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Abstract. Let Fq0 be a finite field of odd characteristic. For an integer s ≥ 1, let

Cs(q0) be the generalized Zetterberg code of length qs0 + 1 over Fq0 . If s is even, then

we prove that the covering radius of C(s, q0) is 3. Put q = qs0. If s is odd and q 6≡ 7

mod 8, then we present an explicit lower bound N1(q0) so that if s ≥ N1(q0), then

the covering radius of Cs(q0) is 3. We also show that the covering radius of C1(q0)

is 2. Moreover we study some cases when s is an odd integer with 3 ≤ s ≤ N1(q0)

and, rather unexpectedly, we present concrete examples with covering radius 2 in

that range. We introduce half generalized Zetterberg codes of length (qs0 + 1)/2 if

q ≡ 1 mod 4. Similarly we introduce twisted half generalized Zetterberg codes of

length (qs0 + 1)/2 if q ≡ 3 mod 4. We show that the same results hold for the half

and twisted half generalized Zetterberg codes.
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1. Introduction

Covering radius of codes is one of the four fundamental parameters of a code [7].

It has various application including decoding, data compression, testing, write-once

memories and combinatorics in general. For further details on the significance and

applications of covering radius of codes, we refer, for example, to [2], [4], [5], [6], and

the references therein.

Let Fq0 denote a finite field with q0 elements, where q0 is a prime power. For an

integer s ≥ 1, let F∗qs0 denote the multiplicative group of the field extension Fqs0 , so that

F∗qs0 = Fqs0 \ {0}. For a finite set S, let |S| denote its cardinality.

Let n be a positive integer. Let C be an Fq0-linear code of length n. Let wH denote

the Hamming weight in Fnq0 . If x ∈ Fnq0 , then the Hamming distance of x to C is

d(x,C) = min{wH(x− c) : c ∈ C}. The covering radius of C is the integer given by

max
{
d(x,C) : x ∈ Fnq0

}
.

The problem of finding the covering radius of a given linear code is very difficult in

general. Most of the results in the literature present some bounds on the covering radii

rather than giving exact bounds [1], [13], [15], [18], [20]. Exact values of covering radii

are known only for a few classes of linear codes [9], [10], [17].

Recently the covering radius of Melas codes are determined [17]. Another interesting

class of codes is the class of Zetterberg type codes. They include some quasi-perfect

codes [8], [11]. The Zetterberg codes were introduced by L. H. Zetterberg [21]. Let

s ≥ 1 be an integer. Put q = qs0 and n = q + 1. Let H be the subgroup of Fq2 with

|H| = n. Let {h1, . . . , hn} be an enumeration of H. The generalized Zetterberg code

Cs(q0) of length n = qs0 + 1 over Fq0 is the Fq0-linear code with the parity check matrix

P = [h1 h2 · · ·hn] .(1)

Here we use a short notation for the parity check matrix P . In fact we choose an

arbitrary Fq0-linear bijective map φ : Fq2 → F2s
q0

and we consider each column hj in P

as φ(hj) ∈ F2s
q0

. Therefore Cs(q0) has dimension n− 2s (see Lemma 6.1 in Appendix).

In this paper we determine the covering radius of Zetterberg type codes. In partic-

ular, our contributions in this paper include the following statements in items (i), . . . ,

(vii) below:

We assume that qs0 6≡ 7 mod 8.

(i). For each such q0 and any integer s ≥ 1, the covering radius of Cs(q0) is either 2

or 3.

(ii). If s = 1, then the covering radius of Cs(q0) is 2.
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(iii). If s ≥ 2 is an even integer, then the covering radius of Cs(q0) is 3. Here the

assumption qs0 6≡ 7 mod 8 holds automatically.

(iv). For each such q0, there exists an odd integer N1(q0) ≥ 3 with the following

property: If s ≥ 3 is an odd integer, then the covering radius of Cs(q0) is 3.

(v). For each such q0, let I(q0) be the set consisting of odd integers s ≥ 3 such that

the covering radius of Cs(q0) is 3. We show that I(q0) is very different from the

case of even s in some cases. For example

I(q0) = {s: s is an odd integer with s ≥ 3} if q0 ∈ {3, 5, 9, 11, 13}.

However we also have that

3 6∈ I(q0) if q0 ∈ {17, 19, 25}.

(vi). We use some methods from [8] and [11]. We observe that there is a small gap

in the proof of the covering radius in the paper of [11], which corresponds to

the case that q0 = 3. We indicate that and correct it. For details we refer to

Remark 4.2 and Section 5 below.

(vii). We extend the notion generalized Zetterberg code to half and twisted half gen-

eralized Zetterberg codes. If q0 = 3, then half and twisted half generalized

Zetterberg codes are quasi-perfect [8] and [11]. We also determine the covering

radii of half and twisted half generalized Zetterberg codes.

We use detailed methods from arithmetic of finite fields and algebraic curves over

finite fields in our proofs. Our methods are very different from the ones in [17].

It is well known that the covering radius ρ(s, q0) of the generalized Zetterberg code

Cs(q0) can also be defined as follows (see, for example, [4, Theorem 2.1.9] and [13,

Lemma 1.1]): The covering radius ρ(s, q0) is the smallest positive integer ρ such that

every element of Fq2 is an Fq0-linear combination of at most ρ elements of H.

This paper is organized as follows. We prove the covering radius is at most 3 in

Section 2. It is a long and quite technical section. We determine the exact covering

radius in most cases in Section 3. This section presents some connections to algebraic

curves over finite fields. We use these connections effectively to solve the problem for all

sufficiently large values of s. There are rather interesting explicit examples for certain

small values of q0 and s. We extend our results to half and twisted half Zetterberg

codes in Section 4. We conclude in Section 5. We also have a short Appendix.



4 MINJIA SHI & TOR HELLESETH & FERRUH ÖZBUDAK

2. The covering radius of the generalized Zetterberg Codes in odd

characteristic is at most 3

Let Fq0 be an arbitrary finite field of odd characteristic. Let s ≥ 1 be an integer.

Put q = qs0. Let H be the subgroup of F∗q2 with |H| = q + 1.

The main result of this section is the following theorem.

Theorem 2.1. Let Fq0 be a finite field of odd characteristic. Let s ≥ 1 be an integer.

Put q = qs0 and n = q + 1. Assume that qs0 6≡ 7 mod 8. Then the covering radius of

the Zetterberg code over Fq0 of length n is at most 3.

Recall that Theorem 2.1 is equivalent to the following statement (see Section 1

above): For α ∈ Fq2 , there exist c1, c2, c3 ∈ Fq0 and h1, h2, h3 ∈ H such that

c1h1 + c2h2 + c3h3 = α.(2)

Our proof of Theorem 2.1 is quite involved. As a first step we use the following theorem,

which extends an important technique from [11]. Namely [11] introduce and use a very

useful technique only for F3 and odd integers s ≥ 1. We extend their technique from

F3 and odd integers s ≥ 1 to arbitrary Fq0 of odd characteristic and arbitrary integers

s ≥ 1, provided qs0 6≡ 7 mod 8. We also observe a small gap in their proof and we

cover their gap (see Remark 4.2 and Section 5 below).

Theorem 2.2. Let Fq0 be a finite field of odd characteristic. Let s ≥ 1 be an integer.

Put q = qs0 and n = q + 1. Assume that q 6≡ 7 mod 8. Let P1, P2, P3 and P4 be the

properties defined depending on q0 and s as follows. Note that P3 and P4 are defined

only if q ≡ 3 mod 8.

• Property P1:

For each α ∈ F∗q, there exist c1, c2, c3 ∈ Fq0 and h1, h2, h3 ∈ H such that

c1h1 + c2h2 + c3h3 = α.

• Property P2:

For each α ∈ Fq2\Fq with αq = −α, there exist c1, c2, c3 ∈ Fq0 and h1, h2, h3 ∈
H such that c1h1 + c2h2 + c3h3 = α.

• Property P3:

Assume q ≡ 3 mod 4. Let θ ∈ Fq2 be a primitive 4-th root of 1. For each

α ∈ Fq2 \ Fq with αq = θα, there exist c1, c2, c3 ∈ Fq0 and h1, h2, h3 ∈ H such

that c1h1 + c2h2 + c3h3 = α.

• Property P4:

We keep the assumption on q and the notation on θ of P3 above. For each

α ∈ Fq2 \ Fq with αq = −θα, there exist c1, c2, c3 ∈ Fq0 and h1, h2, h3 ∈ H such

that c1h1 + c2h2 + c3h3 = α.
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Then we have the following:

• Case q ≡ 1 mod 4:

The covering radius of Cs(q0) is at most 3 if both of the the properties P1 and

P2 hold simultaneously.

• Case q ≡ 3 mod 8:

The covering radius of Cs(q0) is at most 3 if all of the four properties P1, P2,

P3 and P4 hold simultaneously.

Remark 2.1. An important strength of Theorem 2.2 is the following: If q ≡ 1 mod 4,

then using properties P1 and P2 we need to consider only α in the set{
α ∈ F∗q2 : αq = α

}⊔{
α ∈ F∗q2 : αq = −α

}
.

Here and throughout the paper
⊔

is the disjoint union. Assume q ≡ 3 mod 4 and

θ ∈ Fq2 is a primitive 4-th root of 1. Then using properties P1, P2, P3 and P4 we need

to consider only α in the set

{α ∈ Fq2 : αq = α}
⊔{

α ∈ F∗q2 : αq = −α
}⊔{

α ∈ F∗q2 : αq = θα
}

⊔{
α ∈ F∗q2 : αq = −θα

}
.

Hence, if q ≡ 1 mod 4, the number of α we need to consider is 2q − 1. Similarly if

q ≡ 3 mod 4, the number of α we need to consider is 4q − 3. In particular, if q is

large, then

max {2q − 1, 4q − 3} � q2.(3)

This shows that Theorem 2.2 is a strong improvement compared to the well known

statement in (2). Indeed it follows from (3) that we need to consider extremely small

number of α to complete the proof: around, at most, 4q versus q2.

Proof. We need to show that if α ∈ F∗q2 , then there exist c1, c2, c3 ∈ Fq0 and h1, h2, h3 ∈
H such that

c1h1 + c2h2 + c3h3 = α.(4)

Assume first that q ≡ 1 mod 4. Then

gcd( q+1
2
, q − 1) = 1.

Hence we obtain

gcd(q + 1, 2(q − 1)) = 2.(5)

Note that 2(q−1) | (q2−1), and let G2 be the subgroup of F∗q2 such that |G2| = 2(q−1).

Using (5) we conclude that

lcm (|H|, |G2|) = 2(q−1)(q+1)
2

= q2 − 1.(6)
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Using (6) we conclude that if α ∈ F∗q2 , then there exist h ∈ H and α1 ∈ G2 such that

α = hα1.(7)

Combining (4) and (7) we conclude that we can assume α1 ∈ G2 without loss of

generality. Note that

G2 =
{
α ∈ F∗q2 : αq = α

}⊔{
α ∈ F∗q2 : αq = −α

}
.

This completes the proof if q ≡ 1 mod 4.

Next we assume that q ≡ 3 mod 4. In this case 4(q − 1) | (q2 − 1) and let G4 be

the subgroup of F∗q2 such that |G4| = 4(q − 1). Note that we have

gcd( q+1
4
, q − 1) = 1(8)

and hence

gcd(q + 1, 4(q − 1)) = 4.(9)

Using (8) and (9) we obtain

lcm (|H|, |G4|) = 4(q−1)(q+1)
4

= q2 − 1.

Therefore if α ∈ F∗q2 , then there exist h ∈ H and α1 ∈ G4 such that

α = hα1.(10)

Let θ ∈ Fq2 be a primitive 4-th root of 1. We have

G4 =
{
α ∈ F∗q2 : αq = α

}⊔{
α ∈ F∗q2 : αq = −α

}
⊔{

α ∈ F∗q2 : αq = θα
}⊔{

α ∈ F∗q2 : αq = −θα
}
.

Combining (4) and (10) we conclude that we can assume α1 ∈ G4 without loss of

generality. This completes the proof of q ≡ 1 mod 4. �

Using Theorem 2.2, the proof of Theorem 2.1 is immediate if

• properties P1 and P2 hold when q ≡ 1 mod 4, and

• properties P1, P2, P3 and P4 hold when q ≡ 3 mod 4.

We prove that Theorem 2.1 in four subsections below. Subsection 1 has its main

theorem that we prove Property P1 holds for any Fq odd characteristic. Similarly we

consider properties P2, P3 and P4 in the other subsections. In particular we complete

the proof of Theorem 2.1 using Theorem 2.2 and the four theorems in the following

four subsections.
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2.1. Property P1. In this subsection we prove that Property P1 holds, namely we

prove Lemma 2.2 and Theorem 2.3 below.

Throughout this subsection let Fq0 be a finite field of odd characteristic. Let s ≥ 1

be an integer. Put q = qs0. Let H be the subgroup of F∗q2 with |H| = q + 1. Let

w ∈ Fq2 \Fq with w+wq = 1. Put D = (w−w
q

2
)2. We start with a rather simple lemma.

Note that {w,wq} is a basis of Fq2 over Fq.

Lemma 2.1. We have D = 1
4
−wq+1. In particular, D ∈ F∗q and D is not a square in

Fq.

Proof. Note w−wq
2

= w+wq

2
− wq, w+wq

2
∈ Fq and wq /∈ Fq. Hence D is not a square in

Fq. Moreover

D = (w−w
q

2
)2 = w2+w2q−2wq+1

4
= w2+2wq+1+w2q−4wq+1

4

= 1−4wq+1

4
= 1

4
− wq+1.

This completes the proof. �

The next simple lemma covers a special subcase, which needs a separate proof.

Lemma 2.2. Let α ∈ {0, 1,−1}. There exist c1, c2, c3 ∈ Fq0 and h1, h2, h3 ∈ H such

that c1h1 + c2h2 + c3h3 = α.

Proof. Note that 1 ∈ H and {0, 1,−1} ∈ Fq0 . Let h1 = 1 and h2, h3 ∈ H arbitrary

chosen elements. We have

0 · h1 + 0 · h2 + 0 · h3 = 0,

1 · h1 + 0 · h2 + 0 · h3 = 1,

−1 · h1 + 0 · h2 + 0 · h3 = −1.

This completes the proof. �

The main result of this subsection is the following, which we prove at the end of this

subsection.

Theorem 2.3. Let α ∈ Fq \ {0, 1,−1}. There exist h1, h2, h3 ∈ H such that

h1 + h2 + h3 = α.

We need some preliminary results before the proof of Theorem 2.3. We use Propo-

sitions 2.1, 2.2 and 2.3 below in the proof of Theorem 2.3, which we give at the end of

this subsection.
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Proposition 2.1. Let α ∈ Fq \{0, 1,−1}. Then Theorem 2.3 holds if and only if there

exist x1, x2, x3, y1, y2, y3 ∈ Fq such that

x1 + x2 + x3 = α,

y1 + y2 + y3 = 0,

x21 −Dy21 = 1,

x22 −Dy22 = 1, and

x23 −Dy23 = 1.

Proof. Put x1, x2, x3, y1, y2, y3 ∈ Fq such that hi = xiw + yiw
q for 1 ≤ i ≤ 3. Note that

α = αw + αwq and hence

h1 + h2 + h3 = α⇐⇒ x1 + x2 + x3 = α and y1 + y2 + y3 = α.(11)

Moreover

(hi)
q+1 = (xiw + yiw

q)q+1 = (x2i + y2i )w
q+1 + (w2 + w2q)xiyi = 1(12)

for 1 ≤ i ≤ 3. Put


xnew,i = xi+yi

2
and

ynew,i = xi − yi

for 1 ≤ i ≤ 3. This change of variables and (11), (12) imply that Theorem 2.3 holds if

and only if



xnew,1 + xnew,2 + xnew,3 = α,

ynew,1 + ynew,2 + ynew,3 = 0, and

x2new,i −Dy2new,i = 1
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for 1 ≤ i ≤ 3. Indeed, using Lemma 2.1 we obtain

x2new,i −Dy2new,i =
x2i + y2i + 2xiyi

4
−D(x2i + y2i − 2xiyi)

=

(
1

4
−D

)
(x2i + y2i ) +

(
1

2
+ 2D

)
xiyi

= wq+1(x2i + y2i ) + (1− 2wq+1)xiyi

= wq+1(x2i + y2i ) + (w2 + w2q)xiyi

= 1.

This completes the proof. �

Proposition 2.2. Let α ∈ Fq\{0, 1,−1}. Let a(x), b(x), c(x) ∈ Fq[x] be the polynomials

given by

a(x) = 2αx− α2 − 1,

b(x) = 2αx2 + (−3α2 − 1)x+ α3 + α, and

c(x) = (−α2 − 1)x2 + (α3 + α)x− α4

4
− α2

2
+

3

4
.

Put

∆(x) = b(x)2 − 4a(x)c(x) ∈ Fq[x].(13)

Assume that there exists x1 ∈ Fq such that

(i). x21 − 1 is a nonsquare in Fq,

(ii). a(x1) 6= 0, and

(iii). ∆(x1) is a nonzero square in Fq.

Then Theorem 2.3 holds.

Proof. We use Proposition 2.1. Put y3 = −(y1 + y2) and x3 = α − x1 − x2. Then the

system in Proposition 2.1 is equivalent to the system

x21 −Dy21 = 1,

x22 −Dy22 = 1, and

(α− x1 − x2)2 −D(y1 + y2)
2 = 1.
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Here the variables x1, x2, y1, y2 run through Fq. Using the last equation we obtain

α2 + x21 + x22 + 2x1x2 − 2αx1 − 2αx2 = Dy21 +Dy22 + 2Dy1y2 + 1

= (x21 − 1) + (x22 − 1) + 2Dy1y2 + 1 = x21 + x22 + 2Dy1y2 − 1.

Hence

Dy2 =
x1x2 − αx1 − αx2 + α2+1

2

y1
.

Taking square of both sides and using the equations Dy21 = x21 − 1 and Dy22 = x22 − 1,

we obtain

x22 − 1 =
(x1x2 − αx1 − αx2 + α2+1

2
)2

x21 − 1
.

Here we assume that x21 6= 1. The last equation is equivalent to

a(x1)x
2
2 + b(x1)x2 + c(x1) = 0,(14)

where a(x1), b(x1), c(x1) ∈ Fq[x1] given in the statement of Proposition 2.2.

Assume further that a(x1) 6= 0. Then there exists x2 ∈ Fq satisfying (14) if ∆(x1)

is a nonzero square in Fq. Assuming items (ii) and (iii) of the assumptions of the

proposition and the condition x21 6= 1, the system in Proposition 2.1 is equivalent to

x21 −Dy21 = 1.(15)

Here x1 is chosen and y1 ∈ Fq is a variable.

As D is a nonsquare in Fq, the equation in (15) has a solution y1 ∈ Fq if we also

assume that x21 − 1 is a nonsquare. Note that the condition x21 6= 1 is automatically

satisfied by the assumption item (i). This completes the proof. �

Let Fq be an algebraic closure of Fq.

Proposition 2.3. Let α ∈ Fq \ {0, 1,−1}. Let ∆(x) ∈ Fq[x] be the polynomial defined

in (13) in Proposition 2.2. Then there is no polynomial f(x) ∈ Fq[x] such that

∆(x) = (f(x))2 ∈ Fq[x].(16)

Proof. Note that ∆(x) is a polynomial of degree 4 with leading coefficient 4α2. Put

∆1(x) =
∆(x)

4α2
= x4 + A3x

3 + A2x
2 + A1x+ A0 ∈ Fq[x].(17)

Assume the contrary that there exists f(x) ∈ Fq[x] satisfying (16). This implies that

there exist c0, c1 ∈ Fq such that

∆1(x) = (x2 + c1x+ c0)
2.(18)

Assume that

A3 6= 0.(19)
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Using (18) and comparing the coefficients of both sides we obtain that

c1 =
A3

2
and c0 =

A1

A3

.

We also obtain that

A2 = c21 + 2c0 =

(
A3

2

)2

+ 2
A1

A3

.(20)

Using (17) and having rather tedious but direct computations we obtain that

A3 =
−α2 + 1

α
,(21)

and

A2 −

[(
A3

2

)2

+ 2
A1

A3

]
=
α2 − 1

α2
.(22)

As α /∈ {0, 1,−1}, using (21) we obtain that the assumption in (19) holds. Moreover

combining (20) and (22) we get a contradiction. This completes the proof. �

Now we are ready to prove Theorem 2.3.

Proof of Theorem 2.3. Recall that a(x) = 2αx − α2 − 1 ∈ Fq[x] and ∆(x) ∈ Fq[x] are

defined in Proposition 2.2. Let

T1 = {x1 ∈ Fq : a(x1) = 0} , T2 =
{
x1 ∈ Fq : x21 − 1 = 0

}
, T3 = {x1 ∈ Fq : ∆(x1) = 0} .

Note that deg(∆(x)) = 4. Hence |T1| = 1, |T2| = 2, |T3| ≤ 4. Put T = T1
⋃
T2
⋃
T3.

Let η be the quadratic character on Fq given by

η : Fq → {0, 1,−1}

x 7→


0, if x = 0,

1, if x ∈ F∗q is a square,

−1, if x ∈ F∗q is a nonsquare.

For 1 ≤ i ≤ 3, put

Ei =
∑
x∈Ti

(1− η(x2 − 1))(1 + η(∆(x))).(23)

Let

E =
∑
x∈T

(1− η(x2 − 1))(1 + η(∆(x))),(24)

N1 =
∑

x∈Fq\T

(1− η(x2 − 1))(1 + η(∆(x))),(25)
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and

N =
∑
x∈Fq

(1− η(x2 − 1))(1 + η(∆(x))).(26)

It follows from (24), (25) and (20) that

N1 = N − E.(27)

Using (23) we obtain that

|E1| ≤ 2 · 2 = 4,

|E2| =
∑
x∈T2

(1 + η(∆(x))) ≤ 4

|E3| ≤ 4 · 2 = 8.

These imply that

E ≤ 4 + 4 + 8 = 16.(28)

Note that using (26) we have

N =
∑
x∈Fq

1−
∑
x∈Fq

η(x2 − 1) +
∑
x∈Fq

η(∆(x))−
∑
x∈Fq

η
(
(x2 − 1)∆(x)

)
.(29)

It is well-known that ∑
x∈Fq

η(x2 − 1) = 0.(30)

Using Proposition 2.3 and Weil’s sum (see, for example, [14, Theorem 5.41]) we have∑
x∈Fq

η(∆(x)) ≤ 3q1/2(31)

and ∑
x∈Fq

η
(
(x2 − 1)∆(x)

)
≤ 5q1/2.(32)

Combining (27), (28), (29), (30), (31) and (32) we conclude that

N1 ≥ q − 8q1/2 − 16.(33)

Note that q − 8q1/2 − 16 > 0 if q > 94. Using Proposition 2.2, this completes the

proof if q > 94. The set of cardinalities q such that there exists a finite field Fq of

characteristic odd and q ≤ 94 is

S = {3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29,

31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89} .

For each q ∈ S, using Magma [3] and a direct search method we show that Theorem

2.3 holds. This completes the proof. �
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2.2. Property P2. In this subsection we prove that Property P2 holds, namely we

prove Theorem 2.4 below.

As in the previous subsection, throughout this subsection let Fq0 be a finite field of

odd characteristic. Let s ≥ 1 be an integer. Put q = qs0. Let H be the subgroup of Fq2
with |H| = q+ 1. Still as in the previous subsection, let w ∈ Fq2 \Fq with w+wq = 1.

Put D = (w−w
q

2
)2.

First we prove a proposition, which is analogous to Proposition 2.1. Recall that

D ∈ F∗q and D is a nonsquare in Fq.

Proposition 2.4. Let α ∈ F∗q2 with αq = −α. Put β = 2α
2w−1 . Note that β ∈ F∗q. There

exist h1, h2, h3 ∈ H such that

h1 + h2 + h3 = α

if and only if there exist x1, x2, x3, y1, y2, y3 ∈ Fq such that

x1 + x2 + x3 = 0,

y1 + y2 + y3 = β,

x21 −Dy21 = 1,

x22 −Dy22 = 1,

x23 −Dy23 = 1.

Proof. Put x1, x2, x3, y1, y2, y3 ∈ Fq such that

hi = xiw + yiw
q

for 1 ≤ i ≤ 3. Note that

α =
β

2
w − β

2
wq

and hence

h1 + h2 + h3 = α⇐⇒ x1 + x2 + x3 =
β

2
and y1 + y2 + y3 = −β

2
.(34)

As in the proof of Proposition 2.1, we have

1 = (hi)
q+1 = (x2i + y2i )w

q+1 + (w2 + w2q)xiyi for 1 ≤ i ≤ 3.(35)

Put 
xnew,i = xi+yi

2
,

ynew,i = xi − yi, for 1 ≤ i ≤ 3.
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This change of variables and (34), (35) imply that h1 + h2 + h3 = α if and only if

xnew,1 + xnew,2 + xnew,3 = 0,

(36)

ynew,1 + ynew,2 + ynew,3 = β, and

(37)

x2new,i −Dy2new,i = 1.

for 1 ≤ i ≤ 3. Indeed, using Lemma 2.1 as in the proof of Proposition 2.1 we obtain

that

x2new,i −Dy2new,i = (x2i + y2i )w
q+1 + (w2 + w2q)xiyi = 1

for 1 ≤ i ≤ 3. This completes the proof. �

Before presenting the main result of this subsection we need to deal with a special

subcase separately in the following lemma.

Lemma 2.3. Let α ∈ F∗q2 with αq = −α. Put β = 2α
2w−1 . Assume that

q ≡ 3 mod 4 and Dβ2 + 1 = 0.(38)

Then there exist h1, h2, h3 ∈ H such that

h1 + h2 + h3 = α.

Proof. As q ≡ 3 mod 4, −1 is not a square in Fq. Then −1
D

is a square in Fq. Indeed,

it follows from the assumption (38) that β2 = −1
D
. Put

x1 = x2 = x3 = 0, y1 = β, y2 = −β, y3 = β.

Then

x1 + x2 + x3 = 0, y1 + y2 + y3 = β,

x21 −Dy21 = −Dβ2 = 1, x22 −Dy22 = −Dβ2 = 1, x23 −Dy23 = −Dβ2 = 1.

We complete the proof using Proposition 2.4. �

Now we are ready to present the main result of this subsection in the following

theorem.

Theorem 2.4. Let α ∈ F∗q2 with αq = −α. There exist h1, h2, h3 ∈ H such that

h1 + h2 + h3 = α.

We need some further results (as in Subsection 2.1) before the proof of Theorem 2.4.

The following is an analog of Proposition 2.2.
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Proposition 2.5. Let α ∈ F∗q2 with αq = −α. Put β = 2α
2w−1 . Let a(y), b(y), c(y) ∈

Fq[y] be the polynomials given by

a(y) = 2D2βy −D2β2 +D,

b(y) = 2D2βy2 + (−3D2β2 +D)y +D2β3 −Dβ, and

c(y) = (−D2β2 +D)y2 + (D2β3 −Dβ)y − D2β4

4
+
Dβ2

2
+

3

4
.

Put

∆(y) = b(y)2 − 4a(y)c(y) ∈ Fq[y].

Assume that there exists y1 ∈ Fq such that

(i). 1 +Dy21 is a nonzero square in Fq,
(ii). a(y1) 6= 0, and

(iii). ∆(y1) is a nonzero square in Fq.
Then Theorem 2.4 holds.

Proof. We use Proposition 2.4. Put x3 = −(x1 + x2) and y3 = β − y1 − y2. Then the

system in Proposition 2.4 is equivalent to the system

x21 −Dy21 = 1,

x22 −Dy22 = 1,

(x1 + x2)
2 −D(β − y1 − y2)2 = 1.

Using the last equation we obtain

x21 + x22 + 2x1x2 = D(β2 + y21 + y22 + 2y1y2 − 2βy1 − 2βy2) + 1

= (x21 − 1) + (x22 − 1) + 2Dy1y2 − 2Dβy1 − 2Dβy2 +Dβ2 + 1.

Hence

x2 =
2Dy1y2 − 2Dβy1 − 2Dβy2 +Dβ2 − 1

2x1
.

Taking square of both sides and using the equations x22 = 1 + Dy22 and x21 = 1 + Dy21
we obtain

1 +Dy22 =
(Dy1y2 −Dβy1 −Dβy2 + Dβ2−1

2
)2

1 +Dy21
.

Hence we assume that 1 +Dy21 6= 0. The last equation is equivalent to

a(y1)y
2
2 + b(y1)y2 + c(y1) = 0,(39)

where a(y1), b(y1), c(y1) ∈ Fq[y1] are given in the statement of Proposition 2.5.
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Assume further that a(y1) 6= 0. Then there exists y2 ∈ Fq satisfying (39) if ∆(y1)

is a nonzero square in Fq. Assuming items (ii) and (iii) of the assumptions of the

proposition and the condition 1 +Dy21 6= 0, the system in Proposition 2.5 is equivalent

to

x21 −Dy21 = 1.

Here y1 is chosen and x1 ∈ Fq is a variable.

If 1 + Dy21 is a nonzero square as well, the last equation has a solution x1 ∈ Fq and

the assumption 1 +Dy21 6= 0 holds. This completes the proof. �

Recall that Fq is an algebraic closure of Fq. Next proposition is analogous to Propo-

sition 2.3.

Proposition 2.6. Let α ∈ F∗q2 such that αq = −α. Put β = 2α
2w−1 . Assume (38) in

Lemma 2.3 does not hold. Let ∆(y) ∈ Fq[y] be the polynomial defined in Proposition

2.5. Then there is no polynomial f(y) ∈ Fq[y] such that

∆(y) = (f(y))2 ∈ Fq[y].(40)

Proof. The proof is analogous to the proof of Proposition 2.3. Here ∆(y) is a polynomial

of degree 4 with leading coefficient 4D4β2. Put

∆1(y) =
∆(y)

4D4β2
= y4 + A3y

3 + A2y
2 + A1y + A0 ∈ Fq[y].

Assume that

A3 6= 0.(41)

As in the proof of Proposition 2.3, if there exists f(y) ∈ Fq[y] satisfying (40), then we

have

A2 −

[(
A3

2

)2

+ 2
A1

A3

]
= 0.(42)

Using rather tedious but direct computations we obtain that

A3 =
−Dβ2 − 1

Dβ
,

and

A2 −

[(
A3

2

)2

+ 2
A1

3

]
=
−Dβ2 − 1

D2β2
.(43)

Assume first that q ≡ 1 mod 4. Then −1 is a square and hence Dβ2 + 1 6= 0 as D is

a nonsquare in Fq and β ∈ Fq. Assume next that q ≡ 3 mod 4. As the condition (38)

in Lemma 2.3 does not hold Dβ2 + 1 6= 0.

These imply that the assumption in (41) holds. Moreover these also imply that we

get a contradiction using (42) and (43). This completes the proof. �
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Now we are ready to prove Theorem 2.4.

Proof of Theorem 2.4. If q ≡ 3 mod 4 and Dβ2 + 1 = 0, then the proof follows from

Lemma 2.3. Next we assume that if q ≡ 3 mod 4, then the condition Dβ2 + 1 = 0 does

not hold. Recall that a(y) ∈ Fq[y] and ∆(y) ∈ Fq[y] are defined in Proposition 2.5. Let

T1 = {y1 ∈ Fq : a(y1) = 0} , T2 =
{
y1 ∈ Fq : 1 +Dy21 = 0

}
, T3 = {y1 ∈ Fq : ∆(y1) = 0} .

Put T = T1 ∪ T2 ∪ T3. Using the notation in the proof of Theorem 2.3, let

N1 =
∑

y∈Fq\T

(1 + η((1 +Dy2))(1 + η(∆(y))).

As in the proof of Theorem 2.3 we have

N1 ≥ q − 8q1/2 − 16.

If q > 94, then this completes the proof as in the proof of Theorem 2.3, namely using

Proposition 2.5 instead of Proposition 2.2. For 2 < q < 94, we use Magma as in the

proof of Theorem 2.3. �

2.3. Property P3. In this subsection we prove that Property P3 holds. Namely we

prove Theorem 2.5 below.

The assumptions in this subsection are rather different. Let Fq0 be a finite field of

odd characteristic. Let s ≥ 1 be an integer. Put q = qs. Assume that q ≡ 3 mod 4.

Let H be the subgroup of Fq2 with |H| = q + 1. Let θ ∈ F∗q2 be a primitive 4-th root

of 1. Let w = θ − 1.

We start with a simple lemma.

Lemma 2.4. Under notation and assumptions as above we have the following:

(i). {w,wq} is linearly independent over Fq.
(ii). wq+1 = 2.

(iii). w2q + w2 = 0 and w2q − w2 = 4θ.

(iv). θwq − w = 2(1− θ) and wq − θw = 0.

Proof. As q ≡ 3 mod 4, we have that 4 - (q − 1) and hence θ ∈ Fq2 \ Fq. Note that

x2 + 1 ∈ Fq[x] is the minimal polynomial of θ over Fq. This implies that x2 + 1 =

(x − θ) (x− θq) and considering the coefficients of the monomial x in both sides we

conclude that θq = −θ.
Using the definition of w we obtain that wq = θq − 1 = −θ − 1. It is clear that

{θ − 1,−θ − 1} is linearly independent over Fq. These arguments complete the proof

of item (i).

The proof of item (ii) follows from the observation

wq+1 = (θ − 1)(−θ − 1) = −(θ2 − 1) = −(−1− 1) = 2.
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Similarly we prove item (iii) using the identities

w2 = (θ − 1)2 and w2q = (−θ − 1)2 = (θ + 1)2,

which imply

w2q + w2 = 2(θ2 + 1) = 0

and

w2q − w2 = 4θ.

Finally we prove item (iv) using

θwq − w = θ(−θ − 1)− (θ − 1) = −θ2 − θ − θ + 1 = 2(1− θ)

and

wq − θw = −(θ + 1)− θ(θ − 1) = −(θ + 1)− (−1− θ) = 0.

�

Now we are ready to state the main result of this subsection in the next theorem.

Theorem 2.5. Recall that q ≡ 3 mod 4 and θ is a primitive 4-th root of 1. Let α ∈ F∗q2
such that αq = θα. There exist h1, h2, h3 ∈ H such that

h1 + h2 + h3 = α.

As in the previous subsections, we need to prove some preliminary results before the

proof of Theorem 2.5. The next proposition is an analog of Proposition 2.4.

Proposition 2.7. Let α ∈ F∗q2 with αq = θα. Put µ = α(1−θ)
2θ

. Note that µ ∈ F∗q. Then

Theorem 2.5 holds if and only if there exist x1, x2, x3, y1, y2, y3 ∈ Fq such that

x1 + x2 + x3 = µ,

y1 + y2 + y3 = 0,

x21 + y21 = 1
2
,

x22 + y22 = 1
2
,

x23 + y23 = 1
2
.

Proof. Put x1, x2, x3, y1, y2, y3 ∈ Fq such that

hi = xiw + yiw
q

for 1 ≤ i ≤ 3. Let β1, β2 ∈ Fq such that

α = β1w + β2w
q.
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Then we have

θα = αq = β1w
q + β2w.

These imply that

β1 =
α(θwq − w)

w2q − w2
and β2 =

α(wq − θw)

w2q − w2
.

Using Lemma 2.4 items (iii) and (iv), we obtain that

β1 =
α(1− θ)

2θ
= µ and β2 = 0.

Moreover

hq+1
i = (xiw + yiw

q)q+1 = (x2i + y2i )w
q+1 + xiyi(w

2 + w2q) = 1

for 1 ≤ i ≤ 3. Using Lemma 2.4 items (ii) and (iii), we obtain that

hq+1
i = 1⇐⇒ 2(x2i + y2i ) = 1 for 1 ≤ i ≤ 3.

This completes the proof. �

We need to consider a special case separately as in Subsection 2.2. The next lemma

is analogous to Lemma 2.3.

Lemma 2.5. Let α ∈ F∗q2 such that αq = θα. Put µ = α(1−θ)
2θ

. Assume that

µ2 =
1

2
.(44)

Then there exist h1, h2, h3 ∈ H such that

h1 + h2 + h3 = α.

Proof. Note that µ ∈ Fq. Put x1 = x2 = µ, x3 = −µ and y1 = y2 = y3 = 0. It is clear

that

x1 + x2 + x3 = µ and y1 + y2 + y3 = 0.

Also

x2i + y2i = x2i = µ2 =
1

2
for 1 ≤ i ≤ 3.

Using Proposition 2.7 we complete the proof. �

The next proposition is an analog of Proposition 2.5.

Proposition 2.8. Let α ∈ F∗q2 such that αq = θα. Put µ = α(1−θ)
2θ

. Let a(x), b(x), c(x) ∈
Fq[x] be the polynomials given by

a(x) = 2µx− µ2 − 1
2
,

b(x) = 2µx2 +
(
−3µ2 − 1

2

)
x+ µ3 + µ

2
,

c(x) =
(
−µ2 − 1

2

)
x2 +

(
µ3 + µ

2

)
x− µ4

4
− µ2

2
+ 3

16
.
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Put

∆(x) = b(x)2 − 4a(x)c(x).

Assume that there exists x1 ∈ Fq such that

(i). x21 − 1
2

is a nonsquare in Fq;
(ii). a(x1) 6= 0;

(iii). ∆(x1) is a nonzero square in Fq.
Then Theorem 2.5 holds.

Proof. The proof is similar to the proof of Proposition 2.2. We use Proposition 2.7.

Put y3 = −(y1 + y2) and x3 = µ − x1 − x2. Then the system in Proposition 2.7 is

equivalent to the system

x21 + y21 = 1
2
,

x22 + y22 = 1
2
, and

(µ− x1 − x2)2 + (y1 + y2)
2 = 1

2
.

(45)

The last equation is equivalent to

y21 + y22 + 2y1y2 + x21 + x22 + 2x1x2 + µ2 − 2µx1 − 2µx2 =
1

2
.

As x21 + y21 = x22 + y22 = 1
2

we get that

1 + 4y1y2 + 4x1x2 + 2µ2 − 4µx1 − 4µx2 = 0.

Consequently we obtain

y2 =
−x1x2 + µx1 + µx2 +

(
−2µ2−1

4

)
y1

.(46)

Here we assume that y1 6= 0, or equivalently x21 − 1
2

is nonzero.

Taking square of both sides (46) and using the first two equations of (45) we obtain

that (
x21 −

1

2

)(
x22 −

1

2

)
=

(
x1x2 − µx1 − µx2 +

(
2µ2 + 1

4

))2

.

The last equation is equivalent to

a(x1)x
2
2 + b(x1)x2 + c(x1) = 0,(47)

where a(x1), b(x1), c(x1) ∈ Fq[x1] given in the statement of Proposition 2.8.

Assume further that a(x1) 6= 0. Then there exists x2 ∈ Fq satisfying (47) if ∆(x1)

is a nonzero square in Fq. Assuming items (ii) and (iii) of the proposition and the

condition x21 − 1
2
6= 0, the system in Proposition 2.7 is equivalent to

x21 + y21 = 1
2
.(48)
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Here x1 ∈ Fq is a chosen element and y1 ∈ Fq is a variable.

As −1 is a nonsquare in Fq, the equation in (48) has a solution if we further assume

that x21 − 1
2

is a nonsquare in Fq. This completes the proof. �

Recall that Fq be an algebraic closure of Fq. The next proposition is analogous to

Proposition 2.6.

Proposition 2.9. Let α ∈ F∗q2 such that αq = θα. Put µ = α(1−θ)
2θ

. Let ∆(x) ∈ Fq[x]

be the polynomial defined in Proposition 2.8. Assume the condition (44) in Lemma 2.5

does not hold. Then there is no polynomial f(x) ∈ Fq[x] such that

∆(x) = (f(x))2 ∈ Fq[x].

Proof. Note that ∆(x) is a polynomial of degree 4 with leading coefficient 4µ2. Put

∆1(x) =
∆(x)

4µ2
= x4 + A3x

3 + A2x
2 + A1x+ A0 ∈ Fq[x].

As in the proof of Proposition 2.6, it is enough to prove that

A3 6= 0.(49)

and

A2 −

[(
A3

2

)2

− 2
A1

A3

]
6= 0.(50)

Indeed, using rather tedious but direct computations we obtain that

A3 =
−µ2 + 1

2

µ
,(51)

and

A2 −

[(
A3

2

)2

− 2
A1

A3

]
=

µ2

2
− 1

4

µ2
.(52)

As µ2 6= 1
2
, using (51) and (52) we conclude that the conditions in (49) and (50) hold.

This completes the proof. �

Now we are ready to prove Theorem 2.5.

Proof of Theorem 2.5. Put µ = α(1−θ)
2θ

. If µ2 = 1
2
, then we complete the proof using

Proposition 2.7 and Lemma 2.5. Assume that µ2 6= 1
2
. Recall that a(x1) = 2µx−µ2− 1

2
.

Let

T1 = {x1 ∈ Fq : a(x1) = 0} , T2 =

{
x1 ∈ Fq : x21 =

1

2

}
, T3 = {x1 ∈ Fq : ∆(x1) = 0} .
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Put T = T1
⋃
T2
⋃
T3. Let

N1 =
∑

x∈Fq\T

(1− η(x2 − 1

2
))(1− η(∆(x))).

Using Proposition 2.8, as in the proof of Theorem 2.3, it is enough to show that

N1 > 0.(53)

As in the proof of Theorem 2.3, using Proposition 2.9 we obtain that

N1 ≥ q − 81/2 − 16.(54)

Combining (53) and (54) we complete the proof using the methods in the proof of

Theorem 2.3. �

2.4. Property P4. In this subsection we prove that Property P4 holds for suitable

parameters. Namely we prove Theorem 2.6 below. We keep the assumptions and

notation of Subsection 2.3. In particular q ≡ 3 mod 4, θ ∈ F∗q2 is a primitive 4-th root

of 1 and w = θ − 1.

The main result in this subsection is the following theorem.

Theorem 2.6. Let α ∈ F∗q2 with αq = −θα. Then there exist h1, h2, h3 ∈ H such that

h1 + h2 + h3 = α.

First we prove a proposition that we use in the proof of Theorem 2.6, which is given

at the end of this subsection.

Proposition 2.10. Let α ∈ F∗q2 with αq = −θα. Put µ = −α(1+θ)
2θ

. Note that µ ∈ F∗q.
Then Theorem 2.6 holds if and only if there exist x1, x2, x3, y1, y2, y3 such that

x1 + x2 + x3 = 0,

y1 + y2 + y3 = µ,

x21 + y21 = 1
2
,

x22 + y22 = 1
2
,

x23 + y23 = 1
2
.

Proof. The proof is similar to the proof of Proposition 2.7. Put x1, x2, x3, y1, y2, y3 ∈ Fq
such that

hi = xiw + yiw
q

for 1 ≤ i ≤ 3. Let β1, β2 ∈ Fq such that

α = β1w + β2w
q.(55)
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Then we have

αθ = −αq = −β1wq − β2w.(56)

Using Lemma 2.4, items (iii) and (iv), we obtain that

w + θwq = θ (wq − θw) = 0,(57)

and

(wq + θw)

w2q − w2
=
θq − 1 + θ2 − θ

4θ
=
− (1 + θ)

2θ
.(58)

Combining (55), (56), (57) and (58) implies that

β1 = 0 and β2 =
−α(1 + θ)

2θ
.

As in the proof of Proposition 2.7 we have

hq+1
i = 1⇐⇒ 2(x2i + y2i ) = 1 for 1 ≤ i ≤ 3.

This completes the proof. �

Now we are ready to prove Theorem 2.6. We remark that we use a new trick which

reduces the proof of Theorem 2.6 to some proofs of Subsection 2.3.

Proof of Theorem 2.6. Note that µ in Proposition 2.7 runs through

S3 =

{
α(1− θ)

2θ
: α ∈ F∗q2 with αq = θα

}
.

We obtain that S3 = F∗q. Indeed

ψ3 :
{
α ∈ F∗q2 : αq = θα

}
−→ S3

α 7−→ α(1− θ)
2θ

is a well-defined map as α(1−θ)
2θ

∈ Fq when α ∈ F∗q2 with αq = θα. Moreover ψ3 is

one-to-one.

As the set
{
α ∈ F∗q2 : αq = θα

}
has cardinality q − 1, we conclude that S3 = F∗q.

Similarly let

S4 =

{
−α(1 + θ)

2θ
: α ∈ F∗q2 with αq = −θα

}
be the set that µ runs through in Proposition 2.10. Using the same method above we

obtain that S4 = F∗q.
Moreover it follows from the symmetry and direct observation that, by the change

of variables

(x1, x2, x3, y1, y2, y3) 7−→ (y1, y2, y3, x1, x2, x3),
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the system of equations in Proposition 2.7 change to the system of equations in Propo-

sition 2.10. Hence Theorem 2.6 holds as Theorem 2.5 and Proposition 2.7 hold. This

completes the proof. �

3. Exact computation of the covering radius of the generalized

Zetterberg Codes in odd characteristic

In this section we determine the exact covering radius of generalized Zetterberg

codes. We note that the same results hold for half and twisted half Zetterberg codes

(see Definitions 4.1 and 4.2 below). This follows immediately using Theorems 4.3 and

4.4 below. Therefore we do not state the corresponding results for half and twisted

half Zetterberg codes separately.

Let Fq0 be a finite field of odd characteristic. For an integer s ≥ 1, let q = qs0. Let

Cs(q0) be the generalized Zetterberg code of length q+ 1 over Fq0 . Recall that H ⊆ F∗q2
is the subgroup with |H| = q + 1. Put m = q0−1

2
. Let Hm ⊆ F∗q2 be the subgroup with

|Hm| = m(q + 1).

We start with a simple but useful lemma.

Lemma 3.1. The covering radius of Cs(q0) is at least 2. The covering radius of Cs(q0)
is at least 3 if and only if there exists α ∈ Fq2 such that the equation

h1 + h2 = α

is not solvable with h1, h2 ∈ Hm.

Proof. Note that gcd(|H|, q0 − 1) = 2. Hence the smallest subgroup of F∗q2 containing

both |H| and F∗q0 is |Hm| as |Hm| = lcm (|H|, q0 − 1).

Note that |Hm| = q0−1
2

(q + 1) < q2 − 1. This implies the existence of α ∈ Fq2 \Hm.

Let α ∈ Fq2 \ Hm. We claim that it is impossible to choose c ∈ Fq0 and h ∈ H such

that

ch = α.

Indeed otherwise c 6= 0 and ch ∈ Hm. This is a contradiction as α 6∈ Hm. These

arguments imply that the covering radius of Cs(q0) is at least 2.

Using Theorem 2.2 we obtain that the covering radius of Cs(q0) is either 2 or 3. Let

α ∈ Fq2 . Assume that there exist h1, h2 ∈ Hm such that h1 = h2 = α. As Hm = F∗q0 ·H,

there exist c1, c2 ∈ F∗q0 and ĥ1, ĥ2 ∈ H such that c1ĥ1 + c2ĥ2 = α. Hence the covering

radius of Cs(q0) is 2. The converse statement holds similarly. This completes the

proof. �

The next theorem uses methods of [11] again.

Theorem 3.1. Let Fq0 be a finite field of odd characteristic. For an integer s ≥ 1,

let q = qs0. Assume that q 6≡ 7 mod 8. Let Cs(q0) be the generalized Zetterberg code
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of length q + 1 over Fq0. Recall that m = q0−1
2

and Hm ⊆ F∗q2 is the subgroup with

|Hm| = m(q + 1).

Let NP1, NP2, NP3 and NP4 be the properties defined depending on q0 and s as

follows. Note that NP3 and NP4 are defined only if q ≡ 3 mod 8.

• Property NP1:

There exists α ∈ F∗q such that the equation

h1 + h2 = α

has no solution with h1, h2 ∈ Hm.

• Property NP2:

There exists α ∈ Fq2 \ Fq such that the equation

h1 + h2 = α

has no solution with h1, h2 ∈ Hm.

• Property NP3: Assume that q ≡ 3 mod 8. Let θ ∈ Fq2 \ Fq be a primitive

4-th root of 1. There exists α ∈ Fq2 \ Fq with αq = θα such that the equation

h1 + h2 = α

has no solution with h1, h2 ∈ Hm.

• Property NP4: Assume that q ≡ 3 mod 8. Let θ ∈ Fq2 \ Fq be a primitive

4-th root of 1. There exists α ∈ Fq2 \ Fq with αq = −θα such that the equation

h1 + h2 = α

has no solution with h1, h2 ∈ Hm.

Then we have the following:

• Case q ≡ 1 mod 4:

The covering radius of Cs(q0) is 3 if and only if at least one of the two prop-

erties NP1 and NP2 holds. Otherwise the covering radius of Cs(q0) is 2.

• Case q ≡ 3 mod 8:

The covering radius of Cs(q0) is 3 if and only if at least one of the four

properties NP1, NP2, NP3 and NP4 holds. Otherwise the covering radius of

Cs(q0) is 2.
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Proof. We use some methods similar to the ones in the proof of Theorem 2.2. Assume

first that q ≡ 1 mod 4. Then gcd
(
q+1
2
, q − 1

)
= 1. This implies that

gcd (m(q + 1), 2(q − 1)) = 2gcd

(
m
q + 1

2
, q − 1

)
= 2m.

Therefore we obtain

lcm (m(q + 1), 2(q − 1)) =
m(q + 1)2(q − 1)

2m
= q2 − 1.

Let G2 be the subgroup of F∗q2 with |G2| = 2(q − 1). The arguments above imply that

F∗q2 = G2 ·Hm,

which means that the smallest subgroup of F∗q2 containing both G2 and Hm is itself.

Note that

G2 =
{
α ∈ F∗q2 : αq = α

}
t
{
α ∈ F∗q2 : αq = −α

}
.(59)

The disjoint subsets in (59) correspond to properties NP1 and NP2. Using also Lemma

3.1 we complete the proof if q ≡ 1 mod 4.

Next we assume that q ≡ 3 mod 8. Then gcd
(
q+1
4
, q − 1

)
= 1. This implies that

gcd (m(q + 1), 4(q − 1)) = 4gcd

(
m
q + 1

4
, q − 1

)
= 4m.

Therefore we obtain

lcm (m(q + 1), 4(q − 1)) =
m(q + 1)4(q − 1)

4m
= q2 − 1.

Let G4 be the subgroup of F∗q2 with |G4| = 4(q − 1). The arguments above imply that

F∗q2 = G4 ·Hm.

Let θ ∈ Fq2 \ Fq be a primitive 4-th root of 1. Note that

G4 =
{
α ∈ F∗q2 : αq = α

}
t
{
α ∈ F∗q2 : αq = −α

}
t
{
α ∈ F∗q2 : αq = θα

}
t
{
α ∈ F∗q2 : αq = −θα

}
.

(60)

The disjoint subsets in (60) correspond to properties NP1, NP2, NP3 and NP4. Using

also Lemma 3.1 we complete the proof. �

Remark 3.1. In Theorem 3.2 below we show that the properties NP3 and NP4 are

equivalent using rather detailed arithmetical methods. Therefore Theorem 3.2 below

has only three properties instead of four.

We also use the following simple result in some proofs below.

Lemma 3.2. Let Fq be a finite field of odd characteristic. Assume that q ≡ 3 mod 8.

Then 2 is not a square in Fq.
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Proof. Let p be the characteristic of Fq and put q = pt, where t is a positive integer.

We observe that p ≡ 3 mod 8 and t is odd. Indeed if p ≡ 1, 5, or 7, then pt 6≡ 3 mod 8

for any positive integer. Moreover if p ≡ 3 mod 8 and pt ≡ 3 mod 8, then t is odd.

Using [12, Proposition 5.1.3] we obtain that 2 is not a square in Fp. As t is odd we

conclude that 2 is not a square in Fq. �

Next we obtain an equivalent formulation of Theorem 3.1, which gives a connection

to algebraic curves over finite fields. We also use this connection later.

Theorem 3.2. Let Fq0 be a finite field of odd characteristic. For an integer s ≥ 1, let

q = qs0. Assume that q 6≡ 7 mod 8. Let Cs(q0) be the generalized Zetterberg code of

length q + 1 over Fq0. Put m = q0−1
2

. Note that the number of nonzero squares in Fq0
is m. Let {α1, . . . , αm} be an enumerated set consisting of the nonzero square elements

in Fq0.

Let w ∈ Fq2 \ Fq with w + wq = 1. Put D = 1
4
− wq+1. Recall that D ∈ F∗q and D is

not a square in Fq (see Lemma 2.1 above).

Let PP1, PP2 and PP3 be the properties defined depending on q0 and s as follows.

• Property PP1:

For 1 ≤ i ≤ m, let fi(x) ∈ Fq[x] be the polynomial given by

fi(x) = x2 − αi.

There exists a ∈ F∗q such that fi(a) is a nonzero square in Fq for each 1 ≤ i ≤ m.

• Property PP2:

For 1 ≤ i ≤ m, let fi(x) ∈ Fq[x] be the polynomial given by

fi(x) = x2 +
αi
D
.

There exists a ∈ F∗q such that fi(a) is a nonzero square in Fq for each 1 ≤ i ≤ m.

• Property PP3: For 1 ≤ i ≤ m, let fi(x) ∈ Fq[x] be the polynomial given by

fi(x) = x2 − 2αi.

There exists a ∈ F∗q such that fi(a) is a nonzero square in Fq for each 1 ≤ i ≤ m.

Then we have the following:

• Case q ≡ 1 mod 4:

The covering radius of Cs(q0) is 3 if and only if at least one of the two prop-

erties PP1 and PP2 holds. Otherwise the covering radius of Cs(q0) is 2.
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• Case q ≡ 3 mod 8:

The covering radius of Cs(q0) is 3 if and only if at least one of the three

properties PP1, PP2 and PP3 holds. Otherwise the covering radius of Cs(q0) is

2.

Proof. Let a be a generator of F∗q0 . Note that

h ∈ Hm ⇐⇒ hq+1 = a2i for some 0 ≤ i ≤ m− 1.(61)

We first show that Property NP1 is equivalent to Property PP1.

Let α ∈ F∗q. Using the methods of Theorem 2.3 and (61) we obtain that there exist

h1, h2 ∈ Hm such that

h1 + h2 = α

if and only if there exist x1, x2, y1, y2 ∈ Fq and integers 0 ≤ i, j ≤ m− 1 such that
x1 + x2 = α,

y1 + y2 = 0,

x21 −Dy21 = a2i, and

x22 −Dy22 = a2j.

(62)

We continue to use some methods from the proof of Theorem 2.3. Putting x = x2,

y = y2, x1 = x−α and y1 = −y2, the system in (62) becomes equivalent to the system{
α2 + a2j − a2i = 2xα, and

x2 − a2j = Dy2.
(63)

Note that α 6= 0 and using (63) we obtain

x =
α2 − a2i + a2j

2α
.

Therefore (63) is equivalent to(
α2 − a2i + a2j

2α

)2

− a2j = Dy2.(64)

Recall that D ∈ F∗q is a nonsquare. Note that Property NP1 does not hold if α ∈ Fq0 .
Moreover y = 0 in (64) implies that y1 = y2 = 0 and x1, x2 ∈ Fq0 for the system in

(62). Hence y = 0 in (64) also implies that α ∈ Fq0 . Therefore we assume that y 6= 0

in (64) without loss of generality.

These arguments imply that Property NP1 holds if and only if(
α2 − a2i + a2j

2α

)2

− a2j is a square in F∗q(65)

for each 0 ≤ i, j ≤ m− 1.

The condition in (65) is equivalent to the condition that(
α2 − a2i + a2j

)2 − 4α2a2j is a square in F∗q(66)
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for each 0 ≤ i, j ≤ m− 1.

Note that the left hand side of (66) is(
α− ai + aj

) (
α− ai − aj

) (
α + ai + aj

) (
α + ai − aj

)
.(67)

If 0 ≤ i = j ≤ m− 1, then using (67) the condition in (66) becomes(
α− 2ai

) (
α + 2ai

)
is a square in F∗q(68)

for each 0 ≤ i ≤ m− 1. Note that {4a2i : 0 ≤ i ≤ m− 1} is the set of nonzero square

elements in Fq0 . Hence Property NP1 implies Property PP1. For the converse we also

consider the remaining case that 0 ≤ i, j ≤ m− 1 with i 6= j in (66). In this remaining

case, using (67) the condition in (66) becomes

(α− u)(α + u)(α− v)(α + v) is a square in F∗q,(69)

where u = ai − aj ∈ F∗q0 and v = ai + aj ∈ F∗q0 . Note that if (u2 − αi) is a nonzero

square for each 1 ≤ i ≤ m, then the condition in (69) is automatically satisfied for this

remaining case. These arguments show that Property NP1 is equivalent to Property

PP1.

Next we show that Property NP2 is equivalent to Property PP2. Let α ∈ Fq2 \ Fq
with αq = −α. Put β = 2α

2w−1 . Note that β ∈ F∗q. Using the methods of the proof of

Theorem 2.4 and (61) we obtain that that there exist h1, h2 ∈ Hm such that

h1 + h2 = α

if and only if there exist x1, x2, y1, y2 ∈ Fq and integers 0 ≤ i, j ≤ m− 1 such that
x1 + x2 = 0,

y1 + y2 = β,

x21 −Dy21 = a2i, and

x22 −Dy22 = a2j.

(70)

We continue to use some methods from the proof of Theorem 2.4. Putting x = x2,

y = y2, x1 = −x and y1 = β − y, the system in (70) becomes equivalent to the system{
−Dβ2 + 2Dβy + a2j = a2i, and

x2 −Dy2 = a2j.
(71)

If q ≡ 1 mod 4, then we can assume that x 6= 0 in (71) without loss of generality.

Indeed, otherwise −Dy2 becomes a nonzero square in Fq, which is a contradiction as

−1 is a square and D is a nonsquare in Fq.
If q ≡ 3 mod 4, then we can also assume that x 6= 0 in (71) without loss of generality.

This observation needs a detailed explanation. Assume the contrary and let D1 ∈ F∗q
with D2

1 = −D. Then x1 = x2 = 0 and y1, y2 ∈ 1
D1

F∗q0 in (70). Consequently if q ≡ 3

mod 4 and x = 0, then β ∈ 1
D1

F∗q0 . If s = 1, neither NP2 nor PP2 holds. If s ≥ 2 and
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β ∈ 1
D1

F∗q0 , then neither NP2 nor PP2 holds. Hence we can also assume that x 6= 0 in

(71) without loss of generality.

These arguments show that we can assume that x 6= 0 in (71) without loss of

generality. As β 6= 0, using (71) we obtain

y =
β2 + a2i

D
− a2j

D

2β
.

Therefore (71) is equivalent to(
β2 + a2i

D
− a2j

D

2β

)2

+
a2j

D
=
x2

D
.(72)

Recall that x,D ∈ F∗q and D is a nonsquare. These arguments imply that Property

NP1 holds if and only if(
β2 + a2i

D
− a2j

D

2β

)2

+
a2j

D
is a square in F∗q(73)

for each 0 ≤ i, j ≤ m− 1.

The condition in (73) is equivalent to the condition that(
β2 +

a2i

D
− a2j

D

)2

+ 4β2a
2j

D
is a square in F∗q(74)

for each 0 ≤ i, j ≤ m− 1.

Recall that θ ∈ F∗q2 is a primitive 4-th root of 1. Put D2 ∈ F∗q2 such that D2
2 = D.

Note that the left hand side of (74) is(
β − θ ai

D2
+ θ a

j

D2

)(
β − θ ai

D2
− θ aj

D2

)(
β + θ a

i

D2
+ θ a

j

D2

)(
β + θ a

i

D2
− θ aj

D2

)
.

(75)

If 0 ≤ i = j ≤ m− 1, then using (75) the condition in (74) becomes(
β − 2θ

ai

D2

)(
β + 2θ

ai

D2

)
is a square in F∗q(76)

for each 0 ≤ i ≤ m − 1. Note that
{

4θ2a2i

D2
2

: 0 ≤ i ≤ m− 1
}

=
{−1
D
αi : 1 ≤ i ≤ m

}
.

Hence Property NP2 implies Property PP2. For the converse we also consider the

remaining case that 0 ≤ i, j ≤ m− 1 with i 6= j in (74). In this remaining case, using

(75) the condition in (74) becomes

(β − u)(β + u)(β − v)(β + v) is a square in F∗q,(77)

where u = θ
D2

(ai − aj) and v = θ
D2

(ai + aj). Note that if u2, v2 ∈
{−1
D
αi : 1 ≤ i ≤ m

}
.

Therefore if PP2 holds, then the condition in (77) is automatically satisfied for this

remaining case. These arguments show that Property NP2 is equivalent to Property

PP2.
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Assume that q ≡ 3 mod 8. Next we show that Property NP3 is equivalent to

Property PP3. Recall that θ ∈ Fq2 \ Fq is a primitive 4-th root of 1. Let α ∈ Fq2 \ Fq
with αq = θα. Let w = θ− 1 and µ = α(1−θ)

2θ
. Note that µ ∈ F∗q. Using the methods of

the proof of Theorem 2.5 and (61) we obtain that there exist h1, h2 ∈ Hm such that

h1 + h2 = α

if and only if there exist x1, x2, y1, y2 ∈ Fq and integers 0 ≤ i, j ≤ m− 1 such that
x1 + x2 = µ,

y1 + y2 = 0,

x21 + y21 = a2i

2
, and

x22 + y22 = a2j

2
.

(78)

We continue to use some methods from the proof of Theorem 2.5. Putting x = x2,

y = y2, x1 = µ− x and y1 = −y, the system in (78) becomes equivalent to the system{
µ2 − 2µx+ a2j

2
= a2i

2
, and

x2 + y2 = a2j

2
.

(79)

Let γ ∈ Fq2 such that γ2 = 2. Using Lemma 3.2 we obtain that γ 6∈ Fq.
We assume that y in (79) is not zero without loss of generality. Indeed, otherwise

using (71) we obtain that y1 = 0 and hence x21 = a2i

2
2. This is a contradiction as 2 is

not a square in Fq by Lemma 3.2.

As µ 6= 0, using (79) we obtain

x =
µ2 + a2j

2
− a2i

2

2µ
.

Therefore (79) is equivalent to(
µ2 + a2j

2
− a2i

2

2µ

)2

− a2j

2
= −y2.(80)

Recall y 6= 0 and −1 is a nonsquare in Fq. These arguments imply that Property NP3

holds if and only if (
µ2 + a2j

2
− a2i

2

2µ

)2

− a2i

2
is a square in F∗q(81)

for each 0 ≤ i, j ≤ m− 1.

The condition in (81) is equivalent to the condition that(
µ2 +

a2j

2
− a2i

2

)2

− 4µ2a
2j

2
is a square in F∗q(82)

for each 0 ≤ i, j ≤ m− 1.
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Recall that γ2 = 2. Note that the left hand side of (82) is(
µ− aj

γ
+ ai

γ

)(
µ− aj

γ
− ai

γ

)(
µ+ aj

γ
+ ai

γ

)(
µ+ aj

γ
− ai

γ

)
.

(83)

If 0 ≤ i = j ≤ m− 1, then using (83) the condition in (82) becomes(
µ− 2

ai

γ

)(
µ+ 2

ai

γ

)
is a square in F∗q(84)

for each 0 ≤ i ≤ m− 1. Note that
{

4a2i

γ2
: 0 ≤ i ≤ m− 1

}
= {2αi : 1 ≤ i ≤ m}. Hence

Property NP3 implies Property PP3. For the converse we also consider the remaining

case that 0 ≤ i, j ≤ m − 1 with i 6= j in (82). In this remaining case, using (83) the

condition in (82) becomes

(µ− u)(µ+ u)(µ− v)(µ+ v) is a square in F∗q,(85)

where u = 1
γ

(aj − ai) and v = 1
γ

(aj + ai). Note that if u2, v2 ∈ {2αi : 1 ≤ i ≤ m}.
Therefore if PP2 holds, then the condition in (85) is automatically satisfied for this

remaining case. These arguments show that Property NP3 is equivalent to Property

PP3.

We still assume that q ≡ 3 mod 8. Finally we show that Property NP4 is equivalent

to Property PP3. Recall that θ ∈ Fq2 \Fq is a primitive 4-th root of 1. Let α ∈ Fq2 \Fq
with αq = −θα. Let w = θ−1 and µ = −α(1−θ)

2θ
. Note that µ ∈ F∗q. Using the methods

of the proof of Theorem 2.6 and (61) we obtain that that there exist h1, h2 ∈ Hm such

that

h1 + h2 = α

if and only if there exist x1, x2, y1, y2 ∈ Fq and integers 0 ≤ i, j ≤ m− 1 such that
x1 + x2 = 0,

y1 + y2 = µ,

x21 + y21 = a2i

2
, and

x22 + y22 = a2j

2
.

(86)

Comparing the systems in (78) and (86) we conclude that Property NP4 is equivalent

to Property PP3. This completes the proof. �

As a direct consequence of Theorem 3.2, we obtain the covering radius of Cs(q0) if

q0 = 3 or s = 1.

Corollary 3.1. For an integer s ≥ 1, let Cs(q0) be the generalized Zetterberg code of

length 3s + 1 over F3. Then the covering radius of Cs(q0) is 3 if s ≥ 2. Moreover the

covering radius of Cs(q0) is 2 if s = 1.
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Proof. We use the notation of Theorem 3.2. We have q0 = 3, m = 1 and α1 = 1.

Assume that s = 1 and hence q = q0. It is clear that Property PP1 does not hold

as a2 − 1 = 0 for all a ∈ F∗q. Note that 2 is the only nonzero nonsquare element in Fq.
Then Property PP2 does not hold as a2 + 1

D
= a2 + 2 = 0 for all a ∈ F∗q, where D = 2.

Finally we observe that a2 − 2 = −1, which is not a square in Fq, for all a ∈ F∗q. This

implies that Property PP3 does not hold as well. Hence the covering radius of Cs(q0)
is 2 if s = 1.

Assume that s ≥ 2 and hence q = qs0 ≥ 9. Consider the map

ψ : Fq \ {−1, 0, 1} → Fq \ {−1, 0, 1}
x 7→ 1 + 2

x−1 .

Note that ψ is one-to-one and onto. Note that the number of nonzero square in Fq is

at least q−1
2
− 2 > 0. Therefore we choose y ∈ Fq \ {−1, 0, 1} which is a square in Fq.

Let x ∈ Fq \ {−1, 0, 1} such that ψ(x) = y. We observe that x2− 1 is a nonzero square

in Fq as y = ψ(x) = x2−1
(x−1)2 is a nonzero square. These arguments show that Property

PP1 holds for any s ≥ 2. This completes the proof. �

Corollary 3.2. Let Fq0 be a finite field with odd characteristic. Assume that q0 6≡ 7

mod 8. Let Cs(q0) be the generalized Zetterberg code of length q0 + 1 over Fq0. Then

the covering radius of Cs(q0) is 2.

Proof. Note that q = q0 as s = 1.

We first show that Property PP1 does not hold. Assume the contrary and let a ∈ F∗q0
such that

a2 − αi is a nonzero square in Fq0(87)

for each 1 ≤ i ≤ m. Note that if 1 ≤ i < j ≤ m, then

a2 − αi 6= a2 − αj.(88)

Moreover there are exactly m nonzero square elements in Fq0 and a2 is one of them.

Therefore using (87) and (88) we obtain the existence of 1 ≤ i0 ≤ m such that

a2 − αi0 = a2,

which is a contradiction as αi 6= 0 for 1 ≤ i ≤ m. Hence Property PP1 does not hold.

Recall that, when s = 1, D is a fixed nonzero nonsquare element of Fq0 . Next we

show that Property PP2 does not hold using a similar method. Assume the contrary

and let a ∈ F∗q0 such that

a2 +
αi
D

is a nonzero square in Fq0(89)

for each 1 ≤ i ≤ m. Note that if 1 ≤ i < j ≤ m, then

a2 +
αi
D
6= a2 +

αj
D
.(90)
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Moreover there are exactly m nonzero square elements in Fq0 and a2 is one of them.

Therefore using (89) and (90) we obtain the existence of 1 ≤ i0 ≤ m such that

a2 +
αi0
D

= a2,

which is a contradiction as αi 6= 0 for 1 ≤ i ≤ m. Hence Property PP2 does not hold.

Assume that q ≡ 3 mod 8. Finally we show that Property PP3 does not hold again

using a similar method. Assume the contrary and let a ∈ F∗q0 such that

a2 − 2αi is a nonzero square in Fq0(91)

for each 1 ≤ i ≤ m. Note that if 1 ≤ i < j ≤ m, then

a2 − 2αi 6= a2 − 2α.(92)

Moreover there are exactly m nonzero square elements in Fq0 and a2 is one of them.

Therefore using (91) and (92) we obtain the existence of 1 ≤ i0 ≤ m such that

a2 − 2αi0 = a2,

which is a contradiction as αi 6= 0 for 1 ≤ i ≤ m. Hence Property PP3 does not hold.

Using Theorem 3.2 we complete the proof. �

The next corollary shows that the covering radius is always 3 if s ≥ 2 is an even

integer, independent of q0.

Corollary 3.3. Let Fq0 be a finite field of odd characteristic. Let s ≥ 2 be an even

integer. Let Cs(q0)s be the generalized Zetterberg code of length qs0 + 1 over Fq0. Then

the covering radius of Cs(q0)s is 3.

Proof. We show that Property PP1 holds, which is enough by Theorem 3.2. Let β be

a nonzero and nonsquare element of Fq0 . We keep the notation of Theorem 3.2. In

particular m = q0−1
2

and {α1, . . . , αm} is an enumerated set consisting of the nonzero

square elements of Fq0 . Then β 6∈ {α1, . . . , αm} and (β − αi) ∈ F∗q0 for each 1 ≤ i ≤ m.

Note that there exists a ∈ Fq20 \ Fq0 such that a2 = β. Hence we have that

a2 − αi is a nonzero square in Fq20 for each 1 ≤ i ≤ m.(93)

Indeed a2 − αi = β − αi ∈ F∗q0 and hence has a square root in Fq20 for each 1 ≤ i ≤ m.

Using (93) we show that Property PP1 holds, which completes the proof. �

It is rather surprising that there exists a finite field Fq0 of odd character-

istic and odd integer s ≥ 3 such that q0 6≡ 7 mod 8 and the covering radius of

the generalized Zetterberg code of length qs0 + 1 over Fq0 is 2, not 3 as in the

case of even integers s ≥ 2 as proved in Corollary 3.3. We refer to Examples

3.6, 3.7 and Example 3.8 for some concrete examples.
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From now on till the end of this section we consider the remaining cases so that Fq0
is a finite field with q0 > 3, q0 6≡ 7 mod 8, and s ≥ 3 is an odd integer, if not explicitly

stated otherwise.

First we have a simple lemma that we use in some proofs below.

Lemma 3.3. Let Fq0 be a finite field of odd characteristic. Assume that q0 > 3. If

x ∈ F∗q0, then there exists y ∈ Fq0\{0, x,−x} such that (x2 − y2) is a nonzero nonsquare

element in Fq0.

Proof. Let x ∈ F∗q0 . We define the map ψx : Fq0 \ {0, x,−x} → Fq0 \ {0, 1,−1} given by

ψx(y) = 1 +
2y

x− y
.

It is not difficult to observe that ψx is one-to-one and onto.

Note that 1 is a square in Fq0 . Hence there exists at least

q0 − 1

2
− 1 =

q0 − 3

2

distinct nonsquare elements of Fq0 in the image set Fq0 \ {0,−1, 1} of ψx. As q0 > 3,

we conclude that there exists β ∈ Fq0 \ {0, 1,−1} such that β is a nonsquare in Fq0 .
Let y ∈ Fq0 \ {0, x,−x} such that ψx(y) = β. We obtain that

1 +
2y

x− y
(94)

is a nonsquare in Fq and y 6∈ {0, x,−x}. We observe that (x2 − y2) is a nonsquare in

Fq0 if and only if

x2 − y2

(x− y)2
=
x+ y

x− y
= 1 +

2y

x− y
(95)

is a nonsquare in Fq0 . Combining (94) and (95) we complete the proof. �

The following three theorems are related to the properties PP1, PP2 and PP3 in

Theorem 3.2 above. We refer to [16] and [19] for notation and further background on

algebraic curves over finite fields.

The following theorem is related to Property PP1 of Theorem 3.2 (see the last item

in the following theorem).

Theorem 3.3. Let Fq0 be a finite field of odd characteristic. Assume that q0 > 3. Let

m = q0−1
2

and {α1, . . . , αm} be an enumerated set consisting of the nonzero squares in

Fq0. Let s ≥ 3 be an odd integer and put q = qs0.
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Let χ1 be the fibre product of the projective lines over Fq given by

χ1 :


y21 = x2 − α1,

y22 = x2 − α2,
...

y2m = x2 − αm.

Let P∞ be the pole of x in Fq(x). For α ∈ Fq, let Pα be the zero of (x − α) in Fq(x).

We have the following:

(i). The genus g of χ1 is

g = 1 + 2m−1(m− 2).

(ii). There are exactly 2m Fq-rational points of χ1 over P∞.

(iii). If q ≡ 1 mod 4, then there are exactly 2m Fq-rational points of χ1 over P0.

If q ≡ 3 mod 4, then there is no Fq-rational point of χ1 over P0.

(iv). If α ∈ F∗q, then there are exactly 2m Fq-rational points of χ1 over Pα if and only

if

fi(α) is a nonzero square in Fq(96)

for each 1 ≤ i ≤ m, where fi(x) = x2 − αi ∈ Fq[x].

If (96) does not hold, then there is no Fq-rational point of χ1 over Pα.

Proof. For 1 ≤ i ≤ m, let Fq(x0)(yi) be the algebraic extension of Fq(x) such that

y2 = x2 − αi. Note that the polynomial

T 2 − (x2 − αi) ∈ Fq0(x)[T ]

is absolutely irreducible for 1 ≤ i ≤ m. Let K be an algebraic closure of Fq. For

1 ≤ i ≤ m, let Si ⊆ K be the roots of the equation

x2 − αi.

We observe that Si ∩ Sj = ∅ if 1 ≤ i < j ≤ m, and |Si| = 2 for each 1 ≤ i ≤ m. Put

S =
∑m

i=1 Si.

Let E = Fq(x)(y1, y2, . . . , ym) and E = K(x)(y1, y2, . . . , ym). The arguments above

imply that [E : Fq(x)] = 2m and E : K(x)] = 2m. Note that E is the algebraic function

field of the curve χ1 and E is the algebraic closure of the constant field extension of χ1

by the extension K/Fq. Hence the genus of E and the genus of E are the same.

Let Q∞ be the pole of x in K(x). For β ∈ K, let Qβ be the zero of (x− β) in K(x).

Note that Q∞ is unramified in the extension E/K(x). Moreover if β ∈ K \S, then Qβ

is also unramified in the extension E/K(x).
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It remains to consider Qβ with β ∈ S. Using Abhyankar’s Lemma (see, for example,

[19, Theorem 3.9.1]), for the ramification index e(Qβ) of Qβ in the extension E/K(x)

we obtain that

e(Qβ) = 2.(97)

Then using Hurwitz genus formula (see, for example, [19, Theorem 3.4.13]) for the

extension E/K(x) we obtain that

2g − 2 = 2m(0− 2) + 2m−1|S|(2− 1) = −2m+1 + 2mm = (m− 2)2m.

This completes a proof of item (i).

Note that P∞ splits completely in the extension Fq(x)(yi)/Fq(x) for each 1 ≤ i ≤ m.

This implies a proof of item (ii).

Assume that q ≡ 1 mod 4. Note that the evaluation of the polynomial x2 − αi at

the place P0 is −αi for 1 ≤ i ≤ m. As −1 and αi are square elements in Fq, we have

that −αi is a square in Fq for each 1 ≤ i ≤ m. This implies a proof of item (iii) for the

case q ≡ 1 mod 4.

Assume that q ≡ 3 mod 4. Hence −1 is not a square in Fq. Then, for example, −α1

is not a square in Fq. This implies a proof of item (iii) for the case q ≡ 3 mod 4.

Let α ∈ F∗q0 . Assume first that fi(α) 6= 0 for each 1 ≤ i ≤ m. Then using the

methods of [16] we obtain that there exists either no or exactly 2m many Fq-rational

points of χ1 over Pα. Moreover these methods also imply that there exists an Fq-rational

point of χ1 over Pα if and only if (96) holds.

Finally we assume that α ∈ F∗q0 and there exists 1 ≤ i0 ≤ m such that fi0(α) = 0.

Note that αi0 is a square element in F∗q0 and hence we have that α ∈ Fq0 and α2 = αi0 .

Using Lemma 3.3 we obtain that there exists 1 ≤ i ≤ m such that i 6= i0 and (α2 − αi)
is a nonzero nonsquare in Fq0 . As s is odd we also obtain that for that 1 ≤ i ≤ m with

i 6= i0, (α2 − αi) is nonzero nonsquare in Fq as well. These arguments imply that there

is no Fq-rational point of χ1 over Pα. This completes the proof of item (iv). �

The following theorem is related to Property PP2 of Theorem 3.2 (see the last item

in the following theorem).

Theorem 3.4. We keep the notation and assumptions of Theorem 3.3. In particular

q0 > 3, s ≥ 3 is an odd integer and q = qs0. Let D ∈ F∗q be a nonzero nonsquare in Fq.
Let χ2 be the fibre product of the projective lines over Fq given by

χ2 :


y21 = x2 + α1

D
,

y22 = x2 + α2

D
,

...

y2m = x2 + αm
D
.
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Let P∞ be the pole of x in Fq(x). For α ∈ Fq, let Pα be the zero of (x − α) in Fq(x).

We have the following:

(i). The genus g of χ2 is

g = 1 + 2m−1(m− 2).

(ii). There are exactly 2m Fq-rational points of χ2 over P∞.

(iii). There is no Fq-rational point of χ2 over P0.

(iv). If α ∈ F∗q, then there are exactly 2m Fq-rational points of χ2 over Pα if and only

if

fi(α) is a nonzero square in Fq(98)

for each 1 ≤ i ≤ m, where fi(x) = x2 + αi
D
∈ Fq[x].

If (98) does not hold, then there is no Fq-rational point of χ2 over Pα.

Proof. The arguments in the proofs of items (i) and (ii) of Theorem 3.3 imply similar

proofs for the items (i) and (ii) of the current theorem.

Let 1 ≤ i ≤ m. Note that the evaluation of the polynomial x2 + αi
D

at the place P0

is αi
D

. As αi is a square in F∗q0 , it is also a square in F∗q. Moreover D is a nonsquare

in F∗q and hence αi
D

cannot be a square in F∗q. These arguments complete the proof of

item (iii).

In the rest of this proof we consider item (iv). Let α ∈ F∗q. Assume first that

fi(α) 6= 0 for each 1 ≤ i ≤ m. Under this assumption, the corresponding arguments

in the proof of item (iv) of Theorem 3.3 imply a similar proof for the item (iv) of the

current theorem.

Assume secondly that q ≡ 1 mod 4. We claim that there is no 1 ≤ i ≤ m such that

fi(α) = 0. Indeed otherwise α2 = −αi
D

for some 1 ≤ i ≤ m. In particular −αi
D

is a

square in F∗q, which is a contradiction as (−1) and αi are squares and D is a nonsquare.

Assume finally that q ≡ 3 mod 4 and there exists 1 ≤ i0 ≤ m such that fi0(α) = 0.

Note that −1
D

is a square in F∗q and let D1 ∈ F∗q such that D2
1 = −1

D
. As fi0(α) = 0

we obtain that α = D2
1α

2
i0

. Using Lemma 3.3 we obtain that there exists 1 ≤ i ≤ m

such that i 6= i0 and (αi0 − αi) is a nonsquare in F∗q0 . As s is odd, we also obtain that

there exists 1 ≤ i ≤ m such that i 6= i0 and (αi0 − αi) is a nonsquare in F∗q. Note that

fi(α) = D2
1 (αi0 − αi). These arguments imply that there is no Fq-rational point of χ2

over Pα. This completes the proof of item (iv). �

The following theorem is related to Property PP3 of Theorem 3.2 (see the last item

in the following theorem).

Theorem 3.5. We keep the notation and assumptions of Theorem 3.3. In particular

q0 > 3, s ≥ 3 is an odd integer and q = qs0. Furthermore we assume that q ≡ 3 mod 8.
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Let χ3 be the fibre product of the projective lines over Fq given by

χ3 :


y21 = x2 − 2α1,

y22 = x2 − 2α2,
...

y2m = x2 − 2αm.

Let P∞ be the pole of x in Fq(x). For α ∈ Fq, let Pα be the zero of (x − α) in Fq(x).

We have the following:

(i). The genus g of χ3 is

g = 1 + 2m−1(m− 2).

(ii). There are exactly 2m Fq-rational points of χ3 over P∞.

(iii). There are exactly 2m Fq-rational points of χ3 over P0.

(iv). If α ∈ F∗q, then there are exactly 2m Fq-rational points of χ3 over Pα if and only

if

fi(α) is a nonzero square in Fq(99)

for each 1 ≤ i ≤ m, where fi(x) = x2 − 2αi ∈ Fq[x].

If (99) does not hold, then there is no Fq-rational point of χ3 over Pα.

Proof. The arguments in the proofs of items (i) and (ii) of Theorem 3.3 imply similar

proofs for the items (i) and (ii) of the current theorem.

Let 1 ≤ i ≤ m. Note that the evaluation of the polynomial x2 − 2αi at the place P0

is −2αi for 1 ≤ i ≤ m. As q ≡ 3 mod 8, we observe that −1 is a nonsquare in F∗q.
Using Lemma 3.2 we obtain that 2 is a nonsquare in F∗q. Hence we have that −2 is a

square in F∗q. This implies that −2αi is also a square in F∗q. These arguments complete

the proof of item (iii).

In the rest of this proof we consider item (iv). Let α ∈ F∗q. Assume first that

fi(α) 6= 0 for each 1 ≤ i ≤ m. Under this assumption, the corresponding arguments

in the proof of item (iv) of Theorem 3.3 imply a similar proof for the item (iv) of the

current theorem.

We claim that there is no 1 ≤ i ≤ m such that fi(α) = 0. Indeed, otherwise there

exists 1 ≤ i ≤ m such that α2 = 2αi. As 2 is not a square in F∗q and αi is a square in

F∗q, we get a contradiction. This completes the proof. �

Combining Theorems 3.2, 3.3, 3.4, 3.5 and using Hasse-Weil inequality (see, for ex-

ample, [19, Theorem 5.2.1]) we prove that the covering radius of generalized Zetterberg

code Cs(q0) over Fq0 of length qs0 + 1 is 3 if s ≥ 3 is a sufficiently large odd integer. We

also give an explicit lower bound in the following theorem for the sufficiency statement.
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Theorem 3.6. Let Fq0 be a finite field of odd characteristic. Assume that q0 > 3 and

q0 6≡ 7 mod 8. Put m = q0−1
2

.

Let s∗1 be the smallest odd integer with s∗1 ≥ 3 such that

q
s∗1
0 + 1− 2

(
1 + 2m−1(m− 2)

)
q
s∗1/2
0 > 2m.

If s is an odd integer with s ≥ s∗1, then the generalized Zetterberg code Cs(q0) over

Fq0 of length qs0 + 1 has covering radius 3.

Proof. Let {α1, . . . αm} be an enumerated set of nonzero squares on Fq0 . Assume that

q0 6≡ 7 mod 8. Let s ≥ 3 be an odd integer with s ≥ s∗1. Put q = qs0. Note that q 6≡ 7

mod 8.

Let w ∈ Fq2 \ Fq with w + wq = 1. Put D = 1
4
− wq+1. Note that D ∈ F∗q is a

nonsquare. Let N denote the number of a ∈ F∗q such that

a2 +
αi
D

is a nonzero square in Fq for each 1 ≤ i ≤ m.

Let χ2 be the algebraic curve in Theorem 3.4. Let N(χ2) denote the number of Fq-
rational points of χ2. Using Theorem 3.4 we obtain that

N(χ2) = 2m + 0 + 0 + 2mN.

This implies that if

N(χ2) > 2m,(100)

we have that N > 0. Using also Theorem 3.2 we conclude that if (100) holds, then

Property PP2 holds and hence the covering radius of Cs(q0) is 3.

Using Theorem 3.4, item (i) and Hasse-Weil inequality we obtain that

N(χ2) ≥ qs0 + 1− 2gq
s/2
0 = qs0 + 1− 2

(
1 + 2m−1(m− 2)

)
qs0/2.(101)

Combining (100) and (101) we conclude that the covering radius of Cs(q0) is 3 if

qs0 + 1− 2
(
1 + 2m−1(m− 2)

)
qs0/2 > 2m.(102)

Note that (102) holds if s ≥ s∗1. This completes the proof. �

Theorem 3.6 implies the following definitions naturally.

Definition 3.7. Let Fq0 be a finite field of odd characteristic. Assume that q0 > 3 and

q0 6≡ 7 mod 8. Let N1(q0) be the smallest odd integer with s1 ≥ 3 such that if s is an

odd integer satisfying s ≥ s1, then the generalized Zetterberg code over Fq0 of length

qs0 + 1 has covering radius 3.

Let Fq0 be a finite field of odd characteristic with q0 > 3. Assume that q0 6≡ 7

mod 8. Let s∗1 ≥ 3 be the odd integer defined in Theorem 3.6. Using Theorem 3.6 and

Definition 3.7 we immediately obtain that

N1(q0) ≤ s∗1.(103)
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Using Theorem 3.6 and (103), we obtain the following numerical values on certain

upper bounds on N1(q0) easily for small q0:

q0 = 5 : N1(5) ≤ 3;

q0 = 9 : N1(9) ≤ 5;

q0 = 11 : N1(11) ≤ 5;

q0 = 13 : N1(13) ≤ 5;

q0 = 17 : N1(17) ≤ 7;

q0 = 19 : N1(19) ≤ 7;

q0 = 25 : N1(25) ≤ 7.

(104)

Note that (104) implies that N1(5) = 3.

The following definition is a refinement of Definition 3.7.

Definition 3.8. Let Fq0 be a finite field of odd characteristic. Assume that q0 6≡ 7

mod 8. For an odd integer s ≥ 3, let Cs(q0) be the generalized Zetterberg code of

length qs0 + 1 over Fq0 .
Let I(q0) be the set of odd integers given by

I(q0) = {s ≥ 3 : s is odd and Cs(q0) has covering radius 3}.

It follows immediately from Definitions 3.7 and 3.8 that we have the following:

{s : s ≥ N1(q0) and s is odd} ⊆ I(q0).

The following proposition is also useful in determining I(q0).

Proposition 3.1. Let Fq0 be a finite field of odd characteristic with q0 > 3. Assume

that q0 6≡ 7 mod 8. If s ∈ I(q0) and t ≥ 1 is an odd integer, then st ∈ I(q0).

Proof. Let s ≥ 3 and t ≥ 1 be odd integers. Put q1 = qs0 and q2 = qst0 . Note that q1 6≡ 7

mod 8, q2 6≡ 7 mod 8 and Fq2 is a finite extension of Fq1 .
Assume further that q1 6≡ 3 mod 8. As s ∈ I(q0), using Theorem 3.2, at least one of

the properties PP1 and PP2 holds. Assume that Property PP1 holds and let a ∈ F∗q1
satisfying Property PP1. As a ∈ F∗q2 as well, applying Theorem 3.2 for q2 using a

we obtain that Property PP1 holds and hence st ∈ I(q0). The same argument holds

if Property PP2 holds. This completes the proof under the assumption that q1 6≡ 3

mod 8.

Next we assume that q1 ≡ 3 mod 8. As s ∈ I(q0), using Theorem 3.2, at least

one of the properties PP1, PP2 and PP3 holds. If Property PP1 or Property PP2

holds, then the same argument in the proceeding paragraph implies that st ∈ I(q0).

Assume that Property PP3 holds. Note that as t is odd, then q2 ≡ 3 mod 8 as well.

Hence if a ∈ F∗q1 satisfies Property PP3 for Fq1 , it also satisfies Property PP3 for Fq2
as Fq1 ⊆ Fq2 . This completes the proof. �
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In the following examples we exactly determine I(q0) for any finite field Fq0 of odd

characteristic with q0 ≤ 25 and q0 6≡ 7 mod 8, except the case of F25 that we determine

I(25) only upto two candidates.

Example 3.1. Let q0 = 3. Using Corollary 3.1 we obtain that

I(3) = {s : s ≥ 3 is an odd integer}.

Example 3.2. Let q0 = 5. Using (104) we obtain that

I(5) = {s : s ≥ 3 is an odd integer}.

In the following three examples we also use Theorem 3.2.

Example 3.3. Let q0 = 9. Using (104) we obtain that

I(9) ⊇ {s : s ≥ 5 is an odd integer}.

It remains to consider whether 3 ∈ I(9) or not. Using Theorem 3.2 and Magma, we

conclude that 3 ∈ I(9). These imply that

I(9) = {s : s ≥ 3 is an odd integer}.

Example 3.4. Let q0 = 11. Using (104) we obtain that

I(11) ⊇ {s : s ≥ 5 is an odd integer}.

It remains to consider whether 3 ∈ I(11) or not. Using Theorem 3.2 and Magma, we

conclude that 3 ∈ I(11). These imply that

I(11) = {s : s ≥ 3 is an odd integer}.

Example 3.5. Let q0 = 13. Using (104) we obtain that

I(13) ⊇ {s : s ≥ 5 is an odd integer}.

It remains to consider whether 3 ∈ I(13) or not. Using Theorem 3.2 and Magma, we

conclude that 3 ∈ I(13). These imply that

I(13) = {s : s ≥ 3 is an odd integer}.

The next example gives the smallest value of q0 such that there exists a

finite field Fq0 of odd characteristic with q0 6≡ 7 mod 8 such that I(q0) 6= {s :

s ≥ 3 is an odd integer}.

Example 3.6. Let q0 = 17. Using (104) we obtain that

I(17) ⊇ {s : s ≥ 7 is an odd integer}.

It remains to consider {3, 5} ∩ I(17). Using Theorem 3.2 and Magma, it is interesting

that we obtain 5 ∈ I(17) and 3 6∈ I(17). These imply that

I(17) = {s : s ≥ 5 is an odd integer}.
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The next example gives the second smallest value of q0 such that there

exists a finite field Fq0 of odd characteristic with q0 6≡ 7 mod 8 such that

I(q0) 6= {s : s ≥ 3 is an odd integer}.

Example 3.7. Let q0 = 19. Using (104) we obtain that

I(19) ⊇ {s : s ≥ 7 is an odd integer}.

It remains to consider whether {3, 5} ∩ I(19). Using Theorem 3.2 and Magma, it is

interesting that we obtain 5 ∈ I(19) and 3 6∈ I(19). We note that the computation for

5 ∈ I(19) takes too long. These imply that

I(19) = {s : s ≥ 5 is an odd integer}.

The next example gives the third smallest value of q0 such that there

exists a finite field Fq0 of odd characteristic with q0 6≡ 7 mod 8 such that

I(q0) 6= {s : s ≥ 3 is an odd integer}.

Example 3.8. Let q0 = 25. Using (104) we obtain that

I(25) ⊇ {s : s ≥ 7 is an odd integer}.

It remains to consider {3, 5} ∩ I(19). Using Theorem 3.2 and Magma, it is interesting

that we obtain 3 6∈ I(25). We note that the computation for 5 ∈ I(19) takes too long

and we had to stop waiting after some time so that we do not know if 5 ∈ I(25) or not.

These imply that I(25) is either

{s : s ≥ 5 is an odd integer},

or

{s : s ≥ 7 is an odd integer}.

4. Covering Radius of Half and twisted Half Generalized Zettenberg

Codes in Odd Characteristic

In this section we introduce half and twisted half generalized Zettenberg codes in

odd characteristic. We also show that their covering radii are the same as the covering

radius of the (full) generalized Zettenberg code, that we consider in Sections 2 and 3.

Namely we prove Theorems 4.3 and 4.4 below. We also explain a small issue in [11] in

Remark 4.2 below.

Let Fq0 be an arbitrary finite field of odd characteristic. Let s ≥ 1 be an integer.

Put q = qs0.
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Definition 4.1. Under notation as above, assume that q ≡ 1 mod 4. Let H be the

subgroup of F∗q2 with |H| = q + 1. Let H2 be the subgroup of F∗q2 with |H2| = q+1
2

.

Note that −1 ∈ H \H2 and

H = H2 t −H2.

Here −H2 = {−x : x ∈ H2}. Let h2 ∈ H2 be a generator of H2. Put n = q+1
2

. We

define the half generalized Zettenberg code C(2)s (q0) of length n over Fq0 as the linear

code over Fq0 with the parity check matrix[
1 h2 h22 · · · hn−12

]
.

Namely C(2)s (q0) consists of [a0, a1, . . . , an−1] ∈ Fnq0 such that

[
1 h2 h22 · · · hn−12

]
·


a0
a1
...

an−1

 = 0.

Definition 4.2. Under notation as above, assume that q ≡ 3 mod 4. Let H be the

subgroup of F∗q2 with |H| = q+ 1. Let H4 be the subgroup of F∗q2 with |H4| = q+1
4

. Let

θ ∈ Fq2 be a primitive 4-th root of 1. Note that

H = (H4 t θH4) t − (H4 t θH4)

and θ /∈ Fq0 . Here − (H4 t θH4) = {−x : x ∈ (H4 t θH4)}. Let h4 ∈ H4 be a generator

of H4. Put n = q+1
2

. Note that H4 t θH4 is a subset of H with |H4 t θH4| = n and

H4t θH4 is not the subgroup of H with n elements, for example −1 /∈ (H4 t θH4). We

define the twisted half generalized Zettenberg code C(2,t)s (q0) of length n over Fq0 as the

linear code over Fq0 with the parity check matrix[
1 h4 h24 · · · h

n/2−1
4 θ θh4 θh24 · · · θh

n/2−1
4

]
.

Namely C(2,t)s (q0) consists of [a0, a1, . . . , an−1] ∈ Fnq0 such that

[
1 h4 h24 · · · h

n/2−1
4 θ θh4 θh24 · · · θh

n/2−1
4

]
·


a0

a1
...

an−1

 = 0.

In particular we define

• an half generalized Zettenberg code if q ≡ 1 mod 4, and

• a twisted half generalized Zettenberg code if q ≡ 3 mod 4.
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Remark 4.1. If q0 = 3 and s ≥ 2 is an even integer, then the half Zettenberg code

over F3 of Definition 4.1 corresponds to one of the two classes of ternary quasi-perfect

codes considered in [8].

If q0 = 3 and s ≥ 3 is odd integer, then the twisted half Zettenberg code over F3 of

Definition 4.2 corresponds to the remaining class of the two classes of ternary quasi-

perfect codes considered in [11].

We are ready to state the first theorem of this section. The following two theorems

have simple proofs. Nevertheless we think that the results are interesting and useful.

Therefore we prefer to state these results as theorems.

Theorem 4.3. Let Fq0 be an arbitrary finite field of odd characteristic. Let s ≥ 1

be an integer. Put q = qs0. Assume that q ≡ 1 mod 4. Let Cs(q0) be the generalized

Zettenberg code of length q + 1 over Fq0. Let C(2)s (q0) be the half generalized Zettenberg

code of length q+1
2

over Fq0 defined in Definition 4.1. Then the covering radius of Cs(q0)
is equal to the covering radius of C(2)s (q0).

Proof. It follows from the definition that the covering radius of Cs(q0) is smaller or

equal to the covering radius of C(2)s (q0). Indeed, let α ∈ Fq2 be given. Let I
(α)
2 ⊆ H2 be

a subset and ψ(α) : I2 → F∗q0 be a mapping such that∑
a∈I(α)2

ψ(α)(a)a = α.

Here we use the equivalent characterization for the definition of covering radius of linear

codes (see (2) for an analogous characterization). As

H = H2 t −H2,(105)

it is clear that I
(α)
2 ⊆ H as well. Moreover these arguments hold for any α ∈ Fq2 .

Hence we conclude that the covering radius of Cs(q0) is smaller or equal to the covering

radius of C(2)s (q0).

Conversely, let α ∈ Fq2 be given. Let I(α) ⊆ H be a subset and ψ(α) : I → F∗q0 be a

mapping such that ∑
a∈I(α)

ψ(α)(a)a = α.(106)

Here we use the equivalent characterization for the covering radius of Cs(q0), that we

use for C(2)s (q0) above. Moreover, as we consider the covering radius, we assume that

|I(α)| is minimal among all such subsets. Let I
(α)
1 = I(α) ∩H2 and I

(α)
2 = I(α) ∩ (−H2).

Using (105) and the minimality of |I(α)|, we obtain that

I
(α)
1 ∩ −I(α)2 = ∅.(107)
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Let J (α) ⊆ H2 be the subset defined as J (α) = I
(α)
1 ∪ −I(α)2 . Note that

|J (α)| = |I(α)|.(108)

Let ϕ(α) : J (α) → F∗q0 be the map defined as

ϕ(α)(x) =

{
ψ(α)(x) if x ∈ I(α)1 ,

−ψ(α)(−x) if −x ∈ I(α)2 .
(109)

Combining (106), (107), (108) and (109) we obtain that∑
a∈J(α)

ϕ(α)(a)a = α.(110)

Moreover these arguments hold for any α ∈ Fq2 . Hence we conclude that the covering

radius of C(2)s (q0) is smaller or equal to the covering radius of Cs(q0). This completes

the proof. �

The next theorem is an analog of Theorem 4.3 for twisted half generalized Zettenberg

codes.

Theorem 4.4. Let Fq0 be an arbitrary finite field of odd characteristic. Let s ≥ 1

be an integer. Put q = qs0. Assume that q ≡ 3 mod 4. Let Cs(q0) be the generalized

Zettenberg code of length q + 1 over Fq0. Let C(2,t)s (q0) be the twisted half generalized

Zettenberg code of length q+1
2

over Fq0 defined in Definition 4.2. Then the covering

radius of Cs(q0) is equal to the covering radius of C(2,t)s (q0).

Proof. We use similar methods as in the proof of Theorem 4.3. Note that the main

technique in the proof of Theorem 4.3 uses the fact that

H = H2 t −H2.(111)

In this proof we have

H = (H4 t θH4) t − (H4 t θH4)(112)

instead of (111). Hence using the same methods and applying them to (112) instead

of (111). �

Remark 4.2. If q0 = 3 and s ≥ 3 is an odd integer then for q = qs0 we have that

q ≡ 3 mod 4. Using Theorems 4.4 and 2.2, we obtain that it is necessary to show that

Properties P3 and P4 in Theorem 2.2 hold, together with Properties P1 and P2. Recall

that this case corresponds to one of the ternary quasi-perfect code classes considered in

[11] (see also Remark 4.1 above). In the proof for the covering radius in this case in

[11], the proofs of the facts that Properties P1 and P2 hold exist, however the proof of

the facts that Properties P3 and P4 hold is missing. In this paper we fix this issue by

extending the methods of [11]. Note that we also extend these results to arbitrary odd

characteristic Fq0 from F3, provided that qs0 6≡ 7 mod 8.
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5. Conclusion

Throughout this paper we restrict ourselves of Fq0 of odd characteristic. Our methods

do not directly generalize to even characteristic. We plan to consider the covering radius

of Zetterberg type codes in even characteristic in a future work.

We have treated each finite field Fq0 of odd characteristic if q0 6≡ 7 mod 8. Our

methods would be extended rather naturally to cover each finite field Fq0 of odd char-

acteristic if q0 6≡ 15 mod 16. However it would be interesting to develop a new method

which covers each finite field Fq0 of odd characteristic without any restriction of the

form q0 6≡ (2t − 1) mod 2t, where t ≥ 4 is an integer.

It would be interesting to extend the explicit examples of Section 3 for larger values

of q0 and give an explanation for the unexpected behaviour of the sets I(q0) for small

odd values of s for some q0.
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6. Appendix

In this appendix we give a proof of the following lemma, which is used in Section 1.

Lemma 6.1. Let Fq0 be a finite field and s ≥ 1 be an integer. Let Cs(q0) be the

generalized Zetterberg code of length qs0 + 1 over Fq0. Then the dimension of Cs(q0) is

qs0 + 1− 2s.

Proof. Let H ⊆ F∗
q2s0

be the subgroup with |H| = qs0 + 1. Let P be the parity check

matrix given in (1). It is enough to prove that the column rank of P is 2s. Hence we

need to show that SpanFq0
{h : h ∈ H} = Fq2s0 . Let W = SpanFq0

{h : h ∈ H} and

t = dimFq0 W . As H ⊆ W , it is clear that t ≥ s+ 1. Assume the contrary that t < 2s.

Put u = t− s. These arguments and the assumption imply that

1 ≤ u ≤ s− 1.(113)

Let

A(T ) =
∏
w∈W

(T − w).

It is well known that A(T ) is a monic additive polynomial of degree ps+u with coeffi-

cients from Fq0 . Hence we obtain A0, A1, . . . , As+u−1 ∈ Fq0 such that

hp
s+u

+ As+u−1h
ps+u−1

+ · · ·+ A1h
p + A0h = 0
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for each h ∈ H. As hp
s

= 1/h for each h ∈ H, we also get that(
1
h

)pu
+ As+t−1

(
1
h

)pu−1

+ · · ·+ As
1
h

+As−1h
ps−1

+ · · ·+ A1h
p + A0h = 0.

This is equivalent to

As−1h
ps−1+pu + As−2h

ps−2+pu + · · ·+ A1h
p+pu + A0h

1+pu

+1 + As+u−1h
pu−pu−1

+ · · ·+ Ash
pu−1 = 0.

In particular there exists a nonzero polynomial B(T ) ∈ Fq0 [T ] such that

degB ≤ ps−1 + pu and B(h) = 0 for each h ∈ H.(114)

Using (113) and (114) we obtain a contradiction as

degB ≤ ps−1 + pu ≤ ps−1 + ps−1 < ps + 1 = |H|.

This completes the proof. �
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