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Otoliths are a central information source for fish ecology and stock management, conveying important data about age and other life history for 
individual fish. Traditionally, interpretation of otoliths has required skilled expert readers, but recently deep learning classification and regression 
models ha v e been trained to e xtract fish age from images of otoliths from a v ariety of species. Despite high accuracy in man y cases, the 
adoption of such models in fisheries management has been slow. One reason may be that the underlying mechanisms the model uses to derive 
its results from the data are opaque, and this lack of legibility makes it challenging to build sufficient trust in the results. Here, we implement a 
deep learning model that instead of age predicts the location of annotation marks for each of the annuli. T his allo ws an expert to e v aluate the 
model’s performance in detail. The quality of the annotations was judged by a panel of four expert otolith readers in a double-blinded randomized 
surv e y. Using a scale from 1 to 5, the generated marks received an a v erage quality score of 4.22, whereas expert annotations received an 
a v erage score of 4.33. By counting the marks to determine fish age, we obtained an agreement between expert and model annotations of 
64% on our test set, which running the model stochastically increased to 69%. Stochastic sampling yields further benefits, including an explicit 
measure of the model’s uncert aint y, the post hoc likelihood of the different age classes for each otolith, and a set of alternative annotation 
sequences that highlight the str uct ure of the annuli. 
Keywords: deep learning, explainable AI, fish age estimation. 
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Introduction 

The study and assessment of fish stock dynamics rely on 

knowledge of population age structure to track year classes 
through time and assess population growth and mortality, in 

particular for harvested populations where the effects of selec- 
tive fishing must be monitored (Hidalgo et al., 2011 ; Brunel 
and Piet, 2013 ). Because calcified structures such as otoliths 
and scales record physiological and environmental changes 
through variations in deposited material, they form tempo- 
rally resolved growth zones at different time scales (Wright et 
al., 2002 ). For a vast number of species, those zones can then 

be interpreted as individual estimates of fish age, resulting in 

millions of otoliths collected worldwide every year, primarily 
for ageing purposes (Campana, 2001 ; Morales-Nin and Gef- 
fen, 2015 ). 

Despite the straightforward relationship between otolith 

growth rings and fish age, providing reliable estimates is time 
and resource intensive. Fish otoliths differ in shape and their 
growth rings in seasonality between fish families and species,
or even at the inter-population level (Campana, 2005 ; Stran- 
sky et al., 2008 ; Cadrin et al., 2014 ). As a result, age reader 
training can last several years before the age estimates are reli- 
able (Carbonara and Follesa, 2019 ), and uncertainties in both 

inter-reader agreement and “true” age accuracy will have a 
direct influence on the quality of the assessment. 

Deep learning for otolith classification and 

explainable AI 

In the last two decades, new technologies and methods have 
therefore been explored in order to automatize, scale, and 

standardize otolith age reading and improve the reliability 
of stock assessments, among which machine learning (ML) 
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rameworks have shown promising results. In particular, deep 

earning models have been shown to be effective at extracting
ge from Greenland halibut (Moen et al., 2018 ), Northeast
rctic cod (Moen et al., in review), red mullet (Politikos et al.,
021 ), and also from salmon scales (Vabø et al., 2021 ). How-
ver, these systems operate as black box models, and while
hey provide a quantitative answer, how they arrive at this an-
wer is opaque. This lack of legibility may make users less in-
lined to trust the models. There exist methods that use the in-
ernal state of the model to identify parts of the input that con-
ribute more to the result (Lipton, 2017 ), and such methods
ave been applied to otolith analysis (Ordoñez et al., 2022 ).
owever, these approaches have been shown to often be un-

table (Ghorbani et al., 2019 ), the methods remain difficult
o understand, and their output is not necessarily easy to in-
erpret. It is therefore questionable whether this information 

akes users more willing to trust the model in practice. 

 generative model for annotations 

nstead of attempting to unveil the workings of a black box
lassifier through post hoc analysis, our goal here was to gen-
rate output of a type that can be verified directly by a human
xpert. For otoliths, this means generating a set of annotations
hat mark the locations of individual annuli (see Figure 1 ). A
ser can inspect the annotations and verify that they match
ith the visible structures in the otolith, and the age can triv-

ally (and automatically) be obtained by counting them. As
here is considerable freedom in the placement of annotations 
long each annulus, standard methods for landmark or ob- 
ect detection cannot be used directly. Instead, we designed 

 process that mimics the annotation process used by expert
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Figure 1. An otolith from our test set with computer generated annotations (top) and expert-generated annotations (bottom). Although the generated 
annotations are sometimes placed along a slightly different axis to the manual annotations, they still follow the correct otolith str uct ure and result in the 
same predicted age. 
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ixel to be the location of the first annotation mark (which
ndicates the centre of the otolith). It then iteratively estimates
 similar spatial probability distribution or “probability map”
or the next mark conditioned on previous marks, and selects
ts location. In each step, it simultaneously estimates the prob-
bility for ending the sequence and terminating the iteration. 

In contrast to a traditional “black box” regressor or clas-
ifier, our system produces an explanation of its estimate in
erms of visual and easily interpretable information. In addi-
ion to providing improved legibility, the location of the an-
otation marks can be used to derive growth rates and other
ife history information. Furthermore, our system can estimate
ncertainty as an explicit probability for each possible age of
n otolith, and produce a map of the salient features detected,
urther boosting user confidence in the model. 

ethods 

tolith image data 

his study utilized a large dataset of adult Atlantic cod
toliths that had been sectioned, imaged, and annotated to
et age and yearly growth estimates (the detailed method-
logy can be found in Denechaud et al., 2020 ). A total of
095 mature cod otoliths (ages 7 + ) were processed and an-
otated using an ObjectJ plugin (Denechaud et al., 2018 ) that
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Figure 2. Schematic illustration of the generative model. See supplementary materials for a detailed description of the fully convolutional 
“pix el-to-pattern-to-pix el” netw ork. Note that U-Net, as commonly used f or semantic segmentation, outputs a set of maps f or each output class, and 
applies a softmax function so that the probabilities for all classes sum to one for each pixel. In contrast, our model outputs a single map of probabilities, 
and applies the softmax o v er all pixels plus the stop symbol. By constraining the possible mark placements to the pixel positions of the W × H otolith 
image, we have thus mapped the annotation problem to that of drawing from a ( W H + 1) -dimensional categorical distribution conditioned on the input 
data. 
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leaves nondestructive annotations stored in dedicated files.
The annotations are only linked to each otolith image and 

as such are entirely non destructive, and are here imported 

using only pixel coordinates. Details of the plugin’s function- 
alities can be found within the dedicated tutorial and the 
Supplementary Figure S1 . 

Both the unmodified grayscale images and the associated 

annotations were imported and coupled by individual ID,
then processed for efficient treatment in the neural network 

model. All images had been consistently annotated on the dis- 
tal axis (shortest growth axis from the core), which ensured 

the model would only attempt annotations in this general di- 
rection rather than haphazardly across the otolith surface. 

First, the otolith images were cropped and downscaled to 

a resolution of 1200 by 800 pixels to reduce memory foot- 
print and improve training times. The corresponding anno- 
tation coordinates were transformed similarly and rounded 

to the nearest integer values. In four cases where the rings 
at the edge were narrow and the annotations were close to 

each other, this rounding caused the transformed annotations 
to have identical coordinates. As our model presumes that all 
marks should be spatially distinguishable from each other, we 
discarded these data points. 

Conditional probability neural network model 

A schematic illustration of the model for generating sequences 
of annotation marks is shown in Figure 2 . The model gener- 
ates marks, specified by their pixel coordinates (i, j) , iteratively 
by mapping an image and any previously generated marks into 

a probability map, from which it can be determined whether 
and where a new mark should be placed. In other words, this 
is an autoregressive generative model. 

The model performs the following steps: 

1. First, the model maps the previously generated marks 
into an n -hot encoded “image,”with pixels set to be one 
where there is a mark and zero everywhere else. The 
n -hot encoding renders the coordinate information in 

the same form as the otolith image, making it possible 
to pass a concatenation of the two arrays into a fully 
convolutional “pixel-to-pattern-to-pixel” network. 
2. The concatenated arrays are processed using an archi- 
tecture similar to U-Net (Ronneberger et al., 2015 ), and
are described in more detail in supplementary materials.
The network outputs a single channel map for the place-
ment of the next mark, and this map is then masked by
the n -hot encoding of the previous marks to produce
the “preference image,” h . The masking consists of sub- 
tracting a large number for each pixel where there is a
previously placed mark, effectively making the proba- 
bility of subsequently selecting these pixels zero. 

3. Finally, we convert the preferences into probabilities us- 
ing a softmax, i.e. we assign a probability weight of 1 to
the selection of the “end sequence” action and a prob- 
ability weight of exp(h i, j ) to the selection of pixel (i, j)
for the placement of the next mark, and normalize. 

raining procedure 

he annotated image data were split into training, validation,
nd test sets consisting of 3591, 200, and 300 annotated im-
ges, respectively. 

To train the model, we randomly select the n ∈ { 0 , 1 , . . . l }
rst marks of a human-annotated otolith with l marks. As de-
cribed in the section above, the model is given the otolith im-
ge and the mask representing these first n marks, and outputs
 probability map for the placement of the n + 1 ’th mark. Us-
ng this map, we minimize the negative log-likelihood of plac-
ng the n + 1 ’th mark in the annotated location, or for ending
he sequence if n = l. 

We trained the model on a single NVIDIA A100 GPU with
 batch size of 32. We used the Adam optimizer (Kingma and
a, 2017 ) with an initial learning rate of 10 

−3 for 100 epochs,
ollowed by 20 epochs of fine-tuning with a learning rate of
0 

−4 . The decay rates were kept at the default 0.9 and 0.999
or the first and second order momentum estimates, respec- 
ively. In this context, we denote an epoch to be the process-
ng of each training set otolith image once. Note, however,
hat for each image, a random length input mark sequence is
rawn and a random flip augmentation about the short axis
f the image is used. The former means that each image with
uman annotations constitutes ∼ 10 individual training pairs 
an input paired with its expected output), while the latter ef-

http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad170#supplementary-data
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Figure 3. Example of annotation probability maps for an otolith image (a) with either zero (b) or five (c) previously determined annotation marks. For 
clarity, the probabilities are shown log-transformed, with warmer colours indicating higher probabilities. Note that for (c), we can see the preceding five 
marks visible as black dots, as the masking process sets their probability to zero. As (b) is determining the placement of the first mark, no such masking 
is done. For illustrative purposes, the resolution has been reduced to 150 × 100 pixels. 

f  

t  

t

G

W  

n  

W  

t  

s  

p  

(  

t  

d  

g  

i  

i  

t  

w  

e  

b  

b  

t  

p
 

i  

e  

fi  

l  

b  

m  

f  

t

E

I  

n  

i  

i  

t  

Table 1. Grading scale for evaluating annotation quality. 

5 Close to perfect annotation 
4 Minor inaccuracies of little consequence for age estimate 
3 Some errors not expected from an expert annotator 
2 Low quality annotation with major mistakes 
1 Unusable annotation, not useful at all 
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ectively doubles the available training set. Overall, this means
hat each training pair was encountered only ∼ 6 times during
raining. 

enerating annotations 

hen the model has been trained, we can use it to generate an-
otations for hitherto unseen and unannotated otolith images.
e either do this stochastically or greedily. In the stochas-

ic approach, we generate a sequence of annotation marks by
ampling from the conditional probability map the model out-
uts. In practice, we do this by using the Gumbel-max trick
Jang et al., 2017 ), which allows us to sample directly using
he preferences, rather than having to map to the probability
istribution first. In the greedy approach, we deterministically
enerate a “most likely” mark sequence as follows: For each
teration, we first determine whether the probability of end-
ng the sequence (according to the model) is larger or smaller
han 0.5. If it is larger, we end the sequence. If it is smaller,
e place a mark at the pixel coordinate with the largest pref-

rence, i n +1 j n +1 = argma x i, j . Intuitively, we do it in this way
ecause spatial placement and termination selection proba-
ilities have to be treated differently when we are selecting
he most likely next action. The mathematical rationale is ex-
lained in the supplementary materials. 
Because the annotation sequence is characterized by a start-

ng point (placed at the centre of the otolith core) and an
nding point (placed at the edge of the otolith), estimates of
sh age can be calculated by subtracting 2 from the sequence
ength of a given sample. Figure 3 shows an example proba-
ility map for an otolith with zero and five previously deter-
ined annotation marks. We see that the spatial uncertainty

or where to place the next mark is larger in the case of placing
he first as compared to the sixth mark. 

valuation by expert readers 

n order to evaluate the quality and credibility of generated an-
otations, four expert readers were asked to score a random-

zed sample of manually annotated images and their automat-
cally generated counterpart in a double-blind experiment. A
otal of 120 annotated images (60 otoliths) were randomly se-
ected from the test set and partitioned into 4 sets of 30 images
hat were manually adjusted to ensure each sample contained
xactly 15 images annotated by an expert and 15 images gen-
rated by the network. Each reader was given a sample and
sked to grade each annotation on a scale from 1 to 5, with
 being the best (see Table 1 ). No reader was offered both
omputer and expert annotated images from the same otolith,
nd readers were asked to provide relevant comments related
o the scoring decision (such as clear rings left unannotated,
alse zones being mistakenly annotated, etc). 

esults 

ccuracy of predicted ages 

ince the age classes were quite imbalanced, we investigated
ccuracy for the most abundant age classes (8, 9, and 10 years,
orresponding to 10, 11, and 12 marks) individually ( Table 2 ).
ince the true age is not known, accuracy here refers to the
roportion of predicted ages that match the manually anno-
ated age, where the human estimates are treated as ground
ruth. For the two most abundant classes (8 and 9 years), we
ee that the accuracy is consistent at close to 0.7, with the
tochastic method consistently better than the greedy method.
or most of the metrics, we see a noticeable improvement
hen applying the stochastic method. The main exceptions
re mean absolute error (MAE) and root mean squared error
RMSE) for 9 year old where the larger number of zero-length
equences leads to inflated error values (see the zero column
f Figure 4 and rightmost bars in Figure 5 ). 

onte Carlo sampling the stochastic method 

e ran the model multiple times, sampling each annotation
ark according to its conditional probability, and accumulat-
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Table 2. Accuracy, MAE, and RMSE for the most abundant age classes in the training set. 

Age 
class 

N 

(test set) 
Greedy 

accuracy 
Greedy 
MAE 

Greedy 
RMSE 

Stochastic 
accuracy 

Stochastic 
MAE 

Stochastic 
RMSE 

8 220 0.68 0.4 1.0 0.72 0.4 1.1 
9 43 0.67 0.3 0.6 0.70 0.5 1.8 
10 30 0.37 0.9 1.2 0.53 0.6 0.9 

Figure 4. Test set distribution of generated sequence lengths organized according to their human expert mark sequence length. The area of a circle is 
proportional to the number of samples in the given age category. The dashed lines indicate a perfect correspondence between computer generated and 
human expert sequence lengths. 

Figure 5. Test set distribution of the differences in annotation sequence lengths (corresponding to predicted age plus two) between the human expert, 
l human , the greedy algorithm, l greedy , and the mode of the stochastic algorithm, l mode . The accuracy of the greedy and mode approaches is 0.64 and 0.69, 
respectively. MAE and RMSE refer to the mean absolute error and the root mean squared error, where “error” in this context is the difference in number 
of annotation marks. 

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/81/1/55/7341839 by Library, D
ept of Fisheries and M

arine Biology, U
niversity of Bergen user on 19 April 2024



60 T.A. Bojesen et al . 

i  

m  

(  

(  

u
 

i  

i  

p  

a  

i  

c  

w  

s  

b  

p

Q

H  

i  

h  

(  

(  

h  

t  

n  

a
 

a  

a  

u  

i  

b  

a  

c  

z  

a  

o  

s
 

h  

g  

o  

O  

i  

t  

r

D

T  

a  

a  

n  

p  

m

A
a

T  

p  

a  

c  

S  

r  

t  

I  

p  

q  

d  

a  

o  

o  

a  

m  

b  

m  

m  

p  

i  

m  

f  

c  

l
 

e  

g  

u  

l  

s  

i  

H  

t  

A  

q  

t  

i
 

i  

m  

s  

t  

t  

p  

e  

c  

i  

m  

f  

p  

e  

u  

d  

b  

t

A
a

I  

w  

a  

p  

a  

l  

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/81/1/55/7341839 by Library, D
ept of Fisheries and M

arine Biology, U
niversity of Bergen user on 19 April 2024
ng the probability distributions for each mark (see supple-
entary materials for details). This achieved two objectives,

i) it allowed us to visualize the salient features of the otolith
 viz., the putative annuli as seen by the model), and (ii) it let
s derive a probability distribution for the age estimates. 
Two examples based on Monte Carlo simulations of 1024

ndependent sequences are shown in Figure 6 . We notice that
n both cases, the starting point differs from the labelled start
oint, and in the right image, this leads to the model following
 markedly different axis. This is not incorrect per se , but may
ndicate more ambiguity in the image. In general, the model
onsistently identifies and annotates ring-like structures in line
ith those from human experts, though the Monte Carlo re-

ampling shows some level of lateral spread along the rings
ased on the origin and direction of the iterative annotation
rocess. 

ualitative evaluation experiment 

uman and computer generated annotations performed sim-
larly well when assessed by expert age readers, although
uman annotations had on average slightly higher scores
 Figure 7 ). Reader B had the largest difference in scoring
4.27 versus 3.73) while reader C was the only one with a
igher mean score attributed to computer generated annota-
ions (4.53 versus 4.80). Across all expert readers, human an-
otations had a mean score of 4.33 and computer generated
nnotations had a mean score of 4.22 ( Figure 7 ). 

Poor quality annotations were identified in both the human
nd computer generated sets, although more were attributed
 score of 1 or 2 in the computer generated set (indicating
nusable annotations with major mistakes, cf. Table 1 ). An
dentical number of 39 images had the highest score of 5 in
oth sets, and few images with a high score (4 or 5) in one
nnotation category had a low score in the other. Those cases
orresponded mostly to otoliths where too many or too few
ones were annotated in one of the sets, such as the computer
nnotating extra rings from visual artefacts found outside the
tolith, or the original human reader hopping over a ring con-
idered to be part of a split zone ( Figure 8 ). 

Out of the 60 otoliths used for the inter-reader test, 36
ad the same predicted age in both the human and computer
enerated annotations and the rest differed by one year (21
toliths), two years (2 otoliths) and three years (1 otolith).
toliths with identical ages generally corresponded to clear

mages with high scores (4 or 5) in both sets, with the excep-
ion of 6 otoliths where ages differed by one year yet the test
eaders evaluated their respective image as correct ( Table 3 ). 

iscussion 

his study presented a first exploration of generated otolith
nnotations as an alternative to traditional ML regressions for
ge reading. By conditioning the algorithm to identify and an-
otate ring structures as read by human experts, we show the
otential for more transparent and applicable methods that
ove away from “black box” regressions. 

ccuracy of age estimates from generated 

nnotations 

his study found a 64% overall agreement between ex-
ert age estimates and generated annotations for the greedy
pproach and 69% for the stochastic approach, which
ompared favourably to other methods recently published.
igur ð ardóttir et al. (2023) summarized results from several
ecent applications of deep neural networks to otolith age es-
imations, where reported accuracies varied from 0.2 to 0.69.
t should be clear that accuracies across data sets are not com-
arable, and depend to a large degree on the range of ages, the
uality of images and labelling, and the quantity of training
ata. Using the same approach on several data sets produced
ccuracies that varied from 0.30 on Greenland halibut to 0.61
n Haddock. Our results must therefore be seen in the context
f the limited age range in our data and very-high quality im-
ges and annotations. Additionally, while 64% overall agree-
ent is still lower than the desired output from inter-reader
enchmarks (which usually aim for at least 80% agreement),
ore than 90% of the dataset fell within either perfect agree-
ent or generated annotations that differed from human ex-
erts by only 1 increment (either in deficit or surplus). This
ndicates that the algorithm was successful in replicating hu-
an annotation processes with remarkable precision, and that

urther training and fine-tuning with a larger sample size and
lass balance may well increase agreement close to desired
evels. 

One weakness with traditional classifiers is the detrimental
ffect of imbalanced class abundances (Johnson and Khosh-
oftaar, 2019 ). Otoliths, like many other data sets, often have
neven age distributions, and classifiers will typically have
ower performance for scarce classes. This has also been ob-
erved for regressors (Moen et al., 2018 ) and for classifiers us-
ng new self-supervised methods (Sigur ð ardóttir et al., 2023 ).
ere, we train on each annotation mark individually, and thus

he model has no explicit concept of age classes, or even age.
lthough there are more 10-mark sequences than 9-mark se-
uences in our data (due to the abundance of 8 years old in
he dataset), counting is done separately from the model, elim-
nating much of the bias. 

In a few cases, the model outputs a sequence of length zero,
n other words, it terminates the sequence before setting any
ark. This is detrimental to the statistics, in particular mea-

urements of the magnitude of errors, like RMSE. Although
his is clearly an incorrect result, this information can be used
o identify troublesome otoliths for evaluation by human ex-
erts. Granted some stronger assumptions based on knowl-
dge of the age distribution in the training data, this issue
ould ultimately be trivially mitigated by implementing a min-
mum number of steps before the sequence is allowed to ter-
inate. Similarly, the distribution of age predictions resulting

rom sampling the stochastic method can be used to estimate
robabilities for the various age classes, and to generate differ-
nt proposals for annotation mark placements for an expert
ser to evaluate. Such corrections and their effect on the pre-
iction accuracy could be explored in future work granted a
alanced training set including all ages from the youngest to
he oldest. 

dvantages of an iterative rather than a one-shot 
pproach 

n an earlier attempt at generating annotations for otoliths,
e employed a GAN (Goodfellow et al., 2020 ) to generate all

nnotations in a single pass. Our current, autoregressive ap-
roach comes with several advantages over such a one-shot
pproach. First, dividing the problem into a sequence of simi-
ar sub-problems greatly simplifies the output complexity the



Annotating otoliths with a deep generative model 61 

Figure 6. Examples of stochastic generation of annotations for a clear (left column) and a more uncertain (right column) case, compared with the 
respective corresponding human and greedy annotations (top row). The middle row shows the spatial probability distribution for generating a mark 
(stronger blue means higher probability). The target otolith image and its silhouette are visible in the respective backgrounds. The bottom row illustrates 
the distribution of mark counts. The darker bands at the top of the bars illustrate 95% confidence intervals, as found by bootstrapping. 
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Figure 7. Inter-reader (a) and general (b) comparison of mean quality scores given to human and computer generated annotations. Letters identify 
individual readers. 
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eural network has to learn. In our case, by making the tar-
et a single point in pixel-space, the task is reduced to that
f a standard (albeit high-dimensional) classification problem.
econd, by taking the annotation order implicitly present in
he training data into account, the generative approach more
losely follows the human way of annotating. This approach
lso effectively enlarges the training data set by a factor pro-
ortional to the average number of annotation marks for an
mage. In other words, each annotated image now constitutes
everal training data points. It is also noteworthy that, in
ggregate, these qualities make our autoregressive approach
airly lightweight. The model only took a few hours to train
nd is sufficiently lightweight to be trainable on a laptop
PU, although limited GPU memory may restrict the batch

ize. 

alue of explicit annotations 

hen evaluated by expert cod readers in a blind experi-
ent, our generated annotations were well-received and gen-

rally unidentifiable from human annotations. The scoring ap-
roach highlighted the fact that annotation quality and us-
bility were directly dependent on the otolith image quality
ather than the source of the annotations. When images were
f lower quality (typically, too dark and not enough contrast
etween zones), they were consistently scored worse no mat-
er who annotated them. As pointed out in previous works on
he use of deep-learning for ageing otoliths, this confirms the
mportance of standardized image taking procedures to en-
ure the highest quality training data with a minimal amount
f “extrinsic noise” (Fisher and Hunter, 2018 ; Martinsen et
l., 2022 ). 

When the pattern of zones on the otolith itself was un-
lear, both human and generated annotations tended to be
ttributed lower scores, or alternatively a strong mismatch
etween the original annotations and their generated counter-
art was visible. These unclear or difficult otolith patterns may
merge in periods of disturbed growth rates caused by detri-
ental conditions such as suboptimal temperatures or food

vailability and decreased seasonality (Fowler, 1995 ; Høie et
l., 2009 ; Albuquerque et al., 2019 ). While age reading of
od and most heavily fished species is well understood and
rounded in age validation experiments (Campana, 2005 ),
here is an unavoidable level of subjectivity in human esti-
ates that comes with experience. These small differences will
anifest in particular when an otolith is unclear and has room

or personal interpretation, for example when the innermost
ing is hard to separate from the settlement ring, or when a
iven individual has split, unclear zones that a human reader
ill selectively annotate or ignore based on fish length, catch
ate, and other variables. The present algorithm, on the other
and, will be operating in a more standardized manner and
ay be more likely to annotate all detectable ring structures

hat match the growth pattern most commonly seen in the
raining data, instead of selectively hopping over zones that
eem split or unclear. 

Altogether, this indicates that the algorithm was success-
ully trained to identify rings and structures the way human
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Figure 8. Otoliths examples and their respective human (left) and computer generated (right) annotations in three scenarios: perfect score and 
agreement in both (a); high human score but poor computer score (b); and poor human score but high computer score (c). Scores are given in red for 
each annotation set. 

Table 3. Number of human and computer generated annotations within 
each scoring category for the inter-reader test. 

Score Human Computer 

1 1 2 
2 5 8 
3 6 4 
4 9 7 
5 39 39 
Total 60 60 
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readers do. This opens up new windows of application for ML 

assisted frameworks. Because the machine is solely trained to 

identify and annotate rings, the actual age estimation is left to 

readers to assess. This addresses some of the common issues 
with the applicability of regression methods, namely that the 
rovided estimate often comes from a “black box” with little 
o no indication of what kind of information was used to de-
ive this result. Such generated annotations could have a wide
ange of applications, from introducing external estimates in 

eading workshops to investigate reader-specific trends; using 
enerated annotations as training material; or multiplying the 
raining data available for more complex regression models 
y consistently generating annotations and validating them 

ith human readers. Because the majority of the time and
esources needed to age read fish come from collecting, ex-
racting, preparing, and imaging the otoliths prior to reading 
Fisher and Hunter, 2018 ), ML approaches are usually limited
n scope by how efficient they actually are: generating annota-
ions from already available material could potentially be used 

o multiply the amount of training data available for more
ther models without having to use additional laboratory and 

eader time. 
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rust, interpretability, and explainable AI 

espite remarkable progress in AI and deep learning tech-
ology over the last decade, adoption in the marine sciences
nd elsewhere is slow (Thessen, 2016 ; Lopez-Marcano et al.,
021 ). One possible reason for this may be that users do
ot trust complex models whose operation is difficult to de-
ipher. This opacity is widely acknowledged as a challenge
or deep neural networks, and may lead analysts to prefer
odels with simpler computational structures (e.g. rule based
odels, decision trees, or linear regression) instead. How-

ver, we contend that this perceived simplicity is a conse-
uence of few parameters, rather than inherent in the al-
orithms. To match the decision power of a deep neural
etwork, millions of rules, tree nodes, or dimensions are
eeded, at which point the method is no longer explainable or
nterpretable. 

An alternative is to apply post hoc analysis to produce “ex-
lanations” (Doran et al., 2017 ), usually in the form of high-

ighting the parts of the input that contribute most to the re-
ult. The post hoc analysis is often itself opaque, and thus suf-
ers from the same problem as it is attempting to address. Even
n the case where the analysis identifies features the user con-
iders salient, one might reasonably ask whether this proves
nything about the decision process. 

What constitutes an “explanation” of a result or “inter-
retability”of a model is not clear (Lipton, 2017 ). We consider
n explanation to be auxiliary information that the user can
se to convince himself of the correctness of a result. With
onte Carlo sampling, our method produces salience maps

imilar to post hoc analyses, but our “explanations” are gen-
rated as part of the algorithms and used explicitly by it to
etermine age. How the probability maps for each annotation
re produced remains opaque, but analogous to how decom-
osing the system in stages simplifies its learning, it likewise
implifies the process of verifying its efficacy for the user. The
ink from an otolith image to probable placements of an an-
otation is easier to verify than the link from image to age
stimate. Once this is settled, the process of age determina-
ion and calculation of probability distributions is easy to 

nderstand. 

onclusion 

toliths are an important tool for ecology and fish biology,
ut the skill required for expert analysis is limiting their use.
eep learning models can scale up the analysis, and have
een shown to produce statistically adequate age estimates,
ut the black box nature of such systems contributes to their
low adoption. Like traditional classifiers, our model produces
igh-quality age estimates, but also detailed intermediate in-
ormation of the process, in a form familiar to experts. Thus,
he expert can readily inspect and verify the model’s indi-
idual annulus identifications and correct any errors. In ad-
ition, the quality and uncertainty associated with the inter-
retation of each otolith can be assessed, automatically or m
nually. 
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Malde, K. 2021. Automatic interpretation of salmon scales using 
deep learning. Ecological Informatics, 63: 101322.

right , P. J ., Panfili, J ., Morales-Nin, B., and Geffen, A. J. 2002. Types
of calcified structures: A. Otoliths. In Manual of Fish Sclerochronol-
ogy, pp. 31–57. Ed. by J. Panfili, H. d. Pontual, H. Troadec, and P.
J. Wright Ifremer-IRD coedition, Brest, France.

amwa , E . 2023. January 30. Generative Adversarial Networks for An-
notating Images of Otoliths. The University of Bergen. https://bo 
ra.uib.no/ bora-xmlui/handle/ 11250/ 3060232 (last accessed 3 July 
2023).
Handling editor: Allen Andrews 

e Exploration of the Sea. This is an Open Access article distributed under the terms of the 

unrestricted reuse, distribution, and reproduction in any medium, provided the original work 

 Fisheries and M
arine Biology, U

niversity of Bergen user on 19 April 2024

http://arxiv.org/abs/1611.01144
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1606.03490
https://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a/
https://bora.uib.no/bora-xmlui/handle/11250/3060232
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Methods
	Results
	Discussion
	Conclusion
	Acknowledgements
	Supplementary data
	Author contributions
	Data availability
	Conflict of interests
	References

