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ABSTRACT

“A basic and basically unsolved problem in fluid dynamics is to determine the evolution of rising bubbles and falling drops of one miscible
liquid in another” [D. D. Joseph and Y. Y. Renardy, Fundamentals of Two-Fluid Dynamics: Part II: Lubricated Transport, Drops and Miscible
Liquids (Springer Science & Business Media, 2013), Vol. 4.]. Here, we address this important literature gap and present the first theory
predicting the velocity, volume, and composition of such drops at low Reynolds numbers. For the case where the diffusion out of the drop is
negligible, we obtain a universal scaling law. For the more general case where diffusion occurs into and out of the drop, the full dynamics is
governed by a parameter-free first-order ordinary differential equation, whose closed form solution exists and only depends on the initial
condition. Our analysis depends primarily on “drop-scale” effective parameters for the diffusivity through the interfacial boundary layer. We
validate our results against experimental data for water drops suspended in a syrup, corresponding to certain regimes of the mass exchange
ratio between water and syrup, and by this explicitly identify the drop-scale parameters of the theory.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0133025

I. INTRODUCTION

The study of drops and bubbles is at the heart of numerous prob-
lems in fluid mechanics1–3 and can be approached with simple and
affordable ingredients.4,5 For example, we can learn about capillarity
and surface tension simply by watching a coffee drop dry,6,7 we can
visualize the beautiful dynamics of rising bubbles8 when we drink a
carbonated beverage, and when we sweeten our tea, we can investigate
the fascinating dynamics of mixing.9

When a viscous drop of honey or syrup is submerged in water or
another miscible liquid, diffusion immediately smears out its interface,
causing the drop to deform more easily in response to external forces
(stirring or buoyant forces). As a result, surprising flow responses can
emerge; for example, sessile drops have been found to form miscible
“skirts” due to free convection,10 and pendant drops have been
reported to produce a remarkable jet emanating from their apex.11

Freely suspended, miscible drops can also display interesting
behavior. Notably, Kojima et al.12 studied the dynamics of syrup drops
falling through syrup dilutions. They were especially interested in the
shape transitions of these drops and present a theory to explain how
an initially spherical drop develops into an open torus. Interestingly,
and despite the fact that the fluids were fully miscible, they found that
it was necessary to incorporate a small, but non-zero interfacial

tension into their analysis to fully explain the shape changes seen in
the experiments.

Vorobev et al.13 considered the opposite case of rising miscible
drops and used direct numerical simulations to assess the effect of the
interfacial tension on the drop shape. They find that for very high
interfacial tensions, the drop remains spherical, while for intermediate
tensions, the rising drop deforms into a toroidal shape, recovering the
behavior of falling drops reported by Kojima et al. Finally, for very
small interfacial tensions, the drop is not able to maintain its shape
and is dispersed into the surrounding liquid with the notable exception
of nearly density-matched mixtures, where the drop maintains a
spherical shape without deforming.

Inspired by the above-mentioned works, one of the authors of
the present paper investigated buoyant water drops rising through
syrup at low Reynolds numbers.14 Using a syringe and needle to pro-
duce 1–10ll drops, and an optical setup to track their velocities and
volumes, they found that these drops remain relatively spherical
throughout their rise, suggesting that a finite interfacial tension stabil-
izes their shape. They also found the drops to display qualitatively dif-
ferent behavior depending on their travel time: On short time scales,
the drops appeared to rise at constant velocities and volumes, while on
long time scales, their volumes increased, and the velocities decreased.
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The authors suggested that the volumetric growth and the velocity
decline were due to ambient liquid being swept into the drops from
the back, but they did not attempt to verify this hypothesis using theo-
retical arguments; nor did they attempt to explain the observed power
law behavior for velocity and volume or to predict the final drop size.

In order to address these limitations and to complement previous
studies, we here present a unifying theory that predicts the velocities
and volumes of miscible drops rising and falling through another fluid
at low Reynolds numbers. Our predictions agree well with previously
published experiments of water drops rising through syrup, and due to
vanishingly small inertia and surface tensions, they are likely to find
geophysical applications, including buoyant plume dynamics in the
Earth’s mantle.15

II. MODEL EQUATIONS

In this work, we aim for a simple closed-form understanding of
the drop dynamics. As such, we will leave the more general setting of
continuum dynamics and base our developments on the idealized geo-
metric setting of a spherical drop. For the sake of nomenclature, we
will refer to the two miscible fluids considered as “water” and “syrup”
and use “rise” as the direction of motion of the drop.

Based on previous experimental observations,14 we make the fol-
lowing a priorimodeling assumptions: (i) the drop can be well approx-
imated as spherical; (ii) the time- and length-scales separate such that
the internal liquid is well-mixed (spatially constant, but temporally
variable, composition and density), buoyancy dominates diffusion at
longer scales; thus, as the drop rises, it is continuously exposed to
syrup with constant (initial) composition and density; (iii) the transi-
tion region is of finite width, which is small relative to the size of the
drop; (iv) convection is limiting for the mixing process, i.e., high P�eclet
number; (v) the density inside the drop is linearly proportional to the
mass fraction of syrup; and (vi) the drop rises at low Reynolds num-
bers so that the viscous drag is proportional to velocity.

We emphasize that the combination of assumptions (ii) and (iii)
leads to a model within the classical style of “sharp interface models,”
where the dynamics within the boundary layer is not explicitly repre-
sented in our model, but rather parameterized. This can be thought of
as a multi-scale approach, where for the governing equations (mass
calculations, dynamics, etc.), we consider the interface between syrup
and water as being “sharp,” with the boundary layer being so thin it
does not impact the modeling. On the other hand, as we will see later,
the finite width of the boundary layer enters the model through an
effective diffusion rate.

We will divide our modeling into three main sections, reflecting
the dominant processes in the system. In Sec. IIA, we will summarize
the classical relations of density and volume as applied by the model-
ing assumptions (i), (ii), (iv), and (v). In Sec. II B, we will summarize
the relevant dynamics of low Reynolds number flows, consistent with
modeling assumptions (i) and (vi). Finally, the most critical modeling
choices are controlled by the mass exchange between the drop and the
surrounding syrup, related to assumptions (ii) and (iii), and this is
developed in Sec. IIIC.

A. Geometric relations

Subject to the modeling assumptions, we can describe the drop
with its radius R tð Þ, as indicated in Fig. 1. It follows from assumption
(i) that the effect of the tail is negligible. We denote the density of pure

water and syrup as q�w and q�s , and the mass of water and syrup in the
drop as m�wðtÞ and m�s tð Þ, respectively. Here and in the following, an
asterisk denotes dimensional quantities which will later be non-
dimensionalized, although to avoid unnecessary asterisks, we will not
mark dimensional quantities [such as the radius R tð Þ] for which we do
not require a non-dimensional counterpart.

The volume and surface area of a spherical drop are given by the
standard expressions

V� tð Þ ¼ 4p
3
R tð Þ3; A tð Þ ¼ 4pR tð Þ2: (2.1)

As stated in our modeling assumptions, and in particular, as a conse-
quence of (iii) and (iv), the volume can also be well approximated as a
linear function of the mass of each component

V� tð Þ ¼ m�w tð Þ
q�w
þm�s tð Þ

q�s
: (2.2)

We will also need the mixture density, which is given by the fraction
of mass to volume

q� tð Þ ¼ m�w tð Þ þm�s tð Þ
V� tð Þ : (2.3)

We use the initial drop mass m�w;0 and volume V�0 ¼ m�w;0=q
�
w

together with syrup density q�s as characteristic values to obtain the
non-dimensionalized quantities

mw tð Þ ¼ m�w tð Þ
m�w;0

; ms tð Þ ¼
qw

qs

m�s tð Þ
m�w;0

; V tð Þ ¼ V� tð Þ
V�0

;

and

FIG. 1. Properties of a freely suspended drop used in the mathematical model.
RðtÞ is the drop radius, q�s is the density of pure syrup (ambient fluid), �s is the vis-
cosity of pure syrup, and m�wðtÞ and m�s tð Þ denote the mass of water and syrup in
the drop, respectively. The dark central spot is a reflection from the camera. The
photo is taken from the same image data that were used to produce the experimen-
tal results published by Mossige et al. in 2021.14
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qx ¼
q�x
q�s
; (2.4)

with x ¼ w; s;�½ �, where “�” refers to the mixture density. The inter-
nal water concentration is given in terms of the density difference
between the drop and its surroundings as

xw tð Þ ¼ q�s � q� tð Þ
q�s � q�w

¼ 1� q tð Þ
1� qw

with q tð Þ ¼ qwmw tð Þ þms tð Þ
V tð Þ :

(2.5)

With this non-dimensionalization, the above dimensionless quantities
satisfy the relations

V tð Þ ¼ mw tð Þ þms tð Þ; (2.6)

as well as

xw tð Þ ¼ 1
1� qw

� qwmw tð Þ þms tð Þ
1� qwð ÞV tð Þ : (2.7)

B. Hydrodynamics

We base our hydrodynamical considerations on low Reynolds
number flow. In this setting, the viscous drag is dominated by the exter-
nal fluid and is linearly proportional to viscosity �s and velocityU� tð Þ,

FD tð Þ ¼ cd�sqs U
� tð ÞV� tð Þ1=3; (2.8)

which is simply Stokes’ drag law16,17 with proportionality constant

cd ¼ 6p 3
4p

� �1=3
. We disregard acceleration, as this is typically not rele-

vant for low Reynolds numbers, and the viscous drag must then be bal-
anced by the buoyant force associated with the lower density in the drop

FB tð Þ ¼ q�s � q� tð Þ
� �

gV� tð Þ; (2.9)

as shown in Fig. 2(a). Here, g is the gravitational constant. By equating
the forces above and solving for the velocity, one obtains

U� tð Þ ¼
q�s � q� tð Þ
� �

gV� tð Þ
cd�sq�s V

� tð Þ1=3
: (2.10)

We non-dimensionalize this expression by introducing the character-
istic velocity as the initial drop velocity as given by a water-filled drop
of initial volume V�0 ,

U�0 ¼
q�s � q�wð Þg V�0ð Þ2=3

cd�sq�s
; U tð Þ ¼ U� tð Þ

U�0
: (2.11)

In terms of dimensionless quantities, we obtain that the velocity is
given as the product of concentration and the square of the cube root
of volume

U tð Þ ¼ xw tð ÞV tð Þ2=3: (2.12)

C. Mass transfer

In order to complete our mathematical model, we must also
account for mutual diffusion between the drop and the surrounding
fluid, which leads to a miscible boundary layer. If the drop were sta-
tionary, this layer would grow continuously in time; however, due to
its upward motion, we expect a finite velocity-dependent boundary
layer ‘, as illustrated in Fig. 2(b). Indeed, for small Reynolds numbers
and large P�eclet numbers, the thickness of the layer is given by18

‘ tð Þ � R tð ÞPe�1=3 ¼ R tð Þ D�

U� tð ÞR tð Þ

� �1=3

¼ R 0ð Þ R tð Þ
R 0ð Þ

� �2=3 D�

U�0R 0ð Þ

� �1=3

U tð Þ�
1
3

� V�0
� �1=3D1=3V tð Þ2=9U tð Þ�

1
3; (2.13)

where the last � is due to the proportionality between the radius and
cube root of volume. Furthermore, D� denotes the mutual diffusivity
between water and syrup, which we non-dimensionalize in Eq. (2.13) as

FIG. 2. (a) Hydrodynamics: The buoyant force on a drop, FB, is counteracted by the viscous drag force, FD . The drag coefficient is given by cd ¼ 6p 3=4pð Þ1=3: (b) Mass
transfer: When a drop with radius RðtÞ translates through a viscous fluid at Re � U� tð ÞR tð Þ=��s � 1 and Pe � U� tð ÞR tð Þ=D� � 1, the thickness of the miscible layer
enveloping the drop is given by l � R tð ÞPe�1=3, as indicated by the broken line. The thickness l can depend on latitudinal position relative to the center of the drop in
response to the structure of the laminar flow field.
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D ¼ D�

U�0R 0ð Þ : (2.14)

Note that for this non-dimensionalization, the dimensionless mutual
diffusivity corresponds to the inverse of the P�eclet number at the initial
time.

The thickness of the boundary layer can be used as a characteris-
tic length scale for Fickian diffusion, such that for component species
n ¼ w; sf g, we obtain

jn � D�n
xw tð Þ
‘ tð Þ � � V�0

� ��1=3D�nD�1
3xw tð ÞV tð Þ�

2
9U tð Þ

1
3: (2.15)

Here, D�n is the effective diffusivity of component n across the interface
region. This parameter accounts for the diffusivity of water across the
boundary layer being different to the diffusivity of syrup across the
boundary layer due to the strong non-linear dependency of diffusivity
on concentration in the glucose-water system.19 It can, in principle, be
calculated, and this calculation would be quite easy for a 1D problem.
However, we are not aware of such effective values of diffusivity across
the boundary layer having been reported for this more complex sys-
tem. The sign convention is chosen to have positive diffusive fluxes
out of the drop, so that js is expected to be positive, while jw is expected
to be negative. Diffusion has units of area per time, so that the diffusive
flux jn has units of volume per area per time. We obtain mass fluxes
for the drop by multiplying with the densities of the pure mixture and
the area of the drop.

Summarizing these modeling considerations, the total diffusive
mass exchange across the miscible boundary layer is approximated in
terms of dimensional time t� as

d
dt�

mn � A t�ð Þqnjn � q�n V�0
� �1=3D�nD�1

3xw t�ð ÞV t�ð Þ�
2
9U t�ð Þ

1
3:

(2.16)

Finally, we simplify this expression by introducing a proportionality
constant, j, which in addition to the geometric factors implied above
reflects that the thickness of the boundary layer is variable on the drop
surface

d
dt�

m�w t�ð Þ ¼ �jq�w V�0
� �1=3D�wD�1=3xw t�ð ÞV t�ð Þ�2=9U t�ð Þ

1
3;

(2.17a)

d
dt�

m�s t�ð Þ ¼ jq�s V�0
� �1=3D�s D�1=3xw t�ð ÞV t�ð Þ�2=9U t�ð Þ

1
3: (2.17b)

Equation (2.17a) suggests the following characteristic and non-
dimensional time t as:

t�0 ¼
m�w;0D

1
3

jq�w V�0ð Þ1=3D�s
¼ V�0ð Þ2=3D1

3

jD�s
and t ¼ t�

t�:0
(2.18)

For this choice, Equations (2.17) can be written in the dimensionless
form as

d
dt

mw tð Þ ¼ �xw tð ÞV tð Þ4=9U tð Þ
1
3; (2.19a)

d
dt

ms tð Þ ¼ Dxw sð ÞV tð Þ4=9U tð Þ
1
3: (2.19b)

We remark that the mass exchange ratio D ¼ D�s
D�w

is the amount of
mass of syrup diffusing across the boundary layer per mass of water.
As discussed after Eq. (2.15), this ratio is a reflection of the non-linear
dependency of the diffusion coefficients on the concentration and the
actual concentration profile across the boundary layer. It will play an
important role in the later development.

D. Summary of model equations

We summarize the non-dimensional model equations as follows:
The model is described by five time-dependent quantities, mass (within
the drop) of water and syrup, mw tð Þ and ms tð Þ, together with the vol-
ume of the drop V tð Þ, the concentration of water xw tð Þ, and the veloc-
ity U tð Þ. These five quantities are subject to two volumetric constraints,
given in Eqs. (2.6) and (2.7), together with a force balance, given in Eq.
(2.12), and two ordinary differential equations, given in Eq. (2.19).

As to the solvability of this system, we note that given the compo-
nent masses mw tð Þ and ms tð Þ at any time t, the volumetric constraints
and force balance immediately allow for the calculation of V tð Þ, xw tð Þ,
andU tð Þ. Furthermore, the dependence of these quantities on the compo-
nent masses is smooth. These quantities can, therefore, formally be elimi-
nated, reducing the system to two coupled non-linear ordinary differential
equations formw tð Þ and ms tð Þ. The (local in time) solvability of this sys-
tem follows from standard theory for ordinary differential equations.

III. ANALYSIS OF THE DROP RISE DYNAMICS

Section II outlines the governing equations for a drop rise within
the physical regime under consideration. However, the presentation
depends on several dimensionless quantities, and the resulting dynam-
ics are not clear. In Sec. III, we will show that the rise dynamics can be
fully characterized by rather simple expressions.

In the first part, Secs. IIIA and III B, we consider the general case
of arbitrary D, with the exception of the degenerate cases, i.e.,
we assume 0 < D 6¼ 1½ � <1. The particular degenerate cases
D 2 0; 1; 1f g are discussed in Sec. IIIC.

A. Species concentration, final size, and velocity

As a preliminary calculation, we recognize that independent of
the time-evolution of the above system, the final drop size can be
directly characterized by pure mass balance arguments. This comes as
a consequence of the mass exchange model, since by dividing Eq.
(2.19b) by (2.19a) we obtain that the two masses of the system are
related by

d
dt

ms ¼ �D
d
dt

mw: (3.1)

This equation can be integrated from t ¼ 0, for which one obtains

ms tð Þ ¼ �D mw tð Þ � 1ð Þ; (3.2)

where we have used the initial conditions and non-dimensionalization
which ensure thatms 0ð Þ ¼ 0 andmw 1ð Þ ¼ 1. In view of Eq. (2.6), this
implies a linear relationship between mass of syrup and volume

V tð Þ ¼ mw tð Þ þms tð Þ ¼ 1�D�1ð Þms tð Þ þ 1: (3.3)

Furthermore, at t ¼ 1, the drop will have equilibrated with the exter-
nal syrup, and thus,mw 1ð Þ ¼ 0. From Eqs. (3.2) and (3.3), we, there-
fore, obtain the following relationships at final time:
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ms;1 ¼ D ¼ V1: (3.4)

With the above expressions, we can obtain after some algebraic
manipulations an elegant expression for the concentration of water
inside the drop, replacing the somewhat unsightly Eq. (2.7) (see the
Appendix for derivation)

xw tð Þ ¼ 1
D� 1

D
V tð Þ � 1

� �
: (3.5)

The above non-dimensionalizations and calculations also allow us to
state the drop velocity only as a function of its volume without explicit
dependence on density. Indeed, Eqs. (2.12) and (3.5) combine to yield

U tð Þ ¼ D � V tð Þ
D � 1

V tð Þ�1=3: (3.6)

B. General case of dynamical equations for drop size

From Sec. IIIA, we recognize that a key parameter in the drop
evolution is the mass exchange ratio D, and a convenient dimension-
less quantity to characterize the system is the dimensionless volume
V tð Þ. We, therefore, proceed to obtain an equation for the time-
evolution of V tð Þ, eliminating the four other time-dependent variables
mentioned in Sec. IID.

By Eqs. (3.3) and (2.19), we obtain

d
dt

V tð Þ ¼ 1�D�1ð Þ d
dt

ms tð Þ ¼ 1�D�1ð Þxw tð ÞV tð Þ4=9U tð Þ
1
3:

(3.7)

We can now use Eqs. (3.5) and (3.6) to eliminate xw tð Þ and U tð Þ, lead-
ing to

d
dt

V tð Þ ¼ D�4
3
D� V tð Þ
D � 1

� �1
3

1� V tð Þ
D

� �
V tð Þ
D

� ��2
3

: (3.8)

We recognize that the fraction within the cube root is always positive,
and thus,

D� V tð Þ
D � 1

� �1
3

¼ D 1� V tð Þ
D

����
����
1=3

D� 1j j�1=3: (3.9)

This equation suggests introducing a new dimensionless time and vol-
ume, defined by

s ¼ D�4
3 D� 1j j�1=3t and W tð Þ ¼ V tð Þ

D : (3.10)

With this variable choice, the dynamics of all drops covered by our
modeling assumptions can be described by the single, parameter-free
ordinary differential equation

d
ds

W sð Þ ¼ 1�W sð Þð Þ 1�W tð Þ
�� ��1=3W sð Þ�

2
3; (3.11)

subject to the initial condition

W 0ð Þ ¼ D�1: (3.12)

We emphasize that although the process combines variable density,
two diffusion rates, and viscous flow, the dynamics of this full

parameter space is solely defined by the single curve given implicitly in
Eq. (3.11). Moreover, Eq. (3.11) has well-known implicit solutions in
terms of the hypergeometric function F2;1 for each of the two branches
of the absolute value, which are given by

W sð Þ5=3F2;1
4
3
;
5
3

;
8
3

;W sð Þ
� �

¼ D�5=3F2;1
4
3
;
5
3

;
8
3

;D�1
� �

þ 5s
3

for D > 1; (3.13a)

W sð Þ � 1ð Þ�
1
3F2;1 �

2
3
;� 1

3
;
2
3

; 1�W sð Þ
� �

¼ D�1 � 1ð Þ�
1
3F2;1 �

2
3
;� 1

3
;
2
3

; 1�D�1
� �

þ s
3

for D < 1:

(3.13b)

This solution is universal for the problem with the exception of
three particular limit cases where the derivation of the solution fails to
be valid. These can be seen most clearly from Eq. (3.9), which is invalid
whenD takes the values of 0; 1; 1f g. We consider these special cases
in Sec. III C.

C. Special cases in the limits of one-sided
and balanced diffusion

For three special cases, the dimensionless time given in Eq. (3.10)
fails to be meaningful. First, these are the two limits where either
D !1 or D ! 0. Since we have established that V1 ¼ D, in these
limits, the drop either expands indefinitely or dissolves completely,
respectively. We also need to consider the case of balanced diffusion,
i.e.,D ¼ 1, for which the drop size is constant.

Considering first the case where diffusion into the drop domi-
nates,D !1, we proceed from Eq. (3.8) to deduce the limit equation

for V
1

(we denote the special cases by the value of D above the
variable)

d
dt

V
1

tð Þ ¼ lim
D!1

D�1
3 D� 1ð Þ�

1
3 1� V tð Þ

D

� �4
3 V tð Þ
D

� ��2
3

¼ V
1

tð Þ�
2
3: (3.14)

This equation can be integrated directly to obtain (including initial
condition)

V
1

tð Þ ¼ 1þ 5
3
t

� �3
5

: (3.15)

Equation (3.15) can also be obtained directly as the limit of Eq. (3.13)
asD !1, since20

lim
D!1

F2;1
4
3
;
5
3

;
8
3

;D�1
� �

¼ 1: (3.16)

Considering now the case where diffusion out of the drop dominates,
D ! 0, Eq. (3.7) indicates that with the choice of dimensionless time
used above, the drop instantly disappears. As such, we will for this spe-
cial cause use a different dimensionless time, defined by ~t ¼ t=D, and

proceed from Eq. (3.7) to deduce the limit equation for V
0
,
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d

d~t
V
0

~tð Þ ¼ d
dD�t 0V

0 ~tð Þ

¼ lim
D!0
DD2

3 D� 1ð Þ�
1
3 1� V ~tð Þ

D

� �4
3 V ~tð Þ
D

� ��2
3

¼ lim
D!0
D2

3D�4
3 D� V ~tð Þð Þ

4
3V ~tð Þ�

2
3D2

3

¼ �V
0

~tð Þ
2
3: (3.17)

This equation can also be integrated exactly to yield

V
0

~tð Þ ¼ 1� 1
3

~t

� �3

: (3.18)

The final limit case to consider is that of balanced diffusion, where
D ¼ 1. By definition, the volume of the drop will now remain constant,

V
1

tð Þ ¼ 1, which is also consistent with Eq. (3.7). It remains to consider
the evolution of the drop density, since Eq. (3.5) fails to be valid.
Proceeding, therefore, from Eqs. (2.19b) and (2.12), we now obtain

d
dt

m
1
s tð Þ ¼ x

1

w tð Þ4=3: (3.19a)

Furthermore, Eqs. (2.6) and (2.7) imply

d
dt

x
1

w tð Þ ¼ � d
dt

m
1

s tð Þ (3.19b)

to yield for the concentration of water in this limit case

d
dt

x
1

w ¼ �x
1

w tð Þ4=3; (3.20)

which as above can be integrated exactly to yield

x
1

w ¼ 1þ 1
3
t

� ��3
: (3.21)

D. Summary of the rise dynamics

We summarize the findings as follows. The general case considers
the situation where the relative water loss from the drop compared to
the gain of syrup,D, is finite. The resulting system can be expressed in
terms of a one-parameter family of solutions, defined in terms of D,
based only on the finite drop size:

1. The maximum drop size is defined solely on the mass exchange
coefficients as given in Eq. (3.4).

2. The velocity and volume are related by Eq. (3.6).
3. The dimensionless volume satisfies an expression based on the

hypergeometric function, as given in Eq. (3.13).

All observations for the general case can be extended to the three
special cases of D 2 f0; 1;1g. Indeed, the special cases are sim-
pler than the general case, and in particular, the dimensionless
volume can be given by closed-form expressions such as Eqs.
(3.15), (3.18), and (3.21). These closed-form expressions indicate
the following scaling laws:

4. For D ¼ 1, the late-time drop size satisfies V
1

tð Þ � t3=5 with

velocity U
1

tð Þ � t�1=5.

5. For D ¼ 1, the drop size is constant V
1
¼ 1 with late-time drop

concentration x
1
w tð Þ � t�3 and velocity U

1
tð Þ � t�3.

6. For D ¼ 0, the drop size V
0
reaches 0 in finite time.

These dynamics are illustrated in Fig. 3. Here, we show the evolu-
tion of drop size for eight different values of D. The limit cases of
D ¼ 1;1f g are shown in solid lines, while the intermediate cases
D ¼ f10�2; 10�1; 0:5; 2; 101; 102g are shown in dotted lines. On
the chosen time-scales, the case D ¼ 0 implies instantaneous disso-
lution and is, therefore, not shown. The left figure illustrates the
results in the “natural” dimensionless timescale t given in Eq. (2.18)
and volume V . The right figure shows the same data with the time-
scale s defined in Eq. (3.10) and the rescaled dimensionless volume
W. Note, in particular, that in the latter case, all the curves converge
toW ¼ 1.

Of interest is also the drop velocity U tð Þ; as well as the vertical
position of the drop z tð Þ ¼

Ð t
0 U t0ð Þdt0. For D 6¼ 1, the velocity U tð Þ

is plotted in Fig. 4 (left) according to the expression given in Eq.
(3.6) for the volumes V tð Þ plotted in Fig. 3 (left). The special case
D ¼ 1 is also plotted by substituting Eq. (3.21) in Eq. (2.12). The
position z tð Þ is shown in Fig. 4 (right) based on standard numerical
integration of U tð Þ.
IV. COMPARISON WITH EXPERIMENTAL DATA

In order to validate the mathematical model, we used published
data for the volumes and velocities of water drops in syrup (see Refs.
14 and 21). The experiments were based on de-ionized water (1–10ll;
Milli-Q Academic A10) rising in corn syrup (Karo; light corn syrup)
using an optical setup consisting of a collimated light source (telecen-
tric lens: Model: 63074, Edmund Optics, NJ, USA; fiber optic light:
Model: 21AC fiber optic illuminator, Edmund Optics, NJ, USA; colli-
mator: Model: 62760, Edmund Optics, NJ, USA) and a back lit camera
(Model: GPF 125C IRF, Allied Vision Technologies, PA, USA). The
camera and light source were mounted onto a programable stage
(Model: ULM- TILT, Newport, CA, USA), which enabled the drop to
be followed throughout its rise and its volume and velocity to be
extracted.

In a typical experiment, syrup was first poured into a home-
made glass chamber (50 	 50mm2 wide, 150mm tall) and placed
in a vacuum chamber to remove any air bubbles resulting from the
filling procedure. Then, a water drop was injected into the bottom
of the chamber though a self-healing membrane using a syringe
(10 ll, Hamilton MicroliterTM #801) and stainless-steel needle
(OD¼ 0.362mm). Due to vanishingly small capillary pressures
between the miscible liquids, the buoyant drop starts to rise imme-
diately after the injection. During the entire experiment, which typ-
ically took one hour, the drop is reported to remain spherical with
a distinct liquid–liquid interface. The experimental results and pro-
cedure are presented previously by Mossige et al.14

Table I gives an overview of the physical properties of the fluids
used in the experiments.

Our theoretical results indicate that the evolution of the drop
depends on a single free parameter D, representing the relative (effec-
tive) ratio of mass transfer between the syrup and the drop. As this
parameter was not inferred in previous experiments, we show in the
following a range of values D ¼ f5; 10; 20;1g. Additionally, we will
use the experiments to identify the pair of proportionality constant
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jD�s entering the definition of dimensionless time, which represents
the interplay between the flow field around the drop and the effective
diffusion across the flow.

The evolution of volume over time for finite D is given in Eq.
(3.13) and is plotted in Fig. 5 (dotted lines), together with the same
experimental data. The approximate solution given in Eq. (3.15) is
shown by the solid line. The experimental data represent several

different experiments with different initial volumes and collapse given
the non-dimensionalizations provided.

The relationship between drop velocity and volume is given in
Eq. (3.6). In Fig. 6, we show the predicted velocity–volume curves
together with experimental data (symbols).

The original data were non-dimensionalized using the character-
istic time

FIG. 3. Left: Drop volume V as a function of dimensionless time t for values D ¼ 10�2; 10�1; 0:5; 0; 2; 101; 102;1
� �

(curves shift up with increasing D, dots indicate D < 1
while dashes indicate D > 1). Right: the same data as in the left figure, plotted in terms of W as a function of dimensionless time s (curves shift down with increasing D). These
dimensionless quantities are not strictly defined for D ¼ 1; however, the W � s3=5 scaling implied in Eq. (3.15) is, nevertheless, indicated by a dashed–dotted line.

FIG. 4. Left: Drop velocity U as a function of dimensionless time t for values D ¼ 10�2; 10�1; 0:5; 0; 2; 101; 102;1
� �

(curves shift right with increasing D, dots indicate
D < 1 while dashes indicate D > 1). Right: Vertical drop position z ¼

Ð t
0 U t0ð Þdt0 as a function of dimensionless time t (curves shift up with increasing D).

TABLE I. Physical properties of the experimental fluids. The viscosity of syrup was obtained using standard cone plate rheometry, as described in Ref. 14.

Fluid property Diffusivity water/syrup Water density Syrup density Syrup viscosity

Symbol (units) D� ðm2=sÞ q�w ðkg=m3Þ q�s ðkg=m3Þ �s ðm2=sÞ
Value 1:3	 10�10(Ref. 22) 997 1386 3:7	 10�3
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t† ¼ �sq�sð Þ2=3

q�s � q�wð Þ2=3g2=3 D�ð Þ1=3
: (4.1)

In plotting Figs. 5 and 6, we heuristically identified the relationship
between this dimensionless time and the dimensionless time stated in
Eq. (2.18)

t† ¼ 3t�0 : (4.2)

Based on this observation, we propose the following expression for the
effective mass diffusivity across the interface region jD�s :

jD�s ¼ 3
3cd3

4p

� �1
9 D� V�0ð Þ2=3

t†

� �1
2

: (4.3)

This expression suggests the dependency between the drop scale
parameters j and D�s , on the actual fluid dynamics and local-scale dif-
fusion mechanisms (which exist in a more fine-grained modeling
framework where concentration is represented as a continuous field
variable). In particular, we propose

j ¼ 3
3cd3

4p

� �1
9

and D�s ¼
D� V�0ð Þ2=3

t†

� �1
2

: (4.4)

The validity of these postulated relationships is supported by the
agreement with experimental data shown in Figs. 5 and 6; however, it
can be further strengthened in the future work by comparison to direct
numerical simulation of the coupled fluid-dynamics and mass conser-
vation (diffusion) equations.

Based on the provided experimental data and our analysis, we
infer that a mass transfer ratio of D 2 f10; 20g seems to provide a
reasonable match between theory and experiment. The main deviation
is seen at early time in Fig. 6 (close to V ¼ 1 ¼ U) and may be attrib-
utable to early-time effects in the experiment before the steady flows
assumed in Sec. II B have developed. (Note that dimensionless veloci-
ties higher than 1 are reported, which clearly indicates a non-steady
regime.)

Considering the above identified value of D, our theory, thus,
leads to a prediction of a final drop size on the order of 10–20 times
the initial size. This prediction could be verified given a sufficiently tall
experimental chamber, which according to Fig. 4 (right) would require
an experimental setup of a dimensionless height z1 ¼ z t ¼ 1ð Þ of
about 50–100. The non-dimensionalization of height follows from the
definition of dimensionless time and velocity; thus, using the upper
estimate of z1 
 100 and D 
 20, in terms of physical quantities, we
predict the need for an experimental column of height

z�1 ¼ z1 U�0 t
�
0 ¼ z1 ¼

D1=3

3
3
4p

� �1
9

q�s � q�wð Þg
c2d�sq

�
s D
�

 !2=3

V�0 : (4.5)

For the properties and drop size used in this experiment, this implies a
column height on the order of 30 meters should be sufficient to capture
the whole rise of the drop. As indicated from expression (4.5), more
practical column heights can be achieved by modifying the fluid proper-
ties, or by initializing the experiment with drops of smaller volumes.

V. CONCLUSION

In this work, we explored the dynamics of a buoyant drop rising
or falling through a miscible fluid at low Reynolds numbers. We pre-
sented a theoretical model for velocity and volume, wherein the gen-
eral case diffusion allows mass to both enter and leave the drop.
Additionally, three special cases are treated. The first set considers neg-
ligible mass loss from the drop, which causes it to expand indefinitely,
and the second set describes the opposite case where diffusion out of
the drop dominates, which causes it to dissolve completely. The third
and final case is that of balanced diffusion, where the drop volume
remains constant.

Our theoretical calculations agree well with experimental data for
millimeter sized water drops rising through syrup throughout the
whole time-series of the experiment, corresponding to mass exchange
ratios between 10 and 20, contrasting previous analyses which focused
on identifying empirical scaling laws. Our model further directly leads
to predictions of the final drop size and vertical position, not available
in current experimental literature. Furthermore, the comparison to
experimental data allows us to postulate the effective mass transfer
parameters, which appear in our theory.
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FIG. 5. Dimensionless volume, V , plotted vs dimensionless time, t, for
D ¼ 5; 10; 20;1f g, where D ¼ 5; 10; 20f g corresponds to Eq. (3.13) and the
approximation D !1 corresponds to Eq. (3.15). The data points represent volu-
metric data for water drops rising through syrup from Ref. 14.

FIG. 6. Dimensionless velocity, U, plotted vs dimensionless volume, V , for
D ¼ f5; 10; 20;1g [Eq. (3.6)]. The symbols represent experimental data for
water drops rising through syrup from Ref. 14.
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APPENDIX: DERIVATION OF EQ. (3.5)

This appendix gives the derivation of Eq. (3.5). Based on the
simplicity of the initial and final expressions, the authors suspect

that a more concise and elegant derivation exists; however, in lieu
of this, the below is provided. Starting from Eq. (2.7),

xw tð Þ ¼ 1
1� qw

� qwmw tð Þ þms tð Þ
1� qwð ÞV tð Þ : (A1)

Eliminating first mw tð Þ using Eq. (3.2),

xw tð Þ ¼ 1
1� qw

� qw 1�D�1ms tð Þ
� �

þms tð Þ
1� qwð ÞV tð Þ

¼ 1
1� qwð ÞV tð Þ V tð Þ � qw � 1�D�1qw

� �
ms tð Þ

� �
: (A2)

Now further eliminating ms tð Þ using Eq. (3.3), we obtain

xw tð Þ ¼ 1
1� qwð ÞV tð Þ V tð Þ � qw � 1�D�1qw

� �V tð Þ � 1

1�D�1

� �
:

(A3)

By introducing a common factor and collecting terms,

xw tð Þ ¼ V tð Þ 1�D�1ð Þ � qw 1�D�1ð Þ � 1�D�1qw

� �
V tð Þ � 1ð Þ

1� qwð ÞV tð Þ 1�D�1ð Þ

¼ V tð Þ � V tð ÞD�1 � qw þD�1qw � V tð Þ � D�1qw þD�1qwV tð Þ þ 1

1� qwð ÞV tð Þ 1�D�1ð Þ

¼ �V tð ÞD�1 � qw þD�1qwV tð Þ þ 1

1� qwð ÞV tð Þ 1�D�1ð Þ ¼ �V tð ÞD�1 þ 1

V tð Þ 1�D�1ð Þ ¼
�1þ V tð Þ�1

D� 1
: (A4)

The final expression corresponds to Eq. (3.5).
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