
New results on the −1 conjecture on cross-correlation of
m-sequences based on complete permutation polynomials

Gaofei Wu ∗, Keqin Feng †, Nian Li ‡, and Tor Helleseth §

Abstract

The cross-correlation between two maximum length sequences (m-sequences) of the same period

has been studied since the end of 1960s. One open conjecture by Helleseth states that the cross-

correlation between any two p-ary m-sequences takes on the value −1 for at least one shift provided

that the decimation d obeys d ≡ 1 (mod p − 1). This was known as the −1 Conjecture. Up to

now, the −1 Conjecture was confirmed for the following decimations: (1) Niho-type decimations,

i.e., d = s(p
n
2 − 1) + 1, where s is an integer; (2) all the complete permutation polynomial (CPP)

exponents d satisfying d ≡ 1 (mod p − 1), and (3) the additional families of decimations tabulated

in this paper. In this paper, we first discuss the connection between the −1 conjecture on cross-

correlation of m-sequences and CPP exponents, then we confirm the −1 conjecture for a new

type of decimations by giving a new class of CPP exponents. The decimations are of the type

d = 1 + l(prtm − 1)/(r + 1) over Fprtm , where p is a prime, r + 1 is an odd prime satisfying

p
r
2 ≡ −1 (mod r + 1), t is an odd integer (t > 2 if p = 2) with gcd(t, r) = 1, and m is a positive

integer. We transform the problem of determining whether d is a CPP exponent into investigating

the existence of irreducible polynomials over Fp with degree t satisfying a congruence equation. By

a theorem given by Rosen that considered the number of irreducible polynomials with a special

congruence relation, we prove that d is a CPP exponent over Fprtm for sufficiently large t. When

m is odd, our new CPP exponents are of Niho type; thus, we give a new class of CPP exponents of

Niho type. When m is even, we obtain a new class of CPP exponents which are not of Niho type.

As a consequence, we show that the −1 conjecture is true for d = 1+ l(prtm − 1)/(r + 1) when t is

a sufficiently large integer.

Index Terms Cross-correlation, m-sequences, Permutation polynomials, Finite Fields, Irre-

ducible polynomials.
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1 Introduction

Let p be a prime and {s(i)}p
n−2

i=0 be a p-ary m-sequence of period pn−1, where n is a positive integer.

The d-decimated sequence of {s(i)} given by {s(di)} is also an m-sequence if gcd(d, pn − 1) = 1. The

cross-correlation function between {s(i)} and its d-decimated sequence {s(di)} is defined by

Cd(t) =
pn−2∑
i=0

ξs(i+t)−s(di),

where 0 ≤ t < pn−1, and ξ = e
2πi
p is a complex primitive p-th root of unity. In [24], Helleseth proposed

the following conjecture.

Conjecture 1 ([24, Conjecture 5.1]) Suppose p is a prime. Let gcd(d, pn−1) = 1. When d ≡ 1 (mod p−
1), then −1 is one of the values that Cd(t) takes on.

There is a natural connection between Conjecture 1 and complete permutation monomials. Let

Fpn be a finite field of pn elements. We denote by F∗
pn the multiplicative group of Fpn . A polynomial

f ∈ Fpn [x] is called a permutation polynomial (PP) if the associated polynomial mapping f : c %→ f(c)

from Fpn to itself is a permutation of Fpn . A polynomial f ∈ Fpn [x] is called a complete permutation

polynomial (CPP) if both f(x) and f(x)+x are permutations of Fpn . It is an interesting and important

problem to find permutation polynomials with good cryptographic properties such as high nonlinearity

[5, 8, 21], low differential uniformity [6, 7, 22, 45], low c-differential uniformity [18, 23, 39], and low

boomerang uniformity [34, 36, 40, 50].

Conjecture 1 can be connected to the CPP exponents which are defined as follows.

Definition 1 For a positive integer d and a ∈ F∗
pn , a monomial function axd is a complete permutation

polynomial of Fpn if and only if gcd(d, pn − 1) = 1 and axd + x is a permutation polynomial of Fpn .

Such d is called a CPP exponent over Fpn .

To the best of our knowledge, Conjecture 1 was confirmed for the following cases: (1) Niho-type

decimations [42], i.e., d = s(p
n
2 −1)+1, where s is an integer [12, 17, 25, 46]; (2) all the CPP exponents

d satisfying d ≡ 1 (mod p−1), and (3) all the exponents listed in Table 1. In Table 2, we summarize some

known CPP exponents over Fpn . In 2008, Charpin and Kyureghyan [13] determined all the parameters

0 ≤ i ≤ n− 1 and a ̸= 0 such that x2i+2 + ax are permutation polynomials of F2n . In 2014, Tu, Zeng,

and Hu [51] gave three classes of CPP exponents over F2n . In [52], a class of CPP exponents over F2n

of Niho type was given. Some classes of CPP exponents of the form d = 2tm−1
2m−1 +1 over F2tm were given

in [54]. The CPP exponents of the form qn−1
q−1 + 1 over Fqn were studied in [2] for the cases n = 2 and

n = 3, [55] for the case n = 4, [43] for the case n = 5, and [3] for the case n = 6. In 2016, Bartoli et al.
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Table 1: Exponents d over Fpn such that −1 occurs as a value of Cd(t)

p n d d ≡ 1 (mod p− 1) Refs.

2 any integer
2m + 1 or 22m − 2m + 1

n/ gcd(n,m) is odd
YES [22, 29]

2 n = 2m with m odd 2m+1 + 31 or 2m + 2
m+1

2 + 1 YES [14]

2 n = 2m+ 1 2m + 3 YES [11, 20]

2 n odd 22m + 2m − 1, n|4m+ 1 YES [20]

3 n = 2m+ 1 2 · 3m + 1 YES [15]

3 n odd 3m + 2, n|4m− 1 YES [15, 30]

odd prime any integer
(p2m + 1)/2 or p2m − pm + 1

n/ gcd(n,m) is odd
YES [24, 49]

3 n = 3m 3m + 2 or 32m + 2 YES [57, 59]

2 or 3 any integer pn − 2 YES [31, 32]

2 n = 4m with odd m 22m + 2m + 1 YES [16]

2 n odd
(2l + 1)/(2m + 1),

(l,m) ∈ {(2t, t), (5t, t), (5t, 3t)}
YES [28, 58]

odd prime 4|pn − 1 pn−1
2 + pi YES for even n [24]

2 n = 4m with even m 22m − 2m + 1 YES [26]

p ≡ 2 (mod 3) n even
pn−1

3 + pi

pn−1
3 pi ̸≡ 2 (mod 3)

YES [24]

prime n = 4m, pm ̸≡ 2 mod 3 p2m − pm + 1 YES [27]

1 2m+1 + 3 is a CPP exponent over F22m for odd m, see Table 2.

[4] classified complete permutation monomials of degree d = qn−1
q−1 + 1 over Fqn , where q is odd, n + 1

is a prime and (n+ 1)4 < q. In 2019, by using Dickson polynomials and the AGW criteria, Feng et al.

[19] further studied the CPP exponents of the form qn−1
q−1 + 1 and showed that [55, Conjecture 4.18] is

false in general.

In this paper, we first show the relation between Conjecture 1 and CPP exponents, then we confirm

Conjecture 1 for a new type of decimations by giving a new class of CPP exponents. More precisely,

we consider a class of CPP exponents of the form d = l × prtm−1
r+1 + 1, where r + 1 is an odd prime

satisfying p
r
2 ≡ −1 (mod r+1), t is an odd integer (t > 2 if p = 2) with gcd(t, r) = 1, and m is a positive

integer. For odd m, we construct a new class of CPP exponents of Niho type. For even m, we construct

a new class of CPP exponents which are not of Niho type. We systematically develop a method to

transform the problem of determining whether d is a CPP exponent into investigating the existence of

irreducible polynomials over Fp with degree t satisfying a congruence equation. Thanks to a theorem

given by Rosen [47, Theorem 4.8], we show that d is a CPP exponent over Fprtm for sufficiently large t.

Our method is different from all the previous ones, and shows that proving the complete permutation

property of a polynomial is usually difficult since determining the number of irreducible polynomials

satisfying a congruence equation is usually hard.
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Table 2: CPP exponents d over Fpn

p n d d ≡ 1 (mod p− 1) Refs.

odd prime any integer pn+1
2

YES for odd n;

NO for even n
[41]

prime
n = n1n2r

ordr(p)1= n1

pn−1
r + 1 YES [33]

prime n = 2m

s(pm − 1) + 1

gcd((s− 1)(2s− 1), pm + 1) = 1

gcd(s, pm + 1) > 1

YES [52]

2 n = 2m, m odd 2m + 2 YES [2, 48]

3 n = 2m 3m + 2 YES [2, 55]

p ≡ −1 (mod 6) n = 2m, m odd pm + 2 NO [2]

2 n = 3m, m > 1 22m + 2m + 2 YES [2]

prime
n = 2m

pm ≡ 0,±2 (mod 5)
2pm + 3

YES for p = 2;

NO for odd prime
[51]

2
n = rt,gcd(r, t) = 1

r ∈ {4, 6, 10}
2n−1
2t−1

+ 1 YES [54]

odd prime n = (p− 1)m pn−1
pm−1 + 1 YES [38, 55]

2
n = 6m

gcd(m, 3) = 1
24m−1 + 22m−1 YES [38]

2 n = 4m (1 + 22m−1)(1 + 22m) + 1 YES [38]

odd prime n = 4m p4m−1
2 + p2m YES [38]

odd prime
n = 4m

pm ̸≡ 1 (mod 5)
p4m−1
pm−1 + 1

YES for p = 3, 5;

NO for other p
[55]

odd prime
n = 6m

pm ̸≡ 1 (mod 7)
p6m−1
pm−1 + 1

YES for p = 3, 7;

NO for other p
[3, 55]

odd prime n = 2m
(pm − 1) p

i−1
2 + pi

1 ≤ i ≤ n
YES [55]

odd prime n = p− 1
t · pn−1

p−1 + 1

1 ≤ t ≤ p− 2
YES [55]

2
n = 2m

m > 2,m ̸≡ 2 (mod 3)
2n−1

3 + 1 YES [48]

prime

n = rm,r + 1 ̸= p

r + 1 is prime

gcd(r + 1, p2m − 1) = 1

ordr+1(pm) = r

prm−1
pm−1 + 1

YES if p− 1|r;
NO for others

[19]

odd prime
n = rm, r|p− 1

r > 1
p(p−1)m−1

pm−1 + 1 YES [19]

odd prime
n = rm, r|pm − 1

r > 1
p(p

m−1)m−1
pm−1 + 1 YES [19]

2
n = 2m

m ≥ 3 is odd

l · 2n−1
3 + 1, l = 1, 2

ml ̸≡ −1 (mod 3)
YES [35]

1 We denote the order of p modulo r by ordr(p).
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The rest of this paper is organized as follows. In Section 2, we introduce some preliminaries and

show the relation between Conjecture 1 and CPP exponents. In Section 3, we show that for sufficiently

large t, d = l × prtm−1
r+1 + 1 is a CPP exponent over Fprtm . Section 4 concludes our paper with some

conjectures.

2 Preliminaries

In [37], a criterion for permutation polynomials is given by using the additive characters of the

underlying finite field.

Lemma 1 ([37, Theorem 7.7]) A mapping g : Fpn → Fpn is a permutation polynomial if and only if

for every α ∈ F∗
pn ,

∑

x∈Fpn

ξTr
n
1 (αg(x)) = 0,

where the trace function from Fpn onto Fp is defined by Trn1 (x) =
∑n−1

i=0 xpi

, x ∈ Fpn .

The following lemmas will also be needed in the sequel.

Lemma 2 ([37, Corollary 3.47]) An irreducible polynomial over Fq of degree n remains irreducible over

Fqm if and only if gcd(m,n) = 1.

Lemma 3 ([1, 44, 53, 56]) Let p be a prime. Let l, n and s be positive integers such that s|pn − 1. Let

g(x) ∈ Fpn [x]. Then f(x) = xlg(x
pn−1

s ) is a PP over Fpn if and only if gcd(l, pn−1
s ) = 1 and xlg(x)

pn−1
s

is a permutation of µs, where µs is the set of s-th roots of unity in Fpn .

In the following we recall a lemma which considers the number of monic irreducible polynomials

satisfying a congruence equation. Let l(x) and u(x) be two polynomials in Fq[x], where gcd(l(x), u(x)) =

1. Let Φ(u) be the Euler function in Fq[x], i.e., Φ(u) is the size of the multiplicative group
(
Fq[x]/u(x)

)×
.

Denote by π(l, u, n) the number of monic irreducible polynomials of degree n in Fq[x] which are congruent

to l(x) modulo u(x), i.e.,

π(l, u, n) =
∣∣∣
{
f(x) = xn +

n−1∑

i=0

aix
i ∈ Fq[x] : f(x) is irreducible, f(x) ≡ l(x)(mod u(x))

}∣∣∣,

where |S| is the cardinality of a finite set S.

Lemma 4 ([47, Theorem 4.8]) Let l(x) and u(x) be two polynomials in Fq[x] and gcd(l(x), u(x)) = 1.

Then

π(l, u, n) =
1

Φ(u)

qn

n
+O

(
q

n
2

n

)
.
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Now we show the connection between Conjecture 1 and CPP exponents. Let α be a primitive

element of Fpn . The trace representation of a p-ary m-sequence {s(i)} is s(i) = Trn1 (α
i). Thus, the

cross-correlation function between {s(i)} and {s(di)} can be expressed by

Cd(t) =
pn−2∑

i=0

ξTr
n
1 (αi+t)−Trn1 (αdi) =

∑

x∈Fpn

ξTr
n
1 (γx+xd) − 1,

where γ = −αt.

Therefore, to prove Conjecture 1 is equivalent to prove that there exists γ ∈ F∗
pn such that

∑

x∈Fpn

ξTr
n
1 (x

d+γx) = 0.

From Lemma 1, if d is a CPP exponent over Fpn , then there exists γ ∈ F∗
pn such that for any α ∈ F∗

pn ,

∑
x∈Fpn

ξTr
n
1 (α(x

d+γx)) = 0, which implies that Conjecture 1 is true for d. As a result, a sufficient

condition for Conjecture 1 to be true is that d is a CPP exponent over Fpn . It can be easily seen that

if d ≡ 1 (mod p− 1), then d−1 ≡ 1 (mod p− 1). It is known that if d is a CPP exponent over Fpn , so is

d−1 [41, Theorem 2]. Thus we have the following lemma immediately.

Lemma 5 Conjecture 1 is true for any CPP exponent d ≡ 1 (mod p− 1) over Fpn .

3 A class of CPP exponents of the form d = l × pn−1
r+1 + 1

In this section, we consider a class of CPP exponents of the form d = l × pn−1
r+1 + 1. The following

notations will be used throughout the rest of the paper.

• p is a prime.

• r+1 is an odd prime such that r
2 is the least positive integer satisfying p

r
2 ≡ −1 (mod r+1) (i.e.,

p is a primitive element of Fr+1), and pr = k(r + 1) + 1.

• t is an odd integer (t > 2 if p = 2) with gcd(t, r) = 1.

• ω is a (r + 1)-th primitive root in Fpr , i.e., ω ∈ Fpr \ {1} and ωr+1 = 1.

Proposition 1 Let m be an integer and n = rtm. Let d = l × pn−1
r+1 + 1, where 1 ≤ l ≤ r. For any

a ∈ F∗
pt \ {−1}, suppose that (a+ ω)

prt−1
r+1 = ωi for some 0 ≤ i ≤ r. Then xd + ax is a PP over Fpn if

and only if gcd(ilm+ 1, r + 1) = 1.

6



Proof: Since gcd(r, t) = 1, then {t, 2t, 3t, · · · , (r − 1)t} (mod r) = {1, 2, 3, · · · , r − 1}, which implies

{pjt (mod pr − 1) | 0 ≤ j ≤ r − 1} = {pj | 0 ≤ j ≤ r − 1}.

Thus,

{pjt (mod r + 1) | 0 ≤ j ≤ r − 1} = {pj (mod r + 1) | 0 ≤ j ≤ r − 1} = {1, 2, · · · , r},

where the last equal sign holds due to p is a primitive element of Fr+1. It follows that

{ωpjt

| 0 ≤ j ≤ r − 1} = {ωj | 1 ≤ j ≤ r}.

From (a+ ω)
prt−1
r+1 = ωi, we have (ap

jt

+ ωpjt

)
prt−1
r+1 = ωi·pjt

. Since a ∈ Fpt , we have (a+ ωpjt

)
prt−1
r+1 =

ωi·pjt

. Let ωpjt

= ωs, then (a+ ωs)
prt−1
r+1 = ωis for 1 ≤ s ≤ r. Since (a+ 1) ∈ Fpt , one has

(a+ ω0)
prt−1
r+1 = (a+ 1)(p

t−1) 1+pt+···+p(r−1)t

r+1 = 1 = ω0,

where the second equal sign holds due to

1 + pt + · · ·+ p(r−1)t ≡ 1 + 2 + · · ·+ r (mod r + 1) ≡ (1 + r) · r
2
(mod r + 1) ≡ 0 (mod r + 1).

Thus, (a + ωs)
prt−1
r+1 = ωis for 0 ≤ s ≤ r. Replacing s with ls, we have (a + ωls)

prt−1
r+1 = ωils. As a

consequence,

(a+ ωls)
pn−1
r+1 = (a+ ωls)

prt−1
r+1 · pn−1

prt−1 = ω
ils· pn−1

prt−1 = ωilsm,

where the last equal sign holds due to ω ∈ Fpr .

From Lemma 3, to prove that xd + ax is a PP over Fpn is equivalent to prove that x(a+ xl)
pn−1
r+1 is

a permutation of µr+1 = {x |xr+1 = 1, x ∈ Fpn} = {ωj | 0 ≤ j ≤ r}.

From (a+ ωls)
pn−1
r+1 = ωilsm, we have ωs(a+ ωls)

pn−1
r+1 = ωilsm+s = ω(ilm+1)s. Then {ω(ilm+1)s | 0 ≤

s ≤ r} is a permutation of µr+1 if and only if gcd(ilm+ 1, r + 1) = 1. This completes the proof. !

Lemma 6 Let pr = k(r + 1) + 1. Then

(1) prt−1
r+1 ≡ kt (mod r + 1),

(2) (pt − 1)|p
rt−1
r+1 .
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Proof: (1)

prt − 1

r + 1
=

1

r + 1

[(
k(r + 1) + 1

)t − 1
]

=
1

r + 1

[
kt (r + 1)t +

(
t

1

)
kt−1 (r + 1)t−1 + · · ·+

(
t

t− 1

)
k (r + 1) + 1− 1

]

= kt(r + 1)t−1 + tkt−1(r + 2)t−2 + · · ·+ kt

≡ kt (mod r + 1).

(2) Note that gcd(t, r) = 1, which implies t is odd due to r is even. Thus,

gcd(p
r
2 + 1, pt − 1) =

{
1, if p = 2,

2, if p is an odd prime.

Remember that p
r
2 ≡ −1 (mod r+1), we have r+1|(p r

2 +1). By (p
r
2 +1)|(prt−1) and (pt−1)|(prt−1),

we have (pt − 1)(p
r
2 + 1) | prt − 1 if p = 2, and (pt − 1)p

r
2 +1
2 | prt − 1 if p is an odd prime. As a

consequence, (pt − 1) (p
r
2 +1)
r+1 | prt−1

r+1 if p = 2, and (pt − 1) (p
r
2 +1)

2(r+1) | prt−1
r+1 if p is an odd prime, which

implies pt − 1 | prt−1
r+1 . This completes the proof. !

Lemma 7 Let d = l × prtm−1
r+1 + 1. Then gcd(d, prtm − 1) = 1 if and only if gcd(ktml + 1, r + 1) = 1.

Proof: Recall that pr = k(r + 1) + 1. By Lemma 6, we have l × prtm−1
r+1 ≡ ktlm (mod r + 1), then

gcd(l × prtm−1
r+1 + 1, r + 1) = 1 if and only if gcd(ktml + 1, r + 1) = 1. Together with gcd(l × prtm−1

r+1 +

1, prtm−1
r+1 ) = 1, we have gcd(l × prtm−1

r+1 + 1, prtm − 1) = 1 if and only if gcd(ktml + 1, r + 1) = 1. !

Corollary 1 Let n = rtm, where r + 1|m. Let d = l × pn−1
r+1 + 1, where 1 ≤ l ≤ r. Then d is a CPP

exponent over Fpn .

Proof: We have that gcd(ktml+1, r+1) = 1. Thus, by Lemma 7, gcd(l× prtm−1
r+1 +1, prtm − 1) = 1.

On the other hand, we have gcd(ilm+ 1, r + 1) = 1 for any i and l. By Proposition 1, for each a ∈ F∗
pt

and a ̸= −1, xd + ax is a PP over Fpn . Then the conclusion follows. !

Corollary 2 Let n = rtm, where r + 1 ! m. For each a ∈ F∗
pt \ {−1}, there exists an 1 ≤ l ≤ r, such

that xd + ax is a PP over Fpn , where d = l × pn−1
r+1 + 1.

Proof: Recall that for each a ∈ F∗
pt \ {−1}, we have (a+ ω)

prt−1
r+1 = ωi for some 0 ≤ i ≤ r. Suppose

that for some 1 ≤ l′ ≤ r such that gcd(il′m+1, r+1) = r+1, then r+1|(il′m+1), which implies i ̸= 0.
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Since r+1 ! m, we have gcd(i(l′ +1)m+1, r+1) = 1. Then the conclusion follows from Proposition 1.

!
In the following, we will concentrate on the case gcd(r + 1,m) = 1. Let

Ci = {a ∈ F∗
pt\{−1} : (a+ ω)

prt−1
r+1 = ωi},

and Ni = |Ci| be the number of elements in Ci.

Proposition 2 Let n = rtm with gcd(r+ 1,m) = 1. Let d = l× pn−1
r+1 + 1, where 1 ≤ l ≤ r. Then d is

a CPP exponent over Fpn if both of the following conditions are satisfied:

(1) gcd(ktml + 1, r + 1) = 1;

(2) |C−(lm)−1 | < pt − 2.

Proof: If gcd(ktml + 1, r + 1) = 1, then gcd(l × prtm−1
r+1 + 1, prtm − 1) = 1 by Lemma 7. Since

gcd(r + 1,m) = 1, gcd(ilm + 1, r + 1) = r + 1 has a unique solution i ≡ −(lm)−1 (mod r + 1).

By Proposition 1, for a ∈ F∗
pt \ {−1}, xd + ax is a permutation polynomial of Fpn if and only if

a /∈ C−(lm)−1 . Thus, if |C−(lm)−1 | < pt − 2, then there exists a ∈ F∗
pt \ {−1} such that xd + ax is a

permutation polynomial of Fpn . This completes the proof. !

Remark 1 By Lemma 6, we have pt − 1|p
rt−1
r+1 , thus p− 1|p

n−1
r+1 , which implies that d = l× pn−1

r+1 +1 ≡

1 (mod p− 1). As a consequence, if d satisfies the conditions in Proposition 2, then Conjecture 1 is true

for d.

The following theorem is our main result.

Theorem 1 Suppose gcd(m, r + 1) = 1. There exists a constant T such that for each t ≥ T ,

d = l × prtm−1
r+1 + 1 is a CPP exponent over Fprtm if gcd(ktml + 1, r + 1) = 1.

To prove Theorem 1, according to Proposition 2, we need to show that |C−(lm)−1 | < pt−2 for t ≥ T .

Recall that pr = k(r + 1) + 1. We will first show in Lemma 9 that if ktml ̸≡ −2 (mod r + 1), then

|C−(lm)−1 | < pt − 2. Then we prove that if ktml ≡ −2 (mod r + 1), then |C−(lm)−1 | < pt − 2 for t ≥ T

in Lemmas 10-12.

Lemma 8 Recall that Ci = {a ∈ F∗
pt\{−1} : (a + ω)

prt−1
r+1 = ωi}. Then |Ci| = |Ckt−i|, where k is an

integer such that pr = k(r + 1) + 1.
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Proof: If a ∈ Ci, then (a+ ω)
prt−1
r+1 = ωi. Consider

(a−1 + ω−1)
prt−1
r+1 =

(a+ ω

aω

) prt−1
r+1 =

ωi

(aω)
prt−1
r+1

.

By Lemma 6, we have a
prt−1
r+1 = 1 and ω

prt−1
r+1 = ωkt. Therefore from the above equation, we get

(a−1 + ω−1)
prt−1
r+1 = ωi−kt.

Taking the p
r
2 -th power on both sides of the above equation, we have

(a−p
r
2 + ω−p

r
2 )

prt−1
r+1 = ω(i−kt)p

r
2 .

Remember that ωp
r
2 = ω−1, thus we have

(a−p
r
2 + ω)

prt−1
r+1 = ωkt−i,

thus, a−p
r
2 ∈ Ckt−i.

Since f(x) = x−p
r
2 is a permutation of F∗

pt\{−1}, thus for a1 ∈ Ci and a2 ∈ Ci with a1 ̸= a2, we have

a−p
r
2

1 ∈ Ckt−i, a−p
r
2

2 ∈ Ckt−i, and a
−p

r
2

1 ̸= a−p
r
2

2 .

This completes the proof. !

Lemma 9 Let gcd(r+ 1,m) = 1. Suppose that pr = k(r+ 1) + 1. Then |C−(lm)−1 | < pt − 2 if one of

the following conditions is satisfied:

(1) gcd(kt, r + 1) = r + 1,

(2) gcd(kt, r + 1) = 1, −(lm)−1 ̸≡ kt+ (lm)−1 (mod r + 1) (or ktml ̸≡ −2 (mod r + 1)).

Proof: (1) Suppose gcd(r + 1, kt) = r + 1, i.e. r + 1|kt. From Lemma 8, we have

|Ci| = |Ckt−i| = |Cr+1−i|,

then |C−(lm)−1 | = |Cr+1−(lm)−1 | = |C(lm)−1 | < pt − 2 due to Cr+1−(lm)−1

⋂
C(lm)−1 = ∅.

(2) Suppose gcd(r+1, kt) = 1 and ktml ̸≡ r− 1 (mod r+1). Then ktml ̸≡ −2 (mod r+1), which

implies

−(lm)−1 ̸≡ kt+ (lm)−1 (mod r + 1).

Thus the result follows from |C−(lm)−1 | = |Ckt+(lm)−1 | and C−(lm)−1

⋂
Ckt+(lm)−1 = ∅. !

By Proposition 2 and Lemma 9, we have
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Proposition 3 Suppose that ktml ̸≡ − 2 (mod r + 1) and ktml ̸≡ − 1 (mod r + 1). Then d = l ×
prtm−1
r+1 + 1 is a CPP exponent over Fprtm .

Proof: Suppose that gcd(m, r+1) = 1. By Lemma 9, if ktml ̸≡ − 2 (mod r+1), then |C−(lm)−1 | <

pt − 2. Together with ktml ̸≡ − 1 (mod r + 1), both conditions in Proposition 2 are satisfied, thus

d = l × prtm−1
r+1 + 1 is a CPP exponent over Fprtm .

Suppose that gcd(r + 1,m) = r + 1. Corollary 1 shows that d = l × prtm−1
r+1 + 1 is a CPP exponent

over Fprtm . This completes the proof. !
Now let us consider the case ktml ≡ −2 (mod r + 1). The following lemma which considers the

number of monic irreducible polynomials satisfying a congruence equation will be used in the sequel.

Lemma 10 There exists a constant T such that for each odd prime t ≥ T , there are some monic

irreducible polynomials f(z) over Fp with degree t such that f( z ) ̸≡ z2
−1th( z ) (mod zr+1 − 1) for

any h( z ) satisfying hk( z ) ≡ 1 (mod zr+1 − 1).

Proof: see Appendix A. !
Using Lemma 6 and Lemma 10, we have the following lemma.

Lemma 11 There exists a constant T such that for each odd prime t ≥ T , |C−(lm)−1 | < pt − 2 if

gcd(t, r) = 1 and ktlm ≡ −2 (mod r + 1).

Proof: see Appendix B. !

Lemma 12 Suppose that t′ = ts, where s is a positive integer. If |C−(lm)−1 | < pt−2, then |C ′
−(lm)−1 |<

pt
′ − 2, where

C ′
−(lm)−1 = {a ∈ F∗

pt′ \{−1}|(a+ ω)
prt

′
−1

r+1 = ω−(lm)−1

}

and

C−(lm)−1 = {a ∈ F∗
pt\{−1}|(a+ ω)

prt−1
r+1 = ω−(lm)−1

}.

Proof: See Appendix C. !
Proof of Theorem 1: Let gcd(r + 1,m) = 1 and t ≥ T be an odd integer, where T is a fixed

positive integer for each r. By Proposition 2, to complete the proof of Theorem 1, it is enough to show

that for t ≥ T , |C−(lm)−1 | < pt − 2. If ktml ̸≡ − 2 (mod r+1), by Lemma 9, |C−(lm)−1 | < pt − 2. For

the case ktml ≡ −2 (mod r + 1), Lemma 11 and Lemma 12 show that |C−(lm)−1 | < pt − 2 for t ≥ T .

!
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In the following we consider a special case r = 2 of Theorem 1, i.e., r = 2 and p ≡ −1 (mod 3). We

will show that if r = 2, then for any integer m and odd integer t (t ≥ 3 if p = 2), d = p2tm−1
3 + 1 is a

CPP exponent over Fp2tm if and only if ptm ≡ ±1,±2 (mod 9); d = 2 · p2tm−1
3 + 1 is a CPP exponent

over Fp2tm if and only if ptm ≡ ±1,±4 (mod 9).

Lemma 13 Let p be a prime such that p ≡ −1 (mod 3). Let t be an odd integer (t > 1 if p = 2) and

r = 2. Then for each 1 ≤ i ≤ 2, |Ci| > 0.

Proof: Recall that ω ∈ Fpr\{1} and ωr+1 = 1. Let r = 2 and p ≡ −1 (mod 3). Since t is odd, then

every element u ∈ Fp2t can be represented uniquely as u = u0 + u1ω, where ui ∈ Fpt .

For any 0 ≤ i ≤ 2, there are p2t−1
3 elements u0 + u1ω ∈ Fp2t such that (u0 + u1ω)

p2t−1
3 = ωi.

Case 1: let p > 5, or p = 5, t ≥ 3, or p = 2, t ≥ 5. If (−1 + ω)
p2t−1

3 = ωi, then we have

(−1× u0 + u0ω)
p2t−1

3 = ωi

for any u0 ∈ F∗
pt due to u

p2t−1
3

0 = 1. Similarly, if (0 + ω)
p2t−1

3 = ωi, then we have

(0 + u0ω)
p2t−1

3 = ωi

for any u0 ∈ F∗
pt . Suppose that p > 5, or p = 5, t ≥ 3, or p = 2, t ≥ 5. Then 3(pt−1) < p2t−1

3 . This means

that for any 0 ≤ i ≤ 2, there exist elements u0+u1ω ∈ F∗
p2t \{0+u0ω,−u0+u0ω, u0+0×ω : u0 ∈ F∗

pt}

such that (u0 + u1ω)
p2t−1

3 = ωi, i.e., (u−1
1 u0 + ω)

p2t−1
3 = ωi, where u−1

1 u0 ̸= 0,−1. Thus, |Ci| > 0 for

0 ≤ i ≤ 2.

Case 2: let t = 1 and p = 5. Note that (0 + ω)
52−1

3 = ω8 = ω2, (−1 + ω)
52−1

3 = (−1 + ω)8 = ω, and

u
52−1

3
0 = 1. Since p−1 < p2−1

3 , then there exists an element a ∈ F∗
pt \{−1} such that (a+ω)

p2t−1
3 = ωi,

where 0 ≤ i ≤ 2, i.e., |Ci| > 0 for 0 ≤ i ≤ 2.

Case 3: let t = 3 and p = 2. It can be checked that C1 = {α,α2,α4} and C2 = {α3,α5,α6}, where
α is a primitive element of F23 . !

By Lemma 13 and Proposition 1, we have the following corollaries.

Corollary 3 Let p be a prime such that p ≡ −1 (mod 3). Let n = 2tm, where m is an integer, and t is

an odd integer with t ≥ 3 if p = 2. Let d = l× pn−1
3 +1. Then there exists a ∈ F∗

pt such that xd + ax is

a PP over Fpn . Thus, d = l × pn−1
3 + 1 is a CPP exponent over Fpn if ktml ̸≡ −1 (mod 3).

12



Corollary 4 Let p be an odd prime such that p ≡ −1 (mod 3). Let n = 2m, where m can be any integer.

Then l × pn−1
3 + 1 is a CPP exponent over Fp2m if pm ≡ ±1 (mod 9). Moreover, p2m−1

3 + 1 is a CPP

exponent over Fp2m if and only if pm ≡ ±1,±2 (mod 9), and 2 × p2m−1
3 + 1 is a CPP exponent over

Fp2m if and only if pm ≡ ±1,±4 (mod 9).

Proof: Since p ≡ −1 (mod 3), we get gcd(p
2m−1
3 +1, p2m−1) = 1 if and only if pm ≡ ±1,±2 (mod 9),

and gcd(2 · p2m−1
3 + 1, p2m − 1) = 1 if and only if pm ≡ ±1,±4 (mod 9). In the following we show that

xl× pn−1
3 +1 + ax is a PP over Fpn for a = p+1

2 .

Let a = p+1
2 . By Lemma 3, xl× pn−1

3 +1 + ax is a PP over Fpn if and only if x(xl + a)
pn−1

3 permutes

{1,ω,ω2}. Since p ≡ −1 (mod 3), we have

(a+ ω)
p2−1

3 = (a+ ω)(p−1) p+1
3 = (

a+ ωp

a+ ω
)

p+1
3 = (

a+ ω2

a+ ω
)

p+1
3 = (

a− 1− ω

a+ ω
)

p+1
3

= (
(p− 1)/2− ω

−((p− 1)/2− ω)
)

p+1
3 = 1,

where the last equal sign holds due to p+1
3 is even. Similarly, it can be shown that (a + ω2)

p2−1
3 = 1

and (a+ 1)
p2−1

3 = 1. Thus,

(a+ ω)
pn−1

3 = ((a+ ω)
p2−1

3 )
pn−1

p2−1 = 1,

(a+ ω2)
pn−1

3 = 1, and (a+ 1)
pn−1

3 = 1.

Therefore, for l = 1, 2, (xl + a)
pn−1

3 = 1 if x ∈ {1,ω,ω2}, as a consequence, x(xl + a)
pn−1

3 permutes

{1,ω,ω2}. Thus, xl× pn−1
3 +1 + p+1

2 x is a PP over Fpn for any odd prime p ≡ −1 (mod 3) and even n. !

Remark 2 Corollary 4 gives a new class of CPP exponents, and the following CPP exponents over

Fpn are some examples of Corollary 4, which can be explained for the first time:

(1) p = 11, n = 4, d = 2× 114−1
3 + 1 = 9761;

(2) p = 5, n = 4, d = 1× 54−1
3 + 1 = 209; and

(3) p = 11, n = 2, d = 1× 112−1
3 + 1 = 41.

By Corollary 1 and Theorem 1, the following theorem can be obtained immediately.

Theorem 2 There exists a constant T such that for each t ≥ T , d = l× prtm−1
r+1 +1 is a CPP exponent

over Fprtm if ktml ̸≡ −1 (mod r + 1).
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Theorem 2 shows that if ktml ̸≡ −1 (mod r + 1), then Conjecture 1 is true for d = l × prtm−1
r+1 + 1,

where t ≥ T .

Let m be odd in Theorem 2. Then p
r
2 tm ≡ −1 (mod r + 1) by p

r
2 ≡ −1 (mod r + 1). Therefore,

d = l × prtm−1
r+1 + 1 = l × p

r
2
tm+1
r+1 (p

r
2 tm − 1) + 1 is an Niho-type exponent. It was shown in [52]

that if gcd(l · p
r
2
tm+1
r+1 − 1, p

r
2 tm + 1) = 1, then d is a CPP exponent over Fpn . Thus, Theorem 2

gives a new class of CPP exponents of Niho type if gcd(l · p
r
2
tm+1
r+1 − 1, p

r
2 tm + 1) ̸= 1. Similar as

in Lemma 6, let p
r
2 = k′(r + 1) − 1, it can be shown that gcd(l · p

r
2
tm+1
r+1 − 1, p

r
2 tm + 1) ̸= 1 if and

only if gcd(k′tml − 1, r + 1) = r + 1. From pr = 1 + k(r + 1) = (k′(r + 1) − 1)2 = (p
r
2 )2, we have

k = (k′(r+1)−1)2−1
r+1 = k′2(r + 1)− 2k′. By ktml = (k′2(r + 1)− 2k′)tml ≡ −2k′tml (mod r + 1), it can

be shown that gcd(k′tml − 1, r + 1) = r + 1 if and only if ktml ≡ −2 (mod r + 1). As a result, if m is

odd, Theorem 2 gives a new class of CPP exponents of Niho type if ktml ≡ −2 (mod r + 1).

Let m be even in Theorem 2, then p
r
2 tm ≡ 1 (mod r + 1). Therefore, d = l × prtm−1

r+1 + 1 =

l × p
r
2
tm−1
r+1 (p

r
2 tm + 1) + 1 is not of Niho-type. As a result, Theorem 2 gives a new class of CPP

exponents which are not of Niho type, and thus confirms Conjecture 1 for a new class of decimations.

Example 1 Let p = 5, r = 2, and t = 1. Then d = l× 52m−1
3 + 1. From pr = (r + 1)× k + 1, one gets

k = 8. If m is odd and ktml = 8ml ≡ −2 (mod 3), i.e., ml ≡ −1 (mod 3), then d = l× 52m−1
3 + 1 is a

new CPP exponent of Niho type. Thus, we get d1 = 52m−1
3 + 1 is a new CPP exponent of Niho type if

m ≡ 5 (mod 6), and d2 = 2× 52m−1
3 + 1 is a new CPP exponent of Niho type if m ≡ 1 (mod 6).

If m is even and ktml = 8ml ̸≡ − 1 (mod 3), i.e., ml ̸≡ 1 (mod 3), then d = l× 52m−1
3 + 1 is a new

CPP exponent which is not of Niho type. Thus, we get d1 = 52m−1
3 + 1 is a new CPP exponent which

is not of Niho type if m ≡ 0, 2 (mod 6), and d2 = 2 × 52m−1
3 + 1 is a new CPP exponent which is not

of Niho type if m ≡ 0, 4 (mod 6).

Example 2 Let p = 3 and r = 4. Then d = l× 34tm−1
5 +1. From pr = (r+1)×k+1, one gets k = 16.

Let m be even and t = 1. By Proposition 3, if ktml = 16ml ̸≡ − 1 (mod 5) and ktml = 16ml ̸≡ − 2

(mod 5), i.e., ml ̸≡ −1 (mod 5) and ml ̸≡ −2 (mod 5), then d = l× 34m−1
5 +1 is a new CPP exponent

which is not of Niho type. Thus, d1 = 34m−1
5 + 1 is a new CPP exponent if m ≡ 2, 6 (mod 10)1,

d2 = 2 · 34m−1
5 + 1 is a new CPP exponent if m ≡ 6, 8 (mod 10), d3 = 3 · 34m−1

5 + 1 is a new CPP

1Let m = 2, then the CPP exponent d1 = 38−1
5 + 1 = 1313 over F38 can now be explained for the first time.

14



exponent if m ≡ 2, 4 (mod 10)2, and d4 = 4 · 34m−1
5 + 1 is a new CPP exponent if m ≡ 4, 8 (mod 10).

Let m be odd and ktml = 16tml ≡ −2 (mod 5), i.e., tml ≡ −2 (mod 5), where t ≥ 3 is an odd

integer. Then d = l × 34tm−1
5 + 1 is a new CPP exponent of Niho type.

4 Conclusion

In this paper, we confirmed Conjecture 1 for a new class of decimations by constructing a new class

of CPP exponents d with d ≡ 1(mod p−1). We summarized some known results on CPP exponents over

finite fields, and discussed the connection between Conjecture 1 and CPP exponents. Suppose that r+1

is an odd prime such that p
r
2 ≡ −1 (mod r+1) and t is an integer such that gcd(r, t) = 1. We analyzed

a class of exponents of the form d = l × prtm−1
r+1 + 1 and proved that d is a CPP exponent over Fprtm

for sufficiently large t. Since d ≡ 1(mod p− 1), we confirm Conjecture 1 for a new class of decimations.

Note that Carlitz and Wells [9, 10] proved that x
q−1
m +1+ax is a PP of Fq for any m|q−1 and sufficiently

large q. However, the method we used to show the CPP property of d = l× prtm−1
r+1 +1 is quite different

from all the previous ones. Specially, we transferred the problem of determining whether d is a CPP

exponent into investigating the existence of irreducible polynomials satisfying a congruence equation,

which may be of independent interest. Moreover, in Proposition 3, for the case ktml ̸≡ − 2 (mod r+1),

we proved that d = l× prtm−1
r+1 + 1 is a CPP exponent over Fprtm without the condition t is sufficiently

large. At the end of this paper, we propose a conjecture based on computer experiments. Recall that

Ci = {a ∈ F∗
pt\{−1} : (a+ ω)

prt−1
r+1 = ωi}. In Tables 3 and 4, we lists the number of elements in Ci for

some p and r. Computer experiments indicate the following conjecture.

Conjecture 2 Let t be an odd prime such that gcd(t, r) = 1 and ktlm ≡ −2 (mod r + 1). Then

|C−(lm)−1 | < pt − 2.

According to Lemma 9 and Lemma 12, if the above conjecture is true, then |C−(lm)−1 | < pt − 2 for

all t ̸= 1 such that gcd(t, r) = 1. By the proof of Lemma 11, Conjecture 2 is equivalent to the following

conjecture.

Conjecture 3 Let t be an odd prime such that gcd(t, r) = 1 and ktlm ≡ −2 (mod r + 1). Then for

any h(z) such that hk(z) ≡ 1 (mod zr+1 − 1), there exists irreducible polynomials f(z) over Fp with

degree t such that f(z) ̸≡ z2
−1th(z) (mod zr+1 − 1).

2Let m = 2, then the CPP exponent d3 = 3 · 38−1
5 + 1 = 3937 over F38 can now be explained for the first time.
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Table 3: Number of elements in Ci for p = 2 and r = 4

t N0 N1 N2 N3 N4

3 3 0 0 0 3

5 0 10 5 5 10

7 21 21 21 42 21

9 111 72 111 108 108

11 385 429 429 385 418

13 1573 1677 1690 1677 1573

15 6486 6560 6580 6580 6560

17 26452 26452 26010 26146 26010

19 105412 104842 105412 104310 104310

21 418575 419580 419580 418575 420840

Table 4: Number of elements in Ci for p = 3 and r = 4

t N0 N1 N2 N3 N4

1 0 0 0 1 0

3 6 6 6 6 1

5 41 60 40 40 60

7 420 421 420 462 462

9 3894 3876 4141 3876 3894

11 35684 35684 35332 35113 35332

Appendix A: proof of Lemma 10

Proof: Since hk(z) ≡ 1 (mod zr+1 − 1), then gcd(hk(z), zr+1 − 1) = gcd(h(z), zr+1 − 1) = 1. Ac-

cording to Lemma 4, for any h(z) satisfying hk(z) ≡ 1 (mod zr+1−1), the number of monic irreducible

polynomials f(z) over Fp with degree t such that f(z) ≡ z2
−1th(z) (mod zr+1 − 1) is

1

Φ(zr+1 − 1)

pt

t
+O

(
p

t
2

t

)
.

Note that one root of the polynomial 1 + z + z2 + · · · + zr is w with wr+1 = 1, and the minimal

polynomial of ω is 1+ z+ z2+ · · ·+ zr, thus 1+ z+ z2+ · · ·+ zr is irreducible over Fp. It is known that

Fp[z]/(z
r+1 − 1) ∼= Fp[z]/(z − 1)⊕ Fp[z]/(1 + z + z2 + · · ·+ zr),

where ⊕ is the direct sum. Since Fp[z]/(1 + z + z2 + · · ·+ zr) ∼= Fpr , we have

Fp[z]/(z − 1)⊕ Fp[z]/(1 + z + z2 + · · ·+ zr) ∼= Fp ⊕ Fpr .
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As a consequence, Fp[z]/(zr+1 − 1) is isomorphic to Fp ⊕ Fpr . Thus, h(z) (mod zr+1 − 1) can be

represented by a polynomial pair

(
h(1), h(z)

(
mod

zr − 1

z − 1

))
= (h(1), h(ω)),

where hk(ω) = 1, i.e., h(ω) ∈ R = {ω |ωk = 1, ω ∈ Fpr}. Thus, the number of polynomials h(z) such

that hk(z) ≡ 1 (mod 2r+1 − 1) is |R| = k.

On the other hand, Φ(1 + z + z2 + · · ·+ zr) = pr due to 1 + z + z2 + · · ·+ zr is irreducible over Fp.

Thus, Φ(zr+1 − 1) = Φ(z − 1)Φ(1 + z + z2 + · · · + zr) = pr. As a consequence, the number of monic

irreducible polynomials f(z) over Fp with degree t such that f(z) ≡ z2
−1th(z) (mod zr+1 − 1) for any

h(z) satisfying hk(z) ≡ 1 (mod 2r+1 − 1) is

k

Φ(zr+1 − 1)

pt

t
+O

(
p

t
2

t

)
=

k

pr
· p

t

t
+O

(
p

t
2

t

)

=
k

k(r + 1) + 1

pt

t
+O

(
p

t
2

t

)

≈ 1

r + 1

pt

t
.

It is known that the number of irreducible polynomials over Fp with degree t (t is prime) is 1
t (p

t−p)

[37, Theorem 3.25]. Therefore, we can always find a sufficiently large integer T for each r such that

1
t (p

t − p) > k
k(r+1)+1

pt

t +O

(
p

t
2

t

)
if t > T . Thus we complete the proof. !

Appendix B: proof of Lemma 11

Proof: Suppose α ∈ Fpt \ Fp. Define

f(z) =
t−1∏

λ=0

(αpλ

+ z) ∈ Fp[z].

It is well known that f(z) is the minimal polynomial of −α ∈ Fpt\Fp in Fp, and f(z) is irreducible

over Fp with degree t. Recall that ω ∈ Fpr\{1} and ωr+1 = 1. Let z = ω, we have

f(ω) =
t−1∏

λ=0

(αpλ

+ ω) =
t−1∏

λ=0

(αprλ

+ ω) =
t−1∏

λ=0

(α+ ω)(p
r)λ

= (α+ ω)1+pr+p2r+···+p(t−1)r

= (α+ ω)
prt−1
pr−1 ,
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where the second equation is due to {r, 2r, 3r, · · · , (t−1)r} (mod t) = {1, 2, 3, · · · , t−1} by gcd(r, t) = 1.

Remember pr = k(r + 1) + 1, thus if α ∈ Cj = {a ∈ F∗
pt\{−1} | (a + ω)

prt−1
r+1 = ωj}, then

f(ω)k = (α+ω)
prt−1
r+1 = ωj . Since f(z) ∈ Fp[z], we have f(ωpi

)k = f(ω)p
i·k = ωpi·j . Then f(ωi)k = ωij

for i ∈ {1, 2, · · · , r} due to {pi (mod r + 1), 0 ≤ i ≤ r − 1} = {1, 2, · · · , r}. By Lemma 6, we have

pt − 1|p
rt−1
r+1 , then f(1)k = (α+ 1)

prt−1
r+1 = 1. Therefore we have f(ωi)k = ωij for i ∈ Zr+1.

Consider fk(z) = (zr+1 − 1)g(z) + r(z), then the degree of g(z) is deg
(
g(z)

)
= kt − (r + 1),

and deg(r(z)) ≤ r. For i ∈ Zr+1, r(ωi) = fk(ωi) = ωij . Thus, r(z) = zj since deg(r(z)) ≤ r. As a

consequence, fk(z) ≡ zj (mod zr+1−1), which is equivalent to f(z) ≡ zk
−1jh(z) (mod zr+1−1), where

hk(z) ≡ 1 (mod zr+1 − 1). Now we have shown that if α ∈ Cj , then f(z) ≡ zk
−1jh(z) (mod zr+1 − 1)

for some h(z) satisfying hk(z) ≡ 1 (mod zr+1 − 1).

Let j = −(lm)−1. Since ktlm ≡ −2 (mod r + 1), thus k−1j = −(klm)−1 ≡ 2−1t (mod r + 1).

By Lemma 10, if t ≥ T , then for any h( z ) such that hk( z ) ≡ 1 (mod zr+1 − 1), there exists an

irreducible polynomial f ′(z) over Fp with degree t such that f ′( z ) ̸≡ z2
−1th( z ) (mod zr+1 − 1). Let

α′ be a root of f ′(z). Then α′ ∈ F∗
pt \ {−1}, but α′ /∈ Cj = C−(lm)−1 . Thus, |C−(lm)−1 | < pt − 2. !

Appendix C: proof of Lemma 12

Proof: If |C−(lm)−1 | < pt − 2, then there exists j ∈ Zr+1 with j ̸≡ −(lm)−1 (mod r + 1) such that

|Cj | = |Ckt−j | > 0. Thus, there exist a, b ∈ F∗
pt\{−1} such that (a+ ω)

prt−1
r+1 = ωj and (b+ ω)

prt−1
r+1 =

ωkt−j . As a consequence,

(a+ ω)
prt

′
−1

r+1 = (a+ ω)
prt−1
r+1

prt
′
−1

prt−1 = (ωj)
prt

′
−1

prt−1 = ωjs,

and

(b+ ω)
prt

′
−1

r+1 = (b+ ω)
prt−1
r+1

prt
′
−1

prt−1 = (ωkt−j)
prt

′
−1

prt−1 = ω(kt−j)s,

i.e., a ∈ C ′
js and b ∈ C ′

kt′−js. Therefore, |C ′
js| > 0 and |C ′

kt′−js| > 0.

Since j ̸≡ −(lm)−1 (mod r + 1) and −(lm)−1 ≡ kt + (lm)−1 (mod r + 1), we have j ̸≡ kt − j

(mod r + 1), then js ̸≡ kt′ − js (mod r + 1)3, that is C ′
js ∩ C ′

kt′−js = ∅, together with |C ′
js| > 0

and |C ′
kt′−js| > 0, we obtain 0 < |C ′

js| < pt
′ − 2 and 0 < |C ′

kt′−js| < pt
′ − 2. Then it follows that

|C ′
−(lm)−1 | < pt

′ − 2. !
3Here we assume that gcd(s, r + 1) = 1, since if gcd(s, r + 1) = r + 1, then gcd(kt′, r + 1) = gcd(kts, r + 1) = r + 1.

By (1) in Lemma 9, |C′
−(lm)−1 | < pt

′ − 2.
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