with our
external advisors at Helse Vest IKT. Two of those consultants have advised
us on the technical aspects of the project, with one of them also having prior
experience within healthcare. However, our principal advisor has advised us
purely on the healthcare and gamification aspect of the game. Throughout
these meetings, we continuously received feedback, either based on tests or
from video recordings of gameplay. Naturally, the game saw many radical
changes in the initial phase as new ideas were brought forth. The development
of new features was often planned in the meetings, and features were tweaked
according to feedback.

During the first meetings, we identified the selection of the patients and the

60

screening itself as the main components of the game. Initially, we imagined
that the game would take place in a single room. All patients lay on hospital
beds, and the player could go around and inspect them. The patient journals
would rest on a table next to the patient, or hang from the patient’s bed.
The journals could be picked up with the controller and be read to get the
necessary information about each patient. In Figure 4.1, the player is holding
a journal.

Figure 4.1: Holding a patient journal. In-game screenshot from an early iteration of the
game.

We imagined that every patient would have a button close to them that the
player could press to select that patient for screening. We experimented with
a button at the bottom of the patient journal. However, testing revealed
that this was awkward to use, and shortly after we instead tested with a
central patient selector. An implementation of the latter option can be seen
in Figure 4.2. Our advisors tested the implementation. Feedback showed that
the concept worked well, and a similar implementation is in the final version
of the game.

When all of the text on the patient journals was available on the patient
selector, we realised that the player had no real incentive to walk around and
inspect the patients. Also, visible cues are, in this game, not at all necessary
for the decision to screen for MRSA; the player could instead stand by the
patient selector and read the journal information there. This eventually led
to the removal of the patient journals next to the patients.

At a visit to the infection control ward at Haukeland hospital, we got the idea
of adding an anteroom to the game. In this case, the patient selector would
be in a different room than the patients. We were initially a little resistant to

61

Figure 4.2: The prototype with a patient selector. The player can browse the patients
and select one, as well as read the same information that is on the journals spread among
the patients. This is an in-game screenshot from an early iteration of the game.

do this idea, as we felt we lost a bit of the VR utilisation if the players did not
have to move around and check each patient. One idea was to have patients
in individual rooms, each with an anteroom. However, feedback showed that
this would lead to too much movement, which was unpractical due to the VR
constraints. Besides, it was also unnecessary because the textual descriptions
provided all the required information to make a decision. However, allowing
the player to see the patient would make possible the use of visual features
such as sex/gender, distinct hairstyles and wounds, which could add positively
to the experience. In the end, we decided to show the patient through a big
window in front of the patient selector.

We established early that the game should be available for all of the most
popular HMDs. Some discussion was had if a smartphone version of the game
could also be made. Due to the limiting nature of the smartphone platform,
the screening of the patient would be very different gameplaywise from the
VR game. Considering both this downgrade in gameplay and the time limit
of the project, this had a low priority, and the idea was in the end abandoned.
It is, however, an appealing thought and is given further consideration in
Section 6.2.

4.2 Planned tests

The game in its final form was initially meant to be tested by two groups of
participants, both of which we considered to be possible users upon release of
the game.

The first group was ten nurses from the infection control ward at Haukeland
Hospital; these participants would be proficient in the domain (i.e. infection

62

control). We had scheduled testing for Friday 13/03/20 at 12:00 - 16:00 and
Monday 16/03/20 at 12:00 - 16:00, with five participants each day at a desig-
nated room at Haukeland Hospital. At that time, the number of COVID-19
cases had started increasing, and for safety reasons, we had to cancel the
tests.

The second group was nursing students at Western Norway University of Ap-
plied Sciences. We advertised the tests for a class of students at Monday
24/02/20 around 11:30 - 11:45 and asked them to apply on a digital form
should they be interested. Seven of the students showed interest and applied.
We would likely have performed the tests at 18/03/2020, but these tests also
had to be cancelled for safety reasons and due to Kronstad Campus shutting
down.

The following is a description of how the tests were to be performed:

1. Participant is given a brief description of the project and the test

2. Pre-testing questions:

(a) What is your background?

� Current occupation/profession (only if relevant)

� Previous occupations/professions (only if relevant)

� Years of experience within healthcare

(b) Do you have any experience with VR, if so how much?

3. Testing (the participant is observed playing the game, anything of inter-
est is noted)

4. Post-testing questions:

� The participant fills out a System-Usability-Scale [63] questionnaire
in order to gauge general usability. The questionnaire consists of
several statements, and the participant is prompted to assign a
numerical value representing their agreement with the statement
(ranging from ”strongly agree” to ”strongly disagree”). The word
”system” was replaced by ”game” and it was translated to Norwe-
gian (see Appendix B).

� Did you enjoy playing the game?

– What made you enjoy/not enjoy playing the game?

� To what degree would you say that the game portrays relevant
information from the guideline?

� Do you think the game would be suitable as a supplement for edu-
cation/training?

63

– If no, what makes the game unsuitable and what changes would
have to be made for it to be suitable?

� Finally, anything you would like to add?

The setup of the tests was similar for both groups but would have had to
be evaluated somewhat differently. For instance, the nursing students would
not have had the same amount of experience with infection control, and their
responses regarding the portrayal of information in the guideline would have
to be weighed less so than that of the nurses at Haukeland Hospital.

4.3 Final tests

As mentioned, we had to cancel the tests due to the outbreak of COVID-19.
At a later time, after the government had loosened some of the restrictions, we
gained access to Kronstad Campus, which meant that we could again perform
tests, albeit with some restrictions. We ended up with 2 participants and
therefore opted for a semi-structured interview form which partly replaced
the post-testing questions as described above. This kind of interview allowed
for a more in-depth review of the game.

Both participants are active in the healthcare profession, with nearly two
decades of experience. They also have relevant experience within teaching and
simulation, although minimal experience with VR. They described their expe-
riences with VR as brief and rare, and neither had ever used hand controllers
before. After prompting them for their career background, we explained how
the controllers work and assisted them in equipping the VR headset.

Initially, there was some confusion with regards to interacting with the VR
system for the first time, as is to be expected with someone with little experi-
ence with VR and hand controller peripherals. After having pressed the start
game button, teleported into the next room and started interacting with the
UI board there, the participants seemed to loosen up. They could play through
the game independently with much more success, although not entirely with-
out error. With regards to gameplay, one of the participants misunderstood
the patient selector as a choice of which patient they wanted to screen, rather
than the task of choosing the correct patient based on the provided informa-
tion. It is hard to tell whether this was a one-off mistake by the participant
or that the game is not making it apparent enough, and further testing is
necessary to pinpoint this.

Both participants were visibly somewhat confused as to what they needed to do
after having chosen the correct patient. Figure 4.3 shows the instructions given
to the player. The issue we observed was that the arrow, which is animated
along the X-axis to indicate the direction the player needs to shift attention
to, was mistaken for a button. This mistake may stem from its similarity to
buttons in common everyday applications, where its use is associated with a

64

Figure 4.3: Instructions after having chosen the correct patient

primary action like ”ok”, ”close”, ”continue” and ”next”. When the player
attempts to press it, attention seems to be drawn to the lack of response rather
than their next objective. Of course, more testing is required to be certain
that it is an issue, but one possible solution would be to close the interface if
the player attempts to press the button. This could force the players attention
to the surroundings, possibly yielding the desired result. If this does not work,
one should consider adding additional signals such as an attention-grabbing
light, additional directional sound and visual cues.

Both participants said they would need technical guidance if they were to use
the game. Again, this was to be expected given their lack of experience with
VR beforehand. A reservation was given that their age demographic could
have something to do with it and that the younger demographic whom would
likely have more prior experience with VR systems and hand controllers, could
have an easier time using the game without guidance.

As to the question of whether the game would be suitable as a supplement for
education/training, both participants expressed an interest in more elaborate
scenarios. As mentioned in Chapter 1, this is outside the scope for the thesis.
However, it goes without saying that more elaborate scenarios, as described by
the participant, would be of interest in the further development of the game.
The participants also mentioned some specific modifications or additions that
would make the game even more suitable as an educational/training tool.
First of all, as mentioned in Section 3.6, before the final tests, we had decided
to simplify sampling of the patient’s nose such that it only required that the
swab touched one of the nostrils. They quickly reacted to this when playing
the game, and noted how it was odd that they only had to touch one nostril
to collect the sample. In other words, they felt it was an oversimplification.
As mentioned in Section 3.6 this was later changed to the player having to
sample both nostrils with the same swab.

65

Another point mentioned by one participant was that in their playthrough,
the patient had neither a wound nor a urinary catheter. The reason for this
is that patients are picked randomly, and not all patients have a wound or
urinary catheter. When informed about this functionality, the participant
questioned whether or not it would be beneficial always to include a wound
and urinary catheter. As mentioned in Chapter 3, patients are loaded and
selected randomly from a JSON-file. Therefore modifying this file such that
all patients have a wound and urinary catheter is trivial.

At the time of testing the anteroom consisted of two interactions, hand sani-
tizing and equipping protective gear. In other words, equipping the coat, mask
and gloves was a single action. This design choice was made, as mentioned in
Chapter 3, as part of prioritization and in the interest of reducing gameplay
complexity. Additionally, a physically accurate cloth simulation for the gar-
ments would be complex to implement and potentially require considerable
computational power. Therefore an alternative simplified form of interaction
had to be implemented. Also, the guideline applies to a variety of scenarios
where there may not even be an anteroom, meaning that it was considered
less relevant than the other parts of the game. Feedback from the participants
did, however, suggest that this part of the game could be expanded and that a
less simplified interaction could be beneficial. Therefore somewhat less simpli-
fied version was later implemented, where equipping the gloves is a separate
interaction from equipping the coat and mask. This change led to positive
feedback from the consultants at Helse Vest IKT, who felt that the interaction
was more natural than before.

Another feedback regarding the anteroom and protective equipment is the
procedure of unequipping the protective gear after having collected samples.
Adding this as an additional task is something that can be evaluated in future
work. The general nature of such routines, i.e. that they apply not only to
MRSA but all airborne pathogens, prompts the question of whether one should
consider constructing a game explicitly for exercising these kinds of routines
(those mentioned in [57]).

Finally, with regards to the question of having fun, both participants gave the
impression that it was fun and that it most certainly was better than just
reading the guideline. Both participants mentioned that a more challenging
scenario could have been more enjoyable, which makes sense considering their
level of expertise.

4.4 Numerical measurements of performance

In the previous chapter, we mentioned a technique called portal occlusion
culling and how we utilized it to adapt to the limitations of the Oculus Quest.
To measure the performance difference between having portal occlusion culling
enabled and disabled, we deployed two versions of the game. We then used

66

a tool called OVR Metrics [64] to record the average number of frames per
second and the GPU utilization percentage. Figure 4.4 and Figure 4.5 show
these metrics in addition to the display refresh rate of the device as a dashed
line, that dashed line is where we would like the average frame rate to be at
all times.

As we can see in Figure 4.4 GPU utilization is consistently very high, except
for when the game is loading (which completes around the 10-second mark in
the graph). High GPU utilization indicates that the amount of work the GPU
has to do is too high, which would explain why the average number of frames
per second is unstable and often too low. An unstable framerate negatively
impacts the user experience and increases the difference between what the user
does and subsequently perceives because of the increased latency.

0 1 2 3 4 5 6 7

·104

0

20

40

60

80

100

Timestamp [ms]

Refresh Rate (Hz)

Average FPS (Hz)

GPU Utilization (%)

Figure 4.4: Oculus Quest without culling

In Figure 4.5 we can see that the GPU utilization generally is lower with
culling enabled. There are still some peaks reaching just below 100%, which
suggests that it could be improved further. However, as we can see from the
average frame rate, the performance has been dramatically improved. Rarely
do we see the frame rate drop below 60 and it seems to be quite stable.

It is important to note that the average frame rate is not the best measurement
for the performance. Take, for example, the case where the time spent on one
frame alternates between 20ms and 7.77ms (recurring). The average frame

67

0 1 2 3 4 5 6 7

·104

0

20

40

60

80

100

Timestamp [ms]

Refresh Rate (Hz)

Average FPS (Hz)

GPU Utilization (%)

Figure 4.5: Oculus Quest with culling

rate would, in this case, be 72 because:

20ms + 7.77ms

2
≡ 27.77ms× 36

2 × 36
≈ 1000ms

72

, but because the first frame takes 20ms the resulting image arrives too late for
the display to present it which effectively halves the perceived framerate.

Another factor is that only a single playthrough was measured for each version.
Capturing multiple playthroughs with a human would give more data, but
the variability in time spent makes it hard to align the data. Additionally,
differences in where the player looks will introduce a new unknown variable.
Instead, the tests could be improved further by programming an automated
playthrough and averaging multiple of those. These tests would also give a
better indication of what parts of the game require further optimization.

After having implemented the optimization as mentioned above, one of our
external advisors from Helse Vest IKT noted that there had been a noticeable
improvement and that it had positively affected the entire experience. This
makes sense because a substantial portion of the experience is dependent upon
the visual stimuli, which shows the importance of ensuring a sufficient and
stable framerate in VR applications.

68

Chapter 5

Conclusion

In our work, we have developed a VR game based on Helse Bergen’s MRSA
CPG. Given the results presented in the previous chapter, we attempt to an-
swer to what degree we have reached our initial goals, which includes answering
the research questions from Section 1.3.

5.1 What are the challenges with developing a vir-
tual reality game based on the clinical practice
guideline?

While developing and testing the game, we identified and dealt with several
challenges. Some of the challenges were identified as part of the development
process (Chapter 3) and others as part of our tests (as presented in Chapter 4).
We will now present those challenges and give our concluding remarks.

From guideline to game

There are local differences in the clinical practice of different healthcare insti-
tutions, even within the same country. This is a huge challenge when designing
any step-by-step guide on how to follow a CPG, and even more so in a VR set-
ting since it is so detailed. Because the game targets healthcare professionals
all over the country, it has to conform to the practices of all of the healthcare
institutions in which they are employed.

One concrete example is how to handle samples after collecting them in the
screening process. When we considered how to implement this into the game,
we were informed by our domain expert advisor that it could vary a lot between
institutions. In fact, it varied so much that we decided not to include it in the
game in its entirety. Instead, we chose to use a text popup which describes
how a sample should be marked because this is the only aspect of it which
applies to every institution nationally. If there are too many such examples

69

in a CPG, where parts of it must be reduced to text popups or removed from
the game, the game can become less interesting and helpful.

Balancing gamification and accuracy

Creating good gameplay is an especially challenging part of transforming the
guideline to a game. The very general nature of the guideline, i.e. that it
applies to a large variety of situations, means that the trade-offs between
accuracy, generality and gamification can become especially apparent. For
instance the guideline does not mention a concrete infectious droplets control
regime, but instead assumes that the reader already has general prior knowl-
edge about how their situation is handled. This also applies for example to
how collected samples should be labelled, and is reflected in feedback from the
final tests where the participants show interest in more elaborate scenarios in
general, and more detailed and elaborate interactions. However implementing
more detailed and elaborate interactions poses a challenge as mentioned, both
because of the possible differences in routines between healthcare institutions
and because of possible implications for gamification.

Results from the final tests with two domain experts showed that there was
an interest for more elaborate scenarios and more detailed interactions. With
regards to more elaborate scenarios this is considered out of scope for this
thesis, but is definitely something to consider for future work. With regards
to more detailed interactions this shows the challenge of balancing accuracy
and gamification. Some of the simplifications that had been made for the
gameplays sake and out of the necessity of prioritizing features (as mentioned
in section 3.6) were noticeable by experienced simulators. Some of these were
rectified after the fact, but others require more testing to be able to make an
informed design decision. In this case the originally planned tests would likely
have provided a better foundation for making such decisions.

Feedback with regards to the anteroom with droplet-transmission precautions
was also mentioned in Chapter 4. As mentioned the anteroom was initially not
part of the design of the game and was later considered less important than
the other parts. Therefore, the interactions in this section of the game were
simplified to a large extent. In the feedback, we saw that these simplifications
might have been too drastic, and although this has partly been rectified later,
tests still show some difficulties with this part.

Performance and optimization

The measurements of performance with and without optimizations showed
that there was a definite improvement. The combined effort of optimizing
the assets that were used in the game, as well as employing frustum and por-
tal occlusion culling, lead to a noticeable improvement as noted by one of
our technical advisors at Helse Vest IKT. The advisor had previously tested
a version without all these optimizations. When testing the game with the

70

optimizations, he noticed a definite difference and said that there was a signifi-
cant improvement in the experience. This reflects the importance of achieving
adequate performance when creating VR games.

Cross-platform support

In the future, targeting several platforms will become more accessible because
of standardisation efforts like OpenXR, as mention in Section 2.5.5. However,
in this thesis, due to cross-platform support made available by the game en-
gine, as well as a framework for VR interactions, we found that creating a
fully cross-platform game was still possible. Still, certain aspects had to be
taken into account, such as differences in hand relative tracking data. For
example, there was a difference in rotation of about 45 degrees between the
HTC Vive and Oculus Touch controllers, which requires calibration to make
it consistent.

Another platform inconsistency is the physical to virtual input mapping. This
inconsistency is apparent with the teleport-button, which is a vital part of
the gameplay. On the HTC Vive controllers, the button is large and centred.
While on the Oculus Quest controller it is much smaller and right next to
another button. Consequently, there is a difference in the level of intuitiveness;
more specifically, we saw that users found the teleport-button on the HTC Vive
controller more intuitive.

Another issue is how it feels to pick up the tools with the different controllers.
Most VR-controllers have specific grip buttons, often placed on the side of
the controller, that are supposed to activate when the hand is squeezing, thus
simulating gripping something in real life. We also found that these buttons
have varying levels of intuitiveness depending on the controller. On the Oculus
Touch controller, it is a large button on the side which you will typically feel
with your middle fingers when you are holding the controller. On the HTC
Vive controllers, however, they are thin enough to be overlooked by inexperi-
enced VR users. Also, the controllers allow for more flexibility with regards
to hand placement. Hence, the hand might not be in the right position to
press the buttons properly. This influenced the decision of using the trigger
button for grabbing, which is similar on most controllers. All these platform
related inconsistencies show that testing with different HMDs throughout de-
velopment is crucial, even when using a cross-platform framework.

We also found that cross-platform support had implications for the perfor-
mance of the game. Targeting the mobile-powered Oculus Quest HMD re-
quired the game to be significantly less computationally heavy compared to a
game that only targets computer-tethered systems. In other words, creating
a cross-platform game can mean that more effort must be put into optimisa-
tion.

71

5.2 How does the use of virtual reality, and gamifi-
cation affect practitioner motivation?

Giving a conclusive answer to this question is hard in and of itself, and was
made even harder because of the reduced number of final tests. However, tests
performed throughout the development process and as part of the final tests
with our advisors at Helse Vest IKT, showed that participants were excited
and having fun when playing the game. The level of excitement we saw can
indicate that the game has a positive effect on the practitioner’s motivation.
We could tell that players reacted emotionally to being rewarded or punished
with points, which suggests that they were concentrating on getting the results
they wanted.

In the final tests (described in Section 4.3), we saw that the testers found
the game challenging to use. There is a steep learning curve with all VR
applications which could leave the first time VR users demotivated, especially
without guidance. On the other hand, in tests with our advisor Eva C. Backer
at Helse Vest IKT, we consistently observed a high level of excitement, even
though she did not have any prior experience with VR. This suggests that
there is a variation in how people respond to the technology, but it is hard
to tell which factors are in play. This could, however, suggest that for some
players, the technology in itself can provide a baseline level of excitement
that could be beneficial for training and learning. Also, this baseline level of
excitement can be useful for getting attention to the game and the problem of
MRSA. However, it may diminish over time as players get more experienced
with the technology.

The planned tests (described in Section 4.2) would have been useful in answer-
ing this research question. With the testing of ten healthcare professionals as
well as some nursing students, the chances are that at least some of them
would have prior experience with VR. This could give especially useful feed-
back as first time users can be overwhelmed by the experience and controls
alone. We could compare the answers of experienced VR users and see if the
motivation is as strong without the baseline excitement that comes with the
experience of trying out VR for the first time. Also, for those with prior ex-
perience with VR, the controls would likely be easier to get into, resulting in
less frustration.

5.3 Creating a publishable game

The initial goal of this thesis was to develop a fully functional and publishable
game for Helse Vest IKT. Throughout the development process, the game was
tested by our advisors at Helse Vest IKT regularly. These tests proved to
be tremendously helpful with regards to guiding us towards a finished and
publishable game. Through the tests, we identified and implemented several
significant changes, and subsequent testing showed that the changes had pos-

72

itively affected the result. The final tests with the participants who had not
previously played the game showed that there was a difference in their focus.
In retrospect, having a larger pool of testers with more varied backgrounds,
within relevant areas of healthcare, would likely have served as an even better
guide for the development.

We saw, however, during the final tests with the domain experts, as discussed
in Section 4.3, that the test subjects who had no experience with the game
itself could successfully utilise their professional knowledge to score points in
the game. If we disregard mistakes caused by lack of experience with VR,
they selected the right patient to be screened and chose the correct tools to
collect samples from the patient in the right places. This shows that the game
demanded established knowledge about MRSA screening, and shows that the
gameplay reflects the guideline.

Although we consider our goal of creating a publishable game as reached, that
does not mean it is perfect. Many exciting ideas were brought forth throughout
the development process. Some were unfortunately not possible to add given
the scope of the thesis and have instead been described in Chapter 6.

73

Chapter 6

Further Work

6.1 Generalising for other CPGs

One obvious improvement would be if the game was expanded to cover more
clinical practice guidelines than the one for MRSA. One could be inspired by
the model-driven approach of Nyameino et al. [27]. Ideally, core aspects of
the game could be transformed into a framework where a knowledge engineer
with medical knowledge easily can construct a medical procedure with a set
of parameters. This could be done in a quiz-like game as in Nyameino et al.’s
example, but seems more difficult in a VR application with hands-on inter-
action. Many medical procedures have vastly different types of interactions.
The screening for MRSA is done by picking up tools and using them at various
places on the patient’s body. Screening procedures that can be described the
same way can be generalised with swapping out the items and adding targets
to other places on the body. If the procedure has a different way of interac-
tion, like the use of a machine or having to move the patient, it would require
additional development which is expensive.

Some parts of the game can more easily be generalised than others. The first
part of the game where the player is presented with four patients and have
to choose one of them to screen can easily be generalised to other illnesses.
As it does not have any specific interactions, changing the theme from MRSA
to other illnesses does not take much work. Because of how the patients are
loaded in the game, all it takes is swapping a JSON file. One could even create
a web interface for knowledge engineers to easily add patients as part of their
guidelines, like in Nyameino et al.’s proposed method of their system.

6.2 Expanding to other platforms

As it is now, the game is only available for HMDs that support VR. While these
headsets can deliver compelling experiences, they have yet to be accessible to
most people. Additionally, they can often be impractical to use, such as when

74

there is limited space available, or you are unsure of your surroundings (like
if there are other people nearby). Compare this to how common it is to own
computers and the ease-of-use of smartphones, which can be used practically
everywhere. It would be cheaper for most institutions to provide games to
their employees or students on more traditional platforms, rather than on
VR. The advantages of targeting other platforms are clear. Gamification apps
are typically made for web and mobile, so they would be natural to consider
for this game too. The game logic was purposefully written to be platform-
independent so that the game can be ported to other platforms.

The biggest question is how such a porting process would impact the game-
play. Different parts of the game would be affected differently from reducing it
to a more traditional gamification platform. Patient selection would probably
be the least affected, as you could present information about four patients
and let the users choose one of them in a similar manner on traditional plat-
forms. Additionally, different buttons could, for example, represent putting
on safety equipment in the anteroom. The player would have to press them in
the right order. Alternatively, the player could be given the task of organizing
them in the correct order. The actual screening part is the trickiest because
it utilizes the spatial aspect of VR, which allows for simulating physical inter-
actions.

If the game were to be expanded to another platform, it would be interesting
to see how people react to the different versions. One could imagine testing
both versions with different healthcare practitioners and students and seeing
what advantages one can offer over the other.

6.3 Adaptive gameplay

As the player plays through the game, indications of how the player is per-
forming are stored in a Score-object (see Section 3.4). The data in the score
include the number of points and records of mistakes. All incorrectly selected
patients are stored, and all screening mistakes are collected as pairs of tool
and target. Currently, these lists are not used in any way by the game. Some
of the values in the Score-object are already shown at the end of the game,
such as points and whether you contaminated the safety equipment or not.
However, meaningfully presenting the mistakes made when screening and se-
lecting a patient is challenging. Instead, these mistakes can be used to create
a profile of the player.

With a player profile with data of past mistakes, the game could pick up trends
for which types of mistakes the player makes. Then the game could present
tasks that the player seems to struggle with the most. In this way, the game-
play can be tailored to the exact learning needs of the player. However, this
has some practical problems with our game. Firstly, for the player profile to be
built, the same person must play the game several times. If the game is going

75

to be used in a VR lab, where several co-workers will share the same setup,
the player profile will be cluttered by different players’ mistakes. Secondly,
the game takes longer to play through using a VR interface, so the number
of playthroughs by one player will probably be lower, making a smaller data
set than if it was on a non-VR platform. This makes this idea work better in
combination with the aforementioned idea to expand it to different types of
platforms (see Section 6.2).

76

Appendix A

MRSA Infection Control
Guideline

77

MRSA - smitteverntiltak og testing

Kategori: Smittevern Gyldig fra: 30.10.2018

Organisatorisk plassering: HVRHF - Helse Bergen HF Versjon: 12.00

Retningslinje

Dok. eier: Dorthea Hagen Oma

Dok. ansvarlig: Dorthea Hagen Oma

Forfatter: Dorthea Hagen Oma

Ref. nr.: 02.1.2.9.10-04 Uoffisiell utskrift er kun gyldig på utskriftsdato Side 1 av 3

Bedriftsnavn: Helse Bergen

MRSA-informasjon til pasienter på flere ulike språk (Folkehelseinstituttet)

En pasient med MRSA (påvist bærerskap eller tilfeldig funn av MRSA i en klinisk

prøve) skal isoleres etter retningslinjene for dråpesmitteregime i den avdelingen
pasienten hører hjemme.

Gule stafylokokker (Staphylokokkus aureus) er en bakterie som er vanlig å finne
hos mennesker. Hos friske personer gir bakterien sjelden sykdom.

 Meticillinresistente gule stafylokokker (MRSA) er gule stafylokokker som er

motstandsdyktige mot enkelte typer antibiotika.

 Forekomsten av MRSA er lav i Norge, men betydelig høyere i resten av
Europa og i andre verdensdeler.

 Økt reisevirksomhet øker smittepresset mot Norge og norske
helseinstitusjoner.

 Nasjonal MRSA-veileder har som mål å forebygge spredning av MRSA i

norske helseinstitusjoner.
 MRSA-testing av pasienter og helsepersonell er hjemlet i Smittevernloven

§33.

MRSA-undersøkelse av pasient ved innleggelse
Ved innleggelse i sykehus tas MRSA-prøve av følgende pasienter:

Kilde: Nasjonal MRSA – veileder, Nasjonalt Folkehelseinstitutt og Helsedirektoratet (juni 2009)

MRSA - smitteverntiltak og testing

Versjon:
12.00

Ref. nr.: 02.1.2.9.10-04 Side 2 av 3

Hva defineres som omfattende undersøkelse eller behandling

Med omfattende undersøkelse eller behandling menes større prosedyrer der
fremmedlegemer føres gjennom hud eller slimhinner (ikke enkel
blodprøvetaking). Eksempler er mindre kirurgiske inngrep, dialyse, innlegging av

venekateter, urinkateter, dren/tube, stell av større sår (eks suturering)samt
tannbehandling av typen implantat, kroner og broer.

Hurtigtest for innlagte pasienter
Mikrobiologisk avdeling tilbyr MRSA-screening med PCR-metodikk for innlagte

pasienter(MRSA hurtigtest). Dette er et tilbud for å korte ned tiden pasienten ellers
måtte ligget isolert i påvente av dyrkningssvar.

 MRSA-PCR rekvireres i DIPS
 Prøve tas på samme måte som til MRSA-dyrking (penselprøve, eSwab).

 Analyseresultatet vil normalt være klart innen to timer etter at prøven er
mottatt på laboratoriet (ring «MRSA-telefonen» 74644).
Se LAB-info på Innsiden for detaljer.

MRSA-prøver tas fra følgende lokalisasjoner:

1. Begge nesebor (samme pensel)

2. Svelg inklusiv tonsiller.

3. Perineum

4. Sår, eksem, puss, arr etter infeksjon eller aktive hudlidelser

5. Rundt instikksteder for fremmedlegemer (katetre, dren, trakeostoma etc.)

6. Kateterurin

For detaljert veiledning, se MRSA- praktisk fremgangsmåte for prøvetaking

Hva skal skje videre med pasienten?
I påvente av prøvesvar isoleres pasienten på enerom etter retningslinjene for
dråpesmitteregime på den sengeposten pasienten tilhører.

Negativt prøvesvar:
 Isolasjonstiltaket opphører når det foreligger negativt svar på MRSA-

prøvene fra mikrobiologisk avdeling.
Positivt prøvesvar:

 Dråpesmitteregimet opprettholdes

 Retten til nødvendig undersøkelse og behandling gjelder også for isolerte
pasienter, og MRSA-bærerskap må ikke forsinke nødvendig undersøkelse eller

behandling

MRSA-positive pasienter i psykiatrisk avdeling bør ha enerom, men behøver ikke

isoleres. Prinsippene for håndtering av MRSA i psykiatrien er de samme som for
håndtering av MRSA i sykehjem (se nasjonal MRSA-veileder punkt 4.13).

Smittevernpersonell ved Seksjon for pasientsikkerhet kan kontaktes for veiledning.

MRSA-undersøkelse av pasient i poliklinikken
Dersom pasienten skal til poliklinisk konsultasjon ber sykehusene i
innkallingsbrevet henvisende lege om hjelp til testing slik at MRSA-svaret

foreligger før oppmøte til time. Det er likevel ikke alltid dette er gjort på forhånd.

MRSA - smitteverntiltak og testing

Versjon:
12.00

Ref. nr.: 02.1.2.9.10-04 Side 3 av 3

Pasienten skal uansett tas imot i poliklinikken som planlagt og må ikke avvises

med begrunnelse i manglende forhåndstesting.
Retningslinjene for isolering av MRSA-bærere i sykehus er i all hovedsak rettet
mot inneliggende pasienter. Smitteoverføring skjer først og fremst ved tett

kontakt over tid, og oppegående pasienter som kommer til kortvarig poliklinisk
undersøkelse og vurdering utgjør en svært liten smitterisiko.

 Pasienten har rett til helsehjelp og et eventuelt MRSA-bærerskap

(mistanke om eller påvist) skal ikke forsinke nødvendig undersøkelse eller

behandling.
 En pasient med mistenkt eller påvist MRSA kan sitte på venterommet i

poliklinikken sammen med de andre pasientene.
 Helsepersonell trenger ikke å bruke eget beskyttelsesutstyr dersom de

bare skal samtale med pasienten.
 Helsepersonell bruker hansker, smittefrakk og munnbind

(dråpesmitteregime) ved somatisk undersøkelse av pasienten (tett fysisk

kontakt mellom helsepersonell og pasient).
 Etter konsultasjonen desinfiseres kontaktpunkt i undersøkelsesrommet, se

Desinfeksjon av flater og utstyr

Eksterne referanser
Nasjonal MRSA-veileder, FHI
Lov om vern mot smittsomme sykdommer (smittevernloven)

Analyseoversikten.no

Appendix B

System Usability Scale

81

Brukervennlighet

Nå vil du få 10 påstander om brukervennlighet og rangere om du er enig eller uenig med påstanden fra 1-5.
Du trenger ikke bruke lang tid på å tenke deg om, men heller trykk hva du føler med én gang. Er du usikker,
svarer du i midten.

Sterkt uenig

1 2 3 4 5

Sterkt enig

Sterkt uenig

1 2 3 4 5

Sterkt enig

Sterkt uenig

1 2 3 4 5

Sterkt enig

Evaluering av MRSA spill
* Required

Jeg synes spillet var unødvendig komplisert *

Jeg kunne tenke meg å bruke dette spillet ofte *

Jeg synes spillet var lett å bruke *

Sterkt uenig

1 2 3 4 5

Sterkt enig

Sterkt uenig

1 2 3 4 5

Sterkt enig

Sterkt uenig

1 2 3 4 5

Sterkt enig

Sterkt uenig

1 2 3 4 5

Sterkt enig

Sterkt uenig

1 2 3 4 5

Sterkt enig

Jeg tror jeg vil måtte trenge hjelp fra en person med teknisk kunnskap for å
kunne bruke dette spillet *

Jeg syntes at de forskjellige delene av spillet hang godt sammen *

Jeg syntes det var for mye inkonsistens i spillet (Det virket “ulogisk”) *

Jeg vil anta at folk flest kan lære seg dette spillet veldig raskt *

Jeg synes spillet var veldig vanskelig å bruke *

Sterkt uenig

1 2 3 4 5

Sterkt enig

Sterkt uenig

1 2 3 4 5

Sterkt enig

Never submit passwords through Google Forms.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

Jeg følte meg sikker da jeg brukte spillet *

Jeg trenger å lære meg mye før jeg kan komme i gang med å bruke dette
systemet på egen hånd *

Back Submit

 Forms

Bibliography

[1] Institute for Public Health and the Environment (RIVM), Epidemiology
and Surveillance, 3720 BA Bilthoven, The Netherlands, “Proportion of
mrsa human blood isolates from participating countries (ears-net and cae-
sar) in 2008 and 2017.,” 2017. Conversion by Trex2001, translation by
Phatom87 (Wikimedia Commons CC BY-SA 4.0), https://commons.

wikimedia.org/wiki/File:EARS-Net_CAESAR_MRSA_2017-en.svg (ac-
cessed: 03-02-20).

[2] HealthCare VR Innovations, Inc., “Surgera VR.” https://store.

steampowered.com/app/763860/Surgera_VR/ (accessed: 2020-24-05).

[3] Immersive VR Education Ltd., “RCSI Medical Training Sim.” https://

www.oculus.com/experiences/go/878262692296965/ (accessed: 2020-
25-05).

[4] T. Akenine-Möller, E. Haines, N. Hoffman, A. Pesce, M. Iwanicki, and
S. Hillaire, Real-Time Rendering 4th Edition. Boca Raton, FL, USA: A
K Peters/CRC Press, 2018.

[5] The Blender Foundation, “Blender.” https://www.blender.org/ (ac-
cessed: 2020-07-05).

[6] G. I. f. Q. National Center for Biotechnology Information, Cologne and
E. in Health Care (IQWiG), “What are clinical practice guidelines?.”
https://www.ncbi.nlm.nih.gov/books/NBK390308/ (accessed: 2019-
09-11).

[7] P. Milgram and F. Kishino, “A taxonomy of mixed reality visual dis-
plays,” IEICE TRANSACTIONS on Information and Systems, vol. 77,
no. 12, pp. 1321–1329, 1994.

[8] Valve Corporation, “Openvr.” https://partner.steamgames.com/doc/

features/steamvr/openvr (accessed: 2020-21-05).

[9] M. Singer, C. S. Deutschman, C. W. Seymour, M. Shankar-Hari, D. An-
nane, M. Bauer, R. Bellomo, G. R. Bernard, J.-D. Chiche, C. M. Coop-
ersmith, et al., “The third international consensus definitions for sepsis
and septic shock (sepsis-3),” Jama, vol. 315, no. 8, pp. 801–810, 2016.

85

https://commons.wikimedia.org/wiki/File:EARS-Net_CAESAR_MRSA_2017-en.svg
https://commons.wikimedia.org/wiki/File:EARS-Net_CAESAR_MRSA_2017-en.svg
https://store.steampowered.com/app/763860/Surgera_VR/
https://store.steampowered.com/app/763860/Surgera_VR/
https://www.oculus.com/experiences/go/878262692296965/
https://www.oculus.com/experiences/go/878262692296965/
https://www.blender.org/
https://www.ncbi.nlm.nih.gov/books/NBK390308/
https://partner.steamgames.com/doc/features/steamvr/openvr
https://partner.steamgames.com/doc/features/steamvr/openvr

[10] MRSA-veilederen: Nasjonal veileder for å forebygge spredning av
meticillinresistente staphylococcus aureus (MRSA) i helseinstitusjoner,
vol. 16 of Smittevern (online). Oslo: Nasjonalt folkehelseinsti-
tutt, 2009. https://www.fhi.no/globalassets/dokumenterfiler/

rapporter/2009-og-eldre/mrsa-veilederen.pdf.

[11] F. Ruscio, J. Bjørnholt, T. Leegaard, A. E. F. Moen, and B. De Blasio,
“Mrsa infections in norway: A study of the temporal evolution, 2006-
2015,” PLOS ONE, vol. 12, p. e0179771, 06 2017.

[12] J. Hamari, J. Koivisto, and H. Sarsa, “Does gamification work? – a liter-
ature review of empirical studies on gamification,” in 2014 47th Hawaii
International Conference on System Sciences (HICSS), (Los Alamitos,
CA, USA), pp. 3025–3034, IEEE Computer Society, jan 2014.

[13] Duolingo, “Duolingo.” https://www.duolingo.com/ (accessed: 2020-11-
05).

[14] HackerRank, “Hackerrank.” https://www.hackerrank.com/ (accessed:
2020-11-05).

[15] Khan Academy, “Khan Academy.” https://www.khanacademy.org/

(accessed: 2020-11-05).

[16] Z. Merchant, E. T. Goetz, L. Cifuentes, W. Keeney-Kennicutt, and T. J.
Davis, “Effectiveness of virtual reality-based instruction on students’
learning outcomes in k-12 and higher education: A meta-analysis,” Com-
puters & Education, vol. 70, pp. 29–40, 2014.

[17] Helse Vest, “Innovasjonsstrategi.” https://helse-vest.no/seksjon/

planar-og-rapportar/Documents/Regionale%20planar/2016%20-

%20Regional%20innovasjonsstrategi%202016-2020.pdf (accessed:
2020-21-05).

[18] Helse Vest, “Helse 2035.” https://helse-vest.no/seksjon/

styresaker/Documents/2017/02.02.2017/Sak%2001617%20Vedlegg%

201%20-%20Ny%20verksemdstrategi%20-%20Helse2035.pdf (accessed:
2020-21-05).

[19] Helse Vest IKT, “Stopp Sepsis.” https://stoppsepsis.no/ (accessed:
2019-20-03).

[20] E. C. Backer, “Gamification. hvordan det gikk da vi skulle lage spill om
blodforgiftning.” https://www.linkedin.com/pulse/gamification-

hvordan-det-gikk-da-vi-skulle-lage-spill-backer/ (accessed:
2020-11-05).

[21] M. M. Baddour, MRSA (methicillin resistant Staphylococcus Aureus) in-
fections and treatment. Public health in the 21st century series, New
York: Nova Science Publishers, 2010.

86

https://www.fhi.no/globalassets/dokumenterfiler/rapporter/2009-og-eldre/mrsa-veilederen.pdf
https://www.fhi.no/globalassets/dokumenterfiler/rapporter/2009-og-eldre/mrsa-veilederen.pdf
https://www.duolingo.com/
https://www.hackerrank.com/
https://www.khanacademy.org/
https://helse-vest.no/seksjon/planar-og-rapportar/Documents/Regionale%20planar/2016%20-%20Regional%20innovasjonsstrategi%202016-2020.pdf
https://helse-vest.no/seksjon/planar-og-rapportar/Documents/Regionale%20planar/2016%20-%20Regional%20innovasjonsstrategi%202016-2020.pdf
https://helse-vest.no/seksjon/planar-og-rapportar/Documents/Regionale%20planar/2016%20-%20Regional%20innovasjonsstrategi%202016-2020.pdf
https://helse-vest.no/seksjon/styresaker/Documents/2017/02.02.2017/Sak%2001617%20Vedlegg%201%20-%20Ny%20verksemdstrategi%20-%20Helse2035.pdf
https://helse-vest.no/seksjon/styresaker/Documents/2017/02.02.2017/Sak%2001617%20Vedlegg%201%20-%20Ny%20verksemdstrategi%20-%20Helse2035.pdf
https://helse-vest.no/seksjon/styresaker/Documents/2017/02.02.2017/Sak%2001617%20Vedlegg%201%20-%20Ny%20verksemdstrategi%20-%20Helse2035.pdf
https://stoppsepsis.no/
https://www.linkedin.com/pulse/gamification-hvordan-det-gikk-da-vi-skulle-lage-spill-backer/
https://www.linkedin.com/pulse/gamification-hvordan-det-gikk-da-vi-skulle-lage-spill-backer/

[22] I. E. Fjeld, “Korona-dødeligheten i italia kan skyldes resistente bak-
terier,” https://www.nrk.no/urix/korona-dodeligheten-i-italia-

kan-skyldes-resistente-bakterier-1.14959498 (accessed: 2020-27-
04).

[23] B. Amundsen, “Very low mortality rate from coronavirus in nor-
way compared to other countries,” https://sciencenorway.no/

crisis-epidemic-mortality/very-low-mortality-rate-from-

coronavirus-in-norway-compared-to-other-countries/1661751

(accessed: 2020-27-04).

[24] K. N. Lohr, M. J. Field, et al., Guidelines for clinical practice: from
development to use. National Academies Press, 1992.

[25] A. Fretheim, S. Flottorp, and A. Oxman, “Effect of inter-
ventions for implementing clinical practice guidelines,” 2015.
https://www.fhi.no/en/publ/2015/effect-of-interventions-

for-implementing-clinical-practice-guidelines/.

[26] W. C. McGaghie, S. B. Issenberg, E. R. Petrusa, and R. J. Scalese,
“A critical review of simulation-based medical education research:
2003–2009,” Medical Education, vol. 44, no. 1, pp. 50–63, 2010.

[27] J. Nyameino, F. Rabbi, B.-R. Ebbesvik, M. Were, and Y. Lamo, “A
model driven approach to the development of gamified interactive clinical
practice guidelines,” 05 2019.

[28] G. Duque, S. Fung, L. Mallet, N. Posel, and D. Fleiszer, “Learning while
having fun: The use of video gaming to teach geriatric house calls to
medical students,” Journal of the American Geriatrics Society, vol. 56,
no. 7, pp. 1328–1332, 2008.

[29] J. Kang and G. Seomun, “Evaluating web-based nursing education’s ef-
fects: A systematic review and meta-analysis,” Western journal of nurs-
ing research, vol. 40, no. 11, pp. 1677–1697, 2018.

[30] G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco,
M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,”
in Cockpit Displays IX: Displays for Defense Applications, vol. 4712,
pp. 300–312, International Society for Optics and Photonics, 2002.

[31] G. R. Hofmann, “Who invented ray tracing?,” The Visual Computer,
vol. 6, no. 3, pp. 120–124, 1990.

[32] The Blender Foundation, “Weight Paint - Introduction.” https:

//docs.blender.org/manual/en/latest/sculpt_paint/weight_

paint/introduction.html (accessed: 2020-07-05).

[33] Oculus, “Gear VR.” https://www.oculus.com/gear-vr/ (accessed:
2019-23-10).

87

https://www.nrk.no/urix/korona-dodeligheten-i-italia-kan-skyldes-resistente-bakterier-1.14959498
https://www.nrk.no/urix/korona-dodeligheten-i-italia-kan-skyldes-resistente-bakterier-1.14959498
https://sciencenorway.no/crisis-epidemic-mortality/very-low-mortality-rate-from-coronavirus-in-norway-compared-to-other-countries/1661751
https://sciencenorway.no/crisis-epidemic-mortality/very-low-mortality-rate-from-coronavirus-in-norway-compared-to-other-countries/1661751
https://sciencenorway.no/crisis-epidemic-mortality/very-low-mortality-rate-from-coronavirus-in-norway-compared-to-other-countries/1661751
https://www.fhi.no/en/publ/2015/effect-of-interventions-for-implementing-clinical-practice-guidelines/
https://www.fhi.no/en/publ/2015/effect-of-interventions-for-implementing-clinical-practice-guidelines/
https://docs.blender.org/manual/en/latest/sculpt_paint/weight_paint/introduction.html
https://docs.blender.org/manual/en/latest/sculpt_paint/weight_paint/introduction.html
https://docs.blender.org/manual/en/latest/sculpt_paint/weight_paint/introduction.html
https://www.oculus.com/gear-vr/

[34] Adam Savage’s Tested, “SteamVR’s ”Lighthouse”.” https://www.

youtube.com/watch?v=xrsUMEbLtOs (accessed: 2020-21-05).

[35] Facebook, “Powered by AI: Oculus Insight.” https://ai.facebook.

com/blog/powered-by-ai-oculus-insight/, (accessed: 2020-18-04).

[36] Valve Corporation, “Steam search.” https://store.steampowered.

com/search/?vrsupport=402 (accessed: 2020-06-05).

[37] H. Baker, “Oculus Quest Store 2020 Stats: 170+ Apps And Strong Cross-
Buy Support,” https://uploadvr.com/oculus-quest-store-stats-

2020/ (accessed: 2020-06-05).

[38] SideQuest, “Sidequest.” https://sidequestvr.com/ (accessed: 2020-
02-06).

[39] C. Marshall, “Your quest can now play oculus rift games, with the
right cable and gaming pc.” https://www.polygon.com/2019/11/18/

20966968/oculus-link-open-beta-quest-rift-pc (accessed: 2020-
02-06).

[40] M. Abrash, “Latency – the sine qua non of ar and vr,”
2012. https://web.archive.org/web/20190822174539/https:

//blogs.valvesoftware.com/abrash/latency-the-sine-qua-non-

of-ar-and-vr/.

[41] HTC Corporation, “Vive Pro.” https://www.vive.com/eu/product/

vive-pro/, (accessed: 2019-18-10).

[42] J. Peters, “Designing a HUD for a Third-Person VR Game.” https:

//www.youtube.com/watch?v=f8an45s_-qs (accessed: 2020-21-05).

[43] Oculus, “VR Best Practices.” https://developer.oculus.com/

design/latest/concepts/book-bp/ (accessed: 2019-13-11).

[44] Unity Technologies, “VR Best Practice.” https://learn.unity.com/

tutorial/vr-best-practice (accessed: 2019-13-11).

[45] Khronos Group, “The OpenXR standard,” Jul 2019. https://www.

khronos.org/openxr/ (accessed: 2020-15-05).

[46] Unity Technologies, “Unity.” https://unity.com/ (accessed: 2019-23-
08).

[47] Unity Technologies, “Unity Asset Store.” https://assetstore.unity.

com/ (accessed: 2019-23-08).

[48] Valve Corporation, “SteamVR Unity Plugin.” https://valvesoftware.

github.io/steamvr_unity_plugin/ (accessed: 2020-21-05).

[49] Oculus, “Oculus Integration for Unity.” https://developer.oculus.

com/downloads/package/unity-integration/ (accessed: 2020-21-05).

88

https://www.youtube.com/watch?v=xrsUMEbLtOs
https://www.youtube.com/watch?v=xrsUMEbLtOs
https://ai.facebook.com/blog/powered-by-ai-oculus-insight/
https://ai.facebook.com/blog/powered-by-ai-oculus-insight/
https://store.steampowered.com/search/?vrsupport=402
https://store.steampowered.com/search/?vrsupport=402
https://uploadvr.com/oculus-quest-store-stats-2020/
https://uploadvr.com/oculus-quest-store-stats-2020/
https://sidequestvr.com/
https://www.polygon.com/2019/11/18/20966968/oculus-link-open-beta-quest-rift-pc
https://www.polygon.com/2019/11/18/20966968/oculus-link-open-beta-quest-rift-pc
https://web.archive.org/web/20190822174539/https://blogs.valvesoftware.com/abrash/latency-the-sine-qua-non-of-ar-and-vr/
https://web.archive.org/web/20190822174539/https://blogs.valvesoftware.com/abrash/latency-the-sine-qua-non-of-ar-and-vr/
https://web.archive.org/web/20190822174539/https://blogs.valvesoftware.com/abrash/latency-the-sine-qua-non-of-ar-and-vr/
https://www.vive.com/eu/product/vive-pro/
https://www.vive.com/eu/product/vive-pro/
https://www.youtube.com/watch?v=f8an45s_-qs
https://www.youtube.com/watch?v=f8an45s_-qs
https://developer.oculus.com/design/latest/concepts/book-bp/
https://developer.oculus.com/design/latest/concepts/book-bp/
https://learn.unity.com/tutorial/vr-best-practice
https://learn.unity.com/tutorial/vr-best-practice
https://www.khronos.org/openxr/
https://www.khronos.org/openxr/
https://unity.com/
https://assetstore.unity.com/
https://assetstore.unity.com/
https://valvesoftware.github.io/steamvr_unity_plugin/
https://valvesoftware.github.io/steamvr_unity_plugin/
https://developer.oculus.com/downloads/package/unity-integration/
https://developer.oculus.com/downloads/package/unity-integration/

[50] Unity Technologies, “Unity XR Interaction Toolkit.” https:

//docs.unity3d.com/Packages/com.unity.xr.interaction.

toolkit\spacefactor\@m{}0.9/manual/index.html (accessed: 2020-
26-03).

[51] D. H. Oma, “Mrsa - smitteverntiltak og testing,” 2018. https://ek.

helse-bergen.no/docs/pub/dok00512.pdf.

[52] Unity Technologies, “UnityEvents.” https://docs.unity3d.com/

Manual/UnityEvents.html (accessed: 2020-04-06).

[53] Unity Technologies, “ProBuilder.” https://unity3d.com/unity/

features/worldbuilding/probuilder (accessed: 2020-21-05).

[54] Unity Technologies, “Unity - Manual: Unity XR Input.” https:

//docs.unity3d.com/Manual/xr_input.html#XRInputMappings (ac-
cessed: 2020-25-05).

[55] Valve Corporation, “The Lab.” https://store.steampowered.com/

app/450390/The_Lab/ (accessed: 2020-21-05).

[56] Valve Corporation, “Half-Life: Alyx.” https://store.steampowered.

com/app/546560/HalfLife_Alyx/ (accessed: 2020-21-05).

[57] M. E. Gjerde, “Dr̊apesmitteregime,” 2020. https://ek.helse-bergen.

no/docs/pub/DOK00499.pdf.

[58] P. E. Akselsen, “Beskyttelse av arbeidstøy og hud,” 2017. https://ek.

helse-bergen.no/docs/pub/dok18850.pdf.

[59] Reallusion, “Character Creator 3.” https://www.reallusion.com/

character-creator/ (accessed: 2020-22-03).

[60] Adobe Inc., “Mixamo.” https://www.mixamo.com/ (accessed: 2020-22-
03).

[61] Freesound, “Freesound.” https://freesound.org/ (accessed: 2020-22-
03).

[62] Oculus, “Testing and performance analysis.” https://developer.

oculus.com/documentation/unity/unity-perf/ (accessed: 2020-24-
03).

[63] J. Brooke, “SUS - A quick and dirty usability scale,” 1996.

[64] Oculus, “OVR Metrics Tool.” https://developer.oculus.com/

downloads/package/ovr-metrics-tool/ (accessed: 2020-26-03).

89

https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit\spacefactor \@m {}0.9/manual/index.html
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit\spacefactor \@m {}0.9/manual/index.html
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit\spacefactor \@m {}0.9/manual/index.html
https://ek.helse-bergen.no/docs/pub/dok00512.pdf
https://ek.helse-bergen.no/docs/pub/dok00512.pdf
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://unity3d.com/unity/features/worldbuilding/probuilder
https://unity3d.com/unity/features/worldbuilding/probuilder
https://docs.unity3d.com/Manual/xr_input.html#XRInputMappings
https://docs.unity3d.com/Manual/xr_input.html#XRInputMappings
https://store.steampowered.com/app/450390/The_Lab/
https://store.steampowered.com/app/450390/The_Lab/
https://store.steampowered.com/app/546560/HalfLife_Alyx/
https://store.steampowered.com/app/546560/HalfLife_Alyx/
https://ek.helse-bergen.no/docs/pub/DOK00499.pdf
https://ek.helse-bergen.no/docs/pub/DOK00499.pdf
https://ek.helse-bergen.no/docs/pub/dok18850.pdf
https://ek.helse-bergen.no/docs/pub/dok18850.pdf
https://www.reallusion.com/character-creator/
https://www.reallusion.com/character-creator/
https://www.mixamo.com/
https://freesound.org/
https://developer.oculus.com/documentation/unity/unity-perf/
https://developer.oculus.com/documentation/unity/unity-perf/
https://developer.oculus.com/downloads/package/ovr-metrics-tool/
https://developer.oculus.com/downloads/package/ovr-metrics-tool/

	List of Figures
	Glossary
	Introduction
	Motivation
	Origin of the thesis
	Goal and research questions
	Scope and limitations
	Methodology
	Related work

	Background
	Methicillin-resistant Staphylococcus aureus
	CPGs and simulation
	Gamification
	Gamification in Healthcare
	Technology and the learning effect

	Computer graphics
	Geometric primitives
	Real-time rendering
	Animations

	Virtual reality
	Technology
	Applications
	Concerns and challenges
	Best practices
	Standardization efforts

	Game engine
	Why Unity?
	Editor
	Virtual Reality support

	Design and Solution
	From guideline to game
	Gameplay
	Top-level architecture
	Game logic
	VR interface
	Level design
	Cross-platform support
	Input and interactors
	Interactables
	Feedback
	Patients

	Balancing gamification and accuracy
	Assets
	Internationalisation
	Performance and optimization

	Results and Discussion
	Iterative testing
	Planned tests
	Final tests
	Numerical measurements of performance

	Conclusion
	What are the challenges with developing a virtual reality game based on the clinical practice guideline?
	How does the use of virtual reality, and gamification affect practitioner motivation?
	Creating a publishable game

	Further Work
	Generalising for other CPGs
	Expanding to other platforms
	Adaptive gameplay

	Appendices
	MRSA Infection Control Guideline
	System Usability Scale

