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Abstract

The origins of contemporary mathematical hydrodynamics can be traced back to the 18th century. In 1757,
Euler published a paper where he introduced equations that could describe the motion of fluids [31], known
today as the Euler equations. Other notable figures such as Lagrange, Laplace, Poisson, and Cauchy around
this time were also drawn to the study of waves in fluids, which continues to be an active field of research to
this day (see [21] for a historical review). However, the Euler equations contain several difficulties related to
the complexity of the system, both analytically and in applications. To overcome some of these issues, one
typically considers simplified models characterized by dimensionless parameters that describe the main
mechanisms involved.

In this work, we rigorously derive asymptotic models from the irrotational Euler equations with a
free surface. Specifically, we derive several new models and prove that their solutions converge to the
solution of its reference model with respect to the scaling parameters. We say that an asymptotic model is
a fully justified if we can answer the following points in the affirmative:

1. The solutions of the reference model exist on the relevant time scale.
2. The solutions of the asymptotic model exist (at least) on the same time scale.

3. We must establish the consistency between the asymptotic model and the reference model. This means
the solutions of the reference model solve the asymptotic model up to a certain precision. Then show
that the error is “small” when comparing the two solutions.

This thesis consists of two main parts. The first part consists of three papers and concerns the study
of asymptotic models in the case of a single fluid in shallow water. In papers 1 and 2, we study Whitham-
type systems that were previously derived in the sense of consistency by Emerald [27]. The reference
model, in this case, is the water waves equations, where the first point is proved in the seminal paper by
Alvarez-Samaniego and Lannes [7]. The remaining point in their full justification is to prove the well-
posedness of these systems on the relevant time scale. In paper 3, we derive new models, in the sense
of consistency, with an improved description of the variation of the bottom toporgaphy. Here, we derive
models with improved frequency dispersion, where the goal is to describe waves passing over an obstacle
that is studied experimentally in the classical paper by Dingemans [23].

For the second part of the thesis, we prove the full justification of the Benjamin-Ono equation as
an asymptotic model for the unidirectional propagation of long internal water waves in a two-layer fluid,
where one layer is of great depth. In this case, the second point is well-known, while the first and third point
is proved in paper 4. The proof of the consistency is based on the paper by Bona, Lannes, and Saut [14].
While the existence result for the general two-layer fluid model on the relevant time scale is a nontrivial
extension of the work of Lannes [40], where both fluids are of finite depth.
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Sammendrag

Opprinnelsen til moderne matematisk hydrodynamikk kan spores tilbake til 1700-tallet. I 1757 publiserte
Euler artikkelen der han introduserte ligninger, i dag kjent som Euler likningene, som kan beskrive veeske-
dynamikk [31]. Hvordan beskrive belger i vaesker ble ogsa studert av Lagrange, Laplace, Poisson, Cauchy
og det er fortsatt et aktivt forskningsfelt i dag (for en historisk gjennomgang se [21]). Men fra et praktisk
og analytisk perspektiv, er Euler ligningene veldig kompliserte. Det er derfor vanlig a introdusere foren-
klede modeller, som er karakterisert av dimensjonslase parametre og som gir en god beskrivelse av den
opprinnelige modellen.

I dette arbeidet, utleder vi asymptotiske modeller fra Euler likningene med en fri overflate og for
irroterende flyt. Mer spesifikt, sa utleder vi flere modeller, hvor vi kvantifiserer feilen med den opprinnelige
modellen. Altsa, vi beviser at losningene fra modellen konvergerer til losningen av referansemodellen med
hensyn pa noen dimensjonslase parametre. Vi sier at en modell fullstendig rettferdiggjort dersom vi kan
svare pa folgende punkter:

1. Lesningen av referanse modellen eksisterer pa den relevante tidsskalaen.
2. Losningen av den asymptotiske modellen eksisterer (minst) pa den samme tidsskalaen.

3. Sist ma vi vise at modellene er konsistente. Altsa at lgsningen av referansemodellen er ogsa en
lgsning av den asymptotiske modellen opp til gitt toleranse. Deretter ma vi vise at differansen mellom
disse lgsningene er “liten.”

Denne oppgaven bestar hovedsakelig i to deler. Den forste delen bestar av tre artikler som angar utled-
ningen av asymptotiske modeller for a beskrive en enkel vaeske i grunt vann. I artikkel 1 og 2, studerer vi
sakalte Whitham-type modeller som ble tidligere utledet av Emerald [27] hvor han viste at ligningene var
konsistente. I dette tilfellet er referansemodellen kjent som vannbgige ligningene, hvor punkt en er bevisst
i den viktige artikkelen av Alvarez-Samaniego og Lannes [7]. Dermed, for a fullstendig rettferdiggjore
Whitham-modellene, gjenstar det bare a vise at de eksisterer pa den relevante tidsskalaen. I artikkel 3,
utleder vi nye modeller, der vi viser at de er konsistente med vannbeglge likningene, og hvor presisjonen
gir en bedre beskrivelse av endringen av bunnen. Modellene har ogsa en forbedret beskrivelse av disper-
sjonsforholdet til referansemodellen, og malet er a beskrive belger som beveger seg over en bunn med brae
endringer. Dette er motivert av de eksperimentelle resultatene i den klassiske artikkelen til Dingemans [23].

I'den andre delen av avhandlingen gir vi et bevis for den fullstendige rettferdiggjerelsen av Benjamin-
Ono likningen. Dette er en asymptotisk modell som beskriver lange belger som beveger seg i en retning
mellom to fluider. Her er dybden for til den ene veesken mye dypere enn den andre. I dette tilfellet er
punkt nummer to velkjent, mens det forste og tredje punktet er bevist i artikkel 4 av denne avhandlingen.
Beviset for at modellene er konsistente er basert pa artikkelen til Bona, Lannes, og Saut [14]. Mens eksistens
resultatet for det generelle systemet for to veesker pa den relevante tidsskalaen er en ikke triviell forlengelse
av resultatet til Lannes [40] hvor begge fluidene har en endelig dybde.
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Index of notations

.

For the defintion of ¢, p, 3,7, bo see equation (1.1.16).

We let ¢ denote a positive constant independent of the small parameters p, €, 5, and bo that may
change from line to line. Also, as a shorthand, we use the notation a < b to mean a < cb.

Let k € N,1 € Nand m € N. A function R is said to be of order O(pi*<'), denoted R = O(p*e!),
if divided by p*e! this function is uniformly bounded with respect to p,e € (0,1) in the Sobolev
norms | - | s.

We define the gradient by V. , = (9;,0,)T and the Laplace operator by A, , = 92 + 92. We also
and introduce their scaled versions

Vi = (VA0 0:)" and A, =V, Vi, = pd}+ 02

Let the normal derivative be given by 0nf =ny -V, wheren; = \/ﬁ (78190]6)

Let L?(R) be the usual space of square integrable functions with norm |f[z2 = /[ |f(z)[? dz.

Also, for any f,g € L?(R) we denote the scalar product by (f, g) 12 = Jp fx)g(x) dz.

Let f : R — R be a tempered distribution, let for F f be its Fourier transform. Let ' : R — R be a
bounded function. Then the Fourier multiplier associated with F'(§) is denoted F and defined by the
formula:

F(F(D)f(2))(€) = F(£)£(©).

For any s € R we call the multiplier \BP\f(@ = |£|° f(&) the Riesz potential of order —s.
For any s € R we call the multiplier AS = (1 + D?2)% = (D)* the Bessel potential of order —s.
The Sobolev space H*(R) is equivalent to the weighted L?—space with | f|zs = |A®f|2.

Let H,iﬁ)(]R) = H*t1(R) with norm

s = (1= )l + b0~ Dy
Let H®(U) be given in terms of 9% f € L2(U) for all @ € N where § = 9, if U = R. In the case
U C R?, then we let O be either 9, or 9,.

For any s > 0 we will denote Ho+3 (R) the homogeneous Sobolev space with |f\gs+% = ‘D%f|Ho’.

One should note that |D| = 9, where ﬁ?(é ) = —isgn(§) f(€) is the Hilbert transform.

For any s > 0 we will denote F/*t!(R) the Beppo-Levi space with | flppser = |A°0z f| 2.



Index of notations

cstl .
« For any s > 0 we will denote HZ+2(]R) = H""Jr%(R) with |f|H5+% = |Bf|;2 and where B is a
"

Fourier multiplier defined in frequency by:

1€l 7
F(Bf)E) = rf(£)-
B (1+/mlgl)> ©

« We say f is a Schwartz function .’ (R), if f € C*°(R) and satisfies for all j, k € N,

sup |[279F f| < oc.
x

« Let a < b be real numbers and consider the domain S = (a,b) x R. Then the space H*t1(S) is
endowed with the seminorm

b
1 3eiris) = | IVaefCo2)e de.
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Chapter 1

Introduction

1.1 The governing equations

We start this chapter with a brief description of the governing equations that will serve as a basis for
the thesis. The presentation is inspired by the book of David Lannes [41], and we also refer the reader
to [3,24,36] for their excellent presentation of the subject. Moreover, we will angle the presentation towards
the main results of the thesis. In particular, the focus will be on specific results in water wave theory to
motivate the scientific result of the thesis, [29,30,44,45], presented in Chapter 2. For simplicity, we restrict
the presentation to having one horizontal dimension and we shall only make formal computations in this
section where we suppose the functions are regular and decay sufficiently fast at infinity!.

The reference model is given in terms of two free surface incompressible Euler equations given on
the upper-fluid domain:

Q" ={(z,2) €R? : 2>},

and the lower fluid domain:
O ={(z,2) eR? : —H+b<z<(}

Here ( = ((z,t) € R denotes the free surface, the given function b = b(z) € R is the variation of the
bottom and H > 0 is the still water depth when b = 0, see Figure 1.

z A
Q- P
z=<
o]
x
o+ pt
z=—H+b
—H

Figure 1: The blue line denotes the surface elevation z = ¢ where ( = ((z,t) is a free variable. The free surface
separates two fluids with density 0 < p~ < p™. The brown line z = —H + b is the topography variation where
b = b(x) is a given function.

'To be precise, we will assume the functions in this section belong to H*°(U) where U = Q% or R.



2 Introduction

Remark 1.1.1. Here, we let the lower fluid domain be of finite depth, while the upper fluid domain is un-
bounded in the vertical direction. This is done out of convenience since we will later consider shallow
water models in papers 1 — 3 where we simply suppose the top layer is air with density p~ = 0. On the
other hand, in paper 4, we are concerned with the derivation of the Benjamin-Ono equation where one of
the layers is of infinite depth and 0 < p~ < p™.

Let the velocity of a fluid particle at a point (z, z, t) written as U*(z, z,t) € R?, where the notation {—, +}
stands for the upper or lower fluid respectively. Moreover, let P*(z, z,t) € R be the pressure, —ge, is
the acceleration of gravity, where g > 0 and e, is the unit upward vector in the vertical direction, and
pt > 0 are the densities of the two homogeneous and incompressible fluids. Then the momentum balance
and mass conservation in each fluid are given by

p(0,U* + (U*.V,.)U%) = -V, . P* — ge, (111)
div, , U* =0, o
in QF. We will further suppose that the fluid is irrotational, meaning we have that
wt = Curl%ZUi =0 in Q% (1.1.2)

Moreover, we note for smooth solutions of the Euler equations, it is sufficient to impose the condition at
time ¢ = 0 [3]. Also, it is worth noting that assumption (1.1.2) is fundamental to reduce the Euler equations
(1.1.1) to a system of equations that is defined at the interface. We will see this in the next section.
Continuing, we have that for a simply connected domain and curl-free vector field that there exist a
potential *(z, z) € R such that
Ut =v, 0%

As a result, rewriting the momentum equation, (1.1.1);, we have that &= satisfies the Bernoulli equation:
1
pt(0,0F + E\Vz,z@iﬁ +gz) = —P*, (1.1.3)
while the mass conservation equation, (1.1.1)y, implies that
A, 0% = 0. (1.1.4)

So far, we have reduced the equations of motion within the fluid to a set of equations described by the
auxiliary function ®*. To have a closed system of equations, we need to impose boundary conditions. At
the interface, we impose the kinematic boundary condition:

A = /1 + (920)2(0n DF) o=, (1.1.5)

and which tells you that the flow of the fluid propagates along the surface, or in other words, a particle at
the surface will remain at the surface [3]. Lastly, we will assume that the bottom is fixed and impermeable,
meaning we impose that

Oy @ o= = 0. (1.1.6)

Remark 1.1.2. The same condition also holds for V, ,®™ as z tends to infinity. However, this will be a
property of the solution of the Laplace problem formulated for @~ (under given restrictions on the Dirichlet
data). We will give some details on this point in Observation 1.1.8 below.

The internal water waves equations

We may now gather all the equations above to formulate a coupled system of PDEs with boundary con-
ditions in terms of the unknowns (¢, ®*). However, following the Zakharov-Craig-Sulem formulation
[19,20,62], we choose to formulate the system in terms of

(¢, ¥F), where o*(t,x) = &F(t,2,((x,1)).
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Then we can use the chain rule, the kinematic boundary condition (1.1.5), and the Bernoulli equation (1.1.3)
to obtain the celebrated water waves equations in the Zakharov-Craig-Sulem formulation:

¢ — GF[¢ BT =0 (1.17)
bt +0:¢0,9F)? L
pE <8twj: +9C + L(@,pt)? — 1E7K ]ﬂ(gzog ¥*) ) =_PH._.
Here GF[¢, byt are known as the Dirichlet-Neumann operators and is given by
gi [Cv b]lﬁi =41+ (8m§)2(3n<@i)\z:<,
where ®+ is a solution of the Laplace problems
A0 =0 in QF
o (119)
5= = Y% On, @ |o=—m+p = 0.

The last system is deduced from the mass conservation (1.1.4) and the impermeability of the bottom (1.1.6).
Next, we need to comment on the pressure force at the free surface. If there is a difference in pressure
at the interface then it is proportional to the mean curvature of the interface:

(P* = P7)a=¢ = a(0),

where o € (0, 1) is the surface tension parameter and x(() is defined by

K(Q) = —0x (\/%)

Here we choose to stay consistent with the notation used in [41], where it was noted in the case of a single
fluid that the effect of surface tension is only relevant for small characteristic scales. In fact, the capillary
effects are relevant for ripples with wavelengths of the size of a couple of centimeters (see Example 9.1
in [41] for a formal argument).

Remark 1.1.3. Since we are concerned with long wave dynamics, it is safe to neglect the effects of surface
tension from a practical perspective. However, as we will see later, from a mathematical perspective, even
a small amount of surface tension is, in some cases, necessary for models to be well-posed.

Remark 1.1.4. The irrotationality condition and mass conservation reduce the Euler equations (1.1.1) into
two scalar evolution equations that are defined on the boundary and independent from the vertical variable.
Moreover, the water waves equations are Hamiltonian [62]. For simplicity we let p~ = 0, then we have

that
H=g/RC2da:+o/R(\/m*1> dx+%/R?/)+g+[C,bW+d$»

with H satisfying the system
8,5(: = 51/,+H, and 8tw+ = *(&H,

where 6+ and d¢ are functional derivatives.

Finally, we turn to the presentation of the internal water waves equations. First, we ease the notation,
by making the following simplifications

p _
= P <pt=1, g=1

Next, we follow the approach by Lannes [40], where we reduce the number of variables by using the first
equation in (1.1.7) to see that

97 [C: b]¢7 = g+[<7 b]¢+
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Then we write 1)~ as a function of 1" through the inverse relation
U7 = (GG T GG et
and we define (formally) a new variable ¢ by the formula

Y=yt —yy~
= (L=~(G7[¢,0]) "G ¢, b))yt
=JI, b}?/)f

The unknowns ¢ and ) will form the primary variables of the internal water waves system. Moreover, we
use these relations to (formally) define a new operator

GI¢, b = G (¢, Bl(TL¢, b)) (1.1.9)

Remark 1.1.5. In the case of the two-fluid problem, we only will consider the case of a flat bottom. For a
precise definition of G[(, 0], we refer the reader to Section 2 of [45].

From the above expressions, we obtain the internal water waves equations in dimensional form:

{EM —G[¢, by =0 (1.1.10)

O+ (1 =)+ 5 ((029)? = 4(0:97)%) + NTC, b, 9%] = —0k(C),
where
VGG Y™ +0:C0:0 ™) = (GG, T + 0:C0:0T)?
2(1+(926)?) '
Before we turn to some comments on the structure of (1.1.10), we make a simple observation on how G[0, 0]
depends on the geometry of the problem.

NIC,b,y%] =

Observation 1.1.6. In the formula (1.1.9) we note that we choose to invert G~ [¢, b] with domain G*[(, b]. To
see why the order of composition is important, we consider their linearized operators with a flat bottom.
In particular, we have that the operators are defined by

GF[0,00y* = 0.9%.—,
where @7 is the solutions of

A 0T =0 in OF
<Di|z:0 = wi 8qur‘z:fH =0.

Then for regular Dirichlet data, we simply apply the Fourier transform on the horizontal variable and solve
the corresponding ODEs: R R
P20F — £29F = 0.

Then use the Fourier multiplier notation to find that

cosh((z + H)|D|)

+ _ + — — o—#IDly,—
P cosh(H[D)) YT and @ e P, (1.1.11)
As a result, we obtain the operators
G110,0]%" = |D|tanh(H|D|)y* and G7[0,0]¢)~ = D[y~ (1.1.12)

By looking at the operator at the Fourier side, we see that G*[0, 0] has a double root in zero, while in the
infinite depth case, G~[0, 0] has a simple root. This is the formal reason why we choose to compose the
inverse of G~ with G. See Remark 2.7 and the proof of Proposition 2.4 in [45] for details on this point.
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The definition of G* in (1.1.12) also serves as a hint that having one fluid of infinite depth and the
other of finite depth alters the functional setting for ¢*:

Observation 1.1.7. To understand how to define the elements that should be in the definition of the energy
space, it is instructive to look at the linearized Hamiltonian Hj of the system. In the case of the water
waves equation in finite depth (i.e., p~ = 0), we find that

1
Hy = Q/ dx+ a/(@zC)Q dz + - / " |D| tanh(H|D|)y™ dz.
2 Jr R 2 Jr
Using Plancherel’s identity and the equivalence:

Higl? Hig|*
(1+ HI¢)) 1+ Hg])

allows us to identify the energy associated with the system. It should provide (at least) a control on:

[ (562 +ot007) @+ 11 [ \ﬁw 2

On the other hand, in the case of H — —o0, we see that the energy space must provide a control on the

S [€] tanh(H[E]) <

trace of the velocity potential in 3 (R).

Lastly, for the linearized solution, we can observe that the decay estimate in Remark 1.1.2 holds and
that there is a smoothing effect from the Poisson kernel:

Observation 1.1.8. Suppose ¢~ € : (R) and let ®~ be given in terms of the Poisson kernel (1.1.11). We
first observe that ®~ € H'(S™). Indeed, we obtain directly by Plancherel’s identity, Fubini, and integration

in z that
/ /|a (2,2 |2dxdz_”/ €30 (¢ / az(e’zzm)dzdg
= D1y

The same computation can be done for 9, ®~. Next, we verify the decay at infinity. For s > % and z > 0,
we observe by virtue of the Sobolev embedding H*(R) < L°°(R) and Plancherel’s identity that

_ _ _ 1 L
10:27 (- 2) = S IDIDY*e Py~ ()2 S —=IIDI79)7 [
Vz
Taking the limit in z, we obtain the result:
lim sup |0,® (x,2)| = 0.
zZ—00 z€R
The same estimate holds for 9,9 ~.

On the structure of the internal water waves equations

Regarding the structure of the equations, we see that G¥[¢]«)* is determined by the solution of an ellip-
tic problem that depends on the fluid domain. However, by applying a simple change of variable, problem
(1.1.8) can be transformed to a more general elliptic problem with non-constant coefficients (see, for in-
stance, Chapter 2 in [41] for a detailed account). On the other hand, the water waves equations (1.1.7) seem
to have a more complex structure. In fact, if we let Ut = U%|,_, = (V*, w*)7 be the velocity field at
the free surface, then under a seemingly technical condition:

=g+ (0 + VE0)w® >0, (1.1.13)

the system has a hyperbolic character [41]. We will give some details on this in the next observation, where
we follow the book of Lannes [41], Section 4.3.5.
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Observation 1.1.9. Briefly put, the mathematical relevance of the criterion stems from the “quasilineariza-

tion” of the water waves equations. In particular, since we want to estimate the solutions in higher Sobolev

norms we apply « derivatives on the equation and reformulate it in terms of the “good unknowns”%:

Cla) = 92€, ﬁfl) = 0,* — w((a),

where the equations take the form

Doy = GEIC BV, + 0(Vida) = 0
Aoy + 850y + VEOU [, =0,

up to a rest consisting of lower order derivative terms, see Proposition 4.10 in [41]. At this point, it is
natural to define an energy that cancels the linear terms in the energy estimates. However, to do so, we
need the coefficient a* to have a positive lower bound.

With this brief explanation in mind, let us now consider the physical relevance of criteria (1.1.13).
We will relate the definition in (1.1.13) with a condition on the pressure force at the free surface. To do so,
to reformulate the Euler equations (1.1.1) and relate it to the trace Ut

(8,5Vi)|z:< +Zi(8wvi)‘z:< +Mi(8zvi)?:=< = _(81Pi)‘z:i
(atwi”zzc +Zi(8mw)|z:c +wi(azwi)zzc = *(azpi + 9)|z:C'

This is simply done by applying the chain rule. In particular, we observe: (0 = J; or ;)
OU* = (9U*)|2=¢ + 9¢(9:UF) ==,
and since the pressure is constant at the surface:
0 = (0xP%)|.=¢ + 0:C(0.P).

The last equation on the pressure will provide a link between the two equations for V¥ and w*. Indeed,
together with the kinematic boundary condition (1.1.5) which is directly related to U* through:

\/ 1+ (aa:C)Qn( ' Ei

= wi - KiOZC7

218

we find after some algebra that

{@Vi +VFE0,VF = 0,((0.P) . (1.1.14)

dw* + VEowt = —(9.P + g)|.—.
Here the first equation (1.1.14) can be given by
OV + 050, + VO,V F =0,
by substituting the pressure with the second equation which is related to (1.1.13):
0 = —(0:PF)|o=c.

In other words, (1.1.13) is equivalent to imposing positivity of the vertical pressure force at the surface. The
condition is known as the Rayleigh-Taylor stability criterion and it gives a condition to exclude instabilities
at the surface [41,55].

*The definition of () is deduced from the shape derivative formula of the Dirichlet-Neumann operator, see [41].
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In the case of having one fluid, with p~ = 0, the Rayleigh-Taylor stability criterion (1.1.13) is actually
a necessary condition for the system to be well-posed [25]. It was later proved that under this condition,
the water waves system was locally well-posed; we refer the reader to the pioneering work of Wu [57, 58]
in the case of infinite depth and the work of Lannes in finite depth [39]. In fact, as we will discuss in the
next section, the solutions of the water waves equations exist on a long time, which was proved by Alvarez-
Samaniego and Lannes [7] (see also the more recent work on extended life span and improved regularity
results [1,2,4-6,59-61]).

In the case of the two fluid problems, with 0 < p~ < p™, then we also need to impose criteria on the
data in order to obtain a stable configuration of the free surface. However, in this case, the situation is more
subtle. In fact, the problem becomes ill-posed unless there is surface tension o > 0 [26,33,34]. There are
several results that utilize this fact to obtain well-posedness results in different configurations of the fluid
domain where the time of existence T' = T'(o) tends to zero as ¢ — 0 [9, 10, 16,52,53]. From a modeling
point of view, this is a paradox, since surface tension is not relevant in the dynamics of long waves but is
necessary for there to be solutions. In particular, the asymptotic models that are derived from the two-fluid
systems neglect surface tension. A solution to this problem was provided by Lannes [40] in the case of two
fluids with finite depth. He was able to generalize the Rayleigh-Taylor criterion for a two-fluid system to
include surface tension and is given by

1 +,7)2
w -0 > O - v (1.115)
Here ¢(¢) > 0 is some constant that depends on the geometry of the problem, which in the case considered
in [40] are two fluids of finite depth. We will adapt this criterion in the case where one fluid is of infinite
depth. The main point is that this criterion allowed for an existence time that does not shrink to zero
as 0 — 0. In fact, by introducing the small parameters into the equations, Lannes obtained a long-time
existence and unique result.

Remark 1.1.10. The criterion is, of course, only assumed for the initial data and then propagated for ¢t > 0
by using the equation and the Fundamental Theorem of Calculus. Clearly, the existence time would then
depend on o. However, by introducing the small parameters, we can bypass this difficulty and still obtain
a long time existence and uniqueness result. See Remark 1.5 in [45] for more on this point in the case with
one layer of infinite depth.

Nondimensionalization of the internal water waves equations and comments

From a practical point of view, it is often better to consider simplified models rather than full water wave
equations. The idea dates back to Lagrange in 1781 [38], where we instead consider asymptotic models that
are derived by “zooming” in specific regimes that capture the physics that you set out to describe. In par-
ticular, to describe long waves in shallow water with bathymetry effects it is instructive to introduce the
quantities H, A\, Gyt and apets, the characteristic water depth, the characteristic wavelength in the longi-
tudinal direction, the characteristic surface amplitude, and the characteristic amplitude of the bathymetry
of the system. From these characteristic quantities, we define the following non-dimensional parameters

Asurf H2 Ahott p7 p+g>\2
= ) =<3 = ) =—, bo = , 1.1.16
i 1= B=—"F V= oF o . ( )

where the last number is related to surface tension and is known as the Bond number. Then the natural
scaling for long waves, with one fluid of shallow depth is given by

A

Cref

T = /\-rlv Z = HZ/: t= t/7 < = asurfglv b= abottblv

where the prime notation denotes a nondimensional quantity and ¢, is the reference speed. We are yet to
identify the dimensions of the auxiliary variable 1) and the reference speed in terms of the characteristic
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quantities. To do so, it is instructive to consider the linearized system (with § = ¢ = 0):

{atq G[0,0]¢ =0
O+ (1=7)¢ =0,

where G[0, 0] is a Fourier multiplier given by

(1.1.17)

-1
90,0 = G*0,0] (1 = 7(g~[0,0)"'G*[0,0])
and using the relations (1.1.12) we find that

tanh(H[¢]) -
1 + ytanh(H|¢)) )(I)'

We can simplify this expression under the shallow water assumption in the lower fluid, i.e. ¢ < 1. In

G0, 0w () = 7' (¢

particular, for a wave with wavelength ), the frequencies are concentrated around |{| = 2{, so that a
Taylor expansion of the hyperbolic tangent implies
tanh(H]¢)
| = HE,

1+ ~ytanh(H|£])
up to an order O(u). Thus, we find
610,01 = —Ho2.
From this simplification we can reduce (1.1.17) to a wave equation:
07¢ = s 03¢ = 0,

where we identify the reference speed cfef = H(1—+~). Moreover, and from the second equation of (1.1.17)

we can now find the dimensions of ):
Asurf A

Y= v
vVH
Thus, performing the change of variables above to the internal water waves system (1.1.10), and omitting
the prime notation, yields:

¢~ 1GuleC, bl =0
D+ (1= )¢ + H(e(0u)? = 7e(Datp™)?) + NG, 86, 6%] = — i Lz (e y/iC),

where

(1.1.18)

1 (G5 [, By~ + ep0eC0u™)? — (Gif [e€, BbIYT + €402 C0utp™)?
Ne¢, Bb, ] = 2 . (1+ EQM(GICM)Q) .

and
gu[é(:ﬁb} = g:[[é‘c:ﬁb}(ju[EC:ﬁbD71 (1~1~19)
The operators G [¢(] are defined by
gi[&dwi = (6Z(I)i - €H6x§8xq>i)‘z:€(a
through the solutions of the scaled Laplace equations:
2 2 (bi — f Qi
(102 + 085 =0 for 1120)
¢ |z:5{ = w az¢+|z:71 = 07

where
Q= {(2,2) : —1+Bb<z<el} and Q ={(z,2) : 2>}

We will now list long time existence and uniqueness results related to (1.1.18) for different cases in
pi, o, and fluid depth.



1.1 The governing equations 9

Remark 1.1.11. We only consider the results that will later be used, and so the list is not exhaustive. In any
of the cases, we will impose the standard non-cavitation condition that ensures that the fluid depth:

h=1+¢eC—pBb

does not touch the bottom. This means there is a minimum depth Ay, € (0,1) such that h > hpyin
for all time the solution exists. Of course the, condition is imposed at time ¢ = 0 and then verified for
t = O(=——). See Lemma 5.2 in [44] for a detailed demonstration of this point. Now, under this

max{e,B}
assumption, we have the following results:

1. In the case of a single fluid in finite depth with no surface tension, the long time well-posedness
is given in [7] (see also [41], Chapter 4). The proof relies on the energy method where the au-
thors define an energy functional £(t) = E({(t),4™(¢)) that depends on the norm of ({,%") €

el

C([0,7]; H*(R) x H,TLQ (R)) (see Observation 1.1.7). Then under the non-cavitation condition and

a non-dimensional version of (1.1.13) they prove an estimate on the form

wlw

%g(t) < max{e, B}(E(t))?,

which implies an existence time ¢t = O(ﬁ) The main difficulty is handling higher order
derivatives on the Dirichlet-Neumann operator and deriving precise estimates with respect to the
small parameters €, u, 3.

2. In the case of a single fluid in finite depth with surface tension, the same result holds. We refer the
reader to [41], Chapter 9 for the proof. The main difference in the proof is in the definition of the
energy that now needs to include ¢ in Hgt(l) (R). This gives additional difficulties when compared to
the case 0 = 0. In particular, having to control one more derivative in { means that it will induce
subprincipal terms in ¢ that need to be accounted for in the energy estimates. The solution is to
define energy that controls both space and time derivatives and is first introduced in [46]. See also
Remark 9.9 in [41] on this technical point.

3. In the case of the two fluid systems where both layers are of finite depth, with 5 = 0, ¢ > 0, and
p~ < pT, the long time existence and uniqueness are proved in [40]. Here, the energy estimate
is deduced under a non-dimensional version of (1.1.15), which allows for an existence time that is
independent of 0. We should also note that due to the complex nature of the operator G,,, there are
several additional difficulties that arise. In particular, the proof relies on several symbolic expressions
of the operators involved in G, using pseudodifferential methods and is used to have precise estimates
in terms of the small parameters and to deduce the skew-adjointness in some cases.

4. In the case of a single fluid in infinite depth without surface tension, a similar result as the first
point holds and is proved in [41], Chapter 4. The main difference is the scaling of the equation and
the definition of the energy, which is now modified to include the norm of the trace of the velocity
potential in H5ts (R).

5. In the case of the two fluid systems where one layer is of infinite depth with 3 = 0 and p~ < p™,
the long time existence and uniqueness are proved in [45], and is one of the main results of this
thesis. Here we need to combine the methods used in the previous points where the domain alters
the functional setting, the surface tension induces subprincipal terms in the energy estimates, and
we need new pseudodifferential estimates in this context.

We end this section with comments on the dispersive nature of internal water waves. To understand
the dispersive properties of the internal water waves equation we follow the presentation of [24] in the case
of a single fluid. In particular, it is instructive to consider plane waves solutions of the linearized equations
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in non-dimensional variables for a flat bottom?:

{ 9¢ — 2G,[0,01y =0

o+ ((1—7) —bo92)¢ = 0. (1.1.21)

Then in order to find the plane wave solutions
¢= <Oei(£zfmww(5)t) and ) = woei(f%ﬂdaww(E)t)7
form the initial data ({o, 1), one can verify from the equation (1.1.21) that we need iwiww%o = (1 — 7)o

and that

& tanh(y/7©)
VA 1+ ytanh ()’
The quantity wiww (&) is known as the dispersion relation of the linearized internal water waves. One should
also note that (1.1.22) is specific to the fact that we have one layer of infinite depth. Moreover, we define
the phase function 0(x,t) = &(x — w“%@t) and the phase speed by

wivw(€)® = ((1 —7) +bo~1€?) (1.1.22)

2 Wiww (£)?
Cp,iww = 6727

and it reveals the dispersive character of the waves (see Figure 2). Indeed, if we suppose bo™" is small then
since the speed depends on [¢] ~ % we see that waves travel faster for long waves. Meaning that if we take
a wave packet comprised of different frequencies, the short frequency part (long wave) will travel faster
than the large frequencies (short waves), therefore causing the wave to spread out.

0
0 1 2 3 4 5 VulEl

Figure 2: A plot of ¢2 ;.. in the case bo™ = 0 (red solid line), bo™* < 1 (blue dased line), and bo™* ~ 1 (blue
dashed-dot line).

Note that the effect of surface tension is only relevant for large frequencies (short waves). But as noted
above, it is necessary for the internal water waves to be well-posed. This is consistent with results in points
3 and 5 mentioned in Remark 1.1.11, where adding a small amount of surface tension allowed for long time
existence results without affecting the dynamics of long waves.

Remark 1.1.12. There are several asymptotic models that capture the dispersive nature of the internal water
wave equations. We comment briefly on some important results. We first consider classical examples in the

*For a nonflat bottom the linearized Dirichlet-Neumann operators are much more complicated.



1.1 The governing equations 11

case of a single fluid and flat bottom that will help to put the main results of this thesis in perspective. In
this case, we know that the solutions of the water waves equations exist on a long time scale (see previous
point 1. in Remark 1.1.11). Therefore, to fully justify the asymptotic model under consideration, its solutions
should exist on the same time scale and satisfy a convergence estimate.

1. One of the most classical example is the KdV equation [15,37]:
3
O+ (14 £02)0:C + 560 = 0,

which describes the evolution of waves propagating in one direction. The first rigorous derivation
of this model was given by Craig [17] where the precision of the model with respect to the water
waves equation is O(u? + ep).

2. For waves propagating in two directions, Bona-Chen-Saut [13] derived a family of Boussinesq sys-
tems:

{ (1= bpd2)0h¢ + (1 + apd?)dpv + £0:(Cv) = 0 (1.1.23)

(1 — dud?) 0w + (1 + cp102)0,¢ + evdpv = 0,
where a, b, ¢, and d are real parameters satisfying a+b+c+d = % and v(z,t) € R approximates the
fluid velocity at some height in the fluid domain. The precision of the system is the same as for the

KdV and was proved later by [12] in some casesof a+b+c+d = % It is worth noting that the long-
time well-posedness of (1.1.23) is far from trivial and has undergone extensive studies: [43,47-50].

3. The higher-order extension of the Boussinesq models is the Green-Naghdi equation. For simplicity
we consider the following version [51,54]:

{c"),,{ + 0z (hv) =0
(14 wTTh, Bb]) (D + ev0,v) + 02C + peQlh,v] = 0,

where h = 1 + £ is the fluid depth in the case of a flat bottom and with

(1.1.24)

Tlhjo = —%az(;ﬁazu), Qlh, v] = %az(hf’)(azv)z).

Comparing its solutions with the ones of the water waves equations evolving from the same data, one
obtains a precision of order O(z:?) [8,42]. In other words, it is an improvement from the Boussinesq
equations in the case where nonlinear effects are dominant (i.e., when p < ¢).

The next results are some generalizations of the models mentioned above and that preserve the
dispersive properties of the linearized water wave equations.

4. An important example for modeling unidirectional waves in shallow water is the Whitham equation
[56]:

AC+VEIH D) + S0 =0, (1.1.25)

where /F1 (D) is a Fourier multiplier defined as the square root of the symbol of F1(D):

___y/tanh(/Eé) ~ >
FD) (@) = 7 (20 @)
The first rigorous result, justifying the model, was given by Klein, Linares, Pilod, and Saut [35], where
they compared its solution rigorously with those of the KdV equation to obtain the same precision.
More recently, this result was improved by Emerald [28] where the precision® of (1.1.25) is of order
O(ep) when compared to the water waves equation. In other words, it is exact at the linear level and
we therefore call it a full dispersion model.

*Actually, Craig restricted the parameters to be £ = 1. The general precision was remarked in [28].
5This is for well-prepared initial data, see [28] for the precise statement.
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5. There are several full dispersion versions of the Boussinesq systems. As an example, consider the
generalization of (1.1.23) in the case (a, b, ¢,d) = (0,0, 1 3,0) [32]:
0 Oz (hv) =0
(G + 0y (hv) (1.1.26)
O + F1(D)0;C + evdyv = 0.

The system was rigorously derived in [27] in the sense of consistency. Moreover, combining this
result with the long time well-posedness result in [44] implies the full justification of the model. The
precision of (1.1.26) is of order O(eu) when compared to the water waves equations.

6. A full dispersion version of the Green-Naghdi equations (1.1.24) is derived in [27] in the sense of
consistency, where we need to replace 7 and Q by:

AL 3ha 2/ Fa(D)(h*\/F2(D)dyv),  Qr, [h,v] = 3haf ) (W (VF2(D)dw)?),

with
3

Fo(D) = W(

1 - F1(D)).

The precision of the model of order O(su?), and the full justification as a shallow water model was
established in [29]. If we compare the precision with the classical Green-Naghdi, we observe that
there is a qualitative gain in the parameters.

Before we turn to the case of the two-fluid system, we can make a formal argument for the difference
in the precision of full dispersion models and their classical versions. To do so, we compare the dispersion
relation of the models full dispersion models in point 5 and 6, which is equal to the dispersion relation of
the water wave system®, the Green-Naghdi system, and the (0,0, 5,0)—Boussinesq system:

Www(&)Q _ tanh(\/ﬁé) Wgn(g)2 _ 1 Wb(f)Q
e v e ik e

Then we see that the phase speed of the asymptotic models as Taylor expansion that is equal to the phase
speed of its full dispersion version up to an order of O(y2) (see also Figure 3). Meaning in cases where
high-frequency interactions are dominant, they would not offer a good description of the behavior of the
waves.

Finally, we end this remark by commenting on asymptotic models derived from the two-layer system.
Here, there are several possibilities depending on the depths of the two fluids.

_ K
—(1- 4.

5. An application of the long time existence result by Lannes [40], is the derivation of the shallow water
equations [18]:

¢+ 0, (flv) =0

cn ((6
A+ (1 —7):C + 50, (% 2)70

where the depth of the upper fluid is H;, the depth of the lower fluid Ho, the ratio 6 = H > with
hi1 =1—¢(, h1 =14 ¢d¢, and v = 0,1. The system was derived rigourously by Bona, Lannes, and
Saut [14] in the sense of consistency with the precision of order O(p).

6. There are several important consistency results given in [14] (see also [18]). However, the main point
to keep in mind, is that the result in [40] is not uniform with respect to the fluid depth. Meaning that if
one considers models outside the shallow water regime, then one also has to revisit this result to have
uniform estimates, and of course, accompanied by the long time well-posedness of the asymptotic
model.

Cwww is given by formula (1.1.22) in the case y = bo™! = 0.
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Figure 3: A plot of the phase velocities of the linearized water waves equation (red line), a Green-Naghdi system
(blue dashed line), and a Boussinesq system (blue dashed-dot line).

6. In the case of one fluid of infinite depth, given by (1.1.18) one can derive the Benjamin-Ono equation
(BO) [11,22]:

3
A + o1 = L /ADOC + ¢ C0uC =0,

where ¢ = (1 — «). The rigorous justification of the BO equation is proved in [45]. In particular,
the long-time existence of the internal water waves equations (1.1.18) with a small amount of surface
tension was established, and the precision of the BO equation is proved to be of order O(u) when
compared to the internal water waves equation.

1.2 Main results

1.2.1 Paper 1: Long time well-posedness of Whitham-Boussinesq systems

Published in Nonlinearity [44].

In paper 1, we study the long time well-posedness of three importaint full dispersion systems in one and
two horizontal dimensions. These systems are called Whitham-Boussinesq systems which were obtained
by improving the dispersion of the surface waves Boussinesq systems. To clarify the result, we consider
again (1.1.26) as an example:
{atg + 0y (hv) =0
0w+ F1(D)0y¢ + evdyv =0,

with h = 1 + €(, and as noted in Remark 1.1.12 (point 5). There was previously no local well-posedness
result for this system, even on a short time, and the system corresponds to a full dispersion version of the
(0,0, %7 0)—Boussinesq system, which is believed to be ill-posed [35]. However, in the weakly dispersive
case, we proved that system (1.1.26) is well-posedness on the long time scale of order (’)(é) for initial data
that satisfies the non-cavitation condition. The proof is based on theory for hyperbolic system, where one
has to find a suitable energy to handle the dispersive terms. In the case of system (1.1.26), we construct a

modified energy functional’ that are adapted to the dispersive system, that reads:

Ean(C,v) = /]R <(\/FT(D)A§AS<)2+h(A,§Asv)2> dz,

"In the paper [44], the energy was actually given in scaled variables £¢ and v.
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1
where A7 is the scaled Bessel potential defined by the symbol £ — (1 + #52)i in frequency. With this
energy, we were able to prove through a careful analysis of commutators and product estimates involving
the multipliers above, that

Cem(Cv) S <(Em(C )} (121)

Then with the equivalence
1
8Wh(<7v) ~ |C|%{‘ + ‘Aﬁvﬁ{‘a

and an estimate on the difference of two solutions, a well-posedness result was proved in the sense of
Hadamar. See Theorem 1.11 in this paper for the precise statement and for the novelties related to the
other systems that were considered.

We end this brief summary with two remarks on the result.

Remark 1.2.1. A consequence of the energy estimates of the paper and the consistency result provided by
Emerald in [27] is the full justification of (1.1.26) as a water waves model with precision O(gp).

Remark 1.2.2. If we add the effect of the bottom, then we simply need to change the defintion of fluid depth:
h=1+¢e¢— pb.

Meaning, by replacing h in the equation (1.1.26) would yield a system with precision O(p(e + )) [24].
Moreover, the contribution of the bottom in the energy estimates is not principal terms since b is a given
function. So, it seems straightforward to deduce a long time existence result using the same method. How-
ever, in this case, the time of existence is of order O(m)

1.2.2 Paper 2: Long time well-posedness of a Whitham-Green-Naghdi system

Joint work with Louis Emerald.
Submitted for publication.

In paper 2, is an extension of the previous work where we consider a weakly dispersive® version of the
Green-Nagdi system with bathymetry. In particular, we again use the energy method to prove the long
time well-posedness of a system on the form

0¢ + 0z (hv) =0 (1.2.2)
(1 + pTryh, BB]) (Ov + cv0pv) + 05¢ + pe(Qrylh, v] + Qb iy [h, b, v]) = 0. o
Here h = 1 + ¢¢ — (b is the height of the fluid and
7%2 [h7 Bb]v7 QFZ [ha U}v Qb,FQ [h75b7 U]’ (123)

are complicated expressions that depend on the nonlocal operators

py(D) = BIWEDD o p el 3wy oy).

N = ulDP?

The system is a similar version to a system derived by Duchéne in [24] in the sense of consistency. The
precision of the weakly dispersive Green-Naghdi system with bottom effect was proved to be of order
O(u?(e + f3)) when compared to the water waves equations. To put the result in context, we have the
following comparisons in the case of bathymetry with the models mentioned so far:

81t is not fully dispersive since Wy, was computed in the case 3 = 0. When 3 > 0, this is highly nontrivial.
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Water waves system

Green-Naghdi system Whitham-Green-Naghdi system
o) (P + B))

Boussinesq system Whitham-Boussinesq system
O(? + ple + B)) Oule + B)

To derive system (1.2.2), there are many possibilities that give the same precision. On the other hand, it is
not clear which one is well-posed. In fact, the novelty of the proof was to determine the quantities (1.2.3),
in the weakly dispersive case, such that we could prove an energy estimate of the type (1.2.1). From this
estimate, we deduce the well-posedness of the system with an existence time of order ¢t = O(m)
Then we use this result, to compare the solutions with the ones of the water waves equations and prove
that the two solutions are close up to an error of order O(%(e + 3)) on the same time interval.

Remark 1.2.3. The main motivation behind studying full dispersion models is that it allows us to decouple
the parameters in the precision (see discussion in Remark 1.1.12). This, of course, implies a larger regime
for which the models are applicable.

1.2.3 Paper 3: Rigorous derivation of weakly dispersive shallow water models with
large amplitude topography variations

Joint work with Louis Emerald.
Submitted for publication.

In this paper, we derive new shallow water models in one and two horizontal dimensions with improved
precision with respect to p and the bathymetry parameter 5. The motivation stems from Remark 1.2.3,
where we want to derive a model that describes waves propagating over an obstacle. This is an important
modeling problem (see, for instance, Chapter 5, Section 2.3 in [41]) and is based on the experimental re-
sults by Dingemans [23] (see illustration of the set-up in Figure 4). In these experiments, it was observed
that waves long waves tend to steepen as they would pass an obstacle, where high frequency waves are
generated behind the obstacle.

0.1

0] 5 10 15 20

Figure 4: A long wave propagating from left to right towards an obstacle.
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In other words, on one side of the obstacle we need a good description of long waves (4, < 1), on top
of the obstacle we enter the shallow water regime (1 < 1). While after the waves pass, we want a good
description of the weakly nonlinear regime (¢ < 1).

The first result of this paper is the rigorous derivation of models with uneven bathymetries at the
order of precision O(j€). In the one-dimensional case, this model reads

O¢ — LGy = 0
c ) (1.2.4)
O + ¢+ 5(0:4)* = 0,
where G is an operator given by
1 1+e¢—pb [©
=0 (R [ o),
1 b ( 1— /Bb —1+8b )
and is defined by the solutions of the elliptic problem
AL ,® =0 in R x [-1+ £b,0], (1.25)
Ql.—0 =9, [8z<1> - /f'rBa’vba’v(ﬂ |z:71+,8b =0. o

System (1.2.4) can be viewed as an extension of the full dispersion models with uneven bathymetry, where
the elliptic problem (1.2.5) corresponds to the (1.1.20)" in the case ¢ = 0. A drawback of this model is that
it depends on the solutions of an elliptic problem. This is costly from a numerical perspective.

To simplify system (1.2.4), we instead find approximate solutions of (1.2.5) given in terms of pseu-
dodifferential operators. Then we use them to rigorously derive new models in the sense of consistency
with precision:

O(ue + p5%) and  O(p’e + pef + i ).

1.2.4 Paper 4: Justification of the Benjamin-Ono equation as an internal water waves
model

Submitted for publication.

This paper gives the first rigorous justification of the Benjamin-Ono equation:

O+ o1 LYRIDNOLC + e ¢ou¢ =0, (126)

as an internal water wave model on the physical time scale. The BO equation was derived formally in the
60s as an asymptotic model from a two-fluid system where one fluid is of great depth [11,22]. The equation
has generated much interest since its inception. However, it is still an open question whether its solutions
are close to the ones of the original physical system.

The primary step is to prove the long-time existence of the internal water wave equations with one
fluid of infinite depth and the second fluid layer of finite depth and flat bottom. Then, we show that the
difference between two regular solutions of the internal water waves equations and the BO equation, which
evolves from the same initial datum, provides a good and stable approximation to the system on the natural
time scale. In particular, there are regular solutions’® ({, ) solving (1.1.18) on a positive time interval with
t = O(%) Moreover, from the same data, we have a unique solution of (1.2.6) denoted by ¢2°
prove that

, and we

|< - Cbo|L°o 5 uta

on a long time where the implicit constant depends on the norm of the initial data in the energy space (see
Theorem 1.18 in [45] for the precise statement).

’Of course, with 3 = 0 and under certain assumption on the data. See for instance Remark 1.1.10 on this point.
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The novelties of the proof are related to the geometry of the problem, where having one fluid of
finite depth and one of infinite depth alters the functional setting for the Dirichlet-Neumann operators in-
volved. A simple argument was put forward in Observation 1.1.7 and Remark 1.1.11 on this point. As a
result, we study the various compositions of the operators involved in the expression of (1.1.19). This re-
quires a refined symbolic analysis of the Dirichlet-Neumann operator on infinite depth and deriving new
pseudo-differential estimates, where we extend the results by Lannes [40] in the case of two fluids in the
shallow water regime.

Remark 1.2.4. As noted in point 6. in Remark 1.1.12, there are several asymptotic regimes that are not cap-
tured by the result of Lannes [40]. In particular, the case of having one layer of great depth. An interesting
example would be the intermediate long wave regime where one layer is allowed to be larger than the other
(see [14,36]).
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2.1 Long time well-posedness of Whitham-Boussinesq systems

M. O. Paulsen.

Published in Nonlinearity [44].



LONG TIME WELL-POSEDNESS OF WHITHAM-BOUSSINESQ
SYSTEMS

MARTIN OEN PAULSEN

ABSTRACT. Consideration is given to three different full dispersion Boussinesq systems
arising as asymptotic models in the bi-directional propagation of weakly nonlinear surface
waves in shallow water. We prove that, under a non-cavitation condition on the initial
data, these three systems are well-posed on a time scale of order O(%), where ¢ is a small
parameter measuring the weak non-linearity of the waves. For one of the systems, this
result is new even for short time. The two other systems involve surface tension, and for
one of them, the non-cavitation condition has to be sharpened when the surface tension
is small. The proof relies on suitable symmetrizers and the classical theory of hyperbolic
systems. However, we have to track the small parameters carefully in the commutator
estimates to get the long time well-posedness.

Finally, combining our results with the recent ones of Emerald provide a full justification
of these systems as water wave models in a larger range of regimes than the classical
(a, b, ¢, d)-Boussinesq systems.

1. INTRODUCTION

1.1. Full dispersion models. The Korteweg-de Vries (KdV) equation is an asymptotic
model for the unidirectional propagation of small amplitude, long waves on the surface of
an ideal fluid of constant depth. It was introduced in [8, 32] to model the propagation
of solitary waves in shallow water with a wide range of applications both mathematically
and physically. However, its dispersion is too strong in high frequencies when compared
to the full water wave system. In particular, the KdV equation does not feature wave
breaking or peaking waves. To overcome these shortcomings, Whitham introduced in [52]
an equation with an improved dispersion relation. He replaced the KdV dispersion with
the exact dispersion of the linearized water wave system obtaining the equation

¢+ /Ku(D)0a( +¢0:¢ = 0, (L.1)
for (z,t) € R x R, where the function ((x,t) € R denotes the surface elevation and the
operator /K, (D) is the square root of the Fourier multiplier KC,,(D) defined in frequency

by
tanh(y/z[¢]) 2
Moreover, ;1 and € are small parameters related to the level of dispersion and nonlinearity,
and ¢ is a nonnegative parameter related to the surface tension®2.
Whitham conjectured in [52] that equation (1.1) would allow, in addition to the KdV
traveling-wave regime, the occurrence of waves of greatest height with a sharp crest as

well as the formation of shocks. However, it was not until recently that these phenomena

Date: January 22, 2024.
2010 Mathematics Subject Classification. Primary: 35Q35; Secondary: 76B15, 76B45.
Key words and phrases. Whitham-Boussinesq; Long time well-posedness; Symmetrizers.
1Actually7 Whitham introduced the equation formally without the parameters p and e.
2He also did not include surface tension, 7.e. o = 0.

1
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were rigorously proved. We mention among others the existence of periodic waves [18], the
existence and stability of traveling waves [17, 4, 48, 27|, the formation of shocks [24, 45],
Benjamin-Feir instabilities [47, 25], the existence of periodic waves of greatest height [20]
and solitary waves of greatest height [50]. Note that in the case of surface tension (o > 0),
the dynamics appear to be rather different (see e.g. [31] and the references therein).

These results illustrate some mathematical properties uniquely related to an improved dis-
persion relation, though there are some phenomena that the Whitham equation does not fea-
ture due to its unidirectionality. For instance, the Euler equations admit non-modulational
instabilities of small-amplitude periodic traveling waves [36], but the unidirectional nature
of the Whitham equation is believed to prohibit such instabilities [10].

Regarding the two-way propagation of waves at the surface of a fluid and in the long wave
regime, Bona, Chen, and Saut derived a three-parameter family of Boussinesq systems [5]

{(1 — bpd2)9C + (1 + apd2)dv + 9, (Cv) = 0 13)

(1 — dud?)ow + (1 + cpd?)d:C + evdyv = 0,

where a, b, ¢ and d are real parameters satisfying a + b+ c+d = %, C(z,t) € R is the
deviation of the free surface with respect to its rest state, and v(z,t) € R approximates the
fluid velocity at some height in the fluid domain. Like the KdV equation, the Boussinesq
systems are celebrated models for surface waves in coastal oceanography. Analogously to
the unidirectional case, one could replace the dispersion with the linearized dispersion of the
water wave equations in (1.3). These improved dispersion versions are expected to lead to
a more “accurate” description of the full water wave system. Those systems are commonly
referred to as the Whitham-Boussinesq systems or full dispersion Boussinesq systems.

Actually, there are different possibilities of full dispersion Boussinesq systems. This paper
will focus on three important ones, linking them to some specific cases of the Boussinesq
systems without BBM terms (b = d = 0). To be precise, we introduce the operator 7,(D)
corresponding to K, (D) for o = 0, and whose Fourier symbol is defined by

_ tanh(/7le)
T(E) = e (14)

First, we consider the system

(1.5)

0¢ + K (D)0yv + €0,(Cv) =0
O + 0,¢ + evdyv = 0,

introduced in [33, 1, 38] without surface tension and in [31] with surface tension. Here,
as above, ¢ denotes the elevation of the surface around its equilibrium position, while v
approximates the fluid velocity at the free surface. We also consider its two-dimensional
counterpart

(1.6)

¢+ KuD)V-v+eV-((v)=0
ov+V(+5V|v)2 =0,

where © € R? and v(z,t) € R? approximates the fluid velocity at the surface in two space
dimensions. In the case zero surface tension, it is proved that (1.5) models solitary waves
[39] and admit high-frequency (non-modulational) instabilities of small-amplitude periodic
traveling waves [19]. We also observe that (1.5) is related to (1.3) by expanding (1.2) in
low frequencies. Indeed, since K, (&) ~ 1+ pu(o — %){2 by a Taylor expansion we see that
(1.5) reduce to (1.3) with (a,b,¢,d) = (3 — ,0,0,0).
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A second system is obtained by applying the operator (1.4) to 9,¢, which gives

04C 4 020 + €05 (Cv) =0 W

v + Tp(D)0:¢ + evdyv = 0, :
and in two dimensions reads

O(+V-v+eV-((v)=0 18

ov + Tu(D)V( + 5VIv|* = 0. ’

This system was first introduced in [26], where it is proved that (1.7) features Benjamin-
Feir (modulational) instabilities. Note that while ¢ plays the same role as for system (1.5),
it is 7;:1(D)v which approximates the velocity potential at the free surface in this case
(and 7,7'(D)v in two dimensions). We also observe that (1.7) reduces in the formal limit
VHE[E] = 0 to the Boussinesq system (1.3) with (a, b, ¢, d) = (0,0, %, 0) in low frequencies.

Finally, we will also consider a full dispersion version of (1.3) when 7,(D) is applied to
the nonlinear terms, while (D) is applied on the 9,¢. This system reads

01 + Orv + 57;(]))836(0)) =0 (1.9)

O + Ku(D)3sC + T(D) (v0,) = 0, '
and in two dimensions is given by

0C+V-v+eT,(D)V-((v)=0 (1.10)

O + Ku(D)VE + 5T, (D)VIv]* = 0. '

Here ¢ and v play the same roles as for system (1.7) (similarly, v has the same role as in
(1.8)). It was introduced in [13] and has the advantage of being Hamiltonian. Moreover,
the existence of solitary waves is proved in [14].

1.2. Full justification. A fundamental question in the derivation of an asymptotic model is
whether its solution converges to the solution of the original physical system. In particular,
we say that an asymptotic model is a valid approximation of the Euler equations with a
free surface if we can answer the following points in the affirmative [33]:

1. The solutions of the water wave equations exist on the relevant scale O( %)

2. The solutions of the asymptotic model exist (at least) on the scale O(1).

3. Lastly, we must establish the consistency between the asymptotic model and the wa-
ter wave equations, and then show that the error is of order O(uet) when comparing
the two solutions.

The first point was proved by Alvarez-Samaniego and Lannes [2] for surface gravity
waves and Ming, Zhang and Zhang [37] for gravity-capillary waves in the weakly transverse
regime, while points 2. and 3. are specific to the asymptotic model under consideration.
For instance, in the case of the Whitham equation, Klein et al. [31] compared its solution
rigorously with those of the KdV equation. In particular, they proved that the difference
between two solutions evolving from the same initial datum is bounded by O(g%t) for all
0 <t <e ! with €, in the KdV-regime:

Riav ={(e,p) 1 0<p<1, p=ec},
which justified the Whitham equation as a water wave model in this regime by relying on
the justification of the KdV equation [9, 33].
On the other hand, due to the improved dispersion relation of (1.1), Emerald [22] was
able to decouple the parameters (e, 1) and prove an error estimate between the Whitham
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equation and the water wave system with a precision O(ust) for 0 <t < e~! in the shallow
water regime:
Rsw ={(e,p) : 0<pu<1, 0<e<l1}. (1.11)

Moreover, Emerald decoupled the small parameters for the KdV equation and proved its
precision to be O(u? + pe)t for 0 < t < 1. Consequently, the Witham equation is valid for
a larger set of small parameters when compared to the KdV equation. Specifically, when
€ < i, these estimates imply that (1.1) equation is a better approximation of the water
wave equations.

In the case of the Boussinesq systems (1.3), consistency was first proved in [6] for (&, 1) €
Riaqy by relying on intermediate symmetric systems for which the long time well-posedness
follows by classical arguments. However the long time well-posedness for the (a,b,c,d)
Boussinesq is far from trivial. This result was proved?® later by Saut, Xu and Wang [42, 46].
The proof relies on suitable symmetrizers and hyperbolic theory.

The natural next step is to consider the Whitham-Boussinesq systems for (g, 1) € Rgw.
In particular, the goal of this paper is to establish the well-posedness of (1.5)-(1.10), with
uniform bounds, on time intervals of size (’)(é) Since point 1. of the justification is already
established, the long-time existence and consistency remain. Using the method of Emerald,
one can prove the consistency of any Whitham-Boussinesq system with the water wave
system (see also [21] for other full dispersion shallow water models). Therefore, having
the long time well-posedness theory for (1.5)-(1.10) will provide the final step for the full
justification of these systems.

1.3. Former well-posedness results. Regarding system (1.5) and (1.6), we know from
previous studies that surface tension plays a fundamental role in the well-posedness theory.
In fact, when o = 0 the initial value problem associated to system (1.5) is probably ill-
posed unless ¢ > 0 (see the formal argument in Section 4 in [31]). We refer to [40] for
a well-posedness under the non-physical condition ¢ > ¢p > 0. When surface tension is
taken into account, system (1.5) was proved to be locally well-posed by Kalisch and Pilod

[28] for (¢,v) € H(R) x HSJr%(IR)7 s > % (and s > 3 in two dimensions), by using a
modified energy method. We also refer to the work by Wang [51] for an alternative proof
using a nonlocal symmetrizer. However, it is worth noting that all these well-posedness
resutls were proved on a short time without considering the small parameters € and p.
Finally, in the formal limit \/ﬁ\f | = 0, one recovers the Boussinesq system corresponding
to (a,b,c,d) = (% —0,0,0,0). This system has been proved in [46] to be well-posed on large
time for o > %, while it is known to be ill-posed for o < % (3]. This is a formal indication
that the threshold ¢ = % will play an important role for the long well-posedness of (1.5)
and (1.6). We will come back to this issue in the next section (see Figure 1).

As far as we know, there are no well-posedness results for system (1.7) and (1.8) even on
short time. In the formal limit \/u|¢| — 0, system (1.7) reduces to the Boussinesq system
corresponding to (a, b, c,d) = (0,0, %, 0), which is believed to be ill-posed [31].

Next, attention is turned to (1.9) and (1.10). There are several results when o = 0. In this
case, Dinvay [12] proved short time local well-posedness for (¢,v) € H”%(R) x HSTH(R),
s > 0 in the one-dimensional case. The proof is based on standard hyperbolic theory that
involves a modified energy similar to [28]. This result was then extended in [15] by exploiting
the smoothing effect of the linear flow using dispersive techniques improving the regularity
11
676
best results being on a time scale O(E’%) [43, 44], (see also [35] on a time scale O(e
techniques).

3In the most dispersive case (a,b,c,d) = ( 0,0), the relevant time scale O(e™') is still missing; the
1
-z

) by using dispersive
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to H*(R) x H 5+%(R), s> —%. Furthermore, when considering small data, the system is
globally well-posed due to the control of the Hamiltonian. The estimates derived in the
aforementioned papers are not uniform in p. However, a recent study by Tesfahun [49]
proved that the corresponding 2-dimensional system (1.10) without surface tension is well-
posed on a time interval of order O(%) in the KdV—regime. Indeed, dispersive techniques
are tailored-made for short waves and therefore seem not to be well suited to capture the
long wave regime (see for instance [35] for similar results for the Boussinesq system in the
KdV-KdV case). Finally, in the case of surface tension o > 0, Dinvay proved in [11] the
short time local well-posedness of (1.9) and (1.10) by using modified energy techniques.
This result also implies the small data global well-posedness in this case.

Lastly,* we would like to comment on a recent work by Emerald [23]. Here he considered a
class of non-local quasi-linear systems in one and two dimensions that include the following
family of Whitham-Boussinesq systems,

0+ Tu(D)V v +£(T,) (DY - ({(T)*(D)v) = 0 w12

OV + V¢ +£((T)° (D)v - V) (T,)*(D)v) = 0, '
with o > % In the paper, the author proves the long time well-posedness of (1.12), and
deomonstrate that the error between the water wave system is of order O(uet). Also, note
that in the case a = 0, then (1.12) corresponds to system (1.6) in the case ¢ = 0. This
case is still an open problem. However, combining the results of [23] with the ones in this
paper, accounts for many of the possible Whitham-Boussinesq systems, and thus complete
each other well.

1.4. Main results. In the current paper, we take into account the small parameters (e, )
and prove the well-posedness of (1.5), (1.7), (1.9), and their two-dimensional versions, on a
time scale O(1).

In the case of systems (1.7)-(1.8) and (1.9)-(1.10), we will work under the standard non-
cavitation condition.

Definition 1.1 (Non-cavitation condition). Let d =1 or 2 with s > 4 and ¢ € (0,1). We
say the initial surface elevation (o € H*(R?) satisfies the “non-cavitation condition” if there
exist hy € (0,1) such that

1+eCo(z) > ho, forall z € R (1.13)

In the case of system (1.5) and (1.6), we will distinguish between the cases o > % and
0<o< % More precisely, for o > é, we will also assume the non-cavitation condition in
Definition 1.1, while for 0 < o < %, we have to impose the following o—dependent surface
condition.

Definition 1.2 (0—dependent surface condition). Let d = 1 or 2 with s > %, e € (0,1)
and o € (0, %) We say the initial surface elevation o € H*(R?) satisfy the “o—dependent
surface condition” if

1+4¢eCo(x) > hy, for all z € RY, (1.14)

where hy =1 — 5.

Remark 1.3. For 0 < o < %, K, (&) is not a monotone function for positive frequencies,
as we can be seen in the figure below. This is why we choose to impose condition (1.14) in
this case.

4See also [16] for a survey on resent developments in the field.
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Ki(€), 8>} '\\ 4

Ki(€), B<} s

FIGURE 1. The multipiler Ki(£) in the case when o > 1 (dash-dot) and o <
(line). The horizontal line (dashed) specifies the minimum.

Remark 1.4. One can see the c—dependent surface condition as a constraint on the initial
data that is related to the minimum of the function K,(§). For instance, if we consider the

multiplier in Figure 1, then an admissible initial datum must satisfy the constraint in the
figure below.

1+e

FIGURE 2. The blue line denotes the initial surface elevation 1 + ¢y, and is re-
stricted by h, when 0 < o < %

Before we state the main results, we define a natural solution space for systems (1.5)-(1.6)
and (1.7)-(1.8).

Definition 1.5. We define the norm on the function space V;(Rd) to be
1
(V) = [CIs + [vIrs + VAID2 v .

Theorem 1.6. Let d = 1 or 2 with s > %Jr %, o >0 and e,u € (0,1). Assume that
(Co,vo) € Vj(Rd) satisfies either the non-cavitation condition (1.13) in the case o > 1/3

or the o—dependent surface condition (1.14) in the case 0 < o < %, where curlvg = 0 if
d = 2. Moreover, we assume that

1 £ 0<o<i
0<e<—5——— for k?,:{" for 753 (1.15)

= k31(Go, vo)lvg co for o>1%

for some ¢ > 0. Then there ezists a positive T' given by

L < 0 1
S . for 0 < ol< 3 (1.16)
k3 1(Cos vo) v co?  foro>1

such that (1.5) and (1.6) admits a unique solution

(¢, v) € C([0,T/e] : ViR N CH([0,T/e] : v RY),
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that satisfies

sup  [(¢,v)vs < [(Cos vo)lvg- (1.17)
te(0,T/e]

Furthermore, there exists a neighborhood U of (Co,vo) such that the flow map
Fi eyt Vi@®RY) = C([0, £LVEIRY), (o, vo) = (Cv),
18 continuous.

Remark 1.7. The proof of the continuous dependence on long time of order O(é) seems
to be new for Boussinesq type systems. It relies on the Bona-Smith argument [7] and could
be easily adapted for the (a,b,c,d)-Boussinesq systems.

Remark 1.8. A heuristic argument can be made to argue that the physical solutions appear
when the initial data is of order one in terms of € [41]. To illustrate this point, take the
Burgers equation

up — eutly, = 0,
a simple model that can describe an inviscid fluid in shallow water theory. Then by the
energy method, it is easy to deduce that the time of existence is of order T ~ m for
5> % As a consequence, we have that T ~ é if the initial data is of size O(1).
Remark 1.9. If 0 ~ 1 then ¢ <1 by (1.15), and so (1.16) implies that T/e ~ 1/e. On
the other hand, in the case of having o < 1, (1.15) would impose € < o , and by (1.16) we
have the existence on the timescale T/e ~ o /e.

Remark 1.10. Regarding the o—dependent surface condition, we demonstrate that the
solution will persist for a long time and satisfy eC(x,t) > —co for some constant ¢ > 0.
One should also note that this is coherent since 0 < € < o as explained in the previous
remark. For a related discussion on this physical condition see Subsection 1.3.

Next, we state a well-posedness result for (1.7) and (1.8). These systems does not feature
any surface tension and is well-posed for a long time under the standard non-cavitation
condition.

Theorem 1.11. Let d =1 or 2 with s > %Jrl and p € (0,1). Assume that (Co,vo) € Vi (R)
satisfies the non-cavitation condition (1.13), where curlvy = 0 if d = 2. Also assume that
for some ¢ >0 that 0 < e < c(|(§0,v0)|vj)71. Then there exists T = c(|(§0,vo)|vj)71 such
that (1.7) and (1.8) admits a unique solution

(€.v) € C(0,T/e] - VERY)) N CH([0,T/e] : Vi (RY),
that satisfies

sup  |(¢,v)vi < [(Gos vo)lvg-
te[0,T/e]

In addition, the flow map is continuous with respect to the initial data.

Remark 1.12. As far as we know, Theorem 1.11 is the first well-posedness result for
systems (1.7)-(1.8).

Similarly, we can combine the techniques used to prove Theorem 1.6 and Theorem 1.11
to establish the long time well-posedness of (1.9)-(1.10) in the space:

Definition 1.13. Define the norm on the function space X;H(Rd) to be

1
ICV)IZs,, = [CIEs + onlD'ClEs + [VIFs + VaID2v[Ee.
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Theorem 1.14. Let d = 1 or 2 with s > %Jr 1,0 >0 and p € (0,1). Assume that
(€0, vo) € X ,(R) satisfies the non-cavitation condition (1.13), where curlvo =0 if d = 2.

Also assume that for some ¢ > 0 that 0 < ¢ < C(|(C0’V0)|Xgu)71- Then there exists

T= C(|(<07V0)|Xg,#)71 such that (1.9) and (1.10) admits a unique solution
(¢ v) e C(0,T/e]: X5, (R) N CY([0,T/e] : X5, (R)),
that satisfies
sup  |(¢,v)[xz, < 1(Co,vo)lxs,-
t€[0,T /€]
In addition, the flow map is continuous with respect to the initial data.

Remark 1.15. Including o > 0 in the norm in the definition of X;;H(]Rd) will allow us to
obtain a long time well-posedness result under the non-cavitation condition. Additionally,
when 0 < 0 < % then € is independent from the surface tension parameter, and in the case
o =0 we have that X§ ,(R?) is equal to V3(RY).

Remark 1.16. For the sake of clarity, we will mainly focus on the one-dimensional case.
Theorems 1.6, 1.11 and 1.1/ can be easily extended to the 2-dimensional case by following
the same methods since the symbols KC,,(D) and T,(D) are radial. We give a brief outline
of what would be the main changes in Section 6.

1.5. Strategy and outline. The proof of Theorem 1.6 relies mainly on energy estimates
similar to the ones provided in [28] on a fixed time. Though, we use the idea of Wang [51],
who included the nonlocal operator k(D) in the definition of the energy®:

Definition 1.17. Let (n,u) = (¢, v) and A® be the bessel potential of order —s. Then we
define the energy associated to (1.5) in the one-dimensional case to be:

Bl = [ (00 4 000 + (VI (DIA?) do

This energy formulation will free us to cancel out specific nonlinear terms that appear
naturally in the computations yielding the estimate

B 1,) S0 (B, w)

Combined with the coercivity of the energy, then by a standard bootstrap argument, one
deduces a solution with the lifespan of T = O(é) We refer the reader to Proposition 3.1
and Lemma 5.3 for these results. The proof of the energy estimate is similar to the one
presented in [51], but we keep track of the small parameters. We should also note that
estimate (1.18) is applied to a regularized version of (1.5), where we recover the original
system using a Bona-Smith argument.

To run the Bona-Smith argument for s > 2, one classically needs to estimate the difference
between two solutions at the Vf(R)—level. These estimates will be the most technical
point of the paper and are specific to the dependence of the small parameters. In short,
the technical difficulty is related to the apparent need for ’generalized’ Kato-Ponce type
commutator estimates on K, (D) (see Lemma 2.9 and the generalization for /(D) in Lemma
2.11). Whereas for the case 1 = 1, one can use Calderén type estimates to simplify /C, (D)
directly (see [28] and the reformulated system (2.1)). The main idea will be to split /C,,(D)

3
2

(1.18)

5Wang actually used this multiplier in the case p = 1.



LONG TIME WELL-POSEDNESS OF WHITHAM-BOUSSINESQ SYSTEMS 9

in high and low frequencies, and then derive new commutator estimates that allow us to
obtain the necessary order of p in the estimates related to the energy.

For the proof of Theorem 1.11, we follow the same strategy, but in this case, the dispersion
operator (1.4) is regularizing. The trick will be to introduce a scaled Bessel potential in the
energy, allowing us to mimic the properties of (1.2). The energy is given by:

1
Definition 1.18. Let (n,u) = ¢((,v) and A; be the scaled Bessel potential defined by

the symbol & — (1 + ,qu)i in frequency. Then the energy associated to (1.7) in the one-
dimensional case reads:

)= [ ((ﬁ;(D)AéAsn)? fas n)(AéASuF) dz.

The energy formulated in Definition 1.18 is new and will require commutator estimates
specific to the equation. This will, in turn, allow us to decouple the parameters p and € in
the estimates and, by extension, provide an estimate in the form of (1.18).

In the same spirit, we define a modified energy for system (1.9):

Definition 1.19. Let (n,u) = €((,v) and o > 0. Then the energy associated to (1.9) in
the one-dimensional case reads:

£l u) = /R ((ASmZ +ou(DA*))? + y(A%u)® + (VT, 1<D>A5u>2) dz.

Note also that the energy includes the surface tension parameter ¢ and will allow us to
deduce an estimate on the form (1.18), where the coercivity estimate will be uniform in o.
In turn, this will provide the long time well-posedness for o < 1 and T'/e ~ 1/¢ as pointed
out in Remark 1.15.

The paper is organized as follows. In Section 2, we introduce some important technical
results whose proofs will be postponed to the appendix. In the same section, we also present
new commutator estimates needed to treat the nonlinear terms when estimating the energy
in Sections 3 and 4. Then we conclude in Section 5 by combining the results obtained in
the former sections to prove Theorem 1.6 in full detail in the one-dimensional case. Lastly,
we comment briefly on the changes to adapt the proof in the two-dimensional setting, while
the proof of Theorem 1.11 and Theorem 1.14 will follow by the same arguments.

1.6. Notation.

e We let ¢ denote a positive constant independent of yu,e that may change from line
to line. Also, as a shorthand, we use the notation a < b to mean a < ¢b. Similarly,
if the constant depends on o, we write a <, b. In particular, we define the constants
depending on o,

and ¢ (1.19)

o

1 {ca for0<0<%

1

2{6 for0<o<g
¢ foro>1
=3

co foraz%

e Let (V)| |v) be a vector space. Then for « > 0, A > 0 and f\ € V be a function
depending on A, we define the “big—O” notation to be

[falv = O(A%) <= lim A™%|fily < ococ.
A—=0
Similarly, we define the “small—o0” notation to be

Ifaly = 0(A%) <= lim A™|fr]y = 0.
A—=0
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e Let L?(R) be the usual space of square integrable functions with norm |f|;2 =

v/ Jg |f (@)]? dz. Also, for any f, g € L?(R) we denote the scalar product by (/f, ) 2=
Jp f(@)g(x) da.

e For any tempered distribution f, the operator F denoting the Fourier transform,
applied to f, will be written as f(§) or Ff(§).
e Let m : R — R be a smooth function. Then we will use the notation m(D) for a

o —

multiplier defined in frequency by m(D)f(§) = m(ﬁ)f(g)

e For any s € R we call the multiplier ]5:"7(5) =|¢° f (&) the Riesz potential of order
—s. One should note that D' = Hd,, where ?Tf(g) =—i sgn({)f(ﬁ) is the Hilbert
transform.

e For any s € R we call the multiplier A* = (1 4+ D2?)2 = (D)* the Bessel potential
of order —s. Moreover, the Sobolev space H*(R) is equivalent to the weighted

1
L?—space; |f|uys = |[A°f|;2. We also find it convenient to define A7 which is a
multiplier assosiated to the symbol:
1 1.
FAZF)(E) = (14 p€*)3 £(©). (1.20)

e We say f is a Schwartz function . (R), if f € C*°(R) and satisfies for all «, 5 € N,
sup 2298 f| < co.
x

e If A and B are two operators, then we denote the commutator between them to be
[A,B] = AB — BA.

2. PRELIMINARY RESULTS

2.1. Pointwise estimates. The first result concerns the properties of the dispersive part
of the equation. Namely, we deduce pointwise estimates for the multipliers (1.2) and (1.4)
that are needed to obtain the coercivity of the energy (see, for instance, equation (3.7)
below). Moreover, these estimates will prove essential when dealing with the nonlinear
parts of the equation that appear in the energy estimates.

Lemma 2.1. Let 1 € (0,1). Then we have the following pointwise estimates on the kernel

Ku(g) :

e For o > 0, we have the upper bound
Ku(§) S1+o(l+oyull). (2.1)
o [fo > %, then for all hy € (0,1) we have the lower bound
h
Ku() > (1= ) + ev/alé]. (22)
whereas, if 0 < 0 < %, we have the lower bound
Ku(§) 2 o+ co/ulé]. (2.3)
o The derivative of the symbol K,(§) satisfies
d _ 11
€& Ku(©)| S~ + Vopi(e)z. (24)

o We have the following comparison of \/K.(§) by
|\ Ku(§) = Vauilgl?| S Vo +o. (2.5)
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o There holds
VEE)(E YEN S (V +0)E)° + Vaut(e)[é]3. (2.6)

Remark 2.2. For inequality (2.3), it is crucial to specify the dependence in o as it will
provide the coercivity of the energy when 0 < o < . The same is true for (2.2), whose
importance will be revealed in the proof of Proposition 3.1 below. Though, we note that
(2.3) does not agree with (2.2) when o = 5. This is because the lower bound in (2.3) is not
optimal, but it does not play a role in the overall result.

Remark 2.3. We also trace the dependence in o for the first pointwise estimate (2.1),
and it will sometimes be replaced with c2 given by (1.19). This constant will again appear
when we prove the energy estimates which will provide the size of the time of existence (see

Lemma 5.3 in the proof Theorem 1.6).

The proof of Lemma 2.1 is technical and postponed to the Appendix in Section A.2. A
corollary of Proposition 2.1 may now be stated.

Corollary 2.4. Take f € /(R), p € (0,1) and s € R. Then in the case o > % and for all
ho € (0,1) we have

ho 1 1
(1- 3)|f|?1s +ey/uD? flis < |VEKuD)f [} < I ffs + co/ulD? fli.. (2.7)
Similarly, in the case 0 < o < % there holds
1 1
ol s + co/uID? flis < |VEKu(D)f |3 < 2l f 3 + ey/ulD? flHs. (2.8)

Proof. The upper bound in (2.7) follows by Plancherel’s identity and the pointwise estimate
(2.1), while the lower bound is a consequence of (2.2).
In the same way, for 0 < o < %, then (2.8) is deduced from (2.3). O
Similarly, we state some useful pointwise estimates on 7},(§) and the scaled Bessel po-
1
tential A7, where the proof is presented in Appendix A.2.

Lemma 2.5. Let pp € (0,1). Then we have the following pointwise estimates on the kernel
Tu(f) :
e For all hg € (0,1) there holds

h
(1= 5) +ev/alél < (Tu©) ™ S 1+ Valgl. (29)
o There holds
1S Tu(O{Vrg) S 1. (2.10)
e For s € R there holds
d 1 1
\d—£<ﬁ>5<ﬁs>i < {6 V. (2.11)
e For s € R there holds
d )
S VmOE VR 5 e (212)
o There holds
vie)? -t 51 (213)

A direct consequence of the above estimates can now be given.
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Corollary 2.6. Let f € #(R), p € (0,1), s € R and ¢ > 0. Then for all hy € (0,1) there
holds

IVTu(D) 2 < |flz- (2.14)

(0= P01 e+ eyID e < [T D) e S U3y + e/IDE e (215)
e S IVTaD)AZ flae S 1 flare (2.16)

e+ VAID? Fe S A2 fe S [f + VAID? Fl3e. (217)

2.2. Commutator estimates. To handle derivatives in the nonlinear parts of the equa-
tions, we need commutator estimates on /C,,(D) and 7,(D).

Lemma 2.7. Let f,g € L (R), u € (0,1), s > 1, and ty > % Then we have the following
commutator estimate

IVE(D)A%, f10:gl 12 S (21 f|e + VoD flue) 029l rto
+ (Rl + Vo D2g|e)|0: | o (2.18)

In the high regularity setting, the proof will follow the same lines as in [51], but we track
the dependence in p and ¢ using the pointwise estimates above.

Proof. First, write the commutator as a bilinear form:
VDI Aowal, = | [ (/EuO6)° = ool e = st do|
€

Then if a = min{¢, p} and b = max{¢, p}, we can use the mean value theorem, leaving us
to estimate the following terms

VEL©©) = Kul) )

d
dw
But using (2.5) to estimate mq(w) and (2.4) to treat ma(w), we deduce

S sup [m(w)][§ —pl,
we(a,b)

where
m(w) =mi(w) + ma(w) = (W)= Ku(w) + (w)* 1 Kpu(w).
m(w) S lw)’ ™ + Voui ) w2, (2.19)
where the upper bound is increasing for s > 1. Therefore an upper bound is attained at

lp| or |€] < |€ — p| + |p| . In particular, if w = |€ — p| then we may conclude by Minkowski
integral inequality, the Cauchy-Schwarz inequality and (2.19) that

[[VEW(D)A®, flowg| 2 < 5

€= 01 e =l 1€ - 01 13:000) dp\
R L§

+ \/E,u%

/R<s —oP e — plEIE — ol 1F(E — p)] 13ag(p)] dp

2
Lg

11
S (I f s + Voui|D? flus)|0sgl o,



LONG TIME WELL-POSEDNESS OF WHITHAM-BOUSSINESQ SYSTEMS 13

for tg > % On the other hand, if w = |p|, then we make a change of coordinates and argue
similarly to deduce,

H\/’C(D)Asv .ﬂazg|L2 S/ Cg

(€= ags — v M 1F @)l v]

+ o

/ W)Y — |3 € — )| ] 1)) dv
R 1.2

¢
11
< (cHlglas + VouT[D2glm)|0u f|pto-
Adding the two scenarios, we may conclude that (2.18) holds.

O
We will also need a commutator estimates on 7,(D) and Aé.
Lemma 2.8. Let f,g € S(R), s > 1, tg > %, pe€(0,1) and Aé as defined in (1.20).
o Then we have a Kato-Ponce type estimate
IA*AZ, £10nglzs S (Flie + 13 1D3 i) Dugl o
+ (Igle + 13 |D2g|172)100 o (2:20)

e There holds
IV TuD)AAL, f10eglre S| flmslgl o + | flitorilglas. (2.21)

Proof. The proof is similar to the one of Lemma 2.7 and relies on the pointwise estimates

1
established in Lemma 2.5. Indeed, for (2.20) we define a1(D)(f, g) := [A®AZ, f]95g and use
the mean value theorem combined with (2.11) to deduce

@@l < [ [© (A = (0 (V)| F(€ - o)l Brao)l do
< /R (& — ) M VEE — p)EIE - pl 1 (€ — p)] Bog(n)] dp
+ / (oL E — ol 176 p)] 8o (o) dp.
R

Then if we apply the L?(R)—norm with respect to &, we can argue as in Lemma 2.7 that
1 — 1 N
@O )lsz S 10 flae [ 10ra0) dp + gl [ 1ol 1] dp

Then use the definiton of a;(D)(f, g) and (2.17) to conclude.

1
The proof of (2.21) is the same, with as(D)(f, g) := [\/Tu(D)A®A, f]0-g. We use (2.12)
to find that

O] < [ [T (Vi = \/Tulo) o) (Vi)
S [t~ = ol 17~ o)l [B2a(o)] do
R

(€ = )] 10:9(p)| dp

+ / (P NE = ol 1F(€ = )| 1Boa (o) dp,
R

and the result follows.
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Next, we state the classical Kato-Ponce commutator estimate. We will use it repeatedly
to commute the Bessel potential with functions to obtain the desired energy estimates in
the coming sections.

Lemma 2.9 (Kato - Ponce commutator estimates [29]). Let s > 0, p,p2,p3 € (1,00) and

p1,pa € (1, 00] such that % = + p—z = p% + p%, Then
\As(f9)|Lp S f oo [AglLee + A flLes |g]Les (2.22)
and
I[A%, flglze S 100 flze [N glre + [A° fl1es lg|oa. (2.23)

Similar commutator estimates also hold for more general multipliers. In fact, by splitting
the frequency domain into two parts using smooth cut-off functions defined in frequency,
we can obtain sharper commutator estimates specific to equation (1.5).

Definition 2.10. We define the smooth cut-off functions ) € . (R) as Fourier multipliers

FO D)) = xD1eDf (&),

for any f € Z(R) with the following properties:
0<xP@ <t (WO +P©P=1 on R,

11

suppx C[ 1,1], suppx CR\[fE 5}

Moreover, we denote the scaled version in u by Xu>(£) (i)(\/ﬁf).

and

We have the results:
Lemma 2.11. Let s > %, we (0,1) and f,g € Z(R).
o Let (XE})\/KH)(D) be the multiplier of the symbol (XLI)« /K,)(§). Then

|6V VED D)2 Zo |12, (2.24)
and
1060 V) (D), f19egl12 So |19 2. (2:25)
o We define the symbol
F%%(D): (f\DI +Uf\D\) (2.26)
Then
(C2F,, (D) flz2 So |flz2 + #[D2 ]2 (2.27)
and
10G2F, 1) (D), fldsgliz So i1 flielgl - (2.28)
o Lastly, we define the symbol F,, o(D) to be
1
2
Fuo(D) 1= (i +ovilDl ~ (D) ) (229)
Then
(2 F,0) (D) 12 So 112 (2.30)
and

(X PFu0)(D), flzglre So | flmslglLe- (2.31)
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The proof is postponed to Appendix A.3, where we also will prove the following commu-
tator estimates at the L?(R)—level:

Lemma 2.12. Let s > 3, p € (0,1) and f,g € S (R).
1
e For the composition of \/T,(D) and Aj there holds,

VT (D)AZ, f10sglzz < |fla- 1ol 2. (2:32)

o While for the usual Bessel potential there holds,
[V Tu(D)A®, f1029|r2 < [ f|ms|A®g] L2 (2.33)
o Similarly, when the operator A® is the identity, we have
[V Tu(D), f10zglrz S |flaslglz2- (2.34)
e The derivative of the following commutator satisfies
102/ Tu(D), flglr2 S [ f1ms|glL2- (2.35)
1
o Lastly, we can commute Aj by
1 1
[Ais £102glr2 S | f|ms|Aiglre- (2.36)

2.3. Classical estimates. Before turning to the proof of the energy estimates, we state
some necessary results that will also be used throughout the paper. First, recall the em-
beddings (see, for example [34]).

Lemma 2.13 (Sobolev embeddings). Let f € #(R) and s € (0, %) Then H*(R) — LP(R)
with p = ﬁ, and there holds

|fler S ID* 2. (2.37)
Moreover, In the case s > %, then H*(R) is continuously embedded in L™ (R).

We also will use the Leibniz rule for the Riesz potential on multiple occasions.

Lemma 2.14 (Fractional Leibniz rule [30]). Let 0 = o1 + 02 € (0,1) with o; € [0,0] and
pop1p € (1,00) satisfy = 1 + L Then, for f,g € #(R)

ID?(fg) — fD7g — gD flL» < [D7' Lo [D7 gL (2.38)
Moreover, the case o9 = 0, py = 00 is also allowed.

Finally, we recall the following results for the Bona-Smith argument (provided in the
classical paper [7]) on the multiplier ¢5(D) defined by:

Definition 2.15. Let ¢ € #(R) such that [ ¢ =1 and for § > 0 define the regularization
operators ws(D) in frequency by
Vi€ LAR), VEER, @sf(6) =009/ (6),
where ¢ is a real valued and p(0) = 1.
We give the version of the regularization estimates as presented in [34] (Proposition 9.1).
Proposition 2.16. Let s >0, 0 > 0 and f € #(R). Then
los(D) fls+a S 07 flus, Vo> 0, (2.39)

and

los(D)f = flus-e S 6°Iflms, VB €[0,3]. (2.40)
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Moreover, there holds

s(D)f = flies = o(6"), VB0, (2.41)

3. A PRIORI ESTIMATES

In this section, we give a priori estimates for solutions of the three systems (1.5), (1.7),
and (1.9).

3.1. Estimates for system (1.5). As noted in the introduction, we revisit the energy
estimate in [51] to keep track of the parameters o, and p. For simplicity, we adopt the
notation U = (n,u)T = £(¢,v)”, where we write (1.5) on the compact form:

&U + M(U,D)U = 0, (3.1)
with
M(U,D) = (“(,i KulD)t W’f) . (3.2)

Also, we simplify the notation for the energy given in Definition 1.17 by introducing the
symmetrizer

— oW @) (L Oy, (0 0
QD)=+ WD = (3 )+ () lp) @)
Then the energy given in Definition 1.17 can be rewritten as
E,(U) = (A°U,Q(U, D)ASU)LQ.

Proposition 3.1. Let s > 2, e, € (0,1) and (n,u) = (¢,v) € C([0,To]; VJ(R)) be a
solution to (3.1) on a time interval [0,Ty] for some Ty > 0. Moreover, assume there exist
ho € (0,1) and h1 > 0 such that

ho —1<n(x,t), V(r,t) eRx[0,Ty] and sup |, u)|gsxms < ha, (3.4)
te(0,To)
when o > %, and that
_g < W(x:t), V(I,t) €Rx [O,To] and sup ‘(TI:“)‘stHS < hl? (35)

t€[0,To]

when 0 < o < %
Then, for the energy given in Definition 1.17 and ¢! defined by (1.19),

d 3
SE(U) < & (B(U))%, (3.6)
for all 0 <t < Ty, and
col(m,w)li; < Eo(U) < &l )l (3.7)

for all0 <t < Tp.

Remark 3.2. Note that we aim to prove (3.6) with power % on the right-hand side. This
result will prove essential in getting the time of existence T ~ % in the proof of Theorem
1.6. One should also note that if we have (3.7), then it is enough to show

d
7ESU <a )
ZE(U) 5o |, 0)

to obtain (3.6). With this in mind, in the proof of the proposition, we will repeatedly use
assumption (3.4)—(3.5) to discard higher powers in the norm of the solution than 3. Meaning

3 3
Vi
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the terms of form |(n, u)|1‘3/+," for n € N will be bounded by |(n,u)|3 since this seems to be
" P
the best we can hope for when using the current method.

Proof of Proposition 3.1. We first prove estimate (3.7) in the case ¢ > 1/3. By definition,
we have that

Ey(U) = [A%nf3 + (A%, (Ku(D) + n)A%u) .
Thus, as a result of the non-cavitation condition (3.4) and the estimate (2.7), there holds
h
(A*u, (Ku(D) + mA*) o > Zlulh + ey/EID2ulf.

The reverse inequality holds for any o > 0 and is a consequence of (2.7), Holder’s inequality,
the Sobolev embedding with s > %, and conditions (3.4)—(3.5). Indeed, we observe that

Ey(U) < [nlfs + [VEuD)ulfps + nlzeeulfps < col(n )l

In the case 0 < 0 < %, we impose the o—dependent surface condition (3.5), leaving less
to be absorbed for the coercivity and in conjunction with (2.8). This implies

S S a l
(A, (Ku(D) +mA*u) 1o > Slulfre + ey/uD2ulf..

As a consequence, we have that (3.7) is established for all o > 0.
Next, we prove (3.6). By using (3.1) and the fact that Q(U, D) is self-adjoint, we compute

LS E(U) = (MO.U,Q(UD)AU) . + L (AU, (9,Q(U, D)A'U) .,

—(A*M(U,D)U,Q(U,D)A*U) , + %(ASU, (0,Q(U,D))A®U) ,
= —T+1II.
Control of I. We may write
I = ([A*,M(U,D)]U,Q"(U,D)A*U)
+ (A*M(U,D)U, QP (U, D)A*U)
= I+ Iy + Is.

12+ (QV(UD)M(U DAV AU)

L2

Control of I;. It follows from the Cauchy-Schwarz inequality that
1] < [[A%, M (U, D)JU12[Q" (U, D)A*U] 2.
The second term is easily treated,
QW (U.D)A Uz S [A*nlgz + |l [ Aul 2 < (0, )l

by Hélder’s inequality, the Sobolev embedding with s > %, and assumption (3.4). Further-
more, using the Kato-Ponce commutator estimate (2.23) yields

|[A%, M(U,D)]U| 2 < [[A%,u]0zn] 2 + [[A%, 1] Ozul 2 + |[A%, u]Opul 2
< [nlmslulms + lulhs
< [(n, ).
The desired bound on I; follows:

1] < |, )l
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Control of I + I. First note that (a;;) = QM (U, D)M (U, D) is given by,

(aij) = (Zgj (Ku(];za'; 7])8z> )

We must estimate each piece below,
(QW(U,D)M(U,D)A®U,A*U),,
= (aHASn,ASn)LZ + (GIQASU, AS77)L2 + (a21ASn,Asu)L2 + (aggASu, A“"u)L2
=: A + Aia + Agg + Ao

As we will shortly see, Aj2 + Ao needs to be compensated by Bsj, that is defined by the
remaining part:

(A*M(U,D)U, QP (U,D)A*U) ,, = (9:A%, Ku(D)A*w) ,, + (A*(udpu), K (D)A®W) |,
=: Byy + Bas,

while Bgg is the price we pay for symmetry.

Control of A11. Integration by part and the Sobolev embedding yields

1] < 5| (@euhn, %) o] < 51l Il S 10, 0)
Control of Ajg + Aa1 + Boi. By definition, consideration is given to the expression
Ay + Agy + Boy = ((Ku(D) + n)0uAu, A%n) 1, + ((Ku(D) + 0)0:A*n, A*u) .
Observe, after integration by parts that
A = —(Asu7 (Ku(D) + 17)8IA377)L2 - (Asu7 BgmAsn) 2

The first term cancels with (A1 + Bai), while the Sobolev embedding easily controls the
remaining part,

(A%, 0enA®n) 15| < Bxnl Lo [l s lulms S |(n, 0l

Control of Ags. We simply use integration by parts as above together with (3.4)—(3.5) to
deduce

|Aga| < |(7]u81A3u7 ASU)L2| < C?;\(%“)l%@y
Control of Baa. We observe, after integrating by parts that

Bay = (A (ud,u), Ku(D)Au)
= ((VRA(D)A 1w, o/Ku(D)A*) 1 — 3 (o) /s D)Aw, /K (D)A) o

Thus, we deduce by using Holder’s inequality, estimates (2.18) and (2.7) that
1Bl < 2l w)l
Control of I1. First we claim that |K,,(D)0yulre So [(7,u)]vs for s > 2. Indeed, it follows
from (2.1) and the Sobolev embedding H%+(R) — L*°(R) that
IKu(D)Ozur < |3zU|Hsfg + a\/ﬁ\chr?zu|H57%
< (Julns + AD2ulps). (3.8)
Then we observe by using equation (3.1) yields,

IT = (Au, () Au) 2= —(A’u, (Ku(D)dyu)A®u) 2~ (Au, (Dz(nu))A®u) 2
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Consequently, the desired estimate follows from Holder’s inequality, the Sobolev embedding,
and the above claim that,
11| S [Ku(D)uloe [ulfys + |00 () L= [ults So |(n, 0l (3.9)
Adding together all the estimates, combined with (3.7) yields,

SE(U) <& (BU)

ol

and completes the proof of Proposition 3.1.
O

3.2. Estimates for system (1.7). As in the former subsection we define U = (1, u)T =
£(¢,v)T and we write the system on a compact form:

U+ M(U,D)U =0, (3.10)
with ( )
B U0y 14+1)0,
M(U,D) = (E(D)@ udy > . (3.11)
We define the symmetrizer associated to (3.10) to be
_(7u(D®) 0
Q(U,D) = ( 0 14n) (3.12)

Then the energy given in Definition 1.18 can be written as
1 1
&(U) = (ASA;‘;U, (U, D)A“"A,‘iU)L27

and the a priori estimate for (1.7) is stated in the following proposition.

(3.13)

Proposition 3.3. Let s > 3, e, € (0,1) and (n,u) = e(¢,v) € C([0,To]; VJ(R)) be a

solution to (1.7) on a time interval [0,Ty] for some Ty > 0. Moreover, assume there exist
ho € (0,1) and hy > 0 such that

ho —1<n(z,t), V(z,t) eRx[0,To] and sup |[(n,u)|gsxps < hq. (3.14)
t€(0,To)

Then, for the energy given in Definition 1.18, there holds
d 3
%ES(U) < (&(0))2, (3.15)

for all 0 <t < Ty, and
)y S EU) S 1wy, (3.16)
for all 0 < t < Tp.

Proof of Proposition 3.3. We begin by proving (3.16). By Definition (1.18) of the energy,
the non-cavitation condition (3.14), (2.17), and (2.16) we obtain the lower bound

1 1 1
&(U) =] \% E(D)Aﬁnﬁ{@ + (AﬁAsu, (I+ U)AﬁAsu)Lz
1
> el + holAful.

1
> cnlis + ¢ holulfs + ValD2ulde),

for some ¢ > 0. The reverse inequality follows by the estimates (2.16), (2.17), Holder’s
inequality, the Sobolev embedding, and (3.14):

1 1 1
E(U) < [V/TuD)AG0lEs + IAGulfps + Il | Afulfs S (0, u) [
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Next, we prove (3.15). There follows by using (3.10) and the self-adjointness of Q(U, D)
that

1 1
%%gs(U) — —(A*AZM(U,D)U, Q(U, D)A*AU) .,

1 s 1 s 1
+ 5(A AZU, (9,Q(U,D))A°AZU),,
= —T+17T.

Control of Z. By definition of (3.13) we decompose Z in four pieces,
1 1 1 1
7= (ASAﬁ(uZ‘)zn), A“;AfﬂL(D)n)L2 + (ASA,i ((1 + 7])@511),AsAﬁ7;(D)17)L2

1 1 1 1
+ (A ARTL(D)den, (1+ MAAZu) 1o + (AAZudsu, (1 + M)A AZu) 1,
=: A + Az + Aai + Aso.

Control of A11. We aim to exploit symmetries, and we first write A1 as
1 .
An = ([A°AZ/T(D), w]dzn, A°AZ/To(D)n) 1
1 1
+ (uA®AZ /T (D)en, A°AZ \/7L(D)17)L2
= Ajy + Af.

The first term is treated by the commutator estimate (2.21) with s > %, the Cauchy-Schwarz
inequality and (2.16). Thus, there holds

1 1
| AL < [A°AEV/Tu(D), u]dun| 2| A°Af /T (D)l 2 < Jul e 0l
Similar to previous estimates, we use integration by parts and exploit the symmetries of
+
A2, then conclude by (2.16), and the Sobolev embedding H? (R) < L*°(R) that

1 1 1 .
Al < S[((0u) A" A /T (D), A°AG/Ta(D)n) 12| < 100, w) -
Control of A1o + Ag1. We first decompose Ajo in two parts
1 1
Az = ([AN°AZ/T.(D), 0] 0wu, A°AZ\/Tu(D)n) ;o
1 1
(AN TD)Os, AT .
= Ay + Al
We estimate Al, the same way we did for A}, and obtain
| Ala| S lul s 03
For the second term, after integration by parts, we find
1 1
Aly = —((0em) N A/ Tu(D)u, A°AZ /T (D)n) 1
1 1
— (L +m)A° A/ Tu(D)u, A°Af\/Tu(D)0zn) -
2,1 2,2
=Ap + A
By using the Sobolev embedding and (2.16), we find that

1 1
< 0um| oo |AZ N/ Tt s |AZ/Toml s <l s 1l

2,1
AL
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On the other hand, we cannot estimate A?’QZ on its own. We must therefore cancel it with
Asq. Observe

Az = (AN Tu(D)0en, [/ Tu(D) A A ) o

+ (A°AL V/Tu(D)3en, (L +0)AAL /T (D)u) »
= Ay + A3y

First, by using integration by parts, the Cauchy-Schwarz inequality, (2.16), (2.35) and (2.17)
we find that

1 .
A2 = [A*AG /T (D)l 2100 [y Tu(D), A" Al 2 S (0, )7 (3.17)
On the other hand, we observe that A3, = ng’f. We may therefore conclude that the sum

satisfies:
[ A1z + A2 | < [(n,w)

3
Vs
Control of Ass. Similar to A7 we write the expression with the good commutator:
1 1 1 1
Aoy = ([AsAﬁ ,u]Opu, (1 +m)A°AZ u) 2t (uASAﬁ Oz, (1 +m)A°AZ u)L2
= Ajy + A3,

Then use the Cauchy-Schwarz inequality, (3.14), (2.20) with s > %, and the Sobolev em-
bedding to get

1 1 .
Al S IA°AE, w]dpul g2 (1 + ]2 A Aful 2 S |(, )}

While for A3, we integrate by parts, apply the Sobolev embedding, and again bound each
term by the V,j—norm of (n,u) to obtain that

2] S (10sulze + [Bun] ) Al  [(n, )y
Gathering all these estimates, we conclude that
121 S 0l (318)
Control of ZZ. By defintion of (3.12) and (3.10) we get that,
1T = (A*AZu, (Om)A*Au) Lo
= —(A*Adu, (Deu)A*AZu) o — (A*AZu, (0 (7)) A°Aju) Lo

Then, by using Holder’s inequality, the Sobolev embedding, (3.14) and (2.17), we deduce
that

1
ZZ| < (|0zul > + |00 () L) A ulfps < (0, )

%. (3.19)

Consequently, we may add (3.18) and (3.19), then apply (3.16) to conclude the proof of
estimate (3.15).
O
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3.3. Estimates for system (1.9). As in the former subsections we let U = (n,u)T =

e(¢,v)T and write the system on the form

o U+ .#(U,D)U =0, (3.20)
with
Tu(D)(udy+) 0 + TL(D)(nGx'))
A (U,D)= (" ! . 3.21
w0 = (R0 7 By @21)
The symmetrizer is defined by
_ (7. (D)K,u(D) 0
2(U,D) = ( 0 n_l(D) 4n) (3.22)
Then the energy given in Definition 1.19 can be written as
&(U) = (ASUM,"Z(U,D)ASU)L27 (3.23)

and the a priori estimate for (1.9) is stated in the following proposition.

Proposition 3.4. Lets > 3, ¢, € (0,1), 0 > 0, and let (n,u) = £(¢,v) € C([0, To); X5, (R))
be a solution to (1.9) on a time interval [0,Ty] for some Ty > 0. Moreover, assume that
there exist ho € (0,1) and hy > 0 such that

ho—1< 77(957’5), V(.T,',t) eRx [07 TO] and sup |(777 11’)|HS><H" < hy. (324)
t€[0,To

Then, for the energy given in Definition 1.19, there holds,

d 3
26,(U) S E(&(V), (325)
and the energy is coercive:
.k, S EU) S |l (3.26)

Proof of Proposition 3.4. We will first provide the coercivity estimate (3.26). By Definition
1.19 for the energy, the non-cavitation condition (3.24) and (2.15) we obtain the lower
bound

&(U) = (oD )nlEs + (Au, (T, (D) + n)A%u) 1,
h() 1
> [nffr- + oplDnlf: + S |ulfze + ey/ED2ulf,

for some ¢ > 0 and ¢ > 0. The reverse inequality follows by the upper bound in (2.15), the
Sobolev embedding and (3.24):

—1
&(U) < (VoD )nlhs + VT, (D)Au® + [nlz A%l S [(n,w) ;-

We may now prove (3.25). To do so, we use (3.20) and the self-adjointness of 2(U, D)
to write

é%é@(U) = —(A*.#(U,D)U, 2(U,D)A*U),, + %(ASU, (8:2(U,D))A°U) .,
=J+I7.
Control of .#. By definition of (3.23) we must estimate the following terms:
I = (A (udyn), Ku(D)A®n) 2t (A*0zu + AT, (D) (ndyu), 7;_1(D)ICM(D)AS77) 12
+ (A*Ku(D)0an, (T, (D) + n)A%u) o + (A*To(D) (udpu), (T, (D) + n)A*u)
= 91 + S + o1 + .
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Control of <#11. We rewrite 2711 as

A1 = ([A°/Ku(D),u]0zn, A\/Ku(D)n) 1o + (ul®/Ku(D)den, A*\/K(D)n) 1

= ) + A
Then in the case o > 0, we first observe by interpolation and Young’s inequality that
1 i 1
Vol .y < Il (ov/alnlgsa)® So [nlas +oy/ulDlas, (3.27)

and thus 4} is treated by the Cauchy-Schwarz inequality, the commutator estimate (2.18)
with s > 3, (2.7), and (3.27):

1 1
[l < o (lulms + pzlul o) (0l + Vopdlnl.1)? S el )k, -

o,

On the other hand, for /% we conclude by integration by parts, (2.7), (3.27), and the
Sobolev embedding with s > % that

|| S || + |0sul o |/ ICu (D)l s |/ K (D)l e S el )l

for o > 0. Moreover, in the case ¢ = 0, then K,(D) is equal to 7,(D) and we simply
use Holder’s inequality, (2.33), (2.14), the Sobolev embedding, and integration by parts to
deduce the estimate

1| < [([A°\/Tu(D), uldan, A°/Tu(D)n) o] + | (uA™ /T (D)0, A*/To (D)) 12

< lulas s

Control of of19 + f51. By using integration by parts we write,
hy = (A*(n0zu), Ku(D)A™) 1, — (A%, T, (D)Ku(D)A®0zn) 1
= Sy + A

For 47, observe

iy = (A%, 00z, K (D)A*) 1 — ((Qam)A%u, Ku(D)A®D) 1 — (nA%u, K (D)A®Bar) 1

= i + A + h
Then in the case o > 0 we use the Kato-Ponce commutator estimate (2.9), the Sobolev
embedding, and the pointwise estimate (2.1) combined with Plancherel imply that
(5" + %) S Elulzenlae (nlaze + oD i) € 2wl
While for the case o = 0, we simply use the boundedness of 7,(D) on L?(R) to deduce,
3" + 3"

Hs

< lulgs |l

However, in either case the contribution of remaining terms, 4&71123 + @3, will be canceled
by o%;. Indeed, we observe that

oy = (N Ku(D)0an, nA*w) 5 + (A*Ku(D)un, T, {(D)A) , = —as® — .
Hence, combining these identities and estimates gives the bound
(o + ar] < Al -
Control of a#55. Consider the two terms:

lyy = (A (udpu), N*u) 1, + (AT (D) (udou), nA*w) 1, = gy + .
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The control of %} is a direct consequence of the Kato-Ponce commutator estimate (2.9)
and integration by parts. Since s > g, we have that

1 ,
) < (A%, 0y, A%) | + 5] (Ou) A, %) o] Sl

To deal with /%, we make the decomposition

;2/222 = ([As\/ﬂ(D),u]axu, \/’7:L(D)77A‘("U)L2 + (uAs\/ﬁ(D)Gxu, [v/T.(D), 7]]Asu)L2
+ (uA® /T (D)u, ny/T,(D)Au) 12
- o' o+t

Then for %221 we employ the Cauchy-Schwarz inequality, (2.33), (3.24), (2.14), and the
Sobolev embedding to deduce

5| < |[A*Y/Ta(D), u)deul 12|/ Ta(D) (A 0) | 2 S |(n, )y,

Before we treat 52%222’2, we note that [[\/7.(D), n|A%ulr2 < |n|ms|u
and the Sobolev embedding we find that

[V Tu(D), A w2 S (e |A%ul L2 S 0l s |u

Consequently, using integration by parts, the Cauchy-Schwarz inequality, (3.28) and (2.35)
we get

pe. Indeed, using (2.14)

e (3.28)

|55 = [ (0ew) AN/ T (D)u, [/ Ta(D), mA™w) 1|
(A T (D), 04y (D), 1]A%) |

< lnlasluldys,

then use (3.24) on one term. Similarly, for %° we use integration by parts, the Sobolev
) 22
embedding, and (2.14) to get the bound

2,3
| 5" | S 10 ()| oo [ul Frs.

Therefore, we conclude by (3.24) and gathering all these estimates that
|l eoa| S 1wl s
and by extension, we have the bound

|7

<o 1)y,
Control of .#.7. By defintion of (3.22) and (3.20) we get that,
I I = (Nu, (Om)Au) ;.

= —(A%u, (Bpw)A®u) ., — (A%u, (To(D)ds (u))A%u) .,

Then the final estimate follows by the Cauchy-Schwarz inequality, (3.24) and the fact that
7,(D) is bounded on L*(R), then apply Holder’s inequality, and the Sobolev embedding to
deduce

77| < 0zul oo ulfys + [Tu(D)0s () oeulfrs < 100, 1)[% -
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4. ESTIMATES FOR THE DIFFERENCE OF TWO SOLUTIONS

4.1. Estimates for system (1.5). We will now estimate the difference between two solu-
tions of (1.5) given by Uy = (1,u1)” = (¢1,v1)T and U = (2, u2)” = (¢, v2)T. For
convenience, we define (¢, w) = (n1 — 72, u1 — uz). Then W = (s, w)T solves

oW + M(U;,D)W =F, (4.1)
with M defined as in (3.2) and F = — (M (U;,D) — M (U, D))U,. Specifically, the source
term is given by

_ wax772 + Y0 us
F—— ( B e . (4.2)

The energy associated to (4.1) is given in terms of the symmetrizer Q(U1,D) defined in
(3.3) and reads
E{(W) = (A°W,Q(U1,D)A*W) . (4.3)
The main result of this section reads:

Proposition 4.1. Take s > 2 and &, € (0,1). Let (1, u1), (n2,u2) € C([0,Tp] : Vi (R)) be
two solutions of (1.5) on a time interval [0,Ty] for some Ty > 0. Moreover, assume there
exist ho € (0,1) and hy > 0 such that

ho =1 <m(z,t), Y(z,t) € Rx[0,Tp] and sup |(m,w1)|msxms < hi, (4.4)
t€[0,7p]
when o > %, and that

T <), Y(z,t) ERx[0,Tp) and  sup |(n1,un)|gexms < hi, (4.5)
2 t€[0,To]

when 0 < o < %
Define the difference to be W = (¥, w) = (1 —n2, w1 —uz). Then, for the energy defined
by (4.3), there holds

d ~ 2
EEO(W) So max | (i wi) v | (9, w) [0, (4.6)
and ~
06 w) Ry S Eo(W) S (6 0) . (47)
Furthermore, we have the following estimate at the V,;— level:
d - s s
27 Es(W) o |[(AF, QU1 D)AW) 1|  max| (mi, wi) v | (4, w) [, (4.8)
and

|(7/)a“’)|%/; So ES(W) So 1(1,w) %/; (4.9)

Remark 4.2. The source term corresponding to F given by (4.8) will be treated in the proof
of Theorem 1.6 by using regularization estimates and a classical Bona-Smith argument [7].

Proof of Proposition 4.1. First, the proofs of (4.7) and (4.9) are similar to the one of (3.7).
Next, we only prove (4.6), where (4.8) is more straightforward and follows the same line,
utilizing similar estimates to those applied for the proof of Proposition 3.1.
To prove (4.6), we use (4.1) and the self-adjointness of Q(U1,D) to write
1d - 1
§%EO(W) = §(W7 (8:Q(U1,D))W) ., + (F,Q(U1,D)W)
— (M(U1,D)W,Q(U;,D)W)
=I—-1I-1II

L2

L2
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Control of I. We estimate the first term for s > 2 by arguing similarly to estimate (3.9).
Indeed, we have that

I'= (w, (9em)w) < 10im|reewlfe So |(ur,m)lve (0, w) .
Control of II. For 11, we write

11 = (waIL‘HQ’w)LZ + (wawn%w)[lz + (wawu27n1w)L2 + (wawu27’C#(D)w)L2
=1L +1I+ 113 + I1y.

The first three terms are treated by the Cauchy-Schwarz inequality and the Sobolev em-
bedding. Take, for instance, I1;:

[ S [wdena 2|2 < el (0, w) [y,
for s > % Then estimating /15 + I3 similarly gives
LI+ 1Ty + T3] S max | (i, ui)
i=1,

(77/}7 ’IU) ‘%/f .
Regarding the term containing the multiplier (D), we write
11, < |3/Ky (D) (wsuz)| 2|/ K (D)ol =: 11} 113,

and make the observation
1 11 1,1
II; <|(v/Ku(D) — VouiD2)(wdyuz)| 2 + Vopi|D2 (wdyus)| L2
= I +oll}>

For the first term, we note that (/K,(D) — \/EuiD%) is bounded on L?(R) by (2.5), and
we can conclude by the Sobolev embedding that

Vi

1,1
IT} So [wOeme| 2 So 2l (¥, w)lyo.

For the remaining term, IT}*, we first make an observation. Let v = %7 and (p1,p2) =
(L, 2-) then by (2.37) there holds
‘D%quﬂyﬁq /Li |w|rpe S |uQ|H27uu% ‘D%UJ‘Lz. (4.10)
Moreover, by the fractional Leibniz rule (2.38), the triangle inequality and Holder’s inequal-
ity yields the bound
Ili"2 < ;ﬁ\D%(wazug) - wDéaxug - (3mu2)D%w|Lz + ui\wD%&ﬂuﬂLz
1
+ 1| (Dau2) D2 w12
< |D28yus| e it [w| e + [w] g2 D2 Oyus| o + |Dtin| poo D2 w] 2.
1-2v _ 1

Now, since p% + p% = v+ 5% = 5, we may apply (4.10) to deal with the first term, and

combined with the Sobolev embedding H %+(R) — L*(R) we deduce that

1 1 1 1
13 5 |ual o3 |D7wl gz + ] 213 D7 uz| e,
with s > % Consequently, the bound on Iy is given by
Ty o man | (mis i) v | (4, w)[Fo.
which allows us to conclude that

IT S mae (i, wi)lvs | (0, w) -
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Control of I71. By definition, we must estimate:
T = (w1023, %) 1o + ((Ku(D) + 1) 00w, ) 1
+ (81¢7 (Ku(D) + nl)w) 2t (ulazw7 (Ku(D) + 771)10) 12
= A1+ Ay + Az + Ay
The first term is handled by integration by parts and the Sobolev embedding
|A1] S 10pua | Y172 S Jualas |7

Next, we observe a cancelation in the off-diagonal terms due to the symmetry. Indeed, we
see after integrating by parts that

Ay = —((6z771)w7¢)L2 — As.
Consequently, we observe after using Holder’s inequality and the Sobolev embedding that
|[A2 + As| < |Osm| Lo [w] L2 || 2

The only term remaining is A4, which contains the multiplier that will need some more
care. In particular, we write

A4 = (ularwv nlw)L'z + (ularw7 IC’U.(D)w)
= AL+ A2

The first term is again treated by integration by parts, and we obtain the bound

L2

1 2
| A4l S Tulas Im s w7
Lastly, to estimate A%, we split the kernel K.(D) into several pieces that are localized in
low and high frequencies:

Ku(D) = ((”)*Ku) (D) + () (F, 1)*) (D) = () (Fp0)*) (D), (4.11)

where F , 1(D) is defined in (2.26), F,0(D) is defined in (2.29) and XS)(D) with its porperties
Hog g
given by Definition 2.10. Then, we get that

(wdsw, Ku(D)w) 1o = (/Ko (D) (wdw). () /K (D)w) 1
+ ((GPF, 1) (D) wdw), (PF, 1) (D)w)
~ (P 00) (D) (11 00), (x(?F10) (D)) 2

A2 422 2,3
= Ay + A - Ay

We treat each term individually using the commutator estimates in Lemma 2.11, where the
remaining part is symmetric and is treated by using integration by parts and the Sobolev
embedding in the usual way.

Control of Ai’l. Proceeding as explained above, we have that
A7 = (P VED D), mldsw, (D V) (D)w) 1
+ (11 () /) (D) Dz, Wf )(D)w) s
_ Ai SR Ai’m-
For Ai’l’l we use the Cauchy-Schwarz inequality, (2.24), and (2.25) to obtain the bound

AT S0P V) (D), wi)dew] 2| (D +/Ko) (D)w] 2

< lual s wlZe.
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For the remaining term, we deduce from (2.24) that
1
2,1,2
Ay = 5|((3xU1)(XL1)\/’Cu)(D)w7 (¢ VEL) (D)w) 1|
S 10z | poo w72

Control of A3?. Similarly we get from the estimates (2.27), (2.28) and the Sobolev embed-
ding that

AP S 1P, 1)(D), w)dpw, ((PF,, 1) (D)w) |
1
+ 31 (@) ((PF, D)D), (GF, 1) (D)w) o]
< Jutl s (Jwl g2 + pt D3] p2)?.

Control of Ai’g. By the same approach as above, combined with estimates (2.30) and (2.31)
leaves us with the bound

AT S 1(IOCPF 10) (D), ua]dpw, (x PFu0)(D)w) |
1
+ 5 (@) (P Fuo) D), (I F0) (D)) |

w[3s + Dt | Lo |w] 75

< lualms
Gathering all these estimates, we obtain the result
|| = A} + AF + A3 So (lualzrs + Il o) (8, w) -
Adding I + II + 111 concludes the proof. |

4.2. Estimates for system (1.7). As in the prvious subsection, we let Uy = (n1,u1)T =
e(¢1,11)T and Us = (n2,u2)T = £((2,v2)T be two solutions of (1.7) and define the difference
(Y, w) = (1 — n2,u1 — uz). Then W = (b, w)T solves

KW + M(U,,D)W =F, (4.12)
with M defined as in (3.11) and F will remain the same as previously defined by (4.2).
Then the energy associated to (4.12) is given in terms of the symmetrizer (3.12):

~ 1 1
E(W) = (AZAW, Q(U1, D)AZA’W) . (4.13)

Proposition 4.3. Take s > 3 and e, € (0,1). Let (n1,u1), (n2, uz) € C([0,Tp) : Vi(R)) be
two solutions of (1.7) on a time interval [0,Ty] for some Ty > 0. Moreover, assume there
exists hg € (0,1) and hy > 0 such that

ho—1<m(x,t), V(z,t) e Rx[0,Ty] and sup |(m,u)|gsxms < hi. (4.14)
te[0,To]

Define the difference to be W = (¢, w) = (1 — n2,u1 —u2). Then, for the energy defined
by (4.13), there holds

d s 2
ago(w) S g%’;|(77iaui)|v,j|(w>u’)‘vgv (4.15)

and ~
\w,w)\%g S&W) S \(%w)l%/,p (4.16)

Furthermore, we have the following estimate at the V,j— level:

d; , .
21 (W) SI(AF, Q(Uy, D)A'W) 1| + max | (s, wi) v | (4, w) [, (4.17)
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and
w0y < EW) S 1wl (4.18)

Proof. The proofs of (4.16) and (4.18) are similar to the proof of (3.16).

Also, we only prove (4.15) since the control of (4.17) follows by the proof of Proposition
3.3.

To prove (4.15), we use (4.12) and the self-adjointness of Q(U;,D) to write

—— & (W) = (A W, (8;Q(U;,D ))AéW)LZ + (AéF, Q(Ul,D)AéW)LE

1
- (AﬁM(Ul, D)W, Q(U;,D)AZ W),
- 777 - T717T.

Control of Z. Using (4.12), (2.17), the Sobolev embedding and (4.14) yields
LA ; bop
7] = S1(Afw, (Om)AGw) L] S [0ns ) v Al
since s > %
Control of ZZ. The contribution of the source term is given by

= (AZ (w0a), Tu(D)AZ W) 1o + (AR ($0,u2), Tu(D)AZE) 1o

1 1 1 1
+ (AZ(w@lﬂm),!\;‘iUJ)L2 + ( i (wozug), 7]1Aﬁw)L2
=TI+ Ty + 113+ 114.

Control of IT1 + ZZ5. The estimate of ZZ; is a direct consequence of the Cauchy-Schwarz
inequality, (2.16) and the Sobolev embedding. Indeed, since s > %7 we get

1
IZZ1] < |/ Tu(D Aﬁ wem2) 2|/ Tu(D)AG Y] 12 S 2l s |w] 2] 2.
Next, the control of ZZ5 follows by the same estimates and gives

IZZ2| < [n2lns

vl
Control of IZ3 + I74. We first deduce from (2.13) that
1
|AZ (wuz)| 12 < |wdatta] 2 + 1§D (w0yus) -

The first term is estimated by the Sobolev embedding, while the second term is equal to
the term I1; in the proof of Proposition 4.1. Since the terms w and ug in 11, belong to
the same function space, we can apply the same estimates. Thus, there holds for s > % that

1
Ak (w02) 12 S | (i ) () . (4.19)

Therefore, by using the Cauchy-Schwarz inequality, (4.19), (2.17), (4.14), and the Sobolev
embedding implies

1
(T3] + 1ZZ4] S (Ut a7 (wue) || Al 2 < max | (7 ui) v (4, w) .-
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Control of Z77. Lastly, the symmetrized term reads:
1
1717 = (Az (U18z¢)7 I (D)A ¢)L2 ( ((1 + nl)aww)7 E(D)Ad w)Lz

= A1 + Aig + Ao + Ao

Each term is treated by using integration by parts and suitable commutator estimates.

Control of Ayy. For Aj;, we use integration by parts to find that
1 1 1 1 1
Ain = ([VTa(D)AZ, u1)0th, /Tu(D)AG D) 1o — 5 ((02u1) /Tu(D)AGY, /Tu(D)AGY) 2
Thus, it follows from the commutator estimate (2.32) with s > % and estimate (2.16) that
[Avr] S mae i, o) v [9]Z-
Control of A12 + Ag1. Treating the off-diagonal terms we first observe,
1 1
'A12 = ([ V E(D)Aﬁ 9 771]811'U7 \Y E(D)Afﬂﬁ)p
1 1
+ (14 m)V/Tu(D)A aw, /Tu(D)AGY) 1
= Ay + Al

The commutator estimate (2.32) and estimate (2.16) deals with the first term. Indeed, we
get the bound

1 1
ol < IVT(D)AG mlOswl 2|/ Tu(D)AZ |2 < mavx | (i, ui) v | (4, w) -
Next, we integrate A%, by parts to obtain two new terms

Ay = — () AV Ta(D)w, Afy/T(D)Y) 1
— (1 ARV TD)w ARV T(D)2. )
= Ay + Ay
Arguing as above, we find that
A2 < |um ] A7 /T (D)l 2l A7 /T (D)2 S I
for s > % On the other hand, the term A1’2 , is absorbed by Ag;. Indeed,

Aot = — (VT (D)A, 0: [y Ta(D), mIAfw) .
+ (VTa(D)AZO, (14 m) VTa(D)AGw)
= A%l + A%lv

with A3, = A%’QZ. We estimate AL, by using the Cauchy-Schwarz inequality, (2.16), (2.35),
and (2.17) to get

1
| < VT D)A Y2200 [v/Tu (D) mAGwl 2 < sl (0, w) -
Thus, we deduce by gathering all these estimates that

[Arz + Az | S max | (i, wi) vz | (4, w)ﬁ/g-

’IU)‘V(M
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Control of Aga. Lastly, the term Ajgg is estimated by (2.36) for s > %, (4.14), and integration
by parts

| A3, < \([AZ u1]0zw, (1 +m)Aj w)L2\+|(U1A ew, (1 +m)Ai w)Lz|
S max | (i, wi) v [ (4, )|v,9~

Therefore, we deduce that
d ~
& Eo(W) < IZ1 + 72| + 722] < ma w6, 0)
which concludes the proof of Proposition 4.3.
4.3. Estimates for system (1.9). Again, we let U; = (1,u1)” = £(1,v1)7 and Uy =

(2, u2)T = &(C2,v2)T be two solutions of (1.9) and define the difference (¢, w) = (n
N2, u1 — uz). Then W = (¢, w)T solves

&W +.#(U;,D)W =F, (4.20)
with .# defined as in (3.21) and F is defined by
Tu(D)(wdzmz) + T,(D) (Y0ruz)
F=—-("" F . 4.21
() s (21
The energy associated with (4.20) is given in terms of the symmetrizer (3.22) by
E(W) = (AW, 2(Uy,D)A*W) . (4.22)

Proposition 4.4. Take s > %, g,pu € (0,1) and o > 0. Let (m,u1), (n2,u2) € C([0,Tp] :
X35 . (R)) be two solutions of (1.9) on a time interval [0,Tp] for some To > 0. Moreover,
assume there exist ho € (0,1) and hy > 0 such that

ho—1<m (xat)7 V('Tvt) eRx [OaTU] and sup |(7117u1)\H-*xH5 < . (423)
te(0,To]

Define the difference to be W = (¢, w) = (1 — 12, u1 — u2). Then, for the energy defined
by (4.22), there holds

d

(W) So a0 (00 (1.24)
and
W)y S (W) < 106wy - (4.25)
Furthermore, we have the following estimate at the X7, — level:
SE(W) S, |(AF, 2(U1 DINW) |+ max (i w)lxs, [0 )y, (4.26)
and
o)k S EW) S @)k, - (4.27)

Proof. By previous arguments, we note that the proofs of (4.25) and (4.27) are similar to
the proof of (3.26).

Moreover, we will only prove (4.24) since the control of (4.26) follows by the proof of
Proposition 3.4.
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We will now prove (4.24). Then we first use (4.20) and the self-adjointness of 2(Uj,D)
to write

1ié}o(vv) =

570 (W, (8:2(U1,D))W) , + (F,2(U;,D)W) ,

— (///(UI,D)VV7 Q(UI,D)W)
=J-II - IIS.
Control of .#. By (4.20), Holder’s inequality, the Sobolev embedding and (4.23) we deduce

N =

L2

1
1] = 51, @) ol S a0+ bzl S mas O ) e 0, 0) g
Control of .#.#. The contribution from the source term is given by,
II = (wazn%lc,u(D)w)Lz + (wazn%’C;L(D)w)Lz

+ (waﬂ:uZ?w)LZ + (ZL(D)(wa‘LHQ)v 1’]1’LU) L2
= I I+ I I+ I I3+ I Iy

Control of .1 + F.F5. For o > 0, we first apply the Cauchy-Schwarz inequality, (2.1),
and the Sobolev embedding to deduce that for s > %

|7 1|+ I I 2| < (Jwlpz + ] r2) 02l me| K (D)l 2
= \7]2|HS|(1/17w)|§(gYH-

The case 0 = 0, is similar where we instead use the boundedness of 7,(D) on L*(R) to
obtain

I 1|+ [ Io| S Ialas| (4, w) 2.

Control of .75 + &.%,. Both terms are treated with the Cauchy-Schwatz inequality,
(2.14) and the Sobolev embedding. Consequently, for s > % and o > 0 there holds

|7 T3]+ [Tl S (1 ezl e wl e S masc | (ms, i) e | (8, w0) g -
Gathering all these estimates yields
771 S max | (i, ua) | 2| (¥, w)lxy,-
Control of .. .#. The symmetrized term ¥ . .7 reads:
9T =(10:p, Ku(D)¥) 12 + (1 + Tu(D)m)dpw, T, (D)Ku(D)¥) 1

+ (Ku(D)0ot), (T, (D) +m)w) o + (Tu(D)(wrdzw), (T, (D) + m)w) .

= A1 + Ao + Go1 + Saa.
Control of <#11. In the case o > 0, we decompose @71 as

1 = (wded, (D)) (D)) 1o + (wddh, (D) (F, 1)*) (D)) 1
= (W09, (D) (Fu0)?) D)) 2.

where we have divided the multiplier /C,(D) into three pieces in the same way as we did in
(4.11). We may therefore apply the same estimates as for A3 in the proof of Proposition
4.1, where we change the role of ¥ and w to obtain

1| = | (1102, KCu (D)) o] Sor un|ms (4172 + ﬁuillﬁ\;%)
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Then use inequality (3.27) to conclude that
|| S e |, w) o -
In the case o = 0, we simply use Holder’s inequality, (2.14), (2.34), to obtain
[i] S 1((0u1) /T(D)e, V/Tu(D)¥) o] + | ([V/Tu(D), )0z, /Tu(D)Y) 1o
< lua sl [ 7.

Control of @19 + a/1. Treating the off-diagonal terms we first observe by integrating by
parts that

«!‘{12 = _((arnl)w7 K/L(D)w)[g - %1'
Therefore, we may apply Holder’s inequality, the Sobolev embedding, and (2.1) for o > 0,
to deduce
| + | S I las | (4, w)lxg -

Control of a#s. We decompose o9 into two terms
Gty = (ulaxw,w)Lz + (’7;L(D)(u18lw),171111)L2
= gy + .

We see that <75 is easily treated by the Cauchy-Schwarz inequality, integration by parts,
the Sobolev embedding, and (4.23). Indeed, there holds

(] S Jur 1ol
Next, we decompose 427222 into three parts
;2722 = ([\/ ), u1]Opw, \/’m(D)(mw))L2 (u“/ D)d,w, [\/Tu(D), m w)
(ul V ,u D)dyw,n1 v/ E(D)w)LQ
2,1 2,2 2,3
= oy + g + 3
For 527222’1, we simply apply Holder’s inequality, (2.34), (2.14), the Sobolev embedding to
find that
5" | < |[V/Ta(D), w)dpw] 2] v/ Tu(D) (mew) | 2 S fuwt s s ] 7
For %22"2, we first remark that
/T (D), mlwlze S lnloeelol (428)

simply by using Holder’s inequality and (2.14). Then after integrating by parts, we use
Holder’s inequality, the Sobolev embedding, (2.35), (4.23), and (4.28) to deduce that

| ?| < |0pur| oo |/ Tu(D)w] 2| [\/T(D), mw] 2
+ [ua|poe [/ T (D)wl 2102 [/ Tu(D), m]w| 2
S ?:lfligl(’fliyui)le\w|2L2-

Lastly, we use integration by parts, then apply Holder’s inequality, (2.14), the Sobolev
embedding, and (4.23) to obtain that

: 1
2,3
|57 < 5100w VTPl S was i, )] s 3

We may now gather these estimates to conclude that

| aha| S max |(m;, u) s | (¥, w) %o
1=1,2 AT
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and as a result the proof of Proposition 4.4 is now complete. O

5. PROOF OF THEOREM 1.6 IN THE ONE-DIMENSIONAL CASE

Proof. The proof is divided into eight steps, utilizing the results above.

Step 1: Existence of solutions for a regularized system. Let s > %, O<v<land a= %+
Then, for any initial data Ug := (19, up) € Vj(]R)7 we claim that there exist ¢, > 0, and a
time

2 1
ColV3a 1-2
0< T,, = T,, 0, U0 )|Vs ) = (7) o 5.1
(m10)42) = (75 e i (5.1)
such that U” := (n”,u”)" € C([0, T, ]; V7(R)) is a unique solution of the regularized Cauchy
problem:
Our + udant + (K, (D) + *)0s” = ~v(D)"" 652)
oY + 0pn” + u”Oyu’ = —v(D)*u”. '
The proof of the existence of a unique solution is a consequence of the contraction mapping
principle. First, we find the diagonalisation of the linear part, S¥(t), of (5.2) to be

s = L (VD) VD)) (owtelz) 0 )(W(D) 1)

_1
2 1 1 exp(—tL (D)) K,?(D) 1
where £ (D) = +iD/K,(D) 4+ v(D)®. Then we shall show that

Dy, (UY)(t) := S” (1)U — /O S¥(t — 5)0, (’(’jﬁ) (s) ds, (5.3)
2

defines a contraction on the closed subspace B(a) of C([0, T]; V,$(R)), whose norm is bounded
by a, and is centered at the point S”(¢)Uq. However, we note by Plancherel that for |¢] > 1
there holds,

1

157 (1)0,U 12 o 1676012 S, U2 (5.4)

(Z/t)a%
The same is trivially true for [¢| < 1. Now, combining (5.4) with the fact that 2 < 1 and
+
the algebra property of H 2 (R) we deduce that
_2 2,
B, (U) — 8(6)Uslis So TV 0~ 5[0V 2,
and ) )
P, (UY) = @uy (US) |15 So T 5507 3 |UY — U= (U | s + U |15)
Therefore, by choosing a = [Ug|rgevs and T' as in (5.1) we can use the above estimates
to conclude by the Fixed Point Theorem that there exist a unique solution of (5.2) in

C([0, T, ; Vi (R)).
Remark 5.1. A consequence of Step 1, is the continuity of the flow map associated with
(5.2). But this is only for the ’short’ time T,, given by (5.1), and is therefore not useful for
the limit equation.

Step 2: The blow-up alternative. We define the maximal time of existence to be

T) = sup {Tl, >0 : 31U = (n*,u”)T solution of (5.2) in C([0,T}]; V;(R))}
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Then we claim that the solution of (5.2) satisfies the blow-up alternative:

If T <oo, then tl/i\IqTﬂlJ [(n”,w”)(#)|vs = o0. (5.5)
First, we argue by contradiction that T} < oo and there exist A € RT such that
Sup (", u”)(#)]v; = A. (5.6)
We use (5.1) to define 7, 4 = T}5 — %. Then we have that

vy <A

a:=|(n",u")(7,4)

Therefore, if we let V4§ = (n,u”)T(r,,4) serve as initial data, then (5.2) has a unique
solution given by

2
with V¥ = (of,v5) € C([0,T,(a)]; VJ(R)). Here, T,(a) is given by (5.1) due to Step 1.
Moreover, we observe that T, (a) > T,(A) by definition (5.1), and implies 7, 4 + T}, (a) >

V(1) = S”()VE — /0 SY(t — )0y (1(’“?> (s) ds (5.7)

T + %. Thus, we define the extension of U¥ = (¥, u*)T by the function
7V (1) = U~ (t), if 0<t<m4
VYt -ma), i ma<t<ma+T(a),

and one can verify that it is a solution of (5.2) for all ¢ € [0, T} + %] C [0, 7,4 + Tu(a)).

This contradicts the definition of T};. Thus, we conclude that if T}y < oo, then necessarily
A = oo in (5.6), and implies

tim sup |(n", w (t))lv; = oc. (5.8)
t T

To conclude the proof of the claim, we use (5.8) to verify that for all R > 0 there exists
an open interval (tg, T;7) such that [(n”,v”(t))|v; > R, for all ¢ € (tg,T}). Indeed, we argue
by contradiction that there exists R € Rt such that for all 0 < tg < T3, we have

(", u")(®)]vs < R, (5.9)

for some t € (tg,Ty). By (5.8) there is a time such that Tpo > T — % and satisfying

|(n”, u")(TR0)lv; > R.
On the other hand, by assumption (5.9) we can take tp = 7 and use the fact that there
is a time TR € (tgr,T;) such that

|(n”, u")(TRr1)lv; < R.
Thus, by the same argument as above we can take (7", u”)(7g,1) as initial data of (5.2) to

find an extended solution defined on [0, T + @] C [0,7r,1 + T, (R)]. This contradicts the
definition of T}}. As a result, we conclude that (5.5) holds true.

Step 3: The existence time is independent of v > 0. We claim that there exists
1

T
k2 1(Cosvo)lvs

as in (1.16), such that the regularized solution €(¢¥,v"”) = (n”,u”) exists on the interval
[0, 2.
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The proof relies on a bootstrap argument similar to the proof of Lemma 5.1 in [28]. In
fact, the long time existence is a direct consequence of the following remark and lemma.

Remark 5.2. We will invoke the estimates in Proposition 3.1 for system (5.2). However,
due to the parabolic reqularisation, we must also control the additional terms given by

%ES(U”) So (B5(UY))? = p(A™°UY, Q(U”, D)A'UY) .

But decomposing the last term, we note that
(AS+O¢UV7 Q(IJI/7 D)ASUV)LQ _ (As+%7]1/7 As+%nu)L2 + (As+%utl7 (K:H(D) + 7]1/)A3+%ul/) L2
+ (AS+%UV7 [A%7 nV]ASuV)LQ
=I+1I+1II.

The first two terms has a positive sign, while the third term, 111, can be absorbed by the
second term by using Cauchy-Schwarz, (A.9) and Young’s inequality:

u”'%{‘“a

c1
(1) < 2010 ooy I e o e < colu” v+ S

by choosing 0 < ¢y < min{%, Z}. Indeed, by (2.7), (2.8), (3.4), (3.5) and (3.7) we get the
bound

2
H*+ %

—v(I + 11+ II) < —v|y”[3,

+ %CJ(ES(U"))

. hy o »
o +u(02—m1n{?0,§})\u |

s+¢

3
2 .
Therefore, we have that Proposition 3.1 holds for the reqularised system.

Lemma 5.3. Let s > 2 and ¢ be as in (1.15). Let (n”,u”) = e(¢",v") € C([0,T}); V; (R))
be a solution of (5.2) with initial data e({o,v0) = (10, u0) € V;;(R), defined on its mazimal
time of existence and satisfying the blow-up alternative (5.5). Moreover, let ng = €y satisfy
either the non-cavitation condition (1.13) or the o—dependent surface condition (1.14),
depending on whether o > % or0<o< %, respectively. Then there exists a time

1
Y — 5.10
kg | (110, wo) vz (5.10)
such that T} > Ty and
sup | (0", u”)(t)|vg < 4k2|(no, uo)|vs- (5.11)
te[0,To]
The constants are on the form
2 C 1
=% and =] J70<0<3
c Cso for o >3
where C1 and Csy are two positive constants to be fixed in the proof.
Proof. We define the set
T, = sup {T,, €(0,7)) : sup |(n”,u”)(#)|vs < 4k(2,|(7]0,u0)|v‘f} (5.12)

t€[0,Ty]

Then we first note that 7, < T, or else it would contradict the blow-up alternative (5.5).
For the proof we argue by contradiction that 7, < Tj.
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The main idea is to improve the estimate given in (5.12). First, we verify that the solution
(n”,u”) satisfy (3.4). Indeed, recalling assumption (1.15):

1

< -
© = %21(Co, v0)

0< ,
v

implies
| u”) |1 < 211G, ug) vy = 4ekz] (Go, vo) vy < 4, (5.13)

for all t € [0,7,]. Next, the solution (”,u”) satisfy the non-cavitation condition. We will
prove this as a consequence of the bound
sup |9m” ()] < k2o
7€[0,7,]

Indeed, by similar argument as for (3.8), we use (5.2), (5.13), and H%+(R) — L*(R) to
find

0 |12 < 510" u”) v + [ | s [u” | e < AKG 3] (n0, wo) v -

Then, by the Fundamental Theorem of Calculus we obtain

t
1+ n"(z,t) =1+m0+ / am” (z,s) ds > hy — k20°T,, (5.14)
0
for all t € [0, T,,} On the one hand, if o > %, then
2
c
K2 = é = co.

r[N‘hus, for Cy > 0 large enough, we get that kL > Co0? > % Moreover, by the assumption
T, < Ty, we conclude from (5.14) that

h
141" (x,t) > ho — k20T > ?‘J

for all t € [0,7,]. On the other hand, in the case when o € (0, %) we need to verify (3.5).
But this can be done the same way by choosing k. > % > i for €1 > 0 large enough.
Having remark 5.2 in mind, the hypotheses of Proposition 3.1 are now verified, leaving

us (3.6) and (3.7) at our disposal. With this at hand, we observe that

[N

ES(U")(t)gES(U")(O)Jrcg/O (Eo(UY)(s))2 ds' =: (t).

~ 3 - .
By the above inequality, we then have ¢/(t) < 2 (Es(U”)(¢))2 < 2 (1/)(15))% We solve the
differential inequality and use (3.7) to relate the energy with the V;—norm of the solution
and deduce that

2
¢zl (no, uo)lvs
el u”) ()l < - e

4 (5.15)
- @ﬂ(%uo)

7
for all ¢ € [0, Tl,} Finally, if C1,Cs > 0 is large enough then since T,, < Ty we have that

0" u”) ()l < 263 (15 i)
Though, by continuity of the solution in time ¢ € [0,T}), there exists 7 > 0 such that
[0, u”)(T)|vs < 3k5§.|(770,U0)|V‘f for T, < 7 < Ty. This contradicts the definition of T,.
Thus, we may conclude Ty < T}, for all ¥ > 0 and that Ty is independent from v by its

Vi
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definition in (5.10).

O

Remark 5.4. For 0 <o < 13 we observe that kL ~ k2 ~ % and is due to the appearance of

cL in the coercivity estimate (3.7). This will impact the size of the time interval when o is

small (see Remark 1.9). On the other hand, for system (1.9) the coercivity estimate (3.26)
is independent of o and therefore gives a longer time of existence, as noted in Remark 1.15.

Step 4: Uniqueness. Given a solution of (1.5), then we claim that it must be unique.
We consider two solutions

(¢, v1) = (i, wa) and e(Gr,v1) = (1, w) in C([0, To]; V; (R)),

with the same initial data. Then define W = (1 — no,u1 — uQ)T7 which is associated
to the initial datum W(0) = 0. Since (m,u1) € H®(R), there exist a number hy > 0
such that |(n1,u1)|gsxms < hi. Moreover, 7 satisfies the non-cavitation condition by the
Fundamental Theorem of Calculus and the argument made in the proof of Lemma 5.3.
Thus, we may use Proposition 4.1 to deduce

d ~
— < .y
g Eo(W) o max | (i, us)

Then Grénwall’s lemma and (4.7) implies that |(m1 — 72, u1 — u2)(t)|vs = 0 for all ¢ € [0, Tp].
We therefore conclude the proof of the uniqueness.

v Eo(W).

Step 5: Emistence of solutions. We claim that for all 0 < s’ < s there exists a solution
(¢,v) = e, u) € C([0, To]; Vi (R)) N L([0, To]; Vi (R)) of (1.5) with Ty = O(2) defined
by (5.10).

Using the change of variable (¢,v) = =1 (n, u), we see that the claim in Step 5 is equivalent
to proving that (n”,u") solving (5.2) will satisfy system (3.1) in the limit v \, 0 on [0, Tp].
In fact, the main idea is to prove the convergence of {(n”,u")} as v \, 0 by considering the
difference between two solutions

W= (wv ’LU) = (77'/ - 771/7,“1/' - ul/).
with 0 < v/ < v < p and where (7, u”"), (", u”) are two sets of solutions to system (5.2),
obtained in Step 1. Then for a = %+ we have that (1, w) satisfies a regularized version of
(4.1):
W + M(UY D)W =F” — VA“W + (v — V')A°U?,

FY— _ (w@xn" + zpaxuu> , (5.16)

with

wopu”
and the same initial data.
The system also satisfies the estimates of Proposition 4.1 by simply noting that
d ~ ~ /
EEO(W) So Eo(W) =V (AW, Q(U” ,D)W)
with

12+ (V=) (AU, Q(UY . D)W) ,,

(A*W,Q(U" . D)W) , = (A%¢, A%9) 1, + (A2w, (Ku(D) + 1) A% w) .,
+ (1\%1(17 [A%7 n"/}w)LQ.
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The two first term has a positive sign, while the last term can be absorbed arguing exactly
as in remark 5.2. On the other hand, we have directly that for s > %
|(A*U”, QMU DYW) o| < [0 |us 9] 22 + [0 | s [u” | = [w] 2
+ VK (D)’ | s |/ Kyu(D)w] 2.

Thus, gathering these estimates with (1.17), (2.7) and (4.7) we find that

& Eo(W) o [(m0,10)lvs (Bo(W) + (v — /) (Eo(W))?) (5.17)

Step 5.1: Convergence in C([0, Tpl; Vﬁ(]R)). Define the difference (¢, w) as above, then use
(5.17) and (4.7), combined with Grénwall’s inequality and (5.11) to find the estimate

sup (v, w)(t)lve So (1m0, uo)lvg (v — '),
te€[0,To]

Consequently, {(n”,u”)}o<v<1 defines a Cauchy sequence in C([0, To]; VS(R)) and we con-
clude that there exists a limit (1, u) € C([0,To); VHO(]R)) by completeness.

Step 5.2: Solution in C([O,TO];Vj’(]R)) N Le([0,To]; Vi (R)) for s' € [0,5). As a direct
consequence of (5.11) and the previous step, we deduce by interpolation

N

El s
;< 5 . s
|(wvw)‘L°Tcov‘f ~o I(w7w)\L;,c0v;|(w,w)lL;%V£
So (v =)' 5 |(no, uo) vy — 0. (5.18)
® v—0

Step 6: The solution is bounded by the initial data. We claim that the solution obtained in
Step 5 satisfies (1.17).
Indeed, using the notation from the previous step, we deduce by (5.11) that
{(n",u")}o<v<1 € C([0, To]; V; (R))

is a bounded sequence in a reflexive Banach space. As a result, we have by Eberlein-

Smulian’s Theorem that (", u") " (n,u) weakly in V?(R) for all ¢ € [0, Tp] and implies
v—

sup |(n,u)|vs So |(10, uo) v (5.19)
t€[0,To]

Remark 5.5. For smooth data (1o, up) € H®(R) of (3.1) we could reapply the arguments
above to deduce the existence of a smooth solution (n,u) € C([0,Tp]; H*(R)), who satisfy
the bound (5.19) for any s > 2 and with Ty as defined in (5.10).

Step 7: Presistence of the solution. We claim that there exists a unique solution (¢, v) =
e~ (n,u) € C([0, To]; Vi (R)) of (1.5).

We consider (1%, u®), solving (3.1) with regularised initial data: (nd,u$) = (¢s(D)no, ps(D)uo)
and with (D) as in definition 2.15. Then for any ¢ > 0 we have by remark 5.5 that the
solution is smooth and satisfy

\(716#6)\@%‘/,7 S b, ud) v, (5.20)
for t € |0, Tp]. To conclude the proof, we let 0 < ¢’ < § < 1 and again consider the difference
W= (,w) = (" —n’u” — ),

which also satisfy
W + M(UY D)W = F?
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with

wdyu’®

Fo—— (“’89”"5 * 1/)6$u5) , (5.21)
and with initial data
((0),w(0)) = ((ws(D) = w5(D))no, (w5 (D) = w5(D))uo). (5.22)

The system satisfies the estimates of Proposition 4.1 and we use (4.6) and (4.7), combined
with Gronwall’s inequality and (5.20) to first find the estimate

sup (0, w)(1)lyp < =M | ((0), w0,
tE[0,Ty] " !
with [(no,u0)lvsTo So 1 by definition (5.10). As a result, we use (5.22), the triangle
inequality and (2.40) to deduce that

sup (¢, w)(t)|vo So 6°[(no, uo)lvy — 0. (5.23)
te[0,To] 6—0

Moreover, as a direct consequence of (5.11) and (5.23), we deduce by interpolation

’ ’

£l PN
l(w’w)‘L%Vi/ So |(ww)‘fﬁvﬂ< (Y, w )‘L"TESV;?

So 657 (0, o) v 0. (5.24)

To conclude, we keep these estimates in mind where we aim to apply estimate (4.8), following
the Bona-Smith argument [7]. But first we must control F? in V2 (R). The elements of F°
are given in (4.2), and we must therefore control the terms given by:

(A*F°,Q(U% , D)A*W) ,
= (A*(wden’), A°¥) 5 + (A*(0un®), A*)
+ (A (wdpud), 7 A*w) |, + (A (wdpu®), Ky (D)A*w)
= Ay + Ay + A3 + Ay

The terms Ay, Ay and Aj are treated similarly. For instance, take A;. Then we observe
that

Ay < A (w0an”) | 2| A 2.
Furthermore, using (2.22) and the Sobolev embedding, we obtain that
A (wden®)| 2 S |w] oo A*Oen’ |2 + | A°w] 2|0 | s (5.25)
Using the triangle inequality, (2.39), and (5.20), we observe that
|A*0un° |2 < 67 |nol s, (5.26)

which needs to be compensated to close the estimate. With this in mind, we use the Sobolev
+
embedding H2 (R) < L*(R) and (5.24) to deduce

_1+t
[wlrg e S|, w)] 10 S 0772 [(10, o) v - (5.27)
0 mv7
Tp VK
Thus, combining (5.25) with (5.26) and (5.27) we get that
3+
7l + 0772

A1l S sup (Jwlms (10, uo)|vs ) [ as,

t€[0,Ty
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as 0 N\, 0. Arguing similarly, and using estimate (5.20), we deduce that

_3+t
|A1| + |Ag| + | A3] S S[})II%]|(7707UO)\V;(|(¢7W)|%/§+5S 2 |(¢, w)lvg)-
te|0,10

For A4, we write
Ag = ([A*V/Ku(D), w]a:zU57 A® \/’Ci;L(D)w)L2
+ (wA*\/Ku(D)0pu’, A°/K(D)w) .

The commutator is treated by (2.18). While in the second term, we use (2.7) and argue as
above, giving the estimate

3+
[Aa So sup[(n0, uo)lvs (|(4, w)[3rs +6°72 [(1h,w) ).
te[0,T0] ! " H
We may therefore conclude by (4.8):
d ~ ~ 3%t =~ 1
EE;(W) <& |(7707U0)|Vj (E;(W) 4653 ES(W)z),
Then Gronwall’s inequality and (4.9) implies

3+
(¥, )Lz v So 0°72 (0, wo)lvz =2 0.

Thus, (7, 4%) is a Cauchy sequence in C([0, Tpl; V;;(R)) and we conclude by the uniqueness
of the limit that the solution (n,u) € C([0, Tol; V;; (R)).

Step 8: Continuous dependence of the flow map data solution. Consider two sets of initial
data (¢1,v1)(0), (C2,v2)(0) € VJ(R). Then we claim that for all A > 0, there exists v > 0
such that having

(¢ = Goyv1 = v2)(0) v <,
implies
(G = G, v1 —va)lg v <A
2

Equivalently, we will prove that for (1, (2, v1,v2) = (11,02, u1, u2) such that

[(m = m2,u1 — u)(0)|v; < e,
implies
|(7}1 — 12, U1 — 1L2)|LOTOO Vs < e
2
Using the notation in Step 7, we let 0 < § < 1 to be fixed, and (n?,uf), (n3,u3) €
([o, %], Vi (R)) be two solutions of (5.2) on large time with corresponding initial data
(es(D)n1, ps(D)u1)(0) and (¢s(D)n2, ws(D)uz)(0). Then observe

ve < |m =9, ur — ud)lvg + |(n2 — n3, up — u)
P Y R
+ () — o, uy —ud)|ve
=: By + By + Bs. (528)

|(m = 72, u1 — ug) v

For the first two terms we use that e=1(n?, u?) = (¢%,v%) — (¢,v) = e '(n,u) as 6 \, 0 by
Step 6. Therefore it follows that B; and Bz must at least satisfy the estimate,
sup (B1+ Ba)(t) <o c05(1). (5.29)
tef0, 2]
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While for Bs, we need the continuity of the flow map of the regularized system (5.2) on a
long time (see Remark 5.1).

We let W = (¢, @) = (78 —n3,u$ —uf). Then staying consistent with previous notation,
we have that the difference between two regularized solutions will satisfy the equation:

AW + M(U, D)W = F?, (5.30)

with
]':;'wé — _ 'Lbax 773 + wazug
WO ’

and initial data

(4, 0)(0) = (¢5(D)m — 05(D)n2, @5(D)ur — @5(D)uz)(0).

We will use this information to estimate Bs by suitable energy estimates at VS(R) and
Vi (R)—level.

Similar to Step 6, we first obtain the estimate in V)(R) by using (4.7) and (4.9). Indeed,
there holds

d ~ =~ -
—7Eo(W) <o max| (], uf) vz Eo (W) (5.31)

For simplicity we let |(11, u1)(0)|v; = eK. Moreover, we observe that if ey < %|(m7 u1)(0)]vs,
then we have by (5.20) that
5,0 6 .0
|(771,u1)|L°E;V; + \(7727U2)||L°i2’1v; So [, u1)(0) v + |(12, u2) (0) v

<, eK. (5.32)

As aresult, we have an estimate of the difference in Vf (R). Indeed, by Gronwall’s inequality,

(5.31), (5.32), the triangle inequality, and (2.40) implies
(&, @)lvo So [0, D)(0)]vo So eK(5° + K1) (5.33)
w 3

We will now use this decay estimate to deal with (4.8), which is at the V;(R)—level.
Similar to Step 6, we decompose the source term (4.2) in four pieces

A= (AF°,Q(U3, D)AW?) ,
= (A (@0,m3), A°D) 1o + (A ($0z5), A*Y) 1
+ (A (00uul), mEA™D) |, + (A*(W0pud), Ku(D)A*D) |,
= Ay + Ay + A5 + Ay.

To estimate A;, we first obtain a bound similar to (5.24). Indeed, using the Sobolev
emebedding, interpolation, (5.32), and (5.33) yields

sup | @|pe S sup |(§,@)] 4+
t€[0,Tp] t€[0,70] V.2
1+
2s

- 1+
S ‘W’vw) Léo%v;

~ - 17i
(¥, w)‘L%o;V;?

1+
1-5;

s—1t -1
SN2 4+ (K1)



LONG TIME WELL-POSEDNESS OF WHITHAM-BOUSSINESQ SYSTEMS 43

where 1 — 2—15+ > 0 for s > {r. Then arguing as we did for A; in Step 7, we obtain that

Al S sup (|@]ms 03l s + |20 03] ae ) 9] s
t€[0,Ty
3

SeK sup (|w]gs +6°72
t€[0,Tp]

D6 KT ) ) e

Moreover, for the remaining terms, we can use similar estimates, recalling that for Ay we
also need to deal with the non-local operator K, (D) (see step 7 for details). Indeed,

+ ~
KT )@ Dl (5.34)

~ ~ 3+
A<, eK sup (|, @)|vs +6°2
t€[0,T0] !

Consequently, combining estimates (4.8) and (4.9) with (5.34) yields

d -~ = — _3t _ _ At s =1

S Es(W) So eK(E(W) + (572 + 671 (K 1y) 72 )E(W)2).
Thus, we have an estimate on Bz by the energy estimate (4.9), Gronwall’s inequality and
(2.41). Indeed, there holds

~ ~ _ 3+
By = (¢, w)lv; So [, w)(0)]v; +eK (62
s—3T A1 1-L T
Soeos(l) +ey+eK(0% 2 +6 (K ) 2 ). (5.35)
Returning to (5.28), we may conclude the proof of the continuous dependence. We first
fix 0 < § <1 to be small enough and satisfying

o7

3+ A
D+K* 2 <—,
o5(1) + P <o

for some constant ¢, depending on o. Then let ~ verify the restriction:
1
v < 510, w)(O)lv;,

such that 'y—I—K(Sfl(Kflfy)l_%+ < ﬁ Consequently, we have by (5.28), (5.29) and (5.35)
that

3
sup (1 — m2,ur — u2)(t)|vy < ecolo5(1) + v+ K(6° 2
tef0,22]

T Ky

< e

As a result, we have demonstrated that the solution of (1.5) depends continuously on the
initial data and thus completes the proof of Theorem 1.6.
(]

6. THE TWO-DIMENSIONAL CASE

Let 2 = (21, 72) € R? and v = (v1,v2)T. Then we observe that under the curl-free condition
on the initial datum in Theorem 1.6 that (1.6) enjoys a similar structure to (1.5) (see also
Lemma 4.2 in [35]). Indeed, since curl vo = 0 we can take the curl of the second equation
in (1.6) and find that curl v = 0, courtesy of the Fundamental Theorem of Calculus. We
therefore have the relation

O, V2 = Oz, 1. (6.1)
Now, let u = ev and define U = (n,u)” = ¢(¢,v)?. Then use (6.1) to rewrite system (1.6)
as

8U + M(U,D)U =0, (6.2)
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with
u- V. (KuD) +1)0s,  (Ku(D) + )0,
M(U,D)=| 0y (u-V)- 0
Oz, 0 (u-Vv)-
Then the natural symmetrizer is given by
1 0 0
Q(U,D)= |0 (KuD)+mn) 0 ;
0 0 (Ku(D) +n)

and by extension, an energy associated to (6.2) reads

E,(U) = (AU, Q(U,D)A*U).
The energy estimates are similar to the one-dimensional case. Indeed, for (n,u) € V] (R?)
and s > %, we observe that

1iES(U) = —(A*(u- V), A%) 12 — (A*((Ku(D) + )V - 1), A%p)

2dt
— (A°V, (Ku(D) + n)A®u) = (A*((w- V)u), (Ku(D) +n)A%u) ,,
+ %(Asu7 (8t17)A‘9u) L2

An estimate analogous to the ones of Proposition 3.1 is a consequence of two-dimensional
versions of estimates in Section 2. However, these are easily extended to 2-d by noting that
K.(D) and 7,(D) is radial.

The estimate of the difference between two solutions is similar to the proof of Proposition
4.1.

APPENDIX A

A.1. Pointwise estimates for /K, (£) and /T,(€). Before turning to the proof of the
pointwise estimates in Lemma 2.1 and Lemma 2.5, we make an important observation. Let
+/T.(D) be the Fourier multiplier associated with the symbol

tanh(y/z(¢])
vEEl

Then the operator is regularizing for x> 0 on L?(R), and acts similar to the scaled Bessel
: _1

potential A,? defined by the symbol & — (1 + pé?)72. While \/K,(£) has a similar
1

behaviour in low frequency for o < 1, but acts like A2 in high frequencies.

Lemma A.1. Let pr > 0 and take any n € N.
o Then T,(§) satisfies

d" o i S
| gV Tw(©)] < (g5 (A1)
o Similarly, K,(§) satisfies

VA o (v (a2)
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FIGURE 3. The multiplier /K1 (£) in the cases o > 1 (line) and o < 3 (dash-dots).
The red curve is a plot of /T3 (£) (dash).

Proof. The proof is a generalization of Lemma 8 in [15]. Following their arguments, we
observe that since T (y/fr) = T),(r) for r > 0, it is sufficient to show that

| VT S

We divide the proof into two steps.
First, let 0 < r < % and prove that any derivative of /71 (r) is bounded. We have that
v/T1(r) is bounded in this region. By direct computation, we observe

d ) = sech?(r) (27“ N e 2 — 62") _ sech?(r)
dr (2r)?/Ta(r) 2 VTi(r)
where G(r) can be written as a series by expanding the exponentials. Indeed, we have that

—2r _ 2r o 2 2k+1
2r + ¢ € = — Z L
P 2 2k 1 3)!

G(r), (A.3)

G(r) =

1
(2r)?

The series is uniformly convergent for r > 0. Moreover, G(r) and its derivatives are bounded
for0<r< % By extension, since for all n > 0 there holds %sech?(r) < e 2" we have
that

dTL
‘dTn‘/Tl(r)‘ <1
Now, we let r > % and prove the necessary decay estimate. We use the identity

2

tanh(r) =1 - ——
anh(r) =1 .

(A.4)

and deduce by the chain rule that

e 41

o ummlsy (Lo o gyt
a0 R G0 -) s 0
k=0
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Lastly, we have that (A.2) follows by the Leibniz rule. Indeed, we observe

)%\/Kl(r)‘ - )%\/Tl(r)(l +0r2)‘
< i ‘Li_k\/TlU)Hj—Tix/l + 07'2‘
k=0

drn—Fk

A

1
Se (r)27",

which concludes the proof of Lemma A.1. O

A.2. Proof of Lemmas 2.1 and 2.5.

Proof of Lemma 2.1. First, we again make the observation that K (\/n) = K,,(§). There-
fore, we simply let > 0 and consider K;(r). To establish the upper bound given in (2.1),
we note that for » < 1 we have

Kl(T) <l+o.
tanh()

This is because
that

< 1. On the other hand, when r > 1 then tanh(r) < 1 and it follows

Ki(r) <1+or.

Consequently, for all > 0 there holds K1(r) < ¢2(1 +r) with ¢2 as defined in (1.19).

Next, we prove the lower bound given by (2.2) with o > % We will again split = into
two intervals, where we aim to prove

tanh(r)

(14 or%) > (1—%)-&-67" (A.5)

for some positive constant ¢ > 0 and any ho € (0,1). We prove (A.5) by considering two
cases for r. When 0 <r < % we use that

Kl(’l’) =

73

T
tanh(r) = / (1 — tanh?(z)) dz > r — 3 (A.6)
Jo
since tanh?(x) < 2 by the mean value theorem. Therefore, we have that
r? r? ho ho 74
= (1 2)(045)2 - ) ¢ (-5 o
)= (1-7) (14 3 2) (3 -5)+r
which implies (A.5) since 0 < r < 2o,
For the remaining part, we use the identity (A.4) and show that (A.5) holds for r > %
if:
2

tanh(r) <1 + %

2 2
— (1-1-?—7"(1-1—07’)) 2T+1< ?) >0
7

— (1+§—r(1+cr))(2’+1 —2(1+;) == G(r) > 0.

)—7’(1+c7')>()
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But this holds since

G"(r) = 4 e*"(2r% — 3¢(2r® + 61 + 3))

>

) 2
< 2(1 - 6¢c) + T(%) —18¢) + (% - 9c)>

and is positive for 0 < ¢ < 10_3h% with r» > %, Indeed, as a consequence we have the

following chain of implications

C«D\ka

0< G”<%0> <G'(r) = g(e”(l —2r 422 = 3¢(2r + 4r + 1)) — 3¢ — 1)
=0< G'( 5 ) <G'(r)= %(6271(3 —4r +2r% — 6er(r + 1)) — 2r — 3 — 6er)
—0< G’(h0> < G(r).

We have therefore verified (A.5) for all » > 0 and we conclude that (2.2) holds true.

Similarly, for 0 < o < %, we have that (2.3) is a consequence of the inequality

tanh
M(l—i—mj) >0 +cr.

One should note that we do not require sharp estimates. In fact, we simply need to obtain
the estimate

(1 +or?—r(o+ cr)) (e’ +1) — 2(1 + or2> = H(r) >0,
for 7 > 0. On the other hand, we observe that
H"(r) = 4 <2 +20r(2+71) — 3¢+ 2er(3+ r)) >0
for all » > 0 if
(2 —3¢) 4+ 2r(20 — 3¢) +2r%(c —¢) > 0

and is ensured for 0 < ¢ < 10730. Consequently,

0< H"(0) < H"(r) = 2¢*" (2 o2+ 2 —1) — c(2r + 47 + 1)) — 20 +c)

0< H'(0) < H'(r) = e (2 o2 —1) — 2e(r + 2r)> —o(2r+1) = 2er

0< H(0) < H(r),
and we argue as above to conclude.

The proof of estimate (2.4) is a direct consequence of Lemma A.1 and (A.2) with n =1
if we trace the dependence in o:

d
| VEID] S )73 U or) 4 () 75— S ()7 o Valr)
dr (1+o0r2)2
Estimate (2.5) concerns the following bound on the difference:

[VRu(© - vt = (L o) vt
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For o/p|¢] <1 there holds trivially by using the triangle inequality that

|V/Kule) - vantie?

While for o/p1|€] > 1 we observe by direct calculations that

|\/Eule) - vau' : (%

1 tanh(y/7lE])
u£2

+ tanh(\/ﬁ\f\))% - 1‘

< Voui
1

< -
~ (omlED)? f V]
So+Vo,

where we used the triangle inequality and that o/u[¢| > 1.
Lastly, we prove (2.6) by using (2.5):

K(€)(€)e] = ( Koe) ﬁuﬂa%) (€ el + vaut (&) jel}
< (0 + Vo) E) + Vaui (€)%

+ (tanh (/7€) — 1)|
+ Vo (/RlE]) Fe 2

d

Proof of Lemma 2.5. To prove (2.9), since T1 (/&) = T,(€), we only need to establish the
following inequality:
h()
1-2 <1 AT
5 +er < h (r) +7, (A7)
for all » > 0 and some ¢ > 0. We also note that the upper bound is trivial, so we only prove
the lower bound. Let hg € (0,1). By the mean value theorem we find that tanh(r) < r and
observe , , \ ,
r 0 r 0o T 0 0,
=1-2=2 Y >1-_ 0,7
tanh(r) ( 2 )tanh(r) * 2 tanh(r) — 2 * 2"

Next, we consider (2.10). For \/u|¢| < 1 we have that T),(§) ~ 1 and (,/p) ~ 1. On the
other hand, when /z|¢| > 1 then T),(&) ~ ﬁ and (\/p€) ~ /u|€|. Multiplying the two
functions, we obtain the desired result.

We estimate the derivative (2.11) directly and using that p € (0,1):

[ WA S O VA + O (VA VAVED T S €V,
since (/7€) ! < ()

Similarly, we have that (2.12) follows by the same argument after using (A.1) and (2.11):

1%\/Tu(£)<s>3<m>% S VO THE (VIEE)? + (VEE) 3O TN Ve
S
For estimate (2.13), we observe that
(Vi) =l = il (g + i -1) S 1
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A.3. Proof of Lemmas 2.11 and 2.12. For the proof of Lemma 2.11 and Lemma 2.12,
we need a “generalized” version of the Kato-Ponce commutator estimate which holds for
symbols defined by:

Definition A.2 (Symbol class [33] Def. B.7). We say that a symbol F(D) is a member of
the symbol class S° with s € R, if £ — F(&) € C is smooth and satisfies

Vo e N, sup(e) | T p(e)] < oo
£eR
One also associates the following seminorm on 8% :
da
No(F)= swp sup(e)**| o F(©)| (A8)

a€N, a<4  ¢eR
The following results is found in Appendix B of [33].

Lemma A.3. Let tg > 1/2, s > 0 and 0 € S*. If f € H* n HYtY(R), then for all
g€ H'(R),

IF(D), flglrz S NP (E)f| gmexteo 1. 19lmre—1- (A.9)
With this at hand, we may give the proof.
Proof of Lemma 2.11. To prove (2.24) and (2.25), it suffices to verify for all n € N that

V)] 54 1, (A.10)

for any 0 < p < 1. Indeed, in agreement with Definition A.2, then (XE})W/ICH) € 8% and
(2.25) holds true due to Lemma A.3. Moreover, using Plancherel and (A.10) with n = 0 we
have

sup ()"
EER

|06 VKW (D) 12 <o |12,
proving (2.24). Now, let us prove (A.10). We observe that
k d*
2

pEH (x| S 1, k>0, (A11)

since (/p[¢] < 1 on the support of X,L)(f) Moreover, we observe by Lemma A.1 and
€ (0,1) that

! \dgkr &) So XPOWRE b (Vi)™ S0 (67"

Combining these estimates with the Leibniz rule yields

L P OYRA@) 5© Z\d@k (W) o (/)

n

<, <f>"2u"z;’“|<%x“>)ws><<s>—k

k=0

" n—k dn—F
So DonT @O M G (V)| S
k=0

"

Hence, (X,(})\/K”) € 8% and NO(XS)\/IC#) <, 1 independently from p, proves (A.10).
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Next, we consider estimates (2.27) and (2.28). Recalling (2.26) we define

~ 1 1 1
F =u"iF =— 1+ po€?)e. A2
1O =0 = 3 s (L o) (A12)
Then, it suffices to prove that
d’ll
su ne @ p 1, A.13
sup (6" G (07 B, )0 50 (A13)

for all n € N and any p € (0,1). Indeed, if we assume (A.13) and take n = 0 we deduce
from Plancherel’s identity that

1 1 1
(P F, 1) D) f 112 So w3l f] 3 So 1Flee + 13 D2 flp2.

which proves (2.27). Moreover, (A.13) also implies that ()(ﬂ il 1) € € S7 with N2( )F 1)
1 so that
[OGPF 1) (D), f1029] 12 <o wilfluslgl

by Lemma A.3. Now we prove (A.13). First, we consider the functions,

aul€) = —— and bu(€) = (1 + poe)}.

pilglz
Then, since [£] > \/n|€| > 1 on the support of Xf), we observe that
1
L Su
VHIE] |g|Fz

While b,,(¢) So (/1) and its deriatives satisfy the bound,

X2 s)\d—fkau )| £ O HorMvE) T (AL

X)) S0 X2 O (VR ™ 5o (V™ (A15)

Thus, if all derivatives falls on F 4,1+ the Leibniz rule, (A.14) and (A.15) imply
2

—k

m.—

’dgk ﬂl(g)‘<“ o ( Z‘dﬁ’“] " Hdgz “MN”

On the other hand, when derivatives fall the cut-off function, we observe

k

pe ‘(d€k><(2> f&)‘ <1, k>1, (A.16)

)

since the support of %XL is contained in the support of XEL ). Asa result, there holds

P(OF,1)| 5 ( ”"Z\ dgnk ()| | 7 (Fus ©)]
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n—k
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The estimate is uniform in g € (0,1), and (A.13) is proved, which provides the desired
result.
Lastly, we prove (2.30) and (2.31) arguing in the same vein. First, we write:

@) v ) 2 2
XMQ (©)- M% ‘5‘% (1 + Hafz) (62\/5\5\ + 1)
XLZ) €3 au(f) bu(g) C#(g)v

making use of the identity (A.4). Then we observe for all N € N that

XD () Fu0(6)

dr k
VIO | Jgren(©)] < M e Ve 1. (A17)
As a result, we deduce by (A.15) and (A.17) with V =1 that

@) (ey] 4 ()0 N~ | 4 @
(0 0 )] £ 170 2o g 00D g 06)
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QMw

A

q

z ]
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Moreover, we use (A.14) to deduce

(O o (©)] £ 20 Z\Cj‘;kﬂ )] [ 255 1) )| 5 (€7

from which we find

" jgn (2 (€) Fol ‘N Z‘dgn k ‘ ‘dgk Fo(6)) ‘Na

by (A.16). Arguing as above, we may conclude that the estimates (2.30) and (2.31) hold. O

1

Proof of Lemma 2.12. In order to prove (2.32), we simply verify that |/7,J; € SO and
1

NO(/T,A2) < 1 uniformly in o € (0,1). But this is a direct consequence of Lemma A.1

and the Leibniz rule:
©" |5 VO WS < Z\d@ V)| | Ao
Zﬂ 't

S Q" W(xff)

and is bounded by a constant independent from p € (O7 1). Hence, we may conclude by
Lemma A.3 that (2.32) holds true.
A similar approach is used for the proof of (2.33). Indeed, we observe that

a

(g P s ()

"

T S (€

YW (VG TR <
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Hence, /T, A° € 8° and N*(\/T,;A*) < 1 uniformly in g € (0,1), allowing us to conclude
by Lemma A.3.

The proof of (2.34) is the same, by a direct application of (A.1) we deduce that \/ﬁ eS80
uniformly in p € (0,1).

Next, we consider (2.35). Define the bilinear form: a1(D)(f,g) = 0z[/Tu(D), f]g. Then
we may use Plancherel to write

@)l < [ 1€]y/TO) = /L) 176 = o) 360 d.

Clearly, if we can prove that

(&) = IEl|/T€) = /Tulo)| S 1+ I = ol (A.18)

then we can conclude as we did for the proof of Lemma 2.7. Indeed, assuming the claim
(A.18), then there holds

102[\/Tu(D), flglrz = 1a1(€)(f, 92 < (Il + 102 |t )gl 2.

Now, in order to estimate by (&, p) we consider three cases. First, if |p| < 1, then we have by
the triangle inequality,

bi(&,p) < (L4 1 = o) (y/Tu(&) + /Tu(0)) S 14— 1,

since & — +/T,(§) is bounded by one. Secondly, consider the region where |p| > 1 and
|€] > |p|l. Then since & — tanh(,/u[¢]) is increasing and & — T),(§) is decreasing, we have

that
HOREIR

1

oo =161 (745) )y/Tulo) < kel = 1ol <l .

For |p| > 1 and [£] < |p| we use a similar argument to find,

i) = 16l(1 - (7480 ) )16 < el 1eh < el

Finally, we estimate (2.36) using a similar approach. We define the bilinear form as(D)(f,g) =
1

Thus, there holds

[AZ, f]0zg and look in frequency:

w0l < [ (Vi - (Vi 1f

Then by the same argument as above, we only need to prove that

balé. ) = | (Vi) — (i)} |2

9:9(p)| dp.

<1l (A.19)

(VEp)z ™

We consider three cases. If [p| < 1 then since u € (0,1), there holds by the triangle
inequality:

Nh—‘

ba(&p) ST+ (€= )2
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In the case |£| > |p| > 1, observe that

1
Ltpe? (At pe’)t (A.20)
e = (et
and we have ) 5

ol = T

As a consequence, recalling p € (0,1), we have that
1+ up2> (VHE)
SN )
1
o ME=p) (+p)s
S1 PN T rl
u4(1+u£ )iti o (p)2
2 _
8= \Pl _ ol
€1 lelz(p)2
SIE—pl
Lastly, in the case |p| > 1 and |{| < |p|, we can simply change the role of £ and p in (A.20)
and (A.21). As result, we get

1
2
——=p|
2

ba(6.p) < (1

1+ pug?
< <
bleop) < (1= s ) Il < ‘ | €~ pl.
We may therefore conclude that (A.19) holds and the estimate (2.36) follows. O
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LONG TIME WELL-POSEDNESS AND FULL JUSTIFICATION OF A
WHITHAM-GREEN-NAGHDI SYSTEM

LOUIS EMERALD AND MARTIN OEN PAULSEN

ABSTRACT. We establish the full justification of a “Whitham-Green-Naghdi” system mod-
eling the propagation of surface gravity waves with bathymetry in the shallow water regime.
It is an asymptotic model of the water waves equations with the same dispersion relation.
The model under study is a nonlocal quasilinear symmetrizable hyperbolic system without
surface tension. We prove the consistency of the general water waves equations with our
system at the order of precision O(u?(e + B)), where p is the shallow water parameter,
€ the nonlinearity parameter, and 3 the topography parameter. Then we prove the long
time well-posedness on a time scale O(m) Lastly, we show the convergence of the
solutions of the Whitham-Green-Naghdi system to the ones of the water waves equations
on the later time scale.

1. INTRODUCTION

In this article, we study a full dispersion Green-Naghdi system that describes strongly dis-
persive surface waves over a variable bottom. The system under consideration is described
in terms of the unknowns ¢, v, and b. Here ((¢t,2) € R denotes the surface elevation,
v(t,z) € R is related to the velocity field described by the full Euler equations, and b is the
elevation of the bathymetry. The system reads,

atC + az(hv) =0
(h+ phT R, BY) (O + evdpv) + hy( + peh(Q[h, v] + Qplh, b, v]) =0,

where h =1+ e( — b and

(1.1)

Tlh, BbJv = —3ihazF% (W*F320,0) + %(&F%(hQ(ﬁazb)v) — h2(B0,b)F20,0)  (1.2)
+ (BI:b)v,
and

Qlh, o] = %aﬁ%(hﬁ(ﬁaﬂ)?) (1.3)

Qulf, 80,0 = W(FF0,0)2(50,D) + 5-0.FH (202 6020) +(B020) (505D),  (1.4)

with F2 being a Fourier multiplier associated with the dispersion relation of the water waves
system. Specifically, if we let f(£) be the Fourier transform of f, then the symbol is defined

in frequency by
N 3 VHE ;
Fzf(§) = \//L&Q(tanh(\/ﬁf)_l)f(g)' (1.5)
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The parameters pu,e, and 8 are defined by the comparison between characteristic quanti-
ties of the system under study. Among those are the characteristic water depth Hy, the
characteristic wave amplitude as, the characteristic bathymetry amplitude ap, and the char-
acteristic wavelength L. From these comparisons appear three adimensional parameters of
main importance:

2
® = % is the shallow water parameter,

° c = 1‘11[0 is the nonlinearity parameter,

e f3:= IL—IT}E) is the bathymetry parameter.

Replacing the Fourier multiplier F2 by identity in system (1.1) we retrieve the classical
Green-Naghdi system. The later system is proved to be consistent with the water waves
equations, in the sense of Definition 5.1 in [31], at the order of precision O(u?) for parameters
(i, €, B) in the shallow water regime:

Definition 1.1. Let pimax > 0, then we define the shallow water regime to be
Asw = {(1,€,8) : p € (0, pmax], € € [0,1], 8 € [0,1]}.

Taking ¢ to be zero in (1.1), we get the linearized water waves equations around the rest
state with the following dispersion relation
www (§)* = SQM- (1.6)
Vg
This is why we say that system (1.1) is a full dispersion Green-Naghdi model. Moreover, it
is proved in the present paper that the water waves equations are consistent, in the sense
of Proposition 3.2, with system (1.1) at the order of precision O(u?(¢ + 3)). The improved
precision compared to the classical Green-Naghdi system allows for a change in the prop-
agation of the waves. Such occurrences have been studied in the Dingemans experiments
[7]. In these experiments, they investigated a long wave passing over a submerged obstacle.
They observed that waves tend to steepen due to a compression effect from the bottom,
where high harmonics generated by topography-induced nonlinear interactions are freely
released behind the obstacle. This last phenomenon makes it natural that one wants to im-
prove the frequency dispersion of the classical shallow water models. Deriving such models
has been the subject of active research. Here are some references in the case of the Boussi-
nesq model [24, 33, 5]. In the case of the Green-Naghdi model, one can consult [42] and
[6], where the authors compared the classical Green-Naghdi model with one-parameter and
three-parameters Green-Naghdi models in one case of the Dingemans experiments for which
the propagation and interaction of highly dispersive waves are under study. By tuning the
parameters, they are able to describe the dispersion relation of the water waves equations
for a larger set of frequencies. As an example, the dispersion relation of the three-parameter
model is
(1+p ) (1 + po5te)
(1+ 131+ p3te?)
where the parameters «,~ and 6 are chosen such that (1.7) approximates well the disper-
sion relation of the water waves equations, (1.6), for higher frequencies. In particular, for
(0,,7) = (=1,1,1) we obtain the original Green-Naghdi system. Moreover, in the case
(0, a,y) = (0.207,1,0.071) it was demonstrated in [6], that (1.7) is a better approximation
of (1.6) (see Figure 1). This improvement allowed the authors to describe strongly disper-
sive waves with uneven bathymetry accurately. In fact, in the case where high frequencies

are dominant, the improved Green-Naghdi models tend to describe the propagation of the
2

wan(§)? = ¢

; (1.7)



FIGURE 1. The blue curve is a plot of wyw(€)/€2 (line). The red curves plots
wen (€)/€2 in the case (0, a,7) = (—1,1,1) (dash) and (0, «,v) = (0.207,1,0.071)
(dash-dots).

waves more correctly. However, in general, one can expect to have even higher frequency
interactions for which one needs to keep the full dispersion relation of the water waves
equations.

The first full dispersion model, called the Whitham equations, was introduced by Whitham
in [43] to study breaking waves and Stokes waves of maximal amplitude. The existence of
these phenomena for this model has been proved in the recent papers [20, 25, 38, 40]. The
Whitham is a classical model in oceanography and can be seen as a modified version of the
Kordeweg-de Vries equations with lower frequency dispersion. In addition, the existence
of periodic waves was proved in [19], and the existence of Benjamin-Feir instabilities was
demonstrated in [26, 37]. See also the series of papers on the stability of traveling waves
[2, 17, 29, 39],

The study of bidirectional full dispersion models for a flat bottom has also been the
subject of active research. One class of such systems is the Whitham-Boussinesq ones.
They are the full dispersion versions of the Boussinesq system, meaning they have the
same dispersion relation as the water waves equations (1.6). Like the Whitham equation,
these type of systems features solitary waves [8, 34], Benjamin-Feir instabilities [27, 35, 41],
high-frequency instabilities of small-amplitude periodic traveling waves [18]. See also some
comparative studies between the Boussinesq and the Whitham-Boussinesq models [4, 11].

The full dispersion Whitham-Green-Naghdi models are next order approximations of the
water waves equations when compared to the Whitham-Boussinesq systems. These systems
were recently derived in [21] for a flat bottom and extended to include bathymetry in [14].
See also [13] where the authors derived a two-layers Whitham-Green-Naghdi system. There
is still a lot of research left to be done on the study of qualitative properties of these systems,
but we mention the work of Duchene et. al [16], which proved the existence of solitary waves
where they consider both surface gravity waves and internal waves.

An important part of the study of the full dispersion systems is the full justification as
an asymptotic model of the water waves equations in the shallow water regime. To be more
precise, we say a model is fully justified if the following points are proven:

e The solutions of the water waves equations exist on the scale O(m)

e The solutions of the asymptotic model exist on the scale O(m)
3



e Solutions of the water waves equations solve the asymptotic model up to remainder
terms of a specified order of precision in terms of the adimensional parameters p, ¢,
and (. This last point is called the consistency of the water waves equations with
respect to the asymptotic model.

e By virtue of the previous points, one has to show that the difference between the
solutions of the water waves equations and the asymptotic model satisfies an error
estimate depending polynomially on p, e and .

If we can verify these four points, then we can compare solutions of the water waves equa-
tions with solutions of the asymptotic models up to times of order O(m) The first
point is proved by Alvarez-Samaniego and Lannes in [1].

The three remaining points are specific to the asymptotic model. For instance, in the case
of the Whitham equation, the local well-posedness in the relevant time scale follow by clas-
sical arguments on hyperbolic systems. The consistency of the water waves equations with
this model has been recently proved in [22] at the order of precision O(ue) in the unidirec-
tional case, but the method supposes well-prepared initial conditions. In the bidirectional
case, the author proved an order of precision O(ue 4 £2) and doesn’t suppose well-prepared
initial conditions. In conclusion, we have the full justification of the Whitham equation at
the order of precision O(ue) in the unidirectional case under the restriction of well-prepared
initial conditions. In the bidirectional case, the order of precision is O(ue + &2).

Regarding the Whitham-Boussinesq systems for flat bottoms, the consistency of the water
waves equations with the later models has been proved in [21] with an order of precision
O(ue) in the shallow water regime. When nonflat bottoms are considered, it has been
proved in [14] to be consistent with the water waves with a precision O(u(e + 8)). With
respect to the second point of the justification, it has been proved for a large class of
Whitham-Boussinesq systems with flat bottoms [36, 23], to be well-posed on the time scale
O(%) Lastly, we also mention earlier results on the local-well posedness on a fixed time
scale given in [9, 10, 12].

For the Whitham-Green-Naghdi systems, it is proved in [21] that for a flat bottom, the
water waves equations are consistent with the later systems at the order of precision O(y%¢)
in the shallow water regime. Moreover, in the case of uneven bathymetry, it has been proved
in [14] that the precision order is O(p%(e + 3)). In [13], the authors proved the local well-
posedness with a relevant time scale for a two-layer full dispersion Green-Naghdi model
with surface tension. This system can be seen as a generalization of (1.1). However, their
method relies on adding surface tension, where the time of existence tends to zero as the
surface tension parameter goes to zero. Moreover, this system has only been proved to be
consistent with the water waves equations at the order of precision O(p?) even if, based on
numerical experiments, the expected seems to be O(u?e).

In the present paper, we prove the full justification of the Whitham-Green-Naghdi system
without surface tension (1.1) as an asymptotic model of the water waves equations at the
order of precision O(12(e + B)).

1.1. Definition and notations.

e We let ¢ denote a positive constant independent of y, e, 5 that may change from line
to line. Also, as a shorthand, we use the notation a < b to mean a < cb.
e Let s € R then the function [s] returns the smallest integer greater than or equal
to s.
4



e Let L?(R) be the usual space of square integrable functions with norm |f|;2 =

/S |f(@)[? dz. Also, for any f,g € L?*(R) we denote the scalar product by (f, g)L2 =

Jp f(@)g(2) dz.

e Let f: R — R be a tempered distribution, let f or Ff be its Fourier transform.
Let G : R — R be a smooth function. Then the Fourier multiplier associated with
G(§) is denoted G and defined by the formula:

Gf(&) = GOf(€).

e For any s € R we call the multiplier D% f(£) = \5\5]?(5) the Riesz potential of order

—s.

e For any s € R we call the multiplier A* = (1 4+ D?)3 = (D)* the Bessel potential of
order —s.

e The Sobolev space H*(R) is equivalent to the weighted L?—space with |f|gs =
|Asf‘L2 .

e For any s > 1 we will denote F*(R) the Beppo Levi space with |f| ;. = [A* 718, f|12.

e Let k€ N,l € Nand m € N. A function R is said to be of order O(u*(! + ™)),
denoted R = O(u* (! + ™)), if divided by uF(e! + ™) this function is uniformly
bounded with respect to (u, ¢, 3) € Asw in the Sobolev norms | - |gs, s > 0.

e We say f is a Schwartz function .7 (R), if f € C°°(R) and satisfies for all j,k € N,

sup |279F f| < 0.
x
e If A and B are two operators, then we denote the commutator between them to be
[A,B] = AB — BA.
1.2. Main results. Throughout this paper, we will always make the following fundamental

assumption.

Definition 1.2 (Non-cavitation assumption). Let s > %, €€ (0,1) and p > 0. We say

the initial surface elevation (o € H*(R) and the bottom profile b € L*®°(R) satisfies the
“non-cavitation assumption” if there exist hy € (0,1) such that

14 ¢elo(z) — Bb(z) > ho, for all x € R. (1.8)
Next, before we state the main results, we define the energy space associated to (1.1).

Definition 1.3. We define the complete function space Y/f(]Rd) = H°(R) x X, (R), where
X, (R) is a subspace of H5+%(R) equipped with the norm

1
ol = lofye + VDIl
and we make the definition

€0y 1= ¢ + ol

The following Theorem is one of the main results of the paper and concerns the local
well-posedness of (1.1) on the relevant time scale O(m) in the energy space.

Theorem 1.4 (Well-posedness). Let s > % and (p,e,8) € Agw. Assume that ({p,vo) €
Y (R) satisfies the non-cavitation condition (1.8) and b € H*2(R). Then there exists

T= C(‘(C(),l}(])h/j)_] such that (1.1) admits a unique solution
T T

((,v)eC’([O,m *max{e, B}

] Y ®)NnCH(o Y (R)),



that satisfies
sup (¢ v)lyg < 1(Cos vo)lye- (1.9)
te[o,ﬁ]
Furthermore, there exists a neighborhood of ({o,vo) such that the flow map
(YR) = C(0, gy Y (R), (Goivo0) = (Co),
18 continuous.

Remark 1.5. For the sake of simplicity, we restrict our study to the one-dimensional
setting. We comment on the possible extension to two dimensions at the end of Section 3.

For the next Theorem, we will state the full justification of (1.1) as a water waves model.
To give the result, we first state the water waves equations:

e = grlecky =0 (110
c e (26" [eC]tb+e0:(-021)? :
8t1/) + C + E(ax¢)2 - % b 1+e2u(0:C)2 = Ov

where GH[e(] stands for the Dirichlet-Neumann operator and 1 is the trace at the surface
of the velocity potential ®, see [31] for more information. To compare solutions between
the water waves equations and system (1.1), we define the vertical average of the horizontal
component of the velocity field through the formula

1 [&€

V= f/ 0P dz, (1.11)
hJ 148

where ® stands for the velocity potential in the water domain Q; := {(x, z) € R%, —1+b <

z < eC}. It is the solution of the following elliptic problem

2% 4 pd2® =0, in
q)lz:s( = 1/17 87L(I)|z:—1+ﬂb = 07

where 0,®|,=_148, = 0;P — pB0,b0,P. The last ingredient in justifying the full disper-
sion Green-Naghdi system is a long time existence result for the water waves equations.
As explaind above, this was proved in [1] and is also detailed in [31] (see Theorem 4.16).
The result holds for regular data satisfying the non-cavitation condition and the classi-
cal Rayleigh-Taylor stability condition. Since this is a technical condition related to the
hyperbolicity of the system, we will simply refer to [31] for the precise statement.

We may now state the final result of this paper.

Theorem 1.6 (Full justification). Let s € N such that s > 4 and (u,e,8) € Agw. Then for
b€ H**2(R) and any initial data ((o,tho) € H*(R) x H*(R) satisfying the non-cavitation
assumption (1.8) and the Rayleigh-Taylor stability condition (4.29) given in [31], there exist
a time T > 0 and unique classical solution of the water waves equations (1.10) given by

(1.12)

T )
——]: H*(R) x H*(R

(€.4) € 0. L] H(R) x HU(R))

from which we define V € C([0, ﬁ;ﬁ}] - H3(R)) through (1.11) and let U = (¢, V).
Moreover, if we let v}"N = V]i—o. Then vV € X,,(R) and there exist a unique classical

solution, denoted by

. T

WGN _ (,WGN | WGN VSR
U (C ) U ) € C([Ov max{e, B}] ;1,( ))7
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of the Whitham-Green-Naghdi system (1.1) sharing the same initial data
UYN—g = (¢, V)li=o-

Comparing the two solutions, we have that for s € N large enough such that for all 0 <

max{e, 8}t < min{T, T} there holds
U — UYN e o,xr) < C(IC0l s, bl g2 )1 (e + B,

with T, T, C positive constants uniform with respect to (1,2, 8) € Asw .

V‘tZO‘H"7

Remark 1.7. In the statement of the theorem, we simply let s be large enough. The reason
is due to the consistency result given by Theorem 10.5 in [14], which links the water waves
equations with a similar Whitham-Green-Naghdi system. However, it is possible to have a
precise range of s if one reproves this theorem and carefully tracks the “loss of derivatives”.
See Section 3 for more on this point.

1.3. Outline. In Section 2, we state the technical estimates that will be used throughout
the paper. In Subsection 2.1, we state some classical estimates. In Subsection 2.2 we study
the properties of the Fourier multiplier Fs. Lastly, in Subsection (2.3) we establish the
properties related to the operator 7 [h, 8b] defined by (1.2).

In Section 3 we prove the consistency of the water waves equations with system (1.1) at
the order of precision O(u2(e + )) in the shallow water regime Agsw. The starting point of
this proof is the full dispersion Green-Naghdi system derived [14] where the precision with
respect to the water waves equations (1.10) is proved to be O(u?(e + 3)).

Sections, 4 and 5 are about establishing the energy estimates with uniform bounds on the
solutions. Then as a result of the energy estimates provided in the aforementioned sections,
we are in the position to prove Theorem 1.4 in Section 6. The proof relies on classical
hyperbolic theory for quasilinear systems.

In Section 7, we prove the full justification result of system (1.1) resulting from all previous
sections.

2. PRELIMINARY RESULTS

2.1. Classical estimates. In this section, we state some classical results that will be used
throughout the paper. First, recall the embedding results (see, for example, [32]).

Proposition 2.1 (Sobolev embedding). Let f € #(R) and s € (0%) Then H*(R) —
LP(R) with p = 2, and there holds

o257
[flLe < ID*f] 2. (2.1)
Moreover, In the case s > &, then H*(R) is continuously embedded in L™(R).
Next, we state the Leibniz rule for the Riesz potential.
Proposition 2.2 (Fractional Leibniz rule [30]). Let 0 = o1 + 02 € (0,1) with o; € [0,0]
and p,p1,p2 € (1,00) satisfy % = p% + p%. Then, for f,g € .7 (R)
ID7(fg) = fD%g — gD’ fle < [D7* L1 [D72g] 2. (2.2)
Moreover, the case o9 = 0, po = 00 is also allowed.
Corollary 2.3. Letr € (3,1), f€ H'(R) and g € H%(R)‘ Then
[fglze S D772 flielgl (2.3)
and

IDZ(fg)|12 S |flurlal 3 (2.4)
7



Proof. To prove (2.3), we first let v € (0, %) to be fixed later. Then combine Holder’s
inequality with the conjugate pair p% + p% =v+ =2 1and (2.1) to get that

2 T2
1—2v
[falez S1f1l9l, 2, SID72 fle2 D79l e
However, for any r € (%, 1) we observe that we may choose v such that 132” =r— %, and

the proof follows.
Next, we prove (2.4). We will use Hélder’s inequality, (2.2) with (o1,02) = (3,0), and
% =v+ 1_22” with v € (0, %) as above to deduce
1 1 1 1 1 1
ID>(fg)lr> < [D2(fg) — fD2g — gD f[r> + [fD2g|L2 + |gD2 f .2
1 1
S D2l 1lgl, 2, + [ fle=|D2 gl

I-2v
S larlgl s

where we used (2.1) in the last line with 152 = r— 1 and the Sobolev embedding H"(R) <
L®°(R).

H"

O

Definition 2.4. Let d = 1,2 We say that a Fourier multiplier G(D) is of order s (s € R)
and write G € §° if € € RY — G(€) € C is smooth and satisfies

ve e REVB e N, sup (&)P1=510°G(¢)| < .
£eRE

We also introduce the seminorm

NS(G) = sup sup <£>|5\*6‘0EG(5)|
BENY,|B|<2+d+[4] EER?

Proposition 2.5. Let d = 1,2, tg > d/2, s > 0 and G € S*. If f € H* N HF(RY) then,
for all g € H*~Y(RY),

G, flgla < N*(G)|f| gmaxtior.s1 gl prs—1- (2.5)

See Appendix B.2 in [31] for the proof of this proposition. Next, we will need the follow-
ing results to run the Bona-Smith argument (provided in the classical paper [3]) on the
multiplier x5(D) defined by:

Definition 2.6. Let x € (R) be a real valued function such that x(0) = 1 and [ x(£)d¢ =
1. Then for § > 0 we define the regularisation operators xs(D) in frequency by

vf € IP(R), VEER, xsf(€) = x(36)f(€).
We give the version of the regularisation estimates as presented in [32] (Proposition 9.1).

Proposition 2.7. Let s >0, 6 >0 and f € S (R). Then

IX6(D)flrs+e S 67 flms, Va0, (2.6)
and
Xs(D)f = flis-s S 6| fli=, VB €[0,5]. (2.7)
Moreover, there holds
Xs(D)f = flu-s =, OW"), VB E[0,s]. (28)
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Lastly, we need an interpolation inequality. In particular, for any s,r, ¢t € R such that
r < tand s € (r,t), then for 6 € (0,1) given by 6 + (1 — ) = =2 + 5= we have by
Plancherel’s identity and Holder’s inequality that

| Flas < £ 11157, (2.9)

2.2. Properties of F. In this section, we prove estimates concerning the dispersive prop-
erties of the equation.

Proposition 2.8. Let s € R and f € .7 (R), then there exist ¢ > 0 such that

_ 1
By < IfIhs + plF20:f 3 < el fIXs, (2.10)
1
[F72 flus < clflxg (2.11)
VAIE flrs < clflgsr, (2.12)

i [F2 fls < clf| (2.13)

1.
H*"2

Proof. The behaviour at low frequency of the three Fourier multipliers F%,F_% and F! at
low frequency is

F3(Q), F3(€), F'(§) ~ 1.

At high frequency, their respective behavior is

1 1 1 1
2 P2 ~
O MO i

This gives us (2.11), (2.12), (2.13), and the right-hand side inequality of (2.10). It only

remains to prove the left-hand side inequality of (2.10):
1
s = |/ s + VAID? fl3e.

Now, let f(]l{\/ﬁlDISI}f)(f) = ]l{\/mg‘gl}f(ﬁ) where 1y /z¢/<1y is the usual indicator function
supported on the frequencies (/|| < 1. Then we get that

1 1 1
VaID? flFs = \/mﬂ{ﬁ\D\gl}DzAsf‘%? + \/mﬂ{\/mel}D?Asf\iz
11 3 1
S \/lj\ﬂ{ﬁ\D\g}F?D?Asf@z +p2 |]1{\/;7|D|>1}F1DZAsfﬁ2
1
S f1Fs + ulF2 flipe.

wiE, FY(e)

~ ~
oo [ee)

Proposition 2.9. Let f,g € .7 (R) and to > % Then for s > % there holds,
1 1
[IA°F2, flglre S IF] maxtio s 1y F 29l e (2.14)
In the case s > 1, there holds
1 1
A% F20,(f)]0zglr2 S [F200 f| s
Moreover, in the case s = 0 we have that

1 1
IIF2, flgle < ‘f|X;0+1|F29|H*1~ (2.16)
9
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Proof. To prove (2.14) we note that the Fourier multiplier ASF3 is of order s — % in the
sense of Definition 2.4. Moreover, we observe that

N*TH(AF) S gt
Thanks to the commutator estimates of Proposition 2.5 and estimate (2.10), we have
sl _1 1
IAFR, Flgliz S 13 mntrorne 3019108 S 1 mastiorne 3y [F30l0e1,
and proves estimate (2.14).
For the proof of (2.15), we start by estimating the bilinear form:
1
a(D)(f7g) = [A87 anz(f)}azg7
given by
. 1 s S F =
la(€)(f,9)| < AFQ(ﬁ)\ﬁ\\<$>‘ —(p°[1(€ = p)I 029(p)| dp.

First, if |€] < |p| we can use the mean value theorem to deduce that

la(€)(f:9)l < /RF%(/J)\pI(p)s’lli*pr(éfp)l 12:9(p)] dp,

. _ 1 . . . .
since both w > (w)*~! and w ++ F2(w)|w| are increasing functions. By extension, we make

a change of variable v = £ — p, apply Minkowski integral inequality and Cauchy-Schwarz to
find the estimate

A F30,(/)]0ngl2 < | / F3( = )] =5l = )] g =)l ]
JR 3
< [F30, ]+ /R W F )] dy

1
S 1F20:9] 15102 f to-

On the other hand, when |p| < || then we can argue similarly to find that

la(€)(f,9)| < /R F3(& = p)l€ — pl(€ = p)> & = plIf (€ = p)] D9 (p)| dp

+ [ FR@ol0) e = pllFe - o)l Brgto)] dp,
R

and as using the estimate above we conclude in this case that
1 1 _ . o
0 FE0(Ploulin <| [ FHC= )l =l =911 =plIFC = o)l Bra(o)l do
. €

1
+ |F20:9] 1|0 f| o
1 1
S, |FQan|HS‘aTg|HtO~ + ‘anxngS|axf|H‘0~
Adding the two cases completes the proof.

Next, we prove (2.16) by estimating the bilinear form:

a(€)(f,9) < /}R |F2(¢) — F2(p)||£(€ — p)l§(p)] dp.
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Clearly, it is enough to prove that

k(& p) = |F3(€) = F2(p)|[ F 2 (p){p) S 1+ |6 — plF2(€ = p). (2.17)

Indeed, assuming the claim (2.17) and using Plancherel, Minkowski integral inequality, the
Cauchy-Schwarz inequality and (2.11) we obtain the desired estimate

9(p)l dp

! flolis e ol (o))
(P4 Aol < | [ K€ F€ =) PR p
S| [ @+ IF30) ) FiE = =)ot -l i,

R ¢

1
S |f‘xlio+1‘F29|H*l-

Now, to prove the claim (2.17), we consider three cases. First, in the case |p| < 1 it follows
directly that

k(& p) ST,

since & — F%(f) and p — F*%(p)(p> is bounded. Next, consider the case |[p| > 1 and
|€] < |p|- Then we note that since & — Fé(é) is decreasing for £ > 0, we have the estimate

o) .,
F(S)
and moreover since £ — ( % — 1) is increasing for £ > 0, we get that
1 1
[§] (lil)§ (F(P))§
=< <= <L 2.18)
ol = \ot) = \F© (

Thus, we obtain the bound

wen-(1-(54) ) (58) v
< (ol - £|)(§Ef,§)%.

Finally, to conclude this case, we make the observation that if || ~ |p|, then
1
(29!,
F(p)
)

( );<1+ o2 S 14 puilo— gl
Froy ) STHpilplz S1+pilp =2
F(p)

Gathering these estimates allows us to conclude that

kEp) < (o] - m)(%f S14le—plF e p).

11
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On the other hand, the case || > |p| > 1 follows directly by changing the role of £ and p in
(2.18). Indeed, we obtain that

e = (1- (ig)) (o)
< (Il - lol,

and the proof of (2.16) is complete.
g

Proposition 2.10. Let s > 0, and let f € H*T2(R), then we have the following estimation
on the Fourier multiplier F?
1
|(F2 = 1) flas < plflms+e.

Proof. First, remark that it is enough to prove the result only when s = 0. The function
1
defining the Fourier multiplier F2 is a smooth function on (0, +00), continuous in 0 with

F%(O) = 1 and its first derivative is zero. Moreover, its second derivative is bounded in
[0, 4+00), so that from Plancherel identity and the Taylor-Lagrange formula, we get

1 A R
[(F2 (Vi) = 1) fl2 < ull€?f -
In the end, we have the estimate
1
|(F2 = 1) f[r2 < plflp
O
2.3. Properties of 7 [h, £b]. In this section, we study an elliptic operator associated with

T1h, Bb] given by (1.2). The main result is given in the following proposition where the
main reference is [28].

Proposition 2.11. Let (j1,¢,8) € Agw, s > 0, ¢ € H™{Ls}(R), b € HP2(R) and let
h =1+ e — Bb satisfy the non-cavitation condition (1.8). Define the application

H'(R L*(R
T (R = LR (2.19)
v — hv + phTh, Bblv
Then we have the following properties:
1. The operator (2.19) is well-defined and for v € H*(R) there holds,
|7 Th, Blvlze S Joly- (2.20)
X
2. The operator (2.19) is one-to-one and onto.
3. For s >0 and f € H*(R) there holds,
|7~ h, B flxs S 1S (2.21)

4. For s> 1 and f € H*"Y(R) there holds,

VEFET ", B0 flae S |l (2.22)
12



Proof. We give the proof in four steps.

Step 1: The application (2.19) is well-defined. Indeed, by assumption and Sobolev embed-
m{r(R) — L*®(R) we have that h € L*>(R). Therefore, by (2.10) we get that
|71, B0Jo]z2 S [holie + pl0aF 2 (WF20,0) 2 + ul0sF 2 (1 (B0:b)0) 1
+ ulh?(BOsb)F 20,0 12 + | h(BO:b) 0] 2
[l e fol 2+ p3[D2 (h*F200) 2 + 13 [D3 (W% (80:b)0) 12
+ P2 (BOD)F2 Dyv] 12 + pl | oo | (0:D) 0] 12
= A1+ Ay + A3+ Ay + As.

N

To conclude, we note that (h — 1) € H(R) and together with Holder’s inequality, the
Sobolev embedding, and (2.10) we estimate Ay + A4 + As:

Ay + Ay + As < c(|h =1 g, |h2 — 1\H1,5|8zb|pc)\v|x%.
;

The remaining terms are treated similarly, after an application of (2.4), and yield the desired
estimate

|7 [h, BbJv]r2 S IU\X;;

Step 2. The application (2.19) is one-to-one and onto. Equivalently, we prove that there
exist a unique solution v € H'(R) to the equation

Th, Bblv = f, (2.23)
for f € L?(R). To construct a solution, we first consider the variational formulation of
(2.23) that is given by

a(v, ) = L(), (2.24)
for any ¢ € C°(R) and with

{a(v,«p) i= (v, h) ;2 + (v, uhTTh, Bbl@) ;.
L(SD) = (fv ‘P)Lz‘

Then, through a direct application of the Lax-Milgram lemma, we prove there exists a
Sl

unique variational solution v € C°(R) wt = [ (R). Indeed, we observe that the applica-
tion (u,v) + a(u,v) is continuous on H%(R) X H%(R):

Ja(v,9)| < elh — 11, Blsblz=) ol xs ¢l xo,

by integration by parts, Holder’s inequality and (2.10). Moreover, the coercivity estimate
is deduced by first making the observation:

olvv0) = (o) o+ e (00— 2 B0u000), Jeri 0.0 = (0.t
+ B (npo.op, (50:0)0) 1
V3

9 h _1 2 up? 2
> holv[2, + uho‘ﬁanz (ﬁazb)v‘m + EE V@)l

ey
=:1.
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Now, let v > 0 be chosen later and make the decomposition I = (1 — v)I + vI. Then the
first term can be bounded below by

(=01 = (= ol + L= i,
On the other hand, the remaining part is estimated by Cauchy-Schwarz and Young’s in-
equality:
vuhd
3

vihd h2 3
%\F%am’; - uuh()(FO\F%BzvVLQ + W|\/E|%m,82\\/ﬁ(8zb)v|Lz>.
0

vl > F20,0%5 — pwhoIVh| o< |VR(0:b)v| 12[F20,0] 12

So that
hd 1 1 3Vh)3w
I> (1= v)holv2s + L0 F20,02, + ;152<7 - u<f + Mih)) V(9|2
6 4 4 2ho
Thus, to conclude, simply choose v small enough, from which we deduce the desired estimate
a(v,v) > clv|%o. (2.25)
I

Lastly, the application ¢ +— L(y) is continuous on ¢ € H é(R) by Cauchy-Schwarz. Con-
sequently, we have a unique variational solution v € H %(R) satisfying (2.24) for any
pE Hé(]R). Let us show that this solution is in H'(R), so that it also satisfies (2.23).

Let 0 < 6 < 1 and take x5(D) as in Definition 2.6 and define a sequence of smooth
functions given by vs := xsv € Ns=oH*(R). Then using Al(xs)%v € H%(R) as a test
function, we get

a(Advs, A3vs) = a(v, A1 (x6)* ) — (Ao, hlv Abvs) 1, — £ (S xs, WIFE0,0, ABF30,05) 1,
+ S ([A% x5, B2 (BOb)E2 00, Aus) ., + & (102 x5, 12 (BO:b)]o, APF20,05)

— (A% x5, R(B0:0) 0, ABus) .
Then using (2.24) and (2.25), we get

L2

clusl? y < a(AZvs, AZvg)
X2

= |(£. A (5)%0) 12 = (A3 x5, hlo, AFvg) 1, = £ ([, APIE 20,0, ATF20,05) 1
L 1 1 1 1 1.1
+ 5 (x5, 2(B0.)F3 0,0, M) 1, + 5 (M5, h2(80:b) o, AZFE0,05)
— (A% x5, h(B) v, AZvs) -

Now remark that A%X(;(D) is a Fourier multiplier of order % in the sense of Definition 2.4,
and that A2 (A%X(;(D)) < 1 uniformly in §. Hence, from Cauchy-Schwarz inequality, (2.10)
and the commutator estimates of Proposition 2.5, we get
clusl? y < (12 + [olz2)lvslim.
I

We, therefore, deduce the estimate

Vielvs g S 1f| 2 + vl e (2.26)
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The family {vs}o<s<1 is uniformly bounded in H'(R). Hence, since H'(R) is a reflexive
Banach space, there exists V € H'(R) and a subsequence {vs, }o<s,<1 With &, — 0 such
that vs, — V. By uniqueness of the limit in L?(R), we deduce that v =V € H'(R).

To conclude, we may now use (2.24) and integration by parts to find that

(Z[h, Bblv, @)Lz = (f, ‘P)LQ’

for any ¢ € C2°(R). Hence, we conclude that the variational solution also provides a unique
solution of (2.23).

Step 3. The estimate (2.21) holds. To prove the claim, we first consider v, the solution of
(2.23). From the coercivity estimate (2.25) and Cauchy-Schwarz inequality, we have

ol S alv,0) = L(v) < |f|r2lvlzz < |f]p2lolxs,

so that
[olxs S el fle. (2.27)
Next, we apply A® to (2.23) and observe that A®v is a distributional solution of the equation
Th, Bblvs = A*f — [A®, hJv + ga,Fé([AS, 3|2 0,v) — gawF%([As, h2(B,b)v)  (2.28)
+ %[AS., h2(B0b)F2 8,0 — [A®, h(BO:b)]v (2.29)
Moreover, from the coercivity estimate (2.25), the variational solution of (2.28), vs, satisfies
closly < a(vs,vs) = (A°F = [N, Blo + S0, F3 (1A%, 1JF30,0) — £0,F 3 (A%, h2(80,b)]0)
+ %[As, h2(BO.b)|F2 00 — [A®, h(B.D)2v, US)LZ
= (A, 05) 2 — ([A°, Blo,05) o — g([As,hﬂF%azv,Féazvs)LQ
+ g([AS, h2(B,b)Jv, F20,05) 0 + %([AS, h2(B0,b)[F2 0,0, v5) ;0
— ([A®, h(BIb)?]v, vs) 2-

Then using Cauchy-Schwarz inequality and the commutator estimates of Proposition 2.5,
we get

Joslg < €1l + o]z losl ;-

To conclude, we first consider s € N and simply argue by induction using (2.27) as a base
case noting that the distributional and variational solutions must coincide, i.e. vy = A’v.
Then use the interpolation inequality (2.9) to obtain (2.21) for any s real number > 0.

Step 4. The estimate (2.22) holds. Arguing as above, we apply F3A° to (2.23) and get
|F%v\xﬁ < a(F%Asv,F%ASv)
1 1o sl 1 s
= (F'A*f,A%) 1> — ([A°F2, o, F2A%) ., — %([ASFz,h?’]anzv,FlarA V)
+ g([ASF%, h2(B,b)Jv, FL,A%) , + %([ASF%, h2(B0,b)|F2 0,0, F2A%) |,

— ([AF2, h(B0,0)%)v, F7A%0) .
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Now using Cauchy-Schwarz inequality, the commutator estimates (2.14) and (2.12), we get

1
F2olky S (—=Iflms-1 + ol gs-1)lvlas.

NG

Moreover, for all s € R there holds,
[vlms < L mpi<iyvlas + L mpi>1yvlms
N ‘ﬂ{ﬁ\D\gl}F%MHS + \//7|]1{\/E\D\>1}F]3zU|Hs
S [F20ls + HIF'0,0] e
< [Faolx;.
Thus, by gathering these estimates we get
VAIF3 s S o1l + VElF20]yam),
and allows us to argue by induction for s € N\{0}, where the base case reads
F2olxo S [vlxo < 1122

Then use (2.9) to conclude the proof. In the end, we have the estimate

1 1
VAol < lF3olx; < ol flyor.

3. CONSISTENCY BETWEEN (1.1) AND (1.10)

To derive system (1.1), we start from the full dispersion Green-Naghdi model derived in
[14] for which we know the order of precision with respect to the water waves equations
(1.10).

Proposition 3.1 (Theorem 10.5 in [14]). There ezistsn € N and T > 0 such that for all s >
0 and (u, e, B) € Asw, with b € H*T™(R) and for every solution (¢,v) € C(|0, %], HS™(R) x
H5t™(R)) to the water waves equations (1.10) one has

¢+ Du(hV) = 0
{at(v T T BOIT) + 00C + VOV + ped,RI, 8000 V] = (e + BB, V)
where V is defined through (1.12) and (1.11), and
Tlh, 8OV = —%&Fé(th%an) + %(&Fé(hQ(ﬁaxb)V) ~ R2(B0,H)FH0,V )
+ (B0:0)*V,

R{h. 90.7] = 0,7 (540, 7) - 112 (40,7’
+ % (%(%F% (h2(B0,b)V) + h(BO,b)VF20,V + (ﬁazb)272> :
and where |R| s < C (5, tmaxs [l gresn s [0 o, [bgsin).-
Furthermore, we say that the water waves equations are consistent with the system (3.1)

at the order of precision O(p%(c + B)) in the shallow water regime.
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Proposition 3.2. The water waves equations are consistent with the system
{atg +8,(hV) =0
(h + phTTh, BOyb]) (OtV + 878957) + hOxC + peh(Q[h, V] + Qu[h, b, V]) = 0,
at the order of precision O(u?(e + B)), where

— 2 . —
Q[h, V] = 3—h@zF% (W (F20,V)?) (3.2)
_ _ 1 . .

Qi 3, V] = h(F20,V(B0:0) + 5 0.F3 (WV*5020) + V(B020)(B0sD).  (3.3)
Proof. Let us first remark that we only have to work on the second equation of system (3.1)
and that the first equation can also be written

Oih = —0,(hV). (3.4)
Then multiplying the second equation of (3.1) by h we can write
hoy(V + uTTh, Bb]V) = (h + phT [h, Bb))O,V + h[0s, uTh, BH]|V.
Now, using (3.4) we observe that the following terms are of order pe:
h[Oy, uT[h, Bb]]V + uehR[h,v],
and so we can use Proposition 2.10 to trade the multiplier F? with identity and terms of
order p2e. Thus, following the derivation presented in [28] we obtain that
(h+ phTTh, BOL]) (0, + eVOLV) + hdC + peh(Qlh, V] + Qulh, b, V]) = O(p’e)
where
Jo— 2 —
O, V] = 3—h@x(h3(8zV)2)
_ _ _ 1 _ .
Oy, 3, V) = h(0,V)* (B0:b) + 504 (W BO) + V° (B02b) (80,b).

To conclude, we simply apply Proposition 2.10 once more to see that

Q[h, V] = Q[h, V] + O(n)

and 5 . o
Qb[h: Bb, ] = Qb[ha pb, V} + O(/L)
O
Remark 3.3. If we consider the two-dimensional case where we let X = (x1,22) and
V,R € R, then system (3.1) reads
W +Vx-(hV)=0 (3.5)
OV +uT[h BV) + VxC + 5V |V + peVxRIR, 5050, V] = (= + B) R. '

In this case, one can exploit the observation that the quantity
U=V +uT[h,BbV (3.6)

approximates the gradient of the wvelocity potential at the free surface. Consequently, for
regular solutions, one can impose the condition curlU|;—o = 0 and using the second equation
in (3.5), we can deduce that curl U = 0 whenever the solution is defined. However, this
observation does not carry over to (1.1) since the two systems are not equivalent. On the
other hand, if F = 1d, then the two systems are equivalent, and one may exploit this insight
to deal with the two-dimensional case.
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Rema{‘k 3.4. The estimates in Section 2 can be extended to two dimensions where we note
that F= () is a radial function. Also, in light of the previous remark, it could be possible to
work on system (3.5) directly where we estimate the variables ¢, U and with V = V[h, 8b, U]
uniquely defined by (3.6) (see [15] for similar observations). However, doing this change
of unknowns would change the mathematical structure of the equations. So that it is not
obvious that we can close the energy method in that case.

4. A PRIORI ESTIMATES

In this section, we establish a priori bounds on the solutions of (1.1). To this end, we
let U = (¢,v) and for simplicity we introduce the notation

T = y[hvﬂbL Q= Q[h,ﬂ], Qb: Qb[h,ﬁb,ﬂ],
allowing us to write (1.1) on the more compact form:

S(U)(0,U + My(U)2,U) + My(U)3,U + Q(U) + Qy(U) = 0, (4.1)

sy f). o= 2). o= (3 )

and where the quadratic terms are

o) = (,50) @@= ("), (1.2

with Q as defined by (1.3) and Q; defined by (1.4). We may now give the energy and the
energy estimate of (4.1). In particular, we make the definition:

E,(U) = (A*U, 5(U)A°U)

with

o (4.3)

allowing us to state the following result.
Proposition 4.1. Let s > %, (1,6, B) € Asw, and (¢,v) € C([0,T];Y,;(R)) be a solution

to (4.1) on a time interval [0,T] for some T > 0. Moreover, assume b € H**2(R) and there
exist ho € (0,1) such that

ho —1+p8b<e((x,t), V(x,t)eRx][0,17], (4.4)
and suppose that
N(s) =& sup |(C(t),vlt, Dl + Blblers < N*, (4.5)
te[0,T)]
for some N* € RT. Then, for the energy given by (4.3), there holds,
£ B,(U) S N(5)E,(U), (4.6)

and

(¢, v)

forall0 <t <T.

Proof. We first prove (4.7). We note that the energy is similar to the bilinear form defined
in (2.24). Thus, the estimate is a direct consequence of Step 2. in the proof of Proposition
2.11 and (4.4).
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Next, we prove (4.6). Using (4.1), the self-adjointness of S(U) and the invertibility
provided by Proposition 2.11 under assumption (4.4), we obtain that

%%ES(U) . %(ASU, (B5(0)AT) , + (A°0,U, S(U)AU) ,
= %(A“’Uv (2,S(U))A*U) ,, — (A*M1(U)3,U, S(U)AU) ,
— (My(U)9,A°U, A°U) |, — ([A%, (S™1M)(U)]0, U, S(U)A*U)
— (A*(57'Q)(U), S(U)A*U) ,, — (A%(S7'Qy)(U), S(U)A*U)
— I+ IT+IIT+IV+V+VI

Control of I. We first use the equation for 9;( in (4.1), together with the Sobolev embedding
H* Y(R) — L®(R) with s — 1 > % and the algebra property to deduce the estimate:

|8f,h|Loo S 5\8x(h,v)\Loc
Se(l+elclus +Blb He- (4.8)

Therefore, by definition (2.19) of Z[h, 8b], using integration by parts, Holder’s inequality,
(4.5), Sobolev embedding, and (4.7) we obtain the bound

ms)lv

1,4 ]
1] < S1(A%, (On)A™) o] + EI (F20:A%, (OU()F20,A%) |

+ %I (F2 0, A%, (9:(h2)) B(D:b)A*) o] + pl (Ao, (9ph) (B:b)>A%) .|
S N(s)Es(U),

3
for s > 5.

Control of II. By definition of 7 [h, 8b] we must deal with the terms:
€
1T = —<(A*(v9,0), hA*D) |, + %(As(vc'?zv),81F%(h381F%A5v))L2

€ s 1 s £ s 1.
- %(A‘ (09,0), 0, F 2 (h2(8:0)A%0)) |, + %(A (v0,v), B> (D2b) 0, F2 A%V) |,

1€
- %(AS@@IU), h(BOb)*A%0)
=TI+ 1L+ 113+ 114+ 1I5.
Using integration by parts, we may decompose II; into two pieces
11, = —e(thsazv, ASU)L2 —&([A®,v]0pv, hA‘("v)L2
€ ,
=5 (((‘%Ahﬂ))A‘(’v7 Asv)L2 — 5([1\57 v]0yv, hAsv)LQ.

Then by Holder’s inequality, Sobolev embedding, and the commutator estimate (2.5), we
obtain the estimate:

15| S e+ |h—1gs)[v]3s.
We also note that I15 can be estimated in the same way, and we obtain easily that
[115] S e(1+ [h— 1] gs)|bl2res [0]3e-
For I'l5, we also use integration by parts to make the observation:
€ 1 1 € 1 1
I = 7%([AS,F261(U-)1611;, W0, F2A%) ., — %(anx(msaxu), W0, F2A%) .,
= I} + 12
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Then we treat 113 with Hélder’s inequality, Sobolev embedding, and (2.15) to get
[115] S (14 [A® = 1gs) ol s vl
On the other hand, we need to decompose I3 further and carefully distribute the j:
12 = f%(uF%Asagu,h‘ﬁazF%A%)LQ ‘;5([ 3, 0] A*020, B30, F3 A%) |,
— L2 (P2 ((000)A°0,0), 0,3 A%) 1,
= [N+ 117 4+ 11,
For 1122’17 we simply integrate by parts and argue as we did for I1; to obtain
I3 < prel 0 (B20) o1 [F2 Ay
S e+ | = Lgs)[vlas vl
For I 122 2 we use Hélder’s inequality, Sobolev embedding, and (2.16) to directly obtain that
1137 < pe(1+ 1P 2020 g1 [F2 0,0 1o
S e+ B = 1ol

For 1122’3, we also need to be careful in the distribution of p. In fact, we need to use
Plancherel, then Cauchy-Schwarz and (2.11) to get

113 = E2| (B3 A% 0,0, F % ((0,0)F3 (190, F7A%) ))
1 3.1 1
< elol s (VA @0)FE (R20,F2 A%) |2 + pd D ((@,0)F% (20, F24%) )| 2)
=t elv|xs (A + B).
Then estimate A by Hélder’s inequality, the Sobolev embedding, and the boundedness of
F? on L?(R) to get
A S [olas (14 [h* = 1 ge) o],
while for B, we also use (2.4) and (2.13) to get
B S i ol [F2 (RP0,FZA%)|
< Vo | BP0, F2 A% 2
< lols(1+ [

Next, we use integration by parts to decompose I3 into several pieces:
115 = PP (A" )00, 0,73 (02(@0)A) 2+ 2 (3 (0,0)A%0.0), W2(0,0)A%) .

+ @ (F2 (0A*02v), h2(0:b)A%v) |,
=TI} + 124 113.
Then for 113, we apply (2.5), (2.13), and (2.4) to obtain that
13| < elof}ept D2 (B2 (0:b)A%)| 2
S e+ R = 1) bl s o
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For 112, we argue as for I[22’3 to get that
T3] S el (F2 A% 00, 3 ((0:0)F2 (02(9:0)A%)) |

< elvlxg VA( (050)F 2 (h2(8:5)A%0) | 12 + 7 [D3 (9,0)F 2 (h2(8:5)A%0)) | 12)
< efolg (14 [0 — 150 bl gros 0]

For I Ig, we first make the decomposition
112 = “gﬁ(w U020, h2(D,b)A%) o + Eo *B(uFaA 020, K2 (0,D)A%) |
= 113"+ 11
For Ifff’l, we employ Holder’s inequality, Sobolev embedding, and (2.16) to get that
T3 S pelols [F 2000l bl (14 |02 = Lo ol e
Lastly, for I1. g ’2, we use integration by parts to make the observation that
13° = _M(F%Asﬁzv, (vh?(02b))vA*Opv) ,, — ,ueﬂ (FzAsa v, (O (Vh*(9:0)))A%V) |,

_ peB
2

Then we may use Holder’s inequality, (2.5), (4.5), (4.7)7 and Sobolev embedding to get that

(FEA%0,0, vh2(,b)[A°, 0)s0) o — T “Eﬂ (FEAB,0, (B, (vh2(0:0)))A°0) o

[[13% + 11| < N(s)E(U).
Gathering all these estimates, using (4.5) and (4.7), allows us to conclude that
1] S N(s) Ey(U).
Control of I11. Then by definition, we must estimate the terms:
IIT = —e(v0,A°¢, A°C) o — (RO A0, A°C) 5 — (ROLA°C, A%D) |,

For the estimate on these terms, we integrate by parts and apply Holder’s inequality, Sobolev
embedding, and (4.7) to deduce

11| < S[((De0)A'CATC) 1ol + [ (9h) A", A%)
S N($)E,(U).

ol

Control of I'V. We decompose each term in IV and estimate them separately. In particular,
we must estimate the following terms,

IV = —e([A%0)0:¢, A%C) o — ([A%, B]sv, A%C) 1o — (A%, T (1)) 0eC, TA®D)
= IV + IVy + IV5.

The first two terms are easily controlled by Cauchy-Schwarz and (2.5):

[IVA| + [1Va] S efolpee[ClFs + (el¢|zoe + BIblzee)[¢| s o] e
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Then use Sobolev embedding and (4.7) to conclude. However, need to decompose the
remaining term further. To do so, we make the observation that

TN T S = A KT (hf) + EOFRA W0,F (77 (k) (49)
— SOFR A WB(0:0)) T (hf) + S K2B(0:0)]0:F 2 T ()

U h(BOL6)2) T () + (A% Bl .

Then by this identity, the self-adjointness of Z[h, 8b], and integration by parts, we may
decompose IV3 into six pieces:

Vs = (A%, h] 71 (h0,C), A*0) , + %([AS, 110,F2 (7 (h:0)), 0, F7A%0)
— (A% B28(0,0) 7 (h0:C), . FFA0) 1, = L (IA% W2 B(0:)10.F3 77 (D, C), A™) 1,
— 1([A%, h(BOb)*)T 1 (h02C), M) 5 — ([A®, h]0xC, A%D) |,
= IV + IVE 4+ TV 4+ TV 4+ TV + TV,

For IV4, use Cauchy-Schwarz inequality, (2.5), Sobolev embedding, (2.21), (4.5), and the
algebra property of H*~}(R) for s — 1 > % to get the bound

[TV3| S (€0l + Bl0:b| Lo ) [hOeC| s 0] e
< el¢lpslvlars + B1zb| oo C s 0] e
Similarly, when estimating IV we also use (2.10) and the inverse estimate (2.22) to deduce
|IV3| S enldlie [F2 77 (h0:0)| 11| 0:F 2 A% -
< elClFvlxs + BlOublree ¢ sl v] x -

Next, we see that IV3 + IV + IV3 offers no other difficulties. In fact, applying the same
estimates as above, with (4.5), yields

[TV |+ [TV |+ [TV S (14 elCle) BlOsbl Lo |C s

U|X; .
Lastly, I V36 is controlled by Cauchy-Schwarz inequality, (2.5) and Sobolev emebedding;:
[TV S elCligslolae-

Control of V. We need to make a careful decomposition of the following term
T (A7 (hQ)) = %9(/\89—1(azF%(;l?’(F%azv)?))).
To do so, we use the identity
7 (M7 FR0(f9)) ) = ~IN', 7177 (FR0.(f9)) + [N, 30, (F)lg
+F20,(fA%),
then use integration by parts to make the decomposition

V= % {([AS, T T hQ), A*) , + (A%, K] ((F20,0)?), F20,A%)

+ (WA ((F30,0)%), F20,0%)
=Vi+Va+ Vs
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We treat V; first, where we must control the following terms:

2
Vi = (A B 77 (hQ), A%) 1, + 2 (1A% W0,F 3 (771 (hQ)) O, FFA%)

- L%([AS h2B(0:0)].T " (hQ), D, FA%) ,, — L25([AS h?B(0,b)]0,F2 71 (hQ), A*v)
2 9 €T y Y L2 2 bl xT €T bl L2
— pPe([A°, h(BO:b)*).T7 ~H (h0:Q),A%V) ,
=V + VP VP VP

To estimate the first term, V;, we simply argue as above. Indeed, by (2.5), the Sobolev
embedding, and using that X*~1(R) C H*~!(R) with (2.21) yields

Vi < pel[A®, )7~ (h Q)| p2]v| s
S pelhQ|gs—11Clms|vlus.

Then to estimate |hQ|gs—1, we first observe by the interpolation inequality (2.9) and Young’s
inequality that

1 1 1
VAIF2002 ) S [F2050] e /ElF2050]
< o3 + plF2 8,0/

Thus, we may estimate |hQ|gs—1 by using (2.21), the algebra property of HS*%(R) for
s — % >1 and combined with (2.14) and (2.13):

ulhQliror = E10.F3 (h*((F30,0)%)] o
< Hl0F 2 (F20,0)2) grer + pl0aF 2 (B2 — 1)F2 ((0r0))) | o1
S VAIFO0 |y + pl[AF2, B¥(F20,0)%) 12 + il (B = F3 (F20,0)°) |-
< NSl
and using (4.5), we deduce that
Vi S N(s)[of3e.

Next, we consider V2 and observe that we can have a similar bound. Indeed, using (4.5),
(2.5), and (2.14) we observe that

V] S (A%, h¥)0, 3 7 (hQ)| 12| Orl
S uielF2 7 (hQ) | vl x;
< pelh Qi o]z,
and we use the previous estimates to obtain that
V| S N (s)lolk;.
Moreover, we note that it is straightforward to estimate |V;3| + ... + |V}®| arguing as we did
for Vi and V2. Thus, gathering all these estimates and using (4.7) yields,
Vil S N(s)Es(U).
Next, we estimate V2 using Holder’s inequality, (4.5) and (2.5) to obtain
Val S pe(1+ |B? = 1)) [F2 0. |0 F 2 0]
< Nl
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Lastly, for V3, we inject a commutator and use Hoélder’s inequality, Sobolev embedding,
(4.5) and (2.5) to get

Val S pel (WP[A®, (F20,0)](F20,0), F20,A%0) o] + pe| (h3 (F2 0,0) A°F 20,0, F20,A%0)
< pe|F20,0| s |F2 8,0 o1 [F2 05 A% 2
< N(s)lofks-

L2l

Control of VI. To complete the proof we need to estimate the remaining part:
VI =—eu([A*, 71771 Qy, A*) 5 — ep(A*Qp, A0) |,
— (As((ﬁazb)v), ASQ)L2
=V +VIa+VlIs.

The estimate in VI is similar to the one of V', where we now have to deal with the following
terms

2
VI = —pe([A% BT Qp A%) o + 25 (F20, (A%, W3F30,(7 71 Q) A%) 1
2

3
- %(F%ax([/\s, h2B(0:5)]7 1 Qy), A%)
ue

1 - S
+ 7([A5,h26(81b)]F281(§ 'Q), A%)
— p?e([A%, h(BOLD)*].T 1 Qp, A) |,
=V +VE+VE+VI}+VI}.

Each term is treated similarly. For instance, take VI?, which is the term with the least
margin. Arguing as above, we use Cauchy-Schwarz inequality, (2.5), (2.22) and (4.5) to
deduce that

VIZ] < el Qsl o1 [o]x;,
where use the algebra property of H5~}(R) for s > % to get:
11Qy g1 S ulh?(0:F20)2(80:b) | gro-1 + | 0aF 2 (W02 BO2) | o1 + pl v (BO20) (BO4D) e
< ol
Using similar estimates for the remaining terms, it is easy to deduce that
VI S elof,-
For I'V,, we use integration by parts to make the decomposition:
VI = —ep(A(R2(0,F 502 (50,0)), A°0) 10 + 5 (A (h202020), 0,F 3 A%0)

— ep(A*(ho*(BO2D) (BO:D)), A*D) .
Each term is estimated by Holder’s inequality, Sobolev embedding, the algebra property of
H*(R), and (4.7), leaving us with the estimate

[VIo| S N(s)Es(U).
Lastly, VI3 is estimated using the same estimates and gives

|VI5] S Bl0:blus|v|ms|Clms-
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Consequently, we have the estimate
VIS N(s)Es(U),

and thus completes the proof of Proposition 4.1.
O

Remark 4.2. Under the provision of Proposition 4.1, using the algebra property of H*~*(R)
for s > %, (2.21), suitable commutator estimates one can easily obtain that

|(M1 4+ S™'My)(U)8,U|ge1 < |U|ps, (4.10)
and
[(S7HQ+ @p)(U)| g1 S Ul (4.11)
5. ESTIMATES ON THE DIFFERENCE OF TWO SOLUTIONS

We will now estimate the difference between two solutions of (1.1) given by Uy = (¢1,v1)7
and Uy = &((a,v9)T. For convenience, we define (n,w) = ({ — C2,v1 — v2). Then W =
(n,w)T solves

AW + (M; + S7'My)(U)0, W = F, (5.1)
with S, My, Ma, Q, Qp defined as in (4.1) and

F=— [(M1 (571 (UY) — (M + s—1M2)(U2)] 9, U,

- [(57H@+ @)U = (57HQ + Q1)(U)]
= F;+Fs.
The energy associated to (7.1) is given in terms of the symmetrizer S(U;) and reads
E{(W) = (AW, S(U)A*W) . (5.2)
The main result of this section reads:
Proposition 5.1. Let s > %, (1,6, B) € Asw, and (C1,v1), (G2, v2) € C([0,T]; Y (R)) be a

solution to (4.1) on a time interval [0, T for some T > 0. Moreover, assume b € H*"?(R
and there exist ho € (0,1) such that

ho — 14 8b < ei(z,t), V(x,t) €Rx[0,T],
fori=1,2, and suppose also that

N(s):=¢e sup |(Gi(t,),vi(t,))
te[0,T]
for some N* € RT. Define the difference to be W = (n,w) = ((1 — (2,v1 — v2). Then, for
the energy defined by (5.2), there holds

vi + Blblaers < N*, (5.3)

d ~
S0 (W) S N(s)l(, w)[o, (5.4)
and ~
(. 0) 2y < Eo(W) £ 10 w) . (55)
Furthermore, we have the following estimate at the Y;;— level:
d -
S Es(W) S(AF, S(UDATW) o] + N(s)] (m, w)[, (5.6)

and ~
(. w)fs S B(W) S |, (5.7)
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Proof. We note that (5.5), (5.6) and (5.7) follow by the same arguments as in the proof of
Proposition 4.1 and is therefore omitted.
To prove (5.4), we use (7.1), the self-adjointness S(U), and Proposition 2.11 to obtain

Ld o owy = %(W, (BS(U)W) 2 — (M (U0, W, S(UNW) .,

2 dt
- (AIQ(U1)81W7 W) 12 + (F17 S(UI)W) L2 + (F27 S(Ul)w) L2
=I+IT+TIIT+1IV+YV.

Control of Z. The estimate of Z is a direct consequence of Holder’s inequality, (5.3), (4.8),
and (5.3):

12 £ Nl
for s > %

Control of ZZ. By definition of ZZ, after performing an integration by parts, yields
e - s o
1T = 3 ((8x(v1hn))w,w) ;o + i (0:F2 (v10,w), h‘f@zew)Lz

_E /6(1)18 w, Oy FZ(h2(8 b)w )) + @(Ulazw,h%(amb)axl:%w)y

+ @ (vu?zw, hq (/J)azb)Qw) 12
=17, +II2 +7II3+ 7174+ 71ITs5.
For 77, and I75, we simply use Holders inequality and Sobolev embedding to obtain
IZZ1| +1ZZ5| S (1 + [ha — Lgs + (L4 [ha — L) blFges ) o1 | prs [w] 72

For ZZs, we observe that is similar to 112 in the proof of Proposition 4.1 where w plays the
role of A®v. Then reapplying the same estimates yields:

ITZo| S e(1+|h] — 1]m-)

3

w| X9

For 773, we integrate by parts to make the decomposition

£ 3 1
175 =" ﬂ(Fz((c’) v1)0pw), b (,b)w) %(Fz(vlagw),hf(axb)w)p
= TIT) + IT3.
Here II% is similar to I1. % in the proof of Proposition 4.1 and applying the estimates yields,
IZZ3] S e(1+ AT — 1lms) bl o o1 ] s w] p2 ] xo.
On the other hand, ZZ% is similar to IT§ and we observe that
7% = @([F%,vﬂagw,h%(axb)w) M;B (vlFZB w, h3(9yb) 0y ),

“‘;5 (1 F 20,0, (0, (h3(0:D)))w) ;.

=I13" + 1757 + 1727,
Then we observe that II§’2 = —T174, while for IIg’l and II§’3 we apply Holder’s inequality,
(2.16), and Sobolev embedding to obtain the bound

2,1
1715

521 S elvilms (14 1T = )bl o] 12w xg-
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Gathering these estimates and using (5.3) yields

2] S N(s)lulky-

Control of ZZ7. By definition of ZZZ we must estimate the terms:
117 = 75(1;1817,, 7/)L2 — (hlazw,n)m — (hlagm,w)l;2
=:I7T1 + I1T, + I17Z;5.

Starting with ZZ7,, we simply integrate by parts and use Holder’s inequality and Sobolev
embedding to deduce

|IIZl| 5 8|U1 |Hs

1|7z

Similarly, for ZZZy + ZZZ3 we use integration by parts, the Sobolev embedding, and (5.3)
to get that

|TZZy + I1T5| < [Ozha|ree W] p2|n] L2
S N(s)lwlpz(nlre.
In conclusion, we obtain the bound

IZ27] S N(s)|(n,w0) .

Control of ZV. First define the notation
T = T [hi, pb],
for i = 1,2 and consider the terms
IV = —(wdiC2,n) 12 — £(n0ev2,) o — (7 (1) — Ty (ha?))0uCa, AAw)
— e(wd,v2, %w)Lz
=:IV1 +IVy+IV3+1IVs.

For the first two terms, we use Holder’s inequality and the Sobolev embedding to deduce
the bound:

V1| + [ZVa| < elColmslwl 2 |l 2 + elval e [nl72,
for s > % Next, we make the observation
K =T )= (= o) — (A= B) Ty . (5.8)
Using (5.8) and invertability of .7; we observe that
Vs = —2(n0sCo,w) o + 5 (F20u(n(h7 4 haha + h3)0,F% 7y (hasa)).w) 1

— L (OFE (4 h2) (804:) 7y (h20:2)), w) 1

13 1 —
+ %(n(hl + o) (B0,0)0,F2 Ty (ha,Ga), w) .
- MS(n(ﬁazb)z%_l (h202C2), U))Lz
= IV +IVi+ IV + IV + 1V,
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where IV})) = 7V, which is already treated. While for the second term, we use integration
by parts, Holder’s inequality, Sobolev embedding, (5.3), and (2.22) to obtain

(ZV3] < elnl ol (B + huha + h3)[ 1< |0:F = T3 (h03Ga))| oo [w] xg
S N(5)|77|L2|w\xg
for s > % For II§’ we apply the same estimates together with (2.21) to deduce
[TV S el (1 + ha)|oe |80 e ol oe 10 Cal oIl 2 ool g
< NSz wlx-
Next, we see that ZV4 is estimated similarly to ZV3 and we get that
TVA] S N(s)lnlpzlwlxg-

The part ZV3 is easily treated with Hélder’s inequality and Sobolev embedding. Thus,
gathering these estimates and applying (5.5) yields,

1ZVs| < N(s)|(w) -
Lastly, we deal with ZV:
V4 = —e(wdpvz, hiw) 5 + %(w@xvg, (’)wF%(h‘;’F%azw))Lz
— £ (w0, 0,7 (W (B0,b)w)) 1 + - (wva, W (80,0)0,F 3 w)
— pe(wdyva, hl(ﬁﬁxb)Zu))Lz
= IV} +IVi+ IV + 1V

Each term is treated similarly, and we only give the details for TV since it is the term with
the least margin. In particular, using integration by parts, Holder’s inequality, Sobolev
embedding, (5.3),

VAl < eyl + | — 1)

1
S N($)ptlwdpvs| 1 wlxo-

1
0o F2 (w0zv2) |12 |w] x0

Then we use Holder’s inequality, Sobolev embedding, and (2.4) to deduce that
1 1 1
pi|lwdpva| 1 S p (|0zv2| oo fw] 2 + D2 (wOzv2)|12)
1
S lvalms|wlpz + pifva| graa ]y
for any r > % Now choose r such that s > r+1 > % allowing us to conclude that

1
pi|wdpvs| 1 S Jvalme

U’|Xg7
and from which we obtain:
[TV < N(s) -
To summarize this part, we can use (5.3) to obtain the estimate

[TV < N(s)| (0, 0) -
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Control of V. Define the notation
Q; = Qlhs,vi],  Qps = Qplhi, b, v4),
with ¢ = 1,2, and using the identity (5.8), then we obtain the following terms:
V = B(0ubw,n) o — pe(h Q1 — haQo,w) o + pe((Fi — %) Ty H(h2Qa),w)
— pe(h1Qp1 — haQu2.w) ;o + pe((F — ) Ty H(haQp2) w) ;s
=Vi+Vo+ V3 +Vi+ Vs

The estimate of V; follows directly by Holder’s inequality:

Wil S Bl0zb| o [w] p2|n] 2

For V5, we use the definition of @); and then integration by parts to make the following
decomposition

2
Vo = S (10 FF01)? — B(0,FF02)?), 0 F )
2 € 1 1
- %(( (b1 + h2)) (0:F201), 8, F 7w)
2
"5 (h3(8:F % (01 + v2)) (9, F 2w, ), 0, F2w) .
Now, estimate each term by Holder s inequality and Sobolev embedding to obtain that
1 1 < 1 1
Vol S pe (|l + halre|02F 201 ||l 12]0:F2w| 12 + B3| Loo|0:F 2 (v1 + v2)| 1o |0, F2w]7 )

w|§(g)'

S e max ((1+ [hs = o) [oaffrelmlzzfwlxg + (14 B3 = 1) |vil e
Then conclude this estimate by applying (5.3):
Vol < N(s)l(w) -

For V3, we use the same decomposition as for ZV3 and find that

Vs = “35 (20, (n(h3 + hiha + h3)0.F> 7y (haQs)),w)
e L 1
- 7(@11:5 (n(h1 + he)(BOab) Ty ' (haQ2)), w)Lz

2
B2 (10 + o) (BO0)0.F 5 (12Qa),w) 1 = 1P (0(50:0)* T (72 Qa), w) 1
= VI V24V 4V

Each term is treated similarly, but the term with the least margin is V?}. In fact, we use
integration by parts, Holder’s inequality, the Sobolev embedding H*~*(R) — L®(R), (5.3),
and (2.22) to get the following estimate

1 _
VA S uPelnlp2|h? + hiho + h3|1=|F2 Z, 7 (ha Qo) s

S melhoQalps—ilnlpzlwlxy-

1
F20,w| 2

Then using (2.13) and the algebra property of H*(R) and the boundedness of F%, we observe
that
2 Qel =1 < P20 (W(F20502))|aro-s S (14 |3 — L) [F 2050l
Consequently, we may gather these estimates to deduce the bound
V3] + -+ V5] S N ()| w) .
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where [VZ| + ... +|Vi| are easier versions of V3.

To conclude we must estimate V4 and V5. However, since Qp contains fewer derivatives
than Q, these terms could be considered to be of lower order. In fact, Vy is estimated by a
similar decomposition to the one of Vs, while V5 is a just a simpler version of V3. We may
therefore conclude that

VIS N ()|, w)[Fp-

Gathering all these estimates, we obtain (5.4), and the proof of Proposition 5.1 is complete.
O

Remark 5.2. From the proof of the proposition, it is easy to make the rough estimate of
the source term in (5.6):

(A, S(UDA'W) ] S Nis + 1) [, w)lygr (B (W))E 4 N() Eo(W)),

combining the estimates used below (see control of I1) and using the product estimate for
H5(R). The estimate (5.6) serves two purposes. One is to prove the full justification of
(1.1) as a water waves model, where we allow for a loss of derivatives (see Section 7).

On the other hand, to get the continuity of the flow, one needs to compensate the norms
on the right of (5.6):

max |(G, vi) lyz+1] (0, )y,

and is done by regularising the initial data and a Bona-Smith argument [3].

6. LoNG TIME WELL-POSEDNESS OF (1.1)

For the proof of Theorem 1.4 we will use the parabolic regularisation method for the ex-
istence of solutions and a Bona—Smith regularisation argument [3] to prove the continuous
dependence of the solutions with respect to the initial data. This method is classical in the
case of quasilinear equations and we will only outline the steps that are unique to system
(1.1) and needed to run the argument. In particular, one can read [14] for a similar argu-
ment in the case of the classical Green-Naghdi system. Lastly, the reader might also find
it useful to read the detailed proof, using these methods, in the case of the Benjamin-Ono
equation in [32], and likewise in the case of Whitham-Boussinesq systems demonstrated in
[36].

Proof. Step 1: Ezistence of solutions for a regularised system. Let s > %, a € (1, %] and
take v > 0 small. Moreover let Ug = (¢o,v0)” € Y;#(R), b € H*t?(R) satisfying (1.2) and
define T}, > 0 such that

T,\0 as v\,0, and T, =T,((Co,v0)lvs), (6.1)

with the property that

if a<b then T,(a)>T,(b). (6.2)
Then we claim there is a unique solution U” = (¢¥,v*)T € C([0,T,]; Y;{(R)) associated to
Uy that satisfy the regularised version of (4.1) given by,
S(UY)(0,U" + M (U")0,U") + M2(U")0,U” + Q(U") + Qp(U") = —vS(UY)A“U".
(6.3)
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To prove the claim, we first suppose the non-cavitation condition for U” and use Propo-
sition 2.11 to apply the inverse of 7 [h, 8b] on the second equation in (6.3). Then we study
the Duhamel formulation:

t
UY(t) = e D"y + / e VP A (U (s) ds,
0
v(D)

“ is the Fourier multiplier defined by
FePrp©) = e f(g),

where e~

and with
N(UY) = (M1 + 571 M3)(U")9,U" + (S7HQ + Q1) (U”).
In particular, we prove that the application

t
®:UY — e Py, + / e VP A (U (s) dis, (6.4)
0

is a contraction map on the subspace

B(R,hg) = {U = (¢,v) € (0, T} Vi (R)) : (¢, 0)ly; < R, nE (1 +<C" = 3b) > o},

with R > 0 to be determined. First, observe by Plancherel’s identity and then splitting in
high and low frequencies that

1 e A

e U g S [U]2 4 (vt) 75| () gle (0D s

< (L+ () ™%) Ul o,

and trivially that
e P U s < U] gs.
Thus, as a consequence of these estimates and Remark 4.2 we obtain that

1 1
sup |®(UY)(#)|as < ¢|Uolgs + T av~ = |U|gs.
te(0,T)
Now, choose R to be
R = 2¢[(o,vo)lvs-

Additionally, since 1 — é > 0 we may take T positive depending on v and R on the form
1
1 Va
TV o~ —,
R
small enough, and such that

t
1+e¢”(x,t) — Bb(z) = ho +/ diC¥ (2, 5) ds > hg — ¢T'(R + R?) > %7
0

using the Fundamental theorem of calculus and (4.8). Then the map (6.4) is well-defined
on B(R, %), and the contraction estimate is obtained similarly after some straightforward
algebraic manipulations. We may therefore conclude this step by the Banach fixed point
Theorem.
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Remark 6.1 (The blow-up alternative). If we define the mazimal time of existence T},
to be

ar

Tiae =sup{T, >0 : 3 U” solution of (6.3) in C([0,T,);Y;(R))},
then by a standard contradiction argument, one can deduce that

if Thpee <00, then t}%ﬂf [(¢" 0")ly; =00 or t/l'iTn;}Iazaiclelllgl +eC"+pb=0. (6.5)

This is due to the fact that if (6.5) does not hold, one can use Step 1. and the properties
of T" given by (6.1) and (6.2) to extend the solution beyond the mazimal time.

Step 2: The ezistence time is independent of v > 0. Let s > 2 and (¢¥,v") € C([0, T{,.); Y (R))
be a solution of (6.3) with initial data ((o,v0) € Y;/(R), defined on its maximal time of ex-
istence and satisfying the blow-up alternative (6.5). Moreover, let (o satisfy (1.2). Then for

N = |(¢osv0) ve + |b| gs+2, there exist a time
1
T=—=, 6.6
5 (6.6)
such that T' < Ty, and
sup (€7 v")(O)y; S [1(Gos vo)lyy- (6.7)

T
€0, may

Indeed, if the solution of (6.3) also satisfies estimate (4.6), then one could combine this
estimate with (6.5) and a bootstrap argument to get the result. However, to obtain the
same estimate for (6.3), one has to take into account an additional term:

%ES(U”) < N(s)Ey(UY) — v(A*TUY, S(UY)A°UY)

appearing due to the regularisation. To control this additional term, we make the decom-
position

(As#—oz[y/7 S(UV)ASUU)L2 _ ‘Cy‘il.wr% + (yAs+%UV7As+%UV)L2 + ([A%, g}Asvu7As+%Uu)
=L +1I+ Ig.
Then the two first terms will have a positive sign, where

I > e(ho)l" %o q.,

2

L2

arguing as we did in the proof of Proposition 2.11, step 2. On the other hand, I3 is further
decomposed by using integration by parts:

I3 =— ([A%7 hY|A%vY, As+%v”)Lz - g([A%, (h”)?’]ASF%azv”, A‘H%Féazv”)m

= G A%, () (BO)AW A FEF30,0") 1o 4+ G (AT, (0 (BOD)A, A7 50)

+ u([A, B (BO0)2 N F 20,07 AT 50Y) .
We recall that o € (1,% . We may therefore estimate each term by Holder’s inequality,
(2.5), Sobolev embedding, and then use Young’s inequality to deduce that

s < N(s)[v"xz |v"] (o g

<

N(é) V|2 V|2
S B N Py
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for ¢; > 0 small enough such that
*V(AS+QUV7 ASU")L2 =—v(h+L+13)S N(s)|v"\§(i,
and by extension, we obtain that
d

7 Bs(U") S N(s)Es(U"),

allowing us to conclude this step.

Remark 6.2. Since § € (3,3), one can obtain a similar estimate on |I3| in the case

A® =1d. Indeed, there holds

[l < N gl 5

3
forr > 5.

Step 3: Emistence of solutions. We claim that for all 0 < s’ < s there exists a solution
(¢,v) € C([o, m}; v (R)) N L([o, ﬁ] Y2#(R)) of (1.1) with T defined by (6.6).

To prove the claim, we let 0 < / < v < 1 where we take (¢*',v"), (C¥,v") to be two
sets of solutions to system (6.3), obtained in Step 1, and with the same initial data. Then
define the difference to be

W = (n,w) := (¢" = ¢", 0" =),
with o € (1, 3]. Observe that (n, w) satisfies a regularised version of (7.1):
W + (ST'M) (U)W = F — V' A*W + (v — V)A“U",
where F is defined by
F = = [(My + (57 M) (U”) = (My + $7'M)(UY)] 9,07

- [(57@+ @)UY - (s7HQ+ Q) (U)].

Now, we can easily extend the estimates in Proposition 5.1 and use Remark 6.2 to deduce
the estimate
d - .
S Eo(W) S N(s)(Eo(W) + (v = V) (AYUY, S(U")W)
where the last term can be bounded using the definition of .7 and the fact that o € (1, %]
In particular, we obtain that

2

d n ' ~ 1

ZEo(W) S N(s)(Eo(W) + (v = /) (Eo(W))?). (6.8)
By (6.7) and definition of N(s), we have that N(s) < 1. Moreover, using Gronwall’s
inequality on (6.8) and (5.5) yields,

swp |(mw)(t)lye Sv 0.
te[O,m]

Then using this estimate combined with interpolation we get that

sup  [(n, w)

S/
vy S (- TS —o, (6.9)
t€[0, ey

v—0
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from which we deduce that {(¢”, v")}o<v<1 defines a Cauchy sequence in C([0, m], Yi’(R))ﬁ
L*>(Jo, W}, Y} (R)) for s’ € [0,5). Thus, we conclude that there exists a limit by com-
pleteness.

Step 4: The solution is bounded by the initial data. We claim that the solution obtained in
Step 3 satisfies (1.9).
Indeed, using the notation from the previous step, we deduce by (6.7) that

(€ oz € OO, e V),

is a bounded sequence in a reflexive Banach space. As a result, we have by Eberlein-

Smulian’s Theorem that (¢”,v") — (¢;v) weakly in Y7(R) for a.e. t € [0, m} In
v— 2
particular, we have that
sup  [(C,v)lvy <liminf  sup (¢, 0")]ve S 1(Co,v0)lvy- (6.10)
S (A NO e, ——

Step 5: Persistence and continuity of the flow. There is a solution (¢, v) € C([0, m], Vi(R))

of (1.1) that depends continuously on the initial data.
For the proof of this step, we define a new sequence of functions (¢%,v°) solving (1.1),
with mollified initial data, i.e.

(&, v8) = (xs(D)Co, xs(D)vo) € H¥(R) := NysoH*(R).

Reapplying the arguments of Step 1 and Step 2, combined with Proposition 2.7, one can

deduce that T
6,0
(€% € O, pal

satisfying (6.10). Now that the sequence is well-defined one can again define the difference
between two solutions and use Proposition 2.7, together with Proposition 5.1 and Remark
5.2 to deduce the result. As mentioned above, at this stage in the proof, the argument is
classical and the details can be found in e.g. [3, 32, 36].

— = HT(R)),

d

7. JUSTIFICATION OF (1.1) AS A WATER WAVES MODEL

We now give the proof of Theorem 1.6.

Proof. First, we let s > 4 and take initial data ((o,¥o) € H*(R) x H*(R) and b € H5T2(R).
Then the solutions of the water waves equations (1.10):

T
"max{e, 8}
are given by Theorem 4.16 in [1]. Moreover, we can define V € C([0

(¢, ¥) eC(o J; H*(R) x H*(R)),

T .
% m}: XL (R)).
Now, use Proposition 3.2 and formulation (4.1) to say that for some 7' > 0 the functions

U = (¢, )T solves
0U + (M + (S7'Mp))(U)3, U + (S7'Q)(U) + (S'Q)(U) = pi*(c + H)R,
for any ¢ G [0 ,ﬁkeﬂ}] and with S, My, M, @, @y defined as in (4.1) and R = (0,R) €

L*(]o, TTIEN 5}} X,,(R)) for some r € N.
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The next step is to let o' = Vl];—g € X;i(R) and then use Theorem 1.4 deduce the
existence of T' > 0 such that

UWGN — (CWGN7UWGN) c C([O T

s m]% Y;f (R))7
solves system (4.1):
UVEN 4 (M + (S71My)) (UWEN)9, UWEN 4 (§71Q)(UWVEN) 4 (§71Q,)(UWVEN) = 0,
for any t € [0, m] Consequently, taking the difference between the two solutions
W = (n,w)l = U -UWVN,

we obtain the following system

AW + (M, + S™' M) (U9, W =F, (7.1)
similar to (7.1) and with

F=_ [(M1 +(S71My))(U) — (M + S‘lMg)(UWGN)]azUWGN

~ [(57HQ+ Q)W) = (S7HQ + Q) (UY™N)] + (e + HR
=F+ (e + B)R,
min{T, T}
) ’ max{e,8}
for r > % that

LB (W) < |(AF, S(UNW) ] + N() B, (W)

dt
S (e + B)(A'R, T[h, Bb]ATw) 5| + N(r + 1) E.(W).

However, by definition of .7 [h, 8b] and using integration by parts, Holder’s inequality and
the Sobolev embedding we easily obtain the estimate

|(A"R, Z[h, Bb]A"w) | S N(r)|R|xs|w|x;

for any ¢t € [0 ]. Then using the estimates (5.6),(5.7), and Remark 5.2 we deduce

Gathering these estimates, together with (5.7), we observe
LE(W) £ 42+ B)IRLxg (B (W))E + NG+ DE(W).
Now, a simple application of Gronwall’s inequality and (5.7) yields
|(nsw)lyy S #P(e + B)t Rl xpeN UL (7.2)
Finally, to conclude we use that Y,/(R) C H"(R) < L*(R) for 7 > %, and (7.2) to get
U — U oo (po,0:) S 101 0) 1< (f0.0:v7 ()

< e+ Pt |R‘XEGN(r+1)t.

To conclude, we let s be large enough such that » +1 < s to get that
U — UYN| e (0.m) S 12 + B)E,

min{T,T} ] )

for all ¢ € [0, =51
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RIGOROUS DERIVATION OF WEAKLY DISPERSIVE SHALLOW
WATER MODELS WITH LARGE AMPLITUDE TOPOGRAPHY
VARIATIONS

LOUIS EMERALD AND MARTIN OEN PAULSEN

ABSTRACT. We derive rigorously from the water waves equations new irrotational shallow
water models for the propagation of surface waves in the case of uneven topography in
horizontal dimensions one and two. The systems are made to capture the possible change
in the waves’ propagation, which can occur in the case of large amplitude topography.
The main contribution of this work is the construction of new multi-scale shallow water
approximations of the Dirichlet-Neumann operator. We prove that the precision of these
approximations is given at the order O(ue), O(ue + pB?) and O(u’e + pef + p?52). Here
1, €, and 3 denote respectively the shallow water parameter, the nonlinear parameter, and
the bathymetry parameter. From these approximations, we derive models with the same
precision as the ones above. The model with precision O(ue) is coupled with an elliptic
problem, while the other models do not present this inconvenience.

1. INTRODUCTION

1.1. Motivations. The general model of surface waves in coastal oceanography is often
considered too complex to be used in practical situations. As a result, the simplification of
the water waves equations in specific asymptotic regimes has been a subject of active re-
search. In the derivation of asymptotic models, one considers characteristic quantities of the
system under study. In our paper, we will denote by Hy, L, asy,,t and apoty, the characteristic
water depth, the characteristic wavelength in the longitudinal direction, the characteristic
surface amplitude and the characteristic amplitude of the bathymetry of the system. From
these characteristic quantities, we define the following non-dimensional parameters

_ ig e = Asurf . Gpott

e " Hy’ T Hy

We will focus on the shallow water regime defined by p <« 1 and the weakly nonlinear
regime € < 1, in the case of uneven topography.

Numerous shallow water models were derived in the literature, giving approximations of
the solutions of the water waves system in the shallow water regime or long wave regime
p ~ & < 1, at the order of precision O(p*) with k = 1,2 or 3. However, it is not clear
that these classical models capture the change in the propagation of the waves which can
happen in the case of large amplitude topographies. Such occurrences have been studied
in the Dingemans experiments [9]. In these experiments, the authors investigate a long
wave passing over a submerged obstacle. They observed that waves tend to steepen due
to a compression effect from the bottom, where high harmonics generated by topography-
induced nonlinear interactions are freely released behind the obstacle. This last phenomenon
makes it natural to improve the frequency dispersion of the classical shallow water models.

T
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Key words and phrases. Rigorous derivation, shallow water models, multi-scale expansion, Dirichlet-
Neumann operator, pseudo-differential operators.
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The ideal precision of the resulting model would be of the form O(ue!), with k,1 > 1, in
order to capture both the shallow water and the weakly non-linear regimes.

One way to improve the frequency dispersion is to consider multi-parameters Boussinesq
or Green-Naghdi models; see [14, 17] for a comparison between the classical Boussinesq and
Green-Naghdi models with their multi-parameters versions in the case of the Dingemans
experiments. The improved frequency dispersion allowed the authors to describe strongly
dispersive waves with uneven bathymetry accurately. However, the order of precision of
these multi-parameters systems is the same as the classical ones.

In the flat bottom case, another way to improve the frequency dispersion of the classical
shallow water models is to consider full dispersion models, for which the dispersion relation
is the same as the one of the water waves equations:

www (€)= M\5\2~
VEE]
In [11], the author rigorously derived these models at the order of precision O(ue) and
O(u2e). To obtain this non-trivial order of precision, it is fundamental to keep the exact
dispersion relation. In comparison, for the classical Boussinesq and Green-Naghdi model,
the dispersion relation is

wn€ = (1 - LIeP)IeP,  wan(€? = 1

EEIEE

so that by a Taylor expansion, one makes errors of order O(u2) from the approximation of
the dispersion relation of the water waves equations.

In [10], the author extended the work in [11] in the case of variable bottom. He derived
models with a precision of order O(ue + ) when compared to the water waves equations
for a class of weakly dispersive Boussinesq system, and a precision order O(u?e + p?3) with
respect to the water waves equations for a class of weakly dispersive Green-Naghdi systems.

The first result of this paper is the rigorous derivation of an extension of the full dispersion
models in the case of uneven bathymetries at the order of precision O(ue). This model reads

8¢~ 4G =0
Ot + ¢+ 5|Vl = 0.

‘€|27

(1.1)

where (¢, X) € R represents the water surface elevation, b(X) € R represents the bottom
elevation, ¥(¢t,X) € R is the trace at z = 0, where z is the variable, of the potential ¢,
solving

{Ai,qu:o in RY x [~1+ 8b,0], 12)

(p‘Z:O =1, [82¢_Nﬁvxb'v)(¢]}z:,1+,@b207

and where Gy, is an operator given by

1 7 1+e¢—pb (©
G0 = —Vx- <W [Hm Vo dz). (1.3)

The model (1.1) can be viewed as a simplified version of the water waves model, where
the elliptic problem is given on a fixed domain independent of time. The precision of the
model is O(pe) and makes it an ideal extension of the full dispersion models in the case of
a variable bottom with which one can capture the change of behavior in the propagation of
the wave during the aforementioned Dingemans experiments. A drawback from a numerical
point of view would be that one would need to solve an elliptic problem at each time step
when computing the solutions of the model.
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To simplify the model even further, one can construct explicit approximations of the
solutions of the elliptic problem (1.2). From these approximations, one deduce expansions of
the Dirichlet-Neumman operator at the same order of precision. In [8], the authors derived
such approximations of the Dirichlet-Neumann operator in the long wave regime/ small
amplitude waves regime using an explicit formula for the solution of the elliptic problem
(1.2), where the formula depends on the inversion of a pseudo-differential operator. They
make use of these approximations to derive a Boussinesq type model. Their result is formal
and holds only in horizontal dimension one. The extension in the variable bottom case
of full dispersion models was considered in [6] in the case of horizontal dimension one.
The authors used the result in [8] to formally derive three models in the shallow water
regime with order of precision O(ue + €2). A drawback is that their models depend on
the inversion of a pseudo-differential operator and consequently seem to create instabilities
in the simulations. Moreover, if one inverts a pseudo-differential operator, it is not clear
how one could quantify the error of approximation in the Sobolev spaces uniformly in the
parameters p, € and § and then make the derivation rigorous with the correct order of
precision.

In [7], the author derived rigorously, from the water waves equations, a classical type
Boussinesq system in the long wave regime with an order of precision O(z2) when 8 = O(1).
Translated in the shallow water regime, the precision is O(u? + ue + p252). One should also
note that the bathymetry related terms in the aforementioned system are of higher order
when compared to the linear terms. Therefore, the well-posedness of such a system is not
clear.

In the present work, we construct new shallow water approximations of the Dirichlet-
Neumann operator at the order of precision O(ue), O(ue + p?62) and O(u?e + peB + 12 B2).
We also quantify the error in the Sobolev spaces uniformly in p,e and 5. With these
approximations, we prove that system (1.1) is consistent with the water waves equations at
order O(ue). Then we derive new weakly-dispersive Boussinesq type systems with the order
of precision O(pe + 123?), with respect to the water waves equations. In addition, we derive
new weakly-dispersive Green-Naghdi type systems with the order of precision O(pu2e+ueB+
u2B?). We emphasize the fact that the orders of precision are non-trivial in terms of the
bathymetry parameter. Contrary to the models presented in[7], the contribution of the
bathymetry terms does not contain higher order derivatives when compared to the linear
terms. Moreover, they have a similar quasi-linear hyperbolic structure as the full dispersion
models in the flat bottom case. We expect then, in light of the recent works of [5, 4], to be
able to prove a long time well-posedness result for these models. This will be an objective
for future work. Lastly, we discuss the derivation of extensions that have a Hamiltonian
structure.

Notations 1.1.

o Let Id be the d x d identity matriz, and take 0 = (0,0)T ifd =2, 0 =0 ifd = 1.
Then we define the (d+ 1) x (d + 1) matriz I" by

u_ (vrld 0
o (40 9).
o We define the d-dimensional Laplace operator by

02 when d=1
AX =900 o
03 + 0, when d=2.



e We define the (d + 1)-dimensional scaled gradient by

vi — Iquz — {(\/ﬁaryaz)T when d=1
2 5

(\/Ha'u \/ﬁayv az)T when d= 27

and we introduce the scaled Laplace operator
Al =V -V = pAx + 02

o Let f:RY — R be a tempered distribution, let f or F f be its Fourier transform and
F~Lf be its inverse Fourier transform.

o For any s € R we call the multiplier A* = (1+ |D|?)2 = (D)* the Bessel potential of
order —s.

e The Sobolev space H*(R?) is equivalent to the weighted L?—space with |f|gs =
A% f| . ,

o Forany s > 1 we will denote H*(R?) the Beppo-Levi space with | f| 7. = |A 1V x flL2.

o Let Q C R For any k € N, we define the space H*(Q) with norm

oy = 3 [ 198X, dzaX,

[vI<k

and similarly, for 1 € N such that | < k, we define the space H*'(Q) with norm
l .
£l ey = ZOH(%J?HH’C*J’U(Q)-
j=

o We say that f is a Schwartz function (RY), if f € C®(RY) and satisfies for all
a, 8 e N4,
sup \X‘)‘@f{ﬂ < 0.
XeR4
o [f A and B are two operators, then we denote the commutator between them to be
[A,B] = AB — BA.
o We let ¢ denote a positive constant independent of u, e, B that may change from line
to line. Also, as a shorthand, we use the notation a < b to mean a < cb.
o Let tg > %, 5§ >0, hmin, homin € (0,1). Then for (,b,Vxv sufficiently reqular and
C(-) a positive, non-decreasing function of its argument, we define the constants

1 1
My=C(—— b
0 (hn\in7 hb,min’ KlHtO’ ‘ |Ht0)

M{(s) = C(Mo, |C| gmasttor2,s1 5 |D] gmaxitg+2.53)
N(s) = C(M(s), |Vx¥|nms).

1.2. The consistency problem and main results. Throughout this paper, d will be the
dimension of the horizontal variable, denoted X € R?. The reference model of our study is
the water waves equations, written under the Zakharov-Craig-Sulem formulation:

0iC — ,G"[e, BBy = 0 (1.4)
(9" [6:PbIY+eV X (- Vx9)? :
O+ C + 5| V|2 — & e = 0.

Here the free surface elevation is the graph of ((¢,X), which is a function of time ¢ and

horizontal space X € R% The bottom elevation is the graph of b(X), which is a time-

independent function. The function (¢, X) is the trace at the surface of the velocity

potential, and G* is the Dirichlet-to-Neumann operator defined later in Definition 1.3.
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Moreover, every variable and function in (1.4) is compared with physical characteristic
parameters of the same dimension Hy, agyf, @hott OF L.
Throughout the paper, we will always make the following fundamental assumption:

Definition 1.2 (Non-cavitation condition). Let ¢ € [0,1], 8 € [0,1] and s > . Let also

b € C*(R?) be a smooth function with compact support, and take ¢ € H*(R?). We say ¢
and b satisfies the “non-cavitation condition” if there exists hpin € (0,1) such that

hi=14el(X) = Bb(X) > hmin, for all X € R (1.5)
Under the non-cavitation condition, we may define the Dirichlet-Neumann operator by [14]:

Definition 1.3. Let to > 4, ¢ € Hg(Rd), b€ CX(RY), and ¢ € HOTY(R?) be such that
(1.5) is satisfied. Let ® be the unique solution in H2(Q) of the boundary value problem

AR @ =0 in Q= {(X,2) € R —1 4 8b(X) < 2z < e(X)}
O, ® =0 on z=—1+pb(X) (1.6)
D=1 on z=¢e((t,X),
where
1 —BVxb
Op, =my, - IMVE | nzi( ),
R P TE RNV L

then GH[eC, Bbly € H2(RY) is defined by
G, BblY = (0:® — pueVx( - Vx®) _.. (1.7)

For convenience, it is easier to work with the vertical average of the horizontal component
of the velocity. We make the following definition using Proposition 3.35 in [14].

Definition 1.4. Lettg > 4, ¢ € H%(Rd), be CX(RY), and ¢ € HTL(R?) such that (1.5)
is satisfied. Let ® € H2(SY) be the solution of (1.6), then we define the operator:

.EC

—u 1
e = [ L, Vs (1)

and the following relation holds,
G" (€. Bbw = =V x - (hV"[=C, B0l (1.9)
Throughout this paper, we will denote VH[SC, Bl by V when no confusion is possible.

In order to write the main results of this paper, we need to define two types of differential
operators. The first type is the Fourier multipliers.

Definition 1.5. Let u : R — R? be a tempered distribution, and let U be its Fourier
transform. Let F : R? — R be a smooth function with polynomial decay. Then the Fourier
multiplier associated with F(§) is denoted F(D) (denoted F when no confusion is possible)
and defined by the formula:

F(D)u(§) = F(&u(§).
Definition 1.6. Let Fy be a Fourier multiplier depending on the transverse variable:

cosh((z + 1)\/ulg])

Poul) = F (S ey HO) (0,
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for z € [-2,0]. We also define the four Fourier multipliers F1, Fo, F3 and F4 by the
expPressions:

tanh (y/7[D)]) 3
= F2= 17F1, Fg:sech NDv F4=717F3.
¥zl wp! WHIPD. - Fa = ppt =)
Next, we would like to define operators of the form
LIX, Dlu(X) := F~H(L(X, £)a(6)) (X), (1.10)

where L is a smooth function in a particular symbol class given in the next definition.
Definition 1.7. Letd = 1,2 and m € R. We say L € S™ is a symbol of order m if L(X, &)
is C®°(R? x R?) and satisfies

Vae N, wye N, (g " hDagol L(X, )] < .
We also introduce the seminorm

Mu(L)= s swp s {7 PDagarL(x. o)1} (1.11)
la|<[§1+1 [y|<[4]+1 (X E)ERIxR

The next result allows us to justify the formula (1.10) for functions u in Sobolev spaces.

Theorem 1.8. Let d = 1,2, s > 0, and L € S™. Then formula (1.10) defines a bounded
pseudo-differential operator of order m from H5t™(RY) to H*(R) and satisfies

|L[X, Dlul s < Mo (L)|tt] oo (1.12)

We refer to [2] for this result, where the constant is given implicitly in the proof (see also
[15, 1]). We will define operators of interest under the assumption:

Assumption/Definition 1.9. Let d = 1,2 and § € [0,1]. Throughout this paper, we
will always assume that the bathymetry Bb € C°(RY) satisfies the following: There exists
bmax € (0,1) such that

BIO(X)| < bmax < 1, for all X € R (1.13)

We also define the water depth at the rest state hy := 1 — Bb(X). As a consequence of
(1.13), there exists a constant hymin € (0,1) such that

0 < hpmin < hy. (1.14)

Through (1.14), we suppose the bottom topography is submerged under the still water
level. We may now define the pseudo-differential operators that will play an important role
in deriving new models that allow for large amplitude topography variations.

Definition/Proposition 1.10. Let 1,3 € [0,1], d = 1,2, s > 0 and b € C(RY) such
that (1.13) is satisfied. We define the following pseudo-differential operators of order zero,
bounded uniformly with respect to u and B in H*(R%):

£f[9b] = 5 sinh (Bb(X)ﬁlDl)sech(ﬁlDl)ﬁ
£A188) = ~(£4180 + b5
£4[58) = (cosh( () FIDsech(/AD]) = 1) s

6



Moreover, for u € .7 (R%) we have the following estimates

|LE[BbJul s < M(s) (1.15)
|5 [Bb]ulms < M(s) (1.16)
|5 [Bb]u|gs < M(s) (1.17)
|LE[BbJu + bu| s < pM(s)|u|gs+2 (1.18)
2
|C} [8blu — (=b — %b3|D|2)F3u\H.s < p2BM (s)|u) pasa (1.19)
2
|5 [Bblu — (*%bﬂ + %b3F3)u\Hs < B M (8)|ul gsre. (1.20)

Remark 1.11. Under assumption (1.13) the operators LY, L4, and LY are “classical
pseudo-differential operators of order zero”. We will share the details of the proof in Ap-
pendiz A, Subsection A.1.

Proposition 1.12. Let tg > 4, ¢ € Hg(Rd), b€ CX(RY), and ¢ € HYY(RY) such that
(1.5) is satisfied. Let ¢ € H2(R? x [=1 4 8b,0]) be the solution of

Ag{,z¢ =0 in &, (121)
Olmo =¥, [0:6 — uBVxb-Vx@]|,__ 1,5 =0. '
Then we can define
*gzﬂﬁ =-Vx- ( h VX¢ dz) (1.22)
hy ' ’

Moreover, for ) € H*t5(R%) and ¢ € H‘nax{t0+2*s+3}(Rd) we have the estimate
1
;\g”w = Golms < peM (s + 3)|[Vx | gera.

Remark 1.13. The operator Gy, contains terms of order €¢ and is different from G*[0, Bb]
defined by (1.9). To be precise, we can relate the two operators by expanding %

1, 1 ¢ [
LG = G0 — eV (3 [ Vxodz).

Proposition 1.14. Let d = 1,2, tg > % and s > 0. Also let b € C®(RY) and ¢ €

Hmax{to+2,5+3Y(RA) sych that (1.5) and (1.13) are satisfied. From the previously defined
operators, we have the following approximations of the Dirichlet-Neumann operator:

igow = F1Ax — A1+ EF1A)Vx - (ELBHVx) — Vi - (CF1Vx0)

g (BT ).

and
1 h3 .
L1 ==V (0x0) = G x (5 Fabxv) — pdBx (5[50 M)
"f FaAx Vi - (LL[86V x0) + @vx (BIBHV xv),

7



where
BIBHV xt = BF4Vx(V - (0Vx¥)) (1.23)
+ hpyVx (bF4VX . (bvxw)) + 2hy(Vxb)F1Vx - (bVx).

Moreover, we have the following estimates on the Dirichlet-Neumann operator

1
;W‘d) = Gl < (e + p*BA)M (s + 3)|Vx1p| o+ (1.24)
110"~ Gl < (e + peB 2 F)M (s + 3|V bl (1.25)

Proposition 1.14 is the key result from which we will derive our new models. However,
before presenting these models, we need to define the notion of consistency of the water
waves equations (1.4) with a given asymptotic model.

Definition 1.15 (Consistency). Let p, e, 3 € [0,1]. We denote by (A) an asymptotic model
of the following form:

A) ¢ +Ni(¢,b,0) =0
0y(TC,b]9) + Na(C,b,1p) =0,

where T is a linear operator with respect to 1 and possibly nonlinear with respect to ¢ and
b. While N1 and N5 are possibly nonlinear operators.

We say that the water waves equations are consistent at order O(3. uFe! ™) with (A)
if there erists n € N and a universal constant T > 0 such that for any s > 0 and every
solution (¢,v) € C([0, L], H*+™(RY) x H*t"(R?)) to the water waves equations (1.4), one
has for all t € [0, %],

¢+ NG b, 0) = (X pkel ™) Ry
at(T[<7 b]l/f) + NQ(C? b,) = ( Z Hkglﬁm)R%

where |Ri|gs < N(s+n) for all t € |0, g] with i =1,2.

We should note that the existence time for solutions of the water waves equations is
proved to be on the scale O(m) and uniformly with respect to u (see [3]). However,
it was proved that when one includes surface tension with a strength of the same order as
the shallow water parameter p, then the time existence is improved and becomes of order
O(é) [5]. For the sake of clarity, we will omit the surface tension in this paper. But one
could easily add it to every model of this work without changing the results. With this in
mind, we may now state our consistency results.

Theorem 1.16. Let G, be defined by (2.22). Then for any p € (0,1], € € [0,1], and
B € [0,1] the water waves equations (1.4) are consistent, in the sense of Definition 1.15
with n =5, at order O(ue) with the Boussinesq-type system:

0~ G =0 (L26)
8t7/)+4+§|vxw\2:0, .
Remark 1.17. The system is a simplified version of the water waves equations where G,
is defined implicitly in terms of the solution of (1.21). The elliptic problem is defined on
the fized domain S, = R x [—1 + 8b,0], but depends on the Dirichlet data v which in turn
depend on ¢ through (3.1).
8



Theorem 1.18. Let Fy1 and Fy be the two Fourier multipliers given in Definition 1.6, and
let LY be given in Definition 1.10. Then for any pu € (0,1], € € [0,1], and 8 € [0,1] the
water waves equations (1.4) are consistent, in the sense of Definition 1.15 with n = 6, at
order O(pe + u2B%) with the Boussinesq type system:

O¢+Fi1Axy + B(1 + 5F4Ax)Vx - (LY [Bb]V x1)
+6G1Vx - (CGaVxth) — M5V - (BB Vxv)) =0 (1.27)
Outb + ¢+ 5(Gi1Vxv) - (G2Vxy) = 0,
where
B[Bb]Vxt = bF4Vx(Vx - (bVx¥)) + hyVx (bF4Vx - (0Vx¥)) + 2h(Vxb)F1Vx - (BVx0),
and Gy, Gy are any Fourier multipliers such that for any s > 0 and u € H*72(RY), we have
|Gy = Vulize S plulgrose- (1.28)

Remark 1.19.

o Taking =0 in (3.4), we get the class of full dispersion Boussinesq systems derived
rigorously in [11] with a precision O(ue). These systems were rigorously justified
on a time scale of order O(%) under additional decrease constraint on the Fourier
multipliers G1 and Ga (see [12] for more information).

o In the case Gy = Go =1d, (3.4) is believed to be ill-posed [13] in the case B =0, un-
less one includes surface tension [16]. Alternatively, one can exploit the regularizing
effect provided by the multipliers G; [12].

e One could also add Fourier multipliers G, defined by (1.28), in the term of order
O(uB?) without changing the precision of the model.

e Neglecting terms of order O(ue+ufB) and approzimating L4 [8b] with estimate (1.18),
we arrive at the same models derived in [10].

One can replace the pseudo-differential operator in (3.4) with estimate (1.19). Indeed,
we have the following result:

Corollary 1.20. Under the same assumptions as in Theorem 1.18, we can take
2
LY [Bble = —(b+ %bﬂD\?)Fg.,
in system (3.4) and keep the precision O(ue + p2B2).
We also derive a Boussinesg-type system in the variables (¢, V):

Theorem 1.21. Let Fy and Fy be the two Fourier multipliers given in Definition 1.6, and
let LY be given in Definition 1.10. Then for any pu € (0,1], € € [0,1], and 8 € [0,1] the
water waves equations (1.4) are consistent, in the sense of Definition 1.15 with n =7, at
order O(pe + u2B%) with the Boussinesq type system:

W+ V- (AV)=0 (120
OV + T3 [Bb,eC]Vx( + §Vx[V[> =0, '
where
o _1 H uB u
T¢[8b,eCle = 5 (F1 o +3L3b] @ +eCFy .) + 5 VxFaVx - (L[B0] @)
B

- Tvx(bmvx < (be)) — uB*(Vxb)F1Vx - (be).
9



Remark 1.22.

e The first equation in (1.29) is exact and is a formulation of the conservation of
mass.

e Taking 8 = 01in (1.29), we get the class of full dispersion Boussinesq systems derived
rigorously in [16] with a precision O(ue).

e One could also add Fourier multipliers G;, defined by (1.28), in the term of order
O(uB?) without changing the precision of the model.

Corollary 1.23. Under the same assumptions as in Theorem 1.21, we can take
" b 3
T4'(8b,eC]e =Fy o +£(F1 —F3)e +lgihb3|D\2F3 . *%VXIQVX - (be)

h
e
2

in system (1.29) and keep the precision O(ue + u?52).

Vx (bF4Vx - (be)) — pB*(Vxb)F1Vy - (be),

The next two results concern full dispersion Green-Naghdi systems.

Theorem 1.24. Let Fy and Fy be the two Fourier multipliers given in Definition 1.6, and
let LY be given in Definition 1.10. Then for any p € (0,1], € € [0,1], and 8 € [0,1] the
water waves equations (1.4) are consistent, in the sense of Definition 1.15 with n = 6, at
order O(u?e + pef + u?B%) with the Green-Naghdi type system:

3¢+ Vx - (WTP[Bb,eC)V x ) — “Vx - (BIBHVx) =0 (1.50)

A+ C+ 5| Vxwf? = R (/FaAxu)? = 0, '
where

B[Bble = bF4V x (Vx - (be)) + hyVx (bF4Vx - (be)) + 21 (Vxb)F1Vx - (be),
and
h3
T eClo =1+ Va5 VIRV o) + PP (eh150Vx )
+ 00, v - (2Bt o),

and +/Fy is the square oot of Fy.
Remark 1.25.

o System (1.30) was first derived in [11] in the case B = 0.

e In [10], the author derived a weakly dispersive Green-Naghdi type system with an
order of precision given by O(u%e + u?3).

o One could also add Fourier multipliers G;, defined by (1.28), in the term of order
O(uB?) without changing the precision of the model.

Again, we can simplify the system using Proposition 1.10 to obtain a system only de-
pending on Fourier multipliers.

Corollary 1.26. Under the same assumptions as in Theorem 1.24, we can take
L}[Bble = —bF3e,
and

u 1 B 5
L4[5b]e = —SbFy o + 1 Fse,

in system (1.30) keeping the precision O(ue 4 pef + p23?).
10



Several generalizations can now be made, where the next system is chosen to mimic some
of the properties of the classical Green-Naghdi systems:

Theorem 1.27. Let Fo and Fy be the two the Fourier multipliers given in Definition 1.6,
let LY and LY be given in Definition 1.10. Then for any p € (0,1], € € [0,1], and 8 € [0,1]
the water waves equations (1.4) are consistent, in the sense of Definition 1.15 withn =17,
at order O(p%e + peB + pu?B%) with the Green-Naghdi type system:

¢+ Vx-(hV) =0,

O (ZH[RV) + TH[A TS [Bb, BV x ¢ + %VX(|V|2) + peVxRY[Bb, h, V] = 0,
where V' defined by (1.8),

TH[hje = 1d — ﬁ@vx@?’\/ﬂvx o),

(1.31)

1 h3 1B
75'[8b,eC]o =1d + %\/FQVX (Fg@vX : 0> + Tvx <£§[Bb}vx . o)
2
+ “g:” VxFiVy - (£1]3b] ) — “52 hhbvx (bF4V x - (b))
2h,

_ B G RV - (be),

and
n T h? =2 1L 3 = 7 13 2 1.3 2

RilBb, R, V] == —(Vx - V)" = 37L(Vx(h Vx-V))-V - P Ax (V) + ol Ax (V).

Remark 1.28.

o As for the classical Green-Naghdi system, we observe that the first equation is a
formulation of mass conservation.

e The system depends on the elliptic operator hI*[h] and is similar to the systems
derived in [14, 11, 10] n that sense.

e The presence of the term TF[h|T3'[8b, h]V x( in the second equation makes it quite
unique. Note that one may simplify it, but we chose to keep it under this form
because in the study of the local well-posedness theory, one would apply the inverse
of the elliptic operator hZ*[h] to the equation.

Corollary 1.29. Under the same assumptions as in Theorem 1.27, we can take
Eﬁt[ﬂb]o = —bF307

and
m 1 3
EQ [ﬂb]. = —§bF4 L] +€b F3.7
in system (4.5) keeping the precision O(u%e + pef + p2p2).

1.3. Outline. The paper is organized as follows. In Section 2, we set out to prove Propo-
sition 1.14. First, we start Subsection 2.1 by transforming the elliptic problem (1.6) so that
its domain is time-independent. Then we use this new formulation to perform multi-scale
expansions. In particular, in Subsection 2.2 and 2.3, we make several expansions of the
velocity potential in terms of i, € and 5. From these expansions, we approximate the ver-
tically averaged velocity potential V in Subsection 2.4, from which the proof of Proposition
1.14 is deduced in Subsection 2.5. Section 3 is dedicated to the proofs of Theorem 1.18 and
Theorem 1.21. We also formally derive a Hamiltonian Boussinesq type system. In Section
11



4 we prove Theorem 1.24 and Theorem 1.27. Lastly, the appendix is composed of three
subsections. The Subsection A.1 is dedicated to the proof of Proposition 1.10. In the last
two Subsections A.2 and A.3, we state and prove technical tools.

2. ASYMPTOTIC EXPANSIONS OF THE DIRICHLET-NEUMANN OPERATOR

In this section, we perform expansions of the Dirichlet-Neumann operator with an error
of order O(ue + u?pB?) and O(u%e + peB + u?B?). The standard approach to deriving
asymptotic models is by approximating the velocity potential ®, which in turn will give an
approximation of (1.7). Classically, one straightens the fluid domain to work on the flat
strip, where we can easily make approximations. However, if we straighten the bottom,
there will be an appearance of 8 that will give approximations on the form O(ue 4+ uf) in
the case Boussinesq type systems and O(u2e + 123) in the case Green-Naghdi type systems
(see [10] for the derivation of such models).

2.1. The transformed Laplace equation. Motivated by the previous discussion, we
make a change of variable that only straightens the top of the fluid domain.

Definition 2.1. Let s > % +1, b € C°(R?), and ¢ € H*(R?) such that the non-cavitation
assumptions (1.5) and (1.13) are satisfied. We define the time-dependent diffeomorphism
mapping the domain

Spi={(X,2) e R : 1+ 8b < 2 <0},

onto the water domain Q; through

5 Sb —
P l(X2) = (X, 2+ 0(X,2)

with
e¢(X)

1— Bb(X)
Remark 2.2. The map given in Definition 2.1 is a diffeomorphism. Indeed, by computing
the Jacobi matriz, we find that

o 0
% = (Vxo)T 1+0d.0)°

14 0,0 = ﬁ
hb

Therefore, under the non-cavitation condition as stated in Definition 1.2, we have a non-zero
determinant:

o(X,z) = z +e¢(X). (2.1)

where

hmin
Iy, | > ——7—.
| 21;'— 1+ﬂb‘Loo

The next result shows that the properties of solutions of the boundary problem (1.6) can

be obtained from the study of an equivalent elliptic boundary value problem defined on Sp.

Proposition 2.3. Let ¢, = P oYy, where the map Xy, is given in Definition 2.1. Then under
the provisions of Definition 1.3 we have that ® is a (variational, classical) solution of (1.6)
if and only if ¢p is a (variational, classical) solution of

{V%z : P(Zb)vl;(_z(ﬁb =0 i S

Gblzm0 =1,  OLy|.m_p, =0,
12
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where the matriz P(3y) is given by
P(Sy) = s, |(1") I (I (I ) T )~ (2.3)
and the Neumann condition reads
O @yl a=—ny = 1 - " P(S) VBl o=, (2.4)

Moreover, the matriz P(Xy) is coercive, i.e. there exists ¢ > 0 such that for all Y € R4+
and any (X, z) € S there holds,

P(Z)Y - Y > Y] (2.5)

Remark 2.4. We may compute the inverse Jacobi-matriz JE_: so that using the expression

for P(3p) (2.3), we find

(1+9,0)Id —/BVxao
P(%y) = 7 1+ phy|Vxol?
Vi(Vxo) Lt 0.0
Now, since o is given by (2.1) we find that
eC h
1+00=14+==—,
+ 0,0 + m m
and
h
—Id —/BVxa
P(Eb) = hb h +ﬂh |v 0‘2 B
_ﬁ(vxg)T %
where
Vyo =eVy (i)z +eVyC. (2.6)
hp

Proof. The fact that V5 - P(5,)Vh ¢, = 0 in Sp and that P(5,) satisfies (2.5) is classical
and we simply refer to [14], Proposition 2.25 and Lemma 2.26.
To verify the Neumann condition, we first use the chain rule to make the observation

Vh 20 = 1"(Jg,) " (1)1 (V@) 0 5. (2.7)
Then by (2.4), we get that
by = [Tz, | - (Jg,) (V@) 0 5

ny
1+0,0)Id O

0,0ld 0
=ny- IV @) o %y +ny - I (f(VXJ)T 0) (V5 @) o 3.

Now, use (1.6) with the fact that for z = —hy then
0= aan)‘*hb =ny- I“(V‘;("Z(I)) o Zb-
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Therefore, we are left with the expression
onl e — L (TOTXOY (D0 (Vx ),
mPle==t =1 11 Vo (Vx®)|.—p,
= —Lb(ﬁazavxb +Vxa)- (Vx®)|

] a=—h’

But 0,0|,——p, = ;—i, Vx0|s=—h, = fﬁ%vxb, and thus the proof is complete. d

In the next section, we will make expansions of ¢ and then use the expression of (1.8)
to approximate the Dirichelet-Naumann operator. But first, we must relate the definition
of V*[e¢, Bb]4 with the new velocity potential on Sj.

Proposition 2.5. Let ¥y be given in Definition 2.1. Then under the provisions of Definition
1.4, the operator (1.8) is equivalent to the following formulation

— 10 h ¢
Ve =g [ [pxe @Vx(f)e e Vx0nala @y

where ¢, = P 0 3.

Proof. We use the new variables defined by the mapping ¥, and the chain rule to get

> 1 0
V¥ [e¢, Bbly = 7 / l+ﬁb(vx@) 0¥y |Jg,| dz

! / ’ [ L Vx¢p —Vxo0;0 ] 1

= - — VXQp — VXO p| AZ.

b 1y by -

Then using (2.1), we obtain the result. O
2.2. Multi-scale expansions. In order to make expansions of ¢, we first make several
observations on how to decompose system (2.2).

Observation 2.6. We can decompose the elliptic operator given in Remark 2.4 into:

h
HV%’Z P(5) Vi oy = Ay oy + ueA[Vx, 0:]¢w,

where
_ < h < oo 2
AlVx,0:]¢p = thX¢b+ thX (hbvxtbb) thX (EVX08z¢b)
h 1 1
- ff)z(*VXU - Vxép) + 0 (=|Vxo|*0.).
23 € 3

We may simplify this expression by using formula (2.6) for Vxo to get that

h h
A[Vx,0:]¢p = h£(1 + h*)Axﬁf)b - h*VXC -Vx0.¢y (2.9)
b b b
h 1 1
- TVX ’ (7VXUaz¢b) + az(f‘vXU‘Qazﬁi)b)
" € €

In this formula, we emphasize the terms that do not contain 0,¢py. This is because these are
the leading terms in the approzimations that are performed below.
14



Observation 2.7. Similarly, we can also decompose the Neumann condition into

h h Vxb
E,' 04| 0F by = —p, = [@%*Mﬁhfbvxb'vx%*uBQ | X i 0.0 |2=—n,

= [0:200 — BV xb - Vxp)l:=—p, + uﬁﬁB[VL 0:]0b] o=—hy-
where
¢ N IbeI

B[Vx,0:dp = _Fbvxb -Vxop

To summarize the observations, we now have that ¢ solves

Al oy = —peA[Vx, 0]y, in Sy
Gblz=0 =¥, [0:0p — ufVxb - Vxdp]l.——n, = neBB[Vx,0:]10p|:=—h,-

Remark 2.8. In the paper [8], their strategy is to solve (2.10) first in the case e = 0, where
the solution is defined in terms of the inverse of a pseudo-differential operator. If we add
the parameters p and B then, in dimension one, this operator is given by

LF[Bb] = —cosh ((—1 + Bb(X))\/ﬁDf1 sinh (8b(X)\/uD)sech(\/uD). (2.11)
Formally, in dimension one, they obtain the first order approximation:

Go = /iiD tanh (/D) + /aD L [b).

At higher order they obtain the expansion of GH given on the form

1 1~
—gh==3"elg; + 0(e"H),
o [

0. %p-

(2.10)

where G; defined recursively for j > 0 and is the classical expansion for small amplitude
waves when B =0 [8] (see also [14] where the approzimation is proved with Sobolev bounds
when 8 =0). In this paper, our approach allow us to decouple the parameters p, € and 3,
writing expansions of the Dirichlet-Neumann operator which do not include the inversion
of a pseudo-differential operator.

2.3. Multi-scale expansions of the velocity potential ¢,. We will now use (2.10) to
make multi-scale expansions of ¢,. But first, we state an important result to justify the
procedure.

Proposition 2.9. Letd = 1,2, tg > 4, andk € N. Letb € C°(RY) and ¢ € H™>{to+2k+1}(Rd)
such that (1.5) and (1.13) are satisfied. Let also f € H**(S}) and g € H*(R?) be two given
functions. Then the boundary value problem

{V’)‘(YZ-P(Zb)V’)‘(zu:f in S

(2.12)
u|z:(] =0, 0 bu|z—71+ﬁb =9,

admits a unique solution u € H*10(Sy). Moreover, the solution satisfies the estimate

k

IV cullrkogs,) < Mk +1)(glmx + D 1 llae-sis,)- (2.13)
j=0

The proof of Proposition 2.9 is similar to the one of Proposition 4.5 in [10] and is post-
poned for Appendix A, Subsection A.2 to ease the presentation. We may now use this result
to construct an implicit function such that ¢ = ¢p + O(ue).
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Proposition 2.10. Let d = 1,2, ty > &, and k € N. Let ¢y € H*3(R?). Let also
b e CPRY) and ¢ € H™>o+2k+2H(RA) such that (1.5) and (1.13) are satisfied. Then
there exists a unique solution ¢g € H*0(Sy) solving

Al)t(,z(z’ =0 in S, (2.14)
Glamo =, [0:0 — uBVxb- Vxo] |Z:,1+5b =0,
where the solution satisfies the estimates
IVx20ll gros,) < M(k+ 1|Vl gr, (2.15)
and
V% (D6 — D)l ros,) < peM(k+ 2)|V x| sz, (2.16)

Proof. The existence and uniqueness is a direct consequence Riesz representation Theorem,
and the Poincaré inequality (A.6). Moreover, we know that ¢ = ¢(X, zhp) defined is defined
on the fixed strip S = R? x [~1,0] and satisfies

IVx,20ll prows) < Mk +1)[Vxi)]gn.
by Proposition 2.37 with € = 0 in [14]. Then we may use this result, together with the
relations Vx.¢(X,z) = nyz(qg(X,hib)) € H*9(S,) and 926 = —uAxé to obtain the
bound

IVx,20l rows,y < Mk + DIV x| g
Consequently, estimate (2.16) follows from Proposition 2.9 and the observation that

h
IV 2 (@6 = )l s,y < neM(k + 1)\\%14[%@ 010l ro(s,) + 1BV, 0:]6] = ),

where A[V x, 0] is a second order differential operator and B[V x, 9] is a first order operator
(second order after using the trace estimate (A.7)). Then we simply conclude by using (2.15)
combined with product estimates for H*(R?) given by (A.9) and (A.10).

d

Next, we will make expansion with respect to u3 by splitting problem (2.10) into two
parts. In particular, we will construct a function ¢g = ¢ + O(u(e + 3)) by solving the first
part of the “straightened” Laplace problem with an explicit error of order O(uf), that will
be canceled later, and an additional error of O(ue).

Proposition 2.11. Let d = 1,2, ty > %, and k € N. Let v € HF3(RY). Let also
b e CPRY and ¢ € H™x{to+2k+2H(RA) sych that (1.5) and (1.13) are satisfied. If do
satisfies the following Laplace problem:

Al)lf,z‘lso =0 in &, (2.17)
Pols=0 =¥, [0:00 — uBVxb- Vxoo]|,__, 5 = 1BV x - LBV, ‘
where
1 1
LBV = ——sinh (Bb(X DJ)sech D|)——=Vx,
1186V x1p 3 (Bb(X)y/k|D])sech(y/p| ‘)W\D\ x¢¥
then for z € [—1 + b, 0] its expression is given by
cosh ((z 4+ 1)/u|DJ)
0 cosh (/[ DJ) ¥ =Foy (2.18)
Moreover, the solution satisfies the estimate
IV% (66 — @0)llro(s,) < mle + B)M(k + 2)|V x| o (2.19)
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Proof. Since ¢y is given by the solution of the Laplace problem when the bottom is flat, we
only need to verify the boundary condition at the bottom. In fact, we have that

LHS : = [0:¢0 — uBVxb- Vx o] |z:—1+[3b
= 71 (Valelsinh (= + 1)yl sech (VAIENDE) ) (O] sy,
— F 1BV xb(X) - i€ cosh (= + 1) kg seeh (VIEDD(E) ) ()| gy
= — /A - sinh (3H(0X) 1D sech(AD]) 5 Vxcv).

The next step is to prove that ¢y approximates ¢, with a precision of O(u(e + 3)). To
that end, we first note that u = ¢, — ¢g solves the elliptic problem (2.12) with

h
f = e AV x, 0:) o,
and b
9= 1B85rr (Vax - (EHBUVxv) +2B(Vx, 8:10) =150,

where the expressions of f and g are deduced from the decompositions of Observations 2.6
and 2.7 and the construction of ¢g. Moreover, since —hy(X) > —2 (see (1.13)), we can
extend the definition of ¢g to the domain S := RY x [~2,0]. For any (X, z) € S, we write
cosh ((z 4 1)/u|DJ)

cosh (/z|D]) v
This extension is a Fourier multiplier depending on z, and we can use the estimates in
Proposition A.4 together with the fact that A[Vx,d]e, given by (2.9), only depends on
functions of X and is polynomial in z. Thus, combining the elliptic estimate (2.13) with
(1.15), the non-cavitation conditions (1.5), (1.13), the product estimates for H*(R9) given
by (A.9) and (A.10), we obtain that

¢o =

hp
IV ull grogs,) < neM(k + 1)||WA[VX, 9:)¢oll gros,)

+ ue]bf(k + 1)|%‘Hk+2(|vX : (yf’wb]vXﬂjﬂH’c + |B[VX’8Z]¢O|Z:—hb‘Hk)

IN

h
(e + BYM(k +2)[| 52 AV x, B:loll grogs) + ple + B)M (k4 2) | Vbl s
3

1
(e + B)YM(k + 2)|V| grsa.

A

O

Remark 2.12. The source term uBVx - LY[Bb]V x1) in the Neumann condition of (2.17)
is chosen so that the solution ¢g of the system does not depend on the inverse of a pseudo-
differential operator. Indeed, any other source term in the Neumann condition would induce
the dependence of the solution on operators of this kind.

We now construct the next order approximation by canceling the error of order O(u/3).
But first, we make an observation on the problem that needs to be solved.

Observation 2.13. To make the next order approrimation ¢1 such that ¢p = ¢o + pBé1 +
O(pu(e + pB?)), we solve the problem

A‘%J(f)l =uBF in &,
G1l2=0 =0, O:¢1]s=—148 = —Vx - (LY [BYVxV),
17



where F is to be chosen and satisfies
HF”H’CJ"(S;,) < M(k? + 2)|VX¢|Hk+2~ (220)
so that formally
BV, P(Z)Vx:(¢0 + pBe1) = O(pe + pi25%) in S,
(60 + pBd1)|s=0 = ¥, L0 (¢o + 1Bé1)-=— 1450 = Olue + 1*5?).

Moreover, the presence of the source term uBF is motivated by the fact that the boundary
conditions require a function of the form

sinh(7-/m[D|) 1
*"cosh(/u[D]) /D]
for —hy < 2 < 0. Indeed, if we let G = Vx - (LY[Bb]Vx¥), then

b=

Vx - (LY[BY V),

cosh(zEyvElEl)
_ —1 (X
Outilemmn, = —F (e CO) Dl
= —-G(X).
Now, let us compute the Laplace operator. To do so, we introduce the notation
o Dre ot (GEEVAD
1(2)[X,D]e = <W.)( )
d
h Ty(2)[X,D]e = F~1 cosh( Gy VHIED) X
2(2)[X, D]e = (W.>( )

Using the identity Ax = —|D|?, we observe that

B Ax
Similarly, after some computations we find
— AX
We define F by
F=ulh X,D G b X,D G
W T (L. Dl AJG-+ AIT(:)X. D=

where u[hle(z)[X7 D}ﬁ7 A}G = O(up) by direct calculation. From this expression, we
identify F' by
Ax

Nl o = B + u(hi DT D)2
AR H/f AX
= ppF.

The estimate (2.20) on F is a consequence of the boundedness of Ty and Ty for z € [—hy, 0],
given by Proposition A.5, while we estimate LY in HE2(RY) by Proposition 1.10 with
inequality (1.15).

18



We summarize these observations in the next Proposition.

Proposition 2.14. Let d = 1,2, to > 4, and k € N. Let v € H"**(R?). Let also
b e CP(RY) and ¢ € H™@{o+25+2H(RA) sych that (1.5) and (1.13) are satisfied. Then the
function ¢1 given by

sinh(7 VED]) 1

_ (rm

¢1 = hb CObh(\/ﬁlDD \/E|D|VX ([,1 [ﬁb]vXT/)), (221)
satisfies

Al o1 = pBF in S, (2.22)

$1]:=0 =0, Dz1]:=—148 = —Vx - (LY[BYV x1),
where F € H*#(Sy) is such that

1Bl sy < Mk + DIV o, (223)
and
1 . 1
LAY x5 = = sin (DY) D sech( D) ¥ s

Moreover, for ¢y satisfying (2.2) and ¢o given by (2.18) there holds,
V5 (6 = ($0 + uBd)) | ro(s,) S (ue + p )M (k + 2)[ V| grss. (2.24)

Proof. By constriction of ¢; given by (2.21), we know there exists an F' such that (2.23) is
satisfied. Now, let us prove (2.24). First, observe that the function

u=¢p — (o + uB¢1)

solves
}}L—vagzp(zb)vg‘wu = —ueA[Vx, d.)¢o — ’eBAVx, d.) 1 — p2B2F
= f.
Moreover, at z = —hy,, we have the Neumann condition
h—b\nbwaﬁzu = 0.¢0 — 1BV xb- Vxoo + peBB[Vx, 0:)¢o + nfo.¢1 + 1’ B2 B[V x, 9:]¢1

peBBIVx, 0:]¢0 + pef* B[V x, 0:] 1

=:g.
Estimating each terms, noting that A[Vx,d,] is a differential operator of order two and
B[Vx,0;] is of order one, while the error due to F is given by construction, we obtain that

IV cullmrogs,) < wle +eB + uB2)M(k + 2)| V| gase.
O

Observation 2.15. We now construct an approzimation of ¢y to the order O(u(ue + <5+
uB?). To do so, we add a term of order e in the approzimation of ¢y in order to cancel
the terms of order pe. In particular, we consider ¢a solution of the problem

¢ h

83¢2 = 7hfb(1 + E)Axw in Sy,

¢2l=0 =0, 0.¢2|.——148, = 0.
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Indeed, if we use the decomposition given by Observations (2.7) and (2.6), and the defini-
tions of ¢g and ¢1, we get:

hﬁbv%z ’ P(Eb)vux?z(‘?b — ¢ — PP — pega) = —pcdps — peA[Vx, 8:)¢o + O(u’e),

and
h
hfb|nb\3P”(¢b — G0 — UBPL — 1ED2)|sm—hy, = —HEDsP2|sm—p, + O(p(pe + B + uB?)).

Moreover, using the estimates in Proposition A.4 with tog > %, one can deduce from the
definition of A[Vx,0,]e, given by (2.9), that

h
LHS : = AV, 0.]60 - C(uh)AXw”Hk.o(Sb)

N }h%( + hfb)’Hmax(zo,m lAx (g0 — )l ro(s)
h
+ |E
h 1 1 2
+ HI’TbVX . (EVXtTaquo)HHk,O(S) + ||az<g|vXU| az‘ﬁO)HHk’vo(S)
< pM(k + 2)[V x| pess,

Hmax(tg.k) ‘VXC|Hmax(t0,lc) ||VX82¢0||Hk,0($)

for any k € N.
With this observation in mind, we can write the following result.

Proposition 2.16. Let d = 1,2, ty > % and k € N. Let ¢ € Hk+4(Rd). Let also b €

C®(RY) and ¢ € H™x{to+2k+2}(RD) sych that (1.5) and (1.13) are satisfied. If ¢y satisfies
the following Laplace problem

Py = —5(1+h )Axw in S,

¢2‘z:0 - 07 8 ¢2|z:—l+ﬂb =0.

Then its expression is given by:

_ Cogp
P2 = — (2 +hbz)h (1+ hy )Axy.
Moreover, for ¢y satisfying (2.2), ¢o given by (2.18) and ¢1 given by (2.21), there holds

V5 2 (60 — (G0 + nBb1 + pego))lros,) S plpe + B + uB*)M(k +2)[ V| grss.  (2.25)

Proof. The function ¢9 satisfies a simple ODE and is solved by integrating the equation
two times in z:

2
—1+ A dz”dz—fiJrth A
62 = //Mbhb D)Ax (G +h (14 1) Ax,
Then, by construction, we have that u = ¢, — (o + pfd1 + pegpz) satisfies

h .

HVSL(,Z . P(Eb)V’;(qu =f in &

u'z:O =0, }%‘nb‘ayll),?u‘z:—hb =9,
20
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with

f = —uelA[Vx, 0:)do - h%(l + %)Am + 12B2F — p2eBAV x, 8.1

—pPe(Ax s + AV, 0:]¢),
and
g = —peBBIVx, :]¢0lo=—n, + 1BV xb- Vxb1|m—p, — p°eB* B[V x, 0:]d1] =,
+12eBVXb - Vxpolomn, — p2e* BBV x, 0:]p2| =,
Then we use the elliptic estimate (2.13) to get that
k

IV ullgrogs,) < mlue +eB + uB )M (k +1)(|g] g + Z NN s (s3))
=0

with the the usual product estimates for H¥(R%) combined with Observation 2.15, Propo-
sition 2.16 and the fact that ¢2 is polynomial in z, we get

IV Lullrogs,) < pue + B+ pB>)M(k + 2)|V x| gass.

We will now make two observations that will further simplify the presentation.

Observation 2.17. We may use Plancherel’s identity and the Taylor series expansions:
2 1
cosh(z) =1+ %/ cosh(tz)(1 —t) dt
0

I 1+ ﬁ/l (tanh(tm)2 B 1
cosh(z) 2 Jo \ cosh(tz)  cosh(tz)

for x €10,1], to deduce that

3)(1—15) dt,

2
z
160 = %) = (% + 2Pl ros,) S H2HIDI L < 12|V x 8] s, (2.27)
2
with z € (—hp, 0) and assumption (1.13) on Bb(X).

Observation 2.18. From the second-order expansions given by the previous Observation
2.17 we have

2
00 = = u(G + DI’V + W?2*R, (2:28)
where R is some generic function satisfying the estimate
‘R‘Hk < ]\/I(k)|VX1/1‘Hk+3. (2.29)

It allows us to approximate the quantity ¢o + pepa:
22 € h
00 -+ e = oo -+ (o + )= (1+ ) |D[
2 hy hy

=¢0+(¢0*w)(h%71)(}%+1) + (e + <B)R

2

=¢0+(¢0*1/})(h*

2z~ 1) +ulue +ep)R
b

h?
=¥+ 53(d0 = ¥) + e + eB)R.
b
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We can make the formal computations in Observation 2.18 rigorous.
Proposition 2.19. Letd = 1,2, to > 4 and k € N such that k > to+1. Let ) € H*4(R?).

Let also b € C*(RY) and ¢ € H*3(RY) such that (1.5) and (1.13) are satisfied. Lastly, let
Qapp be defined by

h\2
bapp = ¥+ (=) (60 =) + nor, (2.30)
W
with ¢1 given by (2.21). Then for ¢y satisfying (2.2) there holds,

V% . (&5 = Gapp)llarogs,) S ulue +eB + uB®)M(s + 2)| V| gass. (2.31)

Proof. We first use Proposition 2.16 to get the estimate

HV‘)L(,Z(d’b _ Qbapp)”Hk’O(Sb) < wlpe +eB+ pB*)M(k + 2)| V| grss
+ HV‘;(’Z((% + pegpy — ¢app)||Hk<0(Sb)'

Making the same approximations as in Observation 2.18 will complete the proof. In partic-
ular, accounting for the loss of derivatives given by (2.29) yields,

[V (b0 + uBdr + peda — bapp) | arois) S mlue +eB)M(k + 1)V | grssa.

Gathering these estimates concludes the proof. O

2.4. Multi-scale expansions of V. In this subsection we will use the expression of ¢, ¢y,
¢1, and Papp to construct approximations of V. The first result is given in the following
proposition.

Proposition 2.20. Let d = 1,2, tg > % and s > 0. Let b € CP(RY), ¢ € H*3(RY) and
¢ € Hrax{tot2s+3H(RA) pe such that (1.5) is satisfied. Then for ¢ defined by the solution of
(2.14) and V|0, 8b] defined by

0
V{0,530 = hib/;h Vxo¢dz (2.32)

there holds,
|V - V[O, ﬁb} lrrs < pe|Vx|pgs+s (2.33)

Proof. We will first prove the estimate on V — V[0, 8b] for k € N, and then use interpolation
for s > 0. By definition (2.8) and (2.32) we have that

— 0 1 1 ¢
V- vio. st = | [ o IRy V(0= 0) = £V ()2 + eVx00:0] o]
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Now, note that h, and h are only functions of X and satisfies (1.5) and (1.13), we can
therefore use (A.9), (A.10), and (A.8) to get that

¢

o 1 1 0
— < | = — — =
IV — V[0, 8] ;v < ‘hb/ Vx(dy - @) dz| +s‘hvx(hb> [1+Bbzaz¢b az|

0
—1+pb

1 0
T E‘EVX§[1+ﬁb .6 dz‘Hk

< MRV (65 — D)l ernoqsy + Mk + D]yl s,

k
+ M (k)Y VA0 (06 — 8) | iirrogs,)
j=1

k

+eM(k+1) Z ||8g+1¢bHHk—j,0(Sb)
j=1
=Ji+ Jo+ J3+ Jy.

We will now estimate each term. To estimate Jq, we apply (2.16) to get that
Ji < peM(k + 3)[Vx | grea.

To estimate Jo, we use Proposition A.4 to see that |0,¢0|gr S |V x| gre+1 and combine it
with (2.19) to get the estimate,

Jy < eM(k+1)([[V5 (8 — do) || gr+1.0 + [|0:00] grr0)
< peM(s+ 3)|dei|Hk+3.

Finally, we will deal with Js and Jy. To that end, we need to trade the derivatives in 0.
with derivatives in the horizontal variable by relating the functions with an elliptic problem.
We introduce the notation

ng — f(sz):r(X)g(sz)v (234)

with r € H*(R?) such that |r|gr < M(k +1). Then, by construction, we have from (2.9)
that

(1 -+ WV 0026, = ~pAxon — pe(AIV X, 0:16y — |V xol02on)
= —pAx ¢y — neA[Vx, 0:)¢y,
where Vxo is given by (2.6) and is of the form
Vxo ~e(l+z),
while A[Vx,d.] is of the form
AVx,0:)¢5 ~ Axdy + (1+ 2)Vx f - VX020 + 206,
for some function f € H*3(RY). Similarly, for ¢ defined by (2.14), we have the relation
(1+ ulV o 2)32(n — 6) = nBx(dn — 6) — peAlV x, 8.)(0y — 6) — pe AV, 8]0

— u|Vxal?02¢.
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Consequently, we can trade two derivatives in z by Ax, Vx0,, and 9,. From that point,
we can deduce that for k£ > 3, we have

k
BKp—d) v Y. 0%0:((dp— 0) — o) + > u*0i,
YEN |y|<k-1 J=1
For the last term we can use that 92¢ = —uAxé. From these relations, and the control of

the residual terms r(X) in (2.34) with the product estimate (A.9), we may conclude from
(2.16), (2.15), and (A.6) that

J3 < M(k+1)([[V (06 — O pre10s,) + 1el Vx| grsr)
< pe+ef + puB )M (k + 3)|V x| grss.

To conclude, we estimate Jy. Since there is an € appearing we only need to introduce ¢q
and we obtain
k
Ju=eM(k+1) Y (10260 = 0)llie-so(s,) + 105 Goll o, )
j=1
e(pue + pB + p)M(k + 3)|V x| rs.

The next result concerns the expansion of V' with respect to u3:

Proposition 2.21. Letd = 1,2, ty > % and s > 0. Letb € C2(R?) and ¢ € Hmex{to2.5+3}(Rd)
be such that (1.5) and (1.13) are satisfied. Let L1'[8b] and L5[Bb] be two pseudo-differential
operators defined by

ClBY] = —% sinh (Bb(X)y/7iD|)sech(y/7 D)) ——-

Vi \D\
1
I 1
Let also ¥y, Fo, F3, and Fy be four Foumer multipliers defined by
tanh (y/z/D) 3 2
= V- 7 = 1-F F3 = sech D Fy=——(1-F3).
1 N 2 /L|D|2( 1), F3=sech(\/u|D]), F4 M|D\2( 3)
Let ) € H'5+5(Rd) and consider the approximation:
— 1
Vo= h*Flvxiﬁ + ,%Uf[ﬁb]vxw + %VXF4VX (LY BV x) (2.35)

— ﬂvx(hFﬁva (bVXlZJ)) — MﬂQ(be)F1VX . (bVXl/J)

Then for V defined by (1.8), there holds

[V = Volus < (ne + p?B7)M (s + 3)|V x| rosa. (2-36)
Furthermore, let Vapp be defined by the approzimation:
V.oo— fad g b W oy ub u
Vo = Vv + £ 9x (jF20) + 5 v FLAloY) + ERVXE - (L1509 x0)
(2.37)

- ﬂVX(bFz;VX S(bVxv)) — uBA(Vxb)F1Vy - (bVx1))
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Then there holds

IV = Vapplits < (1% + e + 285 M (s + 3)|V x|y (2.38)
Proof. We give the proof in four steps.
Step 1. Construction of V. To construct Vg, we use the solution of ¢g given by (2.18), the

solution ¢; given by (2.21), and formula (2.8), formally discarding terms of order pe, to get
that

0

0
Vo = / Vxood 48 / Vo d

—148b(X 1+8b(X)
=1+ Is.

Then by direct computations, we get

0
B=r ([ cosh((e o+ 1) VA€ sech(VAED i (E) d=) (X)

—1+8b(X)
_ tanh (y/E[D]) . \ .
=D VXY sinb (B(X) VaIDl)sech(VRID]) s V.

While for I, we simplify the notation by defining G = Vx - £[8b]V x4 and then make the

observation
0

0
uﬁ[h Vxo1(X, z)dz:uﬁhb/ (Vxé1)(X, hpz)dz.

—1
Then by the chain rule, we have the relation
Vx(61(X, pz)) = (Vx¢1)(X, hpz) = BV xb(0:01) (X, hy2),
and
0=(d1(X, ho2)) = hp(9:01)(X, hy2),

from which we obtain
0

I =upB Vxé1(X, z)dz

,hbo .
= uﬁhb/lv;((dn(x, hbz))der,UBQ(VXb)/laz(gbl(X., hpz))dz
h
= uBhyVx (hp(1 - sech(ﬂ\D\))ﬁg) _ HﬁQ(va)hb%G

Adding these computations yields,
1 B
il 1 v/ =
e X+ ™

To conclude this step, we use (1.18) to approximate G = Vy - (bVxv) + uRy, where
|Ri|gr < M(k + 1)|Vx9|gr+a. Then we have constructed the approximation:

1 B
EF1VX¢ + ™

2
- %vx (0F4Vx - (0Vx9)) = pB*(Vx0)F1Vx - (0Vx9) + i° 3Ry

For some Ry satisfying |Ra|ge < M (k + 1)|Vx|gr+a.

Vo= LYBBV 1) + %vx(hbma) — uBA(Vxb)F1G,

Vo= LYBYV xt + %VXIMVX - LY[BOV x )
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Step 2. We will now prove the estimate on V — V), where we argue as in the proof of
Proposition 2.20. In particular, we do the estimates for £ € N, and then use interpolation
for s > 0. Also, we define the approximation

Phop = S0 + 1Be1,

and let R be the function constructed in the previous step satisfying estimate |R|gr <
M(k+1)|Vxt|grsa. Then we have that

—_ 0 1 1 ¢
[V = Vol = | / o g T6(00 = i) = (69 x () + eVxQmin] 2|+ w267 Rl

We now use (A.9), (A.10) and (A.8) to obtain

v Vol < |- [ v Lo o (Y [ sosa
V- 0|HkN‘H 71+ﬁbVX(¢b7¢app) Z‘H’”‘+E‘ﬁvx<h7b> 71+,Bbz 0% Z‘H’C

1 0
1y p) d] 282|R|
+6‘h XC/—H—BI) 2Py dz| |+ 57| R e

< MKV (5 = dapp) | msr0gs,) + M (k4 1)[10:08] rogs,)
k k
+ M(K) D IVE 0T (0 = dapp)ll -, +eM(E+1) D 102 dullwe-iogs,)

j=1 J=1
+ 1262 M (k + 1)|V x| s
=Ih+ 1L+ 113+ 114+ 1I5.
We will now estimate each term. To estimate T, we apply (2.24) to get that
IT; < p(e + B+ pf*) M (k + 3)|V x| prasa.
The estimate on 115, is the same as for Jy in the proof of Proposition 2.20:

Il < eM(k+1)([[V% (66 — ¢0)ll gr+1.0 + [|9:¢0]| re0)
< ueM(s+ 3)| Vx| grss.
Lastly, the estimates on [l and II; are similar to the estimates on J3 and .Jy in the
proof of Proposition 2.20. In particular, we trade the derivatives in 0, with derivatives in
the horizontal variable by relating the functions with an elliptic problem. We recall the
notation (2.34):
fryg = f(X,2) =r(X)g(X,2),

with r € H*(R?) such that |r|yx < M(k+1). Then for qﬁ,}lpp = ¢ + pf¢1 defined by (2.17)
and (2.22), we have the relation

(1 + u‘VXU‘2)83(¢b - d);pp) = /U'AX(qsb - ¢élxpp) - :U‘EA[VX7 aZ](¢b - d);pp) - #EA[VX’ 8Z]¢&lxpp
— p|Vxo? 02 dayy + 1B F.
where F is some function satisfying (2.23) and goes into the rest. Consequently, we can

trade two derivatives in z by Ax, Vx0,, and 9,. From that point, we can deduce that for
k > 3, we have

k
(b= dapp) ~ 1 > 00 (06— Bhpp) — EPapp) + Y, 1 Db,
YEN? |y|<k-1 J=1
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From this estimate, where we control the residual terms r(X) in (2.34) with the product
estimate (A.9), then combine it with (2.24) and (A.6) to get

I3 < M(k + 1)(|V5 (66 — Gapp) | irr10(s,) + e[V x| i)
< e + B + pB)M(k + 3)|V x| griss.

To conclude, we need an estimate on I14. But since 114 = Jy, we have that

Iy <e(pe 4 pp + )Mk + 3)|V x| yi+s.

Step 3. Construction of Vapp. The next step is to construct Vapp by replacing ¢p with @app
in (2.8):

— 0 1 ¢
Vapp = /1+ﬁb [hb X¢app 3 (€VX (H)Z + EVXC)az(z’app] dz. (2.39)

Then using (2.30), we obtain that

- | 0 1o
Vaw= [ avedss [ o ( (60~
1486 I 1486 T

v))ds

S R (2SR }2(450 0) s
<

hy

0
+u6hb / Vxdrdz — pueB / LV () + Vx)oedr d

1+ﬁbh
=1L +1III,+ HL; + III4+ II1I5.

Clearly, I1I; = Vx1 and to compute IT15 + I1I3 we use formula (2.18) for ¢p:

1 3 tanh (,/5|D|)
ITIy+ 1115 = ~vy (2 2 WHIDD
2+ 1l VX(h?’ JHDI v)

Vx(h;(sinhwb( VD sech(VAID) —=-ts — (1 -+ G0)0) )

"
X2 ((cosh (H(X) /D] sech(y/7D]) 1)
b

p n® 3 tanh (,/z|D))
3h X(Fgmw(“ VD )szp)

3
3k (%(smh (B6(X) yIDJsech(y/AD]) ——

— e,th

ﬂD‘ — B0 ) + neBRs,

where Rj is given by

Vxb

1
Rs = ~Chps ((cosh (Bb(X) /7D sech(y/AIDI) - 1)WAX¢.

Moreover, using the algebra property of the Sobolev spaces (A.9), (A.10), and estimate
(1.17), we have that

|R5‘Hk- < ]\/[(k-‘r 1)|Vxl/J|Hk+1. (2.40)
27



Next, we see that 1114 is already treated in Step 1. and satisfies:

2
“ﬁ oV (bF4Vx - (0Vx¥)) — uB*(Vxb)F1Vx - (bVx)

111, = %VXR;VX - LY [BOV x1p —
+ 1*B*Re;,

for some function Rg satisfying |Reg|gr < M (k+ 1)|V x|gr+a. Lastly, for the term I115,

we use integration by parts to find the expressions

III; 7/45/7’/ f(zvx )+VXC) ,¢1 dz

B h? ¢ tanh(,/z|D|)

— —heB V() (5FaVi - (EL80Vx0) + W]

tanh(,/z[D])
VilD

The multipliers are bounded on H*(R?) and combined with Proposition 1.10 we get that
[IIT5| e < peBM(k + 1)|V x| grea.

SEVECRT k- (L488V ) )

- uaﬁfvxc Vx - (LY BV x)

Adding these identities in the definition of V,p, we get that

o 0 1 1
Vapp = / [hfvx%pp - E(ZEVX(}%) + EVXC)Oquapp] dz + pefSRy
—1+p8b T b

3 3
= Vi + 5 Vx (fgFav) + 579 (G 0w) + VR (LT 0)
b

2 2
- ﬂvx(bmvx (B x)) — ﬂ(vxb)mvx (b 1),
where Ry is some generic function satisfying |R7|gr < M (k + 1)|Vx | grta-

Step 4. Proof of (2.38). We use the definition (2.39) of V,p,p and (A.8) to identify the terms

. 0 1
[V — Vapp‘Hk = ’ /4+¢3b [EVX(¢6 - (Z)app) (EVX< ¢ >Z +eVx()0:(dp — ¢app)] dz

M(K)[[V (66 — Papp) | r+1.0(s,) + M (k + 1105 (06 — Papp) |l gro(s,)

HEk

k
+ M (k)Y IV O (06 — bapp) | in-s+10(s,)
=1
k

+eM(k+1)> (107 (8 — Gapp) | -0 (s,
=1
=IVy + IVa + IV3 + IV,

For the two first terms we use estimate (2.31) to get that
IVi + IVa < (e + peB + @2 B°) M (K + 3)| Vx| .

For the estimate of IV3 and IV}, we will use the same ideas that we used for I3 and Iy. We
first note that we only need to work with

¢app ¢0 + MB¢1 + u5¢23
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constructed in Propositions 2.11, 2.14 and 2.16. Indeed, from Observation 2.18 we used the
approximation (2.28) and depends polynomially on z. So formula (2.30) is related by qﬁgpp
through the relation

05 (Gapp — Papp) ~ pi(pe + )05 (2°R), (241)
for k > 1 and where R = R(X) satisfies (2.29). Then by definition of ¢g, ¢1, and ¢2 we
have that
O2(fy — Bapp) = —HDx (05 — do — pBo1) — peA[Vx, 0:](p — do) — pe(A[Vx, 0:]60 + 02¢2)

= —uAx(dp — do — uBs1) — peA[Vx, 9:)(¢y — po) — ne(A[Vx, 0:]do + 02¢2)
— u[Vx0 P02 (¢ — do — uBd1 — pedo)) — 1BV xo[?2¢1 + p’e|Vx o202 o,
so that

(14 p|Vxo?)02(dy — ¢2pp) = —1Dx(dp — b0 — nBdr) — peAlVx, 0] (¢ — o)
— pe(A[Vx, 0:)¢0 + 82¢2) — p*|V x 0?02 (B + €02 a).
Here derivatives of ¢ is bounded using Proposition A.5 and by definition of o, given by
(2.6), we have that
W BV xo? 0261 ~ pPe? B2 ¢n.
Moreover, since ¢2 is only polynomial in z can use the notation above (2.34) to see the last
term as

12|V x a2 02ps ~ (1 + 2 + 22).
Also, we see from observation 2.15 that

pe(A[V x, 9:]do + 02¢2) ~ pelx(do — ¥) + pe(l+ 2)Vx f - Vx 0.0 + pezds o,

for some f € H*+3(R%). Then arguing as in Step 2, we get the induction relation for k& > 3:

o= )~ > 0%0: (60— Bhpp) + (60— 60))
YEN? |y|<k-1
k—2
+pe > (Axdo+ Vxf - Vx0ao+ 0:00) + ne* Z D1

j=1
Then as a result, we use these estimates with the product estimate (A.9), (A.4), and (A.5)
to obtain the bound

k

S N0 (b — )l arn—igsy) S pM(k+ 1)(||3z(¢b — Gapp) L r0(s,) + €10=(db — d0) |l ro(s,)
j=1

+ W2Vl g + 12|V x - LLIBEV g )
from which the estimate on I'Vj follows by (1.15), the relation (2.41) with estimate (2.29),
and then (2.25) and (2.19):

IV, < M(k Z V% .05 (b — 02 lirr—s410(s,) + e + €B)|V x| s

< p(pe + 65) (k +2)|Vxi|grsa.

The same estimate holds for I'Vs, and therefore completes the proof.
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2.5. Multi-scale expansions of G/. In this section, we give the expansions of the Dirichlet-
Neumann operator. We will use that G# is directly related to V through (1.7) and (2.8). In
particular, we have the following result two results.

Proposition 2.22. Under the provisions of Proposition 2.20 we define

1 ho [0
GO ==V (5 | Vxods).

and for ¢ € H*5(RY) we have the estimate
1
;|g“¢ — G| < pueM(s+ 3)|Vxth|gsta. (2.42)

Proof. By definition of the Dirichlet-Neumann operator (1.9) and Proposition 2.20 we have
the result

i\gw — Gylus = [Vx - (W(V = V[0, Bb]))
< pueM(s+ 3)|Vxth|gsra.
O

Proposition 2.23. Under the provisions of Proposition 2.21, we can define the approxi-
mations

1 "

Gt = —Fibxy = 51+ %me)vx (LEIBYV x¥) — eVx - (CF1V X))

2
+ 19 (BIBNx),

and
1 o h3 "
Gy = —Vx - (hWx) = £Ax (T5F2Bx0) — pBdx (L456)AxY) (243)
o 3 hy
2
R Ax V- (ELBV x8) + L2V - (BSHVxw),
where

B[BbVxv = bF4Vx(Vx - (bVx1)) (2.44)
+ hyVx (bF4VX . (be’L/))) + th(VXb)Fle . (va’L/))
Moreover, for ¢ € Hs+6(Rd) we have the following estimates on the Dirichlet-Neumann
operator

1

219" = Govlar < (e + 12B2)M (s + 3)[V x| s (2.45)
i|g”1ﬁ — G1Y|gs < (,LL2€ + pef + /LQ,BQ)]W(S +3)|Vx|gs+s. (2.46)

Proof. To prove inequality (2.45), we introduce a generic function R such that

‘R‘]]s < ]V[(S + 3)‘V)(L/)|Hs+5. (247)
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Then note that the first two terms in Gy are obtained from the first two terms in V. Indeed,
let G = Vy - L}'[Bb]Vxy and use formula (2.35) to observe that

igmﬁ = —Vx - (hVy)

h h
=~V (P Vxw) = 89 - (3 L4130V x0)
2
— %VX . (hF4VXG) + %VX . <h(VX (bF4VX . (bV)ﬂ/})) + 2(va)F1VX . (bVX’l/))))
= RHS; + RHS; + RHS3,

where

RHS; : = -Vx - (%Flvxﬂ)) - pBVx - (hﬁb/jf[@b}v)ﬁb)

— _FiAxt— V- (hibFlvw) BV (CABYV X)) — efVx - (h%cﬁ‘ BYV X)),

and we use (1.18) to get the approximation
LY[BOIV xtp = bV x9 + pR.

Then we obtain that

RHS; = -F1Axy — fVx - (l:lf[ﬁb]VXl/J) —eVy - (}%FHVX?/J) +eVyx - (h%)ﬂbe’l/)) + ueR

= -F1Ax% — BVx - (LY[BVVx¢) — eVx - ((F1Vx¥) + peR.

For the remaining three terms, we first note that

RHS, — J;ﬁvx (RF,V X G)
] 3 pnef

=~ FibxG + =V - (bFaVxG) + Ry,

where R; is given by
R = -Vx - ((F4VxG),

Using the estimates in Proposition A.7 and (1.18) allows us to put R; in the rest R satisfying
(2.47). Moreover, since G = Vx - (L{[8b]Vx¢), we obtain

" L, 2
RHS, = *%F4AXVX - (LY[Bb]Vxy) + %Vx - (bFaVx(Vx - (bVx9)))

+ (ue + p*B*)R.
To conclude, we identify the remaining terms with the ones in Vx - (B[8b]Vx¢) by (2.44),
and we conclude by (2.36) that
1 .
;|9“¢ = Gotlms = [Vx - (M(V = Vo))

< M(s +3)[Vxt|gs+s.
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The proof of inequality (2.46) is similar, where we first use formula (2.37) to get that
1 _
;gldj =—-Vx- (hvapp)

3 3
= V- (09x9) — sy (5Faw) — i (s LA
b b

g (xETx - (BT x))

Vi (xR4T - (09x0)) + 2AVXDFI V- (09 x0))).

Then using the same arguments as for Gy, for the last three terms, we know there is a
function R such that

1 h3 R?
010 = =V - (9x0) = px (g Fav) = nddx (G L51500)

P AxVy - (LE BV G (Bl 26%)R
5 1AxVx - (LY [BOV X)) + 2 x - (BBbIVx) + (nef + n?B%)R,
where R satisfies (2.47). Thus, we only use (1.16) to say

HBLL8Y) = uBR. (2.48)

and combine it with the observation Z—Z — 1 =¢R, allowing us to neglect the term
b

h?
uBAx (5 — DESIBIAXY) = neBR.
b

By estimate (2.38) we conclude that (2.46) holds true.

3. DERIVATION OF BOUSSINESQ TYPE SYSTEMS WITH BATHYMETRY

In this section, we derive a family of weakly dispersive Boussinesq systems in the shallow
water regime with precision O(ue) and O(ue + p252).

3.1. Derivation of a Boussinesq type system with precision O(uc). We will now
derive a system with precision O(ue). This system is defined implicitly through the solution
of an elliptic problem on a fixed domain with solution ¢ which depends on time through
the Dirichlet data .

Theorem 3.1. Let G, be defined by (2.22). Then for any p € (0,1], € € [0,1], and B € [0, 1]
the water waves equations (1.4) are consistent, in the sense of Definition 1.15 with n =5,
at order O(ue) with the Boussinesq type system:

¢ — LGy =0
< ) (3.1)
o+ ¢+ §|VX¢\ =0,
Proof. For the first equation we use the approximation given in Proposition 2.22. While
for the second equation we simply use (A.5) to replace the Dirichlet-Neumann operator by
terms of order O(ue). O
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3.2. Derivation of Boussinesq type systems with precision O(us + p?5%). The sys-
tem derived in this section will have the benefit of being explicit. This will reduce the
computational cost from a numerical perspective, where the price we pay is given by an
additional term of order p?8%. However, the system has improved dispersive properties
when compared to classical models. Moreover, since the precision is of higher order in £,
these systems can handle larger amplitude topography variations. The first result of this
section reads:

Theorem 3.2. Let Fy and Fy be the two Fourier multipliers given in Definition 1.6, and
let LY be given in Definition 1.10. Then for any p € (0,1], € € [0,1], and B € [0,1] the
water waves equations (1.4) are consistent, in the sense of Definition 1.15 with n = 6, at
order O(pe + u2B%) with the Boussinesq type system:

¢ +F1Axy + (1 + §F4Ax)Vx - (LY [BbV x1))
GV - (CGaVxth) — M2V - (B[BH]V x¢) = 0 (3.2)
O+ + 5(Gi1Vxv) - (GaVxe) = 0,
where
B[Bble = bF4V x(Vx - (be)) + hyVx (bF4Vx - (be)) + 2hy(Vxb)F1Vx - (be),
and G1, Gy are any Fourier multipliers such that for any s > 0 and v € H*72(RY), we have
(Gy = Dulgs S plulgreve.
Proof. To start, we replace the Dirichlet-Neumann operator by (A.5) and its expansion
given by (2.45) and discarding all the terms of order O(u(s 4 uB?)) in the water waves
equations (1.4) yields,
0¢ +F1AxY + B(1+ F4AX)Vx - (LY[BBV x) +eVix - ((F1Vx1)
—4EVx - (B[BYVxv) = (e + n?B%)R,
O+ + 5 |Vxf? = kR

where we introduced a generic function R such that

|R|rs < M(s+ 3)|[Vxt|gs+s. (3.3)
To complete the proof, we use the assumption on G; whenever there is the appearance of
an . Then apply estimate (2.45) up to the rest R satisfying (3.3). O

The next result concerns a Boussinesq type system for which the first equation is exact
and where the unknowns are given in terms of (¢, V).

Theorem 3.3. Let Fy and Fy be the two Fourier multipliers given in Definition 1.6, and
let LY be given in Definition 1.10. Then for any p € (0,1], € € [0,1], and 8 € [0,1] the
water waves equations (1.4) are consistent, in the sense of Definition 1.15 with n =7, at
order O(ue + % 2) with the Boussinesq type system.:

{atuvx S(hV) =0 (3.4)
AV + T3'[Bb,eC]VxC + §Vx|[V[? =0, ’
where
T8b, ¢ :l(F +BLY3b) @+ 1s (et
T30, eClo = (Fr e +5L1 (50 o ggFI.)+ VxFVix - (L4[86] )
B

- Tvx(bmvx < (be)) — uB*(Vxb)F1Vx - (be).
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Proof. The first equation is exact by identity (1.9), and so we only work with the second
equation of (1.4). However, using Theorem 1.18 we can work directly of on the second
equation of (3.4) in the case G1 = Gg = Id. Also, since we will take the gradient of ¢
we need to increase the regularity of our rest function. In particular, let R be a generic
function such that

|R|pgs < M(s+ 3)|Vxt|gs+e-

Then by (2.35) there holds

— h h
WV = S FAVxb + G LUV b + S h VX FaV - LAY v

s

- Thbvx(bszVX - (bVx®)) — uBPhy(Vxb)F1Vx - 0V x1) + (ne + p? %) R.

Moreover, by (1.18) and (A.7) we make the observation

]%(Flew + ﬁﬁ'ﬂﬁb]v;&b) =FVxv+ Bﬁﬁ‘[ﬂb}v;&ﬂ +eCF1VxY + peR,

so that

hV = hT3(Bb, eIV xt + (ue + p*B*)R.

From this expression, we can use the first equation to see that d;h = —eVy - (hV), and the
estimates (A.7) together with the relation Vxt =V + uR to get that:

hoV = (04h)(F1Vx¢ — V) + BT [8b, £¢]V x Opt)
= NT'[Bb, eIV x Or).

We may now use this relation in the second equation of (3.4) where we apply the gradient
and To[Bb, £C] to obtain that

hOWV + BT 185, &CIV xC + SHTS 8, IV x|V I2 = (e + 2 A7) R.

Then we conclude from the fact that 7J[8b,e¢] = Id + puR.
O

3.2.1. Hamiltonian structure. We end this section by briefly commenting on the Hamil-
tonian structure of Boussinesq type systems with bathymetry. To do so, we recall the
Hamiltonian of the water waves equations (1.4) [18]:

_L [ e 1
G =3 [ Gax+g [ vorax (35)

with H((, 1) satisfying the system

0¢ =6uH
{M _ (3.6)
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where d,, and J; are functional derivatives. Then replacing the Dirichlet-Neumann operator
in (3.5) with its approximation its approximation (2.45) we obtain

HC ) = /]R Cax g /R Vv Vi dX (3.7)

< B
+§/]R<d (GVxy-GVxy dX+§/Rd LEBV x1 - Vxip dX

2
+“4—5 F4AX£’f[,Bb]VXw~VX¢de%/ Vit - B[BbVxv dX
R4 R4

+ O(ue + p?B%),

for some Fourier multiplier G of the form G =1+ O(pu).

Now, to compute the functional derivatives in system (3.6) we note that the Fourier
multipliers that appear are self-adjoint. While for the pseudo-differential operator of order
zero, L}, one can use the fact that there exists an adjoint. However, a simpler approach is
to approximate it by (1.19) and gives

2
£ = —bFs — PP PRy + 05"
Using this relation implies

RHS; : = g/Rd LBV x 1 - Vxip dX

3
__E / bFsVxt - Vo dX + 45 / BPAXF3Vxw - Vit dX + O(25),
2 Rd 12 Rd
and

RHS, : = %/in;Axcf[ﬁb}vxw.vxw ax
e

= f% /d FiAx (bVxt) - Vxtp dX + O(1%5°).
R
In particular, the first equation in (3.6) is given by

2
6pH = —F1Axt) + Vy - (A*[Bb]Vx¢) — GV x - (CGVx9) + %vx : ((B[ﬂb] + B[ﬂb}*)vx¢>7

where
B w8 u3? 3 3
AV[Bb)e = (Fs(be) + bFs o ) + £ (Falx (be) + DFalx o) — E0- (B AxFs o +AxFs(b .)),
and where B[8b]* stands for the adjoint of B[3b] and reads
B[Bb]*Vx’L/) = bF4Vx (VX . (va1/J)) + bF4VX(bVX . (thX’gb)) + QbFle(thXb . Vx’gb)
Similarly for the second equation:
€
ScH =—(— 5|vazp|2.

Then using (3.6), we will arrive at the following system

¢ +F1Axy — Vx - (A*[BYVxe) +eGVx - ((GVx¥)

2
~2v - ((BI88] + BB V) = 0 (35)
O+ ¢+ 5|GVxy* =0,
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where its Hamiltonian reads:

HGw) =5 [ ¢ax+; [ Fives Viwdx
2 Rd 2 Rd
+5/ (QV ¢ - GV b dX—E/ (1+ “Fy A BFsVxt - Vxip dX
2 ]Rd 2 ]Rd 2

13
- B[pb|Vxy - Vxip dX,
Rd
and is preserved by smooth solutions of (3.8).

Remark 3.4. If we neglect terms of order O(ue + pf), using F3 = 1+ O(u), we obtain the
system derived in [10].

4. DERIVATION OF GREEN-NAGHDI TYPE SYSTEMS WITH BATHYMETRY

In this section, we derive weakly dispersive Green-Naghdi systems in the shallow water
regime with precision O(u%e + peB + p?62). The following Green-Naghdi type system may
be derived from the water waves equations:

Theorem 4.1. Let Fy and Fy be the two Fourier multipliers given in Definition 1.6, and
let £ be given in Definition 1.10. Then for any p € (0,1], € € [0,1], and B € [0,1] the
water waves equations (1.4) are consistent, in the sense of Definition 1.15 with n = 6, at
order O(p%e + peB + p?B?) with the Green-Naghdi type system:

0+ Vx - (WTF[8b, eC]V x¥h) — -V x - (B[BEIV x¢) = 0
{atw FC IV - (A xu) =0, -y
where
B[Bble = bF4Vx (Vi - (be)) + hyVx (bF4Vx - (be)) + 2y(V xb)F1 Vx - (be),
and
TH[Bb,eCle = 1d + %vx\/ﬁ(%\/ﬂvx : .) + %vx (Ug[ﬁb]vx : .)

+ %F;LVXVX . (ﬁ?[ﬁb] . ),
and /Fo is the square root of Fa.

Proof. We see that the first equation can be deduced by trading the Dirichlet-Neumann
operator with its approximation (2.46). Indeed, we obtain that
3

O+ Vx - (W) + EAx (h Falxth) + pdA (L556)Ax )

hy
up m #52 2 2 92
+ 7F4Axvx < LY[BY]IV x 1 — TB[ﬂb}wa = (p°e + peB + p"B)R,
where we introduce a generic function R such that
|R|pgs < M(s+3)|Vxt|gs+s. (4.2)
Therefore we need to approximate the term
m (b
3 Ax <h,f FQAXﬂ))
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at order O(u2e + peB). Indeed, using (A.7) to say Fo = 14+ uR and F3 = 1+ uR, we
obtain

Eag(l - _n B e :
3AX <(h2 1)F2AX¢> = 3AX\/E((h§ 1) FQAX¢> + 42%cR.
Gathering these observations yields

12 ’LB 1% \/7 h3 \/7 2
gAX<h7gF2AXd}> = gAX Fs (hig’ FQA)H/J) + peR. (4.3)
For the second equation, we use (A.5) to make the observation

(LGH[C, BV +eVxC - Vx)? 1 2
’ 1+ 24| Vx (2 - (;g* =€ b+ 2V wa)

1P Vx(P(G"[eC, BblY + eVx( - Vxy)?
N 1+ e2u|Vx¢[?

= ue’R.
Meaning that we only need to make an approximation of
1 2
(6716, B0l + 2V xC - V)

at order O(u). In particular, we use (A.5) to simplify the second equation in the water
waves equations (1.4) to get that

1 2
B+ C + %WXW - % (EQM[EQ BbJY + eV xC - vxw) — /%R, (4.4)
Then using (A.5) we have that

ig“[ec,ﬁb]w = —Vx - (hVx¥) + uR
=—hAxY —eVx(-Vxt+ (u+ B)R,

and we may use this expression to simplify (4.4) where we again use that /Fy = 1 + uR.
Thus, we conclude the proof of this theorem with estimate (A.5) up to a rest R satisfying
(4.2).

O

One may also derive a system with unknowns (¢, V) instead of (¢, %)), for which the first
equation is exact. The new system reads:

Theorem 4.2. Let Fo and Fy be the two the Fourier multipliers given in Definition 1.6,
let L5 and L4 be given in Definition 1.10. Then for any p € (0,1], € € [0,1], and 8 € [0,1]
the water waves equations (1.4) are consistent, in the sense of Definition 1.15 with n =7,
at order O(p%e + ueB + pu?B%) with the Green-Naghdi type system:

{amvx -(hV) =0,

DT [R)V) + (W) TL[8b, HIV xC + 5V x (V%) + eV xRY (36, b, V] = 0, (45)

where V defined by (1.8),

TH[he = 1d — 3%\/F§VX (h‘s\/ﬁvx : .), (4.6)
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3
T3 [Bb,eC)e = 1d + —fvx( 3\/F§vx--) + %vx(cgmb]vx..)
b
/tﬁhb uﬂ

VxF4VX (Lﬁﬁb} C)
Nﬁ hy

(bF4VX (bO))

(Vxb)F1Vx - (be),
and
REB B, TV] =~ (T - V)2 = = (Vx(hVx - 7)) - = 2R3 (T2) + L h3 A (72)

Proof. The first equation is exact so we only need to work on the second equation. Also,
since V is related to the gradient of 1 we need to increase the regularity of the rest function
R. In particular, we introduce a generic function R satisfying

|Rlms < M(s +3)|Vxt

Hs+6. (48)

Then from the estimate (2.37), (2.48) and the argument in the previous proof, we know
that

3
RV = hVxt + V3 Vs (% V2l xw) + uBVx (L4180 Ax0) (4.9)
b

Bhbvxmvx (L1(BYV x¢b) — no? thX(bF4VX bV x1))

- uﬁ%;,(VXb)FlVX -(bVx) + (1 + peB + 28R

Deriving this equality in time and using the definition of 73[3b, £(]e we obtain the relation

3
BV = Oh(V b~ V) + KT [0,V xus + Vv (0, () VaAxe)  (4.10)
b
+ (e + pef + PSR

1
Moreover, noting that = 1+ SR we can deduce that
b

EVxVE (af( )\F Axt) = —ueVx\/Fa(h(Vix - (h7))v/Falx) + peBR,

and using the first equation of system (4.5) we have that (4.10) is approximated by
h,'TQH[Bb, EQ]VXaﬂZ) EE hatV—k E(VX . (hV))(Vx’l/) — V) (4.11)
+ }I,SVX v Fo (h2 (VX . (hV)) \/ FQAX'I/}) + (}1,25 + /155 + /12/82)3

To conclude we simply need to approximate Vxt by V where we use (2.37) to get the
classical approximation:

Vxt =V + uR
Vxy = V- %Vx(hSVX V) +/12R.
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Furthermore, using (4.12) and (4.11) we obtain that
RTS[8b, eC10V xtp = hOV — f(vx (W) Vx(h¥Vx - V) (4.13)
+ 1eVx\/Fa(h*(Vx - (hV))/FaVx - V)
+ (uPe + peB + p*BR

We will now simplify the second equation of the water waves system (1.4) at order O(u%e +
ueB+ 1?2 52). Using Theorem 1.24 allows us to work with the second equation of (4.1). First
use (4.12) to deduce that

_ 2 .
Vxwf = V2 = 2E(Vx(hVx - V) -V + 2R
With this relation, we may apply the gradient to the second equation of (4.1), and then
apply the operator 73'[8b, £(]e, using the approximation (4.12), and discarding all the terms
of order O(p%e + peB + p?B2) to get
1 1 Ern 2 2H 3 7V LT
T3[85, ¢V x O+ TH[8b, 2V xC + ST 8b,(] (vXW\ — S (Vx(W'Vx 7)) - V)
h2\V VI? = (u’e + peB + p°B)R.

Then we apply (4.13), neglecting Fo whenever there are terms with ue and together with
the observation

T4[8b,2Cle = 1+ LoV (h*Vx - o) + uBR,
to deduce that

OV+TJ (8, 21VxC + SVx(IV) = 25 (Vix - (b)) Vx (h*Vx - V) (4.14)
+%€Vx(h2(VX( V))Vx V) + hVX(hi{Ax(mQ))
He

- ?vx(;(vx(iﬁvx ) .v> - %VX(hZWXVF)
= (ue + peB + pBf*R
Now, using v/F2 = 1+ pR and 8;h = eV - (hV) remark that
(V- —\FVX B*\/FoVx -V
=0,V — 3—h\/72VX h \/jVX SOV

+ %VX (hQVX . (hV)FQVX V)

3h2 P G (W)Y (WY - T)

So that from (4.14), and discarding all the terms of order O(u2e + uefB + pB?), we get

oV — ﬂ\/F?vX W3 \/FaVx - V)

= — T[Bb, ]V x¢ — fVX(|V| ) - vy (h Ax (V] )) + %va(hz(vx V)

3h

V(G (Vx(rVx 7)) 4 LVx (V- (T3 1V )

LE —
+ %vx(mxuvm) + (4% + peB + pBAR
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which at the end gives:
O (ZMN]V) + Z[h)TL[Bb, ]V xC + %Vx(\VIZ) + peVxRY[B, b, V) = (1% + pef + pf)R.
O

4.0.1. Hamiltonian structure. We end this section by briefly commenting on the Hamil-
tonian structure of the Green-Naghdi type systems with bathymetry. Starting from the
Hamiltonian of the water waves equations (3.5) and replacing the Dirichlet-Neumann oper-
ator by the approximation (2.43), using also (4.3), we get

3
5 [¢axg [ noxepax-£ [ wAX\/F?(h—g\/F?Axw) dx

. R(Axw)c“wbmxwdm 7 [ Vv Pabs (L1507 x0) aX

/ WV - (BIBHV x ) AX + O(ue + pef + p262).

Then, we make use of the two expansions given by (1.19) and (1.20)

2
CRIBE) = ~bFs + O(uf?),  LAIBH) = — bR+ 0y + 0up),

and write

RS =~ 57 [ (Axu)i(aAxs ax

e / (Axt)Fsa o dx — 22 [ PR ax + o)

B2 [ AxuFasysax - w [ B (VFabw)” ax + 045,
Rd 12 Rd
where for the last equality, we used Fo = /F2 + O(p), and
1B I
RHS; :="5 | Vx¢- FyAx (LY [Bb]Vxy) dX
R

= — %/ Vv - F4Ax (bVx) dX + O(p?B°).
JRd

Deriving the equations associated to this approximated Hamiltonian thus obtained, we
get the Green-Naghdi type system

0C + Vx - (hWWx) + EAx VFa (B VFoAx ) — L2V - (QH[b]V )
2y (Bl + IO V) + 2 AV F VA k) 0
0+ ¢+ 5 Vol = R (VA ) =0
where
Q" [ble = (F3vx(bvx o)+ Vx(bF3Vy - .)) n <F4VXVX (be) +bF A e )
and

B[Able = bF4Vx(Vx - (be)) + hyVx (bF4Vx - (be)) + 2hy(Vxb)F1Vx - (be).
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APPENDIX A

A.1. On the properties of pseudo-differential operators. In this section, we will give
a rigorous meaning to the pseudo-differential operators given in Proposition 1.10. Before
turning to the proof, we recall the definition of a symbol.

Definition A.1. Letd =1,2 and m € R. We say L € S™ is a symbol of order m if L(X,§)
is C®°(R? x RY) and satisfies

Va e N, vy eN, (9 mhDagal L(X, €)| < oo
We also introduce the seminorm

Mp(L) = sup sup sup {(5)7<m7‘7|)\8}’(82L(X, §)|} (A1)
lol<[§1+1 I<[g]+1 (X.E)ER?XR

Moreover, we recall the main tool we will use to justify the pseudo-differential operators in
Sobolev spaces:

Theorem A.2. Letd =1,2, s >0, and L € S™. Then formula (1.10) defines a bounded
pseudo-differential operator from H*T™(R?) to H*(R) and satisfies

|IX, Dlule < M (D)l e (A2)
With this Theorem at hand, we can now give the proof.

Proof of Proposition 1.10. We will first prove that for s > 0 the operators L' are a uniformly
bounded on H*(R%). To prove this point we need to verify that the symbols:

L’f(ﬂb(X)y&):—BSmh(Bb(X)f\ﬁl)Sech(f\ﬁl)

L?(ﬂb(X)7£)=%(Sinh(ﬁb( )WulEsech(vplE]) —==

\flfl

f G5
LE(Bb(X),€) = —(cosh(Bb(X)/m|¢|)sech(y/ml¢]) — 1)@

1

o) e

are elements of S° where the constants Mg(L;) are independent of 1 and 3. We treat each
symbol separately.

We start by proving that the symbol L is in S9. To do so, we will split the frequency
domain into three regions. First, let 8,/n|¢] <1 and /g|¢| < 1. Then since L{(8b(X), ) €

C*®(R?* x RY) and the Taylor expansion around (X,0) gives us
0% 07 LY (Bb(X), €)| < 1.

Next, consider the region 8,/u|¢| > 1. Then we also have that |£] > \/u|¢| > 1. With this
in mind, we can prove the necessary decay estimate. Indeed, since b € C°(R?) satisfies
(1.13), i.e. for hpmax € (0,1):

0< hb,min <1- /Bb(X)v

combined with sech(z) ~ e™® and sinh(z) ~ e” for « € R, we have that

sinh(8b(X ~
am(%)’ < #‘7'(1 + e ele mmin /el

< (7)Ia\u% — 3 M min /A€



Additionally, there holds
W (L fele vl < 1,
and so we obtain the estimate
o o (Snh(BH(X)/lg])
0% 9; (—
cosh(y/l¢])
Then combining this estimate with the Leibniz rule we obtain that
1 sinh(8b(X) /Al¢])
%07 L4 (BO(X), )| S = oo (P )| |22
%Nd - cosh(y/7l€])

SEVEEDT 3D @ leh g

71ENd 1y <y

)| s @+l (A.3)

o ((valeh ™)

Slel.
However, since we have that |£] > (/il¢] > 1, we obtain the desired result
0507 LY (Bb(X), )| S (&)1, (A4)
Lastly, let 8,/pl¢] <1 and (/ul¢] > 1. In this case, we expand « + sinh(z) to obtain
LY (Bb(X), €) = —b(X)sech(/nl¢])
G *cosh(tBHCX) VIED (1 — 0 de) (I sech(AIED.
To conclude, we observe that

b _
19%07 (b(X)sech(y/Al€))| S ¥ evAEl < (g,
For the second term, we let ¢ € [0, 1] and observe that we only need to consider

cosh(/FIE]) (Vrlgh?,

for which the decay estimate follows similarly to (A.3). Indeed, we first observe that

COSh tﬁb( )f'ﬂ) LeiRNP | ,—hb min
‘ (WM el (1 4 pat)e]) el e min VL

< @ |'y\ ’b,;niu \/ﬁlgl’
since ¢ € [0,1]. Then by the Leibniz rule, we get

o cosh(t8b(X)/nl€]) 2 ol 7’”7~Tm‘“\f|§| 2+y1 |||
(axav(—wshwm) )| s X wEre Pl g 2+~

Y1ENT 1y <y
S

for [£] > /u|€] > 1. Consequently, we can conclude this case. By Theorem (A.2) there
holds,

|y [Bb]ulps < M(s)|ul s

For the symbol L, we observe for 8,/nl¢| < 1 and \/u¢| < 1 and a Taylor expansion
that it is smooth and bounded. Moreover, for frequencies such that 3,/p|{| > 1, we can
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argue as we did for L} to get sufficient decay in the frequency variable at infinity. Lastly,
in the case 8,/pl¢] <1 and (/ul§] > 1 we use the following expansion

LY(Bb(X),6) = b(X)(sech(\/ng _ 1)@

1
+ g5 (0007 [ cosh(eBb(x) V€1 — 0t sech( Ve,

and again argue as we did for LY.

The estimates on L% is simpler since it does not depend on % Thus, using similar
arguments we can prove the necessary decay at infinity, and a Taylor series to prove the
boundedness for small frequencies.

The estimate (1.18) follows directly from the boundedness on H*(R?) of £5[3b] since its
symbol is in S° and that

LE(Bb(X), €) + b(X) = —uLy (Bb(X), )€

Indeed, the symbol 1 (X, &) = L5(Bb(X), €)|€|? is an element of S? and by Theorem A.2 we
deduce that R1[X,Du(X) = F~1(r1(X, £)a(£))(X) satisfies

|R1[X, Dluls < ulps+e,
so that
|LY[Bb]u + bulgs = p|R[X, Dlulps S plulps+e.

The next estimate, given by (1.19), is deduced from the Taylor expansion of the symbol
LY given by:

2
L)) = — (505 + L0 e sech( i) — 2 b)T1e (. ),

120

where the rest 79 is given by

1
ra(X,6) = /0 cosh(tBb(X)/AIE] (1 — £)'dt sech(y/7ilg]),

and is an element of SO by arguing as above. By extension, the symbol b(X)%|¢|*ro(X, €) €
S* and we conclude by Theorem A.2.
Lastly, we consider estimate (1.20). Again by a Taylor series expansion, we observe that

2
T (X)) sech (e

LE(B(X), €) = (b(X)(sech(y/7l¢]) - 1)

/15 5112
+ B lePrax,6),

where b(X)?[¢[2r2(X, €) € 52, allowing us to conclude by Theorem A.2.

pigl?

O

Remark A.3. We note that we could improve the estimates in the proof above. For in-
stance, we can get Ly € S™'. However, the constant M_1(L1) would be singular with respect
to B and p.
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A.2. Technical estimates. In this section we give a series of multiplier estimates. To
start, we recall the Fourier multiplier depending on the transverse variable:

cosh((z + 1)\/Elg])

FouX) = 7 (S5 e 1) 0

Then the first result reads:

Proposition A.4. Let s € R and take u € ./ (R%), then there holds
|F0’1L‘H.s 5 ‘11/|H5
|0.Foulgs < p|Vxu|gsa
|02Foul e S 1|V x| st
Moreover, for k € N and under condition (1.13) we have similar estimates on the domain
Sy =R% x [—~1+ 3b,0]:
1ot — ullsogs,) < #l ¥ xulsres
0:Foull gro(s,) S plVxulpre
||3§F0u||11k»0(sb> S ulVxul g

Proof. The estimates on H*(R?) are a direct consequence of Plancherel’s identity and the
Taylor expansion formula for x € R:

2 1
cosh(z) =1+ %/ cosh(tx)(1 —t) dt.
0
For the estimates on Sy, we use that —hy(X) > —2, by assumption (1.13), then extend the

definition of Fy to the domain & := R% x [—2,0]. The first estimate on S, is a consequence
of

cosh ((z + 1)\//7\D\)u a u‘

IFou = ull greogs,y < IFou — ullrogs) = | < HVxulgon.

cosh (/z|D]) HFO(S)
The remaining estimates are proved similarly. O
The next result concerns the following operators:
sinh( ;2 /AlS)
_ 1 hy(X) -
B DJu(X) = 77 (— s a(0) (1),
and
cosh(x7 Vil
_ 1 hy (X) -
T ()X DJu(X) = 7 (@) (0

We should note that we will apply these operators to functions depending only on X, which
makes the dependence in z € [—hp, 0] easier to deal with.

Proposition A.5. Let k € N and take u € S (R?), then under condition (1.13) we have

Tl s,y < MB)ul

[ Toull grros,) < M(K)|ul g
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Proof. We first observe that T} is well-defined on . (R%). Indeed, for tg > g ¢ there holds

sinh (= /1€

, -1 X VIR

|T1U(X)|§ze[—sf:i?x),0]‘f < cosh(/IE]) u(f))(X)‘
< sup tan(VAIEN(E) ()] [ (€7 de
¢eRrd
< 0.

Moreover, using similar arguments one can prove Tyu € . (R%). The same is true for T5.
Next, we prove the estimates. To do so, we first let £ = 0 and use a change of vari-
able, Holder’s inequality, the Sobolev embedding, and Plancherel’s identity to make the

observation:
blnh 2 /1€
HTluHiz(s,,>=/R hb(X)/ sinh(z/RIED , ())(X)|2dde

cosh (vrlel)
0 smh(z\f\f\) 9
<\hb\Loo/ /R Cosh WA (f))(X)\ dXdz
SMOMLZ'

For higher derivatives, the proof is the same after an application of the chain rule. The
same is true for T5.

O
The next result is on the Dirichlet-Neumann operator (Theorem 3.15 in [14]):

Proposition A.6. Let s > 0. Let ¢ € H*T3(RY) be such that (1.5) is satisfied, and take
¢ € HP3(RY). Then one has

1
16 laen < Ms + BV gesa. (A.5)

Lastly, we have the following estimates on the multipliers:

tanh (\/n|D|) 3 2
1= == 2 = (1 — Fl), F3 = sech( IU,‘DD, F4 = 7(1 — F3).
VD] #DP Vi #DP

Proposition A.7. Let s € R and take u € #(R?), then for i € {1,2,3,4} there holds
[(F; = Dulgs S plVxulgs.

Proof. The estimates are a direct consequence of Plancherel’s identity and the Taylor ex-
pansion formulas:

2 !
cosh(z) =1+ 3/ cosh(tz)(1 —t) dt
0

3 1
sinh(z) = 2 + %/ cosh(tz)(1 —t)? dt,
0

L 1-— x—z + — v /1 (sech(t ) — 20sech®(tz) + 24sech® (¢ )>(1 —t)3dt
cosh(z) 2 24 * > ¢ *
for0 <z <1.
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A 3. Classical estimates. In this section, we recall some classical estimates that will be
used throughout the paper. Finally, we end the section with the proof of Proposition 2.9.

Lemma A.8. Let 8 € [0,1], b € OP(RY), hy = 1 — b, Sy = (—hp,0) x RY, and assume
(1.13) holds true. Then for u € HY(Sy) satisfying u|.—o = 0, there holds

lullL2(s,) S 1V ullz2s,), (A.6)
and
uls=—n, |2 S V5 ullL2s,)- (A7)
Moreover, if we further suppose u € H**(Sy) then
k
‘/1+5b< dz’ < ME) (15 ullfos,) + D 102ulin-sos,) (A.8)
j=1

Proof. For the proof of (A.6) we use assumption u|,—o = 0 and the Fundamental Theorem
of Calculus combined with Cauchy-Schwarz inequality we get that

0 0 0
/ / |u(X, 2)|* dzdX = / / | / (0,u)(X,2") d2'|? dzd X
R J—14Bb(X) Rd J—148b(X) Jz
0
<l [ [ jeaex )P arax.
JRRd —148b(X)

For the proof of (A.7), we first use the assumption u|,—o = 0 with the Fundamental
Theorem of Calculus and Young’s inequality to get that

/Ru(X,—hb(X))QdX://OIJer(X 9. (u(X, 2)?) dzdX

/ / uw(X,2)? dzd X + / / u(X, z)? dzdX.
1+[3b(X 1+8b(X)
Then by (A.6) we conclude that

ul—ny |22 S 1V ull2s,)-

For the proof (A.8), we first consider the estimate with one derivative to fix the idea.
In particular, we perform a change of variable and then use the chain rule and Hélder’s
inequality to get

0 2
‘VX/ u(-, z) dz
—1+6b(-)

L2

= /]Rd |Vx /j u(X, 2hy(X))p(X) dz|” dX
< /R (/j)1 (Vxu) (X, 2y (X)) |hp(X) d2)? dX
0
s |Z|5|VXbl (0. (X, 2y (X)) Iy (X) d2)” dX
+ BIVxb| L~ /Rd (ll\u(x,zhb(){))\dzfdx.

Next, we can transform the integral back to its original domain using (1.13), and then apply
Cauchy-Schwarz and Holder’s inequality to obtain

0 2
95 [ |y 2, S MG Dl + 1000
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Repeating this process for any k € N, using the Leibniz rule, gives us

0 2 0
’/ u(hz)ds| = Y / \a}(/ (u(X, zhp(X)hp(X)) dz|” dX
) 0 ent <k /R -
k
< M(k)([ulFro(s,) + > 82ullFr-so0(s,))-
=0
To conclude our observation, we use the assumption u|,—o = 0 to apply the Poincaré
inequality (A.6) on the first terms. O

Before proving the main result, we need some classical estimates (see Proposition B.2
and Proposition B.4 in [14]).

Lemma A.9. Let tyg > %, s> —tg, , f € H™{osHRY), and take g € H*(RY) then

|fglas S 1S | pmaxteo.sy 9] as- (A.9)
Moreover, if there exist cog > 0 and 1+ g > co then
/
— <cC =) (1 s s. A.10
|55 S Cleo Lol )0+ 1711l (A.10)

Lastly, we will prove the main result of this section:

Proof of Proposition 2.9. We first establish the existence and uniqueness of variational so-
lutions to (2.12). Here the variational formulation associated with (2.12) is given by

P(S)Vh u-Vh pdzdX = / fodzdX + / 9 |s=—n, dX, (A.11)
Sp ’ ’ Sy R
for o € H'(Sy). Then using the coercivity estimate (2.5) and the Poincaré inequality (A.6)
to get that
cllellm < / P(Sy) V5 ¢ - Vi pdzdX.
Js,

While the right-hand side of (A.11) is continuous by Cauchy-Schwarz and the trace inequal-
ity (A.7). As a result, by Riesz representation Theorem, there exists a unique variational
solution u € HY(S}).

Next, we will prove that u € H*9(S,) by considering the problem on the fixed strip
S =R? x [~1,0], where we define

(X, z) = (X, hz +&().
Then we have that
(uoXyt) o B(X, 2) = u(X, zhy) == u(X, 2),

and through a change of variable, we obtain the equation

/P(z)vg(zﬂ.vg(Z@dde:/f@ddeJr/ g Plo=—1dX, (A.12)
S ’ ’ S R4

where f(X,z2) = f(X,zh(X)), 3(X,2) = @(X, zhy(X)), and P(X) is an elliptic matrix
given by
(1+0.01d  —/EVxf

1+ u|Vx6|
_ r 1+uVx0F©
VIVXO)T 55
a7

P(%) =



with 0(X,z) = (e — Bb)z + (. At this point, the problem is classical, and we refer to
Proposition 4.5 in [10] to deduce that V. 4 € H®0(S) for k € N and satisfying
IVl mros) < Mk +1)(lglae + 1Fllzrwo)
k
< MU+ Vgl + 3102l grmso)-

§=0
In the last inequality, we used the chain rule and the product estimate (A.9). Moreover, for
k> 1+tp we have @& € C?(S) and is a classical solution of

vl;(,zp(z)vl)t(,zﬂ = f

{vzo =0, Olil.—_1=g.

Then using the equation, we can control the partial derivatives in z by the derivatives in X

through

1+ |Vxe|2
h

2
and the regularity and positivity of %‘ Indeed, there holds,

(0:|Vx0*)

i =f—uVx - (hVxa) + pVx - (Vx00,a) + pd,(Vx0 - Vxit) — i

0%l L2esy < Mk + )(|iill grro(sy + 102 greogs) + 105 Fllzzs,))-
Having the desired regularity, we may relate these observations with the original problem
uw on Sp. In particular, by (1.13) we have that
Vi ulX,2) = Vi (a(X, 1)) € HH(S,),
; } b
using the chain rule, the regularity of hy, and a change of variable to get that

k
V5 cullkogs,) < Mk + DIV allgros) + Y 18] mro(s))
j=0

k
< M(k+1)(lglpe + 310 fllgri-sogs,))-
§=0
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JUSTIFICATION OF THE BENJAMIN-ONO EQUATION AS AN
INTERNAL WATER WAVES MODEL

MARTIN OEN PAULSEN

ABSTRACT. In this paper, we give the first rigorous justification of the Benjamin-Ono
equation:

A+ (1~ L /HID)AC + C%wwg =0, (BO)

as an internal water wave model on the physical time scale. To be precise, we first prove
the existence of a solution to the internal water wave equations for a two-layer fluid with
surface tension, where one layer is of shallow depth and the other is of infinite depth. The
existence time is of order O(1) for £ < /i and with a small amount of surface tension
bo™! = ey/p. Here, € and p denote the nonlinearity and shallowness parameters, and bo
is the Bond number. Then, we show that these solutions are close, on the same time scale,
to the solutions of the BO equation with a precision of order O(u).

The long-time well-posedness of the two-layer fluid problem was first studied by Lannes
[Arch. Ration. Mech. Anal., 208(2):481-567, 2013] in the case where both fluids have
finite depth. Here, we adapt this work to the case where one of the fluid domains is of
finite depth, and the other one is of infinite depth. The novelties of the proof are related
to the geometry of the problem, where the difference in domains alters the functional
setting for the Dirichlet-Neumann operators involved. In particular, we study the various
compositions of these operators that require a refined symbolic analysis of the Dirichlet-
Neumann operator on infinite depth and derive new pseudo-differential estimates that
might be of independent interest.

1. INTRODUCTION

1.1. The Benjamin-Ono equation. The Benjamin-Ono (BO) equation is a nonlocal as-
ymptotic model for the unidirectional propagation of weakly nonlinear, long internal waves
in a two-layer fluid. The equation is given by

O+ o1 L/RIDOC + e cuC =0, (L1)

where x € R, ¢t > 0 and ¢ = ((z,t) denotes the free surface, which is a real-valued function.
Here, ¢ is a small parameter measuring the weak nonlinearity of the waves, u is the shal-
lowness parameter, ¢ > 0 is the wave speed, and v € (0,1) is the ratio between the densities
of the two fluids. The operator |D| is a Fourier multiplier defined by

IDIf (@) = F (1€l F () ().
The BO equation was introduced formally by Benjamin [12] in 1967 and at the same time
independently by Davis and Acrivos [22]. We also refer the reader to the book by Klein
and Saut [45], Chapter 3, for a detailed state-of-the-art. The studies in [12, 22] showed
that the BO equation admits solitary waves with mere algebraic decay, as opposed to the
exponential decay exhibited for the solitary waves of the KdV equation. Davis and Acrivos
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also gave experimental results. The experiments were carried out in a wave tank with a
stratified solution of salt and water, where almost any disturbance to the surface would,
after a short time, produce a wave with a fixed shape that propagates stably. It was later
noted by Ono [63] that the ease with which they could generate solitary waves indicates
that they are solitons.

The paper by Ono sparked much interest in studying the dynamics of the BO equation.
It was proved that the solitary waves are unique (up to translation) [11], and the stability of
these objects is studied in [13, 72, 43] (see the references for a precise definition). Moreover,
the stability of these waves is strong enough to preserve its own identity upon nonlinear
interactions. The strong interaction between several solitary waves is studied in [54, 61]
and relies on explicit formulas (see also [43] for the asymptotic stability of one soliton and
N —solitons).

The fact that explicit solutions like the soliton (or multi-solitons) exist is a consequence
of the complete integrability of the BO equation. Nakamura [60] proved the existence of
an infinite number of conserved quantities and discovered a Lax pair structure (see also
[14, 25, 31]). This insight is proven to be crucial for the study of the dynamics of the
BO equation and was further developed by Gérard and Kapeller [31]. They constructed a
nonlinear Fourier transform for the BO equation on the torus, which has several applications
to low regularity well-posedness of the initial value problem, the long-time behavior of
solutions, and stability of traveling waves (see [28] for a survey on this topic). More recently,
Gérard [29] derived an explicit formula for the BO equation based on the Lax pair structure
with remarkable consequences, for instance, the zero-dispersion limit problem [30] (see also
[27, 26]).

The Cauchy problem for BO has been extensively studied in the last 40 years. It was first
proved to be globally well-posed in H*(R) for s > % using an energy method, see [1, 38]. We
also refer to the results [65, 46, 42] for an improvement by including the dispersive smoothing
effects in the energy estimates. One of the main difficulties in improving the result further
is that the flow map fails to be C? in any Sobolev space H*(R) [59] (see also [47]). A
breakthrough was achieved by Tao [70], where he introduced a clever change of variables
(the gauge transform) to improve the structure of the nonlinearity. As a consequence, he
obtained a global well-posedness result for data in H'(R). Several papers expanded on
these ideas. We refer the interested reader to [17, 37, 58, 34] for results on the line and
[56, 57, 58] in the periodic case culminating in the global well-posedness in L2. So far,
the theory is based on PDE methods. However, by actively using the integrable structure,
Gérard, Kappeler, and Topalov [32] proved the sharp global well-posedness result in H*(T)
for s > f% on the torus. Also, still relying on the integrability, Killip, Laurens, and Visan
[44] recently proved the global well-posedness in H*(R) for s > —% on the line.

1.1.1. Full justification. Despite the rich well-posedness theory for the BO equation, it is
still an open question whether its solutions are close to the ones of the original physical
system. In the rigorous derivation of any asymptotic model, it is fundamental to know
whether its solutions converge to the solutions of the reference model from which it is
derived. The BO equation’s reference model is a coupled system of Euler equations for two
fluids that are joined with an interface, as in Figure 1.1. Under the irrotationality condition,
we will call the reference model the “internal water waves system”. To prove that BO is a
valid approximation, we shall compare their solutions to the physical parameters:
2 + .12
-2 u:% and bo=%7
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FIGURE 1. The blue line denotes the surface elevation z = £¢ and separates two
fluids with density 0 < p~ < pT.

where a is the typical amplitude of the waves, H is the still water depth in the lower fluid, A
is the typical wavelength, p* is the density of the lower fluid, g is the acceleration of gravity,
o is the surface tension parameter. Since surface tension is only relevant for short waves,
we will suppose that bo™! is small. To be precise, we will let & < Vit and bo™! = e\/1hs
where we answer the following three questions:

1. The solutions of the internal water wave equations exist on the relevant time scale
O(3).

2. The solutions of the BO equation exist (at least) on the time scale O(2).

3. Lastly, we must establish the consistency between the BO equation and the internal
water wave equations and then show that the error is of order O(ut) when comparing

the two solutions.

The first point is the most challenging step of this paper, where we need to prove that the
internal water waves equations are long-time well-posed for regular initial data. Moreover,
we are confined to the specific geometry where one fluid layer is of shallow depth and the
other of infinite depth. The main obstacle to constructing such solutions is the tendency of
internal waves to break down due to Kelvin-Helmholtz instabilities. This issue was resolved
in the case of a single fluid (i.e., p~ = 0), where stable solutions are deduced by imposing
the Rayleigh-Taylor criterion:

—0.PT|,—cc > 0, (1.2)

where z is the vertical coordinate, and P*|,—.¢ is the pressure at the surface. The physical
relevance of this criterion can be seen by considering the Euler equations for a trivial
flow —9.P*|,—.c = ptg, where gravity g > 0 is the restoring force. In this sense, the
criterion is a natural condition to ensure that the pressure force is restoring and does
not amplify the waves [71]. From a mathematical perspective, the criterion ensures the
hyperbolicity of the water waves equation. Moreover, it is proved that under this condition,
the water waves system in finite depth is locally well-posed by Lannes [48] and then long-
time well-posed by Alvarez-Samaniego and Lannes [8]. We also refer the reader to the
pioneering work of Wu [73, 74] in the case of infinite depth where one of the key observations
was the use of the Rayleigh-Taylor criterion (1.2) to remove a smallness condition on the
data (see also the more recent work on extended life span and improved regularity results
(75, 76, 77, 7, 5, 6, 3, 2]).
3



In the case of two fluid systems, the internal water waves system produces Kelvin-
Helmholtz instabilities and becomes ill-posed unless there is surface tension o > 0 [23,
36, 39]. There are several results on the well-posedness of the internal water wave systems
in different configurations of the fluid domain where the time of existence depends on o
[9, 10, 18, 68, 69]. On the other hand, the strength of surface tension is only relevant for
very small values in water waves theory. Therefore, we must add surface tension to ex-
ploit its regularizing effect, but obtain a uniform local well-posedness result with respect to
o > 0, allowing it to be taken small. Lannes solved this problem in [50] for two fluid layers
of finite depth, where he derived a new stability criterion depending on o. A crucial point
is that surface tension could be taken small enough in the criterion such that it does not
affect the main dynamics of the equation. It is also noted in the paper that the criterion
depends strongly on the geometry of the problem. Many of the technical difficulties in this
paper are related to this observation. In this work, we consider one of the layers to be of
infinite depth. This is the key point of the paper, which will require a symbolic analysis of
the Dirichlet-Neumann operator in a new functional setting. To achieve this goal, we derive
several pseudo-differential estimates for symbols with limited smoothness.

The second point is well-known since the BO equation is globally well-posed for regular
data (see the discussion above). However, we will consider two intermediate models to
derive the BO equation. We will first derive a weakly dispersive BO-type system from the
internal water waves system that is consistent with a precision of order O(u). Then, we
will consider unidirectional solutions of this system, with the same precision, to deduce a
weakly dispersive BO equation, which is also consistent with the BO equation. To derive
these models, we closely follow the work of Bona, Lannes, and Saut in [15]. In this paper,
they derive several shallow water models for internal fluids and comment on the formal
derivation of the BO equation.

Finally, we comment on several works that are closely related to the derivation of the BO
equation. In [19], Craig, Guyenne, and Kalisch used a Hamiltonian perturbation approach
to formally derive asymptotic models from the two-layer system. Among the models is the
BO equation. The benefit of this approach is that the systems inherit the Hamiltonian
structure, but as noted in [45], the process could lead to ill-posed systems. In particular,
the BO system they derive, which links the BO equation, is linearly ill-posed. In [33],
Ifrim, Rowan, Tataru, and Wan show that the BO equation can also be viewed as an
asymptotic model from the water waves equations in infinite depth in the case of constant
vorticity. The approximation they obtain is rigorously justified but, of course, not related
to the asymptotic description of internal waves. Lastly, in [62], Ohi and Iguchi proved the
well-posedness of the internal water waves for one fluid of infinite depth to derive the BO
equation. However, in their paper, the existence time is of order (Q(b(f%)7 which is too
short to justify the BO equation on the physical time scale. The technique is based on the
one of Wu [73], where the reference model is given in holomorphic coordinates. We will
instead use a version of the Zakharov-Craig-Sulem formulation and closely follow the work
of Lannes [50]. In particular, the goal of this paper is to prove the long-time existence of the
internal water waves equations with one fluid of infinite depth and positive surface tension.
Then we show that the difference between two regular solutions of the internal water waves
equations and the BO equation, which evolves from the same initial datum, is bounded by
O(p) for all 0 <t < et for any e, € (0,1) such that ¢ < p and bo™! = e,/

1.2. The governing equations. The basis of this study is the Euler equations for an
irrotational two-layer fluid written in the Zakharov-Craig-Sulem formulation [79, 20, 21].
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For the upper layer, we consider the following set of equations

{@c -Gy~ =0

o (O + g¢ + §(007)? - SOt Ry _po

(1.3)

Here, the free surface elevation is the graph of ((t,z) € R, the function P~|,— is the
pressure force at the free surface. The function ¥~ (¢,z) € R is the trace at the surface of
the velocity potential solving the elliptic problem
(0240~ =0 for Q ={(z,2) : 2>}
(I)_ ‘Z:C = 1/)_7
and G~ is the negative Dirichlet-Neumann operator defined by
97[41117 = (8z¢7 - az<8x¢7)|zzc

For the fluid in the lower layer, the governing equations are given in terms of ({,%") and
read

(1.4)

¢ —GF[Clut =0 (15)
+ 48,00 T)2 .
ot <8t¢+ +gC+ L(Onph)? — %%) = —PH|._,
where the elliptic problem in the lower fluid is given by
(P2 4+ 0@t =0 for QF ={(x,2) : ~H<z<(} (1.6)
q)+‘z:C = 1/1+ 8zq)-*—‘zsz = 07 '

and the positive Dirichlet-Neumann operator is defined by

g+[€]¢+ = (82¢+ - aLcalﬁf’Jr)'Z:(

To ease the notation, we make the following simplifications

p _
V= <pt=1, g=1

Moreover, we recall that the difference in pressure at the interface is proportional to the
mean curvature of the interface:
P+|Z:C - P_lz:(: = U"”»(CL
where o € (0,1) is the surface tension parameter and x(() is defined by
0
K(C) = —c%(ixc 2). (1.7)
V1+(0:0)
We will now collect all these equations into one system, where we reduce the number of
unknowns by using the first equation in (1.5) and (1.3) to see that
Gl =g v (1.8)
In particular, we will prove later that we can write 1)~ as a function of 1" through the
inverse relation

U= (GG It
Then, we can define the new variable ¥ by the formula
A
= (1=2(G7ID I v
= Iy



The unknowns ¢ and 1) are the primary variables. We follow the work of Lannes [50] to
show that we can use them to recover the velocity potentials ®* through the transmission
problem:
A, dF =0 in OF
OF|eg =P =g = (1.9)
6n¢’_|z:g“ = 8nq)+‘z:(7 azq)j‘—|z:7H =0,
with ¢/ = ®*|,_; and the normal condition on z = ¢ is the same as (1.8) where J, stands
for the upwards normal derivative. From these relations, it will be possible to reduce the

two-fluid equations into a set of equations defined by ¢ and v where we formally define a
new Dirichlet-Neumann operator that links the two fluids through the relation,

glcl = GH T (1.10)

From the above expressions, we have the main governing equations (in dimensional form)
that we will study throughout this paper:

8¢ — Gy =0 (111)
A + (1 —7)C + 2 ((0:9)% = 4(097)?) + N[¢vF] = —ak(Q),

where

7(g7[C]¢7 + 8148Lw7)2 - (g+ [C]dﬁ + 8£<8L¢+)2
2(1 + (926)?) '

1.2.1. Nondimensionalization of the equations. To derive an asymptotic model from (1.11),
we will compare every variable and function with physical characteristic parameters of the
same dimension H,a, or A. Since the BO equation describes long waves, it is natural to
consider the scaling:

NG y*] =

x=M', (=al,
where the prime notation denotes a nondimensional quantity. To identify the remaining
variables ¢’ and t = C—Aft’ one needs information on the reference velocity cyof. To do so, we
look at the linearized equations (with o = 0):

a¢ — GOl =0 L12)
O+ (1=7)¢=0,
where G[0] is a Fourier multiplier given by!
1 tanh(H|¢[) -
Glojw(a) = 7 (Il arm e ©©) @)
For a wave with typical wavelength ), the frequencies are concentrated around [¢] = 27”

Therefore, if we suppose that the depth of lower fluid is small compared to the wavelength,
then we have by a Taylor expansion that

Gl0j = —HO,

up to higher order terms in p. From this simplification we can reduce (1.12) to a wave
equation where we make the identification cfef = H(1 — ), and from the second equation
we find the dimensions of ):
aX
b=y
vH

1See Remark 2.3



Lastly, we also choose to scale the transverse variable with H (i.e., 2 = H2') to have
a reference domain in the lower fluid of unitary depth. Then applying these changes of
variables and dropping the prime notation, we find that the nondimensional internal water
waves system (1.11) is given by:

0¢ = 5 Gulecl =0

O+ (L —7)C + 2 (0™ — ve(0uh 7)) + eNTeC, ¢¥] = —bioﬁn(s\/ﬁg),

where

(1.13)

1 (G [eCh + epdCut)? — (GE QU + epdaCuts™)’
2p (14 20(0:€)%) '
The operators g:f [eC] are defined by
Gyt = V14 22(0:0)20n 0 |o—cc,
through the solutions of the scaled Laplace equations:
(o2 +0%) 0+t =0 for QF ={(x,2) : ~1<2<e}
(I)+‘Z:64 = 7/1+ 8zq)+‘z:—1 = 0,

Ne¢, v*] =

and

q)i‘z:E( = 1/17-

1.3. Main results. In this paper we will first prove the well-posedness of (1.13) on a time
scale O(é) for e < /i and bo ! = ey/i. To state this result, there are two fundamental
assumptions that we need to make.

{(,LLE)% +0)®~ =0 for Q ={(z,2) : z2>¢el}

Definition 1.1 (Non-cavitation condition). Let ¢ € (0,1), s > & and take (o € H*(R). We
say (o satisfies the “non-cavitation condition” if there exist hyin € (0,1) such that

h=14¢eC(x) > hmin, forall z €R. (1.14)

The second condition is to ensure the solutions do not break down due to Kelvin-
Helmholtz instabilities and is key to showing the long-time existence for solutions of (1.13).
The criterion is enforced for data in the energy space, which we will now define.

Definition 1.2 (Energy space). Let €,p1,7,bo ! € (0,1) and N € N. Then we define the
function space H,]Y\ﬁj: (R) by

H)(R) = HY(R),
with norm

0l s = (1= )l + b~ Dsu

exd
We define Hp+2 (R) as a Beppo-Levi space

. 1
s+3

H2(R) = AP 3(R) = {u € L2,(R) : dyu € H2(R)},

endowed with
D]

—_—U .
(1+ yaDpz l#

Moreover, let « € N? and define the “good unknowns” by
Cla) = 024C, Yoy = 0749 — ewdy (.
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Then the natural energy space éab]Y)’T associated to (1.13) is defined for functions U =
(Ca)s Yia)) in

Smr ={UeC(0,T); HN(R) x H*"(R),  sup Sﬁ’if(U(t)) < o0}, (1.15)
tefo,7]

whose norm is the square root of
Nt 2 2 2
Eno(0) = 0ctgra 3 Kb, + 1wl - (1.16)
aeN? |a|[<N w

Remark 1.3. Here, the energy depends on both time derivatives and spatial derivatives.
This is the method put forward by [66, 67, 55] to control the surface tension term for the
water wave equations (see Remark 5.1 for the specifics on this point). This method was later
used for the internal water waves equations with surface tension in the case of two fluids of
finite depth [50], which is one of the primary references of this paper.

L1
Definition 1.4 (Stability criterion). Let Ug = ({o,%0) € L2(R) x HZ (R) and Eé\(])’_i;’ (Up) <
oco. Then we define the “stability criterion” by '
0<d(U):=infa— Te(O)|[VE] S0, at =0, (1.17)
where
_bo

=3

(1=,
and
a= ((1 -+ 5((@ + eV )w™ — (0 + 627035)@7))
NG [eC) "  Ou O
(0= sup (TEDTGECD) . £,0:1) 12
Fer} ®), 10 |1+ /uD|zfl7,
3
¢(¢) = e(O)*(1 + &%l Ol [
The quantities V=, w describe the horizontal and vertical velocity field in the fluids and

are given in Definition 4.1. See also Corollary A.18 in the Appendiz, where they are given
in terms of ¢ and .

Remark 1.5. The stability criterion (1.17) can be seen as a two-layer generalization of the
Rayleigh-Taylor criterion where

a= *(8zp+ - 'YGZP_)|2:€C > TC(OH[Zi]”A}qtoH'

We will let bo™! to be of order O(ey/1t). In this case, the size of the quantity Y is of order
O(ey/p) and is neglected in the BO regime.

Remark 1.6. One key difference with the work of Lannes [50] for the internal water waves
on finite depth is in the symbolic analysis of G, [eC]. The operator depends on the solution
of an elliptic problem on a domain with infinite depth. This alters the functional setting,
where we also need precise estimates depending on the parameters e,y € (0,1).

Theorem 1.7. Let tg = 1, N > 5, ,u,7 € (0,1) such that ¢ < /u and bo~! = e/l

1
Assume that Ug = (Co,%0)T € L}(R) x Hj (R) such that Eé\g’i‘z(Uo) < co. Suppose further

that Uy satisfies the non-cavitation condition (1.14) and the stability criterion (1.17). Then
there exists a constant C = C(h_;.,"7, 0(1570)) >0 and a time

mi

T = T(CEN™(Uy)) > 0,
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which is a nonincreasing function of its argument, and a unique solution U = (¢,¢)T €

éﬂbjx,sflT of (1.13). Moreover, the solution satisfies
N, Nt
sup £ (U) < 5570 (Uy). (1.18)
te[0,e~1T] '

Remark 1.8. For notational convenience we shall write EN(U) instead of Eé\g”;? (U). We
also consider the case of one horizontal dimension since our primary goal is to justify the
BO equation, which is a model that does not include transverse effects. We will deal with

the higher dimensional case in a forthcoming paper.

Remark 1.9. The local well-posedness of (1.13) was first proved by Ohi and Iguchi [62].
However, in their paper, the existence time is of order O(bofé), which is far too short to
justify the BO equation on the physical time scale. In fact, Theorem 1.7 is the first proof of
the long-time well-posedness of the internal water waves in the case where one layer is of
infinite depth.

Remark 1.10. The surface tension term is reqularizing and plays a fundamental role in the
well-posedness of (1.13). However, as noted in Remark 1.5, it does not affect the dynamics
of the BO equation.

Having defined a solution of the reference model (1.13) on a long time scale, the next
step is to derive the asymptotic models. Here we follow the road map in [15], where they
derived several internal water wave models in finite depth and gave comments on the formal
derivation of the BO equation. In particular, it is convenient to write (1.13) in terms of

.3
¢+ € H?(R) through the interface operator:
H,[e(l¢t = 0,9~ € H2(R), (1.19)

where ¢~ = &7 |,—¢ € H%(R) and ®~ € H?(Q7) is the unique solution® (up to a constant)
of

(ud2 +62)0~ =0 in Q°
{ani) =(1+ 62(8,5()2)*%9:[ [eCly™ on z=¢e(. (1.20)
Then we may define the the velocity variable
v = Byt (1.21)

= 9," — yH,[e(JyT,
and apply a derivative to the second equation of (1.13) to find that

3¢ — Gl ¢t =0
v + (1= 7)0:C + 50, ((0,07)2 — v(H, [e¢]Y)?) + €0, N[, vF] = —&ﬁaxn(g\/ﬁg).
(1.22)
As noted in the introduction, we will first derive a system from (1.22), where we will
show that a solution of the internal water waves equations, with regular data ({o, vo), solves
a weakly dispersive BO system:

0iC + (1 — ytanh(y/u|D[))0xv + €0, (Cv) = 0
v + 20,C + evdpv = 0,

2See Proposition 2.4.



up to an error of order O(p +&,/p). Then under an additional assumption on the data (for
right-moving waves), we will show that we can approximate this system with the solutions
of

8¢+ e(1 — T tanh(y/AIDD)2uC + €2 (kG = 0.

Remark 1.11. An alternative approach would be to rigorously derive the regqularized BO
system given by:

(14 aymy|D[)8¢ + (1 + (@ = 1)7y/ED|)duv + 8, (¢v) = 0 (1.23)
v + 20, + evdpv =0, '

for a > 0. This is the model that was formally derived in [15], and moreover we can use it
to derive the “regularized Benjamin-Ono equation” [21]:

(14 ay/myD[) 8¢ + c0:¢ + (20 — 1)%\/;7\D|81( + c%(@z( =0.

The rigorous derivation of these models is straightforward when having Theorem 1.7 at
hand. However, the result would depend on « since the long-time well-posedness of (1.23)
requires o > 1 [78].

Before we proceed, we establish the long-time well-posedness of the weakly dispersive

models introduced above. To do so, we will have to sharpen the non-cavitation condition
(1.14) to define an energy associated with (1.17).

Definition 1.12 (y—dependent surface condition). Let e,y € (0,1) and s > % We say the
initial surface elevation (o € H*(R?) satisfy the “y—dependent surface condition” if there
exist hminy € (0,1) such that

1+eCo(z) =7 > hmingy, forall xeR. (1.24)

Remark 1.13. The main difference with (1.23) is that we can impose a physical constraint
on the data instead of a constraint on the parameter in the equation.

Theorem 1.14. Let ¢,p1,7,c € (0,1) and s > 3. Assume that ((o,vo) € H*(R) x H*(R).

Then there exists a constant C = C’(h;lillw,'y) and a time

T =T(C|(Co,vo0) | =x =) > 0,
which is a monincreasing function of its argument such that:
1. There exists a unique solution (2 € C([0,e7'T] : H*(R)) to equation

3
athBO + C(l _ %tanh(ﬁ'DD)aﬂCwEO + C;CWBOC?ICWBO =0, (125)
that satisfies
sup |C7“BO|H5 S C‘CO‘HS (126)
te(0,e—17]

2. Suppose further that (o satisfies the y—dependent surface condition (1.24). Then
there exist a unique solution ((F%,v8%%) € C([0,e71T] : H*(R) x H*(R)) to system

0B + (1 — v tanh(\/zz|D])) 0,02 + £0,(¢F%0P9%) = 0 (1.27)
8”]303 + cQacho.s + 8UBOsaz,UBOs =0, .
that satisfies
sup  [(¢P, 0P ) [mowms < C|(Cosvo)| s xms- (1.28)

te[0,e~17)
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Remark 1.15. System (1.27) and (1.25) are new and are chosen such that it is easy to
deduce the long-time existence. The choice was based on the observations made in [64],
where weakly dispersive shallow water models are considered and can, in some cases, give
rise to well-posed systems while their strongly dispersive versions are not.

Remark 1.16. For the data (o € H*(R) with s > % the long-time (global) well-posedness
of BO is classical. The result can easily be extended for (1.25) with € € (0,1). See, for
instance, [53] in the case of the BO equation on a fized time with e = 1.

With this result in hand, we can use it as a link to prove the consistency between the
BO equation and the internal water waves equations.

Theorem 1.17. Let e,u,v € (0,1), ¢* = (1 — ) such that € < /i and bo™! = e/l
Assume that Uy = (Co,10)T satisfies the assumptions of Theorem 1.7 and define vg = 9yq.
Suppose also that (o satisfies the y—dependent surface condition (1.24). Then there exists
a time T > 0 such that for some generic function R satisfying

|Rlpn-s < C(EN(Uo)),
for all t € [0,67'T] we have the following results:

1. There exists a unique solution (¢,v)T € C([0,e71T] : HN_%(R) X HN_%(R)) to
(1.22), where v = 0y1p. Moreover, on the same time interval, the same solution also
satisfies

9C + (1 — 7y tanh(/E|DI))dzv + €8:(Cv) = (n+ey/m)R
v + 20,¢ + evdpv = (1 + e/ R.

2. There exist a unique solution (“2° € C([0,e71T] : HN*%(]R)) that solves
PO+ (1 - %tanh(\/ﬁ\DD)@zCWBO + c%cwwazgw” =0.
Suppose further that the data vy is given by
v = (1+ 3 tanh(V7ID)o — 363 (1.29)
and define v*5° € C([0,e7'T] : HN*%(R)) by
0”0 = (14 2 tanh(y/AD]))C"P — Z(¢"70)%
Then the solution ((*B° v¥BO) also satisfies

0r¢¥BO + (1 — v tanh(,/i|D])) 0v"BC 4 €8, (¢*Bv*B°) = uR
atvaO + 62814“11/30 + ngBoawiBO — MR

3. There exist a unique solution (59 € C([0,e71T] : HN_%(R)) that solves
0GP + (1~ JYHID) 9P + ¢ 09,70 =,
and on the same time interval it satisfies
2¢O+ (1 - %tanh(\/mDD)Bz(BO + C%gBOangO = uR.

A consequence of the above results is the full justification of the BO equation.
11



Theorem 1.18. Let e, u,v € (0,1), ¢ = (1 —~) such that ¢ < /i and bo™! = e\/p.
Assume that Uy = (Co,wg)T satisfies the assumptions of Theorem 1.7 with N > 7 and
define vog = Oztbg. Suppose further that (y satisfies the y—dependent surface condition
(1.24) and that vy satisfies (1.29). Then there exists T > 0 such that:

1. There exist a unique solution (¢,v) € C([0,e71T] : HN*%(]R) X HN*%(R)) to (1.22)
where v = 0.

2. From the same initial data:
2.1. There exists a unique solution ({9, v?9%) € C([0,e7'T] : H*(R) x H*(R)) to
the weakly dispersive BO system

{athOS + (1 —  tanh(/E|D)) 8,070 + 8, (¢PO0%%) = 0

a{/,UBOs + CanCBOs + €,UBOsa$,UBOs — 07
and for any t € [0,e 71T there holds,
(¢ = P90 = 0% 1o xr) < (1 + ey/EC(EN (Vo)) (1.30)

2.2. There exists a unique solution (“B° € C([0,e71T] : HN_%(R)) to the weakly
dispersive BO equation

8C"P0 + c(1 — 2 tanh(y/2[D|))9.¢ O + c%ngOaxngO -0,

2
and for any t € (0,617 there holds,
¢ = C"P9 e (o, xm) < 1tC(EN (Up)). (1.31)
2.3. There exists a unique solution (%° € C([0,e7'T] : HN*%(R)) to the BO
equation

3
DGO + (1 = T AIDOC + ¢ P00,¢ "0 =,
and for any t € (0,617 there holds,

1€ = ¢P o (0.xr) < 1tC(EN (Up)). (1.32)

Remark 1.19. Estimates (1.30) and (1.31) together with the well-posedness theory imply
the full justification of their respective systems as internal water waves equations. These are
new results, but their primary purpose is to serve as an intermediate step for the derivation
of the BO equation and are added here for the sake of completeness.

1.3.1. Strategy and outline of the proofs. The main body of the paper is devoted to the proof
of Theorem 1.7, which relies on energy estimates similar to the ones provided by Lannes
[50]. To do so, we first need to prove that the operators involved in the main system (1.13)
are well-defined and can be formulated solely in terms of ¢ and 1. We start by studying
the operator G, in Section 2, which will be given by the expression:

-1

Gulelw = G ) (1= 1(G, ) G =) (1.33)

The main difference with the work of Lannes is that we have the composition of two oper-

ators Q: and G, that act on different space. This is a consequence of having one fluid of

finite depth and the other of infinite depth. In particular, to define the composition (g;)*l
with g; we need to work on a homogeneous® target space.

3The function space with norm \f\H5+% = \D%ﬂHa.
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The next step is to give a symbolic description of the operators involved in the expression
of G,,. This involves some of the key estimates that will be used to close the energy estimates.
To do so, we need a symbolic description of each of the operators involved in (1.33). The
key estimate, which is proved in Section 3 reads,

G TeClo™ — (= VAW ovy < enC(KClimoss) 0] ey.

The symbolic approximation of G, is well-known; see the collection of work by Lannes,
Alazard, Metivier, Burq, and Zuily [48, 7, 5, 6] for similar estimates. Their results are
sharper in the sense that they require less regularity on . However, the symbolic description
they provide is without the parameters ¢, u, and more importantly, is given on the space
Y- e H s+3 (R). More precisely, the main difference is that we need to account for the small

parameters and arrive at the homogeneous space He+3 (R) to close the estimates later. This
result seems new and could be of independent interest. We refer the reader to Remark 3.3
for the novelties of the proof and possible extensions.

The last step before providing the a priori estimates is the quasilinearization of the
internal water wave system. This is done in Section 4, where we only give detailed proofs
of the steps unique to the current setting. In fact, we can reduce some of the proofs to
the estimates performed in [50]. We also provide details on the derivation of the stability
criterion in Proposition 4.6, where we obtain coercivity type estimates. From these results,
we establish a priori bounds on the solution in Section 5. Then we use them to prove
Theorem 1.7 in Section 6.

For the remainder of the paper, we give the details on the derivation of the BO equation.
We also provide a complete justification of the models that link the BO equation with the
internal water waves equations. In Section 8, we follow the work of Bona, Lannes, and Saut
[15] to derive the intermediate systems provided in Theorem 1.17 and the BO equation.
Then, in Section 7, we provide a short proof of Theorem 1.14, which gives the long-time
well-posedness of a weakly-dispersive BO system. Lastly, in Section 9, we conclude the
paper by proving Theorem 1.18, i.e., the full justification of each of the systems derived in
Theorem 1.17.

1.4. Definition and notations.

e We define the gradient by
vﬁ,z = (\//jaz’OZ)T
and we introduce the scaled Laplace operator
Al = Vh, - VE = 4 0.

e We let ¢ denote a positive constant independent of p,e, and bo that may change
from line to line. Also, as a shorthand, we use the notation a < b to mean a < c¢b.
e Let L?(R) be the usual space of square integrable functions with norm |f|;: =

/e |f(@)]? dz. Also, for any f, g € L?(R) we denote the scalar product by (f. g)L‘l =

Jp f(@)g(2) da.

e Let f: R — R be a tempered distribution, let f or Ff be its Fourier transform.
Let F': R — R be a smooth function. Then the Fourier multiplier associated with
F(§) is denoted F and defined by the formula:

F(ED)f()(&) = FOF(§)-

13



For any s € R we call the multiplier |6\*\f(§) = |€]°f(€) the Riesz potential of order
—s.
For any s € R we call the multiplier A® = (1 +D?)z = (D)® the Bessel potential of
order —s.
The Sobolev space H*(R) is equivalent to the weighted L?—space with |f|gs =
A%l o
For any s > 0 we will denote H*"2(R) the homogeneous Sobolev space with
\f|ﬁs+% = |D%f|Hs. One should note that [D| = Hd,, where Hf(£) = —isgn(¢) f(€)
is the Hilbert transform. )
For any s > 0 we will denote H*t!(R) the Beppo-Levi space with |f|gc =
|A®Op f|L2.
st .

For any s > 0 we will denote HZ+2(R) = H5+%(R) with [f] . 1 = [Bf|r2 and

",
where B is a Fourier multiplier defined in frequency by: !

\ S 2
F(B)E) = T f(§)-
PO et

We say f is a Schwartz function . (R), if f € C*°(R) and satisfies for all j, k € N,

sup |27 9% f| < oo.
xT

Let a < b be real numbers and consider the domain S = (a,b) x R. Then the space
H?*(S) is endowed with the seminorm

b
11y = [ 192

If A and B are two operators, then we denote the commutator between them to be
[A, B] = AB — BA.
Let to > 4, s > 0, and hmin € (0,1). Then for C(-) being a positive non-decreasing
function of its argument, we define the constants

1

M =C( I¢1Erto+2),

hmin7
and
M(s) = C(M, [¢|as)-

1.4.1. Diffeomorphisms. In many instances it is convenient to “straighten” the fluid do-
main. In particular, instead of working on the fluid domain Qti we introduce the two strips:

St ={(z,2) €R*>: ~1<2<0} and S ={(z,2) €R®:0< 2}

The mapping between ST and Qti will be given by the trivial diffeomorphisms defined

Definition 1.20. Let ty > % and ¢ € HY*2(R) such that the non-cavitation assumptions
(1.14) is satisfied. For the lower domain, we have that:

1. We define the time-dependent diffeomorphism mapping the lower domain ST onto

the water domain QF through

ot st — of
T (w,2) = (z,2(1 &) +e0).
14



2. The Jacobi matriz Js+ is given by

1 0
e = (5(1 +2)0:¢ (1+ EC)) '

and is bounded on ST. Moreover the determinant is given by 1 +<( and is bounded
below due to the non-cavitation condition (1.14).

3. The matriz associated with the change of variable for the Laplace problem is given
by
(U+e0)  —eyilz+ 1)
P(Zt) = 2 219 |2 s
(=7) (s\/ﬁ(z +1)0,¢ e I0CE

and is uniformly coercive. In fact, one can verify that it satisfies for all § € R*!
and any (X,z) € 8T that

1
9.0 > 2 ()| e < M. )
P(E9)0-02 770P and [|P*(9)]|e < M (1.34)

Similarly, for the upper domain, we have that:

1. We define the time-dependent diffeomorphism mapping the upper-half plane S~ onto
the water domain ) through the transformation

o {8 — Q
(x,2) = (2,2+&Q).

2. The Jacobi matriz Js— is given by

1 0
Je- = (561(: 1) ’

and is bounded on S~. Moreover, the determinant is given by 1.
3. The matriz associated with the change of variable for the Laplace problem is given

by

PET) = (afag 1+5[ )

and is uniformly coercive. In fact, one can verify that it satisfies for all € R? and
any (z,z) € 8~ that

P(37)060> - 1M|9|2 and |P7(Z7)|re < M. (1.35)

2. PROPERTIES OF G,

In this section, we aim to give a rigorous meaning to the operator G, introduced formally
in equation (1.10) and study its properties. The main results in this section will now be
stated.
Proposition 2.1. Let to > 1, s € [0, + 1], and ¢ € HWF2(R) be such that (1.14) is
satisfied. Then the mapping
- s+1 _1
H, *(R) — H° 2(R)

-1

¥ = G (1= 79 ) G 1)) o,

is well-defined and satisfies the following properties:
15
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1. For any 0 < s <tyo+ 1 ,there holds,

Gl oy < M%M%ﬁ, (2.2)
and
(GuleCll ooy < 12 M1y (2:3)
2. For any 0 < s <tg+ % there holds,
Gul=CTb, .y < M o, 24)
and
1GuleQU ey < HEMIO] Ly (2.5)
3. The operator is uniformly coercive on on ¢ € Hé (R),
6y < M LGl o (26)
4. The bilinear form is symmetric on HE (R) x HE (R),
(GuleCl.v) 2 = (¥, GuleCl¥) - (27)
5. For all s € [0,tg+ 1] and f,g € HZ+%(R) there holds,
|(A°Gulec]f, M%) o] < “M‘f‘ﬁf%'g‘ﬁj*%' (2.8)

Remark 2.2. Here we take to > 1 since we will apply the result at high regularity. If one
would take ty > 3 then we would need s € [max{0,1 — to},to + 3] to enforce Remark A.9,
which specifies the needed regularity to define G .

Remark 2.3. For the undisturbed case, we can use formulas (A.3) and (A.19) to find that

B tanh(,/u|DJ)
Gul0] = VD /RD])

We will follow the same strategy as in [50], where we study the operators involved in the
expression for G, and prove that we can define them by ¢ through the transition problem
(1.9). We study each part individually in separate subsections. The main difference from
the previous work is that we have to carefully track the dependence on the parameters for
the current regime. Moreover, the functional setting of the upper fluid is fundamentally
different from the one in the lower fluid domain.

(2.9)

2.1. Properties of (g;)*lg;. For the description of the operator (g;)*lg; we will follow
the proof of Proposition 1 in [50]. The main difference is that we have an interaction of two
operators that act on different scales, and this is seen in the estimates given below:
Proposition 2.4. Let to > 1, s € [0,tg + 1] and ¢ € H"F2(R) be such that (1.14) is
satisfied. Then the mapping

g s+§ rs+ i
Glecl ) LGt lec) - 4 He F(R) = H*T2(R) 2.10
(Gulecl) 6l {w (G, 101G et .
is well-defined and satisfies
(G e G I ey < My, 211)
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and
102 (G, [C) TG E €l ™) s < M8 | (2.12)
Remark 2.5. If we change the role of £ the result is not true. Indeed, consider the case
eC =0, then we have by direct computations that
(G 10)7'G,; [0] = (tanh(y/u|D|) ™,
and we obtain the estimate
1
1N =16 01— o

which is incompatible with having ¢~ € I—f[s"'%(R).

Before we turn to the proof, we need a Lemma that will be used to justify some of the
computations that will be made.

Lemma 2.6. Suppose the provisions of Proposition 2.4, and further that ¢~ = ®~ 0 X~ €
H**1(87) is a variational solution to

Vi P(S7)Vh.0~ =0 in S”

o 6™ = GlleCly™ on z=0.

Then there is a number R > 0 such that for S = {(z,2) € S~ : 2> R} and any o+ f
integer > 0 there holds,

(2.13)

2089%4 e LQ(SE) and  lim sup |8§‘6§¢7(z,z)| =0. (2.14)
270 zeR
Moreover, we have the following trace inequalities:
167 |z=0l jor 1 SNV 207 [I12(s-)s (2.15)
and )
‘¢7|z:0|HZ+% < N71||Asvx,z¢7HL2($—)~ (2.16)

Remark 2.7. For the proof of (2.15), we need to work on the upper-half plane to prove
the estimate, and this is the technical reason why we do not study the reverse composition:
G 'g,.

Remark 2.8. The proof of estimate (2.14) is given in [4] for ¢|.—o € HH%(R) and we will
briefly explain the changes for ¢|.—o € I;T5+%(R).

Assuming for a moment that Lemma 2.6 holds true, we can give the proof of Proposition
2.4.

Proof of Proposition 2.4. We divide the proof into four main steps.

Step 1. (Q;)_1 o G\ is well-defined on I—DIS"'%(R). It is sufficient to prove that there exists

. s+l
a unique variational solution ¢~ € H5T1(S7) to the system (2.13) for any ¢+ € H,‘ﬁ(" (R).
Indeed, assuming there is such a solution, then by (2.15), we can define

¥ = |0 € HTH(R),
el
so that for any ¥+ € H, i+2 (R) there is a ¢~ where Proposition A.13 implies
G, e =G [eClyt.
17



To prove the claim we first let s = 0, and use (2.14) to define the variational problem
associated to (2.13) by

al67p) = [ PEVEST - Vhpdads (2.17)

- / (GHeCH ) da
{z=0}
= L(yp),

for any ¢ € C®(S~) N H'(S~). We will now verify the assumptions of Lax-Milgram’s
Theorem to deduce a variational solution in H'(S™) in two steps (extending the result to
H5T1(87) is classical).

The first step is to show that the application ¢ — L(¢) is continuous on H'(S~). To do
so0, we note by estimate (A.6) that

‘L((p” S ‘(g: [€C}¢+7 @'ZZO)Lzl
+
< i glelecol .
Then use (2.16) to obtain the needed bound

3
nilel=ol 1 < IVEplli2es)- (2.18)
2

Lastly, The bilinear form a(-,-) is continuous and coercive on H'(S™) by using estimate
(1.35). We may therefore conclude that there is a unique solution ¢~ € HY(S™).

Step 2. Estimate (2.11) holds true. Let ¢~ = ¢~ |,=0 € H**% defined by the solution of
(2.13). Then we can use estimate (A.22) to get that

|(g;[€<})7lgi[€<]¢+‘ﬁs+% =071 er1
< M|AVE 0 [l L2(s+)-

Thus, we need to verify
- 1
[A*VH ™ || 25—y < iyt

To this end, we apply A® to (2.13) and study:

1.
s+d
H,

VE - P(ST)VEASG™ = —V,.[P(S7), AV .6~ in 8-
AN = —e. - [P(S7), A]Vh .6~ + A°GH[eC]yt  on 2 =0.

Then from the variational formulation, we find that

/ P(S7)VE NG - VE NG~ dadz = — / A (GHeCl )N da
.

{z=0}
+ / [P(Z7),A*]VE 6~ -V AG™ dadz.
- ,

Now, by the coercivity estimate (1.35), Cauchy-Schwarz, (A.6), (2.16), and the commutator
estimate (B.8) we get that

1
1A% 6 sy < M(uHOH] oy + 1A VEL07 2s)- (2.19)
m
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Also, using the estimates in Step 1, we obtain the base case

IVE 207 L2 s-) < M4M\¢+| (2.20)
u
We may now conclude the proof of this step by continuous induction.

Step 3. To prove estimate (2.12) we first observe that

S 1
(1 + vz

Then use Plancherel’s identity and (2.11) to find that
10 (G5 [eC) ™ 0 G 1™ = S (G5 26D~ 0 G ECHEH v o
1
< M4M|1/1+|H<5+%>+%
w

(€)°€] S (©)*F3[e[z and ()2 < uoE(E)El.

To close this subsection, we give the proof of Lemma 2.6.

Proof of Lemma 2.6. We first give a proof of the trace inequalities on C*°(S=) N H'(S7).
For the proof of (2.15), we define a multiplier being a smooth cut-off function in frequency
X : [0,00) = [0,1] such that x(0) =1, x(£) =0 for £ > 1, and x, x’ € L>°(R). Then by the
Fundamental Theorem of Calculus and Young’s inequality, we obtain that

—//m (I [€1 6 %) dede
% |Loo// 16 ? dZd§+|X|Loo// (Il +0)6 | dade.

Then to conclude, we use Plancherel’s identity to obtain (2.15) for s = 0. The general case
is proved similarly.

For the proof of (2.16) we let n € C}([0,00)) such that n(0) = 1 and n(z) = 0 for z > 1.
Then use the Fundamental Theorem of Calculus and Young’s inequality to get that

p o [ e :
67 1emoly = [ T ool

A 1 o0 N
<0 |pe 2o~ ? o — 7| dedé.
Sl /R/O (716717 d=d€ + [nlo \/E/R/o I(I€] + 8)o™ |7 d=dg

The result follows from the use of Plancherel’s identity. ]
For the proof of (2.14), we note from Definition 1.20 that &~ = ¢~ o X~ € H5T1(Q7) is
harmonic, and by Sobolev embedding we have that ¢ is bounded above by some constant R >

1 _
[IDJ2¢7 |=olz-

N

0. From these observations, we can use (2.15) to see that ®~|,—p € I—QIH%(R). Moreover,
we consider the harmonic extension on Sp given by the Poisson formula:

Op(z,2) = e~ G=RIVEPIS~ (1, R).

From this formula, we can verify (2.14) for ®} by direct computations as in [4]. To conclude,
we use that both functions are harmonic and agree on the line z = R.
O
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We should note that there are several results that follow from Proposition 2.4, and that
will be used throughout the paper. However, to ease the presentation, we postponed these
results for the Appendix in Section A.3 since the proofs are technical and not needed in
this section.

2.2. Properties of (1 —~(G,)"'G,")~". Following the road map provided in [50], we can
recover the velocity potentials ¢* from the knowledge of ¢ and a trace v defined though
the transmission problem:
+ +
Vi, P(EH)Vh 6T =0 in &*
¢t |a=0 = Y9 |o=0 = ¢ (2.21)
O ¢ |am0 = 0 ¢t im0, O GF e =0,
where the solvability of this problem is ensured in the next result:
Proposition 2.9. Let to > 1, s € [0,tg + 1] and ¢ € H"F2(R) be such that (1.14) is
ol .
satisfied. Then for all ) € Hu+2 (R), there exist a unique solution ¢+ € HT1(S*) to (2.21)
and that satisfies
14592 ¥ sy < VAMIYL . y.
w

The proof of this result is a consequence of the following Lemma:

Lemma 2.10. Let ty > 1, s € [0,tg + 1]. Then the mapping

2 s+% g s+%
NACSE {Hi‘ ®) ~>HE®) o (2.22)
P = (1 - 7(gp [EC]) gu [EC]W
is one-to-one and onto. Moreover, it satisfies the estimate
(TuleD) 7] iy S MIT] Ly (2.23)

sql

Remark 2.11. For any ¢ € HZ+2 (R) we can define v by
— s+t

ot = (TuleC) Ty € Hy 2 (R),

from which we define ¢~ by
T = (G () TG el € HT A (R).
Also, note that from these identities and (2.11) that there holds,
8]s = 1o (2.2

<y TG D) TG e
S I A A

SMWlH

s+g
u

T
e+
Proof of Lemma 2.10. To prove estimate (2.23), we first consider the case s = 0. Then we
use the definition of J,[e(], the construction ¥~ = (G, [e¢]) "G, [¢]T to get that
| e vt da = [ vt Gt de = [ (61D GH T 6 o
- /R 6+ G leClut da — /]R ™ Gy e da.
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Then apply Proposition A.4 and A.13 combined with the coercivity of P(X¥) to obtain the
estimate

/ TuleClv™ Gl leCly™ da = / P(EH)VE ¢t VE ¢ dadz
R St

by [ PG 0 dods
.
1

>
14+ M

V520" (1 72s+)-
sl L1
Moreover, since J,[eCJyT € H;+2(R) C Hgz(R) we have (A.6) at hand. In particular, we
obtain from the above estimates and (A.4) that

W] 1 < M|Tulecly]

. 1
H H

(2.25)

Equivalently, estimate (2.23) holds in the case s = 0. We may also use this estimate to
prove the invertibility as in [50]. In particular, we have from the lower bound (2.25) and
Proposition 2.4 with estimate (2.11) that 7, is an injective and closed operator since,

WGr )G Y] iy < n TG [eC) T G IeC | vy <YM

1.
3 e
H, H,y,

Moreover, from the lower bound, (2.25), on J,, we know that it is also semi-Fredholm. Then
since for small enough values of v € (0,1) it is invertible by a Neumann series expansion,
we have from the homotopic invariance of the index that the operator is in fact Fredholm
of index zero [40]. Consequently, the operator is also surjective and therefore invertible.
For the general case of s € [0,to + 1], the proof is the same as Lemma 2 in [50]. O

We may now use Lemma 2.10 to prove Proposition 2.9.
Proof of Proposition 2.9. We first consider the existence of a unique solution ¢ in the lower
st l
domain. Since ¢ € HZ+2 (R) we can use Proposition 2.10 to make the definition:
csql . cstl
U= (Tulet) T € BETER) and 7 = (GuleC) TG (el € HUVR(R) € TR (R),

where we let ¢*|,—o = 1)*. Then we can use the first point of Proposition A.4 to deduce a
unique solution ¢* in the lower domain, where the estimate follows from (A.5) and (2.23):

[A°VHGT | f2(s) < ﬁMWﬁ\HH%
= \/EM\(ju[EC])flw\HH%
n
S \/EM‘w|Hi+% :

For the upper half plane, we use Proposition 2.4 we use Remark A.9 together with the first
point of Proposition A.13 to deduce a unique solution ¢~. The estimate is a consequence
of estimates (A.23), (2.11), and then (2.23):

1
IAVE 67 oz < HEMIT
1
= utyM|(G, ) G r[ecl |
< VEMIYL i
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We may now give the proof of the main result of the section.
Proof of Proposition 2.1. We prove each point individually in four separate steps.
Step 1. The proof of estimate (2.2) and (2.3) follows by (A.7), (2.23), and Plancherel’s
identity:
|GuleC]|

Step 2. The proof of (2.4) and (2.5), is proved the same way as in Step 1, but we instead
use (A.8).

1
H™2

— 6Tl C) ™y < HAHTUEC) 1 ey < EWL oy < VO it

H°™2
w

Step 3. The coercivity estimate (2.6) follows by construction where use the identities in
Remark 2.11 to get that

(¥, GuleCl¥) 1o = (.G [N Tule) ™ ) 1o = (Tulecld ™ Gl [C]YY) L
Now, argue as in the proof Proposition 2.10 where estimates (A.4) and (2.24) implies

K +12 H 2
> > .
(wag,l[ffh//)p =1+ A{WJ |H,,% =1+ M‘w']{%

Step 4. The symmetry follows by the second point in Propostions A.4 and A.13.

Step 5. Finally, for the proof estimate (2.8) we use (A.6) and Lemma 2.10.

3. SYMBOLIC ANALYSIS OF THE DIRICHLET-NEUMANN OPERATOR

In this section, we will give a symbolic description of the operator G, defined given
by (2.1). The estimates need to be precise in terms of the parameters p,e, and where
we carefully track the Sobolev regularity with respect to ¥ and ¢. One reason for these
expressions is that we need to have an estimate of the type:

1(GuleCl o (G 1) ™ (B6(70))- £) gy | < Mo +3) gl |32, (3.)

which appears naturally in the energy estimates and the quasilinearisation of the main
equations. As we can see from (3.1), one needs to absorb a derivative and be uniform with
respect to the small parameters. Also, recall that

Gulecl = G5 1) (1~ (G5 e G 1e))

which means we need a good symbolic description of each of the operators involved in the
expression. This is the strategy that was implemented in [48, 50], where we first will consider
the symbolic description of gf, then we treat the inverse operators that are involved.

3.1. Symbolic analysis of gi. For the symbolic description of g;, we know that the
operator coincides with the ones studied in [50]. In particular, we can use Theorem 4, in
dimension one, which is one of the key estimates of the paper:

Proposition 3.1 (Theorem 4 in [50]). Let to > 1 and ¢ € H"3(R) be such that (1.14)

i1
is satisfied. Then for all 0 < s <ty and ¥ € H;+2 (R), one can approzimate the positive
Dirichlet-Neumann operator by

Op(S)(x) = viF " (I¢] tanb(Viit(z, 4(€) ) (@),
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where we define the “tail” by the symbol

arctan(e,/0,¢)

t(X,f) = (1 +8<) 5\/Ha1;<

l¢1- (32)
Moreover, for k = 0,1, the operator satisfy
_k
1G5 ek = OR(S ) vy < ' T EMto + 3)[0] 0y (33)

In the case of infinite depth, it is pointed out in Remark 17 in [50] that the tail effects
vanish (formally) since the hyperbolic tangent is a bottom effect. In particular, we have the
following result that proves this fact.

Proposition 3.2. Lettg > 1 and ¢ € H3(R). Then for all0 < s < to and ) € H* 2(R),
one can approrimate the negative Dirichlet-Neumann operator by

$7(D) = — D],

where we have the following estimate
|Gy [l = OP(ST)Y oy < enM(to +3)[Y|

Remark 3.3. The proof can be seen as a modified version of the proof presented in [50],
but where we need to make two approximations of an elliptic problem depending on the
frequencies and weighted estimates to deal with some integrability issues in S~ = R x
[0,00). The weights and the cut-off functions are adapted to the approximation and deal
with separate issues. We also note that the proof in [50] also extends to two dimensions.
In fact, Proposition 3.2 is mainly the result that restricts Theorem 1.7 to one horizontal
dimension in this paper. However, we expect the result to be true for X € R? by modifying
the ansatz in the proof and letting Op(S™) be given by

Op(S7)0(X) = —/AF (I€[2 + 2u((IV xCIER) — (VxC - ©2)8(6)) (X)),
for X, € € R2.
Proof. The proof will be given in several steps, where we first decompose the estimate into
two main parts depending on the frequencies. In particular, let x; be a Fourier multiplier

with a smooth symbol and equal to one around zero. Also, let xo = 1 — x1 be the high-
frequency part. Then we have by duality

62 61+ VDI ovy = sup | [ A3 (G I + VDI (D)o do

[plp2=1

(3.4)

stse

+ [ 454G el + VAIDI)xa(D)p ]
R

< swp (|L(p)l +|E()]). (3.5)

lpl2=1

We will now make two approximations of the elliptic problem (A.20), where the estimate on
I; can be made using the Poisson kernel. On the other hand, the estimate on I requires an
approximate solution of (A.20) that accounts for the principal part of the elliptic operator
and is “well-behaved” in high frequency on weighted Sobolev spaces.

Step 1. Approximate solutions for I;. We know that <Z).(11pp = e~ *VIIPly solves

(4 026y =0 in -
¢;pp|z:0 = 1/)7

23
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and
Oz bapple=0 = —v/HDI.
Now, let ¢~ be the solution of (A.20) and define uy = ¢~ — cf)épp. Then u; solves

{ngZ.P(z—)Vﬁ,zm:aum in & (3.7)

u1|2=0 = 0, Zlggo |Vh 2u1| =0,

where r1 reads
r = 3w((3z03z¢zlxpp) + (awoamazd’;pp - 5#(8w0283¢zlxpp'

Moreover, we have by construction that

0% uil:—0 = G, [C]¥ + /HID[¢ + epra,
where the second rest is given by
T2 = (0:¢)0x) + 6#(3102\]3\1/%
Step 1.1. Estimate on I;. From the previous step, we deduce that
1 p— st
B < | [ (ol wla®ipds| + o] [ (@ Hrpamg do
R R

=L@+ ().

We will now estimate each piece separately. We start with the estimate of IZ(y). Here we
use the definition of ro to find that

0] < en] [ 00004 51 (D)g) |+ 22t

2,1 2,2
=)+ [ (0)]-
Each term is estimated similarly, and for the estimate of the first term, we recall 9, =
—H|D|, where H is the Hilbert transform. Consequently, we have from Holder’s inequality,
Sobolev embedding, and commutator estimate (B.9) that

/}R (0:0)%(ID|) (A1 (D)p)

1 1 1
P4 (9)] < 2l /R [0, IDF]HIDI ) (A 531 (D)) |
+en| [ @:0@IDIE0) (4 Dl (D)) daf
R
< euMlyl y lolse.
Then using the same estimates on | 12 ‘2(4,47)|7 we have that
11 (9)] < enM Pl 3 1ol .

For the estimate on |I1(i)|, we use the Divergence Theorem to deduce that

o) = [ PEITE - (WD) Ve dods e (A7 (D)) dads
=1 (9) + (%),

exty

Here we let ¢ be the extension of ¢ onto the upper half-plane defined by

P4 (2, 2) = e VIPlp(a),
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and it satisfies the smoothing estimate
1, 1
D26 VAPl 125y < 13| 2. (3.8)

Then we estimate each term separately. Since 1—11 ’2(4,9) contains a rest term, its estimate is
similar to the one on IZ(p) where we have to estimate the terms:

|Ill’2(<p)‘ < gﬂ(’ /_57 (arg)(az¢;pp)8I(As+%Xl(D)Soem) dxdz‘
+ ’ /57 (azax¢alxpp)((axC)AH%Xl(D)@eX“) dxdz’

1 .
ben] [ (0200 (0024 (D)) dad])
1,2,1 1,2,2 1,2,3
= 7 @+ O]+ [ ()
For the estimate on |1} (¢)|, we simply use the cut-off x; and (3.8) to obtain that
1,2,1
™ ()] < epM |1 lelr2,

while for |Ill’2’2(ga)\, we can integrate in z to find that

1122(0)] < e A(M((@@Aﬁ%m@)w) da]

+ E”‘ /S_ (8I¢épp)((azoAH%Xl(D)aztpcxtl) d:cdz‘.

The first term is estimated as we did for IZ(¢), while the second term is estimated as
|1]*"()|. The same can be done for |I;"*(¢)|. Therefore, we have that

()] < ey o] 2.

Next, we estimate Ill’l(go). To do so, we introduce the multiplier m(D) = A2 |D|%7 and use
(3.8), Holder inequality, and Sobolev embedding to find that

1 —
111 ()| < pIM(|[m(D), P(S7)]VE ]l p2gs-y + ImD) VA urllp2s-)) [elrz. (3.9)

Here the first term is estimated directly, by using the definition of P(X7), that m : L?(R) —
L?(R) is bounded, and the definition of u; = ¢ — d).}lpp with estimate (A.23), to deduce that

(D), PEIVE utllzags) < eVAMVE it p2(s-)
< eniMyly. (3.10)

To conclude this estimate, we treat the second part in (3.9) by using the coercivity of P(X7)
given by (1.35), then introduce a commutator, and apply the Divergence Theorem to make
the following observation:

)V sy < M| [ PO mDIVE s m(D) Vs dode
5 :
< z—:uM‘ / r1(m(D))%u; dedz

+ [m(D), PE7)IVE sui |l 25 [m(D) Vi cua [l L2(s-)-
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Then use the definition of 71 to gain precision of \/p and is treated as we did for I 11 ’2(<p)7
while the second term is the same as for (3.10), and we find that

_ 3
Hm(D)VizUﬂE?(s—) <eM(plle Z\/le\DWHLz(s—) +pd WM}%)Hm(D)V‘{,zulHL?(s—)
3
Sept M| 1 [m(D)VE urlr2(s-).-
Adding all these estimates gives us a control of (3.9) by
1)) < epMIy],y lol12,
and allows us to conclude this step:
()| < epMlip| 1]l e

Step 2. Approzimate solutions for Iy. By using the approach in [48, 50] we can show that
the function:

Gop(@,2) = (OD(L)Y)(x, 2) = F ! (L(2.6,2)8(9)) (@), (3.11)

where L is a symbol given by

_Z( VEIEL . epogce )
L(z,g, z) —e 1+22(02:C) 1+e2(02:¢)

provides a good approximation of the elliptic problem (A.20). Moreover, we have by direct
computations that

(0% Sapp)ls=0 = —/IDI¢
In fact, the approximation ¢§pp is constructed from the solution of the following ODE:
(1+°1(0:0)*) 2L — 2iep(0:0)€0. L — pé?L = 0,

which corresponds to the principal part of (A.20) with “frozen coefficients”. As a result,
we have that up = ¢= — ¢§pp solves

vV, P(ET)WVh ug =¢ in S™
{ 2 PET)Vaau = eprs in (3.12)

waleco =0, lim w(2)| Vo] = 0,

where we simply take w(z) = e 2 and the rest term can be computed explicitly:

15 = 200((2:0)0,0: L)1 — 24~ Op(@,LE)Y — TOB(A2L)¢ + Op((93Q)0-L) .

One should note that derivatives in « on L give rise to e and is polynomial in z. The

polynomial dependence in z will require weighted estimates in high frequency to get an
o 1

estimate for ¢ € H¥"2(R).

Step 2.2. Estimate on I». By construction and the Divergence Theorem, we have that
1, p-
B(e) = [ (A+30] wl.a)xa(D)y do
R
- / ASTLP(S7)VE ug - (A2 xo(D)VEp™%2) dadz

+ep / (A*r3) (A2 xa(D)¢™'2) ddz
-

=L (e) + I3(p).
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We now need to incorporate a weight in the estimates. To do so, we let ¢ be the
extension of ¢ onto the upper half-plane defined by

P72 (2, 2) = (wu(2))PeVIPlp(2).
Here we let w,(z) = e~ ¥t . For the estimate on I3 (yp) we first make the decomposition
Be) = [ eI PV s - (A7 ()7 V) dads
= [ DDA PO T - (A )7V ) dad
[ PEOAT a(D), T i (A (,) V) dod

1,1 1,2
=1, (p) + L, ().

For the control of 121 1(p), we use Cauchy-Schwarz, commutator estimate (B.8), and the
half-derivative smoothing from the Poisson kernel (3.8), and the weight estimate:

_1
lwu(2)ellL2s-) < w1 Mgz,
to get that
1,1 ‘ —1 - X
I (0)] < e/BM [|wuA*VE Jusl p2(s-) 1A 2 (W) ™ Vi 0™ )| 125
1
S eVuM||lw AV Jusllp2(s-)pt el 2

We also use the definition up = ¢~ — gpp, the decay of the weight, estimates (A.23) and

the ones provided in Lemma B.10 to obtain
1
leonA* Ve cuallp2s-) < IAVE Bll2(s-) + | A OP(@aL) ¥l 12(s-)
+ VEllA*Op(L)02¢| L2 (s-) + 1A Op(0: L)l L2 (s-)
1
S /1’4 AI"‘/)lIfIer% ‘
We therefore have
LM (@) < enM |yl L2

For the estimate on 121 ’2(<p), we use Holder’s inequality and Sobolev embedding to find that

1

1L%(0)] < i MIA X (D)o VE sial| (s [l 2

So we have again reduced the problem to an elliptic estimate. Using the coercivity of P(X7)
and integration by parts we find that

A= HAS+1X2(D)W;LV,¢,ZUZH%Z(S—) (3.13)

<M

/57 P(S7)A T X (D)w, VE ug - AT xo(D)w, V4 un dxdz‘
<M VA P(E7)A o (D)w, VE ug) (A*F o (D)ug) dzdz
— ’ H ’

+ M‘ / (ez - P(E7)A* M xo(D)w, V4 Lug) (A xo(D)w),up) d:cdz‘
.

=M - (Al -+ AQ)
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Before estimating A;, we will decompose it into three pieces:
A= ‘/Si(Vﬁ,z CP(E7), A o (D)]w, VE ug) (AT xa(D)wpus) dxdz’
+£#’ /57 (A" xo(D)w,rs) (A xo (D)w,up) dadz
+ ‘ /7(A5+1X2(D)(wﬂ)/ez CP(ST)VE up) (A yo(D)wpun) da?dz‘
= Al +f4% + AL

For the estimate on Al, we write out each term explicitly to clearly see the terms we need
to treat. In particular, we have

Vi - [P(27), A xa(D)]w, VY ug
= —eu04[0:C, ASHXQ(D)]w#BZuQ — epd;[0:¢, As+1X2(D)}w#amU2
+e%10-[(0:)%, A xa(D)]wpu 0z ug.

Then using this decomposition together with Plancherel’s identity, integration by parts,
commutator estimate (B.8), and the support of x2, we find that

A< en] [ (10,106 A o (D) D) (A oD a) |
] [ (102 AT D)) (A (D) |

+ Eu’ /Si([azg,ASHXQ(D)]wHaZuQ)(ASHXQ(D)wlﬁIug) dxdz’

+ &2 / ([0=¢, As+1X2(D)}(/JMaZ'U,2)(AS+1X2(D)UJM(9ZU2)d.’I}dZ’
5

< euM || A*D-ug | r2s—|A X2 (D)w, Ve zua | £2(s-)-

Then to conclude this part, we simply use that ug = ¢~ — ¢§pp, together with the estimates
(A.23) and Lemma B.10:

Al <ep™tiMly|,

e 1A X2 (D)w,, Vi sz | 2 (s

3
Sepi MYl ..y A Xa(D)w, VE Lusl| 25—

Next, we make an estimate on A? using the definition of r3 in the previous step:

A2 < 2ep /7 (A*x2(D)w, Op((0:¢) 0205 L)1) (A 2x2(D)w,uz) dxdz’

+2/1‘ /sf (ASXQ(D)WHOp(axL)aww)(AS+2X2(D)&)HU2) dde’
+ E'u‘ /S— (ASXQ(D)WMOP((@%C)@L)1/))(AS+2x2(D)wuu2) dxdz‘

+ u) /S (A x2(D)w, Op(2L)2) (A** 2 x2(D)ewyuz) dxdz‘

2,1 2,2 2,3 2,4
=A7 FATH AT+ AT
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The first three terms are easily estimated by Lemma B.10, with Remark B.11, and the
support of yo where we find that

1
APV AB2 4 AR < M AT e (D), Vi st s

< ept M|y AT o (D), Vi s (5.

fets

For the last term, we use the weight to gain decay in z. Then apply the same estimates as
above to find that

. 1 .
AP < VEIIAX2(D)OP(- 0L L)¥ || (s 1A X2 (D)wyuzl 25—

< et M(to + 3) || AsH

H“+§” X2(D)vaT zu2||L2(S

As a result, we have the same estimate on Al, and so we proceed with the estimate on
A$. We observe by definition of P(X~) that we have one term without e that need special
attention:

Akl;f ZI;; / (ASX2(D)wﬂ(azc)azUQ)(AS+2X2(D)UJMU2)d(CdZ’
+€2;\l; / (ASXQ(D)wﬂ(azc)ZazUQ)(AS+2X2(D)WMU2)dl’dz‘

2]\4‘ / (AT X (D)wydsun) (AT X2 (D)wyusn) dxdz‘
3, 32, 433
= AP 4 AP 4 AP

Here we see that the first two terms are easily estimated by using the weight to gain decay
and then combining it with the estimates in Lemma B.10,

3,1 3,2 3
AP 4 AT < e Mt + D]y A X2 (D)w, Vi s 25

Lastly, for Ai”g we use integration by parts and the support of x3 to find that

AP < m . (A" xa(D)wpuz) (A x2(D)wyus) dadz

+1 2
< mHAS x2(D)wu Ve zuall 72 (s-),
and therefore can be reabsorbed into A. The only remaining estimate is now on As. How-

ever, we note that it is similar to A3, and the same estimates apply. In conclusion, we may
gather all these estimates and use (3.13) to find that

1
(1= DIA T X2 (D)w VE ua | 2(s-) < epud M (to + NP ory-

Returning to I3, we obtain the bound
13(9)] < enM (to + 3| oy |l 2.

To conclude this step, it only remains to estimate I2(¢). However, this is just a simple
version of A2 and the following estimate is easy to deduce

I(0)] < |13 (0)| + 15(0)]
< euM(ty +3)[y|
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Step 3. Conclusion of proof. We have from Step 1. and Step 2. that the result holds:
G, 1e€19 + VDI ovy < sup (1) + 12(0)])

pl2=1
< euM(to +3)[¥] .

stse

d

3.2. Symbolic analysis of (G, )_193. The next step in studying the symbolic behaviour
of G, is to understand the composition of (g,; )_1 with g;.

Corollary 3.4. Let tg > 1 and ¢ € HOT3(R) be such that (1.14) is satisfied. Then for all
0<s<tyand f € Z(R) one can approzimate the opertor (g;)*lg; by

Op@;) F(z) = —F 1 (tanh(y/it(z, £)) F(€)) (x),

where t is defined by (3.2). Moreover, there holds,
- _ St
(G )T G l¢1F = Op (=) flyeey S VMo + 3]y (314)

Remark 3.5. From the symmetry of the Dirichlet-Neumann operators G* they can be
defined on Sobolev spaces of negative order by duality. See Remark 3.17 in [51].

Proof. We define P = Op(?—f)f and let ¢~ be a solution of

¢ =~ on z=0.

Then we can make the definition

{vg,z P(E7)Vh.6 =0 in S

g;[5<]1;7 = nﬁg7|z:0~
Now, let ¢~ be defined by the solution of

Vi P(E7)Vh 0™ =0 in S~
- : 3.15
{35 o~ = GlleClf on z=0. (3.15)
Then the difference v = ¢~ — ¢~ satisfies
Vi, P(E7)Vh u=0 in & (3.16)
O u=Gle)f — Gy leCl™ on z=0. :

It is straightforward to prove that these problems are well-defined where both ¢~ and ¢~
satisfy (2.14). Consequently, we can consider the variational equation:

/ P(X7)VE Au-VE Audedz = 7/ As(g; [eClv — G, [eC])A%u dz
- {z=0}

+ / [A%, P(E7)IVE u- VE Audrdz,
-
where ug = u|,— and trace inequality (2.15) implies

Valu| ey < IAVE ull as--

To conclude the proof, we need the following inequality

|(A*(G €S = G (eI ™), Auo) | < ey/EM (to + B)If1 .y ol vy (3.17)
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Assuming the inequality holds, we can argue as in the proof of Proposition 2.4, Step 2. to
obtain the result.

To prove (3.17), we will decompose the left-hand side in several pieces. In particular, we
first observe that

(MG [e¢1f A%uo) 1 = (O (
where the rest is given by
Ry = ([AS7 g: [€CH fa ASUO)L27
Ry = (AS—%f7 A3 (gﬁ'[sC] — Op(5+))Asu0)L2
Here we estimate Ry by Cauchy-Schwarz, (A.9), and (B.3) to get that
|Ry| < EuM|f|HZ_;|u0| 'H_%
< evVuMIf -y luol oy
While for Ry we use (3.3) (with &k = 1) and (B.3) to get that
[Ral < &Mt + D, gl

St

|D‘) A®f,A°|Dlug) ,» + R1 + Ro,

Next, we decompose the remaining part where we get that
M@k@ﬁfmm:®ﬂm0Aﬁmmwm+&+&+%
where the rest terms are defined by
R3 = ([Asv g; [541]112)77 ASUO)L27
Ry = <A87§1j77 A% (gi[EC] - Op(si))AsuO)LZa
Rs = (A2[A°, Op( )}f7 “20p(S7T)A%uo) 1
For R3, the commutator estimate (A.26), and (B.22) yields,
|Rs| < ey/mM[7 | oy luo
< €\/ﬁM\f|HS_7 luol oy -

For R4, we argue similarly but use Proposition 3.2 with estimate (3.4) to get that
|Ra| < epM(to+3)f]

s

HS™ 2 |“0|HS+% .
Finally, for Rs, we apply Cauchy-Schwarz, the commutator estimate (B.23) to get that
S S+ 9*1
|Bs| < [[A%,Op(G=)1/1 ;41472 [Dluo| 2
< 5\//7j\/[|f|H7% ‘UO‘FI“*%‘

Gathering all these observations, we can estimate the left-hand side of (3. 17) by

S+ S+ Z\R‘

l *
LH8317 <‘ 2 (ﬁ) 70 (|D‘
Then to conclude the proof, we use Cauchy-Schwarz, the adjoint estimate (B.24) to get that
LHS3.17) < ey/pM(to + 3)| f]

))A® £, A*"3|Dlug),

HS" 2 ‘UO‘H5+% :
O
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3.3. Symbolic analysis of (G, )~ 1G,. Next we will study the symbolic behaviour of
G~ 1G,. To do so, we recall that we may write G, = G, ,)~1 where the symbolic
behaviour of J,, is captured by the symbol

S+
v 5=
Corollary 3.6. Let tg > 1 and ¢ € HF3(R) be such that (1.14) is satisfied. Then for all
0<s <ty and f € .(R) one can approzimate the operator (G, [e¢])'G,leC] by

St tanh(y/ut(z,
Op(ﬁ)ﬂz) - 1(1 T vta(n\}/l(ﬁ\/(ﬁt(gw),)g)) (5))(r)’
where t is defined by (3.2). Moreover, there holds,

Sy=1-— (3.18)

(G, 1€1) ™ Gule) £ — Op( )f\ o) SeVEM(to+3)If] .y (319)

Proof. We will give the proof in three steps. First, we will prove that S; provides a good
symbolic description of J,,. Then we will show that 1/S; describes the inverse, and lastly,
we combine each step with the previous results of this section to prove (3.19).

Step 1. We can approximate 7, with Op(Sy). Indeed, by definition and estimate (3.14) we
get that

S+

?)f‘H”% (3-20)

| TuleClf = OP(SI S| gy = 1(G, [e€))G; [eC)f — Op(
<ey/uM(to +3)|f]

Step 2. We can approximate (7,) ! with Op(1/S,). To prove this fact, we simply employ
Proposition 2.10 with inequality (2.23) to deduce that

[FACS OP(/SN)f] yers = = (Fule) 71 (1 = Ful=QOP(1/SN) ] vy
< M|(1 = Tulec]OP(/Sn)fI v :
<M(|(1- OP(SJ)OP(l/SJ))ﬂ o
+(Tule¢) - Op(SJ))Op(l/SJ3f| o
=: R + Rs.

oS

Here R; is estimated by (B.26):
Ry < 4|1~ Op(S))0(1/5)) | yovy, < emilfl,,,

While Ry we use the estimate in Step 1. and (B.25) to obtain
Ry < p™%|(Jle¢] — Op(S))Op(1/S)) |

< et M(to +3)|Op(1/S) ] .

753

<eptM(to+3)|f],0 3

As a result, we have the following estimate
(TuleC) ™ f = Op(1/S)) [ i < epiM(to + 3)|f]

32
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Step 3. Estimate (3.19) holds true. To prove this, we first use the definition G, = g;rj‘;l
to make the decomposition:

LHS 3.19) := (G, [e¢)) "G, [eC)(TuleC) ™' f — Op(SSS )f

et
< (G ) G TeC) (Tuleh ™ - Op(S—)>f o+
+
+1(6: 26D G 1e10p (5 ) = 00 (g ) 1o

: R + Ry.
For R3 we use Proposition 2.4 with inequality (2.11) and then Step 2. to get that

1 1
Ry < ptMI((Tec) ™ = Op( 5 ),y < oViEM (o +3)If] 1y

For R4, we decompose it further:

Ro=1((67 =€) ) - o5 ))op(si)ﬂm

#1(on(32)on(s;) - 0n(575;) 1y

=: R5 + Rg.
For R5 we use (3.14) and (B.25) to get that

Rs < ey/iM(to + 3[0p(g- ) 1,50 4 < VM (to + 31

While for Rg we simply employ estimate (B.31) which yields

H*™

Gathering all these estimates concludes the proof.
O

3.4. Symbolic description of G,,. For the next result, we will give a simple approximation
of G,,. We will allow for a loss of derivatives in the estimate. However, the loss in regularity
is translated into precision with respect to the small parameters.

Corollary 3.7. Let tg > 1 and ¢ € H""2%(R) be such that (1.14) is satisfied. Then for
all 0 < s <ty and 1 € H*Y3(R) one can approzimate the operator G,[eC] by the Fourier
multiplier G,[0] defined by

_ tanh(,/i[D])
Gul0] = V/i[D| 1+ 'ytanh(\/mD\)’
and it satisfies the estimate
|GuleCl — Gul0]p| s < epM|0pt)| s+ (3.22)

Proof. For the proof of inequality (3.22), we let G,[0] = Q:[[O](]#[O])_l and make the
following decomposition

1GuleClv — G [0)(Tul0]) ¥l < 1(G) [e¢] = GF [01) (Tuled)) ™ s

G 0]((TuleC) ™ = (TulO) )W las
= B1 + Bs.
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For the estimate on By, we use the classical small amplitude expansion of g;r provided by
Proposition 3.44 (withn =1, k=1, s = s+ 1) in [51], and then (2.23):

B < €/LM|¢|H5+% < Euwllazw‘H“*l'
M
For an estimate on B, we first observe that
€
V€| tanh(VAlE) < p—
1+ Vulg))z

We may therefore use the product rule, combined with (2.23) and the shape derivative
formulas (A.55) and (A.56) to find that

By < 10 ((Tule¢) ™1 (1~ JM[EC](%[O])_I)T/))\HH%

< M (1 (T[e¢) ™1 (0:0)(1 = TuleC(Tul0) ™V oy

Tl OOTLlO) ™y + 100 1)

< 8/L]\/ﬂ8z’¢|Hs+1 .
O

3.5. Symbolic analysis of (7,)7'(G, ) '0;. We end this section with the study of an
operator that appears in the quasilinearisation of the equations. In particular, we will need
the symbolic description for the energy estimates later (see inequality (5.12)). The operator
is well-defined by the first point in Corollary A.17, and can be approximated by a first order
operator with a skew-symmetric principal symbol.

Corollary 3.8. Let tg > 1 and ¢ € HF3(R) be such that (1.14) is satisfied. Then for all
0<s<tgand f € H”%(R) one can approximate the operator %Q(JM)A(Q;)*IQI by

,1( 1L+ algD ™!
\/ﬁ 1+ v tanh(\/pt(z,§))

0p(5 5 )0, @) = i€/(©) @),

and for k = 0,1, there holds,
%2

[B2(TL10) ™ (G o)™ = Ol g )]0u g < e EM o +3)(1+ VAIDDH 1
(3.23)
Proof. We first decompose the main operator into three pieces:
%2
BT, leC)) (G 2C) 90 f = Oplg=)0ul + i+ R (3:24)

where we define f# = (J,L)fl(g;)flaxf

Ry = (1 - Op(S%S )OP(S%ii))%Q.f”,
and
%2
Ry = Op( )(Op(S™8s) = G, (] Tuleq]) *

S‘]57
For the estimate on R; we use (B.33) to get,

Ril oog < on™ 5 MIBf g
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Then apply (2.23) and(A.34) to find that
B f¥ 2 = (Tule) (G [ 1 0e ]y (3.25)
I
_1 - -
< pm MG ) 0
_3
<p 4M‘f‘H%a
which yields the following estimate on Rj:

IRil .os <en”"EM|(1+ VREIDD fln

For the estimate on Ry we would like to employ the symbolic description of gj. However,

since estimate (3.4) arrives on H %(R), we need to carefully decompose this term so that we
can estimate the operators in f f. First, we observe that

Op(S™8) = G5 [2¢)7u1=C)) £ = ((O(S7) = G5 [e¢]) Tulec)) £
+ (Op(S™S) — Op(S7)Op(S)) f*
+ (0p(s7) (0p(8)) = TuleC)) ) £

=711 +7r2+73.

Let R = AS Op(s S yr; with @ = 1,2,3. Then for the contribution of R}, we first use
estimates (B.25) and (B.5) to find that

R

k
s < M_Z_X]W(to + 3”“‘]—"['5*%

Then apply Proposition 3.2, the definition of f#, and argue as in the proof of estimate (3.25)
to deduce,

R |e < epd™5 M (to + 3)|(G5 [¢) 700 | ooy
< ep™ M(to +3)|(1+ VaIDD flus-
For R%, we apply estimates (B.25), (B.5), (B.30), and (3.25):
R+ < e MI(1+ VD] flzre.
Lastly, for R3, we will decompose it further:

_ il A +) f
R = —’YAZOP(S <) (Op(57)0p(3=) = Op(5™) ) f

B’ o+ ¢

~7A50p(g-e=) (Op(S™) ~ Gl [=d]) £

150D () (9711~ Op(57)) G 1ec G =
= R+ R + R3S,
For RS’17 we use (B.25), (B.5), (B.30), and (3.25) to find that
RS 1o < ep™ M|(1+ /D)) £
For Rg’Q, we use (B.25), (B.5), then estimate (3.3) to find that

k 1,
|Ry®|me < e M(to +3)|(1 + iD|)? flus
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For Ry®, we use estimates (B.25), (B.5), (3.4), (2.11), (3.25) to find that
RS e < u M1 (0p(S7) = G5 [5¢)) (G () T G G,y
< eM(to +3)|(G,: [¢) G, [¢] £
<eniMlto +3)IF iy

n
1
< en” M (to +3)|(1+ /D)2 £l
Gathering all these estimates implies
k 1
|Ra| 2 < ep™ 1M (to + 3)[(1 + /uID)2 flus,
and adding the estimates for R; and Ry completes the proof.

4. QUASILINEARIZATION OF THE INTERNAL WATER WAVE SYSTEM

In this section, we will put the internal water waves system (1.13) in a quasilinear form.
This is done by applying time and space derivatives to the system and taking care of the
principal terms. In particular, on need shape derivative formulas for the Dirichlet-Neumann
operator (2.1), where we prove in Lemma A.22 that

deGulec) () = —eGulec] (h(w™ — yw™)) — epZ[Ulh,

where w™* is defined below together with the operator Z[UJh. In fact, the operator Z[U]h is
one of the main quantities that we need to understand, and is where we will use the symbolic
descriptions from the previous section. Before stating the main result, we formally introduce
the main operators involved, and that will be studied in detail later.

Definition 4.1. Let the functions 1b* serve as Dirichlet data for the elliptic problems (1.6)
and (1.4), then we define the horizontal components of the velocities at the surface by
+ GEHEeCUT + epdpCOup®
wt =
o 1+ 52,“(890()2
We define the vertical component of the velocity at the surface by
V= = 0,07 — e(w™)da,

and

VI =vt-v .
We refer to Corollary A.18 for the precise definition. Moreover, we define the quantity
related to the Rayleigh-Taylor criterion by

o= ((1=9) +((@+eV 0wt — (0 +eV ), (4.1)
and a quantity related to the presence of surface tension:
Kley/fidsCle = (1+ u(0:0)%) 2 .

From these quantities, we let U = (¢,)T and define the linear operator, Z[U), of order one
by,

T[UJe = 0,(eV ) +1G,leC] (G, (o) 10, (« IV7T)). (4.2)
and its adjoint reads,
Z[UJ's = V0, 0 ALV 0:((G () T Guled] o). (4.3)
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Moreover, we define the instability operator:
Ins[Ule = ae —(1 =)y’ u[V]€,[ec] (o [VF]) = bo~' 0, Klev/iduClOre,  (44)
where
€ulecle = 8z 0 (Tule¢)) (G, [eC)) o On e (4.5)

Then to put the internal water waves system in matrixz form, it is convenient to introduce

the notation
A = (jnfm *igou[fﬂ)’ B[U] = (déU} {IOM*)’

where A and B corresponds to the principal part of the system. To account for surface
tension, one also needs to track the dependence in the sub-principal part, which is defined
for a = (a1, a0) € N2:

_ 0 _lg () [é‘d
Call) = (bofllc(a) [ev/10xC] " ) 7
where we let (01,02) = (02, 0¢), F = (f1, f2) to define

2

G eF = 0;dcG[eC)(9;0) 5,

j=1

and we have:

2
Ko [0:CIF = =0, (D dcKl0,0;€10, 5 + K10, £,10.05¢ )

j=1
With these formulas, we can state the main result of the section.

Proposition 4.2. Let T > 0, t) > 1 and N € N be such that N > 5. Furthermore, let U =
(¢, )T € &N 1 be such that (1.14) is satisfied on [0,T]. Also, for any a = (at,a?) € N2,
&l =a—ej, with 1 < |a| < N we define 05, = 052072, and let w* be defined as in (A.A1).
Moreover, define w by

w=w"—quw”,
and
Qo) = 094C, oy = 00 — ewdS ¢, iy = (Prary, Yia2) " -
Then for Uy = (C(a)7¢(a))T and U gy = (C(u),¢<&>)T, there holds
if1<]a] < N: U () + A[UJU(y) = £(Ra, Sa)",  (4.6)
if  lol=N: 9Uq)+A[UJUq) + B[UJU(,) +ClUU 5 = £(Ra, Sa)” (47

The rest functions satisfy the estimates

Ry, + 1507 4 < CEV U+ VR ). (48)

for some C' > 0 and where [C|_y_ 1., is defined by
2
Clawezs= Do 1081

aeN? |a|=N
37



For the proof, we need to carefully track the dependencies in the small parameters.
However, this part is very similar to the one in [50] and can therefore be considered a
technical point. We give the details and point out the differences in the Appendix A,
Section A.5. Now, before we proceed with the energy estimates, we need to give a rigorous
meaning to the operators given in Definition 4.1. This will be done in separate subsections.

4.0.1. Properties of Z[U]e. First, we study the operator Z[UJe which appears later in the
shape derivative formulas for G,,.

Proposition 4.3. Let to > 1 and U = (¢,4)", with ¢ € H"3(R) satisfying (1.14) and
1 € HOFT2(R). Then we may define the operator

Z[UJe = 0,(eV) + G, [e)(G; [2¢) 70 (0 IV7T).

and it satisfies the following properties:
1. For all0 <s <ty and f € HS‘L%(R) there holds,

|I[U]f|H57% < ]V[‘leer%'arw'HtOJr%’ (49)
and
ZIOIS] oy < MISL ey 100,y (4.10)
2. Let a=1-+b, with b € HY (R), and for all f € L*(R) there holds,
(aZ[Uf, f) 2 < M(to + 3)(1 + [b] greo+1)|0ut| oo | f17 2 (4.11)
3. Let K € HWHY(R), then for all f € HY(R) there holds,
(0 (KO Z[U]f), f) 12 < M(to + 3)| K| grro+1 050 preor |f 1% (4.12)

1
4. Forall f € H;(R), g € H%(R), one has
* 1
(Z[U)f.9) 12 < MI0ut] 1y IfIHé (lglz2 + rlgl a)- (4.13)
Proof. We prove each point in separate steps.

Step 1. To prove the first point, we observe that the first part of Z[U]f is estimated by the
product estimate (B.6) and (A.45):
0V oy <ULt IVF L s
< MIf] s 31029

To estimate the remaining part we first estimate G, with (2.2) to find that

1Gul=C)(G leC) ™ (O (TTFD) oy < 131G ()T QT ILFD) vy

merh Ho+h
H®"2
Then use (A.34), the product estimate (B.6), and (A.45) to see that
3 _ Lo, _
11](G, [eC)) 7 (0:(FIVED) ot <1216 D) @ (FIVED) ey
1] s [
< ]W‘.ﬂHH% \5z¢|m0+% .

For the proof of (4.10), it is proved similarly where we only need to modify the part when
we apply the product estimate.
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Step 2. In this estimate, we note that the instability operator is a first-order differential
operator acting on f +— Z[U]f. But the principal symbol is skew-adjoint. Indeed, for the
first part, we use integration by parts

(@Y, 1) 2 = @@V ) o 3 (0alaV D) 1. 1) o

Then Holder’s inequality, the Sobolev embedding H™(R) < L*(R), the product estimate
(B.6), and (A.44) gives

|(a81(fz+), f)L2| = (1 =+ |b‘Ht0+1)‘K+‘Hlu+1‘f|2L2
< (L4 [l o+ 102 o1 | f 17

For the second part, we use integration by parts together with the fact that G, and G, are
symmetric to make the following decomposition

(09, (€105 2 ™ (Oo(FIVED). ) 12 = —(FIVHT,0: (G (o) ' GuleC) (@) ) s
S+
(V1,00 (G 1) Gule) — Op( =g ) ) (@) o

D, 0p(2 ) @),
=: R; + Ro.

For R; we use Cauchy-Schwarz and estimate (3.19) to deduce that

+ 1oy -1 St
(1] < £V 112G D) Guled] = Op (57 ) (@)l
< ey (to + 3) | f IVl r2af 2.
Then use the product estimate (B.6) and (A.45) to get that
|Ry| < e/liM (to + 3) (1 + [blgt0)|0ut | st0 | |72

For Ry, we will split it into several parts:

o= (0p(525) — 052 ) )OI D. @) 2 + (Op (5o ) U, (0),

+(0p(2g ) W05, (0) 1+ (L5100 (52 )0, (0)

=Ry + R3+ R} + Rj.

For R} we use estimate (B.29), for R% we use (B.27), for R3 we use (B.28), combined with
(B.6) and (A.45) we get that

|Ry| + | R3| + | R3] < VM (1 + [bl 101029 rio+1 | £

On the other hand, we can use integration by parts on Ry to cancel R3. Indeed, we obtain
that

o =~ ((IV1,00(00 ) (81) 1 — (I, 00 (5o ) (50:0)

(D00 (52 ) b0021) s — (D). 00p (2 )0:5)

= RS+ RS+ R} + RS.
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Here we estimate R3, RS, R} as above where we also use estimate (B.32) for R3. Adding
these two decompositions implies

8

20Ral < | ST RY| < VEM(L+ bl grg0)| 0] oo | .
j=1

Step 3. Since K is symmetric and f — Z[U]f is skew-symmetric, we can absorb one deriv-
ative by integrating by parts as we did in the previous step.

Step 4. From the definition (4.3) we have that
(I[U]*f, g)Lz = - (K+amf» Q)LQ - W(HKiﬂaz((g; [gd)ilgu[eqf)v g)LQ
= A +vAs.

For the first term, we introduce a commutator, then apply Holder’s inequality, Sobolev
embedding, estimate (A.45), and (B.10) to find that
19)

xr
—  flralglye
(1+ yAlD])3

0, 1
I+ VD] gl e
(1+ y7lD))? ’

1
< M0t ey 13 i+ %0l )

|A1| < |[V*, (1 + /alD])z]

+ [V

For the second term, we instead use commutator estimate (B.9) and (2.11) to obtain
1 Lo -
| 4| < |[IVFT, DI HIDIZ (G, [e¢)) " GuleClf|2lglee + [IVF T2 (G, [e¢) ™ GuleC]f1 43 19l 3
1
S MpH0: gy 11,4 l9lez + gl ).
d

4.1. Properties of Jns[UlJe. The instability operator is defined in terms of &, which is
given by

&lecle = 0, 0 (Tul=C) (G ) o Do

Meaning we first need to study its properties, which is the topic of the next Proposition.

Proposition 4.4. Let tg > 1 and ¢ € H**2(R) be such that (1.14) is satisfied. Then we
have the following results:

1. There ezist a constant ¢ < M such that for all f € H%(R) there holds,
0.5 (€uleClf. ) 2 < 101+ VAID) 2/, (4.14)
2. If suppose further that ¢ is time dependent and satisfies (1.14) uniformly in time,
then for all f € H%(R) there holds,
([0, €uleCl] £, 4) ] < = MIOC o | (1 + VEID) 2 S 7. (4.15)

Proof. We give the proof in two separate points.
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Step 1. For the proof of the first point, we deduce the positivity by integrating parts:

(eu[EC]f’ f)Lz = - ((ju[EC])il(g;I [5(])7181f7 8wf)L2
= —(9, (G, [e¢]) TuleClg) 12
>0,
where we defined g by
9= (Tuled)) (G [eC)) 10 ],
and used the fact that G, is negative and J), is positive.

For the upper bound, we use Plancherel’s identity, and Cauchy-Schwarz inequality with
the estimates (2.23) and (A.34) to find that

|(€uleq1f ) ol < W Tule) (G leCD e f] 4 10+ VD)3 £

i
1 _ _ 1
< MGy )T Sy [(1+ /uID))2 £ 2
_3 1
< wEMIfL 410+ VDD £z
Step 2. By direct computations, we need to control the following two terms:

[0r, €uleC]] f = 0r 0 (de(TuleC)) TH(84€)) 0 (G, [e¢]) " 0 O f
+ 0z 0 (Jule¢]) ™t 0 de(G, [e¢])TH(01C) 0 Du f
= fi+ fa.

For the contribution of the first term, we use Plancherel’s identity, Cauchy-Schwarz, and
estimates (A.56) and (A.34):

(1) 2] < (Tl M@0 =€) 0 0| 411+ VAIDD) 1]

< ep"TMOC greo+ (G5 [C) T f |y (1 + VEIDD? £ 2

< eu” 1 M0y (1 + V/EID]) 2 7.
For the estimate on fa we use we use Plancherel’s identity, Cauchy-Schwarz, (2.23), (A.37),
and then (A.34) to obtain
-, EERPS _ _ _ _ 1,
|(F2 £) o] < 075G [CD) ™ 0 deGyr [£€)(@5C) 0 (G [eC) ™ 0 Dufl 3 |(1 + /RIDI)2 f1 2
1
< ep ™ M9 o+ | (1 + V/aID))2 f 72

O

Remark 4.5. In the first point, we can define the smallest constant ¢ < M such that (4.14)
holds by

-1 _ -1
()=  sup TulECD TG a;f,azf)g
FEHE (R),f£0 1+ EDIZf7,

For the next result, we will treat the properties of the instability operator. In particular,
we will show that under the stability criterion, we can have a coercivity-type estimate. This
is essential for the well-posedness theory to work and relies on the surface tension parameter
through the Bond number bo~! > 0. To be clear, we restate the stability criterion in the
introduction:

(4.16)

0 <(U) :=infa— Ye(OIVE 3041
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where
bo
T=—-01- 727 e,

and a is given by (4.18), e is given in (4.16), and we define
3
¢(Q) = e(O)* (1 + €%l duC[i) 2.

Proposition 4.6. Let ¢, pu,bo™t € (0,1), T > 0, tg > 1, and U = (¢, ) € &%T be such
that the non-cavitation condition (1.14) holds and satisfies the stability criterion (1.17) on
[0,T]. Then we have the following set of inequalities on the same time interval:

1. For allu € H | (R), C >0, and Ins(U) defined by (4.4), one has

~,bo
(u,Ins(U)u) ,, < C(gl(U))\uﬁ{% n (4.17)
2. For a(U) defined by
a(U) = (1 = y)yee(Q)|VF ]2 (4.18)
and there is some Cy > 0 and b(U) defined by
b(U) = (1 = y)re® VaCre( OV T 01 (4.19)

such that for ® defined by (1.17) there holds,
1
SOl < (1 Ins(U)u) o + a0l + O],y (4.20)
3. Lastly, there is a control on u € Hé(R) through the inequality
1
et VATl 3 < eCE Ol (421)

Proof. The proof is similar to the one of Lemma 11 in [50]. However, we give a short proof
for the convenience of the reader to track the constants that are responsible for the defini-
tions above. We divide the proof into three steps

Step 1. For the proof of (4.17), we have to deal with the terms:

(u, Ins(U)u) 1, = (u, au) p, — (1~ ve?nu(u, [VFI€,leC] (“[[Ki]]))LQ
—bo ! (u7 GEIC[S\/ﬁﬁmQ]Bzu) 12
=L +1+ .[5
For I;, we have that
(;fel]% a)|uffz < I < C(EY(U)) (L —)[ul7, (4.22)

where the upper bound is direct since the energy includes time derivatives. For the estimate
on Iy, we employ (4.14) to find that

1
—(1 = (Ol + ulD))2 (V)7 < I < 0.
For the estimate on I3, we have by integration by parts that
bo (14 €21)0,C| 1) 2| Dpul22 < T3 < bo~ Dpuls. (4.23)
So the upper bound in (4.17) is proved.
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Step 2. For the proof of (4.20), we need to work on the lower bound in I. First, we can

replace the lower bound using the commutator estimate (B.8) and Holder’s inequality to
find that

1 1
[(vED) 2 (u[VF])|72 < Cl\/ﬁlﬂkiﬂ\ipwl“@,% + VAEIIVF] |2 D7 ul7
+ V5] e 72, (4.24)

for some constant C; > 0. Then we may define b(U) by (4.19) and use the expression for
a(U) to find that

Is > =b(U)lul 3 — a(U)(Julf> + Vilul? ;).
Then adding all these estimates, one finds that
a(U)ul72 +b(U)[ul g + (u, Ins(U)u)

= a(U)|ul7s + b(U)ul ,—y + 11+ I+ 13

. - _3

> (inf 0)ful3s + b0~ (1 +<l0nClue) £ 0,ul}s — a(U)alul? |

To conclude, we first use interpolation and Young’s inequality to find that
Via(U)[ul ) < Via(U)lul 2|0zul 2
3 1 _3
< bo%(l + &%) 02| o) 2a(U)?|ul7, + %(1 + 2|01 ) 2 [DpulTa

Clearly, the proof is over if we have the following inequality

inf a — Ye()|[VE]ie > 0,
z€R
which holds by (1.17) on [0, 7).

Step 3. To prove the third point, we again use interpolation and the full stability criterion
(1.17) to obtain

— _3
VIV gl y < QUYL s ufZa + b0 (1 + l0uCl 1<)~ 2 00uls

< E2A{((igﬂf§ a)|u|%2 + b0_1|81u\%2)-
x

5. A PRIORI ESTIMATES

We are now in the position to derive energy estimates for the internal water waves system
(1.13). To define a natural energy to the system, we distinguish between the cases o = 0
and 1 < |a| < N. For a = 0, we have enough regularity on the data to control the solutions
with the energy:

0 — |Atot2 2 Lato+s to+3
E°(U) = |AP 2g|H$7bo + ;(A 034, G, [0]ATTZy)

L2 (51)

where G[0]¢ is defined by formula (2.9):

tanh(y/7D])

G001 = VDl aan (/DD
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For 1 < |a] < N, we use Proposition 4.2 and exploit its quaslinear structure to define a
suitable symmetrizer. In particular, we will need to cancel specific terms in the energy
estimates, and it will be done by introducing the symmetrizer:
Jns[U] 0 a(U)+b(U)A™L 0
U)=0W(U @) = .
where a(U) and b(U) are defined by (4.18) and (4.19). With this symmetrizer at hand, we
define energies by

(5.2)

EG(U) = (U(a)7 Q(U)U(a))Lz (53)
Finally, taking the sum over all a will be the main quantity used to control the principal
part of (1.13):
E*(U)=E°(U)+ Y  Ea(U). (5.4)
1<]a|<k
Before proceeding, we make three comments on the choice of the energy.

Remark 5.1.
1. The term Q1[U] in (5.2), is chosen specifically to cancel the principal part:

(A[U]U(a)v QI(U)U(Q))LZ =0,

which appears naturally in the energy estimates. See estimate of B in the proof of
Proposition 5.2 below.

2. The role of the term Q2[U] is to make the energy equivalent to the energy norm. In
particular, for (5.4) to be coercive, we need Q2[U] and the stability criterion (1.17)
to have a lower bound on Ins[U] in the energy space.

3. To close the energy estimates, we actually need to modify (5.4). This is because
Ins[U] is a second-order operator and therefore makes a contribution to the sub-
principal part of the equation (when |a| = N). In particular, we correct the energy
to cancel the terms

(C[U]U 4, @1(U)Uy)) 2,

which will appear in the a priori estimates. To do so, we define the quantity

O(U) = (bofllC(a%[e\/ﬁaxC] . 0 )’

2w (@)
where we define the modified energy for the internal water waves equation by
|a|=N

for some constants C,Ca > 0 to be fized in the proof.

Proposition 5.2. Lete, u,v € (0,1), bo~! = e/l to=1, N >5,andU = ¢, )T e cg’]j\éff
be a solution to (1.13) on a time interval [0,T] for some T > 0. Assume that U satisfies
the non-cavitation condition (1.14) and the stability criterion (1.17) on [0,T]. Then, for
the modified energy defined by (5.5) there is a constant C' = C(|¢|gs, ﬁ, v, ﬁ) > 0 such
that,

d
%Eﬁvww(U) < ECEﬁvww(U)v (5.6)

for all0 <t <T. Furthermore, for the energy defined by (5.4) there holds,

éSN(U) < ENU) < cgNU), (5.7)
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and

1

55N(U) < Enyw(U) < CEN(U), (5.8)
forall0 <t <T.

Proof. We first prove (5.7) and (5.8) in two separate steps before turning to the proof of
(5.6).

Proof of (5.7). First consider the case k = 0. Let (gﬂ[o])% be the square root of the symbol
associated to G,[0] and then use Plancherel’s identity to see that
1 7 7 1 1 9
;(vagﬂ[omzzb)y = 2 1GuloD= vl -
Then use (B.2) and the definition (5.1) to obtain that

7 1
A2+ G0l < BY(U) < Clyff, + EM(0).

The lower bound will be absorbed in £V (U) when summing over all k. While for the upper
bound, we relate ¢ with the definition of (,) through the estimate

Wlig < D W@l 3+ el

1.
H?
a€N2: |a|<N-1 " "

Then (B.6) and (A.42) yields,
_1
E\wC(Q)\H’% Sep w1 < eVuCll ol
Combining these estimates implies
[l < CEM(U). (5:9)
For the case k = N, we use the definition of the individual energies (5.3) to find that

Ea(U) = ({(a), I8[UT¢(0)) 12 + () (a(U) +b(U)A™)((m)) 12 + %(%w GuleClvw) 2

The first two terms are controlled by (4.20) and (4.17). While the last term is controlled
by (2.6) and (2.8), which implies the result

égN (U) < ENU) < cgN(U).

Proof of (5.8). Next, we prove (5.8). To estimate the additional term when |a| = N, we
first observe that (suppressing the argument in ¢):
2

1
[(Y(a) Gun(@) Vi) 2] < m Z aj (| (¥(a)> AG,E (050 T) ™ aiy) 1]

j=1

1 (Y G () QT 0,0 () ) ).

where &7 = a — e;. For the first term we use (A.16) with (2.23), while the for the second
term we also use (A.6), (2.23), and then (A.55) to find that

1
I

2
1
—[(W(a)s Gy ¥ia)) 2l < eMayl . 1 > )] 1 (5.10)
p i =

n
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Then since the surface tension term can be treated directly by integration by parts, we use
Young’s inequality to find that

> (U, QUU)U @) 12l € D b (Cays KiayCiay) 2l + = |(¢(a (@) (@) 2]

laJ=N Ia\ N
C
NU) + L2eN-1
< seEN W)+ SV,

for any Cy > 0. Then let Cy > C and use (5.7) with the definition of the modified energy
(5.5) to see that

1
5EN(U) < Efyw (U) < C,CEN(U).
Lastly, we will prove energy estimate (5.6) by considering two cases.

An energy estimate in the case k = 0. We first use (1.13) to make the decomposition

¢ = %gﬂ[ow + Ny (U)
Orp = —((1 =) = bo™192)¢ +eN(U),

where

Ni(U) = i(gu[ed — G0,

and
1 1
20 = o0

The decomposition emphasizes the terms of order ¢, while the linear terms are canceled by
our choice of the energy:

1d 7 7 1, 7 7
53 0) = (AFaC (1 =7) = bo 1 92)AT0) 1+ (AT0. G, 01AT)

10:) = (007 +4(267)?) ~ N(U)

= e(ATNI(U), (1 — ) — bo ' 02)AZ() ., + §<A%NQ<U>,9N[0}A%¢)L2
= A+ A2‘

For the estimate on A;, we use Plancherel’s identity, Cauchy-Schwarz inequality, and (3.22)
to find that

9
[Ar] < eClozy| 3 1A
Then to estimate 9,1, we use (5.9). Combining these estimates implies
|41 < eCcEN(U).

For the estimate on As, we integrate by parts and use the algebra property of H %(R) to
find that

€, _ € _

|4z] < “bo 1C10x¢] 7 1Gul0Ne] 7 + ;(IBMJ’IH;, 1009711 + V(O] 1)IGu[019], 1

where we recall the definition

1 Y(Gy [eCv™ + eudu(oy™)? — (G ¢y + ep0,C0, ¢+)2
NG vl =5, 0+ 10,07)
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To conclude, we simply use (B.1) to control %g# [0]¢), while for the remaining quantities we
use Corollary A.18 and estimates (A.40) with (5.9) to get that

02 3 + 10972 ¢ < Clowpl? 7 < CEN(U).

Moreover, to deal with the terms in N (U) we use the algebra property of H 3 (R), estimate
(A.42) to obtain

Y12 1 s 2 N
NI,z SC(HW I3 +#|w 5,3) < Clowyl, o < CE7(U),

where in the last estimate we argued as in (5.9) and used the assumption e,/u = bo~L.
Gathering all these estimates, we find that

%EO(U) < cceN(u). (5.11)

An energy estimate in the case 1 < k < N. We first derive an estimate on each Eo(U) de-
fined by (5.3) for 1 < || < N. To do so, we use the self-adjointness of Q(U) to find
that

1
77EQ(U) = §(U(a)7 (atQ(U))U(a))LZ + (atU(a)v Q(U)U(Q))L2
= B; + Bo.

Control of By. By definition of Q(U) given by (5.2), we find that
1 1
B, = 5([817 jﬂﬁ(U)}C(Q), g(a))[g + ﬂ ([8t7 g}¢(a)7 w(a))Lz
1 1 _
+ 5((&5&)((&)7 )2 + 5((@1))((&), A0) 1o
= B} + B + B} + B{.

For the estimate on B}, we have by definition and integration by parts that

Bi = %(Qaw (008)Clay) 2 + %O(%(a)» (01, Kle /1i02()] 0 () 12
= (U= (VD)) €leC (G [VHT)) 1
- %(1 - ’7)752#([[Ki]]c(a)v [&, @,L[s(:]] (C(OO [[Zi]]))m
_ B11,1 +Bll’2 +3117:5 +Bll’4.

For the estimate on B11 ’1, we have by definition of a given by (4.1) and estimates: Holder’s
inequality, Sobolev embedding with s > %, and (B.6) to find that

1B < S loraline G 3

< (0w e + 1V e |00 115) e 2

+e(|0fw s + [V 1010600 | 1) |Gy 72
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For 92w we can use that it also satisfies estimate (A.12) and use it with (A.42) and (A.40)
to find that

2
. -
07w [ <D 13 0{C 20; Pl
=1

Then estimate the time derivative of ) by using the definition of 1,y and argue as we did
for the estimate on (5.9) to find that

|8152¢|§‘15 < > |1/1(a)\2% +€@C(a)|jﬁ <ceN(u).
€EN? : [a|<N—1 i i
The same can be done for w~, and combine it (A.45) we conclude that
Bl < eceN(u).
For the estimate on B2, it only depends on 0iKl[e/10x¢] which is in L>(R). Indeed, it

follows from an estimate on /110,0;¢, where we let s > % and use the Sobolev embedding
and (2.4):

1
\/ﬁ'azatql{s S 7\9;%0\1{“1 S C|am¢|Hs+1.

As a result, we obtain by Holder’s inequality and the definition of the energy that
|B,?| < eCEN(U).
For the estimate on Bi’37 we use estimates (4.14), (4.24), and (4.21):
BY? < (1= 7)3ul(1+ VAIDD? (G V) 32
<eCEN(U).

Likewise, the estimate on B} we simply use (4.15) instead of (4.14) to obtain the same
bound and we deduce that
|Bl| < eCc&N(U).

Clearly, the estimates on B} and Bj is estimated similarly to B%"l, while we estimate B?
we have by direct computations that

|B7| < i([&:,g; () "), Yia)) 2 + i(g;(ju)_l(dju(atC))(ju)_lw(a)v1/’(&))[/2-
For the first term we use Proposition 3.6 of [8] with (2.23), while the for the second term
we also use (A.6), (2.23), and then (A.55) to find that
|B%| < eCcEN(U).
Collecting each estimate so far gives
|Bi| < eCEN(U).
Control of By. We use system (4.7) to find that
Bz = —(A[UJU(), QU)Uw) 1> — (BIU]U (), Q(U)U )
— (C[UJU (4, Q(U)U()) 12 + €((Ra, Sa)", Q(U)U () ;2
= By + B + B3 + Bj.
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Control of Bi. From Definition 4.1 and (5.2) we have that
(AUIU(), @1(U)Ug)) 1 = 0.
We may therefore decompose B} into two pieces:
By = —(A[U]U(4), Q2(U)U(y)) 2

= A(0) (G- Co) 12+ (V) (Gt A~ ) o
Both terms are estimated directly by (2.8) and then use (4.21):

B3| < j\/f|w(a)|H§ (a(U)\C(a)lHé + b(U)\AAC(a)lHé)

< M|1/)(a)|H% (£210C(ay |22 + b(U) (o £2)

< eCEN(U),

ol

where we used that £2 < 5(5\//7)% =¢ebo™z.
Control of B2. We first decompose B2 into four parts

B% = E(I[U} C((1)7 Jns [U] C(u))LQ - %(Z* [U]’[/)(a)a gp,z/)(u))LZ

+2a(U) (Z[U]¢(a): G(ay) g2 + €0(U) (Z[UJ¢(0), A () 12
=By + By + By + By

We first observe that the two last terms are easily treated with an estimate of the type
(4.11) to get that

|BZ3| + |B2*| < eCEN(U).

For the remaining two terms, we will need to work some more.
Control of Bg’l. Clearly, by (4.21) it is enough to prove that

2,1 N +
1By | < EN(U) (14 Vil lVF ] e K2 10 )- (5.12)
Since the quantities involved in this depend on (Q;)_l7 we need to adapt the proof of [50].
However, the proof relies on the symbolic expression of (ju)—l(g;)—laz, and this estimate
is provided in Corollary 3.8 which has the same outcome as the one in [50]. In particular,
we refer the reader to the proof of estimate (5.15) in this paper.

Control of By, This estimate is similar to estimate (5.16) in [50], but we give the details
here to account for the difference in G,;. In particular, we have by definition (4.3), that we
must provide an estimate on the terms

3 £ N
BS’Q = ; (K+8Tw(a)v guw(a))[g + ’Y; ([[Kiﬂair ((g,u ) lg;ﬂﬁ(a)) ) g/L¢(¢1))L2
_ Bg,?,l n 35,2,2.
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We let g = j;%b(a) and use the definition G,, = QIJN_l to find that

By* = = (Vr0:.7,9.9,59) .2

<

o
€ 3 —\—

= ;(K+8Ig> g;g)Lz - 7; (K+az(gu ) 1g/j—gv g:—g)Lz

_ B§,2,1,] +B§,2,1,2.

For the estimate on Bg‘Q’l"l, we use (A.10), combined with Sobolev embedding, (2.23), and
(A.45) to obtain,

22.1,1
[By©7] < 5M|Z+|leoc\9|?%
H“

< EM|K+|H2|'¢)(04)|2.%

i

<eceN(U).

For the estimate on B3> we let §j = (G.) "G (a) and use (A.27). It is then straight-
forward to obtain the desired bound using also (2.11):

13 - .
|B2*1 < W(z*awg, G 9) el
_1 ~
<ep MV gl
<eceN(U).

Lastly, for the estimate on B3> we let gf = (G,)'Gutb(a), and again use (A.27) with (2.4)
and (2.23):

€ -
B3| = 7;\([[?]]819”,9# ) |
_1 - _
<ep IM|(G,)'GHT, lw(a)@[%
<eCEN(U).
From these estimates, we conclude the bound on B3 where we find that
|B2| < eceN(U).

Control of B3. To get an estimate of order & we need to cancel the following term (when
k=N):

By = (C[UJU 4, Q1(U)U(y)) ;2 = = (A[U]U (o), Q(U)Uys)

2 = L2

We will cancel Bg’l later by introducing Q into the energy (see Remark 5.1). Therefore, we
may decompose (B§ — Bg’l) into two parts:
. 1 1 _
(BS - By') = SO G ) g2+ 0O (G ia A ) 12

= BY® + BY®.
However, these terms are easily dealt with using estimates on g; and (Jy)*1 (similar to
(5.10)) and that e < bo~ % to obtain

By | + B3| < cCEN(U).
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Control of B3. For Bj we have to estimate the following terms,
By = &(Ra 305[U)C(w) 2+ (S o)
+ea(U)(Ra: ((w)) 12 + €b(U) (Ray, A ¢(w)) 12
For the first term, we use (4.17) and (4.8) to obtain,
e|(Ra, Is[UJ¢ () 12| < gcgl(U)\Ram;bo <eCEN(U).
For the second term is treated by (2.8), (4.8), and (4.21) to get

3
;I(Sa,gmb(a))pl < 5M|Sa‘H%|1/’(a)‘H% < 5O‘€N(U)-

The remaining two estimates satisfy the same upper bound, and so gathering all these
estimates, we find that
1d
5 g7 Fa(U) = B <eceN(U). (5.13)

As pointed out above, we need to cancel Bi”l and is done by modifying the energy by

1d

~ 1
Edt( Q( )U(a ) = 2( (atQ( )) ) ('A[U} ( )U(a )
— (B[UJU(4), Q(U)U ) 1o — (C[U} Q( U)U) ;.
E((Ron SQ)T7 Q(U)U<d>)L2
=Dy + Dy + D3 + Dj + Dj.
Where we observe that D3 = fBS 1 and gives the desired cancellation (when k = N), while

the remaining terms are treated as above and satisfy
|D1| + D3| + D3| + | D3| < CEV(U).
We therefore find that
1d -
537 (Ba(U) + (Ui QUIU ) 1. ) < cceN (), (5.14)
where we recall that Q@ = 0 when |a] < N.

Proof of estimate (5.6). To conclude, we use (5.11) combined with (5.14) where we sum over
0 < |a| < N and then apply estimate (5.8) to find that
1d
2dt

— ENow(U) < eCENw(U).

6. PROOF OF THEOREM 1.7

The strategy for the proof of Theorem 1.7 is classical, and we refer the reader to [51]
Chapter 4 for a detailed proof in the case of the water waves equations. See also Chapter
9 in the same book in the case of the water waves equations with surface tension. We will
now give the main steps involved.
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Proof. The first step is to regularize the internal water waves equations (1.13), and use the
Fixed Point Theorem to deduce the existence of a solution. In fact, the solution is smooth.
However, the existence time depends on the regularization parameter and shrinks to zero
when taking the limit. To extend the existence time, we verify non-cavitatation condition
and the stability criteria on a long-time scale using the Fundamental Theorem of Calculus.
Then one applies Proposition 5.2 and uses compactness to deduce a limit.

For uniqueness, one needs to have an estimate of the difference between two solutions,
which can be proved with estimates similar to the ones used for the proof of Proposition
5.2. d

7. PROOF OF THEOREM 1.14

Since the long-time well-posedness of the unidirectional model (1.25) is classical (see
Remark 1.16) we only give the proof for (1.27). The strategy of the proof is the same as
for (1.13). It relies on the energy method, where we need to find a suitable symmetrizer for
the system. For simplicity, let U = (¢,v)T, and we write (1.27) on the compact form:

U+ M(U)U =0, (7.1)
with
M) = ([, 5, (TP, v

where h = 1+ e(. To define an energy, we introduce the symmetrizer

_ (A=) 0
Q(U)*( 0 (h—fytanh(\/ﬁ|D|)))' (7.3)

Then the energy associated with the weakly dispersive BO system (1.27) can be written as
E%OS(U) = (ASU7 Q(U)ASU)LQ

We will use this energy to deduce a bound on the solutions of (7.2). As noted in the proof
Theorem 1.7, this is not enough. One also needs a uniqueness type estimate to establish
the well-posedness with the energy method. This estimate is derived similarly, but since
we will need it for the proof of the full justification, we also state it in the next result. For
convenience, we let two solutions of (7.2) be given by Uy = ({1,v1)7 and Uy = (2, v9)T
where we define (1, w) = (¢; — (2, u1 — ug). Then W = (n, w)T solves

HW + M(U,D)W =F, (7.4)
with M defined as in (7.2) and the source term is given by
F = —(M(Uy) — M(Uy)) Us. (7.5)
The energy associated to (7.4) is given in terms of the symmetrizer Q(U;) defined in (7.3)
and reads
Eo. (W) = (JSW, Q(U])JSW)LZ. (7.6)
From these energies, we have the following a priori estimate and an estimate on the
difference between two solutions.
Proposition 7.1. Let ¢,p,7 € (0,1), s > 3, and (¢,v) € C([0,T]; H*(R) x H*(R)) be a
solution to (7.1) on a time interval [0,T] for some T > 0. Moreover, assume that (1.24)
holds uniformly in time and define K(s) = Cl(h;&n_’77 [(C,v)|Hsxms) > 0. Then, for the

energy given in Definition 5.4, there holds,
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1. For all0 <t < T, we have that

€ Bpou(U) < <K (5),(U). (77)
2. For all0 <t < T, there exist Co > 0 such that
Co (G rxms < Epou(U) < Col(C0)3gowrs- (7.8)

Moreover, let (¢1,v1), (C1,v1) € C([0,T]; H¥(R) x H*(R)) be solutions to (7.1) on a time
interval [0, T] and satisfying the condition (1.24) uniformly in time. Define the difference
to be W = (n,w) = ({1 — Co,v1 — v2) and let K(s) = Cii(h;liln,w [(Giyvi)|gsscms) > 0 for
i =1,2. Then, for the energy defined by (7.6), there holds

3. For all0 <t < T, we have that

d~0

&EB()S(W) < eK(5)ERo(W). (7.9)
4. For all 0 <t <T, we have that
d - _ -
B, (W) < eR (s + 1) Bjo, (W), (7.10)
5. For all0 <t <T andr > 0, there exist C'5 > 0 such that
Cs |, w) 3w < Epog(W) < Cs| (0, w) T - (7.11)

Remark 7.2. In estimate (7.10), we observe that there is a loss of derivative. This is not
sufficient for the proof of the continuous dependence with respect to initial data. In fact,
one would have to refine this estimate using a Bona-Smith argument [16]. Since we are not
concerned with the details of the well-posedness of this system, we simply allow this rough
estimate and use it to deduce a the convergence estimate when comparing its solution with
the ones of the internal water waves system.

Proof of Proposition 7.1. The proof of point 3 — 5 is similar to the proof of the first two
points. We will therefore only prove (7.7) and (7.8).
We first prove estimate (7.8). By definition, we have that

Bo.(U) = (1= 7)|A%C[72 + (A, (h — v tanh(y/i[D]))A™) 1.
Then, as a result of the y-dependent surface condition (1.24) and Plancherel’s identity
(Asv, (h— vtanh(\ﬂ|D|))A5v)L2 > hminﬁ|v\12qs,

since 0 < tanh(,/u[¢]) < 1. The reverse inequality is a consequence of Hélder’s inequality,
the Sobolev embedding with s > %:

E}o.(U) < [¢lFs + [y/tanh(y/alD)olFs + (1 +el¢[z=) o[
< K(5)|(¢0) Fespre-
Next, we prove (7.7). By using (7.1) and the fact that Q(U) is self-adjoint, we compute

1d

53 Box(U) = —(A"M(U)U, QU)A'U) ., + %(ASU, (3:Q(U))A*U) ,

=—-I+1I
Control of I. We may write
I = ([A*, M(U)]U, QU)A*U) ,, + (QU)M(U)A'U, A*U) ,
=1L+ Is.
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Control of I;. It follows from the Cauchy-Schwarz inequality that
1| < [[A%, M(U)]U| 2| Q(U)A*U 2,
where the first term is treated using the commutator estimate (B.8) yields
[A®, M(U)JU| 2 < €|[A®, v]0xC| 12 + €][A®, (JOpv] 2 + €][A%, 0] Oy 0] 12
< eK(s)|(C,v)|Hsxms-
The second term is easily treated by Holder’s inequality, the Sobolev embedding with s > %:
|QMU)A* U2 S [A°Clr2 + elClzoe | A%v[ 2 < K()[(C, 0)| s xrs-
The desired bound on I then follows:
|| < eK($)[(C,0) 7o xo-
Control of I. By definition, we must estimate the following terms,
(Q(U, D)M(U)A*U, A*U)
= (1= )e(v0:A¢, A%C) 1, + (1= 7)((h — y tanh(/ED])) 2, A", AC)
+ (1 =) ((h — ~ tanh(y/ulD|))0:A°C, A*v) ;5 + ((h — v tanh(/u[D]))A%v, A*v)
=N+B+B+1.
Control of I}. Using integration by part and the Sobolev embedding yields
[ < (1= )5 (00 AC) 1] < SR (5)I(C,0) e
Control of I} + I?. Observe, after integration by parts that
I = —I} — e((0:0) A%, A%V) .
The first term cancels with I?, while the Sobolev embedding easily controls the remaining

part,
el ()N, A0) 1| < eK(9)I(C,0) [Frs -

Control of II. Using equation (7.1) gives us the following terms to estimate,
IT = (A, (8iQ)A*v) 2
=—e(A%, ((h— 'ytanh(\m|D|))8Iv)ASv)L2 —e? (A®v, (8z(§v))A5v)L2.

Consequently, the desired estimate follows from Holder’s inequality and the Sobolev em-
bedding

1] < eK(5)[(C, 0) 7o waro- (7.12)

Adding together all the estimates, combined with (7.8) yields,
€ Bio,(U) < oK (5) B, (U),
and completes the proof of Proposition 7.1.
O

Proof of Theorem 1.14. The proof is an application of the energy method where we use

the estimates in Proposition 7.1 and Remark 7.2. We refer the reader to [64] for a similar

proof. O
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8. PROOF OF THEOREM 1.17

For the derivation of (1.1), we follow the strategy given in [15], where we formulated
(1.13) in terms of the (¢, v) solving system (1.22). The convenience of this formulation is
apparent since we can use the shallow water expansion of g; derived by Emerald in [24}4:

|g; [e¢]vt — 8x(— (1 4+ eQ)T(D)Ipyp ™) s < u2eM (s + 3)|0p00 | o+, (8.2)

where T(D) = % and for s > 0. Finally, the last ingredient before we turn to the

proof is an expansion of the interface operator defined by (1.19).

Proposition 8.1. Lettg > 1, s > 0, and ¢ € H*+3(R) such that it satisfies (1.14). Then
for all y+ € H*t4(R) there holds,

H[eClot + ValDIopt| 1 < (13 + Vie)M(s + 3)0:0 oo, (8.3)

Remark 8.2. The expansion of H,[eC] is the same as the one mentioned in [15] (see Remark
20 of this paper). Even though the expansion they gave was formal, it is straightforward to
adapt their method in finite depth to the current configuration.

Proof of Proposition 8.1. The proof relies on making an approximate solution of ¢~ = &~ o
¥~ solving (1.20). In particular, we know that

Gapp = —V/H[Dle™*VEPlyT,
solves
{(uaz +02) iy =0, )
azd);pp [e=0 = _#83¢+7 .
and satisfies the decay estimates (2.14) by using Plancherel’s identity. Then defining the
difference u = ¢~ — ¢, we have that it solves

Vh. - P(E7)VE u=eur; in S
9y uls=o = G [eCIYT + pdipt +epra,  lim [VEu| =0,
Z—00
where rq reads
= 8z((azg)az¢;pp) + (8z<)6waz¢;pp - 5/1(390()2822@25;@7
and the second rest is given by
r2 = (3xC)3x</)+ + 5#(6x<)2|D|w+~
Then arguing similarly as in Step 2. of the proof of Proposition 2.4, we find that
[A*VE ullp2(s—y < M (pel|Ari||p2(s—) + |G, [eCI0T + pdi ™ | us + pelra|ms).

For the estimate on r; we use (3.8) to deal with the integrability on S~, while the estimate
for ry is straightforward since we allow for loss of derivatives. Lastly, we use (8.1) to
approximate g;. From these estimates, we get the following bound on the gradient

IASDE Ll pa(smy < (1 + ) Da s,

4The classical expansion of g,f is provided by Proposition 3.8 in [8]:

1G5 eI = 0 (= (1 + €00 ) [ < WP M(s + 3)]0ats™ | ros. (8.1)
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To conclude, we use trace estimate (2.15) and the construction to find that
\8zu|Z:0|Hk% < |u|Z:0|IfIs+%
_1
SpE AV ullpas-)

< (12 + /39)|0a ™ e

Having these two expansions at hand, we can turn to the main proof of the section.

Proof of Theorem 1.17. We first observe that we can have bound on v = 9,% in terms of
the intial data. Indeed, using the definition of ¢, with (B.6) and (A.42) yields,

|0x9)] vy < WHLH% < Y Yl 3 +5|w<(a)|H§

5 =

a€eN? : |a|<N "
< Y \w@lg% + MY el
a€eN? : |a|<N "
< cEN ).
Then Theorem 1.7 with estimate (1.18) implies
] 2 2 <cEN ). 8.5
e (K g vl ) < OV (85)

With this estimate in mind, we now give the proof in two steps where we first derive (1.17)
in the sense of consistency.

Step 1. To derive (1.17) we let R be some generic function satisfying
|R|gnv—s < C(EN(U)). (8.6)

Then we can simplify (1.22). In particular, for the second equation in (1.13), we first
estimate the nonlinear terms. For N[e¢,¢*] we apply estimates (B.6), (A.25), (A.7), and
(1.18) to obtain,

INTe¢, ¢ v s < nC(EN (Ug)).
For the first equation, we use (8.2), and we have that
—192 2 9 (8.7)
aﬂ} + ((1 - 7) —bo 81)(91( + %az((az¢+) - V(HM[EC]w+) ) = ,usR,
To relate the equation to v, we observe by (8.3) that
Outy" = YH,[e]v" + v
3
= —/uD[" + v+ (u2 + /)R
3
= (1 =v/uDNv + (u2 + Vue)R.

From this relation, we can express the first equation in terms of ¢ and v also using the
expansions of G,I given by (8.2) and the expansion of T(D):

[(T(D) = 1) f[as < pCloxf
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which is a direct consequence of Plancherel’s identity and a Taylor expansion in low fre-
quencies. Indeed, from these observations there holds,

RTD)YT + £0,(¢0,T(D)Y™) = (1 — v4/|D|T(D))yv + €0, (Cv)
+ (p+ev/p+ep)R.
For the second equation, we have that
(0:4T)2 = v* — 20/ D|v + uR,
and
(H,[eC]yt)? = pR.
Consequently, if we let bo™! = e,/ we find the desired system

¢ + (1 — ytanh(/u[D]))0pv + €05 (Cv) = (n + e/B)R
O 4 (1 = 7)02C 4 evdv = (1 + y/B) R.

wBO

Step 2. To derive (1.25) we can make an approximation v in terms of ¢(“B© at order

O(p+€?) solving (1.25). Then we will show that this solution is consistent with the weakly
dispersive BO system (1.27). The proof is given in two steps, where we first make formal
computations and then prove the consistency once we have constructed v"2°. To simplify
the presentation further, we let ¢ = (1 — 'y)% and introduce the change of variable z = cZ
and v = ¢¥ to obtain:

0:¢ + (1 — v tanh(y/p|D|))0z0 + €0z (¢0) = 0

00 + 0zC + €00z0 = 0.

For simplicity, we also omit the tilde notation in the proof.

Step 2.1. Formal derivation: To construct the lowest order approximation of v"B© in terms

of the solution (“B®, we let \/z = O(e) and first consider system (1.27) at order e:

aiCWBO + amUWBO =0
8t’UWBO + 8/ICWBO =0.

The system is reduced to a wave equation with speed one. We therefore choose the right-
moving solution where v"EO is equal to ("BO at first order. Then having an approximation
at first order we can now make a correction at higher order:

UWBO — CWBO+\//.7A+€B7

for some functions A and B depending on the solution ¢(¥B©. In particular, we construct A
and B by plugging the ansatz into (1.27):

CVBO + 0,¢VBO + (\/10x A — ytanh(,/a|D])0,CVEC) + (0B + 95((¢*B°)?)) =0
OCVPO + 0,CPO + B A + (0B + ¢VPO0,(PO) = 0.

Now using the transport equations to see that 9,4 = —9;A and 9, B = —9;B (up to an
order O(e + /)), we find the equations:

2,/10, A = ~ tanh(\/zz|D|)) 05 B
2aTB — _CWBOarCWBO~
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We therefore let vWB© be given by
0"P0 = (14 2 tanh(yE|D]))C — Z(¢"F)2. (8.8)
Step 2.2. Rigorous derivation: For any ((o,vo) € HN*%(R) X HN*%(R) where vy satisfies
v = (1+ 2 tanh(y/AD[))¢o — 3 (G0)%

then there is a time 77 > 0 and a unique solution (*®° € C([0,e7'T1] : HN*%(R))
associated to (p solving the equation

B¢ + (1 =  tanh(y/AID])2C" + %chOazngo -0,

Moreover, we can define v"B° € C([0,e71TY] : HN_%(R)) by (8.8). Then by Plancherel’s
identity and a Taylor expansion:
3
|tanh(V/al€))f — VElE|flms < nzClO3 S, (8.9)

we deduce from (1.26) that

CVBO + (1 — ytanh(,/f|D|)) 0,0V EC + €0, (CVBOWEO) = (u+e/m+ 2R

at,UWBO + amaBO + vaBOal‘vaO — (/‘L + E\/ﬁ + €2)]%7
for R satisfying (8.6). Now, rescaling the equation back to its original variables concludes

the proof of this step.

Step 3. For the consistency result in the case of the BO equation we simply use (8.9).
O

9. PROOF OF THEOREM 1.18

Proof. First, we let N > 7 and take initial data ({o,10) satisfying the assumptions of
Theorem 1.7. Then using (8.5), we can define the solutions of the internal water waves
equations (1.22) with variables

(¢v) € C([0.e7 Tl HN 73 (R) x HY 3 (R)),
from the data (o, O%0) € HN*%(R) X HN*%(R) for some 77 > 0. Next, we use Theorem
1.17 and the matrix notation (7.2) to say that on the same time interval the functions
U = (¢,v)7 solves
U+ M(UU = (u+H)(R,R)T,

for any ¢ € [0,e717}] and where the rest satisfies

|Rlgv-s < C(EN (Uo)).
We will now use this to prove estimates (1.30), (1.31), and (1.31) in three separate steps.
Step 1. Proof of estimate (1.30). We take the same data ((o,vo) with vg = 9519, and use
Theorem 1.27 to deduce the existence of Ty > 0 such that

U0 = (PO, 07%) € C([0, 7 Ta); HY 73 (R) x HY T (R)),

solves system (7.1):

8tUBOS + M(UBOS)UBOS — 07
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for any t € [0,e71T,]. We may now take the difference between the two solutions
W = (n,w)? = U - UB%,
to find that
W + M(U)W =F + (u+e*)(R, R)",
for any ¢ € [0,e ! min{T}, T>}] where F is defined by (7.5). Then using the estimate (7.10)
with N —5 > % and adding the rest term we find that

%EM(vv) < (n+ )| (AN (R R)T, QUNAN W) | + K (N — 4BV -5 (W).

Furthermore, by definition of Q(Uy), the Holder inequality, the Sobolev embedding, and
(7.11) we obtain

S By (W) < (u+ )0 (Un) (B_5(W))? + K (N — ) By 5(W).

Then Gronwall’s inequality and (7.11) yields

|00 sz < (a4 €)C(EN (Up))e KN,
Finally, we observe that

eK(N — 4)t < CEN(Ug) min{Ty, To},

and use it together with the embedding HV~°(R) < L>®(R) for N > 7 to find:

U — U oo 0,0m) S 11 W)| oo (0,41 155 x 11V -5

< (4 -+ eyMICEY (Uy)),

for all ¢ € [0, min{T},T2}]. This completes the proof of estimate (1.30).

Step 2. Proof of estimate (1.30). By Theorem 1.27 we deduce the existence of T3 > 0 such
that .
¢"BO € 0([0,e T3] HN 2 (R)),

solves (1.25) and from it we define
0" = (14 2 tanh(y|D[))C — Z(C"O)2.

Moreover, by estimate (1.26) we have that

sup l(CwBO7 ’UWBO)|
t€[0,e1T3]

Then if we define UBC = (¢¥BO y"BO)T e can use Theorem 1.17 and argue as above to
find that

[U — UYL (ogim) < [U = UP% Lo (oim) + U = UM Lo (0 41m)
< wtC(EN(Uo)),
for all t € [0,e~! min{Ty, Ts, T3}].

_1 _1
HN-2xHN"2

< C('CO|HN—%)'

Step 3. Proof of estimate (1.30). Let T = min{T},T5,T3}. Then from the data ¢y €

HN_é(]R) there exist a unique solution ¢ € C([0,e17T7; HN_%(]R)) that is bounded by
its initial data. Moreover, by Theorem 1.17 the solution satisfies

9¢P0 +c(1 - %tanh(\/ﬁ|D|))8z§Bo + C%CBO&C(BO = uR.
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Then if we define the difference 7j = (VB — ¢BP) it is straightforward to deduce that
1d
2dt

The result is then a direct consequence of Grénwall’s inequality and the previous steps. [

1713755 < eC(ICo| grv-a) il 3yn—s + 1| R| grx—s| il grv—s.
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APPENDIX A. PROPERTIES OF THE DIRICHLET-NEUMANN OPERATORS

In this section we will give several results on G[e¢] and G,[¢¢]. Then we will use these
results to share some details on the proof Proposition 4.2. But as we will shortly see, the
main quantities in (1.13) can be estimated in terms of the principal unknown (¢, 1) where
the estimates are very similar to the ones in [50]. We will therefore give more details when
there is a difference, and when the estimates are the same, we will simply refer to the results
in [50].

A.1. Properties of Ql'f. We start this section by giving a precise definition of the positive
Dirichlet-Neumann operator gj[.

.3
Definition A.1. Let tg > 1, v € HZ(R), and ( € H*2(R) be such that (1.14) is
satisfied. Let ®* be the unique solution in HQ(Qt*) of the boundary value problem

AL ®T =0 in QF
Ot =t on z=¢(
0,0t =0 on z=-—1,

then G eyt € H3 (R) is defined by
g;:[gdq/fF = (az@+ - /LEazCaz(I)+)|Z=5§~

Remark A.2. Under the provisions of Definition A.1 and let ¢+ = ® o B+ where ¥ is
the diffeomorphisim from the fived domain St onto Q given in Definition 1.20, then we
have that

Vi P(ET)Vh.0t =0 in St
ot =yt on z=0, (A1)
85+¢+ =0 on z=-—1,

where
" =e. P(ST)VE_.
Moreover, we have an equivalent expression of GV[C|Y™ given by

G leClu™ = 0 ¢t .o (A.2)
60



Remark A.3. For e = 0 we have that GT becomes
G, [0]v™ = \/u|D| tanh(y/u[D[)y". (A.3)

Next, we will state several results on the Dirichlet-Neumann operator that are taken from

51, 50].

Proposition A.4. Let tg > 3, s € [0,tg + 1] and ¢ € H"T2(R) be such that (1.14) is
satisfied. Then we have the following properties:

Cstl
1. Foryt € HZ+2 (R) there is a (variational) solution of (A.1) satisfying the estimates

\//7W+|Hs+; < M|A*VE 67 || L2(s+), (A4)
,‘
and
[A°VE ¢ | 2(s+) < \/ﬁM|1/}+|Hs+%' (A.5)
w
2. We may extend definition A.1 for
s+%

GyleC) Hy 2 (R) — H 2 (R),
ol
where for all 1,19 € HM-*—2 (R), there holds,
/ 1G [eC]r do = / Vh_¢f - PH(ET)VE 65 dade.
R S+

. 1
3. For all 05 € H;, 2(R), there holds,

(AS¢17 Asg: [€CW2)L2 < uM | sty |2 Sstg (A.6)
H, ",
1
4. For yt € Hi+2(R) the following estimates hold
3 3
Vs € [O,to + 5] ‘g;[&d’dﬁL‘HSf% < #4]\/[|w‘Hi+§7 (A7)
Vs €[0,t0+1], |G [eCvT] .y < Ml (A.8)
Dl sl
5. For all y € H, *(R) and ¢y € H;, *(R), there holds
(18%, G [=CT]on, A% 1o < oMbl .yl oy (4.9)
I W
1
6. For all V € HtY(R) and v* € Hj (R) there holds,
1
(Vowu™), EQI[ECW*)LQ < MVl g (A.10)
13

Remark A.5. The reqularity on ¢ here is not optimal. Specifically, the dependence on
[C|grto+2 in the definition of M can be lowered in the estimates above. However, we do
not give these estimates since we will in other instances require more regularity on the free
surface (as an example, see estimate (3.3)).

Remark A.6. The last estimate (A.9) is taken from [50] (see equation number (2.24)).
However, in (2.24), there is an € missing due to a typo and has been added here [52].

The next result concerns the shape derivative of G} The result is found in [51, 50].

Proposition A.7. Let tg > 3, s € [0,to + 1], and for any ( € HF2(R) satisfying (1.14)
we have the following properties:
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eql
1. Fory* € HHJr2 (R) the shape derivative of g; [e¢] at ¢ € HYWH2(R) in the direction
of h € HYF2(R) is given by the formula
deGyr ] (Y™ = —eG [e] (hw™) — epdy (WVF). (A.11)
2. For all0 <s<ty+1, 7 >1 there holds

. o J
G, ) wrt ]y < i M T [

m=1

Hrnax{s,tg}+l|w+|H‘i+%- (A.12)
sgl
3. Forall0<s<ty+ %, j>1, and T € H;Jrz (R), there holds,

J
‘djgg: {gd(h)"/ﬁ»‘Hk% <euM H |h’"1|Hmax{s+%,lo}+1 ‘w+|HZ+1~ (A.13)
m=1

4. Forall0<s<ty+3,j>1,¢" € H;Tax{s’tO}H(R), there holds,

i
|G [Ty < EuMbyl oy T o o033 9] mactonto 1 (A.14)
m#k
. maxfst ]
5. For all0 < s <tg, j>1, v+ e Ay Ry there hoids,

J
‘dég:[gd(h)"/)ﬂHk% < &l puM|hy| s H ‘hm|Hmax{s+%.t0}+%‘w+|Hmax(s+%,t0}+l' (A.15)
m#k s

st
6. Forall0 <s<tg+1,j7>1, 91,99 € HTQ(R), there holds,

J
[(A* &G, [e¢)()or, A*2) o] < &M ] 1] prmactoor 1]

m=1

. A.16
el ey (A0)

H°T2

1
. 5+§

7. For for all0< s <to+3, j > 1, ¢y € HY™ O R) vy € HT2(R), there holds,

J
(A0 G o€ (m)obr, A%) o] < Pl vy TT Vol ooy 3 1t st coron 2]
m#l

Tl
(A.17)
A.2. Properties of G, . In this section will define and give the main properties of the

negative Dirichlet-Neumann operator.

Definition A.8. Letty > 1,9 € H%(R), and ¢ € HWF2(R) be such that (1.14) is satisfied.
Let ®~ be the unique solution in H?(Q;) of the boundary value problem

AL ®™ =0 in

- =) on z=¢e(,
then G [eCly™ € H%(R) is defined by

G, leCly™ = (0:27 — ep0oC0pP7)|o=ec- (A.18)

Remark A.9. As noted in Remark 3.50 (2) in [51], we can define the negative Dirichlet-
Neumann operator by formula (A.18) (or formula (A.21) below) for ¢~ € Ifls‘L%(R) ifto > %
and s > max{0,1 — to}, where the restriction is a consequence of (B.6). We therefore put

to > 1 for simplicity.
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Remark A.10. The scaling for G, [eC] is different from the one used in [51], where the
author used the scaling natural for infinite depth. In that case one would change p = 1
and € by e = 5. In our case, the internal water wave model depends on both scales and is

explained in detail in Subsection 1.2.1.
Remark A.11. For ¢ = 0 we have that g; becomes
G, (00~ = V/ADIG. (A.19)

Remark A.12. Under the provisions of Definition A.8 and let ¢~ = ® o £~ where ¥7F is
the diffeomorphisim from the fized domain S~ onto Q given in Definition 1.20, then we
have that

o \TH_p— — ; -
Vjc,z P(E )VI,z¢ 0 m S (AQO)
o =1 on z=0,
and we have an equivalent expression of G, [eCly™ given by
G [eC™ = 8y ¢ |om, (A.21)

where OF = e, - P(X7)V4 2.
Here we use the results in [51] adapted to the current scaling.

Proposition A.13. Let tg > 1, s € [0,t9 + 1] and ¢ € HOF%(R) be such that (1.14) s
satisfied. We have the following properties:

1. Fory € IOJH%(R) there is a (variational) solution of (A.1) satisfying the estimate

VY] oy S M|AVE 67 [ 12(s-), (A.22)
and )
IASVE 67 n2(s-) S piMIYT]opy - (A.23)
2. By remark A.9 we may extend Definition A.8 for
GuleCl s B2 (R) » H 2 (R),
where for all Y, € fIH%(R), there holds,
/ 1Gy [eCln da = —/ Vi 1 P (S7)VE ¢y dadz.
R S—
3. For all 1,15 € H* 2 (R), there holds,
(ASTﬂh Asg; [5CW2)L2 < \/ﬁ]vf‘lﬁlbjlwr% W?\FIH% . (A24)
4. For ¢y~ € ﬁ[s+%(R) the following estimates hold
G Qg < VAMIY ey (A.25)
5. For all ¢y € H*"3(R) and 15 € H*"2(R), there holds,
([A° Gy leCl]n, A%2) 1o < e/M|thn] oy |2l oy - (A.26)
6. For all V € HOTY(R) and ¢~ € H%(R) there holds,
1 - 1 -
(VO7), G [eqly7) 2 < 12 MIVwae [0 (A.27)
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Remark A.14. If we compare the estimates for g,j with the ones above, we note that there
is a \/p missing. However, this is a simple consequence of the functional setting where there
is an additional gain in @ from the observation that

N
VAIEltanh( R ~ i s

Remark A.15. The inequality (A.26) is a direct extension of inequality (2.24) in [50].
While the last inequality (A.27) is the extension of Proposition 3.30 in [51] to infinite depth.
The extension is straightforward and is explained on page 88 of this book.

Lastly, we will need a shape derivative formula for G, and estimates on higher order
shape derivatives [51]:

Proposition A.16. Let tg > 1, s € [0,t9 + 1], and take ¢ € H"*2%(R). Then we have the
following properties:

1. Fory~ € I—BI”%(R) the shape derivative of G;[e(] at ¢ € H"* 2(R) in the direction
of h € HYF2(R) is given by the formula
deG,, [C(h)Y™ = =G, [eC](hw™) — epda(hV 7). (A.28)
2. Forall0<s<ty+1,7>1and ¢1,¢q € IfIs"'%(R), there holds,
J
<é \/ﬁM H ‘hm|HmaX(S)io)+1 ‘w1|1{[s+% W}Q‘ﬁ”% . (A~29)

m=1

3. Forall0<s<to+31, j>1 € ﬁ[m“{""’tOH%(R)?wg € Ifl‘**%(R), there holds,

|(A°dG, (] (h)eor, AY2)

i
[(A*d7Gy; [eC)()vor, A*2) o] < /M bl oy l;ll 1 ymato.to)+ 3 191 grmaxtonoy 1 [¥a] goss -
(A.30)

A.3. Corollaries from the results in Section 2. We will give an important gener-
alization of Proposition 2.4 where we prove that we can trade Q,f with any operator

Op(4) : X — HS*%(R) satisfying
[(A*Op(A) f1,A%f2) 2| < MMa(fi)Vilfel 4ory (A.31)

where M4(%)) is some positive number defined by the norm on X. This can be seen from
Step 1.1 in the proof, which is the only place where we use that (g;)*l is composed with
gj. We have the following result.

Corollary A.17. Let tg > 1, s € [0,tp + 1], and ¢ € H"F2(R) be such that (1.14) is
satisfied. Then for f € Z(R) and Op(A) satisfying condition (A.31), the mapping

X - H3(R)

A.
F o (G Op(A)f (4.32)

(G [e¢))~'Op(4) - {

is well-defined and satisfies
(G [eC) M OP(A) f1 vy < MMa(S). (A.33)

Moreover, we have the particular cases of Op(A):
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1. If Op(A) = 0y, then X = IfIS*%(]R) and there holds,
- _1
(G eC) ™ 0u vy < HTAMIF .y (A31)

. sl
2. If Op(A) = dlG;i[eC] for j > 1, then X = I, *

HYY2(R) there holds,

(R) and for h = (hy,...,hj) €

. .1 ]
G, () T G ()1 vy < &t M T hunl ronssts o111 (A.35)

m=1

and for X = H;Tax{s’tO}Jrl(R) there holds,

1
os5+5 0
Hy,

J
— 147 21
G, () G (U1 vy < & MIbkl oy TT 1Pl mactesgro 1] jmastataiae (A:36)
m#k
3. If Op(A) = d'G, [e¢] for j > 1, then X = H**3(R) and for h = (h1,...h;) €
HP+2(R)7 there holds,

) ] J
(G5 () G (21 vy < &M T I gpmostosor i f]

m=1

and for X = H™{s10}+1(R) there holds,

1
o s+
2
H,

J
(G TeC) G I ey < MUl vy TT Vel ooy g [ ligmotosmrn (A38)

Proof. As explained above, we only need to consider the specific cases of Op(A). Moreover,
since we have (A.33) at hand, we simply verify inequality (A.31) and identify the constant
Ma(fr).

Step 1. For the proof of (A.34) we use that d, = —H|D|, where H is the Hilbert transform
and then use Plancherel’s identity together with Cauchy-Schwarz inequality to deduce the
bound

[(A*0uf1, A% fa) | < M|f1|1515+%\f2\ﬁ5+%-

Step 2. For the proof of (A.35), we use estimate (A.16) and(B.3) to get the estimate

J
(G ) 1, A L) o] < uMIA] g1l ey TT ooy
® H m=1

J
i3
<M ey ol goey TT mlgmestecorn-

m=1

While the proof of (A.36) is obtained by (A.17).

Step 3. This step is a direct consequence of estimates (A.29) and (A.30), where estimate
(A.29) implies

j
|(A*d’G, [eC](h) f1, A f2) ] < VM| fil oy fol fory T 1 gymasto.cor -

m=1
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A.4. Basic definitions. We start this section by defining the main quantities involved in
(1.13) and relating them to the primary variables ({, ).

Corollary A.18. Lettg > 1, s € [0,t9+1] , and ¢ € HF2(R) satisfying (1.14). Moreover
define * as in Remark 2.11 and as the trace of ¢* satisfying (2.21). Then there holds:

1. The tangential velocity is given by the mapping
: s+% s—1
v g e 2R = I (R) (A.39)
() > Opp*
is well-defined and satisfies
Vs € 0,0+ 1], Vjflues < M|0olse. (A.40)

2. The horizontal component of the velocity is given by the mappings

. 1
L ET®) - EER)

w + + + (A.41)
G [eCp™ +epd: (0t
’(/) = = 1+e2u(02¢)2 ’
is well-defined and satisfies
3
s € [0,t0+ 1], @ink% < “4M|w‘f’1§*%’ (A.42)
and
1
s€0,to+ 5]7 |wi,¢]‘]~[5*% < 'LL]W|1/)|H§+1. (A.43)
3. The vertical component of the velocity is given by the mappings
s s+d _1
vE Hy, *(R) — H"2(R) (A.44)
¥ - ViE — e(w* )0,
is well-defined and satisfies
1
s €1[0,t0 + 5]7 VE s < M|023)| s (A.45)

Proof. We prove each point in separate steps.

Step 1. For V‘T we will use formula ¢ = (7,) 14 and tn Proposition 2.10 with estimate
(2.23) to get

Ve < MU0y M)y
< M9,

Hs.

For V" we use formula ¢~ = (G,)"'Gf¢*, then Proposition 2.4 with estimate (2.12), and
the above estimates to deduce:

Vi L = 10 ((Gule€]) ™G5 €0 e < MOt e < M0t
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Step 2. We consider the first estimate of w™, where we use estimate (A.7), the product
estimates (B.6) and definition of ¢ with (2.23) to get:

+| < |g;j- [EC]WI L+ /’LE|81<‘Hmax{t0,57%) |811/’+|H37%

H°" 2
< piMyt|
H,

st d
u

W™ o-g

3
< uiM .
<pu W'H;*%

+

For the second estimate on w™, we argue similarly using (A.8) instead of (A.7).

For w™ we first use the definition of ¢~ = (G,/)~'G,F4" and apply the same estimates,
combined with (2.11):
<G IECHEH ey + IO st oy 105 (G5 12D TG CT) oy

< PAM| .,y +enM|(Gy [e¢)) TG [eCIv |

lw™| -1

Hff% 3
3
< “4M|¢‘Hj*%'

For the second estimate on w™, we argue as above, where we use (A.8) instead of (A.7).

Step 3. We prove first (A.45). For the first part of V* we use estimates (A.40), while the
second part is estimated by the product estimate (B.6) and then (A.42) to see that
VE e < Ve + elw™0uC| e
< M0y ms + €|02C] gpmaxito.s)
< M(0:0 e + i [,
< M (|02 ms-

wr|

H(5+%)—%

O

A.5. Proof of Proposition 4.2. We will in this section give the details on the proof of
Proposition 4.2. Since the strategy in the proof is exactly the same as in [50] and the main
quantities involved satisfy the same estimates (see Corollary A.18), we only prove the steps
that are unique to the current regime. The first step is to derive linearization formulas. for
the Dirichlet-Neumann operator G,,.

A.5.1. Linearization formulas. The main step in the quasilinearisation of the internal water
waves system (1.13) is to get linearization formulas for

Guled] = G 1) (1~ (G ) G =) v

Here it will be important to get an explicit formula for the shape derivative of G, with
respect to ¢ and track the dependencies in the small parameters.

Proposition A.19. Let T > 0, tg > 1 and N € N be such that N > 5. Furthermore, let
U= ()7 e (S"ég? be such that (1.14) is satisfied on [0,T]. For all « = (a',a?) € N2,
& = a—ej, with 1 < |a| < N and define 0%, = 0910/, and let wF be as defined in (A.41).
Moreover, define w by

w=w"—quw”,
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and
Cla) = 0540, Vo) = 050 —ewdy C,  Piay = (Vary, Y(a2))-
Then for all 1 < |a| < N, one has

ifa<N: i (GuleCl) = igu[sclw(a) R,

1 1
ifa<N: iag,t(gu[fdlﬁ) = ;%[ECW(@) — eZ[U){(a) + ;g#,(a)[fﬁllﬂ(a) +€Ra,

where the linear operators Z[U] and G, (o) are given in Definition 4.1, while Ry is a function
that satisfies the estimate
Ra(t)2: < CEV(U), (A.46)

for some C > 0 and for all t € [0,T].

Remark A.20. The principal part of the linearization formula for G, is given in terms
of Gu(a) and Z[U)Co- While the additional term G (a)¥P(ay 1s sub-principal that offers no
difficulty in the proof, but is needed to deal with surface tension in the energy estimates (see
the third point in Remark 5.1).

We will now give the main ingredients in proving the linearization formulas in Lemma
A.19. These formulas involve the precise formulation of the directional derivative of G,,,
and we therefore give the definition.

Remark A.21. Let ¢ € HS‘L%(IR) and ¢ € HOT2(R), then ¢ — G,[eC)t is smooth and the
directional derivative, in the direction of h € HOV2(R), is given by

(¢ + by~ GleCl

v

i e
d¢GuleCl(h)y = lim
The smoothness follows from the shape analyticity of gf [51].
Lemma A.22. Let to > 1 and ¢ € HO 2(R) be such that (1.14) is satisfied.
L1
1. For ally € HZ(R), h € H*%(R), and U = (¢,¥)T, one has
dcGul=C)(h) = —2G,[eC] (h(w* — yw™)) — epZ(U]h. (A.47)
where Z[U]h is defined by
TUTh = 0u(AVF) +2GuleCl(Gy (=) ™0, (L = V).
2. For all0 < s<ty+1, 7>1, there holds,

\d}’%[eé](h)w\m,% <euiM f[ \hm\Hmw,tom\w|H;+%. (A.48)
m=1
8. Forall0 < s <ty+ %, 7 > 1, there holds,
Gy < 0 [T Tl el (4.49)
m=1
4. For all 0 < s <ty+ %, 7 > 1, there holds,
Gy < il s [T ol et ] gstecarn (A50)

m#k
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5. For all0 < s <ty, j > 1, there holds,

J
Hs+1 H ‘hm‘Hmax{s-f-%TtO}-#% ‘w|Hmax{s+%,t0}+l' (A'51)
m#k s

|G e ()Yl .y < &M I

Proof. The proof is similar to the one in [50], but we have to track the dependence in the
small parameters for the current scaling and adapt them to a different functional setting.
We prove each point separately.

Step 1. We do the details here, where we note that it is important not to compose the inverse
of g; with G, (see Remark 2.5). With this in mind, we observe by direct computations
(suppressing the argument in ¢) that

d(Gu o Ju)(h) = dGu(h) o Ty + G o dJu(h).

Then use definition (2.1) and compose the above identity with T ! from the right to obtain
that

dGyu(h) = dG,f (h) o (T,) ™" = GuodTu(h) o (T) " (A.52)
Then we note by Proposition 2.11 that (7,) 14 = ¢ allowing us to use formula (A.11)
and express the first term by

Ag;; () (Tu) ™" = dG;r (R
= —egj(hw‘L) — epdy (RV ).
For the second term of (A.52), we first make the observation
(G,)  odG i (h)=(G,) " ed(G, o ((G,) " oGl))(h)

= (@) o (4G, (h) 0 ((G) 0 Gl) = 471Gy 0 dTu(h))

= (G) " 0dG (h) o () oG+ dTu(h),
so that

AT,(h) =2G) " o (4G5 (h) = G () o (G) 10 GF).

Then by Remark 2.11 we have that ¢~ = (G,)"'oG ¢, together with the shape derivative
formulas (A.11) and (A.28), we deduce that

djﬂ(h) ° (ju)_lw = dju(h)w+
= (G, (dg} (ryw* — ag; (w)v™)
= —ey(G;)! (g;(huﬁ) - Q;(hw’)) —ep(Gy) ! (81.(}11/*) - az(hV*)).

From (A.52) and definition of Z[U]h given by (4.2), we may collect the above identities and
factorize the leading terms together to find that

4G, (h) = G (u*) = €46, 0 (G;) ™" (G (hur™) — G (™) )
= en(0:(hV*) +9G, 0 (67)7 (9u(hV) — 0u(hV 7))
_ _5(1 +7G, 0 (g*)*l) o Gf (hw™) + e4G,, (hw™) — peZ(U)h.
Clearly, the proof is a consequence of the following relation

(1499u0(G)") 06 = G (A.53)
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and can be seen in the identity
Gt =G.oT,
=Gu—7Guo(G,) oGy
Step 2. We first use the previous step and (A.52) to write
dG,(h)y = dGF (h)y" — G odT,u(h)yt. (A.54)

Then for the first term, we use (A.12) and Proposition (2.10) with estimate (2.23) to get
that

J

. .3 _

(G P9y <M T Vol gmestocoral T iy
I3

m=1

i
< piM ] 1hm

m=1

Hmax{s,to}+1 |1/)|H:+%
For the second term, we first let j = 1 and observe by direct calculations (or see previous
step) that
AT ey < 1(G)71AG] ()t
=: Ry + R».
Here we treat Ry by (A.35) and then (2.23) to get that

167G, (m)y |

sty Hs+%

1
Ry < aﬂzﬂﬂhﬂf]maxﬁio}*—lW}‘HH% .
f

For Ry we use (A.37), then the relation ¥~ = (g;)—lg;;w together with estimates (2.11)
and (2.23) to obtain,

Ry < 8]\/[|}L1|Hmax{s.tu}+l|’¢]_|]_}5+%

1
< eput M|h| rymaxis, Dl oxl-
< eptMlhily {tquli/\H.j%

As a result, for j = 1, we have by (2.2) (for 0 < s <ty + 1) and the above estimates that
G0 dT (Rt .y < uEMIAT ()]

1
H°2 HZ*?

< JEM|AT ()6 |

3
< et M| hy| gmaxts,to}+1 |w|HZ+%

%3

The remaining cases follow recursively and can be proved by induction.

Step 3—5. The proof follows similarly, where for the first term in (A.54) we instead use
(A.13) or (A.14), or (A.15). While for the second term, we can gain precision in p using
(2.4).
d
Remark A.23. In Step 1. of the proof, we found a formula for the shape derivative of J,,:
deTuleC)(h) = (G [e€)) ™" o (AcGy C)(h) — deG [eC(h) o (G e¢]) ™ 0 G e ).

70



Furthermore, in Step 2., we proved the estimate

|d¢ Tu[e€1(02) Y| < epi M9,¢

Hr!lax{-ﬁ,tn}+1|¢‘Hi+%. (A.55)

st
From these expressions, we can deduce an estimate on the inverse:
\dc(ZL[EC])*l(azC)wIHH% = |(TuleC) ™ 0 deTulec](9:¢) 0 (~7;L[€CD*1¢+IHH% (A.56)
I I

< 6]\/[‘az<|Hmax{s,tn}+l |’¢|Hi+% .

For an application of these estimates, see proof of (3.22).

Remark A.24. In step 1. in the proof we also have some convenient identities for G,. We
saw that

(1+9Gulec] o (G [eC) ™) 0 G o] = Guledl.
Composing this identity with (g; [£¢])™! on the right, we get a quantity we will use later:
(1+7GuleC)(Gy ) ™) = GuleC)(G) [e¢) ™ (A.57)
Furthermore, we have that
(G, ()71 Gule¢] = (G, [¢)) TG, [N (TuledD ™!
=1- (jﬂ[EC])_l7
and implies
(TuleD) ™ +7(G (€)' GuleC] = 1+ 29(G; [e¢)) ' Guled)- (A.58)
Lastly, we will make use of the following identities:
NGy ) TG [ Tuled)) ™ = —(TuleC) ™ + (G ) T G [ Tuled) ™ + (Tuled) ™!
= (TuleC) M (Tule) ~ 1)
= —(Tulec)) (G [e¢)) G e,
which implies
G )G [ Tule¢) (G ) ™ = =1 Tuled] (G, [ (A.59)

Proof of Proposition A.19. The proof relies on the estimates provided by Lemma A.22.
However, these estimates are the same as in [50], and so we refer the reader to the proof of
Proposition 6 in this paper. O

To prove the main result of this section, we also need the following Lemma:
Lemma A.25. Under the assumptions of Proposition A.19, one has for |a] < N —1 that
G|y =T,
In the case when |a| = N, then
GirleChs,) = GuleCle) = venGuledl (G5 ¢ ™01 (G (2T = V7))
where the residual terms rE satisfies

(Gl il 5 < CENU) + 2 VI, p),

with ‘C|<N+%> = > ‘6315(‘111%'
a€N? |a|=N
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. csad
Remark A.26. Here it is crucial to use that HS"'%(R) C H;JrQ(R) where we have the
estimate
_1
|f‘H’:+% <p 4|f‘131.s+%'
To regain the precision in u, we note that is provided in Proposition 2.4 and Corollary A.17.

Proof. The proof is similar to the proof of Proposition 7 in [50], so we will just point out
the differences. To that end, we focus on the case |a| = N and apply 95, to the relation
Gifle¢] = Gule¢]. Then using identities (A.11), (A.11), and (A.47) (or Proposition A.19
without sub-principal terms) to find that

GireC)t () — €102 (o) VT) = Gulellthiay — enZ[UN (o) + 72,

is on the form

LG, [eC(OL4C, ony O,) 8 0 — LG, [eCTH (0L 1€ .. O )0 1%,

+

where 7

J )
with " [I?| +16] = N, 0 < [§| < N —1 and [I| < N. The proof of estimate is the same as
i=1
in the Proposition 7 in [50] after using Remark A.26. Moreover, applying the definition of
Z[U]{(a) we find that

G eIy = Gulelia) — 1enGuled] (G 1) ™ 0n (G (VF = V).

Similarly, for G, we observe that

G [eC) = GuleCla) — en(1 +1Gu[CG ) ™) 02 (G (VT = 1))

Then we conclude by relation (A.57).
O

We will now turn to the proof of Proposition 4.2. However, since the quantities involved
satisfy the same estimates as in [50], we only point out the main differences (see also for a
similar approach [35]).

Proof of Proposition 4.2. Let )= and 1 be defined as in the transmission problem (2.21)
throughout the proof. Then for the first equation, we simply apply d5; and conclude by
Proposition A.19.

For the second equation, we need to prove that

if 1<|a|<N: 010y + Ins[UJ((a) = €54,
if \a\ =N: 8z’gb(a) + Jns[U]C(a) — €I[U}*’¢(Q) =¢e5,. (AGO)

We will only prove the most difficult case |a] = N, but first need an observation. Let 0
denote either the derivative with respect to x or t. Then the following identity holds,

8 + (1 —7)dC — %(@ — )¢ (A.61)
+ eV (0,00" — ew™0,0¢) — veV ™ (0,0~ — ew™0,0C)
1 1

72



To prove the claim (A.61), we apply 0 to the second equation (1.13) to find that

0,00+(1=7)0C+ (a1 ") (0200 ) = (0tp ™) (004 7)) +eON e, ] = *Evafi(&/ﬁov
(A.62)

where
cONeC, vt = —a@(l +<2(0:0)) (w*)? - 7(w)2)>

= —e}(0:0)(0:00) ((w")? = y(w")?)
(U (0,0 () 0w) — 2w ) 0w)).
To conclude, we use observe by definition that (or use Lemma 4.13 [51]):
(0u*) (2:00%) = (0:0)(0aD0) (w*)? = = (14 <u(0a)?) (w*) ()
= eVE(0,00F — cwt9,0¢) — & ia(gi[sgwi)

By adding these observations and trading igﬂ [5(]1&+ and ig; [e¢]~ with 9y¢, we deduce
the identity (A.61).
The next step is to let & = S+ 6 with |6| = 1, where we trade 9 with 6th in (A.61). Then

we apply 8f’t to this equation, where we claim that it will result in the following equation:

QD+ (1= )03 — (" = 7w )09 ¢ (A.63)
+ eV (0uty + (0w ™) 0205 1C) — eV (0t + (0o ™) 05,0
blo /i 0 1k (ey/11C) + €Sas
where S, is some generic function, satisfying
18af%,y < CENO+ VAV =Vl Kl ) (A.64)

The proof of this fact is the same as in [50], where the estimate relies on the following
inequalities
1 _
W(i;ﬂH% S 1 + ’Y‘S:u’4 |K+ - K |Loo|<|<N+é>7 (A65)
I
and )
Bt e -
ﬁla w |H;1’ Sl+yept|VT -V |L°°|<|<N+%>' (A.66)
This can be seen in the proof of Lemma 9 in [50]. In our case, the proof is a consequence
of Lemma A.25 and Corollary A.18. However, the quantities involved satisfy the same
estimates and therefore complete the estimate on S,.
We may now further decompose (A.63), where we may now use the definition of P(a) to
find that

1
8tw(oz) + aC(a) + €K+5z¢(1) - 'YEKiamw(_a)

1 o3
,Ema K(ev/iC) + €Sa,

where we identify a by

— <(1 —9)+ e((@t + Vo) wT — (0 + EK*GE)Q’))
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To conclude, we simply need to work on the terms:

VO —1EV 0 = 5 (U + V)0t + 5 (U = V)0 (6, +7G,))- (A6T)
Then by identities (A.58), (A.59), and Lemma A.25 implies
Yy T 1)

= ((Tuled™ + (G <D ™ Gul=C) iy

— e (T¢I (G ) ™ + (G5 261 T Gulecl (G5 EC) T )0 (G (1L = V) +
= (1+29(G, [e) T Gulec)) ey = (1 = MyenTulec] ™ (G leC) ™ 0 0a (Coy (VF = V7)) + Fay
with
ot = 0u((Gf [eC) ™M1 + (G leC)™'ra)-
Here ¥ is the term in Lemma A.25, which is of lower order. So that (A.67) becomes
VIO, —1eV 0utpyy = —Z[U] %) — (1= )7’ (VT = V) €,[e¢) Gy (LT = V7)),
where we identify Z[U]* by
I[U] e =~V 0p 0 —y(VF = V7)2:((G, [eC]) ' GuleC] ).

The surface tension term is linearized with the formula

1 1 13 -
Rﬁa K(e\/iC) = bo ™' 0, K(e/1102¢) 02 () + Ko [V1£02CI{ () + €Sars

where K is given in Definition 4.1. We also identify Jns[U] by
Ins[Ule = ae —(1 — )y u[VE]€,[eC] (o [VE]) — bo 0, K[e/110:¢] 0z,
where €,[e(] reads

&uleCle = 0, 0 TuleC] (G ) 0 D

APPENDIX B. TooLS

B.1. Estimates on Fourier multipliers and classical estimates. In this section, we
will give basic multiplier estimates. To be precise, we will give a definition of the Fourier
multipliers.

Definition B.1. We say that a Fourier multiplier F is of order s (s € R) and write F € 8%
if € € R F(&) € C is smooth and satisfies

VEeR,VB EN, sup (£)57%|9PF (¢)| < co.
£eR

We also introduce the seminorm

N*(F) = sup sup (€)7*[07F(¢)].
BeN,B<4 £cR

The first result is several basic multiplier estimates that are used throughout the paper.

Proposition B.2. Let u,v € (0,1) and f € /(R). Then there exist a universal constant
C > 0 such that:
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1. For the symbol

tanh(,/z|DI)
= Dl WY
there holds,

1

;\Q;A[O]flp < Cloxflm, (B.1)

2. For the symbol

(Gul0)% = (VD)

)

th(yD) )
T+ ~tanh(y/D)
there holds,

1 1 1, .
Gy < =GO e < €Il (B.2)
8. There holds,
1, e S 17H102 01 oy < HHIDI e (B3)
and
|f‘ st < ‘azf|H* (B.4)
i,
Moreover, for B = |D|(1 + \/ﬁ\DD*% and ST = —\/u|D| there holds,
B2 _3
5= ey S 1A ey (B.5)

Proof. We first consider the square of the symbol in frequency, where the elementary in-
equality holds

GIItanb(VFIE) < VKl i < Vi tanb (V7).
Then by splitting in high and low frequency, we can prove that there is a number C' > 0
such that
b KE o reann(yme) < po 0
C A+ yulél) ~ T (kD)

To conclude, use Plancherel’s identity for (B.1), and take the square root of the inequalities
above to deduce (B.2).

The proof of the estimates in point three follows directly by Plancherel’s identity and
elementary inequalities. d

We will also use the following product estimates (see Proposition B.2 and Proposition
B.4 in [51]).

Lemma B.3. Let ty > g, s> —tg, f € H™{to:s}(RY) | and take g € H*(R?) then

|fglrs S 1f | grmaxte st 9] ms- (B.6)
Moreover, if there exist cog > 0 and 1+ g > co then
ol
— <O % )(1 s 5. B.7
\Hg o S Cleoslglim) L+ |l gl (B.7)

Lastly, we will use several commutator estimates for Fourier multipliers. The first result
is a generalization of the classical Kato-Ponce estimate® and is given in [51]:

5See [41] for the case F = A®.
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Proposition B.4. Let ty > %, s>0and F e 8. If f € H™{totLsH(R) then, for all
g€ H(R),

|[F, flglre < N*(F)|f 9lps-1. (B8)

Moreover, we will also need some commutator estimates on multipliers with non-smooth
symbol.

Fmax{to+1.s}

Proposition B.5. Let f,g € Z(R), to > % then there is a universal constant C' > 0 such
that

1
Ilf: IDIZlgl < Clf] ey 19122 (B.9)
and for p € (0,1) there holds,

1, (1 + D)) 2glz < CIf ey lglie- (B.10)

Proof. For the proof of (B.9), we write the commutator as a convolution product in fre-
quency:

.08l = | [ (1l = 012 - 000 do|

2
13

Then the proof is a direct consequence of the estimate |§|% - |p\% < 14— p\% when
combined with Minkowski integral inequality and Cauchy-Schwarz inequality.
Inequality (B.10) is proved similarly. O

B.2. Estimates on pseudo-differential operators. In this section, we will give esti-
mates of pseudo-differential operators whose symbol depends on the free surface. In partic-
ular, the framework needs to handle symbols of limited smoothness which is developed in
[49]. To be precise, we give the definition of the objects we will study.
Definition B.6. Let m € R and tg > % A symbol o(x,§) belongs to the class T} if and
only if

olrxqle<1y € L({€] < 1} : H(R))
and for all 5 € N one has

sup(€)”~(07 0 (-, &) 10 < 0.
£eR
We also introduce the seminorm

Ps(0) == sup sup ()70 (-, &) ue,

Bk Je1> ¢

Moreover, let I s be a measure of the information in low frequencies given by
lhs(0) = sup |920(-E)|m,
B<k,|€1<1
and define
ol = los(0) + L5,(0).

The main tool we will use to derive our estimate is Theorem 1, 8, and Corollary 43 in
[49] (in dimension one).

Proposition B.7. Let f € ./ (R), tp € (%,so}. Then we have the following estimates:
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1. For o €T, s € (—to,to), and m € R, there holds,
|Op(0) flus < \U|H(Sgl)|f\ns+m7 (B.11)
Moreover, for —tg < s+m < ty+ 1 and —ty < s < tyg+ 1, there holds,
A%, 0D 1y < Iolign 7 peams (B.12)

2. Let mi,me € R, o1 € T and o9 € T'g? such that —tp < s +m; < to+ 1 and

—tg < s < tog+ 1. Moreover, let (v1,v9) € WH®(R) and define
j(#,§) = X(vj (), ) € C=(R, L=([¢] < 1)),
such that for all o, B € N there is a positive nondecreasing function Cy g(-) satisfying,

§g§<§>ﬁ_m|33352(vj76)\ < Cas[vj])-

Then one has,

|(Op(01)* = Op(@1)) flas < [v1lwcol flggesmi—1 (B.13)
[[Op(01), Op(a2)) flms < |vilwoo [valwioo | flgstmitma— (B.14)
|Op(a102) — Op(a1) 0 Op(o2) flus < [vilwie [va|wie | fgstmitme-1. (B.15)

Remark B.8. The adjoint estimate (B.13) and (B.15) is not given in [49], but can be
deduced using similar methods. This fact is stated in footnote 8 and 9 of [50].

Remark B.9. The estimate in Theorem 8 is more general than (B.14), but here we only
state the result for a symbol that is bounded in the origin and smooth for positive frequencies.

Lemma B.10. Let ty > %, 5>0, ¢ € HoT3(R) and define the symbol

,Z( VEIEL i epdace )
L(z, & 2)=e 1+4e20(020)% 1+e2p(92¢)?

Then for any f € #(R) there holds,

IA*OP(L) D Il r2(s-) < 13 CC o) F ]y (B.16)

IA*OP(9-L) | 2(5-) < #3C(IC o) F oy (B.17)
1 3
|AOD(Z0:L) fllp2(s-) < et Gl vy (B.18)
£ 1 3
IAOP(C2L) 2 < end CIClaoss) IS yov (B.19)

1A*OP(9,0:L) fl2(s-) < et C(IClros2) ] vy (B.20)
IA*Op(9, L)3s f |l 12(s) < eniCUIC| o) f]

stEe

(B.21)

Remark B.11. Estimate (B.17) also holds for the symbol Op((02¢)0.L), but with constant
depending on |C| o+ -

Proof. The inequalities are proved similarly, where we first consider the proof of (B.16). To
employ Proposition B.7, we define the symbol:

p(— 1 1 iy EuOpCE
gz(zyg) =e & 1+e2u(02¢)? 2)\/ﬁ|§|e lz1+£2#(9m02_
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Then for z € (0,00) and any [§]| > % we have that
10022, )10 £ C10aCliat0) (z/10) e 2VFH
< C(10aC] o) (/AIEN) e 2V (€)77,
by the algebra property of H'(R), so that
£34,(02) S C[C o)
While in low frequencies, the symbol is bounded, which implies

lo,to(02) < C(IC| o +1)-
Since o € ') we may use Proposition B.7 with inequality (B.11) and Plancherel’s identity
to say that
[Op(L) flr+ < C(I¢| o)™ VPP £ s,

To conclude, we use this inequality with Plancherel’s identity and Fubini’s Theorem to see
that

|A*OD(L)B, f 225 = / |(OD(L)D, ) 2) e dz
< C(Clpror) /0 5Vl £, de

< C(lror) /R G GE /0 e~ *Vldlg| dzda

_1
< 1oy

The proof of the remaining inequalities essentially boils down to having one more poly-
nomial power in |§| when compared to z. In particular, for the proof of (B.17), we see that
there is a gain of \/i and a |{| that appears after computing the derivative with respect to
z. Therefore, the proof follows as it did for (B.16).

For the proof of (B.18), there is also a gain in the small parameters. However, there is
a polynomial dependence in z and an additional |¢]. Since we need || for the integrability,
we define

&Z(I7 g) = |€|71810-Z(1‘7§)7
and make the computation for |¢| > i:
10£5(2,)|rrt0. < €C(IC | pro+2) (2p) (2/1) e~ 3VIH

< 2epC (|0 | io2) (2 /AIE) e~ 2 VEEI () 7.
Then we use Proposition B.7 to find that

) 1 . Lz .
IA*Op(Z0: L) fll72(s-) < (e1)*C (¢l srt0+2) /0 e 2VIP! D £[7,. dz

3
< €2H20(K|Hto+1)|f|gs+%~

For the estimate of (B.18), the proof is similar where we define
72 (,€) = [¢] 71002 (),
and find that
10£6(2,8) a0 < 2enC(10aCl r0+) (€)™

At this point, the proof is the same.
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The remaining two estimates are proved similar to the ones above.

O

The next estimates are given on H*(R) and are simpler to deal with. They are versions
of estimates used in [50], but are listed here for the sake of clarity.

Proposition B.12. Let ¢,pu,y € (0,1), to > %, and f,g € S(R). Then there exist a
universal constant C' > 0 such that:

1. Define the operator

. A
Op(52) (@) =~ (tanh( it ) o),

where
_ arctan(e/p0,()
H(X, 6 =01 +5C)W|S|-
Then for s € (—to,to) there holds,
|0p( )f\Hs < C(Clato+) I f s (B.22)
and for s € (—to,to + 1] there holds,
. St
A, 0p (3= - NS4 < eVAC(Clmoral ]y (B.23)
S+
(Op(5=)" - Op( ))f‘H* < eVHC([Clato+2) [ f a1 (B.24)

2. Define the operators

Op(85) () = F~*((1 + 7 tanh(yit(2,£)) f(€) ) ()

1 e £
Op(?])f(x) =F 1(1 + vtanh(\/ﬁt(w,ﬁ)))(x)'

Then for s € (—to,to) there holds,

Op(5- )f\Hs < C([¢l o) flas, (B.25)
and for s € (—to, to + 1] there holds,

|(1—0p(SJ)Op( ))f\Hs < ev/uC(IClgeo+2) [ fl s (B.26)

3. Define the operator

S+ B B tanh(\/ut(z,&))
o(575;) @) =~ (T (i gy €)@

Then for s € (—tg,to) there holds,

St
|Op<5 S )f|[15 < C('C‘HL0+1)‘j|IIS (B.27)
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and for s € (—to,to + 1] there holds,

S+
0p( g2 ) sl < Ul ol |l (B.28)
ST o\ St
(0r(g7g;) —Op(gg;))flae < eClChasa)l i (B.29)
|(Op(S~Sy) — Op(S~ )Op(SJ))f|HS < epC([¢] geo+2) (B.30)
(o ( ) ( ) - Op( e ))fms < ey/EC(IC pro+2)| flare-1. (B.31)
4. Define the operators
ST R tanh(/mt(2,€)) ‘
Op (8“”575J>f(‘”) e G fytanh(\/ﬁt(z7§))f(€)> (z)
B’ b €A vEEDT
Op(SJS*)f('T) - _ﬁ}— 1(1 +’ytanh(\/ﬁt(x7§))f(£))(x)
S8~ o _q ¢ 1+ tanh(\/ut(z,§)) —
Op (%) B/@) = —VAF (g e @) @
Then for s € (—to,to) there holds,
S+
00 (2 g7 ) Flie < OCliase) e (B.32)
Moreover, let k = 0,1, then for s € (—tg,to) there holds,
B2 SyS™
(1= Op( g OB ) B yp < et S Cell Sl (B3

Proof. For the proof of (B.22), we note that

% = tanh(y/put(z,€)) € T,

and the proof follows by Theorem B.7 with estimate (B.11):

S+
0p(g=) flas < C(IC rrro+)| flas-

For the proof of (B.23), we use (B.12) and the estimates above. While for the proof of
(B.24), we observe that for o = g, we have

lofwiee < ey/pC(|0xC|wroe),

and we conclude by (B.13) and the Sobolev embedding.

The estimates in point 3 are proved similarly. The only exception is (B.30). We let
x(y//€]) be a smooth multiplier with compact support and equal to one around zero. Then
observe that we need a Soblev estimate on

Op(57) ~ Op(S )0 (5-) = (Op(3=) ~ Op(S)0p( 5,

S+
+ (0p($™) = Op(S7)0p(5=)) (1 = X)-
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Note that the operators are of order \/f and with symbols that are elements in '} . Then
using (B.15), where the derivative of the symbols give rise to another ¢,/i we obtain that

[(Op(S™S) — Op(S7)Op(S.)) flas < enC(IC] o) (Valxu flrs + (1 = x) flar)
< 2nC(Claio)lf 1.
where in the last inequality we also use that ui X<£>2 <land (1- X)% <1
The estimates in point 4, we note that the symbol in (B.32) is of order zero and we
conclude by (B.11). While for the proof of (B.33), we need to work on the domain of B f
for the composition to be well-defined in low frequency. In particular, we have that
B2 0 1 |D|S;S~
5,5~ €ly, o2=(D)"2 Tmz Ffm

o=
1

and the product oy05 = |D|(D)"2 € I'2, allowing us to deduce by (B.15) for —tg < s’ <

to + 5 that,

SJS_

(1- 0p( >o (L)) |, < C|(Op(0102) — Op(01)Op(0) \/];7]3

® >§>1f|Hs,,,

(\(lmo+2)|<

where the ¢ is a consequence of the estimate on the derivative of the symbol S;. Now for
1
the case k = 1, we can compensate the half-derivative with the symbol (1 + ,/u[D[)"2 at a

price of p~1. For k = 0, the symbol is uniformly bounded and thus completes the proof.

O
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