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Abstract
We present a framework for integrated experiments and simulations of tracer transport in 
heterogeneous porous media using digital twin technology. The physical asset in our setup 
is a meter-scale FluidFlower rig. The digital twin consists of a traditional physics-based 
forward simulation tool and a correction technique which compensates for mismatches 
between simulation results and observations. The latter augments the range of the phys-
ics-based simulation and allows us to bridge the gap between simulation and experiments 
in a quantitative sense. We describe the setup of the physical and digital twin, including 
data transfer protocols using cloud technology. The accuracy of the digital twin is demon-
strated on a case with artificially high diffusion that must be compensated by the correction 
approach, as well as by simulations in geologically complex media. The digital twin is 
then applied to control tracer transport by manipulating fluid injection and production in 
the experimental rig, thereby enabling two-way coupling between the physical and digital 
twins.

Keywords Digital twin · Porous media · Corrective source-term approach · FluidFlower · 
Hybrid analysis and modeling

1 Introduction

Insight into dynamic processes in porous media has traditionally been reached by direct 
observations and measurements of the processes combined with analysis and simula-
tions of physics-based models (PBMs). Continuous improvements in sensors and imag-
ing give increased access to data of high quality and resolution. In parallel, the field 
of data science, including data-driven modeling (DDM), artificial intelligence, and 
machine learning, has emerged as an alternative modeling approach that utilizes real-
time data and thus offers a complement to the physics-based models. This calls for a 
hybrid approach, herein denoted Hybrid Analysis and Modeling (HAM), where data are 
integrated into physics-based models in real-time using techniques from data science, 
enabling enhanced simulation accuracy and ultimately improved decision-making in 
operational contexts. Such enhanced models with tight integration between simulation 
models and the physical asset (the porous media) can be formalized trough the concept 
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of digital twins (Rasheed et al. 2020). The purpose of this work is to present a digital 
twin which can access high-quality data from a porous medium laboratory experiment, 
integrate this data into a physics-based simulation model in real time, and use the digital 
twin to guide decisions on the operation of the physical asset.

Porous media-related data streams are undergoing a transformation with increased use 
of sensors and emerging imaging modalities. A range of imaging technologies provides 
data streams of high spatial and temporal resolution, which can be used to gain access 
to local fluid flows within the opaque porous media (Fernø et  al. 2015; Brattekås et  al. 
2020). Recent focus on sub-Darcy-scale displacement processes utilizes μ CT (Berg et al. 
2013) and microfluidics (Gauteplass et al. 2015) to study pore-scale phenomena for a wide 
range of flow processes. The growing access to data is not limited to laboratory experi-
ments: Field-scale operations also increasingly rely on real-time monitoring of important 
processes, and regulations call for frequent seismic monitoring of carbon sequestration pro-
jects for prolonged time series (Arts et al. 2004). The amount of data generated can be sub-
stantial, with time-lapsed 3D or multimodal microscopic image sequences frequently gen-
erating several TB per experiment (Benali et al. 2022). This calls for efficient approaches 
to incorporating data into analysis frameworks that can be used to harness physical insights 
contained therein.

One such framework is modeling and simulation based on physics-based models, which 
has a long tradition in porous media applications (Aziz and Settari 1979; Chen et al. 2006; 
Helmig 1997). The foundations of physics-based models, with a combination of funda-
mental physics, e.g., conservation or energy minimization principles, and constitutive laws, 
make them strong candidates for systematic studies and analysis of physical processes. Data 
can be incorporated into simulation models in several ways, including long-loop parameter 
tuning where simulation models and setups are tweaked to honor observations (Williams 
et al. 1998), and more continuous data assimilation methods which are popular in subsur-
face applications (Oliver and Chen 2011; Caers 2011). Following trends in data science, 
data-driven models for porous media have recently been introduced, see, for instance, Ren 
et al. 2019; Kiaerr et al. 2020; Lie and Krogstad 2022. Compared to physics-based mod-
els, these data-driven models are computationally highly efficient, but not being based on 
physical principles, their use in interpreting physical phenomena is not straightforward.

When used as a supplement, or substitute, for representing dynamics in a concrete phys-
ical asset (e.g., a porous medium), a simulation model can be interpreted as a digital twin 
of said asset. The digital-twin concept has been around for decades, overviews of applica-
tions to porous media can be found in Wanasinghe et al. 2020; Sircar et al. 2022, while 
specific use cases include Kannapinn et al. 2022; Xiao et al. 2021; Ali et al. 2020. The con-
cept is very wide, in a sense, any simulation model that aims to represent a specific porous 
media can be considered a digital twin. It is, therefore, relevant to classify digital twins in 
terms of their level of sophistication and hence their ability to represent the status of, and 
inform decisions relating to, the physical asset. As is illustrated by the classification shown 
in Fig. 1, this capacity can vary significantly.

A critical component for enabling the higher capability levels is the digital twin’s abil-
ity to self-correct when provided with data that are incompatible with the current digital 
representation. In a sense, this is one goal of data assimilation and history matching tech-
niques applied, e.g., in subsurface engineering. These techniques are, however, based on an 
assumption that all relevant physical processes are included in the governing equations and 
adequately represented in the discretized simulation model. If this is not the case, and it is 
often impossible to verify, the unresolved processes can only be represented by proxy.
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Hybrid Analysis and Modeling (HAM) offers an alternative version of self-correct-
ing digital twins, which can account for mis- or underrepresented physics due to both 
poor parameter values and under-resolved physical processes. The COrrective Source-
Term Approach (COSTA) (Blakseth et al. 2022), which falls under the HAM umbrella, 
employs an artificial neural network, trained on time series of combined observation and 
simulation data, to correct and enhance simulation results. This allows for  the system-
atic inclusion of observations into a real-time simulation workflow and the use of these 
observation to enhance the predictive accuracy of the simulations.

Herein, we describe the setup of a digital twin for fluid flow and tracer transport in 
a porous medium. The physical asset is a FluidFlower rig, which is essentially two-
dimensional and provides a data-rich environment through imaging and advanced image 
processing. The digital twin consists of a COSTA-enhanced physics-based model, and 
the physical asset and digital twin are coupled using cloud technology. Our contribu-
tions in this work can be summarized as follows:

• We probe the ability of the digital twin to reproduce results from experiments with-
out any feedback, thereby realizing a one-way coupling from the physical asset to 
the digital twin.

• We verify the ability of a data-driven model to correct unresolved and erroneous 
physics in a physics-based model. Moreover, we present results for geologically 
complex media.

• We demonstrate two-way real-time communication between the physical asset and 
its digital twin, by considering an experiment in a meter-scale flow rig. In this case, 
we couple the digital twin to an optimization framework wherein well controls in the 
physical asset are manipulated to steer the migration of the tracer plume, thus dem-
onstrating the prescriptive capabilities of the digital twin.

As a result, the results presented herein demonstrate the feasibility of achieving level 4, 
autonomy (in the context of the classification scheme cited in Fig. 1). To the best of our 
knowledge, no digital twin with similar capabilities has previously been presented for 
porous media.

The rest of the article is structured as follows: Sect. 2 explains the different compo-
nents that build up the experimental setup and the digital twin. In Sect. 3, we present 
examples of one-way couplings from the physical to the digital twin, designed to probe 

Fig. 1  Increasing levels of capability for a digital twin. The capacity ranges from standalone, where the 
digital twin has no connection to the physical world, to fully autonomous, where the digital twin can control 
the physical twin without human intervention. Adapted from San et al. (2021)
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the accuracy of the digital twin, while an example of a two-way coupling is shown in 
Sect. 4. Finally, in Sect. 5, conclusions are given and potential future work is presented.

2  Components of the PoroTwin Framework

Here, we present the components that together make up the digital twin framework, termed 
PoroTwin: the physical asset, the digital twin, and the communication protocols that enable 
data exchange between the components. The latter entails both flow of information and 
data postprocessing, for example, image processing. To indicate how the components are 
coupled together, Fig. 2 shows processes and information flows in the context of controlled 
injection of a tracer, as is studied in Sect. 4.

 . While the workflow as described below is to some extent tailored for the context of 
our physical asset and the experiments presented in the results sections, the framework 
can also be adapted to other data-rich settings. These are for the moment limited to labo-
ratory experiments as any application to subsurface flows will entail dealing with lower 
quality and less frequent data. The digital twin can be employed for other purposes than 
optimization by modifying the central hub, while the other components remain relatively 
unchanged. This opens the door for considering risk assessment, ‘what if?’ analysis, uncer-
tainty quantification, and process optimization. Furthermore, the digital twin can also 
be generalized to a set of digital siblings, i.e., a set of different physics-based simulators 
(Rasheed et al. 2020).

Fig. 2  The components of the physical and digital twins assembled for the optimization experiment pre-
sented in Sect. 4. Data from the physical asset are filtered through image processing and sent to an opti-
mization controller. This runs an optimization loop, consisting of forward simulation followed by a HAM 
correction, and the optimized well rates are then fed to the physical asset
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2.1  The Physical Asset

Here, we describe the physical asset in our setup, together with the data streams used in our 
experiments.

2.1.1  The FluidFlower Rig

The FluidFlower enables meter-scale multiphase quasi two-dimensional flow experiments 
on model geological geometries with unprecedented data acquisition and repeatability. 
The design allows for repeated injection tests with near identical initial conditions, allow-
ing physical uncertainty and variability to be addressed using the same geological geom-
etry. This also enables well-confined sensitivity studies to evaluate large parameter spaces 
because each parameter may be varied while keeping others constant. The model geologi-
cal geometry is constructed using unconsolidated sands and held in place between an opti-
cally transparent front panel and a technical back panel. The back panel has perforations 
that enable a range of well configurations (injector, producer, monitoring, or plugged) for 
porous media flow studies. The optical access of the front panel facilities detailed investi-
gation of flow processes through a high-resolution camera combined with a tracer.

FluidFlower rigs of two different sizes are employed in this study: A small rig with an 
extent of slightly less than a meter is considered in the experiments reported in Sects. 3.1 
and 4, while a larger rig was used for the experiments reported in Sect. 3.2. For all experi-
ments, a passive tracer is used to focus on the effect of well operation and, for the experi-
ments reported in Sect. 3.2, how the flow is influenced by local geological features such as 
faults and multi-scale heterogeneity. Further details on the rig and the experimental setups 
are given in Sect. 3.

Two types of data from the FluidFlower are made available to our digital twin: In addi-
tion to injection and production rates, the migration of the injected tracer is monitored 
using imaging as detailed next.

2.1.2  Image Processing

The measurement instrument in the considered workflow is the combination of photographs 
taken of the physical asset and image processing. High-quality, high-resolution images pro-
vide dense data with low noise-to-signal ratio, as well as they resolve the medium up to 
sand grains. This high amount of details is beneficial in the further process. The high reso-
lution, on the other hand, also provides a challenge, as it is important to emphasize that in 
the context of autonomous digital twins, all image processing must be fully automatic and 
real-time. As a whole, the role of the image analysis in this work is, in contrast with its 
typical applications, more a signal-to-data conversion and less a tool for noise reduction. 
With that it is also the mediator of data from the physical to the digital twin.

To convert a series of images of the conducted tracer experiments to spatio-temporal 
tracer concentration maps, the following steps are performed. First, a set of preprocess-
ing routines is applied, including aligning all images with respect to a fixed point based 
on feature detection, cropping to a region of interest, and transforming the color spectrum 
such that the recorded colors of an attached color palette match a set of reference colors. 
Applying these to all images ensures a unified set of images. Next, to extract the tracer, 
the sand grains are removed by considering differences of images, using a baseline image 
taken before the start of the injection. Here, the high quality of images comes into play. 
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The removal of sand grains can be viewed as nearly noise free; yet, it leaves areas with lit-
tle to no signal. We choose to apply total variation denoising (Rudin et al. 1992) as a com-
bined tool for inpainting low-data regions (i.e., sand grains) and simultaneous denoising. 
Converting the images to a monochromatic color space provides scalar data in the interval 
[0, 1]. The choice of the monochromatic color depends on the used tracer; here, grayscale 
images are considered suitable. Finally, a globally constant rescaling and clipping value at 
1 is applied to convert the scalar signal to actual volumetric tracer concentration data. For 
this, a time series of images taken of a representative flow experiment with known injec-
tion rate is used for calibration. The final scaling parameter is obtained as the result of a 
RANSAC algorithm (Fischler and Bolles 1981), aiming at matching the effective injection 
rate for the rescaled images, while excluding outliers. The result of the image processing is 
illustrated in Fig. 3.

Special care has to be applied in the context of heterogeneous media, as considered in 
Sect. 3.2. As luminous emittance highly depends on the underlying material, the recorded 
signal becomes discontinuous over interfaces of different materials. Assuming piecewise 
homogeneous materials, materialwise constant scaling is applied, with values minimizing 
the signal jumps over interfaces in a least-squares fashion. Again, calibration is applied 
based on a representative set of images.

For the implementation of the image processing, DarSIA (short for Darcy-Scale Image 
Analysis toolbox) (Nordbotten et al. 2023) is used, which is an open-source tool specifi-
cally developed for analyzing high-resolution images of porous media flow experiments, 
with integrated capabilities for converting data to continuum/Darcy scale. It includes both 
preprocessing routines as well as analysis tools for concentration- and deformation-based 
scenarios.

2.2  The Digital Twin

The digital twin in our setup combines traditional components of physics-based modeling 
and data-driven modeling in a hybrid analysis and modeling context as elaborated in the 
following section.

2.2.1  Physics‑Based Model

The fluid flow in the porous medium is modeled as incompressible and single-phase and is 
governed by

Here, q is the Darcy flux, K is the hydraulic conductivity, p is fluid potential, and f rep-
resents volumetric source and sink terms. The transport of a passive tracer is given as 
follows:

where � denotes porosity, c is the tracer concentration, t represents time, and fc is tracer 
sinks and sources.

(1)q = −K∇p,

(2)∇ ⋅ q = f .

(3)�
�c

�t
+ ∇ ⋅ (qc) = fc,
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The above model ignores gravitational effects caused by minor density differences 
between water and the tracer, which may have an impact in the longer simulations pre-
sented in Sect.  3.2. Moreover, we model the FluidFlower as two-dimensional and thus 
ignore variations in the (thin) third dimension.

To solve Eqs. (1)–(3) in the forward simulator of the digital twin, we consider two 
different numerical tools: The toolbox IFEM is used for the experiments in homoge-
neous porous media presented in Sects.  3.1 and  4. IFEM is an open-source object-
oriented toolbox for implementing isogeometric finite element solvers for linear and 
nonlinear partial differential equations (Kvamsdal et al. 2022). For the simulations in 
the geologically complex medium reported in Sect. 3.2, we employ finite volume meth-
ods as implemented in the open-source tool PorePy (Keilegavlen et al. 2021).

2.2.2  Corrective Source‑Term Approach

The COrrective Source-Term Approach (COSTA) is a methodology for combining 
the prediction from the physics-based simulator with data, in this case concentration 
maps from analyzed images, from the physical asset. COSTA is designed to operate 
solely on source terms, while keeping the simulation model intact. In this section, we 
motivate the formulation of COSTA by considering a hypothetical setting where the 
true solution, in our setting the image data obtained through the analysis described in 
Sect. 2.1.2, is available. In practice, the purpose of the physics-based model, thus of 
the COSTA correction, is to predict an unknown future state based on information of 
the current state of the system. To that end, a practical implementation of COSTA is 
described in Sect. 2.2.3.

Let us represent the physics-based model as a (in this context linear) operator L over 
a domain Ω as

Using the above operator, Eq. (3 ) reads

(4)Lc ∶= �
�c

�t
+ ∇ ⋅ (qc).

(5)Lc̃ = f̃c, ∀ c ∈ Ω ,

Fig. 3  Illustration of the image analysis, from taken photograph to extracted spatial tracer concentration 
map
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where c̃ represents the solution obtained by the physics-based model, which here is 
assumed to contain deviations from the true solution c (in our case, the image data) due to 
errors in the right hand side f̃c.

It is instructive to consider potential sources of errors in the solution obtained from 
the physics-based model compared to a (hypothetical) solution operator for the contin-
uous problem Eqs.  (1)–(3). The solution obtained from the  physics-based model may 
carry the effect of incorrect parameters (e.g., the hydraulic conductivity K), poor mod-
eling assumptions (e.g., neglecting three-dimensional effects), and numerical errors. In 
addition, the physics-based model may be assigned an incorrect source term, in our case 
corresponding to mismatches between prescribed and actual injection and production 
rates. All these cases can be treated by adding a correction term r to Eq. (5) and define 
the COSTA solution as

In practice, the correction term will be identified by the DDM; however, in the hypothetical 
case where it is known exactly, we see that the COSTA solution is consistent with the true 
solution whenever the correction term corresponds to the residual error r = Lc − f̃c:

For more information on COSTA and its treatment of different sources of errors, see Blak-
seth et al. (2022).

2.2.3  COSTA Implementation as a Data‑Driven Model

Having motivated the COSTA correction term, we next turn to its practical implementa-
tion where the true solution c is not known. Specifically, to apply COSTA to the prob-
lem of tracer migration, the task is to compute cn+1

COSTA
 from a known state cn and a pre-

diction c̃n+1 obtained by the physics-based model. Our aim is to use the digital twin to 
predict the future state of the physical asset in an application setting where cn+1 is una-
vailable; thus, the exact residual rn+1 = L(cn+1 − c̃n+1) cannot be computed.

The COSTA approach relies on the availability of historical time series as training 
data to construct a data-driven model that approximates rn+1 by

to the source term and apply these in Eq. (6) so that this reads

The approximation �n+1 is implemented by training a deep convolutional neural network 
on data generated from time series of tracer migration: For each snapshot of the tracer, 
the physics-based model is invoked to predict the tracer distribution at the time of the next 
snapshot, and this is compared with the actual tracer distribution to compute a residual. 
Using this training data, the data-driven model is constructed to correct for errors in the 
physics-based model, with the intention that the correction terms should be accurate also 
for the tracer profiles encountered in the application phase.

The convolutional neural network used in the current work is depicted in Fig. 4 and 
can be expressed as follows:

(6)Lc
COSTA

= f̃c + r.

(7)L(c
COSTA

− c) = f̃c + r − Lc = (f̃c − f̃c) − (Lc − Lc) = 0.

(8)𝜎n+1 = DDM(cn, c̃n+1)

(9)Lcn+1
COSTA

= fc + �n+1.



PoroTwin: A Digital Twin for a FluidFlower Rig  

1 3

In our case, the data X are the predicted tracer profile c̃n+1 , and ŷ is �n+1 . The layers in 
the neural network, denoted �i , may represent different operations, including convolution, 
activation, and/or maxpooling. As an illustration, in Fig. 4, the input data represented by a 
matrix X of dimension M × N are subjected to 5 convolution operations (filter dimension 
5 × 5 ) followed by 5 max-pooling (filter dimension 2 × 2 ) operations. After that follows a 
number of pure 5 × 5 convolution operations, without max-pooling. Finally, two dense lay-
ers consisting of 100 nodes each are utilized. Within these dense layers, known parameters 
such as pump settings are concatenated. The output layer (not shown in the figure) is of the 
same size and shape as the input. The precise number of layers used in each operation var-
ies and is clarified in the text as necessary.

The activation function used in this work is ReLU. Since this is a regression prob-
lem, the mean-squared error (MSE) was utilized as a loss function to be minimized. 
The loss for the training batch B given weights and biases � is then

where (xk, yk) is the kth pair in the dataset D . For more detailed explanation of the CNN, 
we refer to Goodfellow et al. (2016). The neural network was implemented using the ten-
sorflow library (Abadi et al. 2015).

2.3  Information Flow and Communication Protocols

In addition to the physical and digital twin, our framework also constitutes a cen-
tral hub which controls the action of the physical and digital assets. Communication 
between the components is implemented using an Internet-of-Things (IoT) model, with 
two types of agents and modes of communication:

• devices or servers, which can emit one-to-many messages and respond to one-to-
one queries from clients, and

• clients, which can listen to one-to-many messages from devices, and make one-to-
one requests.

The physical and digital assets are made available to the IoT network as devices. Other 
components of the system may optionally be published as IoT devices as well, such as 

(10)ŷ = f̂(X) = (�Q◦⋯◦�2◦�1)(X).

(11)J
MSE

(B;�) =
1

�B�
�

k∈B

‖yk − ŷk‖2,

Fig. 4  Conceptual visualization of the neural network architecture used, see the text for a description of the 
individual components
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the physics-based and data-driven models. The central hub is implemented as a client. 
A typical purely predictive data flow may look like this: 

1. The physical asset emits a one-to-many message notifying listeners of a new system 
state.

2. The hub receives it and queries the physics-based model, using a one-to-one request, 
for a prediction from (5).

3. The hub in turn queries the data-driven model for a correction, using (8).
4. The hub queries the physics-based model again for a corrected prediction from (9).
5. The hub emits a suitably accurate future prediction to the digital asset.

In a correction setting, the hub may instead make multiple queries for different control 
parameters (e.g., well rates) and finally respond back to the physics-based model with 
updated and optimal settings. In Sect.  4, we present a case where the hub employs 
the digital twin in an optimization framework to steer tracer migration in the physical 
asset, with a workflow illustrated in Fig. 2.

The IoT model was realized using Microsoft Azure’s IoT hub resources with cloud-
based communication. Due to technical limitations with the pump-controlling soft-
ware, the well controls in the physical twin could not be readily automatized, so the 
control messages are, therefore, communicated by audio. The communication frame-
work is implemented as open-source software and available at Fonn et al. (2022).

3  Accuracy of the Digital Twin

To establish the accuracy of the digital twin, including both the forward simulator and its 
COSTA enhancement, we performed two sets of simulations. The first probed COSTA’s 
ability to compensate for unresolved physics, specifically to correct an artificially high 
numerical diffusion. The second considered simulations in a medium of complex geometry.

3.1  Performance of COSTA

We first considered simulations of tracer injection into a medium with homogeneous 
hydraulic conductivity. The numerical setup, using IFEM, was defined so that the physics-
based model had unusually (and artificially) high numerical diffusion   thus the predicted 
tracer profiles were overly diffusive. A COSTA module was trained to compensate for this 
deficiency. In addition to the known errors caused by high diffusion, there may have been 
other sources of errors as noted in Sect. 2.2.2, but these could not be measured nor distin-
guished from the diffusion-related errors.

The physical setup, used both for this experiment and in the experiment reported 
in Sect. 4, was as follows: The flow rig had dimensions 0.934m × 0.562m in the x- and 
z-directions, respectively. The extent in the y-direction was 0.010m , but for simulation pur-
poses, the rig was considered a two-dimensional medium. In total, five wells were utilized 
in the flow experiments. One of these, termed Producer, was reserved for production while 
the others could be used for injection of tracer and water.  These wells are called, respec-
tively, Injector and Control 1 through 3, reflecting their role in the experiment reported in 
Sect. 4. The locations of the wells are given in Table 1.
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For a given tracer distribution, the evolution of the tracer plume depends on the rates of 
injection and production in the wells. To train the artificial neural network underlying our 
implementation of COSTA, we collected tracer profiles from a range of experiments in the 
physical twin, injecting tracer in the different wells. The resulting time series of tracer pro-
files, all taken 30 s apart, together with time series of the injection rates, were used to train 
COSTA following the protocol described in Sects.  2.2–2.3. The neural network for this 
case was modeled according to the framework of Fig. 4, with five combined convolution 
and max-pooling layers, no pure convolution layers, and three pure linear layers.

The effect of the COSTA correction is illustrated for two different timesteps, thus dif-
ferent tracer profiles, in Figs. 5 and 6. We observe that while the prediction quality for the 
tracer profile was poor due to to the artificially high diffusion, the corrected solution is 
remarkably similar to the actual state. Minor discrepancies can still be observed near the 
outer boundary of the predicted tracer profile, where COSTA failed to fully correct for the 
overly diffused profile, as well as in a region near the injection point, where the concentra-
tion reached a plateau of value 1. Nevertheless, keeping in mind that the error in the pre-
dicted state was artificially large, the improvement in the simulation result from COSTA is 
notable. 

3.2  Performance in Heterogeneous Medium

As a second test of the digital twin, we considered simulation of tracer injection into a 
domain with a complex hydraulic conductivity distribution. Specifically, we considered the 
geometry of the benchmarking exercise defined in Nordbotten et al. (2022) and aimed to 
mimic the results of the well test by tracer injection, which was part of the benchmark 
description.

In this case, the porous medium had a size of 2.8m × 1.5m . and was built from sands 
with different grain sizes, which translate into a hydraulic conductivity field that spanned 
2–3 orders of magnitude. The spatial distribution of the hydraulic conductivity field is vis-
ualized in Fig. 7, together with the location of the two injection wells used in the tracer 
test. To account for the variable depth of this FluidFlower rig, see Nordbotten et al. (2022), 
the parameter fields were rescaled with depth variations incorporated into the cell volumes 
and hydraulic conductivity, so that a two-dimensional simulation model could be applied.

Tracer was injected in the two wells following the injection schedule described in 
Nordbotten et al. (2022). In short, with a total duration of 27.5 h, tracer (partially alter-
nating with water) was injected in pulses of 30  min with longer breaks varying from 
30 min to 14.5 h; the final tracer distribution is displayed in Fig. 7a. Images were taken 
every 5 min providing the input data for the image analysis, which returned continuous 

Table 1  Location of wells in the 
flow rig used for the experiments 
reported in Sects. 3.1 and 4

The locations are given as offsets from the lower left corner of the rig

Well x z

Injector 0.235 0.235
Producer 0.660 0.160
Control 1 0.120 0.420
Control 2 0.500 0.375
Control 3 0.760 0.460
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concentration maps as described in Sect. 2.1.2. While the physics-based model assumes 
a perfectly passive tracer, in reality, the tracer has a density slightly larger than water. 
During the longest injection break, notable displacement of the tracer can be observed 
in the physical experiment. Thus, buoyancy effects play a role which are not accounted 
for in the governing equations underlying the physics-based model.

A data-driven COSTA model was trained to correct single-timestep errors in this 
physics-based model. The model was built with two downscaling convolution layers, 
five pure convolution layers followed by five dense linear ‘bottleneck’ layers. In addi-
tion to the pure image inputs from the physical asset, the data-driven model was also 
provided with the exact injection schedule as additional input to the dense layers. See 
Fig. 4 for details.

The physics-based model was able to predict the next image with approximately 1% 
relative error, with the exception of five distinct time intervals within the 1–6 h range 
after the start of injection, see Fig. 8. Although some modeling error must be account-
able for this effect, using COSTA we were able to correct the predictions in these inter-
vals to match the background noise error levels. See Fig. 9 for spatial error distributions 
at two selected timesteps. 

Fig. 5  COSTA results at 10 min. At the top is the true experimental concentration field 30 s into the future. 
In the middle, we see the predicted concentration field with pure IFEM (left) and the logarithmic error 
(right). At the bottom is the corrected COSTA prediction (left) and its logarithmic error (right)
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Although COSTA was trained to correct for single-timestep errors, i.e., errors 
accrued by a single application of a timestepping routine given the true concentration 
image as input, it is still of interest to analyze the ability of COSTA to correct for errors 
over longer timestepping sequences, that is, with less frequent access to true concen-
tration data. In this case, we used corrected predictions from the previous timestep as 
input to the next timestep. COSTA was thus exposed to data it had not been trained 
for. The results are shown in Fig. 10. This figure shows the accumulated errors for long 

Fig. 6  COSTA results at 30 min. See Fig. 5 for explanation

Fig. 7  Complex geometry and example photograph of the tracer test from the International FluidFlower 
benchmark study, together with the postprocessed concentration profile (cutoff at small values for illustra-
tion purposes) on on top of the spatial conductivity distribution
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sequences of timesteps from a single starting point (at 1 h and 6 min into the experi-
ment) for both the pure PBM and the COSTA-corrected timestepper.

This plot shows that, while the single-timestep corrected error remains low, COSTA 
faces challenges in generalizing the training set to perform corrections on initial condi-
tions that are predicted and not sourced from ‘exact’ image data. COSTA has shown 
itself capable of doing this in other work, e.g., Blakseth et al. (2022). Thus, we attribute 
the deteriorating results in this case to potential overfitting on a narrow dataset.

4  Application: Applying the Digital Twin for Controlling Tracer Plume 
Migration

The experiments presented in Sect. 3 studied performance of the digital twin in a one-way 
coupling from the physical to the digital twin. Here, we applied the digital twin to steer the 
physical twin, thus achieving a two-way coupling between the physical and digital twins, 
and arguably showing that the digital twin has reached capacity level 4 referring to Fig. 1. 
COSTA was set up using the same training data as described in Sect. 3.1, but the injection 
pattern, thus tracer profiles, in this experiment was not present in the training set and not 
fed to the network.

We considered tracer injection into the same geometry as used in Sect.  3.1, with the 
injection rate in well 1 fixed to 500 mL/h. This resulted in a tracer plume, and the task 
of the digital twin was to steer the plume away from the upper part of the domain, with 
a demarcation line shown in Fig. 11. This corresponds to a hypothetical situation where 
injection of a waste (e.g., dissolved CO2 ) is controlled to stay within an operation licence.

To this end, the digital twin was allowed to manipulate injection and production wells 
under the following constraints:

• The injection rate for an individual control well could not surpass 500 mL/h.
• The total injection rate in the control wells could not surpass 500 mL/h.
• The production rate had to match the total injection rate so that the net injection rate 

was zero.

Fig. 8  Uncorrected and corrected error in the geologically complex medium for one timestep (i.e., no accu-
mulating time error). COSTA is able to correct the modeling errors made in certain time intervals
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By corollary, the production rate was limited to 1000 mL/h, the sum of the fixed tracer 
injection rate and the maximal total control injection rate.

From the start of tracer injection, photographs of the tracer distribution were taken 
every 30 s and submitted to the digital twin. The digital twin then performed an optimiza-
tion routine, minimizing a cost function

(12)f (c1, c2, c3) = ∫Ω

c(x;Δt, c1, c2, c3)�(x) dx

Fig. 9  Errors for a single timestep, before correction (left) and after correction (right). Above: 3  h and 
50 min after start. Below: 4 h and 40 min after start

Fig. 10  Accumulated time errors for the corrected and uncorrected timestepping, beginning at 1  h and 
6 min after start and then predicting many timesteps into the future. The green line shows the error accu-
mulated by a pure PBM predictor, and the orange line shows the errror accumulated by a corrected COSTA 
predictor. For reference, the blue line shows the single-timstep corrected errors (the errors accrued for a 
single timestep when the timestepper receives the true concentration map as input)
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where c1, c2, and c3 are the injection rates for the three control wells subject to optimiza-
tion, c is the predicted future tracer distribution, and 0 ≤ � ≤ 1 is a ‘fuzzy’ map of the 
disallowed zone, see Fig. 11. This fuzzing was done with the intention of allowing the digi-
tal twin to respond with suitable control rates before the tracer plume actually reached the 
disallowed zone, without necessarily needing to simulate so far into the future.

The minimization of f was performed with the COBYLA method (Powell 1994), a suit-
able algorithm able to handle all the constraints without requiring higher order data, such 
as derivatives. The implementation was provided by SciPy 1.5.4.

The implemented well control rates, as recommended by the optimization algorithm, 
are visualized in Fig. 12, while the evolution of the plume is shown in Fig. 13. As can 
be seen, in the initial state, the algorithm recommended controlling tracer migration 
through injection at close to the maximum allowed rate into Control 1, with some injec-
tion also into Control 2. After about 15 min, the injection strategy switched to mainly 
prioritizing Control 2. This pattern was mainly kept for the remainder of the experiment, 
interrupted by short periods of injection also into Control wells 1 and 3. In practice, 
the measured production rate was at times approximately 1% lower than the prescribed 
rate due to mechanical irregularities in the operation of the pump. This discrepancy 
was automatically accounted for in the digital twin through the source correction term 
described in Sect. 2.2.

The impact of the control wells can clearly be seen in the evolution of the tracer 
plume: Initially, injection in Control 1 leads to a deviation from the circular plume 
shape of an isolated injection. The switch to injection in Control 2 seems consistent 
with an attempt to minimize migration into the disallowed zone, as does the reactivation 
of Control 1 late in the experiment. Figure 13 also shows the difficulty of the assigned 
optimization task, due to the combination of the geometry of the disallowed zone, the 
placement of the control wells, and the requirement that the tracer injection rate is fixed 
at 500 mL/H. Nevertheless, the example proves that our framework is capable of han-
dling real-time interaction between the physical and digital twins.

5  Conclusions and Outlook

We have presented a physical and digital twin for laboratory experiments of tracer trans-
port in porous media. The physical twin is a meter-scale FluidFlower rig, while the digital 
twin consists of a traditional physics-based simulator augmented with a Hybrid Analysis 
and Modeling (HAM) component. The latter aims to capture physical effects that are not in 

Fig. 11  Disallowed zone for the tracer plume (left) and fuzzy mask � (right)
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the solution space of the simulator, and was in this case implemented using a COrrective 
Source-Term Approach (COSTA). COSTA’s ability to augment the physics-based simula-
tor was illustrated with simulations in homogeneous and heterogeneous porous media.

We demonstrated the capabilities of the digital twin and the possibilites in real-time 
communication between physical asset and digital twin, by controlling tracer migration 
in the physical twin by optimizing on well controls. More broadly, we believe that the 
framework presented herein opens wide opportunities in combined experiments and simu-
lations to study porous media dynamics in data-rich settings: The tight integration offers 
a natural way to include data from observations into simulation models. In contrast with 
traditional methods for data assembly, the COSTA framework needs no assumptions on 

Fig. 12  Well rates used in the optimization experiments. All rates refer to injection, except the producer. 
The injector rate is kept constant at 500 mL/h

Fig. 13  Evolution of the tracer plume, shown at, respectively, 10 min, 35 min, 60 min and 80 min from the 
start of the experiment
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which parameters are uncertain, and it can enhance the range of the physics-based model 
to include effects not represented in the governing equations. This makes our approach an 
ideal tool for exploring and interpreting advanced laboratory experiments.

Two natural extensions of our approach are the inclusion of more complex physics, for 
instance, multiphase flow, and the inclusion of spatially (and temporally) sparse data. Mul-
tiphase flow will introduce at least two significant challenges: Image processing becomes 
considerably more difficult, and while DarSIA can be applied also in this setting, develop-
ment of an accurate tool that does not require manual tuning during the experiment may 
require further efforts; see Nordbotten et al. (2023) for more information. The more com-
plex flow patterns in multiphase flow, such as gravitational and capillary effects, will also 
put extra requirements on the machine learning component of our framework. While it it 
safe to say that these effects must be included in the training data for any machine learn-
ing approach, it is at the moment unclear whether COSTA as applied herein can also be 
applied to multiphase problems. Similarly, we have not yet attempted to apply the digital 
twin to sparse data, for instance, pressure measurements. While the location of the pressure 
sensors can be guided by optimal sensor placement techniques, the sparse data will need 
to be optimized prior to application of a COSTA version based on convolutional neural 
network. We have not investigated this, but expect achieving interpolation accuracy to be a 
challenge in the presence of geological heterogeneities and multiphase flows. Further work 
on image processing and data inclusion is thus needed to extend the digital twin framework 
to more complex problems.
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