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Abstract

While intersection graphs play a central role in the

algorithmic analysis of hard problems on undirected

graphs, the role of intersection digraphs in algorithms is

much less understood. We present several contributions

towards a better understanding of the algorithmic

treatment of intersection digraphs. First, we introduce

natural classes of intersection digraphs that generalize

several classes studied in the literature. Second, we define

the directed locally checkable vertex (DLCV) problems,

which capture many well‐studied problems on digraphs,

such as (INDEPENDENT) DOMINATING SET, KERNEL, and

H ‐HOMOMORPHISM. Third, we give a new width measure

of digraphs, bi‐mim‐width, and show that the DLCV

problems are polynomial‐time solvable when we are

provided a decomposition of small bi‐mim‐width. Fourth,
we show that several classes of intersection digraphs have

bounded bi‐mim‐width, implying that we can solve all

DLCV problems on these classes in polynomial time given

an intersection representation of the input digraph.

We identify reflexivity as a useful condition to obtain

intersection digraph classes of bounded bi‐mim‐width,
and therefore to obtain positive algorithmic results.
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1 | INTRODUCTION

The computational intractability of graph problems is often dealt with by restricting the input graph
to be a member of some graph class and exploiting the structural properties of this class to design
efficient algorithms. Intersection graph classes are an extensively studied family of classes of
undirected graphs where vertices are represented by sets with two vertices being adjacent if and only
if their corresponding sets intersect. For instance, a graph is an interval graph if it is an intersection
graph of intervals on a line. The literature on algorithmic aspects of classes of intersection graphs is
vast, and we refer to [13] for an overview. Even though the concept of intersection digraphs has
already been introduced in the early 1980s [9], these classes of directed graphs have not received
nearly as much attention in the algorithmic literature as their undirected counterparts. That is not to
say that they have not been considered before; for instance, interval digraphs [44], circular‐arc
digraphs [43], and permutation digraphs [35] have been introduced quite early on.

Formally, a digraphG is an intersection digraph if there exists a family S T v V G{( , ) : ( )}v v ∈ of
ordered pairs of sets such that there is an edge from v to w inG if and only if Sv intersectsTw. Note
that we add a loop on a vertex v if Sv andTv intersect. Even for interval digraphs, a natural starting
point for the investigation of algorithmic properties of intersection digraphs, no algorithmic
applications are known besides a polynomial‐time recognition algorithm of the class [35]. One
possible explanation for this is that the class of interval digraphs appears to be much richer than
their undirected counterparts. We observe that interval digraphs contain, for each integer n, some
orientation of the n n( × )‐grid (see Proposition 3); in contrast, interval graphs do not contain an
induced subgraph isomorphic to the 1‐subdivision of the claw. This shows that the underlying
undirected graphs of interval digraphs are very different from interval graphs.

The case of interval digraphs suggests that further structural restrictions are necessary to
make classes of intersection digraphs amenable for algorithmic treatment. In this vein,
restrictions of interval digraphs have been considered in the literature [20, 39] with applications
to digraph problems, such as INDEPENDENT DOMINATING SET, KERNEL, and LIST HOMOMORPHISM. A
common feature of the restrictions considered in [20, 39] is that the digraphs are reflexive,
meaning that each vertex has a loop. Note that for a class of intersection digraphs, reflexivity
gives much more additional structure than just added loops.

In this work, we give a host of algorithmic applications of intersection digraph classes, in
the following manner:

• We give new and more general classes of intersection digraphs, namely, H ‐digraphs, rooted
directed path digraphs, and H ‐convex digraphs. (See the discussion below Theorem 3 for
definitions.)

• We introduce directed analogs of the locally checkable vertex problems [48], which include
many well‐studied digraph problems, such as (INDEPENDENT) DOMINATING SET, KERNEL,
H ‐HOMOMORPHISM, and ORIENTED k‐COLORING, see Tables 1 and 2.

• We define a new width measure of digraphs, called bi‐mim‐width, and prove that the directed
locally checkable vertex (DLCV) problems can be solved in polynomial time when a
decomposition of bounded bi‐mim‐width of the input graph is given.

• We prove that fairly general subclasses of these intersection digraph classes have bounded bi‐
mim‐width, see Figure 1.

Note in particular that the last item implies that given a representation of the input digraph,
all directed locally checkable problems are solvable in polynomial time on the classes of
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intersection digraphs in question. For H ‐digraphs, we identify reflexivity as the additional
restriction that gives bounded bi‐mim‐width, and therefore algorithmic applications, while we
prove that the bi‐mim‐width is unbounded when we drop this requirement. Recently, Francis,
Hell, and Jacob [22] obtained polynomial‐time algorithms for KERNEL, DOMINATING SET, and
ABSORBING SET on reflexive interval digraphs. Our results are more general in two ways: we give
algorithms for more problems, including the aforementioned ones (see Tables 1 and 2), and on
much broader digraph classes (see Figure 1). Naturally, the specific algorithms presented
in [22] are more efficient than the algorithm following from our general framework. In the
following, we discuss the above items in more detail.

1.1 | Bi‐mim‐width

We introduce a new digraph width parameter, called bi‐mim‐width, which is a directed analog
of the mim‐width of an undirected graph introduced by Vatshelle [49]. Roughly speaking, the
bi‐mim‐width of a digraphG is defined as a branch‐width with a cut function that measures for
a vertex partition A B( , ) of G, the sum of the sizes of maximum induced matchings in two
bipartite digraphs, one induced by edges from A to B, and the other induced by edges from B to
A. This is similar to how rank‐width is generalized to bi‐rank‐width for digraphs [31, 32]. We
formally define bi‐mim‐width and linear bi‐mim‐width in Section 3. We compare bi‐mim‐width
and other known width parameters. The mim‐width of an undirected graph is exactly half of
the bi‐mim‐width of the digraph obtained by replacing each edge with bi‐directed edges, and

TABLE 1 Examples of σ σ ρ ρ( , , , )+ − + − ‐sets, represented by finite or cofinite sets.

σ+ σ− ρ+ ρ− Standard name

{0} {0} {0}⧹ Kernel [50]

k{0, …, − 1} {0} i i l{ : }≥ k l( , )‐out Kernel [40]

{0}⧹ Dominating set [25]

{0} {0} {0}⧹ Independent Dominating set [16]

{0}⧹ In‐Dominating set/Absorbing set [23]

{0}⧹ {0}⧹ Twin Dominating set [17]

i i k{ : }≥ k‐Dominating set [36]

{0}⧹ {0}⧹ Total Dominating set [2]

{0} {0} {1} Efficient (Closed) Dominating set [8]

{1} {1} Efficient Total Dominating set [42]

k{ } k{ } k‐Regular Induced Subdigraph [15]

Note: For any row there is an associated NP‐complete problem, usually maximizing or minimizing the cardinality of a set with
the property. For example, some properties are known under different names. Efficient Total Dominating sets are also called
Efficient Open Dominating sets, and here even the existence of such a set in a digraph G is NP‐complete, as it corresponds
to deciding if V G( ) can be partitioned by the open out‐neighborhoods of some S V G( )⊆ . If rows A and B have their
in‐restrictions and out‐restrictions swapped for both σ and ρ (i.e., σ+ of row A equals σ− of row B and vice versa, and the same
for ρ+ and ρ−), then a row‐A set in G is always a row‐B set in the digraph with all arcs of G reversed; this is the case for
Dominating set versus in‐Dominating set and for Kernel versus Independent Dominating set.
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this observation can be used to argue that a bound on the bi‐mim‐width of a class of digraphs
implies a bound on the mim‐width of a certain class of undirected graphs.

1.2 | DLCV problems

We introduce directed locally checkable vertex subset (DLCVS) and partitioning (DLCVP)
problems, in analogy with [48]. We abbreviate the union of these two families of problems to
“DLCV problems.” A DLCVS problem is represented as a σ σ ρ ρ( , , , )+ − + − ‐problem for some
σ σ ρ ρ, , ,+ − + − ⊆ , and it asks to find a maximum or minimum vertex set S in a digraphG such
that for every vertex v in S, the numbers of out/in‐neighbors in S are contained in σ+ and σ−,
respectively, and for every vertex v in V G S( )⧹ , the numbers of out/in‐neighbors in S are
contained in ρ+ and ρ−, respectively. If each μ σ σ ρ ρ{ , , , }+ − + −∈ is either finite or cofinite (i.e.,
μ⧹ is finite), then we say that the problem is represented by finite or cofinite sets. See Table 1

TABLE 2 Examples of DLCVP problems that are represented by finite or cofinite sets.

Problem name q DLCVP q q( × )‐matrix D

Directed H ‐Homomorphism [26]  V H( )
( )i jD i j μ μ, [ , ] = ,ij ij

+ −∀ , where



μ
ij E H

=
if ( ),

{0} otherwiseij
+ ∈

and



μ
ji E H

=
if ( ),

{0} otherwiseij
− ∈

Oriented k‐Coloring [18, 47] k H K: k
⎯ →⎯⎯ Directed H ‐Homomorphism

Simple k‐Coloring (*) [45] k H K: k

⎯ →⎯⎯⎯ ∘ Directed H ‐Homomorphism

σ σ ρ ρ( , , , )+ − + −∃ ‐set (this paper) 2 







σ σ

ρ ρ

( , ) ( , )

( , ) ( , )

+ −

+ −

δ k δ k( , )+
1

−
2≥ ≥ ‐Partition [4] 2 








j j k

j j k

({ : }, ) ( , )

( , ) ( , { : })

1

2

≥

≥

δ k δ k( , )+
1

+
2≥ ≥ ‐Partition [3] 2 








j j k

j j k

({ : }, ) ( , )

( , ) ({ : }, )

1

2

≥

≥

k k(Δ , Δ )+
1

+
2≤ ≤ ‐Partition [6] 2 








j j k

j j k

({ : }, ) ( , )

( , ) ({ : }, )

1

2

≤

≤

δ k δ k( , )+
1

−
2≥ ≥ ‐Bipartite‐Partition [7] 2 








j j k

j j k

( , ) ({ : }, )

( , { : }) ( , )

1

2

≥

≥

δ k δ k( , )+
1

+
2≥ ≥ ‐Bipartite‐Partition [7] 2 








j j k

j j k

( , ) ({ : }, )

({ : }, ) ( , )

1

2

≥

≥

2‐Out‐Coloring [1] 2 







( {0}, ) ( {0}, )

( {0}, ) ( {0}, )

⧹ ⧹

⧹ ⧹

Note: For every row there are choices of values for which the problems are NP‐complete. For Directed H ‐Homomorphism let

 V H V H( ) = {1, …, ( ) } and denote by H K: k
⎯→⎯⎯

that H is an orientation of a complete graph on k vertices, and by H K: k

⎯ →⎯⎯ ∘ that H
is an orientation of a complete graph on k vertices, with loops. (*) For SIMPLE k‐COLORING, we require two nonempty color
classes to avoid trivial solutions. The general algorithm can easily be modified to take this into account.

Abbreviation: DLCVP, directed locally checkable vertex partitioning.
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for several examples of DLCVS problems that appear in the literature and note that they are all
represented by finite or cofinite sets. In particular, it includes the KERNEL problem, which was
introduced by von Neumann and Morgenstern [50].

A DLCVP problem is represented by a q q( × )‐matrix D for some positive integer q, where
for all i j q D i j μ μ, {1, …, }, [ , ] = ( , )i j i j,

+
,
−∈ for some μ μ,i j i j,

+
,
− ⊆ . The problem asks to find a

vertex partition of a given digraph into X X X, , …, q1 2 such that for all i j q, [ ]∈ , the numbers of
out/in‐neighbors of a vertex of Xi in Xj are contained in μi j,

+ and μi j,
− , respectively. In analogy

with subset problems, we say that the problem is represented by finite or cofinite sets if each set
appearing in a pair that is an entry of D is either finite or cofinite. DIRECTED H ‐HOMOMORPHISM is
a DLCVP problem represented by finite or cofinite sets: For a digraph H on vertices q{1, …, },
we can view a homomorphism from a digraph G to H as a q‐partition X X( , …, )q1 of V G( )

such that we can only have an edge from Xi to Xj if the edge i j( , ) is present in H . See Table 2.

The ORIENTED k‐COLORING problem, introduced by Sopena [46], asks whether there is a
homomorphism to some orientation of a complete graph on at most k vertices, and can
therefore be reduced to a series of DLCVP problems. Removing the requirement that the color
classes have to be independent sets, Smolíková [45] introduced the notion of a simple
k‐coloring, requiring however that the number of colors is at least two, to avoid trivial
solutions. Several works in the literature concern problems of 2‐partitioning the vertex sets of
digraphs into parts with degree constraints either inside or between the parts of the partition
[1, 3, 4, 6, 7]. All of these problems can be observed to be LCVP problems as well, see Table 2.
Note that in the DLCVP‐framework, we can consider q‐partitions for any fixed q 2≥ , for all
problems apart from 2‐OUT‐COLORING. This fails for q‐OUT‐COLORING, since this problem asks for
a q‐coloring with no monochromatic out‐neighborhood.

FIGURE 1 Digraph classes with bounds on their (linear) bi‐mim‐width. For graph classes marked with ⋆ there
are polynomial‐time algorithms to compute representations of their members. If digraph class A is depicted above B

and there is an edge between A and B then B A⊆ . The bubble on the top, marked with “ ωbimimw (1)∈ ,” contains
classes of unbounded bi‐mim‐width, while the bubble on the bottom, labeled “bimimw (1)∈ ,” contains classes of
constant bi‐mim‐width. The inner lower bubble, labeled “lbimimw (1)∈ ” contains classes whose linear bi‐mim‐
width is constant. The boundedness of the bi‐mim‐width in the bubble labeled “?” remains an open question. DAG,
directed acyclic graph. [Color figure can be viewed at wileyonlinelibrary.com]
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Theorem 1. Directed LCVS and LCVP problems represented by finite or cofinite sets can
be solved in XP time parameterized by the bi‐mim‐width of a given decomposition of the
input digraph.

Furthermore, we show that the distance variants of DLCVS problems, for instance, DIS-

TANCE‐r DOMINATING SET can be solved in polynomial time on digraphs of bounded bi‐mim‐
width. Another natural variant is the k‐KERNEL problem (see [5, Section 8.6.2]), which asks for a
kernel in the k( − 1)th power of a given digraph. To show this, we prove that the rth power of a
digraph of bi‐mim‐width w has bi‐mim‐width at most rw (Lemma 6). For undirected graphs,
there is a bound that does not depend on r [28], but we were not able to obtain such a bound for
the directed case.

Theorem 2. For any fixed r , each distance‐r version of a DLCVS problem that is
represented by finite or cofinite sets can be solved in XP time parameterized by the bi‐mim‐
width of a given decomposition of the input digraph.

1.3 | Classes of intersection digraphs and their bi‐mim‐width

We provide various classes of digraphs of bounded bi‐mim‐width. We first summarize our
results in the following theorem and give the background below. We illustrate the bounds in
Figure 1.

Theorem 3.

(i) Given a reflexive interval digraph, one can output a linear branch decomposition of
bi‐mim‐width at most 2 in polynomial time. On the other hand, interval digraphs have
unbounded bi‐mim‐width.

(ii) Given a representation of an adjusted permutation digraph G, one can construct in
polynomial time a linear branch decomposition of G of bi‐mim‐width at most 4.
Permutation digraphs have unbounded bi‐mim‐width.

(iii) Given a representation of an adjusted rooted directed path digraph G, one can
construct in polynomial time a branch decomposition of G of bi‐mim‐width at most 2.
Rooted directed path digraphs have unbounded bi‐mim‐width and adjusted rooted
directed path digraphs have unbounded linear bi‐mim‐width.

(iv) Let H be an undirected graph. Given a representation of a reflexive H ‐digraph G, one
can construct in polynomial time a linear branch decomposition of G of bi‐mim‐width
at most  E H12 ( ) . P2‐digraphs, which are interval digraphs, have unbounded bi‐mim‐
width.

(v) Let H be an undirected graph. Given a nice H ‐convex digraph G with its bipartition
A B( , ), one can construct in polynomial time a linear branch decomposition of G of
bi‐mim‐width at most  E H12 ( ) . P2‐convex digraphs have unbounded bi‐mim‐width.

(vi) Tournaments and directed acyclic graphs have unbounded bi‐mim‐width.

(i) Interval digraphs: Recall that Müller [35] devised a recognition algorithm for interval
digraphs, which also outputs a representation. By testing the reflexivity of a digraph, we can
recognize reflexive interval digraphs, and output its representation. We convert it into a linear

6 | JAFFKE ET AL.
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branch decomposition of bi‐mim‐width at most 2. On the other hand, interval digraphs
generally have unbounded bi‐mim‐width, witnessed by orientations of grids with an interval
digraph representation. By Theorem 1, we can solve all DLCV problems on reflexive interval
digraphs in polynomial time. This extends the polynomial‐time algorithms for INDEPENDENT
DOMINATING SET and KERNEL on interval nest digraphs given by Prisner [39], and includes
polynomial‐time algorithms for ABSORBING SET, DOMINATING SET, and KERNEL by Francis, Hell,
and Jacob [22].

(ii) Permutation digraphs: A permutation digraph is an intersection digraph of pairs of line
segments whose endpoints lie on two parallel lines. Müller [35] considered permutation
digraphs under the name “matching diagram digraph,” and observed that every interval
digraph is a permutation digraph. Therefore, permutation digraphs have unbounded bi‐mim‐
width. We say that a permutation digraph is adjusted if there exists one of the parallel lines, say
Λ, such that for all v V G S( ), v∈ and Tv have the same endpoint in Λ. We show that every
adjusted permutation digraph has linear bi‐mim‐width at most 4.

(iii) Rooted directed path digraphs: It is known that chordal graphs have unbounded mim‐
width [30, 34]. As restrictions of chordal graphs, it has been shown that rooted directed path
graphs, and more generally, leaf power graphs have mim‐width at most 1 [28], while they have
unbounded linear mim‐width. A rooted directed path digraph is an intersection digraph of pairs
of directed paths in a rooted directed tree (every node is reachable from the root), and it is
adjusted if for every vertex v, the head of Sv is equal to the head of Tv. We show that every
adjusted rooted directed path digraph has bi‐mim‐width at most 2. Since this class includes the
biorientations of trees, it has unbounded linear bi‐mim‐width.

(iv) H ‐digraphs: For an undirected graph H , an H ‐graph is an undirected intersection graph
of connected subgraphs in an H ‐subdivision, introduced by Bíró, Hujter, and Tuza [11]. For
example, interval graphs and circular‐arc graphs are P2‐graphs and C3‐graphs, respectively.
Fomin, Golovach, and Raymond [21] showed that H ‐graphs have linear mim‐width at most
 E H2 ( ) + 1. Motivated by H ‐graphs, we introduce an H ‐digraph that is the intersection
digraph of pairs of connected subgraphs in an H ‐subdivision (where H and its subdivision are
undirected). We prove that reflexive H ‐digraphs have linear bi‐mim‐width at most  E H12 ( ) .
This extends the linear bound of Fomin et al. [21] for H ‐graphs.

(v) H ‐convex digraphs: For an undirected graph H , a bipartite digraph G with bipartition
A B( , ) is an H ‐convex digraph, if there exists a subdivision F of H with V F A( ) = such that for
every vertex b of B, each of the set of out‐neighbors and the set of in‐neighbors of v induces a
connected subgraph in F . As an analogous concept to reflexivity in H ‐digraphs, we say that an
H ‐convex digraph is nice if for every vertex b of B, there is a bi‐directed edge between b and
some vertex of A. Note that H ‐convex graphs, introduced by Bonomo‐Braberman et al. [12],
can be seen as nice H ‐convex digraphs, by replacing every edge with bi‐directed edges. We
prove that nice H ‐convex digraphs have linear bi‐mim‐width at most  E H12 ( ) . This implies
that H ‐convex graphs have linear mim‐width at most  E H6 ( ) . For the special case when T is a
tree with maximum degree Δ and t branching nodes, Bonomo‐Braberman et al. [12] showed an
improved bound of t2 + (Δ − 2) on the mim‐width of T ‐convex graphs.

(vi) Directed acyclic graphs and tournaments: We show that if H is the underlying
undirected graph of a digraph G, then the bi‐mim‐width of G is at least the mim‐width of H .
Using this, we can show that acyclic orientations of grids have unbounded bi‐mim‐width. We
also prove that tournaments have unbounded bi‐mim‐width. This refines an argument that
they have unbounded bi‐rank‐width [5, Lemma 9.9.11].

We can summarize our algorithmic results as follows.

JAFFKE ET AL. | 7

 10970118, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.23065 by U

N
IV

E
R

SIT
Y

 O
F B

E
R

G
E

N
, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Corollary 1. Given a reflexive interval digraph, or a representation of either an adjusted
permutation digraph, or an adjusted rooted directed path digraph, or a reflexive H ‐digraph,
or a nice H ‐convex digraph, we can solve all DLCV problems represented by finite or cofinite
sets, and their distance variants, in polynomial time.

1.4 | Related work

Intersection digraphs have first been considered by Beineke and Zamfirescu in 1982 [9]. Sen
et al. [44] introduced the class of interval digraphs and Sen et al. [43] the class of circular‐arc
digraphs. Permutation digraphs were first studied under the name “matching diagram
digraphs” by Müller [35]. Prisner [39] showed that the problems CLIQUE, CHROMATIC NUMBER,
INDEPENDENT SET, PARTITION INTO CLIQUES, KERNEL, and INDEPENDENT DOMINATING SET are
polynomial‐time solvable on interval nest digraphs, a subclass of interval digraphs G having
a representation S T v V G{( , ) : ( )}v v ∈ where for each vertex v V G( )∈ , either S Tv v⊆ or
T Sv v⊆ . Very recently, and independently of this work, Francis, Hell, and Jacob [22] showed
that ABSORBING SET, DOMINATING SET, and KERNEL are polynomial‐time solvable on reflexive
interval digraphs, a superclass of interval nest digraphs. They also showed that these problems
remain hard on interval digraphs, even when all intervals are single points. Feder et al. [20]
considered the LIST H ‐HOMOMORPHISM problem, but posing a structural restriction on H rather
than the input graph. They showed that if H is an adjusted interval digraph, that is, an interval
digraph with a representation where both intervals associated with each vertex have the same
left endpoint, then LIST H ‐HOMOMORPHISM is polynomial‐time solvable.

The algorithmic result for undirected graphs analogous to ours is that all (undirected)
locally checkable vertex problems are polynomial‐time solvable if the input graph is given
together with a decomposition of constant mim‐width. This has been shown by Bui‐Xuan,
Telle, and Vatshelle [14]. In their work, the run time of the algorithms is stated in terms of the
number of equivalence classes of the d‐neighborhood equivalence relation, and the connection
between this notion and mim‐width was made explicit by Belmonte and Vatshelle [10].

1.5 | Organization of the paper

The paper is organized as follows. In Section 2, we introduce basic notations. In Section 3, we
formally introduce bi‐mim‐width and compare it with other known width parameters. In
Section 4, we prove Theorem 3, and in Section 5, we prove Theorems 1 and 2.

2 | PRELIMINARIES

For a positive integer n, we use the shorthand n n[ ] {1, …, }≔ .

2.1 | Undirected graphs

We use standard notions of graph theory and refer to [19] for an overview. All undirected
graphs considered in this work are finite and simple. For an undirected graph G, we denote by

8 | JAFFKE ET AL.
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V G( ) the vertex set ofG and E G( ) the edge set ofG. For an edge u v E G{ , } ( )∈ , we may use the
shorthand “uv.”

For an undirected graph G and two disjoint vertex sets A B V G, ( )⊆ , we denote by G A B[ , ]

the bipartite graph on bipartition A B( , ) such that E G A B( [ , ]) is exactly the set of edges of G
incident with both A and B.

Let G be a graph and e uv E G= ( )∈ . The (edge) subdivision of e is the operation of
removing the edge e and adding a new vertex x and the edges ux and xv to G. A graph H is a
subdivision of G if H can be obtained from G by a series of edge subdivisions. If H is a
subdivision of G, then each vertex in V G( ) is called a branching vertex in H . A path P in H is
called a branching path if its endpoints are branching vertices and no other vertices in P are
branching vertices.

2.2 | Digraphs

All digraphs considered in this work are finite and have no multiple edges, but may have loops. For a
digraphG, we denote byV G( ) its vertex set and by E G V G V G( ) ( ) × ( )⊆ its edge set. We say that
an edge u v E G( , ) ( )∈ is directed from u to v. For a vertex v V G( )∈ , the set of its out‐neighbors is

N v w v w E G( ) = { ( , ) ( )}G
+ ∈ , and the set of its in‐neighbors is N v u u v E G( ) = { ( , ) ( )}G

− ∈ . We may
drop G as a subscript if it is clear from the context.

For a digraph G, the undirected graph obtained by replacing every edge with an undirected
edge and then removing multiple edges is called its underlying undirected graph. For an
undirected graph G, a digraph obtained by replacing every edge uv with one of u v( , ) and v u( , )

is called an orientation, and the digraph obtained by replacing every edge uv with two directed
edges u v( , ) and v u( , ) is called its biorientation.

For a digraphG and two disjoint vertex sets A B V G, ( )⊆ , we denote byG A B[ ]→ the bipartite
digraph on bipartition A B( , ) with edge set E G A B E G A B( [ ]) = ( ) ( × )→ ∩ , and denote by
G A B[ , ] the bipartite digraph on bipartition A B( , ) with edge set E G A B E G B A( [ ]) ( [ ])→ ∪ → .

A tournament is an orientation of a complete graph.

2.3 | Common notation

Let G be an undirected graph or a digraph. A set M of edges in G is a matching if no two
edges share an endpoint, and it is an induced matching if there are no edges in G meeting
two distinct edges in M . We denote by ν G( ) the maximum size of an induced matching
of G.

For two undirected graphs or two directed graphs G and H , we denote by G H =∩

V G V H E G E H( ( ) ( ), ( ) ( ))∩ ∩ and G H V G V H E G E H= ( ( ) ( ), ( ) ( ))∪ ∪ ∪ .
For a vertex set A of G, we denote by A V G A( )≔ ⧹ . A vertex bipartition A A( , ) of G for

some vertex set A of G will be called a cut. A cut A A( , ) of G is balanced if  V G( ) 3<∕

   A V G2 ( ) 3≤ ∕ .
For two vertices u v V G, ( )∈ , the distance between u and v, denoted by u vdist ( , )G or simply
u vdist( , ), is the length of the shortest path from u to v (if G is a digraph, then we consider

directed paths). For u V G( )∈ and A V G( )⊆ , we let u A u vdist ( , ) = min dist ( , )G v A G∈ . For a
positive integer r , we denote by Gr the graph obtained from G by, for every pair x y, of vertices
in G with x y rdist ( , )G ≤ , adding an edge from x to y. We call it the r‐th power of G.

JAFFKE ET AL. | 9
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For an equivalence relation ~, we denote by nec( ~ ) the number of equivalence classes of ~.

3 | BI ‐MIM ‐WIDTH

In this section, we introduce the bi‐mim‐width of a digraph. For an undirected graph G and
A V G( )⊆ , let A ν G A Amim ( ) ( [ , ])G ≔ . For a digraph G and A V G( )⊆ ,

• let A ν G A Amim ( ) ( [ ])G
+ ≔ → and A ν G A Amim ( ) ( [ ])G

− ≔ → and
• let A A Abimim ( ) mim ( ) + mim ( )G G G

+ −≔ .

A tree is subcubic if it has at least two vertices and every internal vertex has degree 3. A tree
T is a caterpillar if it contains a path P such that every vertex in V T V P( ) ( )⧹ has a neighbor in
P. LetG be an undirected graph or a digraph. A branch decomposition over the vertex set ofG is a
pair T λ( , ) of a subcubic treeT and a bijection λ fromV G( ) to the leaves ofT . We would like to
point out that branch decompositions were originally defined over edge sets of graphs [41].
Throughout this work, we will only use branch decompositions over vertex sets which from
now on we simply refer to as branch decompositions. If T is a caterpillar, then T λ( , ) is called a
linear branch decomposition ofG. Note that in Figure 3 on page 11, we give an illustration of the
following definition.

Definition 1 (Bi‐mim‐width). LetG be a digraph and let T λ( , ) be a branch decomposition
of G. For each edge e E T( )∈ , let TA and TB be the connected components of T e− . Let
A B( , )e e be the cut of G where Ae is the set of vertices that λ maps to the leaves in TA and
Be is the set of vertices that λ maps to the leaves in TB. The bi‐mim‐width of T λ( , )

is T λ Abimimw( , ) max (bimim ( ))e E T G e( )≔ ∈ . The bi‐mim‐width of G, denoted by
Gbimimw( ), is the minimum bi‐mim‐width of any branch decomposition of G. The linear

bi‐mim‐width of G, denoted by Glbimimw( ), is the minimum bi‐mim‐width of any linear
branch decomposition of G.

The definition of bi‐mim‐width is motivated by the mim‐width of an undirected graph
introduced by Vatshelle [49].

Definition 2 (Mim‐width). Let G be an undirected graph and let T λ( , ) be a branch
decomposition of G. For each edge e E T( )∈ , let TA and TB be the two connected
components of T e− . Let A B( , )e e be the cut of G where Ae is the set of vertices that λ
maps to the leaves in TA and Be is the set of vertices that λ maps to the leaves in TB. The
mim‐width of T λ( , ) is T λ Amimw( , ) max mim ( )e E T G e( )≔ ∈ . Themim‐width ofG, denoted
by Gmimw( ), is the minimum mim‐width of any branch decomposition of G. The linear
mim‐width ofG, denoted by Glmimw( ), is the minimum mim‐width of any linear branch
decomposition of G.

Remark 1. Note that there is a natural correspondence between linear branch
decompositions of a (di)graph G and linear orders of V G( ). Given a linear branch
decomposition T λ( , ) ofG, consider a maximal path P inT such that each internal node
of P has exactly one neighbor outside of P. We can associate a linear order ofV G( ) with

10 | JAFFKE ET AL.
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P as follows. We start at one endpoint t of P, which is a leaf of T , and let the vertex
mapped to t be the first vertex. Then, we follow the nodes P in the order in which they
appear on the path, at each node letting the vertex ofG mapped to its single pendant leaf be
the next vertex in the order. Consider the set of cuts induced by this order as follows. For
each position i, take the vertices on one side to be the one whose index is at most i, and the
remaining ones on the other side. All cuts induced by T λ( , ) are of this form, apart from the
ones that have a single vertex on one side. However, for mim‐width and bi‐mim‐width,
such cuts have low complexity, in particular, their mim‐value can be at most one and their
bi‐mim‐value can be at most two. (Constructing a linear branch decomposition from a
linear order of V G( ) can be done analogously.) Therefore, when dealing with linear mim‐
width of at least one or bi‐mim‐width of at least two, we can safely switch to the language
of linear orders which we do throughout the text.

The following two lemmas are clear by definition.

Lemma 1. Let G be a digraph and let H be an induced subdigraph of G. Then
H Gbimimw( ) bimimw( )≤ and H Glbimimw( ) lbimimw( )≤ .

Lemma 2. Let G be an undirected graph and let H be the biorientation of G. Then for

every vertex partition A B( , ) of G, we have ν G A B( [ , ]) =
ν H A B ν H B A( [ ]) + ( [ ])

2

→ → . In

particular, we have Gmimw( ) =
Hbimimw( )

2
.

We show that if a digraph G has small bi‐mim‐width, then its underlying undirected graph
has small mim‐width. But the other direction does not hold; the class of tournaments has
unbounded bi‐mim‐width.

Lemma 3. Let G be a digraph and let H be the underlying undirected graph of G. Then
H Gmimw( ) bimimw( )≤ and H Glmimw( ) lbimimw( )≤ . On the other hand, the class of

tournaments has unbounded bi‐mim‐width, while their underlying undirected graphs have
linear mim‐width 1.

Proof. Let T λ( , ) be a branch decomposition of H , and assume that it has mim‐width t .
Then, T has an edge e inducing a cut A B( , )e e such that A tmim ( ) =H e . Let M be a
maximum induced matching of H A B[ , ]e e , and let M M( , )1 2 be the partition of M such
that original edges in M1 are contained in G A B[ ]e e→ and original edges of M2 are
contained in G B A[ ]e e→ . It shows that the sum of the sizes of the maximum induced
matchings in G A B[ ]e e→ and in G B A[ ]e e→ is at least t . This implies that T λ( , ) has
bi‐mim‐width at least t , as a branch decomposition of G. As we chose T λ( , ) arbitrarily,
we conclude that G has bi‐mim‐width at least Hmimw( ). The same argument obtained
by replacing a branch decomposition with a linear branch decomposition shows that

H Glmimw( ) lbimimw( )≤ .
We prove the second statement. For every integer n 2≥ , we define Gn as the digraph

on vertex set v i j n{ : , [ ]}i j, ∈ satisfying the following:

• for all i n[ ]∈ and j j n, [ ]1 2 ∈ with j j<1 2, there is an edge from vi j, 1
to vi j, 2

,
• for all i n[ − 1]∈ and j n[ ]∈ , there is an edge from vi j, to vi j+1, ,

JAFFKE ET AL. | 11
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• for all i i j j n, , , [ ]1 2 1 2 ∈ with i i<1 2,
– if i i− 0 (mod 3)2 1 ≡ and j j1 2≥ , then there is an edge from vi j,1 1

to vi j,2 2
,

– if i i− 0 (mod 3)2 1 ≡ and j j<1 2, then there is an edge from vi j,2 2
to vi j,1 1

,
– if i i− 1 (mod 3)2 1 ≡ and i j i j( , ) ( + 1, )2 2 1 1≠ , then there is an edge from vi j,2 2

to vi j,1 1
,

– if i i− 2 (mod 3)2 1 ≡ , then there is an edge from vi j,1 1
to vi j,2 2

.

This construction adds, for each i j i j n n( , ), ( , ) [ ] × [ ]1 1 2 2 ∈ with i j i j( , ) ( , )1 1 2 2≠

precisely one of the edges ( ) ( )v v v v, , ,i j i j i j i j, , , ,1 1 2 2 2 2 1 1
, therefore Gn is a tournament. For

each i n[ ]∈ , we let R v x n{ : [ ]}i i x,≔ ∈ and C v y n{ : [ ]}j y j,≔ ∈ .
We claim that for every positive integer k G, k18 has bi‐mim‐width at least k. Suppose

for contradiction that there is a branch decomposition of G k18 of bi‐mim‐width at most
k − 1. Let n k18≔ and G Gn≔ .

Observe that there is a cut A B( , ) of G where

 V G
A

V G
A k

| ( )|

3
<

2| ( )|

3
and bimim ( ) − 1.G≤ ≤

To obtain such a cut, we consider the branch decomposition of G as rooted, and let t
be the node that is farthest from the root such that the number q of vertices that are
mapped to the descendants of t is at least  V G( ) 3∕ . Because t is chosen to be farthest
from the root, q is also less than  V G2 ( ) 3∕ . We can set A to be the set of vertices ofG that
are mapped to the descendants of t .

We divide into two cases.

Case 1. For every j n C[ ], j∈ contains a vertex of A and a vertex of B: Then there exists
a n[ − 1]j ∈ for each j n[ ]∈ such that va j,j and va j+1,j

are contained in distinct sets of A
and B. Let J n[ ]1 ⊆ be a set of size at least n 2∕ such that either

• for all j J v A, a j1 ,j∈ ∈ , or
• for all j J v B, a j1 ,j∈ ∈ .

Without loss of generality, we assume that for all j J v A, a j1 ,j∈ ∈ . The proof is
symmetric when v Ba j,j ∈ . Furthermore, we take a subset J2 of J1 of size at least n 6∕ such
that integers in a j J{ : }j 2∈ are pairwise congruent modulo 3.

Now, we verify that {( ) }v v j J, :a j a j, +1, 2j j
∈ is an induced matching in G A B[ ]→ .

Let x y J, 2∈ be distinct integers and assume that a ax y≤ . If a a=x y, then
a a( + 1) − 1 (mod 3)x y ≡ , and thus there is an edge from va x+1,x

to va y,y and similarly,
there is an edge from va y+1,y

to va x,x . Assume that a a<x y. Then a a− ( + 1) 2 (mod 3)y x ≡

and a a( + 1) − 1 (mod 3)y x ≡ , and thus there is an edge from va x+1,x
to va y,y and there is

an edge from va y+1,y
to va x,x . This shows that there are no edges between { }v v,a x a x, +1,x x

and { }v v,a y a y, +1,y y
in G A B[ ]→ , and therefore {( ) }v v j I, :a j a j, +1, 2j j

∈ is an induced
matching in G A B[ ]→ of size at least n k6 = 3∕ . This contradicts the assumption that

A kbimim ( ) − 1G ≤ .

Case 2. For some j n C[ ], j∈ is fully contained in one of A and B: Without loss of
generality, we assume that Cj is contained in A. Since  B n> 3∕ , there is a subset I n[ ]1 ⊆

12 | JAFFKE ET AL.
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such that  I n 31 ≥ ∕ , and for each i I a B, i b1 , i
∈ ∈ for some b n[ ]i ∈ . We take a subset I2 of

I1 of size at least n 9∕ where all integers in I2 are pairwise congruent modulo 3. Lastly, we
take a subset I3 of I2 of size at least n 18∕ such that either

• for all i I b j, >i3∈ , or
• for all i I b j, <i3∈ .

First, we assume that b j>i for all i I3∈ . We verify that {( ) }v v i I, :i j i b, , 3i
∈ is an

induced matching in G A B[ ]→ . Let x y I, 3∈ with x y< . As x and y are congruent
modulo 3, there is an edge from vx b, x

to vy j, and there is an edge from vy b, y
to vx j, . It shows

that there are no edges between { }v v,x j x b, , x
and { }v v,y j y b, , y

in G A B[ ]→ , and therefore

{( ) }v v x I, :x j x b, , 3x
∈ is an induced matching in G A B[ ]→ of size at least n k18 =∕ . It

contradicts the assumption that A kbimim( ) − 1≤ . The argument when b j<i for all
i I3∈ is similar. □

We argue that directed tree‐width [29] and bi‐mim‐width are incomparable. The (rather
technical) definition of directed tree‐width is not necessary for the remainder of this paper, so
we only give it in Appendix A. The only facts we need are that acyclic digraphs have directed
tree‐width 1, and that subdivisions of cylindrical grids (see Figure 2) have unbounded directed
tree‐width [29, 33].

Lemma 4. Directed tree‐width and bi‐mim‐width are incomparable.

Proof. The class of all acyclic orientations of undirected grids has directed tree‐width 1
but has unbounded bi‐mim‐width, by Lemma 3.

We construct a class of digraphs of bounded bi‐mim‐width, but unbounded directed
tree‐width. For positive integers n and k, letCn k, be the digraph obtained from the disjoint
union of n independent sets A A A, , …, n1 2 of size k with A An+1 1≔ such that

• E C u v u A v A i n( ) = {( , ) : , , [ ]}n k i i, +1∈ ∈ ∈ .

FIGURE 2 Illustration of a cylindrical grid.

JAFFKE ET AL. | 13
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We argue that any linear order of V C( )n k, such that v appears before w whenever
v Ai∈ and w Aj∈ with i j< has bi‐mim‐width at most three. Let B B( , ) be any cut
induced by such a linear order. There is at most one i n[ ]∈ such that A Bi ∩ ≠ ∅ and
A Bi ∩ ≠ ∅. Therefore, the edges in C B B[ , ]n k, are made up of the sets (whenever they
exist) A B A B A A× , ×i i i i−1 +1∩ ∩ , and B A B A×n 1∩ ∩ . Each such set contributes
with at most one edge to the bi‐mim‐value of the cut B B( , ). To see that Cn k, with
sufficiently large n k, has large directed tree‐width, one can create a subdivision of a
cylindrical grid as a subgraph which has large directed tree‐width [29, 33]. □

We compare the bi‐mim‐width with the bi‐rank‐width of a digraph, introduced by Kanté
[31]. Kanté and Rao [32] later generalized this notion to edge‐colored graphs. For a digraph G,
and disjoint A B V G, ( )⊆ , we denote by M A B[ ]G → the matrix whose rows are indexed by A
and columns are indexed by B such that for a A∈ and b B M A B a b, [ ]( , ) = 1G∈ → if there is
an edge from a to b and 0 otherwise. For a digraph G and A V G( )⊆ ,

• let A M A Acutrk ( ) rank( [ ])G G
+ ≔ → and A M A Acutrk ( ) rank( [ ])G G

− ≔ → and
• let A A Abicutrk ( ) cutrk ( ) + cutrk ( )G G G

+ −≔ ,

where the rank of a matrix is computed over the binary field.

Definition 3 (Bi‐rank‐width). Let G be a digraph and let T λ( , ) be a branch
decomposition of G. For each edge e E T( )∈ , let TA and TB be the two connected
components of T e− . Let A B( , )e e be the cut of G where Ae is the set of vertices that λ
maps to the leaves in TA and Be is the set of vertices that λ maps to the leaves in TB. The
bi‐rank‐width of T λ( , ) is T λ Abirw( , ) max bicutrk ( )e E T G e( )≔ ∈ . The bi‐rank‐width of G,
denoted by Gbirw( ), is the minimum bi‐rank‐width of any branch decomposition of G.
The linear bi‐rank‐width ofG, denoted by Glbirw( ), is the minimum bi‐rank‐width of any
linear branch decomposition of G.

We can verify that for every digraph G G G, bimimw( ) birw( )≤ . Interestingly, we can
further show that for every positive integer r , the bi‐mim‐width of the r‐th power ofG is at most
the bi‐rank‐width of G. This does not depend on the value of r .

Lemma 5. Let r and w be positive integers. If T λ( , ) is a branch decomposition of a
digraph G of bi‐rank‐width w, then it is a branch decomposition of Gr of bi‐mim‐width at
most w.

Proof. It is sufficient to prove that for every ordered vertex partition A B( , ) of G, we
have ν G A B M A B( [ ]) rank( [ ])r

G→ ≤ → . Assume M A B trank( [ ]) =G → and suppose
for contradiction that ν G A B t( [ ]) + 1r → ≥ .

Let a b i t{( , ) : [ + 1]}i i ∈ be an induced matching of G A B[ ]r → with
a i t A{ : [ + 1]}i ∈ ⊆ . It means that for each i t[ + 1]∈ , there is a directed path Pi of
length at most r from ai to bi in G such that the paths in P i t{ : [ + 1]}i ∈ are pairwise
vertex‐disjoint. We choose an edge u v( , )i i in each Pi where u Ai ∈ and v Bi ∈ . As

M u i t v i t M A B trank( [{ : [ + 1]} { : [ + 1]}]) rank( [ ]) =G i i G∈ → ∈ ≤ → , the matrix
M u i t v i t[{ : [ + 1]} { : [ + 1]}]G i i∈ → ∈ is linearly dependent. In particular, there is a
nonempty subset I of t[ + 1] where the sum of M u v j I[{ } { : }]G i j→ ∈ over i I∈ becomes

14 | JAFFKE ET AL.
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a zero vector (as we are working on the binary field). We choose such a subset with
minimum  I . Without loss of generality, we may assume that I q= [ ] for some q 2≥ .

Now, we claim that for each x q u[ ], x∈ has an out‐neighbor in v j q x{ : [ ] { }}j ∈ ⧹ .
Suppose that this is not true, that is, there is x q[ ]∈ where ux has no out‐neighbor in
v j q x{ : [ ] { }}j ∈ ⧹ . This means that the row of M u i q v j q[{ : [ ]} { : [ ]}]G i j∈ → ∈ indexed
by ux does not affect the sum of columns indexed by v j q x{ : [ ] { }}j ∈ ⧹ . Therefore, the sum
of M u v j q x[{ } { : [ ] { }}]G i j→ ∈ ⧹ over i q x[ ] { }∈ ⧹ must be a zero vector. This contradicts
the minimality of I .

We deduce that there exists a sequence i i i( , , …, )y1 2 of at least two distinct elements in q[ ]

with i i=y+1 1 such that for each h y[ ]∈ , there exists an edge from uih to vih+1
. For each

h q[ ]∈ , let ℓih be the length of the subpath of Pih from aih to uih. Observe that if ℓ ℓi ih h+1
≤ ,

then there is a directed path of length at most r from aih to bih+1
by using the sub‐path aih to

uih, then the edge to vih+1
and then the sub‐path to bih+1

, which contradicts the assumption
that there is no edge from aih to bih+1

inGr . On the other hand, because of the cycle structure
it is not possible that for all h x[ ], ℓ > ℓi ih h+1

∈ . So, we have a contradiction. □

Note that the same argument holds for undirected graphs; if an undirected graph G has
rank‐width w, then any power of G has mim‐width at most w. This extends the two arguments
in [28] that any power of an undirected graph of tree‐width w − 1 has mim‐width at most w,
and any power of an undirected graph of clique‐width w has mim‐width at most w, because
such graphs have rank‐width at most w [37, 38].

Next, we show that the r‐th power of a digraph of bi‐mim‐width w has bi‐mim‐width at
most rw. This will be used to prove Theorem 2.

Lemma 6. Let r and w be positive integers. If T λ( , ) is branch decomposition of a digraphG
of bi‐mim‐width w, then it is a branch decomposition ofGr that has bi‐mim‐width at most rw.

Proof. It is sufficient to prove that for every ordered vertex partition A B( , ) of G, we have
ν G A B rν G A B( [ ]) ( [ ])r → ≤ → . Assume ν G A B t( [ ]) =→ and suppose for contradiction
that ν G A B rt( [ ]) + 1r → ≥ .

Let a b i rt{( , ) : [ + 1]}i i ∈ be an induced matching of G A B[ ]r → with
a i rt A{ : [ + 1]}i ∈ ⊆ . For each i rt[ + 1]∈ , let Pi be a directed path of length at most
r from ai to bi in G. We choose an edge c d( , )i i in each Pi where c Ai ∈ and d Bi ∈ . For
each i rt[ + 1]∈ , let ℓi be the length of the subpath of Pi from ai to ci. Observe that

r0 ℓ − 1i≤ ≤ .
By the pigeonhole principle, there exists a subset I of rt[ + 1] of size at least t + 1 such

that for all i i I, , ℓ = ℓi i1 2 1 2
∈ . Since ν G A B t( [ ]) =→ , there exist distinct integers i i I,1 2 ∈

such that there is an edge from ci1 to di2. Then there is a path of length at most d from ai1
to bi2, contradicting the assumption that there is no edge from ai1 to bi2 in G

r . □

4 | CLASSES OF DIGRAPHS OF BOUNDED
BI ‐MIM ‐WIDTH

In this section, we present several digraph classes of bounded bi‐mim‐width, which are
reflexive H ‐digraphs (Proposition 1), adjusted permutation digraphs (Proposition 4), adjusted
rooted directed path digraphs (Proposition 5), and nice H ‐convex digraphs (Proposition 6).

JAFFKE ET AL. | 15

 10970118, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.23065 by U

N
IV

E
R

SIT
Y

 O
F B

E
R

G
E

N
, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



We recall that a digraphG is an intersection digraph if there exists a family S T v V G{( , ) : ( )}v v ∈

of ordered pairs of sets, called a representation, such that there is an edge from v to w in G if and
only if Sv intersects Tw. We say that G is reflexive if for each v V G S T( ), v v∈ ∩ ≠ ∅.

4.1 | H ‐digraphs and interval digraphs

We define H ‐digraphs, which generalize interval digraphs. For an illustration of a reflexive
interval digraph, see Figure 3.

Definition 4 H(‐digraph). Let H be an undirected graph. A digraphG is an H ‐digraph if
there is a subdivision F of H and a family S T v V G{( , ) : ( )}v v ∈ of ordered pairs of
connected subgraphs of F such that G is the intersection digraph with representation
S T v V G{( , ) : ( )}v v ∈ .

Definition 5 (Interval digraph). A digraph G is an interval digraph if it is a P2‐digraph.

We show that for fixed H , reflexive H ‐digraphs have bounded linear bi‐mim‐width.

Proposition 1. Let H be an undirected graph. Given a representation of a reflexive
H ‐digraph G, one can construct in polynomial time a linear branch decomposition of G of
bi‐mim‐width at most  E H12 ( ) .

Proof. Let  m E H( )≔ . We may assume that H is connected. If H has no edge, then it is
trivial. Thus, we may assume that m 1≥ .

Let G be a reflexive H ‐digraph, let F be a subdivision of H , and let
S T v V G{( , ) : ( )}v v≔ ∈ be a given reflexive H ‐digraph representation of G with

FIGURE 3 An example of a reflexive interval digraph. On the top left is its representation, on the top right
one of its drawings, on the bottom left a linear branch decomposition and the bottom right shows that the cut
associated with the “middle” edge of the branch decomposition has bi‐mim‐width value 2.

16 | JAFFKE ET AL.
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underlying graph F . For each v V G( )∈ , choose a vertex αv in S Tv v∩ . We may assume
that vertices in α v V G{ : ( )}v ∈ are pairwise distinct and they are not branching vertices,
by subdividing F more and changing accordingly, if necessary.

Let r be a branching vertex of F ; we obtain a BFS ordering <B of F starting from r . We
denote by v w<B if v appears before w in the BFS ordering. We give a linear ordering L of
G such that for all v w V G, ( )∈ , if α α<v B w, then v appears before w in L. This can be
done in linear time.

We claim that L has bi‐mim‐width at most m12 . We choose a vertex v ofG arbitrarily,
and let A be the set of vertices inG that are v or a vertex appearing before v in L, and let
B V G A( )≔ ⧹ . It suffices to show A mbimim ( ) 12G ≤ . Let A* be the set of vertices of F
that are αv or a vertex appearing before αv, and let B V F A* ( ) *≔ ⧹ . Let  be the set of
paths in F such that

• for every P P,∈  is a subpath of some branching path of F and it is a maximal path
contained in one of A* and B*,

•  V P V F( ) = ( )P∈ .

We claim that each branching path of F is partitioned into at most three vertex‐
disjoint paths in  . Let Q be a branching path of F . Observe that each connected
component of F A V Q[ * ( )]∩ contains an endpoint of Q, because the BFS ordering
<B starts from a branching vertex of F . Therefore, F A V Q[ * ( )]∩ contains at most
two connected components, and it shows that Q is partitioned into at most three
vertex‐disjoint paths in  . Thus, we have   m3≤ . Note that two paths in  from two
distinct branching paths may share an endpoint.

We first show that A mmim ( ) 6G
+ ≤ . Suppose for contradiction thatG A B[ ]→ contains

an induced matching M of size m6 + 1. By the pigeonhole principle, there is a subset
M x y i= {( , ) : [3]}i i1 ∈ of M of size three and a path P in  such that for every
x y M S( , ) , x1∈ and Ty meet on P. Let p p,1 2 be the endpoints of P.
Observe that V P A( ) *⊆ or V P B( ) *⊆ . So, for each i [3]∈ , it is not possible that αxi

and α yi are both contained in V P( ). It implies that each connected component of
S T P( )x yi i
∪ ∩ contains an endpoint of P, as S Tx yi i

∪ is connected. Therefore, there are at
least two integers j j, [3]1 2 ∈ and a connected component C1 of S T P( )x yj j1 1

∪ ∩ and a
connected component C2 of ( )S T Px yj j2 2

∪ ∩ so that

• C1 and C2 contain the same endpoint of P, and
• for each i C[2], i∈ contains a vertex of Sx ji and a vertex of Ty ji .

However, it implies that x y( , )j j1 2
or x y( , )j j2 1

is an edge, a contradiction.

We deduce that A mmim ( ) 6G
+ ≤ . By a symmetric argument, we get A mmim ( ) 6G

− ≤ .
Therefore, we have A mbimim ( ) 12G ≤ , as required. □

We obtain a better bound for reflexive interval digraphs.

Proposition 2. Given a reflexive interval digraph, one can output a linear branch
decomposition of bi‐mim‐width at most 2 in polynomial time.

JAFFKE ET AL. | 17
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Proof. Let G be a given reflexive interval digraph. By Müller's recognition algorithm for
interval digraphs [35], one can output its representation in polynomial time.

Now, we follow the proof of Proposition 1. In this case,  consists of exactly two paths,
one induced by A* and the other induced by B*. Because of it, it is not difficult to observe
that Amim ( ) 1G

+ ≤ and Amim ( ) 1G
− ≤ (similar to interval graphs). Thus, it has linear

bi‐mim‐width at most 2. □

Proposition 3. Interval digraphs have unbounded bi‐mim‐width.

Proof. We will construct some orientation of the n n( × )‐grid as an interval digraph.
For i j n, [ ]∈ , we construct Svi j, and Tvi j, as follows. For every odd integer i, we set

• S n j i n j i[2( + 1) + 2 − 1, 2( + 1) + 2 + 1]vi j, ≔ and
• T n j i n j i[2( + 1)( − 1) + 2 , 2( + 1)( − 1) + 2 ]vi j, ≔ ,

and for every even integer i, we set

• S n j i n j i[2( + 1)( − 1) + 2 , 2( + 1)( − 1) + 2 ]vi j, ≔ and
• T n j i n j i[2( + 1) + 2 − 1, 2( + 1)( − 1) + 2 + 1]vi j, ≔ .

LetGn be the intersection digraph on the vertex set v i j n{ : , [ ]}i j, ∈ with representation
S T i j n{( , ) : , [ ]}v vi j i j, ,

∈ . Observe that for i j n, [ − 1]∈ , if i is odd, then v v( , )i j i j, +1, and
v v( , )i j i j, , +1 are edges, and if i is even, then v v( , )i j i j+1, , and v v( , )i j i j, +1 , are edges. See Figure 4
for an illustration.

This is an orientation of the n n( × )‐grid. It is known that the n n( × )‐grid has mim‐width
at least n 3∕ ; see [49, Theorem 4.3.10]. By Lemma 3, it has bi‐mim‐width at least n 3∕ . □

4.2 | Permutation digraphs

Permutation digraphs are directed analogs of permutation graphs. We also introduce its
subclass class of adjusted permutation digraphs in the following definition.

FIGURE 4 Interval digraph G7 in Proposition 3. The left bottom vertex is v1,1 and its right‐hand vertex is
v2,1 and so on.

18 | JAFFKE ET AL.
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Definition 6 ([Adjusted] permutation digraph). A digraph G is a permutation digraph if
there is a family S T v V G{( , ) : ( )}v v ∈ of pairs of line segments whose endpoints lie on
two parallel lines Λ1 and Λ2 where G is the intersection digraph with representation
S T v V G{( , ) : ( )}v v ∈ . A permutation digraph is adjusted if it has such a representation

where for all v V G S( ), v∈ and Tv have a common endpoint in Λ1.

We observe that interval digraphs are permutation digraphs. When we have a
representation S T v V G{( , ) : ( )}v v ∈ for an interval digraph on a line x xΛ = { : }∈ , we
consider two copies x xΛ = {( , 0) : }1 ∈ and x xΛ = {( , 1) : }2 ∈ of Λ, and then for each
S a b= [ , ]v v v , we make S*v as the line segment linking a( , 0)v and b( , 1)v , and for each
T c d= [ , ]v v v , we make T*v as the line segment linking c( , 1)v and d( , 0)v . One can verify that
S T v V G{( *, *) : ( )}v v ∈ is a representation of the same digraph. Because of this and by

Proposition 3, permutation digraphs also have unbounded bi‐mim‐width.
Let us motivate how we arrived at the given definition of adjusted permutation digraphs. As

we have just seen, permutation digraphs generalize interval digraphs. In [20], adjusted interval
digraphs are defined as the interval digraphs with an intersection model where for each vertex,
both intervals have the same left endpoint. An analogous idea in the context of permutation
digraphs is to require that the two line segments representing a vertex have a common
endpoint, and it seems natural to require that the same endpoint is always on the (upper or
lower) line of the representation.

We show that adjusted permutation digraphs have linear bi‐mim‐width at most 4. Note that
an adjusted permutation digraph is reflexive, but we were not able to show that all reflexive
permutation digraphs have bounded bi‐mim‐width. It remains open whether there is a constant
bound on (linear) bi‐mim‐width of reflexive permutation digraphs.

Proposition 4. Given a representation of an adjusted permutation digraph G, one can
construct in polynomial time a linear branch decomposition ofG of bi‐mim‐width at most 4.

Proof. Let x xΛ {( , 0) : }1 ≔ ∈ and x xΛ {( , 1) : }2 ≔ ∈ be two lines. Let G be a given
adjusted permutation digraph with its representation S T v V G{( , ) : ( )}v v ∈ where Sv and
Tv are line segments whose endpoints lie on Λ1 and Λ2 and they have a common endpoint
in Λ1, say α( , 0)v . For each v V G( )∈ , let β( , 1)v be the endpoint of Sv in Λ2 and γ( , 1)v be
the endpoint of Tv in Λ2.

We give a linear ordering L of G such that for all v w V G, ( )∈ , if α α<v w, then v

appears before w in L. This can be done in linear time.
We claim that L has bi‐mim‐width at most 4. We choose a vertex v ofG arbitrarily, and

let A be the set of vertices in G that are v or a vertex appearing before v in L, and let
B V G A( )≔ ⧹ .

We verify that Amim ( ) 2G
+ ≤ . Suppose for contradiction thatG A B[ ]→ has an induced

matching v w i{( , ) : [3]}i i ∈ with v v v A, ,1 2 3 ∈ . Without loss of generality, we assume that
α α αv v v1 2 3

≤ ≤ . Observe that α α α, >w w v1 2 3
and α αw v3 3

≥ . Let w w i{ : [3]}i∈ ∈ such that
 α α−w v3

is minimum. We distinguish the case depending on whether α α=w v3
or not.

Case 1: α αw v3
≠ . First assume that w w= 3. As v w i{( , ) : [3]}i i ∈ is an induced

matching, we have β γ<v w1 3
and β γ<v w3 1

. This implies that Sv1
and Tw1

do not meet, a
contradiction. Now, assume that w w3≠ and thus, Sv3

and Tw do not meet. Let v* be the
vertex where v w( *, ) is in the induced matching. As v w i{( , ) : [3]}i i ∈ is an induced
matching, β γ<v w* 3

and γ β>w v3
. Then Sv* cannot meet Tw, a contradiction.

JAFFKE ET AL. | 19
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Case 2: α α=w v3
. In this case, w must be w3. If γ βw v3 3

≤ , then Sv1
and Tw1

cannot meet.
So, γ β>w v3 3

, and it is not difficult to verify that β β β γ γ γ< , , , <v v v w w w3 1 2 1 2 3
, otherwise,

v w i{( , ) : [3]}i i ∈ cannot be an induced matching. If β βv v1 2
≤ , then Tw1

has to meet Sv2
, a

contradiction. Similarly, if β β<v v2 1
, then Tw2

has to meet Sv1
, a contradiction.

It shows that Amim ( ) 2G
+ ≤ , as claimed. By a symmetric argument, we have

Amim ( ) 2G
− ≤ and Abimim ( ) 4G ≤ .

We conclude that L has bi‐mim‐width at most 4. □

4.3 | Rooted directed path digraphs

A directed tree is an orientation of a tree, and it is rooted if there is a root node r such that every
vertex is reachable from r by a directed path. Gavril [24] introduced the class of rooted directed
path graphs, that are intersection graphs of directed paths in a rooted directed tree. We
introduce its directed analog.

For a directed path P, the first and last vertices of P are called the tail and head of P,
respectively.

Definition 7 (Rooted directed path digraph). A digraph G is a rooted directed path
digraph if there is a rooted directed tree T and a family S T v V G{( , ) : ( )}v v ∈ of pairs
of directed paths in T where G is the intersection digraph with representation
S T v V G{( , ) : ( )}v v ∈ . A directed rooted path digraph is adjusted if there is such a

representation where for every v V G( )∈ , the heads of Sv and Tv are the same.

Clearly, interval digraphs are rooted directed path digraphs, and therefore, rooted directed
path digraphs have unbounded bi‐mim‐width. We prove that adjusted rooted directed path
digraphs have bounded bi‐mim‐width and have unbounded linear bi‐mim‐width. Regarding
the notion of adjusted rooted directed path digraphs, note once more that fixing one “endpoint”
of the objects in each pair of the intersection representation to be the same is in line with the
definition of adjusted interval digraphs. Moreover, any intersection representation of an
adjusted interval digraph can naturally corresponds to one that shows that it is an adjusted
rooted directed path digraph in our definition.

Proposition 5. Given a representation of an adjusted rooted directed path digraph G,
one can construct in polynomial time a branch decomposition of G of bi‐mim‐width at
most 2. Adjusted rooted directed path digraphs have unbounded linear bi‐mim‐width.

Proof. Let F be a rooted directed tree with root node r . Let G be an adjusted rooted
directed path digraph with representation S T v V G= {( , ) : ( )}v v ∈ where Sv andTv are
directed paths in F .

Now, we modify F( , ) into F S T v V G( *, * = {( *, *) : ( )})v v ∈ so that F* is a rooted

directed tree and * is an adjusted rooted directed path digraph representation of G
consisting of directed paths in F* with additional conditions that

• every internal node of F* has out‐degree at most 2,
• for every vertex v V G( )∈ , the head αv of S*v has out‐degree at most 1 in F*, and
• nodes in α v V G( : ( ))v ∈ are pairwise distinct.

20 | JAFFKE ET AL.
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Let F F( , ) ( , )1 1 ≔  . For every v V G( )∈ , let αv
1 be the head of Sv in F . We

recursively construct F S T v V G α v V G( , = {( , ) : ( )}), ( : ( ))i i v
i

v
i

v
i∈ ∈ ) until we get the

desired conditions.

• Assume that Fi has a node t of out‐degree at least 3. Let t t, …, x1 be the out‐neighbors of
t in Fi. Now, we remove all edges between t and t t{ , …, }x1 , and then add a directed path
p p px1 2⋯ and add an edge t p( , )1 and edges p t( , )i i for all i x[ ]∈ . Now, for every path P
containing ttj for some j in the representation i we replace ttj with a path tp p p tj j1 2⋯ .
The other paths do not change. The resulting rooted directed tree and representation
are Fi+1 and i+1 , respectively.

• Assume that α α t= =v
i

w
i for some distinct vertices v and w in G. Let q be an

out‐neighbor of t in Fi if one exists, and otherwise we attach a new node q and add
an edge t q( , ). We replace t q( , ) with a directed path tt q′ to obtain Fi+1. For every
path in i containing t q( , ) we replace t q( , ) with a directed path tt q′ , and assign
α t′v
i+1 ≔ . For every path in S T{ , }v

i
v
i , we extend it by adding tt′. The other paths do

not change. The resulting rooted directed tree and representation are Fi+1 and i+1 ,
respectively.

• Assume that α t=v
i for some vertex v in G, where t is a node of out‐degree at least 2.

Let q be an out‐neighbor of t in Fi. We replace t q( , ) with a directed path tt q′ to obtain
Fi+1. For every path in S T{ , }v

i
v
i , we extend it by adding tt′, and we assign α t′v

i+1 ≔ . The

other paths do not change. The resulting rooted directed tree and representation are
Fi+1 and i+1 , respectively.

In each iteration, either the number of nodes of out‐degree at least 3 decreases, or the
number of pairs of vertices v and w for which α α=v

i
w
i decreases, or the number of

vertices v for which αv
i is a node of out‐degree at least 3 decreases. Also, the process in

each iteration preserves that the representation is an adjusted rooted directed path
digraph representation. Thus, at the end, we obtain an adjusted rooted directed path
digraph representation F( *, *) with the set of common endpoints α v V G( * : ( ))v ∈ , as

desired. Let U be the underlying undirected tree of F*.
For each v V G( )∈ , we add a new node βv and add an edge β α*

v v to U , and obtain a
tree U*. Now, let e be an edge ofU*, and let UX andUY be the connected component of
U e* − whereUY contains the root of F*. Let X Y( , )e e be the cut ofG where Xe is the set of
vertices v for which α*v is inUX , and Y V G X= ( )e e⧹ . LetQ be the path inU* from the root
to e.

We claim that Xmim ( ) 1G e
+ ≤ . Suppose for contradiction that there is an induced

matching v w i{( , ) : [2]}i i ∈ inG X Y[ ]e e→ . Assume that the distance from e toTw1
inU* is

at most the distance from e toTw2
. Since Sv1

and Sv2
are directed paths, Tw1

and Tw2
contain

a vertex of Q. It means that Sv2
has to meet Tw1

, which is a contradiction. If the distance
from e to Tw2

in U* is at most the distance from e to Tw1
, then Sv1

has to meet Tw2
, a

contradiction. Thus, we have Xmim ( ) 1G e
+ ≤ .

Similarly, we show that Xmim ( ) 1G e
− ≤ . Suppose for contradiction that there is an

induced matching v w i{( , ) : [2]}i i ∈ inG Y X[ ]e e→ . Assume that the distance from e to Sv1

inU* is at most the distance from e to Sv2
. Since Tw1

and Tw2
are directed paths, Sv1

and Sv2

contain a vertex of Q. It means that Tw2
has to meet Sv1

, which is a contradiction. If the
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distance from e to Sv2
inU* is at most the distance from e to Sv1

, thenTw1
has to meet Sv2

, a
contradiction. Thus, we have Xmim ( ) 1G e

− ≤ .
These imply that Xbimim ( ) 2G e ≤ . By smoothing degree 2 nodes of U* (i.e., for a

degree two node v with neighbors u and w, we remove v and make u adjacent to w), we
obtain a branch decomposition of bi‐mim‐width at most 2.

Now, we argue that adjusted rooted directed path digraphs have unbounded linear bi‐
mim‐width. It is well known that trees are rooted directed path graphs. Also, Høgemo, Telle,
and Vågset [27] proved that trees have unbounded linear mim‐width. As trees are rooted
directed path graphs, we can obtain the biorientations of trees as adjusted rooted directed
path digraphs, where S T=v v for all v V G( )∈ . As trees have unbounded linear mim‐width,
adjusted rooted directed path digraphs have unbounded linear bi‐mim‐width. □

4.4 | H ‐convex digraphs

As a generalization of convex graphs, Brettell, Munaro, and Paulusma [12] introduced H ‐convex
graphs. Note that they defined‐convex graphs, rather than H ‐convex graphs, where is a family
of graphs. However, they mostly considered  as the set of all subdivisions of a fixed graph H , so
we may simply call them H ‐convex graphs. We generalize this notion to H ‐convex digraphs.

Definition 8 H(‐convex digraph). Let H be an undirected graph. A bipartite digraph G
with bipartition A B( , ) is an H ‐convex digraph if there is a subdivision F of H with
V F A( ) = such that for every vertex b of B, each of N b( )G

+ and N b( )G
− induces a connected

subgraph of F . An H ‐convex digraph is nice if for every vertex b of B, there is a bi‐
directed edge between b and some vertex of A.

In principle, H ‐convex digraphs and H ‐digraphs are closely related, as N v N v v B{( ( ), ( )) : }G G
+ − ∈

can be seen as an H ‐digraph representation on F . Observe that the way in which we restrict convex
H ‐digraphs to nice convex H ‐digraphs is quite analogous to the way in which H ‐digraphs are
restricted to reflexive H ‐digraphs. The latter have representations in which for each vertex, the
connected subgraph of the subdivision of H representing its out‐neighbors, and the one representing
its in‐neighbors, intersect. Consider the definition of nice H ‐convex digraphs and adapt its notation
from here. For each vertex b B∈ , its out‐ and in‐neighborhood induce connected subgraphs of F .
These connected subgraphs can be seen as the “models” for the out‐ and in‐neighborhoods. Now, to
have a bidirected edge incident with b is the same as requiring these two models to intersect, hence
the analogy with reflexive H ‐digraphs.

We prove that nice H ‐convex digraphs have linear bi‐mim‐width at most  E H12 ( ) .

Proposition 6. Let H be an undirected graph. Given a nice H ‐convex digraph G with its
bipartition A B( , ), one can construct in polynomial time a linear branch decomposition ofG
of bi‐mim‐width at most  E H12 ( ) .

Proof. Let  m E H( )≔ . Let G be a reflexive H ‐convex digraph with bipartition X Y( , ).
Let F be a subdivision of H with X V F= ( ) and let N y N y y Y= {( ( ), ( )) : }G G

+ − ∈ . For

each y Y∈ , we choose α N y N y( ) ( )y G G
+ −∈ ∩ . By adding more vertices in X if necessary

22 | JAFFKE ET AL.
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(corresponding to a subdivision of F ), we may assume that vertices in α y Y( : )y ∈ are
pairwise distinct and they are not branching vertices of F . This assumption is possible
because of Lemma 1.

We fix a vertex r of F and obtain a BFS ordering of F starting from r . We denote
by v w<B if v appears before w in the BFS ordering. This gives an ordering of
V F X( ) = . Now, we extend it to an ordering L of V G( ) by, for each y Y∈ , putting y

just after αy.
We claim that L has bi‐mim‐width at most m12 . We choose a vertex v ofG arbitrarily,

and let A be the set of vertices inG that are v or a vertex appearing before v in L, and let
B V G A( )≔ ⧹ . It is sufficient to show that A mmim ( ) 6G

+ ≤ . By symmetry, we will get
A mmim ( ) 6G

− ≤ .
Let A A X A A Y B B X, ,X Y X≔ ∩ ≔ ∩ ≔ ∩ , and B B YY ≔ ∩ . We first show that

ν G A B m( [ ]) 4X Y→ ≤ .
Suppose for contradiction that G A B[ ]X Y→ contains an induced matching M of size

m4 + 1. As defined in Proposition 1, we define  as the set of paths in F such that

• for every P P,∈  is a subpath of some branching path of F and it is a maximal path
contained in one of AX and BX ,

•  V P V F( ) = ( )P∈ .

Note that each branching path contains at most two paths in  that are contained in AX .
By the pigeonhole principle, there is a subset M x y i= {( , ) : [3]}i i1 ∈ of M of size three
and a path P ∈  with V P A( ) X⊆ such that for every x y M x( , ) ,1∈ is in P. Observe that
α yi is not in P for every i [3]∈ .

Let p1 and p2 be the endpoints of P. Observe that for each i N y[3], ( )G i
−∈ contains

either the subpath of P from p1 to xi or the subpath of P from xi to p2. Without loss of
generality, we may assume that for each i N y[2], ( )G i

−∈ contains the subpath of P from p1

to xi. But this implies that x y( , )1 2 or x y( , )2 1 is an edge, contradicting the assumption that
M is an induced matching.

We deduce that ν G A B m( [ ]) 4X Y→ ≤ . Note that each branching path contains at
most one path in  that is contained in Bx. Thus, by a similar argument, we can show
that ν G A B m( [ ]) 2Y X→ ≤ . So, we have A ν G A B mmim ( ) = ( [ ]) 6G

+ → ≤ . By symmetry,
we get A mmim ( ) 6G

− ≤ as well, and these imply that A mbimim ( ) 12G ≤ , as required. □

Proposition 7. P2‐convex digraphs have unbounded bi‐mim‐width.

Proof. We recall the interval digraph representation of an orientation of the n n( × )‐
grid, given in Proposition 3. For i j n, [ ]∈ , we construct Si j, and Ti j, as follows. For every
odd integer i, we set

• S n j i n j i[2( + 1) + 2 − 1, 2( + 1) + 2 + 1]i j, ≔ and
• T n j i n j i[2( + 1)( − 1) + 2 , 2( + 1)( − 1) + 2 ]i j, ≔ ,

and for every even integer i, we set

• S n j i n j i[2( + 1)( − 1) + 2 , 2( + 1)( − 1) + 2 ]i j, ≔ and
• T n j i n j i[2( + 1) + 2 − 1, 2( + 1)( − 1) + 2 + 1]i j, ≔ .
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Now, we create a bipartite digraph Gn with bipartition A B v i j n( , = { : , [ ]})i j, ∈ such
that for i j n, [ ]∈ ,

• if i is odd, then N v S( ) =G i j i j
+

, , and N v T( ) =G i j i j
−

, , ,
• if i is even, then N v T( ) =G i j i j

+
, , and N v S( ) =G i j i j

−
, , .

It is not difficult to verify that Gn contains an orientation of the 1‐subdivision of the
n n( × )‐grid as an induced subdigraph. By modifying the proof for the fact that
the n n( × )‐grid has mim‐width at least n 3∕ , it is straightforward to show that the
1‐subdivision of the n n( × )‐grid has mim‐width at least n 3∕ . Therefore, by Lemma 3, Gn
has bi‐mim‐width at least n 3∕ . □

5 | ALGORITHMIC APPLICATIONS

In this section we give the algorithmic applications of the width measure bi‐mim‐width.
In particular, we show that all DLCVS and all DLCVP problems can be solved in XP time
parameterized by the bi‐mim‐width of a given branch decomposition of the input
digraph. We do so by adapting the framework of the d‐neighborhood equivalence relation
introduced by Bui‐Xuan et al. [14] to digraphs. For an undirected graph G, given a set
A V G( )⊆ , two subsets X and Y of A are d‐neighborhood equivalent w.r.t. A if the
intersection of the neighborhood of each vertex in A with X and Y have the same size,
when counting up to d.

In the adaptation of this concept to digraphs, we essentially take the Cartesian product of
the d‐neighborhood equivalences given by the edges going from A to A and the edges going
from A to A. In the resulting d‐bi‐neighborhood equivalence relation of a set A of vertices in
some digraphG, two subsets X and Y of A are d‐bi‐neighborhood equivalent, if for each vertex
of A , the number of both its in‐neighbors in X and the number of its out‐neighbors in X are
equal to the number of its in‐ and out‐neighbors in Y , respectively, when counting up to d. We
show that this notion allows us to lift the frameworks presented in [14] to the realm of digraphs
and prove the aforementioned results.

The rest of this section is organized as follows. In Section 5.1, we formally define the
d‐bi‐neighborhood equivalence relation and show how to efficiently compute descriptions
of its equivalence classes. In Section 5.2 we give the algorithms for generalized directed
domination problems and in Section 5.3 for the directed vertex partitioning problems. We
discuss how to use these algorithms to solve distance‐r versions of DLCV problems in
Section 5.4.

5.1 | d‐Bi‐neighborhood‐equivalence

We now present the central notion that is used in our algorithms, the d‐bi‐neighborhood
equivalence relation which we introduced informally earlier. The reason why it compares
the sizes of the intersection of a neighborhood with subsets only up to some integer d is as
follows. The subsets of natural numbers that characterize locally checkable vertex subset/
partitioning problems can be fully characterized when counting in‐ and out‐neighbors up to
some d, depending on the described problem. Therefore, if a vertex v has more than d, say,
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in‐neighbors in two sets X and Y , then these two sets look the same to v in terms of its in‐
neighborhood. Think, for instance, of the d‐Dominating Set problem, where each vertex
outside of the solution needs to have d in‐neighbors in it.

In the following definition, we present the d‐in‐neighborhood equivalence relation and
the d‐out‐neighborhood equivalence relation separated before combining them to the
d‐bi‐neighborhood equivalence relation, since in some proofs it is convenient to only consider
the edges going in one direction.

Definition 9. Let d ∈ . Let G be a digraph and A V G( )⊆ . For two sets X Y A, ⊆ , we
say that X and Y are d‐out‐neighborhood equivalent w.r.t. A, written X Yd A,

+≡ , if

   u V G A d N u X d N u Y( ) : min{ , ( ) } = min{ , ( ) }.− −∀ ∈ ⧹ ∩ ∩

(Since the definition is given in terms of vertices from A , we consider the directions of
the edges in reverse, i.e., we consider N v( )− for v A∈ when defining +≡ .) Similarly, we
say that X and Y are d‐in‐neighborhood equivalent w.r.t. A, written X Yd A,

−≡ , if

   u V G A d N u X d N u Y( ) : min{ , ( ) } = min{ , ( ) }.+ +∀ ∈ ⧹ ∩ ∩

If X Yd A,
+≡ and X Yd A,

−≡ then we say that X and Y are d‐bi‐neighborhood equivalent
w.r.t. A and write X Yd A,

±≡ .

The run time of the algorithms in this section crucially depends on the number of
equivalence classes of the d‐bi‐neighborhood equivalence relations associated with cuts
induced by a branch decomposition of the input graph. For d G, , and A as in the previous
definition, we denote by nec( )d A,

±≡ the number of equivalence classes of d A,
±≡ . If T λ( , ) is a

rooted branch decomposition of G, we let

){ }( ) (T λnec ( , ) = max max nec , nec , .d
t V T

d V d V
( )

,
±

,
±

t t
≡ ≡

∈

5.1.1 | Descriptions of equivalence classes of d A,
±≡

Since d A,
±≡ is an equivalence relation over subsets of A, we cannot trivially enumerate all its

equivalence classes without risking an exponential running time. We now show that we can
enumerate the equivalence classes with a relatively small overhead depending polynomially
on n d, , and log(nec( ))d A,

±≡ . This enumeration is based on pairs of vectors called

d‐bi‐neighborhoods of a subset X of A, one that describes the in‐neighborhood of vertices in
A intersected with X , and one for the out‐neighborhood.

Definition 10. LetG be a digraph, X A V G( )⊆ ⊆ , and d ∈ . The d‐out‐neighborhood
of X , denoted byU X( )d A,

+ is a vector in d{0, 1, …, }A , which stores for every vertex v A∈

the minimum between d and the number of in‐neighbors of v in X . Formally,

JAFFKE ET AL. | 25

 10970118, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.23065 by U

N
IV

E
R

SIT
Y

 O
F B

E
R

G
E

N
, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



 U X d N v X( ) = (min{ , ( ) }) .d A v A,
+ − ∩ ∈

Similarly, the d‐in‐neighborhood, denoted by U X( )d A,
− , is the vector

 U X d N v X( ) = (min{ , ( ) }) .d A v A,
− + ∩ ∈

We refer to the pair U X U X( ( ), ( ))d A d A,
+

,
− as the d‐bi‐neighborhood U X( )d A,

± ; and we

denote the set of all d‐bi‐neighborhoods as d A,
± .

Observation 1. Let G be a digraph and X Y A V G, ( )⊆ ⊆ . Then, X Yd A,
±≡ if and only if

U X U Y( ) = ( )d A d A,
±

,
± .

By the previous observation, there is a natural bijection between the d‐bi‐neighborhoods
and the equivalence classes of d A,

±≡ . In our algorithm we will therefore use the d‐bi‐
neighborhoods as descriptions for the equivalence classes of d A,

±≡ . We now show that we can
efficiently enumerate them. While the ideas are parallel to the algorithm presented in [14], we
work directly with the d‐bi‐neighborhoods rather than with representatives to streamline the
presentation.

Lemma 7. Let G be a digraph on n vertices, A V G( )⊆ , and d ∈ . There is an algorithm
that enumerates all members of d A,

± in time n d(nec( )log nec( ) log )d A d A,
±

,
± 2≡ ≡ ⋅ .

Furthermore, for each Y d A,
±∈  , the algorithm can provide some X A⊆ withU X Y( ) =d A,

± .

Proof. We describe the procedure to enumerate d A,
± in Algorithm 1. Let us argue

that this algorithm is correct. Observe that U only contains pairwise distinct
d‐bi‐neighborhoods. Suppose for a contradiction that there is a set X A⊆ such
that U X( )d A,

± ∉ U, and assume wlog. that X is a minimal subset of vertices whose
d‐bi‐neighborhood is not contained in U. Let u X∈ . We know that for all
Y U X u Y, ( { })d A,

±∈ ⧹ ≠U , for otherwise, U X( )d A,
± would have been added to U. But this

contradicts the minimality of X .
Algorithm 1 can easily be modified to satisfy the second claim of the lemma:

In line 5.1.1, instead of adding only U R( ′)d A,
± to U, we may add the pair

R U R( ′, ( ′))d A,
± .

We analyze the run time as follows. For each d‐bi‐neighborhood that is added to U,
we test for at most n additional sets whether their d‐bi‐neighborhoods need to
be added to U or not. Together with Observation 1, this implies that we test for at
most n(nec( ) )d A,

±≡ ⋅ sets whether they should be added to U or not. Computing a

d‐bi‐neighborhood happens incrementally which comes at a cost of at most n( ) time.
Since U is a balanced binary tree, we can check for containment in time

n d(log(nec( )) log )d A,
±≡ ⋅ ⋅ . The latter is due to the fact that U is a tree of

height at most (log(nec( )))d A,
±≡ where at each node we need to make a

comparison between at most n d( ) ‐digit numbers. The total run time of the
algorithm is at most n d(nec( )log nec( ) log )d A d A,

±
,

± 2≡ ≡ ⋅ . □
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Algorithm 1. Computing all d‐bi‐neighborhoods.

Input: Digraph G A V G, ( )⊆ , and d ∈ .

Output: d A,
± .

1: Let U be an empty balanced binary search tree. ⊳ To enable binary search in U we assume a fixed
ordering on A ; the vectors in A can then be compared lexicographically. For convenience, we sometimes
address U as a set whose elements consist of the d‐bi‐neighborhoods stored in its leaves.

2: Let = { }∅ .

3: while ≠ ∅ do

4: Let ′ = ∅ .

5: for all R ∈  do

6: for all v A∈ do

7: Let R R v′ = { }∪ .

8: If U R( ′)d A,
± ∉ U, then insert U R( ′)d A,

± into U and add R′ to ′ .

9: end for

10: end for

11: Let = ′  .

12: end while

5.2 | Generalized directed domination problems

In this section we use the d‐bi‐neighborhood equivalence relation to give algorithms for
problems that ask for a maximum‐ or minimum‐size set that can be expressed as a
σ σ ρ ρ( , , , )+ − + − ‐set. The algorithm is bottom‐up dynamic programming along the given branch
decomposition T λ( , ) of the input digraph G, which we assume to be rooted in an arbitrary
degree two node. For a node t V T( )∈ , we letVt be the vertices ofG that are mapped to a leaf in
the subtree of T rooted at t . Before we proceed with its description, we recall the formal
definition here of σ σ ρ ρ( , , , )+ − + − ‐sets.

Definition 11. Let σ σ ρ ρ, , ,+ − + − ⊆ , and let σ σΣ = ( , )+ − and R ρ ρ= ( , )+ − . LetG be a
digraph and S V G( )⊆ . We say that S σ σ ρ ρ( , , , )+ − + − ‐dominates G, or simply that
S R(Σ, )‐dominates G, if

  


  


v V G N v S
σ v S

ρ v S
N v S

σ v S

ρ v S
( ) : ( )

if ,

if
and ( )

if ,

if .
+

+

+
−

−

−∀ ∈ ∩ ∈
∈

∉
∩ ∈

∈

∉

For better readability, it is often convenient to gather the sets σ+ and σ− as one and the
sets ρ+ and ρ− as one. We will mostly use the resulting R(Σ, )‐notation. We now recall the
definition of the d‐value of a finite or cofinite set. Informally speaking, this value tells us
how far we have to count to completely describe a finite or cofinite set.

Definition 12. Let d ( ) = 0. For a finite or cofinite set μ ⊆ , let

d μ μ μ( ) = 1 + min{max , max }.⧹

For finite or cofinite σ σ ρ ρ σ σ, , , , Σ = ( , )+ − + − + −⊆ and R ρ ρ= ( , )+ −
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d σ σ ρ ρ d R d σ d σ d ρ d ρ( , , , ) = (Σ, ) = max{ ( ), ( ), ( ), ( )}.+ − + − + − + −

As our algorithm progresses, it keeps track of partial solutions that may become a R(Σ, )‐set
once the computation has finished. This does not necessarily mean that at each node t V T( )∈ ,
such a partial solution X Vt⊆ has to be a R(Σ, )‐dominating set of G V[ ]t . Instead, we
additionally consider what is usually referred to as the “expectation from the outside” [14] in
the form of a subset Y ofVt such that X Y∪ is a R(Σ, )‐dominating set ofG V[ ]t . This is captured
in the following definition.

Definition 13. Let μ μ,+ − ⊆ and let M μ μ= ( , )+ − . Let G be a digraph, and let
A V G( )⊆ and X V G( )⊆ . We say that X M‐dominates A if for all v A∈ , we have that
 N v X μ( )+ +∩ ∈ and  N v X μ( )− −∩ ∈ . Let Σ and R be as above. For X A⊆ and Y A⊆ ,
we say that X Y R( , ) (Σ, )‐dominates A, if X Y Σ∪ ‐dominates X and X Y R∪ ‐dominates
A X⧹ .

The next lemma shows that the previous definition behaves well with respect to d A,
±≡ .

Lemma 8. Let σ σ ρ ρ, , ,+ − + − ⊆ be finite or cofinite, let σ σΣ = ( , )+ − and R ρ ρ= ( , )+ − ,
and let d d R= (Σ, ). Let G be a digraph and let A V G( )⊆ . Let X A⊆ and
Y Y V G A, ′ ( )⊆ ⧹ such that Y Y ′d A,

±≡ . Then, X Y R( , ) (Σ, )‐dominates A if and only if

X Y R( , ′) (Σ, )‐dominates A.

Proof. Suppose X Y R( , ) (Σ, )‐dominates A. Let v A X∈ ⧹ . Since Y Y ′d A,
−≡ , we have that

   d N v Y d N v Ymin{ , ( ) } = min{ , ( ) ′ }.+ +∩ ∩ (1)

If  N v Y d( )+ ∩ ≤ , then immediately by (1) we have that    N v Y N v Y( ) = ( ) ′+ +∩ ∩ .
Therefore,    N v X Y N v X Y ρ( ) ( ) = ( ) ( ′)+ + +∩ ∪ ∩ ∪ ∈ . If  N v Y d( ) >+ ∩ , then by the
definition of the d‐value we have that for all n d n ρ> , +∈ . By (1), this implies that
 N v Y ρ( ) ′+ +∩ ∈ , and in particular that  N v X Y ρ( ) ( ′)+ +∩ ∪ ∈ . Similarly we can show
that  N v X Y ρ( ) ( ′)− −∩ ∪ ∈ , and so X Y R′∪ ‐dominates A X⧹ . Since Y Y ′d A,

+≡ , we can

use the same arguments to show that for all  v X N v X Y σ, ( ) ( ′)+ +∈ ∩ ∪ ∈ and
 N v X Y σ( ) ( ′)− −∩ ∪ ∈ , and we conclude that X Y R( , ′) (Σ, )‐dominates A.

A symmetric argument yields the other direction, that is, if X Y R( , ′) (Σ, )‐dominates A
then X Y R( , ) (Σ, )‐dominates A. □

We now turn to the definition of the table entries. To describe an equivalence class of d A,
±≡

we use the d‐bi‐neighborhoods of its members. Note that by Observation 1, the following notion
of a description of an equivalence class is well‐defined.

Definition 14. LetG be a digraph, A V G( )⊆ , and d ∈ . For an equivalence class of

d A,
±≡ , its description, denoted by ( )desc  , is the d‐bi‐neighborhood of all members of.

As the table entries are indexed by equivalence classes of d A,
±≡ , we use their descriptions as

compact representations.
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Definition 15. Let σ σ ρ ρ, , ,+ − + − ⊆ be finite or cofinite, let σ σ R ρ ρΣ = ( , ), = ( , )+ − + − ,
and d d R= (Σ, ). Let opt stand for min if we consider a minimization problem and for max

if we consider a maximization problem. Let G be a digraph with rooted branch
decomposition T λ( , ) and let t V T( )∈ . For an equivalence class t of d V,

±
t

≡ , and an

equivalence class t of d V,
±

t
≡ , we let









 
Tab

S S S S S R

V

S

S

[ ( ), ( )]

=

: and for any : ( , ) (Σ, ) ‐dominates

,

if = min and no such exists,

− if = max and no such exists.

t t t

S V t t t t

t

¯

¯ ¯ ¯t
∈ ∈

∞

∞

⊆

desc desc

opt

opt
opt

 

 

We use the shorthand “Tab [ , ]t t t  ” for “Tab [ ( ), ( )]t t tdesc desc  .”

We first initialize the table entries for all t V T( )∈ as follows. We use the algorithm of
Lemma 7 to enumerate all descriptions of equivalence classes t of d V,

±
t

≡ and t of d V,
±

t
≡ and we let




Tab [ , ] =
− if = max and

if = min.
t t t̄

∞

∞

opt
opt

  (2)

5.2.1 | Leaves of T

For a leaf V Tℓ ( )∈ , let v V G( )∈ be such that λ v( ) = ℓ. Clearly, d v,{ }
±≡ has at most two

equivalence classes, namely, the one containing∅ and the one containing v{ }. For each of the at
most d( )2 equivalence classes of d V G v, ( ) { }

±≡ ⧹ , let R ∈  which we can assume is given to us

by Lemma 7.

• If  N v R σ( )+ +∩ ∈ and  N v R σ( )− −∩ ∈ , then Tab v[{{ }}, ] = 1ℓ  .
• If  N v R ρ( )+ +∩ ∈ and  N v R ρ( )− −∩ ∈ , then Tab [{ }, ] = 0ℓ ∅  .

Before we proceed with the description of the algorithm updating the table entries at
internal nodes, we give one more auxiliary observation.

Observation 2. Let d ∈ , and let G be a digraph with a 3‐partition A B W( , , ) of V G( ).
For each equivalence class a of d A,

±≡ and each equivalence class b of d B,
±≡ , the following

holds. There is an equivalence class  of d A B,
±≡ ∪ such that for all Ra a∈  and

R R R,b b a b∈ ∪ ∈ . Moreover, given a description of a and a description of b , we
can compute a description of in time  W d( log )⋅ .

Proof. The first statement follows immediately from the definitions. For the second
statement, let D D= ( ), = ( )a adesc desc  , and D = ( )b bdesc  . Then, each entry of D
can be computed by adding the corresponding entry from Da to the corresponding entry
from Db, capping the result at d. Each such operation can be done in d(log ) time, and
there are  W( ) entries to compute. □
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5.2.2 | Internal nodes of T

Let t V T( )∈ be an internal node with children a and b.

1. Consider each triple , ,a b t   of equivalence classes of ,d V d V,
±

,
±

a b
≡ ≡ , and d V,

±
t

≡ , respectively.
2. Let R R,a a b b∈ ∈  , and Rt t∈  . Determine:

– a , the equivalence class of d V,
±

a
≡ containing R Rb t∪ .

– b , the equivalence class of d V,
±

b
≡ containing R Ra t∪ .

– t , the equivalence class of d V,
±

t
≡ containing R Ra b∪ .

3. Update Tab Tab Tab Tab[ , ] = { [ , ], [ , ] + [ , ]}t t t t t t a a a b b bopt        .

The next two lemmas establish the correctness of the above algorithm.

Lemma 9. Let RΣ, be as above. Let G be a digraph and let A B W( , , ) be a 3‐partition
of V G( ). Let S A S B,a b⊆ ⊆ , and S Ww ⊆ . Then S S S R( , ) (Σ, )a b w∪ ‐dominates A and
S S S R( , ) (Σ, )b a w∪ ‐dominates B if and only if S S S R( , ) (Σ, )a b w∪ ‐dominates A B∪ .

Proof. Suppose S S S R( , ) (Σ, )a b w∪ ‐dominates A and S S S R( , ) (Σ, )b a w∪ ‐dominates B;
let S S S S= a b w∪ ∪ . Then, S Σ‐dominates Sa and Sb, and therefore S Σ‐dominates
S Sa b∪ . Moreover, S R‐dominates A Sa⧹ and B Sb⧹ , so S R‐dominates A B S S( ) ( )a b∪ ⧹ ∪

which yields that S S S R( , ) (Σ, )a b w∪ ‐dominates A B∪ . The other direction follows
similarly. □

Lemma 10. For each node t V T( )∈ , the table entries in Tabt are computed correctly.

Proof. We prove the lemma by induction on the height of t . In the base case, t is a
leaf. Correctness in this case is immediate. Suppose t is an internal node with children
a and b.

For the first direction, assume that Tab k[ , ] =t t t  for an equivalence class t of

d V,
±

t
≡ and an equivalence class t of d V,

±
t

≡ . We show that in this case, there is a set S t∈ 

of size k such that for all S S S R, ( , ) (Σ, )t t t¯ ¯∈  ‐dominates Vt . By the update of the
internal nodes and by the induction hypothesis, there are equivalence classes a of

,d V a,
±

a
≡  of ,d V b,

±
a

≡  of d V,
±

b
≡ , and b of d V,

±
b

≡ such that: There exist S S,a a b b∈ ∈ 

with    S S k+ =a b such that for all Sa a∈  and S S S R, ( , ) (Σ, )b b a a¯ ¯ ¯∈  ‐dominates Va,
and S S R( , ) (Σ, )b b̄ ‐dominates Vb. Additionally, S Ra t b∪ ∈  and S Rb t a∪ ∈  , where
Rt t∈  . Using Lemma 8, we conclude that S S R R( , ) (Σ, )a b t̄∪ ‐dominates Va and that
S S R R( , ) (Σ, )b a t̄∪ ‐dominates Vb. Lemma 9 yields that S S R R( , ) (Σ, )a b t̄∪ ‐dominates
V V V=a b t∪ .

For the other direction, suppose that = minopt and note that the case of = maxopt is
analogous. We have to show for every pair of an equivalence class t of d V,

±
t

≡ and an

equivalence class t of d V,
±

t
≡ , and Rt t∈  that if there exists some St t∈  of size at most

k such that S R R( , ) (Σ, )t t̄ ‐dominates Vt , then  Tab S[ , ]t t t t≤  . Let S S Va t a≔ ∩ and
S S Vb t b≔ ∩ . At some point, the algorithm considered the equivalence classes a of d V,

±
a

≡

and b of d V,
±

b
≡ such that Sa a∈  and Sb b∈  . Since S S R R( , ) (Σ, )a b t̄∪ ‐dominates

V Va b∪ , it follows from Lemma 9 that S S R R( , ) (Σ, )a b t̄∪ ‐dominates Va. Note that by the
above algorithm, S Rb t a∪ ∈  , so by the induction hypothesis we have that
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 Tab S[ , ]a a a a≤  . Similarly we can deduce that  Tab S[ , ]b b b b≤  . Clearly,
S S S=a b t t∪ ∈  , so the algorithm above guarantees that  Tab S[ , ]t t t t≤  . □

The algorithm described above results in the following theorem which is the first main
result of this section.

Theorem 4. Let σ σ ρ ρ, , ,+ − + − ⊆ be finite or cofinite, σ σ R ρ ρΣ = ( , ), = ( , )+ − + − , and
d d R= (Σ, ). There is an algorithm that given a digraphG on n vertices together with one of
its branch decompositions T λ( , ), computes and optimum‐size R(Σ, )‐dominating set in time

T λ T λ n d(nec ( , ) log(nec ( , )) log )d d
3 3⋅ . For n T λnec ( , )d≤ , the algorithm runs in time

T λ T λ n d(nec ( , ) log(nec ( , )) log )d d
3 2⋅ ⋅ .

Proof. First, we subdivide an arbitrary edge of T , and make the node created in the
subdivision, say r , the root of T . For simplicity, we keep referring to the tree created this
way as T . We do bottom‐up dynamic programming along T . We first initialize the table
entries at all nodes as described in Equation (2). At each node t V T( )∈ , we perform the
update of all table entries as described above in the corresponding paragraph, depending
on whether t is a leaf or an internal node. We find the solution to the instance at hand at
the table entry Tab [2 , { }]r

V G( ) ∅ .
Correctness of the algorithm follows from Lemma 10; we now analyze its

run time. We may assume that  V T n( ) = ( ) . By Lemma 7, we can compute
all descriptions of the equivalence classes of all equivalence relations associated
with the nodes of T , and therefore initialize the table entries, in time at most

T λ T λ n d(nec ( , )log nec ( , ) log )d d
3⋅ .

Updating the entries at leaf nodes takes time d d( log )2 ⋅ per node, as there are d( )2
pairs of equivalence classes to consider. This is upper bounded by T λ d(nec ( , ) log )d ⋅ by
definition, so we spend at most T λ n d(nec ( , ) log )d ⋅ ⋅ time in total for leaf nodes. At each
internal node, we consider triples of equivalence classes, of which there are at most

T λnec ( , )d
3. Once such a triple is fixed, we can compute descriptions of the remaining relevant

equivalence classes in time n d( log ) by Observation 2. Lastly, we need to access a constant
number of table entries. We can assume that the tables are stored in balanced binary search
trees, where the descriptions of the equivalence classes are used as the keys. The overhead of
querying one table entry is therefore T λ n d(log(nec ( , )) log )d ⋅ ⋅ , with T λ(log(nec ( , )))d
being the height of the tree, and at each node, we need to make an entry‐wise comparison of
two sequences of n d( ) ‐digit numbers, which is doable in n d( log )⋅ time. This implies
that updating the table entries at all internal nodes takes time at most T λ(nec ( , ) logd

3
T λ n d(nec ( , )) log )d

2⋅ ⋅ . We can bound the total run time of the algorithm by
T λ T λ n d T λ T λ n dmax{ (nec ( , )log nec ( , ) log ), (nec ( , ) log(nec ( , )) log )}d d d d

3 3 2⋅ ⋅ ⋅  . □

5.2.3 | Run time in terms of bi‐mim‐width

We now show how to express the run time of the algorithm from Theorem 4 as an XP‐run time
parameterized by the bi‐mim‐width of T λ( , ), in analogy with the case of undirected graphs
[10]. The crucial observation is the following. (Recall that for an equivalence relation ~, we
denote by nec(~) the number of equivalence classes of ~.)
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Observation 3. For d ∈ , a digraph G, and A V G( )⊆ : nnec( )d A
d A

,
± bimim ( )G≡ ≤ ⋅ .

Proof. By the same arguments given in [10, Lemma 2] for the undirected case,
we can show that nnec( )d A

d A
,

+ mim ( )G
+

≡ ≤ ⋅ and that nnec( )d A
d A

,
− mim ( )G

−
≡ ≤ ⋅ . Therefore,

n n nnec( ) = nec( ) nec( ) =d A d A d A
d A d A d A

,
±

,
+

,
− mim ( ) mim ( ) bimim ( )G G G

+ −
≡ ≡ ⋅ ≡ ≤ ⋅⋅ ⋅ ⋅ . □

Corollary 2. Let σ σ ρ ρ, , ,+ − + − ⊆ be finite or cofinite, σ σ R ρ ρΣ = ( , ), = ( , )+ − + − ,
and d d R= (Σ, ). Let G be a digraph on n vertices with branch decomposition T λ( , ) of
bi‐mim‐width w 1≥ . There is an algorithm that given any such G and T λ( , ) computes
an optimum‐size R(Σ, )‐dominating set in time n w n d( (log )(log ))wd3 +2 which is in
n wwd o3 +2+ (1) .

In the simplification of the run time bound of the previous corollary we used that we can
assume that in each instance, d n≤ .

5.3 | Directed vertex partitioning problems

We now show that the locally checkable vertex partitioning problems can be solved in XP time
parameterized by the bi‐mim‐width of a given branch decomposition. In analogy with [14], we
lift the d‐bi‐neighborhood equivalence to q‐tuples over vertex sets, which allows for devising
the desired dynamic programming algorithm. We omit several technical details as they are
very similar to the ones in the previous section. We begin by recalling the definition of a
bi‐neighborhood constraint matrix.

Definition 16. A bi‐neighborhood‐constraint matrix is a q q( × )‐matrix Dq over pairs of
finite or cofinite sets of natural numbers. Let G be a digraph, and X X= ( , …, )q1 be a
q‐partition of V G( ). We say that  is a Dq‐partition if for all i j q, {1, …, }∈ with
D i j μ μ[ , ] = ( , )q i j i j,

+
,
− , we have that for all  v X N v X μ, ( )i j i j

+
,

+∈ ∩ ∈ and  N v X μ( ) j i j
−

,
−∩ ∈ .

The d‐value of Dq is d D d μ d μ( ) = max { ( ), ( )}q i j i j i j, ,
+

,
− .

Definition 17. Let G be a digraph and A V G( )⊆ . Two q‐tuples of subsets of
A X X, = ( , …, )q1 and Y Y= ( ,…, )q1 , are d‐bi‐neighborhood equivalent w.r.t. A, if

   
   

i q v A d N v X d N v Y

d N v X d N v Y

[ ] : min{ , ( ) } = min{ , ( ) } and

min{ , ( ) } = min{ , ( ) }.

i i

i i

+ +

− −

∀ ∈ ∀ ∈ ∩ ∩

∩ ∩

In this case we write q d A, ,
±≡  .

Observation 4. Let G be a digraph, A V G( )⊆ , and let X X= ( , …, ) (2 )q
A q

1 ∈ and
Y Y= ( , …, ) (2 )q

A q
1 ∈ . Then, q d A, ,

±≡  if and only if for all i q X Y{1, …, }, i d A i,
±∈ ≡ .

Therefore, nec( ) nec( )q d A d A
q

, ,
±

,
±≡ ≤ ≡ .

For a q‐tuple X X= ( , …, )q1 of subsets of A, the q d( , )‐bi‐neighborhood of  w.r.t. A is
U U X U X( ) = ( ( ), …, ( ))q d A d A d A q, ,

±
,

±
1 ,

± , and we denote the set of all q d( , )‐bi‐neighborhoods w.r.t.
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A by q d A, ,
± . By the previous observation, for any A V G( )⊆ , there is a natural bijection between

the q d( , )‐bi‐neighborhoods w.r.t. A and the equivalence classes of q d A, ,
±≡ . Furthermore, we

can enumerate q d A, ,
± by invoking the algorithm of Lemma 7 q times and then generating

all q‐tuples of d A,
± .

Corollary 3. LetG be a digraph on n vertices, A V G( )⊆ , and q d, ∈ with q 2≥ . There
is an algorithm that enumerates all members of q d A, ,

± in time n q d(nec( ) log )d A
q

,
± 2≡ ⋅ .

Furthermore, for each q d A, ,
±∈  , the algorithm provides some (2 )A q∈ with

U ( ) =q d A, ,
±   .

Definition 18. Let Dq be a bi‐neighborhood constraint matrix. Let G be a digraph
and A V G( )⊆ . Let X X= ( , …, ) (2 )q

A q
1 ∈ and Y Y= ( , …, ) (2 )q

A q
1 ∈ . We say that

D( , ) q  ‐dominates A if for all i j q X Y D i j, {1, …, }, [ , ]i j q∈ ∪ ‐dominates A.

For an equivalence class  of q d A, ,
±≡ , its description, ( )desc  , is the q d( , )‐bi‐

neighborhood of all its members. Again we index the table entries with descriptions of
equivalence classes. For a clearer presentation we will also here skip explicit mentions of
the desc‐operator.

Definition 19. Let Dq be a bi‐neighborhood constraint matrix with d D d( ) =q , and let
G be a digraph with rooted branch decomposition T λ( , ), and t V T( )∈ . Let t be an
equivalence class of q d V, ,

±
t

≡ and t be an equivalence class of q d V, ,
±

t
≡ . Then,







Tab

q V

D V[ , ]

if ‐partition of such that:

and for all : ( , ) ‐dominates ;

otherwise.

t t t

t

t t t t q t¯ ¯ ¯ ¯≔

∃

∈ ∈

True

False

 



     

By the definition of the table entries we have that G has a Dq‐partition if and only if some
entry in Tabr is true, where r is the root of the given branch decomposition of G. We now
describe the algorithm. Initially, we set all table entries at all nodes to False.

5.3.1 | Leaves of T

If V Tℓ ( )∈ is a leaf of T , then let v V G( )∈ be such that λ v( ) = ℓ. We have to consider the
following q q‐partitions of v{ } (recall that parts of a partition may be empty): For i q{1, …, }∈ ,
we have to consider the partition X X= ( , …, )i q1 where X v= { }i and for j i X, =j≠ ∅. While
these partitions are equal up to renaming, they might differ with respect to Dq. We have that
U ( )q d v i, ,{ }

±  is the all‐zeroes vector in coordinates j i≠ , andU v({ })d A,
± in coordinate i. We denote

the corresponding equivalence class of q d v, ,{ }
±≡ by i . For each equivalence class ℓ of

q d V G v, , ( ) { }
±≡ ⧹ , let Y Y= ( , …, )1 ℓ be one of its elements. We then perform the following updates:

For all j, let μ μ D i j( , ) = [ , ]i j i j q,
+

,
− ; then
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   Tab j N v Y μ N v Y μ[ , ] = if : ( ) and ( ) .i j i j j i jℓ ℓ
+

,
+ −

,
−∀ ∩ ∈ ∩ ∈True 

In the following, for two q‐tuples X X( , …, )q1 and Y Y( , …, )q1 , we denote their coordinate‐wise
union as X X Y Y X Y X Y( , …, ) ( , …, ) = ( , …, )q q q q q1 1 1 1∪ ∪ ∪ .

5.3.2 | Internal nodes of T

Let t V T( )∈ be an internal node with children a and b.

1. Consider each triple , ,a b t   of equivalence classes of ,q d V q d V, ,
±

, ,
±

a b
≡ ≡ , and q d V, ,

±
t

≡ ,

respectively.
2. Let R R,a a b b∈ ∈  , and Rt t∈  . Determine:

– a , the equivalence class of q d V, ,
±

a
≡ containing R Rb q t .

– b , the equivalence class of q d V, ,
±

b
≡ containing R Ra q t .

– t , the equivalence class of q d V, ,
±

t
≡ containing R Ra q b.

3. If Tab [ , ] =t t t False  , then update Tab Tab Tab[ , ] = [ , ] [ , ]t t t a a a b b b      .

Applying the arguments given in the proof of Lemma 10 to each part of the
corresponding partitions yields the correctness of the resulting algorithm. Also the running
time can be analyzed in a similar way, using Corollary 3 and Observation 4 to bound the
complexity of enumerating all equivalence classes of the equivalence relations q d, ,

±≡ ⋅. We

have the following theorem.

Theorem 5. Let Dq be a bi‐neighborhood constraint matrix with d d D= ( )q . There
is an algorithm that given a digraph G on n vertices together with one of its
branch decompositions T λ( , ), determines whether G has a Dq‐partition in time

T λ T λ n q d(nec ( , ) log(nec ( , )) log )d
q

d
3 3⋅ . For n T λnec ( , )d≤ , the algorithm runs in

time T λ T λ n q d(nec ( , ) log(nec ( , )) log )d
q

d
3 2⋅ .

Combining the previous theorem with Observation 3 gives the following algorithms
parameterized by the bi‐mim‐width of a given branch decomposition.

Corollary 4. Let Dq be a bi‐neighborhood constraint matrix with d d D= ( )q . Let G be a
digraph on n vertices with branch decomposition T λ( , ) of bi‐mim‐width w. There is an
algorithm that given any such G and T λ( , ) decides whether G has a Dq‐partition in time
n wq n d( (log )(log ))wqd3 +2 which is in n wqwqd o3 +2+ (1) .

5.4 | Distance‐r variants

We now turn to distance variants of all problems considered in this section so far. For instance,
for r ∈ , the DISTANCE‐r DOMINATING SET problem asks for a minimum size set S of vertices of a
digraphG, such that each vertex inV G S( )⧹ is at distance at most r from a vertex in S. Note that
for r = 1, we recover the DOMINATING SET problem. We can generalize all DLCV problems to
their distance‐versions.
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Definition 20. LetG be a digraph. For r ∈ , the r‐out‐ball of a vertex v V G( )∈ is the
set of vertices B w V G v w r= { ( ) dist ( , ) }r G

+ ∈ ≤ , and the r‐in‐ball of a vertex v is the set of
vertices B v u V G u v r( ) = { ( ) dist ( , ) }r G

− ∈ ≤ .

In distance‐r versions of DLCV problems, restrictions are posed on B v( )r
+ instead of N v( )+

and on B v( )r
− instead of N v( )− .

Definition 21. Let r ∈ ; let σ σ ρ ρ, , ,+ − + − be finite or cofinite subsets of , let
σ σΣ = ( , )+ − and R ρ ρ= ( , )+ − . Let G be a digraph and S V G( )⊆ . We say that S

distance‐r R(Σ, )‐dominates G, if







v V G B v S
σ v S

ρ v S
B v S

σ v S

ρ v S
( ) : ( )

if ,

if
and ( )

if ,

if .r r
+

+

+
−

−

−∀ ∈ ∩ ∈
∈

∉
∩ ∈

∈

∉

It is not difficult to see that a set S V G( )⊆ is a distance‐r R(Σ, )‐dominating set inG if
and only if S is a R(Σ, )‐dominating set in Gr, the r‐th power of G. Therefore, to solve
DISTANCE‐r R(Σ, )‐SET on G, we can simply compute Gr and solve R(Σ, )‐SET on Gr. By
Lemma 6 and Corollary 2, we have the following consequence.

Corollary 5. Let r ∈ ; let σ σ ρ ρ, , ,+ − + − ⊆ be finite or cofinite,
σ σ R ρ ρΣ = ( , ), = ( , )+ − + − , and d d R= (Σ, ). Let G be a digraph on n vertices with

branch decomposition T λ( , ) of bi‐mim‐width w 1≥ . There is an algorithm that given any
such G and T λ( , ) computes an optimum‐size distance‐r R(Σ, )‐dominating set in time
n wr n d( (log )(log ))wrd3 +2 which is in n wrwrd o3 +2+ (1) .

Definition 22. Let D be a q q( × ) bi‐neighborhood‐constraint matrix. Let G be a
digraph. A q‐partition X X= ( , …, )q1 of V G( ) is a distance‐r D‐partition of G, if for
all i j, , where D i j μ μ[ , ] = ( , )i j i j,

+
,
− , we have that for all  v X B v X μ, ( )i r j i j

+
,

+∈ ∩ ∈ and
 B v X μ( )r j i j
−

,
−∩ ∈ .

By similar reasoning as above and Lemma 6 and Corollary 4, we have the following.

Corollary 6. Let r ∈ ; let Dq be a bi‐neighborhood constraint matrix with d d D= ( )q .
Let G be a digraph on n vertices with branch decomposition T λ( , ) of bi‐mim‐width w 1≥ .
There is an algorithm that given any such G and T λ( , ) decides whether G has a
distance‐r Dq‐partition in time n wqr n d( (log )(log ))wqrd3 +2 which is in n wqrwqrd o3 +2+ (1) .

6 | CONCLUSION

We introduced the digraph width measure bi‐mim‐width, and showed that DLCV problems
represented by finite or cofinite sets and their distance‐r versions can be solved in
polynomial time if the input digraph is given together with a branch decomposition of
constant bi‐mim‐width. A natural next step in the understanding of this new parameter
would be to determine the complexity of the DIRECTED FEEDBACK VERTEX SET problem on
digraphs of bounded bi‐mim‐width. We showed that several classes of intersection digraphs
have constant bi‐mim‐width which adds a large number of polynomial‐time algorithms for
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locally checkable problems related to domination and independence (given a representa-
tion) to the relatively sparse literature on the subject.

Intersection digraph classes such as interval digraphs seem too complex to give polynomial‐
time algorithms for optimization problems. Our work points to reflexivity as a reasonable
additional restriction to give successful algorithmic applications of intersection digraphs, while
maintaining a high degree of generality. This was observed independently for interval digraphs
by Francis, Hell, and Jacob [22] who studied the KERNEL, ABSORBING SET, and DOMINATING SET
problems. Apart from giving polynomial‐time algorithms for these problems on reflexive
interval digraphs, they showed that even for the severely restricted case when the intervals
associated with the vertices are single points, the aforementioned problems remain hard.

Reflexivity presents a natural tractability barrier in the case of interval digraphs, or, more
generally, H ‐digraphs for fixed H . The situation is not as clear yet when considering
permutation digraphs or rooted directed path digraphs. Both digraph classes contain interval
digraphs, therefore the hardness results from [22] apply as well. However, there are no
matching polynomial‐time algorithms for directed locally checkable vertex problems on
reflexive permutation digraphs or reflexive rooted directed path digraphs; in particular, it is not
known whether their bi‐mim‐width is bounded or not. We did show bounds on the bi‐mim‐
width of their adjusted subclasses where we additionally require that every pair of objects
representing a vertex share a common “endpoint” (where the concrete notion of an endpoint
depends on the considered type of representation). Arguably, reflexivity is the more natural
restriction and one would hope that also in the case of these two digraph classes, it is the right
barrier separating the tractable cases from the intractable ones. However, this question remains
open for the time being.

Let us point out two more directions in this line of work. First, as our algorithms rely on a
representation of the input digraphs being provided at the input, we are naturally interested in
computing representations of intersection digraph classes of bounded bi‐mim‐width in polynomial
time. So far, this is only known for (reflexive) interval digraphs. Second, in Lemma 6, we proved
that the r‐th power of a digraph of bi‐mim‐width w has bi‐mim‐width at most rw. For undirected
graphs, there is a bound that does not depend on r [28]. We leave an open question whether a
bound that does not depend on r exists.
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APPENDIX A: OMITTED DEFINITIONS
Let T be a rooted directed tree. For a vertex t V T( )∈ , we denote by Tt the subtree of T
containing all vertices v such that there is a directed path from t to v in T .
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Definition 23 (Strong guard). Let G be a digraph and X Y V G, ( )⊆ . We say that Y is a
strong guard for X if every walk starting and ending in X , and containing a vertex from
V G X( )⧹ , contains a vertex from Y .

Definition 24 (Directed tree‐width). Let G be a digraph. A directed tree decomposition
is a triple T β γ( , , ) of a rooted directed tree T and two maps β V T: ( ) 2V G( )→ and
γ E T: ( ) 2V G( )→ ,

1. The set β t t V T{ ( ) : ( )}∈ is a partition of V G( ).
2. For each e u v E T γ e= ( , ) ( ), ( )∈ is a strong guard for  β t( )t V T( )v∈ .

For each t V T( )∈ , we let t β t γ eΓ( ) ( ) ~ ( )e t≔ ∪ , where e t~ means that e is
incident with t . The width of T β γ( , , ) is  tmax Γ( ) − 1t V T( )∈ , and the directed tree‐width
of a digraph G is the minimum width over all its directed tree decompositions.
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