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Aims of this project

The common objective for all three papers was to find reproducible and visually relatable
quantitative measures of interictal epileptiform discharge (IED) morphology that could
inform, assist and improve the diagnostic work-up of patients with suspected epilepsy.

Each paper had specific aims as outlined below.

Paper I

The primary aim in Paper I was to investigate whether morphological features of focal
IEDs depended on age. Our clinical experience suggested that the spike amplitudes
diminish with increasing age and we wanted to examine this using quantitative measures
of amplitude as well as other morphological IED features. The secondary aim was to

assess the occurrence of epilepsy type by age.

Paper 11
Our primary aim in Paper II was to create a composite score from reliable quantitative
morphological measures of the first sharp transient in the EEG that could distinguish

between epileptiform and non-epileptiform sharp transients.

Paper 111

The primary aim in Paper III was to examine whether the diagnostic accuracy of our
classification model from Paper II could be improved by adding the marker interictal
epileptiform discharge candidate count (IEDC count) and by applying the morphological
score to several sharp transients in the EEG. IEDC count represents the total number of

sharp transients suspected as I[EDs in an EEG.
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Abstract

Background: Some sharp transients in EEG represent interictal epileptiform discharges
(IEDs) and are biomarkers for epilepsy. The current gold standard for detecting IEDs is
by visual analysis. Detection relies mostly on experience, guided by qualitative

descriptions and criteria from available guidelines.

Objectives: The main aim for our first paper was to investigate whether focal IED
morphology depended on age. In our second paper, we hypothesized that selected
quantitative morphological features of sharp transients can be combined into a score to
classify EEGs as epileptiform or non-epileptiform. In our third paper, we hypothesized
that the number of suspected IEDs, or IED candidates, represents an important variable in

the classification of EEGs as epileptiform or non-epileptiform.

Materials and Methods: We included patients who had a routine EEG recorded in our
EEG laboratory at Haukeland University Hospital during 2013— 2017, and who had an
EEG report in our SCORE EEG database. In paper I, we examined whether focal IED
morphology depended on age. In paper 11, we examined whether quantified focal IED
candidate morphology can be applied to classify EEGs as epileptiform or
non-epileptiform. In paper 111, we assessed whether the number of focal IED candidates
and their morphology are relevant in the classification of EEGs as epileptiform or

non-epileptiform. The clinical EEG conclusion was used as the primary outcome.

Results and Conclusions: IED morphology depended on patient age. IEDs became
blunter, smaller, wider, and had a less prominent slow after-wave with increasing age.
The quantitative morphological score for IED candidates classified EEGs as epileptiform
or non-epileptiform with a sensitivity of 55% and a specificity of 91%. By applying the
combination of quantified IED candidate morphology and IED candidate count, we could

classify EEGs with a high IRR, sensitivity of 60% and specificity of 99%.



Sammendrag (abstract in Norwegian)

Bakgrunn: Noen skarpe transienter i EEG er interiktale epileptiforme utladninger (IEU)
og representerer en biomarker for epilepsi. Visuell analyse er den gjeldende
gullstandarden for & detektere IEUer. En slik analyse avhenger av erfaringsgrunnlag, og

er veiledet av kvalitative kriterier og beskrivelser fra tilgjengelige retningslinjer.

Mal: I forste artikkel ville vi undersgke hvorvidt fokal IEU-morfologi er avhengig av
alder. I andre artikkel var mélet & utrede om den forste fokale skarpe transienten i EEG
kan kvantifiseres til en skére som klassifiserer EEG som epileptiforme. I tredje artikkel
fremsatte vi hypotesen at antallet mistenkte fokale IEUer, eller IEU-kandidater, er en

viktig variabel i klassifiseringen av EEG som epileptiforme eller ikke-epileptiforme.

Materiale og metoder: Vi inkluderte pasienter som hadde registrert et rutine-EEG 1 vart
laboratorium ved Haukeland Universitetssykehus i tidsrommet 2013-2017, og som hadde
en EEG-rapport lagret i vir SCORE EEG-database. I forste artikkel undersekte vi om
IEU-morfologi var avhengig av alder. I andre artikkel klassifiserte vi EEG som
ikke-epileptiforme eller epileptiforme basert pa IEU-kandidat-skéren. I tredje artikkel
kvantifiserte vi en eller flere IEU-kandidater i hvert EEG for & vurdere hvorvidt antallet
IEU-kandidater er relevant i klassifisering av EEG som ikke-epileptiforme eller

epileptiforme. Den kliniske EEG-konklusjonen ble brukt som gullstandard.

Resultater og konklusjoner: Fokal IEU-morfologi var avhengig av alder. IEU ble
buttere, lavere i amplitude, bredere og fikk en mindre fremtredende etterfolgende
langsom belge ved hayere alder. Den kvantitative skaren for IEU-kandidater klassifiserte
EEG som epileptiforme eller ikke-epileptiforme med sensitivitet=55% og
spesifisitet=91%. Antall IEU-kandidater kombinert med kvantifisert IEU-morfologi

klassifiserte EEG som epileptiformt med en sensitivitet pa 60% og spesifisitet pa 99%.



Introduction

The start of our research project

This work began in 2017. We had considered examining various topics within the domain
of quantitative EEG, and decided to focus on IEDs or “spikes”. The IED is a monumental
EEG signal, a biomarker for epilepsy, an everyday challenge for EEG readers
everywhere, known and described for nearly a century. Initially, there was confusion
between what we now know as interictal and ictal epileptiform activity [1], with
beginning understanding of the separation of interictal and ictal activity around the 1940s
[2]. A Norwegian paper from 1959 reflects this incomplete understanding [3]. Despite a
long history of research on IEA, there are still no applicable quantitative reference values
to aid in EEG interpretation, which causes clinical problems [4-6]. We accepted the
challenge and started putting numbers to spikes. The definition of epileptiform activity
got an update in 2017 [7], while we were still in the early planning stages of our project.
The reworked definition signaled that the science of spike interpretation had not peaked,
but that there were still opportunities to improve interrater agreement and diagnostic
accuracy, core elements of a useful diagnostic marker. Since 1974, a spike had been
defined by the International Federation of Clinical Neurophysiology as a sharp wave
typically seen in the EEG of patients with epilepsy[8]. This was a useful definition if you
were already an experienced EEG reader, but not very helpful for EEG apprentices.
However, the 2017 update introduced morphological criteria for typical spike features,
essentially dissecting the waveform and shifting the focus over to the various elements
that make up spikes. The new criteria are still qualitative and experience-based like the
old definition, and therefore they continue to present similar challenges to the EEG
reader. For example, the first criterion states that an IED should have a pointy peak.
Normal EEG background activity contains many pointy peaks, as several physiological
transients have pointy peaks as a typical feature [9]. When is a peak pointed to the degree
that it should be considered a possible IED, or even a definite IED? Our hypothesis was
10



that quantifying such morphological features would improve our knowledge of which

parameters are the most impactful and reliable in spike detection and classification.

We had access to a large SCORE EEG [10, 11] database with thousands of structured
reports spanning several years of clinical EEG interpretation at the Department of
Neurophysiology, Haukeland University Hospital, Bergen. The EEG findings in the
SCORE reports, such as the spikes that we focused on, had a timestamp that pointed to
the corresponding raw EEG-signal, providing an unambiguous link between the clinical
classification of findings and the EEG itself. This gave us a very robust starting point by
providing easy access to the visual gold standard for spike classification and saving us a
lot of time harvesting and managing data. We used SQL to extract data from the SCORE
database, MATLAB for signal analysis, STATA for statistics and dataset management,

and GitHub for script management and to enforce reproducible research [11-14].

Epilepsy

Epilepsy is a brain disease that generates unprovoked epileptic seizures. It affects more
than 50 million people worldwide with a prevalence around 4-12 per 1000 people and an
incidence around 50 per 100 000 people per year [15, 16]. The annual worldwide costs
have been estimated to about 119 billion USD, where 83% of the costs benefits only 15%
of the epilepsy population in high-income countries [15]. Epilepsy has a wide range of
causes (structural, genetic, infectious, metabolic, immune or unknown) and heterogenous
seizure semiology (focal seizures, generalized seizures, with or without loss of
consciousness etc.). The prognosis depends on epilepsy type or syndrome [17, 18].
Epileptic seizures can have deadly consequences such as in sudden unexpected death
from epilepsy (SUDEP) and severe status epilepticus [19, 20]. Epilepsy is associated with
many comorbid conditions like cognitive impairment, learning disabilities, memory

difficulties, physical disabilities, psychiatric and behavioral problems, and stigma [21].
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A task force for The International League Against Epilepsy published a practical
definition of epilepsy in 2014 as either at least two unprovoked seizures that occur with
greater than 24 hours apart, only one unprovoked seizure with a recurrence risk estimated
to be above 60% during the next 10 years, or the diagnosis of an epilepsy syndrome [22].
Interictal epileptiform discharges (IEDs) in scalp EEG represent an important biomarker
for epilepsy and are particularly relevant in the diagnostic work-up of patients that had
only one unprovoked seizure, since IEDs will heavily impact the assessment of

recurrence risk.

EEG

Scalp electroencephalogram, hereafter referred to as just EEG, represents a recording of
electric potential differences between electrodes that are placed on the scalp. An
advantage of EEG is the high temporal resolution, hundreds or thousands of samples are
recorded per second, making it possible to record sudden and brief changes in brain
activity, like IEDs. The spatial resolution and localizing value are generally not strengths
of EEG, although there are methods to localize sources of synchronized neuronal activity,
like in electrical dipole analysis and averaging [23]. Spatial resolution can be improved
by high density electrode arrays, but for general purpose routine EEG recordings the
10-20 or 10-10 electrode montage is used (21-74 electrodes) [24]. The 10 and 20 refers to
the distance between electrodes in percentage relative to the scalp size. The EEG signal is
measured in microvolts and is relatively weak compared to extracerebral artifacts like
body movements. In the context of spike detection, the normal or physiological
background activity is considered as background noise [23]. A large cortical area that
generates synchronous activity, usually >10 square centimeters, is required for an electric

potential difference to be visible in free running EEGs [25].

EEG recordings are non-invasive and relatively cheap to perform. The duration of a

routine EEG recording is usually 20-30 minutes, and the time required for analysis is

12



roughly 12 minutes, depending on whether there are abnormal findings or not [26, 27].
There are many clinical indications for an EEG. Referral reasons can be summarized as a
question whether there is cerebral dysfunction and if so, what type of cerebral
dysfunction that occurs. Suspicion of epilepsy is the most common diagnostic question in
the EEG referrals at our department. Interictal epileptiform activity (IEA) is a biomarker

for epilepsy, and IEA represents the core subject in our three papers I-11-111.

Interictal epileptiform activity

IEA in EEG is the most relevant interictal biomarker for epilepsy [28] . When present,
the correct diagnosis of epilepsy can be given earlier and with higher precision, and
appropriate treatment can be initiated without depending on further seizures to confirm
the diagnosis [29]. Constellations of IED morphology, topography and activating patterns
can point to specific epilepsy types and syndromes [28]. Figure 1 shows the typical signal
morphology of an IED signal after eliminating background noise by averaging
independent IEDs. The mechanism of how IEDs are generated has been studied in
magnetoencephalography and intracortical EEG recordings, and appears to be a
widespread slow oscillations before the hypersynchronization of the IEDs themselves

{Sheybani, 2021 #797;Westin, 2022 #910.

v (SD)

Figure 1. Averaged
independent IEDs (N=349)
[30].
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Old and new definitions of interictal epileptiform activity

Interictal epileptiform activity represents a main topic of this project. IEDs are usually
brief, visible in the EEG for less than a second, they always include at least one sharp or
spiky wave, they are often followed by a slow after-wave, but there are otherwise many
morphological variations. Several discharges may appear in trains, rhythmical or

arrhythmical [31]. The old and new definitions of IED are shown below [7, 8, 32].

Oldest definition (1974) [8]:

“Epileptiform pattern. Interpretive term. Applies to distinctive waves or complexes,
distinguished from background activity, and resembling those recorded in a proportion of
human subjects suffering from epileptic disorders and in animals rendered epileptic
experimentally. Epileptiform patterns include spikes and sharp waves, alone or

accompanied by slow waves, occurring singly or in bursts lasting at most a few seconds.”

Old definition (1999) [32]:

“Describes transients distinguishable from background activity, with a characteristic
spiky morphology, typically, but neither exclusively nor invariably, found in interictal
EEGs of people with epilepsy.

New definition (2017) [7]:

“Epileptiform discharges: Describes transients distinguishable from background activity
with a characteristic morphology typically, but neither exclusively nor invariably, found
in interictal EEGs of people with epilepsy. Epileptiform patterns have to fulfill at least 4
of the following 6 criteria:

(1) Di- or tri-phasic waves with sharp or spiky morphology (i.e. pointed peak).

(2) Different wave-duration than the ongoing background activity, either shorter or

longer.

14



(3) Asymmetry of the waveform: a sharply rising ascending phase and a more slowly
decaying descending phase, or vice versa.

(4) The transient is followed by an associated slow after-wave.

(5) The background activity surrounding epileptiform discharges is disrupted by the
presence of the epileptiform discharges.

(6) Distribution of the negative and positive potentials on the scalp suggests a source of
the signal in the brain, corresponding to a radial, oblique or tangential orientation of the
source (see dipole). This is best assessed by inspecting voltage maps constructed using

b

common-average reference.’

Terminology

When referring to sharp EEG waveforms in general, whether epileptiform or
non-epileptiform, sharp transients is an appropriate term, although they are sometimes
also referred to as spikes, sharps, or just transients [7, 11]. When the distinction between
epileptiform and non-epileptiform is important, then explicit terms like I[ED or
non-epileptiform transient prevent misunderstandings. The prefix “interictal” means
“between seizures”, and is often left out for readability, but is sometimes needed to make
a distinction from ictal epileptiform activity that is seen during seizures. The choice of
terminology is context-dependent, and the meaning of a term should be obvious from the
context. When referring to epileptiform discharges in this thesis, they will be specified
explicitly as interictal epileptiform discharges (IEDs) or interictal epileptiform activity
(IEA). Considering the vast plethora of morphological IED variants it is not surprising
that creative terms may arise in EEG reports described in free text. Harald Aurlien’s PhD
research project addressed this problem and demonstrated the use of structured EEG
reports stored in a computer database for research purposes [33-35]. His work led the
way to Standardized computer-based organized reporting of EEG (SCORE), a
standardized method for reporting EEG findings, that was published in 2013, to improve
communication of EEG findings from EEG reader to the treating clinician [31]. As

mentioned previously, the data for this project relied on a structured database of EEG
15



findings, which is much preferred to searching through unstructured free text documents

in electronic patient journals.

Ictal or interictal epileptiform discharges

The distinction between interictal and ictal epileptiform activity is not always
straightforward, probably because both EEG patterns stem from synchronized neuronal
activity [22, 36]. Some studies indicate that IEDs can have a measurable impact on
cognitive functioning independently of epileptic seizures [37, 38]. A short burst of
rhythmic 3 Hz polyspike and slow wave in the EEG can be both interictal and ictal in
juvenile myoclonic epilepsy, depending on whether they present together with any
clinical symptoms or not [39]. Some periodic and rhythmic patterns with epileptiform
morphology in critically ill patients do not quite fit the criteria as either ictal or interictal
activity but is rather classified somewhere along an ictal-interictal continuum [40].
Despite these entanglements, sharp transients can for most purposes be safely categorized

as interictal or ictal.

Quantitative measures of IEDs

EEG and IEDs are recordings of voltage fluctuations, so it is rather obvious to attempt
precise quantifications. Descriptions of frequencies and amplitudes in EEG have a long
history, dating back to 1929 in Hans Berger’s paper “Uber das Elektrenkephalogramm
des Menschen” [41]. It is impossible to decipher exactly when IEDs became a marker for
epilepsy, but EEG investigators were aware of EEG abnormalities occurring between
seizures already in the 1930s [42]. Interictal waves and spikes were described in the
1940s and 50s [2, 43, 44]. A definition of IEDs that is familiar to modern EEG
interpreters was published as part of a glossary in 1962 [45], updated in 1974 [8], 1999
[32] and 2017 [7]. The definitions contain only qualitative descriptions that can aid in

visual spike detection. The ILAE guidelines for classification of epilepsy syndromes

16



contain some information regarding voltages and frequencies for specific epilepsy

syndromes [28].

Despite the lack of quantitative information in definitions and guidelines, there are
several studies that have quantified morphological IED features either as a step towards
the development of automatic spike detectors [46-64], to discover associations between
IED features and seizure risk [65], to assess reproducibility of visual analysis [66, 67], or
to define their potential role in epilepsy syndrome classification [33, 68, 69]. These
studies applied mimetic analysis, which is the reduction of more or less complex
morphological features of the transient to simplified quantities (e.g. amplitude, sharpness,
duration and area) [53]. Other non-mimetic methods are often included in automatic
spike detectors, such as artificial neural networks [70], fourier and wavelet transform
analysis [71, 72], template matching [73] and independent component analysis [48].
Older studies are often small in terms of patient numbers, often due to computational
burden at the time. The computer code behind the previous automated spike detector

work was not available, as code sharing was not usual then.

Diagnostic accuracy in visual [ED analysis

The ability of a diagnostic test to accurately identify patients with and without a disease
is referred to as diagnostic accuracy [74]. Diagnostic accuracy is often reported as
sensitivity and specificity. Sensitivity denotes the proportion of subjects with the disease
that is correctly identified by a positive test. Specificity denotes the proportion of subjects
without the disease that is correctly identified as negative. False positive EEGs is a
common problem due to over-reading and the faulty classification of physiological
transients and various artifacts as IEDs [75]. A high specificity is especially important in
patient populations with a low pretest probability of epilepsy. According to a systematic
review by Bouma et al. [76], the pooled sensitivity of routine EEGs regarding seizure
recurrence after an unprovoked first seizure was 17% for adults and 58% for children.

The pooled specificity was 95% for adults and 70% for children. Time will tell if the
17



introduction of additional morphological criteria to the 2017 definition of epileptiform
discharges [7] will improve the diagnostic accuracy of visual IED interpretation. Some
recent studies have shown promising results when applying the new criteria in visual IED

detection [77, 78].

Interrater reliability in visual IED analysis

A high diagnostic accuracy can not be expected unless EEG readers are in reasonable
agreement regarding the presence of epileptiform discharges in EEGs. Variability in
diagnostic interpretation is also important in other medical fields such as radiology. There
is a longer standing tradition in radiology of more advanced research designs, larger
datasets than has been in common clinical neurophysiology[79]. IRR can be reported
numerically as percentage agreement or by chance-adjusted agreement statistics, e.g.
Cohen’s kappa or Gwet’s AC1 [80, 81]. It is also common to describe IRR by ordinal
categories as follows: A Kappa value of < 0 as “no agreement”, 0.01-0.40 as “fair
agreement”, 0.41-0.60 as “moderate agreement”, 0.61-0.80 as “substantial agreement”
and 0.81-1 as “almost perfect agreement” [82]. The IRR among expert EEG readers was
found to be moderate for identifying individual IEDs and substantial regarding whether
an EEG contained any IEDs, in a recent study by Jing et al [67]. Precise terminology,
definitions and criteria represents the foundation for consistent and reliable interpretation

of IEDs [83].

Other neurophysiological markers for epilepsy

While IEA in EEG is the most commonly used modality in the diagnostic work-up of
patients with suspected epilepsy, other electrophysiological methods are also available.
Ictal EEG, that is an EEG recording that contains an epileptic seizure, can verify and
localize epilepsy, especially with added video for seizure semiology [84].
Magnetoencephalography can be used to detect interictal epileptiform activity[85, 86].

High-frequency oscillations are a new aspect of interictal epileptiform activity
18



characterization[87]. Measures of functional brain network connectivity is an interictal

non-epileptiform EEG marker for epilepsy [88].

Materials

Patients

The source for our patient material in Paper I-1I-1II was a SCORE EEG database located
at the Department of Clinical Neurophysiology, Haukeland University Hospital. Patients,
EEGs and EEG reports were gathered in the period of March 4th, 2013 - October 29th,
2017. A follow-up diagnosis of epilepsy was gathered from the Haukeland University
Hospital records covering all clinical departments from January 1st, 1999 until November
27th, 2019. This means that we had a 2 year minimum follow-up after the EEG
recording, and a good coverage of previous EEG recordings. The upstream preselected
EEG database material consisted of 10,547 consecutive patients who had one or more
EEG reports in the SCORE database. Patients who had their EEG recorded at the
intensive care unit (ICU) were excluded since this population tends to differ with regards
to patient state, medication (sedatives), prevalence of epilepsy and comorbidities. Further
selection of patients differed in each paper. Specific selection criteria were defined so that
we should be able to ensure optimal answers to our research questions, minimize the risk

of selection bias, obtain a sufficient sample size, but still with an acceptable work load..

Paper [

We selected one EEG from each patient as the material for Paper I, giving us a total of
10,547 EEGs. The patients were categorized into ten groups according to age in years as
follows: <1 year, 1-9 years, 10-19 years, 20-29 years, 30-39 years, 40—49 years, 50-59
years, 60—69 years, 7079 years, and 80101 years.The EEGs were grouped according to
the diagnostic conclusion in the EEG report. 9,238 EEGs had a conclusion other than
epilepsy while 1309 EEGs had a conclusion of epilepsy. The latter EEGs were further

19



grouped into generalized (207 EEGs), focal (875), or undefined epilepsy (227).
Demographic characteristics were analyzed in all 10547 patients, and quantitative IED

features were described in the focal epilepsy group.

Paper II - 111

The main aims for Paper II and III were to establish sensitive and specific quantitative
diagnostic markers for epilepsy that were reproducible. We applied a retrospective cohort
study design using routine EEGs. Only spike- and epilepsy-naive patients were included
in order to avoid unwanted bias in the form of reduced spike detection thresholds due to
information from previous EEGs or a known hospital diagnosis of epilepsy. This reduced

our EEG database material from 10,547 to 10,138 patients.

In Paper I, we included one EEG from each of 2063 patients that had either sharp
transients or focal IEDs in their EEG. 37 patients were excluded due to missing EEG
data. 350 EEGs contained focal IEDs, while the remaining 1713 contained
non-epileptiform sharp transients. The EEGs were randomized half and half into a
training dataset (N=1013) and a validation dataset (N=1013). Randomization was
obtained using the STATA command “runiform()” to generate a column with random
numbers, sorting the dataset according to those random values, and then selecting N
ordered rows [13]. A random subset of 244 EEGs from the training dataset was extracted
to assess IRA by two independent raters. A subset of 345 EEGs that overlapped between
Paper I and Paper II was used to examine inter-method agreement between the automatic
one-click algorithm and the manual 4-click annotation method for the quantification of
sharp transients. We were able to include an additional external validation dataset

(N=100) described in a paper by Kural [89].

The material for Paper III was a randomly extracted subset including 400 patients from
the Paper II dataset of 2063 patients. These EEGs were randomized and split into a

training dataset (N=200) and a validation dataset (N=200). An external dataset containing
20



60 routine EEGs [90] was used for further validation. The patients in the external datasets
for Paper II-11I had all undergone long-term video-EEG monitoring that contained a
habitual paroxysmal event, either a non-epileptic event or an epileptic seizure, that served

as the reference standard.

Sharp transients in EEG

The subject of analysis in Paper I-1I-111 is sharp transients. Figure 2 illustrates the general
concepts for EEG and spike selection in our three papers. Our main objective in Paper I
was to examine whether IED morphology depended on age. Accordingly, we analyzed
only those transients that were classified as IEDs during routine clinical EEG evaluation
at our department. We selected the first IED that had been marked previously in each
EEG. In Paper II, our goal was to identify morphological measures that differed between
non-epileptiform and epileptiform discharges. Accordingly, the first transient was
selected and measured in all EEGs using the previous clinical classification as
epileptiform or non-epileptiform as the primary outcome variable. The main objective in
Paper I1I was to investigate whether the number of sharp transients in the recorded EEG
was relevant for the visually based classification of IEDs. It is uncommon to mark every
transient suspected to be an IED in clinical EEG evaluation practice, so we had to gather
this information by re-marking transients in the EEG as part of the research project. We
decided to limit the number of markings to 40 IED candidates per EEG, as we
hypothesized that this number was well above the threshold for when there is likely to be
enough evidence that an EEG would be classified as epileptiform. This number at the
same time gave us sufficient data regarding the variance of morphological measures in

EEG.
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Figure 2. We selected the first EEG for each patient that contained a sharp transient
(A), only IEDs for Paper I, either IEDs or non-epileptiform transients for Paper II-I11.
Pre-classified transients were re-marked for Paper I-II (B). One or several IED
candidates were marked blindly in each EEG for Paper III (C). Quantitative measures
were calculated from all marked transients (D).

The marking of sharp transients was carried out by one rater in Paper I, two raters in
Paper 11, and three raters in Paper III. The number of raters varied for various datasets
within Paper II and III. Figure 3 illustrates the relationship between datasets and raters for

each paper.
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Paper | Paper Il Paper llI

IED morphology by age BEMS BEMS and IED candidate count
Focal IEDs (N = 868) Internal training dataset (N = 1013) Internal training dataset (N = 196)
Rater 2: Rater 2: Rater 1, 2:
Remarking preexisting markings Remarking preexisting markings from Blind independent marking of IED
from clinical EEG interpretation. clinical EEG interpretation. candidates.
Rater 1: Internal validation dataset (N = 187)
Remarking preexisting markings from
clinical EEG interpretation in a Rater 1, 2, 3:
random subset of 244 EEGs. Blind independent marking of IED
candidates.
Internal validation dataset (N = 1013)
External validation dataset (N = 60)
Rater 2:
Remarking preexisting markings from Rater 1, 2, 3:
clinical EEG interpretation. Blind independent marking of
IED candidates.

External validation dataset (N = 100)

Rater 2:
Remarking preexisting markings.

Figure 3. Illustration of the relationship between datasets and raters for Paper I-II-I11.

Methods

Several aspects of study design and key methodological concepts were common for all
three papers within this project. The quantitative measurements of sharp transients were
nearly identical across the three papers. The only difference was that the algorithm that
required four mouse clicks to quantify a transient in Paper I was replaced by a one-click

algorithm for Paper II-I11.

Study design

Paper [ was a retrospective cross-sectional study where we studied the morphology of
IEDs by age groups and occurrence of epilepsy type as per the clinical diagnostic EEG
conclusion. We aimed for a large sample size in Paper I so that we would be able to

compare many age groups while minimizing the statistical uncertainty in each group.
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Paper II-11I were retrospective case-control studies using two separate outcomes. The
primary outcome was the conclusion based on EEG evaluation only of either focal IEDs
or non-epileptiform transients (EEG-outcome). The secondary outcome was the
follow-up diagnosis of epilepsy in the hospital records based on all clinical and
non-clinical information available (clinical outcome). The follow-up time period ranged
from 2-6 years (more precisely 769-2,447 days). Both Paper II and III used a
conservative validation design where one half of the EEGs were used for building the
regression model (Paper II) or setting cut-points for BEMS derived variables and IED
candidate count (Paper III), while the other half of the EEGs were reserved for validation.

The models were also validated applying independent, external datasets in Paper II-111I.

Qualitative or quantitative analysis (or both)

Qualitative visual analysis, descriptions, definitions and criteria have been the traditional
approach for EEG interpretation and spike detection. A standardized qualitative
nomenclature covers the complexity and variety of IED patterns quite well and has been
regarded as an effective tool for communicating and reporting EEG findings. However,

there are good reasons to apply quantitative analysis in spike detection and description.

“If you can not measure it, you can not improve it.”’ (Lord Kelvin)

Inter-rater agreement in qualitative visual EEG analysis is far from perfect, calling for a
more objective classification method [67, 91, 92]. Morphological IED features are not
dichotomous or categorical by nature, but rather exist on a continuous spectrum where
quantitative measures should be appropriate. Numbers can be a resource in visual
analysis by placing quantified features along a numerical spectrum, thereby providing

data as evidence and explanation for the chosen classification or evaluation.
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According to standard nomenclature a slow after-wave is either present or it is not.
However, in real life after-waves come in various shapes and sizes. One might argue that
every transient shown in the example in Figure 4 is followed by a slow after-wave. So,
how can a simple quantitative value, like the area of the slow after-wave, add value to the
EEG report? We will describe how three different measurement outcomes can improve
the classification of slow-waves and give more precise information.

1: A large slow-wave area indicates that there is no ambiguity, thus supporting the
classification.

2: A slow-wave area in the mid-range indicates that the classification was not clear cut.
3: A small slow-wave area would not support the classification, or even indicate a
misclassification.

Similar to all other morphological features, the classification of a slow after-wave is not

always as definite as we would like it to be.

In our three papers, we have quantified several morphological IED features, and
combined them into a total score, the novel Bergen Epileptiform Morphology Score
(BEMS). A higher BEMS value means that the transient has more typical IED features.
Figure 4 illustrates how sharp transients look like when they are grouped according to

BEMS percentiles. BEMS will be discussed in more detail later.
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Figure 4. Average signals of all sharp transients from Paper II (N=2026) categorized
into five BEMS-score percentile quantiles. 95% confidence intervals are shown as
shaded gray areas.
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Using quantitative measures as decision support

This work was firmly grounded on the standard visual analysis by clinical
neurophysiologists. All sharp transients analyzed in this thesis were identified and
gathered through standard visual EEG inspection and not by automatic spike detection.
These were suspected IEDs with various degrees of certainty. Some exceptions will be
further discussed in the limitations section. Selection bias for our included sharp
transients can be regarded as a human EEG filter. The quantitative analysis and
morphological measures were applied by us after the EEG had been filtered through this
visual inspection. Therefore our measures can only describe the subset of EEGs that
contains visually suspected IEDs, excluding the remaining EEG background waves. An
advantage of analyzing sharp transients detected by human EEG readers is that the
resulting measures give information about sharp transients selected by visual analysis, the
current gold standard for EEG assessment. Furthermore, this selection should be well
suited to establish and define markers for the classification of sharp transients as either
epileptiform or non-epileptiform activity. We did this in Paper I. A detailed and
computerized analysis of sharp transients can identify the essential features that separate
non-epileptiform from epileptiform activity, as demonstrated in our Paper I-1I. We
gathered and classified our transients as follows: First, the human EEG reader marked
sharp transients suspected of being IEDs. Then, the computer evaluated whether the
particular transient represented an IED by calculating a score from the morphological

measurements.

How to measure a spike

There are many ways to measure any property of a spike. There are no generally
agreed-upon guidelines or recommendations. In our project, we put emphasis on deriving
measures that had obvious associations with visual interpretation. The new definition of
epileptiform discharges with morphological criteria in 2017 influenced our decision
regarding which features to focus on. Before doing any actual spike measurements, the
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transient signal needs to be separated from surrounding EEG activity by deciding where

the transient starts and ends.

We developed a program in MATLAB for Paper I to calculate morphological measures
from IEDs that had already been marked in the EEG during clinical routine EEG
interpretation [93]. During clinical EEG interpretation montages could be changed freely,
while the program was limited to a common average reference montage. The program
required four clicks to measure each spike; one at the start of the ascending spike, one at
the peak of the spike, one at the end of the descending spike, and one at the end of the
slow after-wave if present. Four clicks per IED was laborious, time intensive, and prone
to human error. Therefore, we improved the algorithm for Paper II, so that only one
mouse click near the spike peak was sufficient for all spike measurements. This openly
available algorithm, titled “EpiOneClick” [93], was able to locate the start and end points
of the spike as well as the slow-wave component using idiosyncratic rules (Figure 5).
EpiOneClick detected the proper peak within a 25 ms time window around the clicked
sample. Then it crawled along the signal forwards and backwards to define three more
time points; the spike start, the spike end which is also the start of the slow after-wave,
and the end of the slow after-wave. The start or initial trough of the spike was identified
by iterating backwards through all local voltage minima between the sample point of the
peak and up to 200 ms before the peak. The marking for the spike start was updated to
the current iteration of the local minimum as long as the slope was greater than 0.3
uV/ms between itself and the peak. The iteration process was terminated if the next
iterative local minimum had a higher voltage than the previous one. The spike end or
trailing trough of the spike was detected by a similar procedure, only that it was iterating
forwards through local minima instead of backwards. The spike end at the same time
marked the start of the slow after-wave. The end of the slow after-wave was estimated by
first applying a smoothing average filter for the duration of 800 ms following the
slow-wave start, and then marking the sample with the minimal voltage outside the time

window and at least 166 ms from the slow-wave start, to exclude waves with a frequency
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>6 Hz. Then, a figure was presented in a popup-window that showed the acquired signal
with the automatically generated markings so that the EEG reader could verify that the

intended IED or IED candidate had been properly marked.
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Figure 5. Illustration of how IED candidates were presented to the rater during the
marking process. The purpose was for the rater to verify that the intended IED was

properly quantified.

Creating the Bergen Epileptiform Morphology Score (BEMS)

In Paper II, we developed the Bergen Epileptiform Morphology Score (BEMS) for sharp
transients in order to classify them as epileptiform or non-epileptiform discharges. A
higher score meant that a transient had a more typical epileptiform morphology and was
more likely to be an IED. The score combined several coefficients in a logistic regression
model using the four most significant morphological features plus patient age in years as
independent variables. To build the model we first selected 11 morphological measures

for univariate analysis of dose response and distribution. The measures were: Spike
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ascending amplitude (uV), spike descending amplitude (uV), spike to background power
(%), sharpness (2nd derivative around peak), spike duration (ms), background amplitude
(root-mean-square pV), slow after-wave area (weber), spike onset slope (LV/msec), spike
descending slope (LV/msec), Henze asymmetry (ms/ms), and the number of channels
where the sharp transient had been marked. All these morphological measures as well as
age in years were then included in a preliminary logistic model using the clinical EEG
classification regarding the presence of IEDs as the outcome. We conducted a stepwise
elimination of independent variables one after the other, until the five most important
measures remained. Each variable was divided into four categories based on its univariate
dose-response curve. The maximal number of predictor variables (or degrees of freedom
when categorized) in a multivariate regression model for a given dataset size is not
known [94]. More than 10 events per predictor has been considered to be an acceptable
methodological practice [94]. Fewer variables and larger datasets increase model stability
and performance when applied to external datasets. Based on this, we decided that 10 or
more observations per variable category was appropriate to ensure a statistically reliable

model.

Table 1. The categorized predictor variables and their
individual point contribution for the total BEMS-score.

Predictor variable Category Points
Spike descending amplitude (1LV) 0-69 1
70-89

90-119

>119

Spike onset slope (LV/ms) 0-0.9
1.0-1.4

1.5-1.9

>1.9

Spike to background power (%) >8.5
4.7-8.5

2.6-4.6

0-2.5

Slow after-wave area (weber) 0-4
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5-9 6

10-19 11

>19 19

Age (years) 0-9 16
10-19 0

20-59 12

>59 25

Aggregated BEMS variables

In Paper I1I, BEMS was calculated for one or several IED candidates for each EEG
recording. Aggregated values from the distribution of BEMS-scores were analyzed and
used to classify EEGs as epileptiform or not instead of using only the first IED candidate
as we had done previously in Paper I-II. The variables used in Paper III were the
following:

BEMS,,.«: The maximum BEMS of any IED candidate in an EEG

BEMS,,.: The sum of BEMS for all IED candidates in an EEG

BEMS,,..n.: The mean BEMS for all IED candidates, which was calculated for the purpose
of investigating the correlation between morphology and IED candidate count.

IED candidate count: The number of IED candidates in an EEG.

Diagnostic classifier: The combination of BEMS and IED candidate count was applied
into three criteria sets where at least one criteria-set had to be fulfilled in order to classify
an EEG as epileptiform. The three criteria sets were defined as follows: In order for an
EEG to be classified as containing IEDs, it had to contain either one IED candidate with
BEMS > 58, two IED candidates with BEMS > 47 or seven IED candidates with BEMS >
36.

IED candidate morphology and IED candidate count
In Paper 111, we investigated whether the number of IED candidates in an EEG was
relevant for classification of IEDs. According to our clinical experience, the occurrence

of sharp transients that are recurring frequently during the EEG recording influences the
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evaluation and conclusion, especially in those EEGs that have uncharacteristic IED
candidates. The concept and relevance of IED candidate count is presumably well known
among EEG interpreters, but surprisingly there was only one paper by Kural et al. [90]
that had actually examined the influence of IED candidate count on IED classification. In
Paper I1I, we combined IED candidate morphology and IED candidate count into one
classification model. Our model was built using the training dataset (N=196) where two
raters had marked IED candidates independently. The model consisted of three
criteria-sets, where at least one criteria-set had to be fulfilled in order to classify an EEG
as epileptiform, i.e. containing IEDs. Each of the three criteria-sets were in the format of
“The EEG must contain at least x IED candidates with a BEMS above y”. To find the
optimal values for x and y, we had to test various combinations of three criteria-sets, and
then choose the one with the best diagnostic performance. An exhaustive search through
all possible combinations would be demanding since it would require classification of the
whole dataset for each combination in order to obtain diagnostic performance metrics.
The range of x would be 1-40 and of y 1-86, giving possible combinations in the order of
billions. We decided to apply some limitations on the ranges of x and y such that we only
had to evaluate a total of 5456 combinations of BEMS and IED candidate counts. We
chose the combinations according to the sum of mean accuracy and kappa, requiring that

the specificity was greater than 90%.

Interrater reliability (IRR)

IRR represents a crucial element for diagnostic tests, such as for our classification models

applied in Paper II-III. Paper I contains no IRR-data.

In Paper 11, we provided IRR data for two independent raters applying the BEMS
algorithm on sharp transients that had already been marked during clinical routine EEG
analysis. The transients were presented to the raters by automatically showing the EEG

page containing the current transient with its pre-existing marking. This means that the
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IRR results in Paper II depend only minimally on spike selection, except for channel
selection by the rater. In some cases, the raters also had to choose one transient amongst
several within the same EEG page. When we upgraded the BEMS-algorithm to only
require one click on the spike peak instead of four (spike start, peak, end, and end of the
slow after-wave), we also assessed inter-method reliability for a subset of transients that
were common for Paper | and Paper II. The measures from Paper I that had required four

clicks were compared to the measures from Paper II that only required one click.

In Paper 111, two independent raters (rater 1 and 2) marked all transients in both the
internal training dataset and the validation dataset, as well as in the external dataset. A
third independent rater (rater 3) was recruited later in the project and only marked
transients in the internal validation and external datasets. The classification model was
built using the markings of rater 1 and 2 in the training dataset. The chosen cut-points
were therefore independent of rater 3°s markings. The optimal cut-points were
determined by accuracy, while requiring the specificity to be > 90%. First, the optimal
cut-point was determined for each individual rater. To determine a common cut-point that
would be applied for all raters in the validation dataset, the average of the two cut-points
given by the two raters individually was calculated for each diagnostic marker. The IRR
calculated in Paper III depended on the selection of IED candidates, this in contrast to
Paper 11, since the marking process was blinded to previous markings from clinical
routine analysis. The IRR resulted from accumulated data on a per EEG basis, not a per
transient basis. The variables BEMS, .., BEMS,,, and IED candidate count represent
EEG-level variables obtained by finding the marked IED candidates with the highest
BEMS (BEMS,,..,), the summed BEMS of all marked IED candidates (BEMS,,,), and the
number of marked IED candidates (IED candidate count).

The algorithm that calculated quantitative morphological measures was improved for
Paper 11, so that it would only require one click on the spike peak instead of four clicks

(see “How to measure a spike” previously). There is a risk of discrepancy when different
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methods are used to measure the same object. Inter-method reliability was assessed for
sharp transients that had been marked both for Paper I using the 4-click method, and for
Paper II using the 1-click method.

Statistics

The subjects of analysis in Paper I-1I were independent IEDs or IED candidates obtained
by including the first IED (Paper I) or IED candidate (Paper II) from one EEG per
patient. In Paper III, the subject of analysis was aggregated variables for many IED
candidates, that is BEMS,,,,, BEMS,,,, and IED candidate count. Each of these measures
was obtained from one EEG per patient. External datasets were used for Paper II (N=100)
and Paper III (N=60), and they contained one EEG per patient. The transients were

included in a similar way as for the datasets collected by us.

In Paper I, we examined whether IED morphology depended on age. Each of the
quantitative measures (sharpness, ascending slope, ascending amplitude, duration, spike
asymmetry, and area of slow-wave) was grouped according to age categories and
visualized in box plots. Kruskal-Wallis-tests were used to test the dependency of the
morphological measures on age category [95]. To examine whether age category had any
effect on each morphological measure we performed multiple linear regressions with
each measure as an outcome variable, and age category, etiology, brain region, and

laterality as independent variables.

In Paper 11, we combined morphological measures and patient age into a multivariate
logistic regression model that classified sharp transients as epileptiform or
non-epileptiform. The transients were grouped according to two outcomes; the EEG
conclusion regarding the presence of IEDs, and a future clinical diagnosis of epilepsy
during long-term follow-up. The stepwise construction of the logistic regression model

has been described previously (Creating the Bergen Epileptiform Morphology Score,
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page 28). Area under the receiving operating characteristics curve (AUC) was calculated
for each morphological variable univariately, as well as for the BEMS score. Diagnostic
performance, as evaluated by sensitivity, specificity and AUC, was examined for the
BEMS score. The intraclass correlation coefficient was used to assess IRR and
inter-method agreement for individual morphological measures and for the composite

BEMS score.

In Paper 111, we included one or several IED candidates per EEG and examined
aggregated BEMS variables from the IED candidates as well as the number of [ED
candidates, limited to a range of 1-40. The mean IED candidate count was estimated for
each of the raters in all included EEGs by a censored poisson model, where the lower
censoring limit was | and the higher censoring limit was 40. Diagnostic performance was
calculated as sensitivity, specificity and accuracy for BEMS,,., BEMS,,.,, and IED
candidate count. Our model combined BEMS,,,, with IED candidate count, and this
represented the diagnostic classifier. Intraclass correlation coefficients were used to
assess IRA of the "raw" measures between raters. Gwet's AC1 was used to assess IRA

after the cut points had been acquired for binary classification.

Results

Paper I

10,547 patients were included for analysis of epilepsy type by age. Occurrence of focal,
generalized, or unspecified epilepsy type depended on age (p<0.001). An EEG
conclusion of focal epilepsy was most common in all age groups, with the highest
occurrence in children and the elderly. Adolescents had the highest occurrence of

generalized epilepsy.
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868 IEDs were available for quantitative measures. Except for in the youngest children
(age groups <1 year and 1-9 years) the IEDs became shorter, blunter, wider, and the slow
after-waves had a smaller area with increasing age, visualized in Figure 6. Spike
asymmetry did not vary with age group. Spike sharpness (measured as the second
derivative d*V/dt* around the peak), was the highest in infancy with a median sharpness
of 4.5, and lowest above age 80 years with a median sharpness of 2.0. Ascending and
descending spike slopes had a maximum steepness in the age group 1-9 years with a
median steepness of 2.5 uV/ms. Spike slopes became gradually less steep with increasing
age down to a median of 1 pV/ms. Spike amplitude increased from infancy to childhood,
and the median amplitude was 100V in the age group 1-9 years. Spike amplitude
gradually declined to a median of 60 uV with increasing age. Spike duration decreased to
a median of 90 ms from infancy to childhood, then increased to a median of 130 ms in
the elderly. The slow after-wave area was maximal in infancy with a median of 20 weber,
then gradually decreased before stabilizing at around 10 weber for the age groups 10-101
years. Spike asymmetry had a stable median of around 0.8 ms/ms for all age groups. We
applied multiple linear regression models for the quantitative IED measures as dependent
variables and used brain region, etiology, laterality and age, as independent variables.

This showed that age had the strongest effect on all the quantitative IED measures.
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Figure 6 (Paper I). Averaged focal IEDs by age categories in years. 95% confidence
levels are shown by a shaded gray area. (N = 868).

Paper 11

The distributions for all quantitative morphological measures were examined in the
complete dataset of 2026 sharp transients. All features except for spike duration differed
significantly between the EEG outcomes of either focal IEDs or non-epileptiform
transients (p<<0.001). In univariate analysis, preceding background power, slow
after-wave area, and descending spike amplitude had AUC > 0.7. Onset slope,
descending slope, ascending amplitude, duration, spike sharpness and spike to
background power had AUC < 0.7. The BEMS score had an AUC = 0.84. The
cumulative incidence of receiving a clinical diagnosis of epilepsy in the hospital records
during long-term follow-up was 10% for patients with a BEMS score of 0-16, 14% with a
BEMS score of 17-23, 23% with a BEMS score of 24-32, 34% with a BEMS score of
33-43 points, and 50% with a BEMS score of 44-79 points. A BEMS score > 54
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corresponded to a 60% cumulative incidence of epilepsy. The AUC was 0.70 for BEMS
regarding the clinical diagnosis of epilepsy. The clinical EEG classification of focal IEDs
based on the previous visual EEG interpretation, the reference standard, had a sensitivity
of 52% and a specificity of 95% for a follow-up diagnosis of epilepsy in the hospital

records.
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Figure 7. The cumulative incidence of a clinical diagnosis of epilepsy in the hospital
records after 6 years of follow-up according to the BEMS score grouped into five
quantiles.

The BEMS score had an AUC = 0.86 for the EEG outcome in the internal validation
dataset (N=1013). A cut point at BEMS > 46 had a sensitivity of 55% and a specificity of
91%. A cut point at BEMS > 29 had a sensitivity of 90% and a specificity of 57%.

BEMS had an AUC of 0.80 (N=100) in the external validation dataset. A cut point for
BEMS at 53 gave a sensitivity of 41%, specificity of 91%, and an accuracy of 64%. A cut
point at 29 gave a sensitivity of 98%, specificity of 50% and accuracy of 76%.

Inter-rater and inter-method reliability
Each of the quantified morphological IED features had an Intraclass correlation
coefficient (ICC) > 0.69 between the two raters. BEMS had ICC = 0.91 (95%CI

0.88-0.93), while visual evaluation of transients on a Halford’s 5-point likert scale gave a
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Cohen’s kappa of 0.43 (95%CI 0.15-0.32), which is regarded as moderate agreement
[96]. The ICC for BEMS when comparing the automated one-click algorithm with the
manual 4-click annotation method was 0.84 (95%CI 0.81-0.87).

Paper 111

The mean [ED candidate rate was estimated for each rater by a poisson model for all
included EEGs. The mean IED candidate rate had a wide range between the three raters,
ranging from 0.1 to 0.4 per minute (N=383 for rater 1 and 2, and N=187 for rater 3). This
corresponds to 2-8 IED candidates in a 20-minute EEG. The estimated mean [ED
candidate rate was 0.35 per minute for rater 1, 0.10 per minute for rater 2, and 0.14 per

minute for rater 3.

IED candidate count and IED morphology, as measured by BEMS,,,, and BEMS,,....,, had
a positive correlation in all the three datasets (Figure 8). BEMS,,, and IED candidate
count had a correlation coefficient (CC) in the range of 0.61-0.67 for the three raters in all
three datasets. BEMS, .., and IED candidate count had a CC in the range of 0.37-0.42 for
the three raters in the internal datasets (N=383 for rater 1 and 2, and N=187 for rater 3).
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Figure 8 (Paper I1I). Scatter plots with IED candidate count and BEMSmax for the
three raters.

Optimal cut-points in the training dataset

Optimal rater-specific cut-points were first established for each of the diagnostic markers
for rater 1 and 2, before identifying the common cut-points that would later be used for
classifying transients as epileptiform or non-epileptiform. The optimal cut-points for rater
1 in the training dataset with regards to the univariate classification of transients as IEDs
or non-epileptiform transients were 52 for BEMS,,,, 618 for BEMS,,, and 28 for I[ED
candidate count. The optimal cut-points for rater 2 were 48 for BEMS_,,, 312 for
BEMS,,,, and 7 for IED candidate count. The common diagnostic marker cut-points, or
the “common ground” for the two raters, were 50 for BEMS_,,, 465 for BEMS,,,,, and 18
for IED candidate count. These cut-points were then applied for all three raters to assess
diagnostic performance in the training dataset (rater 1 and 2) and in the validation dataset

(rater 1, 2 and 3). The best combination of all three criteria-sets for the Diagnostic
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classifier was as follows: Either one IED candidate with BEMS above 57, two IED
candidates with BEMS above 46, or seven IED candidates with BEMS above 35.
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Figure 9 (Paper III). Diagnostic accuracy for the EEG conclusion as outcome for rater
1 and 2 in the training dataset is shown on the y-axes with the range of possible cut
points of BEMS, ., (A), BEMS,,,, (B) and IED candidate count (C) shown on the
x-axes. Bland-Altman plots for BEMS, ., (D), BEMS,,,, (E) and IED candidate count
(F) for rater 1 and 2 in the training dataset.
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Diagnostic performance in the internal validation dataset

Our reference standard, the previous clinical EEG conclusion, had a sensitivity of 41%
and a specificity of 97% for the clinical outcome (a follow-up clinical diagnosis of
epilepsy at the hospital). The mean diagnostic performance measures for all the three
raters in the internal validation set for BEMS,,, gave a sensitivity of 60% and a
specificity of 96% for the EEG-outcome, and a sensitivity of 29% and a specificity of
95% for the clinical outcome. For BEMS,,,,, the sensitivity was 67% and the specificity
was 98% for the EEG-outcome, whereas the sensitivity was 32% and the specificity was
98% for the clinical outcome. For IED candidate count, the sensitivity was 60% and the
specificity was 98% for the EEG-outcome, and the sensitivity was 29% and the
specificity was 97% for the clinical outcome. For the Diagnostic classifier the sensitivity
was 60% and the specificity was 99% for the EEG outcome, and the sensitivity was 29%

and the specificity was 97% for the clinical outcome.

Diagnostic performance in the external validation dataset

The mean diagnostic performance, calculated as sensitivity and specificity, for the three
raters in the external validation set for the clinical outcome determined by the presence of
habitual non-epileptic or epileptic seizures during long-term EEG monitoring was as
follows: BEMS,,,,, had a sensitivity of 70% and specificity of 86%. BEMS,,,, had a
sensitivity of 56% and a specificity of 94%. IED candidate count had a sensitivity of 33%
and specificity of 96%. The Diagnostic classifier had a sensitivity of 63% and specificity
0f 91%.

Inter-rater reliability

Gwet’s AC1 for three raters had a range of 0.90-0.96 for the diagnostic markers in the
internal validation dataset, and had a range of 0.57-0.73 in the external validation dataset.
The Diagnostic classifier had the highest IRR with Gwet’s AC1= 0.96 and Gwet’s AC1=

0.73 in the internal and external validation datasets, respectively.
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Discussion

Paper I

We have shown in Paper I that focal IED morphology depends on age in an unselected
dataset. The large size of our dataset provides solid evidence to support this conclusion.
This represents a novel finding as IED morphology has not been systematically examined
previously. To our knowledge, only the study by Aurlien et al. [33] has reported a
comparable analysis, but for generalized and not focal IEDs. That study showed that the
amplitude of generalized IEDs change with age. Some studies have examined the
influence of age on IED localization in specific epilepsy types or epilepsy syndromes

[97-101].

Focal IEDs were more common in children and in the elderly. With increasing age, focal
IEDs became blunted, had lower slow after-wave area, lower spike amplitudes, and
became more lateralized. Spike asymmetry was the only morphological [IED measure that
did not depend on age, suggesting that the corresponding criterion number three
regarding asymmetry in the definition of epileptiform activity [7] should apply evenly for
all ages. Spike detection, whether by human EEG readers or automatic spike detectors,
should benefit from our findings because we clearly demonstrate that the interpretation of
morphological IED features should depend on age. An IED with an ascending slope of 1
pV/ms would be a rarity in the age group 10-19 years, but a common event well within
the interquartile range in the age group 80-101 years (Figure 10). The thresholds for

quantitative IED features classification should differ according to age.
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Figure 10 (Paper I). The median, interquartile range, Sth percentile and 95th percentile
for the ascending and descending slope of IEDs calculated as pVolt/ms (N = 868).

We demonstrated that the occurrence of focal and generalized epilepsy depended on age
in a large dataset of routine EEGs. Focal epilepsy was the most common diagnostic
conclusion regarding epilepsy type in the EEG report for all age groups. Focal epilepsy
had a bimodal distribution by age, with the highest occurrence in children and in the
elderly. Generalized epilepsy as the diagnostic conclusion in the EEG report occurred
most frequently in the age group 10-19 years. These findings coincide with the incidence
of epilepsy by age as described in etiological studies [16, 102-104], and shows that the
patient population in our dataset, that were referred from a wide range of specialists and

general practitioners, reflects what can be expected in the general patient population.

Paper 11

We showed that carefully selected quantified morphological features of the first occurring
IED candidate in an EEG can be combined into a BEMS score that classifies EEGs as
epileptiform or non-epileptiform with high IRR. However the BEMS score had a lower
sensitivity (38%) and specificity (86%) as compared to the clinical EEG conclusion from

visual interpretation and information in the referral note (sensitivity 52% and specificity
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95%) for the outcome of epilepsy in the hospital record. The context for IRR in Paper I1
was that two raters independently marked an IED candidate that was previously selected
during clinical routine EEG analysis. This meant that the selection and marking of the
IED candidate was limited to a short time segment, usually a few seconds, as opposed to
a complete EEG recording. There were EEGs where the preexisting marking contained
several IED candidates, i.e. in trains or in various EEG channels. This is most probably
the main reason for a non-perfect IRR, since the algorithm has a deterministic nature and
should compute exactly the same measures for a mouse click on a specific spike peak. It
is important to examine IRR also on the IED candidate level, when the IRR is not
influenced to a large degree by IED candidate selection. Knowing the IRR on such a
detailed IED candidate level is necessary for correct assessment of IRR on the EEG level
like we did in Paper III. In Paper III, IRR was calculated for aggregated morphological
measures from the collection of many IED candidates in an EEG, like BEMS,, and
BEMS,.. Findings in previous studies that examined IRR both on IED and EEG level
indicate that IRR is lower for individual IEDs than for complete EEG recordings [67,
105-108]. We obtained a high IRR for single IED candidate measurements in Paper II.
This implies that a low IRR for the EEGs in Paper I1I would very likely stem from IED

candidate selection.

The BEMS score included four morphological IED features that corresponded well to
three of the criteria in the definition of epileptiform activity [7]. Spike onset slope and
descending spike amplitude both correspond to criterion 1 (pointed peak). The measure
“spike to background power” illustrates how much relative power of the background
activity is within the frequency band corresponding to the duration of the spike
component of the [ED capturing the essence of criterion 2 (different wave duration than
the waves from the background activity). The area of the slow after-wave corresponds
well to criterion 4 (which reads the transient is followed by a slow after-wave). We did
not include the measure for spike asymmetry (criterion 3) in the BEMS because it did not

differ significantly between epileptiform and non-epileptiform transients, and it did not
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contribute to the multivariate classification model. This was unexpected, since
asymmetry is included as a feature in the generally accepted classification criteria.
Findings from our Paper 1 suggested that asymmetry was a relevant feature in all age
groups. A paper by Jing et al. [67] found that asymmetric IED candidates were more
likely to be classified as IEDs in visual spike analysis. We did not include appropriate
measures for criterion 5 (disrupted background activity) or criterion 6 (a transient dipole
suggesting a brain source). Quantitative measures for spike asymmetry, disrupted
background activity and a transient dipole may be considered in future attempts to build

an optimized classification model from quantitative IED features.

The annotation algorithm, EpiOneClick, was programmed in MATLAB to be used in
conjunction with EEGLAB, and is publicly available for download [12, 93, 109]. This
was an effective tool for us in marking and quantifying IED candidates. It required only
one mouse click near the spike peak to precisely determine the relevant timestamps
(spike start and end, slow after-wave start and end) and calculate the quantitative
morphological features of an IED candidate in milliseconds. It then presented the IED
candidate in a figure on screen so that the EEG reader could verify that the correct EEG

signal had been quantified.

Paper 111

In Paper II1, we showed that IED candidate morphology is positively correlated to IED
candidate count. EEGs that contained IED candidates with prominent epileptiform
features, defined as a high BEMS score, had a high IED candidate count. IED candidates
with less typical epileptiform features, measured as a low BEMS score, had a low IED
candidate count. This represents a novel finding. Even though both the BEMS score and
IED candidate count were shown to be relevant in classification of epileptiform EEGs,
the consequences of their correlation for visual interpretation of IED candidates need to
be further explored. An intuitive explanation might be that an EEG reader is more likely

to detect numerous IED candidates if they are distinct and easily distinguishable from the
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background activity. This would make BEMS,,, a confounder variable. The IED
candidate count classified EEGs with an accuracy comparable to the other univariate
diagnostic markers in our internal validation dataset, but had a considerable drop in
sensitivity when applied to the external validation dataset. Our findings show that IED
candidate count is relevant in IED classification and adds valuable information regarding
the clinical diagnosis of epilepsy. The large threshold difference between individual raters
for IED candidate count as opposed to the morphological measure BEMS,,,, should be
considered in future attempts of applying them in a classification model. BEMS,,
reflects the BEMS score of only one IED candidate, the one with the highest
morphological BEMS score among all marked IED candidates. In contrast all [ED
candidates contribute to the IED candidate count. The count will therefore probably be
more susceptible to low IRR [67]. A better defined threshold for when a transient should
be considered an IED candidate is necessary to reduce the threshold difference between

individual raters.

Selection bias

The focal spikes included for examination in our materials from Paper I-1I-1II were
selected by clinical neurophysiologists. In Paper I-1I, we analyzed one independent spike
per EEG that had been marked previously during routine clinical EEG interpretation.

This was not necessarily the first transient that occurred in the EEG, but it was the first
transient that had been selected and marked by the clinical EEG interpreter based on
visual examination. It was likely the first transient that raised a concern to the EEG reader
about IEDs being present. A better methodical choice for Paper I might have been to
include the transients with the most typical epileptiform characteristics, with the
maximum amplitude, or with some other predefined relevant measurements. However,
we did not re-mark several transients in each EEG for Paper I-1I as we deemed it too time
consuming for what we regarded as a relatively modest benefit. For Paper II1, three
blinded independent raters marked up to 40 consecutive spikes per EEG. We set the upper

limit at 40 IED candidates to reduce the workload, assuming that 40 IED candidates were
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well above the threshold for when an EEG would be classified as definite epileptiform.
We found no relevant information in the literature that could assist in deciding this
counting threshold. The primary goal for Paper III was to examine IED candidate count.
That required an extensive marking of IED candidates, which is not commonly done
during routine clinical EEG reviews. Having included several IED candidates per EEG
allowed us to calculate BEMS for each individual IED candidate. We therefore decided to
use BEMS,,,,, that is the BEMS with the highest score among many IED candidates from
the same EEG, instead of BEMS;,, the first IED candidate that was marked, as the
morphological component of the prediction model. BEMS_,, had a higher diagnostic
performance than BEMS;,; in the training dataset of Paper III. We considered that the
most epileptiform discharge (BEMS,,,,) was optimally suited for the epileptiform
classification of EEGs. However, a limitation of the BEMS-score is that it was originally
built on the first occurring IED candidate in the EEGs (Paper 2), while BEMS,,, might
have been a better choice. Like many similar papers, we focused on focal suspicious
sharp activity because we considered generalized sharp suspicious activity to be a

different clinical diagnostic problem.

We chose to mark one or more IED candidates per EEG for Paper III. This proved to
raise a challenge because included EEGs did not necessarily contain any IED candidates.
In those cases where no convincing IED candidates were detected, we marked a
background wave from the last EEG page. This represents a source of selection bias
because we did not specify any formal rules for such a selection before the study started.
For example, horizontal eye movements can produce high amplitude IED-like transients
in the EEG because of the combined EMG-activity from the abductor muscle (spike) and
eye movement artifacts (slow-waves). Marking such an artifact transient would result in a
high BEMS score, while marking a negative peak from the posterior dominant rhythm
would not. A better solution might have been to allow for no markings in EEGs with no
IED candidates and then set the morphological score equal to zero in these EEGs that did

not contain any IED candidates.
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Our dependence on manually selected spikes means that any application of the
classification models in Paper II-III would require an EEG reader to mark suspected IEDs
as described in our methods. We did not compare features of IEDs to those of background
waves which would have been a prerequisite for automatic spike detection. The optimal
morphological features and their thresholds for classifying background waves into
epileptiform or non-epileptiform activity would differ from classifying IED-candidates
into epileptiform or non-epileptiform. Figure 11 illustrates how classification depends on
whether the waveforms are selected by a neurophysiologist or if they are unselected EEG
waveforms. This is an example of selection bias. Selection bias is in fact present at all
steps, starting already at the patient’s first visit to his or her treating physician, who
decides to refer the patient to an EEG or not, this depending on the interpretation of the
presenting symptoms. Next is the selection of which EEGs to include in our study. We
sought relevance for the daily clinical routine situation by including all routine-EEGs
recorded at our department. We excluded patients who had their EEG at the ICU since

that patient population is highly different, as discussed in the methods section previously.
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Figure 11. The quantification and classification of IED candidates depend on whether
the waveforms are selected by a neurophysiologist (left column, A-D) or if they are
unselected (right column, E-F). A: EEG background activity containing various
epileptiform and non-epileptiform transients. B: A neurophysiologist reads the EEG
and marks all IED candidates (waveforms that are suspected to represent I[EDs). C:
Only those IED candidates that were selected by the neurophysiologist serve as input to
the classification model. D: BEMS is calculated for the selected IED candidates to
classify them as either epileptiform or non-epileptiform. E: EEG background activity
as in A. F: The automatic spike detector analyzes all EEG waveforms. Classification of
all EEG waveforms into either epileptiform or non-epileptiform probably requires
analysis of other morphological characteristics and have other thresholds than when
classifying only selected IED candidates.
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The threshold for when a transient should be marked as an IED candidate was decided
before annotation of the EEGs for our Paper III. We decided to mark transients as IED
candidates when they were “likely to represent an epileptiform charge”, i.e.
corresponding to 4 points on a 5-point Likert scale as described in a paper by Bagheri et
al. [66]. Three points on this scale would correspond to “not sure if the transient is an
IED, could go either way”, which we found to be too inclusive with a loss of specificity,
while 5 points on this scale would correspond to “definitely an epileptiform discharge”,
which we decided would lack sensitivity. Despite the differences in the individual rater
thresholds for IED candidates, the IRR for the combined IED candidate count and BEMS
into three criteria-sets was good. The high IRR might have resulted from the contribution
of BEMS to the criteria-sets, functioning as a morphological filter where only those IED
candidates that have a high enough BEMS score were counted. Since we suspected that a
large proportion of both clearly pathological EEGs and normal EEGs could explain this
high IRR, we performed a sensitivity analysis with regards to IRR for “difficult” EEGs
that did not have the maximum IED candidate count of 40 or the minimum of 1 (not
published). IRR was assessed for the Diagnostic classifier for two raters in the combined
training and validation datasets. This selected group included 271 “difficult” EEGs out of
the total of 394 EEGs. Gwet’s AC was 0.91 as compared to 0.93 for the complete dataset.
This illustrates that the IRR is robust also for EEGs that are more demanding to evaluate.

Furthermore, this assessment shows that all types of EEGs contribute to the IRR.

IED features missing in our project

We covered only one domain of IED characteristics in Paper 11, and that was spike
morphology in one EEG-channel. We did not include any information from the temporal
or spatial domains. The temporal domain was included in the variable IED candidate
count in Paper III. We did not succeed in finding a relevant spatial measure for spikes that
might have improved our prediction model. However, we made an attempt to quantify

IED candidate topography to assess if topography might be a viable additional predictor
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in our model (Figure 12). This study was discontinued after it did not perform well in a
univariate analysis using the visually marked electrodes from clinical EEG interpretation
as the gold standard in the Paper 2 training dataset (N=1013). Several quantitative
methods were applied to identify EEG electrodes in which the IED candidate could be
detected. Most of the methods were based on finding the subset of electrodes that were
outliers regarding voltage around the spike peak (Grubb’s outliers [110], median absolute
deviation, standard deviation or the generalized extreme studentized deviate [111]). We
also tried to identify IED candidate topography by assessing morphological similarity to
the clicked spike peak using dynamic time warping [112] or our own quantitative [IED
features from Paper II. The best performance achieved by applying these methods was a
sensitivity of 82% and a specificity of 91% when using visually marked electrodes during
routine clinical EEG interpretation as the reference standard. The mean number of
visually marked electrodes in the EEGs was three, and the total number of electrodes in
the montage ranged from 21 to 26. Assuming that there were 25 electrodes in all EEG
montages for the sake of simplification, the automatic detection of electrodes missed
roughly 0.5 electrodes on average that had been visually marked, and it included 2
electrodes on average that had not been visually marked. AUC ranged from 0.36 to 0.61
for the applied methods using the EEG conclusion of focal IED or not as the outcome.
We found that these results regarding topography had too little value for further analysis.
In our experience, the topography of a transient is an essential characteristic to rule out
artifact waveforms or common physiological transients in visual analysis. A possible
explanation for the lack of diagnostic value of an automated assessment could be that
certain topographical characteristics have already been evaluated for all the I[ED
candidates selected by an EEG reader, and therefore have little value for further
classification of these IED candidates as either IEDs or non-epileptiform transients. Fabio
A. Nascimento et al. [113] managed to quantify all six criteria listed in the definition of
epileptiform discharges [7], covering morphological features (criterion 1-5) as well as

topography or physiological field (criterion 6).
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Figure 12. Quantification of topographical properties of an IED candidate. The EEG is
shown as individual channels. The lower right window shows the head model as an
undirected graph where the IED candidate topography is indicated by red dots.

EEG background activity

The background activity is most probably as important as the IED itself in spike
detection. A core principle of epileptiform discharges is that they are distinct from the
background activity [7]. Figure 13 is a mock illustration of how the exact same spike can
become nearly invisible when surrounded by a higher amplitude background. We did
include the power of the background activity immediately preceding the IED candidate as
an independent variable in our preliminary logistic regression model for Paper II, but it
was excluded during the process of stepwise elimination of non-significant predictor
variables. The interindividual variation of EEG background activity is considerable [114],
so lacking a variable for general background amplitude or power might be a weakness of
our classification model and in defining BEMS. There is also intra-EEG background
variability in various power frequency bands between patient states (awakeness and sleep
stages) [115], and due to physiological transients [6] and reactive rhythms [116]. Our
model did, however, include the variable “spike to background power”, which is a ratio

for how much of the background activity power is within the frequency band
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corresponding to the spiky component of the IED. This variable represents a fitting
measure regarding IED criterion 2 ( wave duration differs from the background), but it
does not cover the frequency bands outside that of the spiky component, and may
therefore be regarded as a limited assessment of the background activity. The age variable
was included in the classification model since we showed that IED morphology depended
on age in Paper I, and also because we showed that age was significant in the process of
building the model. Some studies have demonstrated that the general background

amplitude changes with age [35, 117].
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Figure 13. Left window: The transient is clearly
distinguished from the background activity. Right window:
The identical transient is not clearly distinguished from a
different background activity.

Dependent variables and confounders

We established our prediction model by applying BEMS in Paper 11, adhering as strictly
as possible to sound scientific methods. However, we did not assume that the
morphological features of IEDs are strictly independent. “What goes up must come
down” applies to the ascending and descending part of the spike, and most probably to
other morphological features as well. We tried to minimize this weakness of the model by
applying a mix of well-accepted statistical concepts; keeping the number of predictor
variables low, choosing variables not depending too much on each other, as well as

applying a conservative approach for validation by splitting the datasets half and half for
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training and validation. Age was included as a predictor variable in our model, but also
represents a confounder as morphology (predictor) depends on age, as does the incidence
of epilepsy (outcome) [103, 118]. Excluding the age variable as a predictor variable
would on the other hand have been an example of omitted-variable bias, and it was

therefore not done.

Categorical prediction model (BEMS)

We converted our multivariate logistic regression from several continuous numericals to
the categorical model BEMS. This was done to make the model more accessible and easy
to interpret, at the cost of losing statistical power because of the increased degrees of

freedom.

Outcome variables

The classification models in Paper II-11I used two outcomes; the diagnostic conclusion of
focal epilepsy or non-epilepsy in the EEG report (EEG outcome) and the follow-up
diagnosis of epilepsy (clinical outcome) according to the hospital records at least two
years after the EEG recording. We built our models in Paper II-III using the EEG
outcome as a reference standard because the clinical outcome was not available until the
later stages of preparing Paper II. One could argue that the clinical outcome comes closer
to the real outcome and would be the best target for model building. The clinical outcome
was in part dependent on the result of the clinical EEG conclusion, which is a weakness
of Paper II and III. The treating clinician would receive the EEG report, and if positive
for IEDs, would be more likely to give the patient a diagnosis of epilepsy. An argument
for using the EEG outcome as a primary outcome can be made as patients with epilepsy
can have normal EEGs, and patients who do not develop epilepsy can still have IEDs in
their EEG [119]. Ideally, the outcome should be independent of the diagnostic test.
Theoretically we might have chosen for example the event of a recurring epileptic seizure

during a 2 year follow-up period as an independent outcome.
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Clinical and laboratory data

Our project did not include detailed clinical and other laboratory data, e.g. imaging data,
use of anti-seizure medication, recurrent seizures, and IED candidate topography and
localization. Imaging data (anatomical lesion location) has implications for IED
morphology [120] and might have been a useful control variable for the regression model
in Paper I, where we examined which factors had the strongest effect on IED
morphology. It is reasonable to assume that anti-seizure medication can have an effect on
IED morphology [121], but this has not yet been examined systematically. A follow-up
assessment of recurrent epileptic seizures would have been a stronger outcome variable
for Paper II-111, since it would have been independent of the clinical EEG conclusion.
IED candidate topography and brain localization are core properties of IED candidates.
Information about this variable might have improved the diagnostic accuracy of our

classification models in Paper II-I11.

Why we did not apply artificial intelligence

Artificial intelligence based classification of EEG abnormalities, including IEDs, has
shown promising results recently [122]. However, the goals of our project were not
limited to maximizing diagnostic performance, but also to improve the understanding of
IED analysis, while at the same time ensuring transparent, robust and generalizable
methods. Statistical regression models and hand-picked morphological features were in
our opinion the appropriate analytical method to meet these goals [123]. This allowed us
to identify reliable quantitative morphological features of sharp transients that were then
applied to show morphological differences across age groups and in the classification of
EEGs as either being epileptiform or non-epileptiform when applying the BEMS-score.
Every step of the analytical process, from the morphological measurements to the
construction and application of the classification model, is transparent and open for
scrutiny. Although the diagnostic accuracy of BEMS and IED candidate count did not
exceed that of visual IED analysis, generalizability was confirmed by validation on

independent external datasets. We had no insight into the separate, independent and
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closed commercial-focused work performed by Tveit [122], though some of the EEG
data in our studies is likely present in some of Tveit’s work though their description is not

sufficient to estimate how much.

Conclusions
1. Morphological features of [ED can be quantified with a high interrater reliability.

2. Quantified IED features depend on age. IEDs become blunter, wider, shorter, and

have a smaller slow after-wave with increasing age.

3. Quantified IED features can classify EEGs as epileptiform or non-epileptiform

with a high IRR, but with lower diagnostic accuracy than clinical visual analysis.

4. IED candidate count correlates with IED morphology as measured by BEMS. A
higher IED candidate count was associated with a higher BEMS score.

5. 1ED candidate count represents a relevant variable in the classification of EEGs as
epileptiform or non-epileptiform. Univariate classification of epileptiform EEGs in

an external validation dataset had a sensitivity of 33% and specificity of 96%.

Future perspectives

A primary goal in this project was to develop a quantitative morphological score for focal
IED candidates which relates to the standard visual evaluation of EEGs. The resulting

score, BEMS, combined several morphological features (ascending slope, descending
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amplitude, slow-wave area, spike to background, and age). We have validated BEMS
applying internal and external data with regard to the clinical EEG conclusion and the
diagnosis of epilepsy. The ideal study design to validate the BEMS score would be a
prospective randomized controlled trial where the patients are assigned to either the
standard workup with visual classification of EEGs as epileptiform or non-epileptiform,
or to BEMS-assisted visual EEG analysis where the BEMS-score is used to classify the
EEGs. A follow-up after 10 or more years regarding the presence or absence of recurrent,
unprovoked epileptic seizures would be an excellent outcome measure to compare the

predictive value of the two alternative methods for EEG evaluation.

An advantage of BEMS is that it places IED candidate morphology along a numerical
scale where a higher BEMS score indicates a greater risk of receiving an epilepsy
diagnosis according to our findings in Paper II. Such a score can easily be combined with
other variables, e.g. a seizure semiology score and an MRI lesion score, into a composite
risk score regarding recurring seizures after a single seizure. The risk assessment after a
single epileptic seizure is subjective because of limited evidence in the literature, and
with no established risk formula for the combined clinical and laboratory data that are
used to predict this risk [124]. There is an urgent clinical need to predict this risk as
accurately as possible because it guides decisions regarding anti-seizure drug therapy,

non-drug precautions, and life-style changes.

We have demonstrated that quantitative IED features were excellent measures to identify
morphological differences between age groups in Paper 1. There is a potential role for
quantitative [ED features, BEMS and IED candidate count to help differentiate between
other patient groups as well. We would expect differences in quantitative IED features
and IED candidate counts between various epilepsy syndromes, various intracranial
lesion localizations, and antiepileptic drugs. The measurements might be useful for
assessing seizure control. A precise assessment of such differences might help optimizing

therapy to prevent new seizures.
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« Focal interictal epileptiform discharge (IED) morphology changes with age.
« The distribution of quantitative [ED measures by age needs to be considered in EEG interpretation.
« IEDs are consistently asymmetric across all age groups.

Keywords:

Interictal epileptiform discharges

SCORE ABSTRACT

gigntitative EEG Objective: To investigate whether the occurrence and morphology of interictal epileptiform discharges
Epilepsy (IEDs) in scalp-EEG change by age.

Ageing Methods: 10,547 patients who had a standard or sleep deprived EEG recording reported using the SCORE

standard were included. 875 patients had at least one EEG with focal IEDs. Focal IED morphology was
analyzed by age using quantitative measures in EEGLAB and by visual classification based on the
SCORE standard. We present distributions of IED measures by age group, with medians, interquartiles,
5th and 95th percentiles.
Results: Focal IEDs occurred most frequently in children and elderly. IED morphology and localization
depended on age (p < 0.001). [EDs had higher amplitudes, sharper peaks, larger slopes, shorter durations,
larger slow-wave areas and wider distributions in children. These morphological characteristics dimin-
ished and the IEDs became more lateralized with increasing age. Spike asymmetry was stable across
all age groups.
Conclusions: IEDs have age-dependent characteristics. A spike detector, human or computer, should not
operate with the same set of thresholds for patients at various age. With increasing age, focal IEDs are less
sharp, have lower amplitudes, have less prominent slow-waves and they become more lateralized. Our
findings can help EEG readers in detecting and correctly describing IEDs in patients of various age.
Significance: EEG readers should always consider patient age when interpreting interictal epileptiform
discharges.
© 2019 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction ical practice. Clinical experience indicates that IEDs tend to be

blunter in the elderly, but there is little data to corroborate this.

Interictal epileptiform discharges (IEDs) represent a highly rel-
evant finding in EEG (Bouma et al., 2016; Krumholz et al., 2015;
Koutroumanidis et al., 2017). IEDs are usually described in general
and descriptive terms without any quantitative definitions (Sannit
and Lilienthal, 1962; Chatrian et al., 1974; Noachtar et al., 1999;
Kane et al., 2017). Simple metrics such as amplitude, duration
and sharpness could be easily obtained, but are not utilized in clin-
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No studies have looked at quantitative measures of focal IEDs by
age.

Localization and frequency of occurrence of IEDs and other focal
EEG abnormalities depend on age (Hughes, 1967; Koufen and Gast,
1981). IED morphology and localization may also be influenced by
age for well-defined epilepsy types or specific syndromes (Aurlien
et al., 2007; Konishi et al., 1994; Sadleir et al., 2009; Lee et al.,
2010), but this has not been systematically examined. Aurlien
et al. (2009) showed that the amplitude of generalized epileptiform
activity changed with age, while the frequency of the discharges
did not.

1388-2457/© 2019 International Federation of Clinical Neurophysiology. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Analytical methods and classification of EEG activity vary in the
previous studies. The SCORE standard has been adopted to reduce
EEG interpretation variability, and to improve clinical and scientific
studies (Beniczky et al., 2017), but so far only sparse data has been
published on the basis of SCORE. Detection of IEDs by ordinary
visual analysis has less than optimal reproducibility (van
Donselaar et al., 1992; Stroink et al., 2006). IED detection is also
subject to overinterpretation of non-epileptiform EEG graphoele-
ments as IEDs (Benbadis and Thomas, 2017), and depends on only
a few aspects of quantitative IED morphology (Bagheri et al., 2017).
More detailed knowledge of how IEDs change by age should
improve clinical EEG interpretation in the individual patient and
lead to more precise age-dependent spike detection algorithms.

IEDs are defined as transient activity distinguishable from the
background activity and with a characteristic morphology typi-
cally, but neither exclusively nor invariably, found in interictal
EEGs of people with epilepsy (Kane et al., 2017). Six morphological
criteria are given, out of which four have to be met in order to clas-
sify a graphoelement as IED. IEDs should contain:

(1) Di- or tri-phasic waves with sharp or spiky morphology (i.e.
pointed peak).

(2) Wave-duration different from the ongoing background
activity, either shorter or longer.

(3) Waveform asymmetry: a sharply rising ascending phase and
a more slowly decaying descending phase, or vice versa.

(4) The transient should be followed by an associated slow
after-wave.

(5) The background activity surrounding epileptiform dis-
charges should be disrupted.

(6) Distribution of the negative and positive potentials on the
scalp should suggest a brain source of the signal, corre-
sponding to a radial, oblique or tangential orientation.

The exact sensitivity and specificity of each criterion for IEDs is
not known. Descriptors for criterion 1 (spike and sharp wave mor-
phology) and 4 (presence of slow-wave), are included in the SCORE
terminology.

The aim of this study was to investigate how the occurrence and
morphology of IEDs change with age in a large and unselected
cohort of patients with epilepsy. Precise, age-dependent criteria
for IED should improve diagnostic specificity and individualized
treatment in epilepsy.

2. Methods
2.1. Patients

We included all consecutive patients who had standard EEGs or
sleep deprived EEGs recorded at Haukeland University Hospital
during the period March 4th, 2013 - October 29th, 2017, and which
were reported in SCORE EEG (13143 EEGs, 10,547 patients, Fig. 1).
One EEG was selected for each patient. For the 2596 patients who
had recorded two or more EEGs the first EEG with a diagnostic con-
clusion of epilepsy and epileptiform findings was chosen. If the
patient had no such EEG the last EEG recording was chosen. We
used the diagnostic conclusion in the clinical EEG report produced
in SCORE to further categorize patients. This diagnostic conclusion
was drawn by the EEG interpreter from the EEG findings together
with available clinical and paraclinical information. A diagnostic
conclusion of epilepsy required a clinical suspicion of epilepsy
written on the referral and epileptiform activity in the EEG. 9238
patients had a diagnostic conclusion other than epilepsy in their
EEG report and served as a control group when assessing demo-
graphic characteristics.

1309 patients had at least one EEG with epileptiform findings
and a diagnostic conclusion of epilepsy. The first EEG with epilep-
tiform activity for each patient was selected for analysis. The
groups with focal (N =875), generalized (N =207) and unspecified
(N=227) epilepsy type were analyzed separately, compared to
controls, and analyzed by age. The unspecified group consisted of
patients who had a diagnostic conclusion of either “epilepsy not
further specified” (N=152), an epileptic seizure during the EEG
recording (N=27), a hypsarrhythmia pattern (N=2), or where
the EEG report had conflicting data, e.g. included both focal and
generalized epilepsy in the diagnostic conclusion (N =46). The
diagnostic conclusion included a suggestion of probable etiology
of the patient’s epilepsy, whether symptomatic, idiopathic or unde-
termined. Etiology was used as a control variable in multiple linear
regression described in Section 2.5. IED morphology was visually
and quantitatively analyzed by age and IED localization was
visually analyzed in the focal epilepsy group. The patients were
grouped by age in years into ten groups: <1 year, 1-9 years,
10-19 years, 20-29 years, 30-39 years, 40-49 years, 50-59 years,
60-69 years, 70-79 years and 80-101 years.

2.2. EEG recording

Electrodes were applied according to the 10-20 system with a
minimum of 21 and a maximum of 25 electrodes. When possible,
EEGs were recorded with the patients in a supine, relaxed position
with their eyes closed. For sleep deprived EEGs, adults were
deprived of a whole night’s sleep before the recording, while chil-
dren were kept awake since 3am. the same morning. Patients were
encouraged to sleep during the recording. Provocation by hyper-
ventilation and photic stimulation was carried out unless con-
traindicated. Nicolet™ EEG system was used to record and display
EEGs. Average montage with paper speed 3 cm per second and
1 cm per 100 pV was the default setup for review. Montage, sensi-
tivity and paper speed could be adjusted freely by the EEG reader.

2.3. IED morphology

2.3.1. Visual analysis

Morphological categories for IEDs were determined according
to the SCORE standard as spikes, spike-and-slow-waves, sharp-
waves, sharp-and-slow-waves, polyspikes, polyspike-and-slow-
waves, and slow-sharp-waves (Beniczky et al., 2017). Multiple
morphologies could be selected for each finding. The patients were
divided into two groups depending on whether their EEG con-
tained any IEDs with spike morphology or not. Patients were also
divided into two groups depending on whether their EEG con-
tained any IEDs with a slow-wave or not.

2.3.2. Quantitative analysis

The first IED finding in each EEG was chosen for quantitative
analysis. All EEGs were digitally filtered using the EEGLAB function
pop_eegfilt with a high pass filter at 1 Hz, low pass filter at 70 Hz
and a notch band filter spanning 48-52 Hz (Delorme and Makeig,
2004). The electrode or channel in average montage where the
IED was most convincingly epileptiform was selected. Spike start,
spike peak, spike end and slow-wave end was manually annotated
by the first author for all EEGs using custom software built on
EEGLAB (ScorePipeline, available from the authors on GitHub
(Brogger, 2019), Fig. 2). Voltage sensitivity and time axis could be
adjusted freely for optimal annotation placement. Spike start was
marked at the maximal positive time point in the trough leading
into the spike. Spike peak was marked at the negative maximum
following spike start. Spike end was marked at the maximal posi-
tive component following spike peak. If a slow-wave followed,
spike end marked its start, and another mark was set at the end
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Fig. 1. Patient and EEG flow chart with included and excluded groups.
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of the slow-wave. The first half-wave was defined as the sample
points between spike start and spike peak. The second half-wave
was defined as the sample points between spike peak and spike
end. The following quantitative measures were derived from these
time points.

2.3.2.1. Sharpness. Approximation D of the d?uV/dt? value around
spike peak according to Frost (1979). Five sample points were
obtained at fixed distances from spike peak (t=0ms), where
Ni=t — 8ms, N=t — 4ms, N3=t — O0ms, Ny=t+4ms, Ns=t
+8 ms. Then D = (N5 — 2*N3 + Nq)/2. Values are greater than 0. A
greater value corresponds to a sharper spike peak.

2.3.2.2. Ascending slope. Ascending amplitude (uV) divided by the
duration of the first half-wave. Values are greater than 0. A greater
value corresponds to a steeper ascending slope.

2.3.2.3. Descending slope. Descending amplitude (uV) divided by
the duration of the second half-wave. Values are greater than 0.
A greater value corresponds to a steeper descending slope.

2.3.2.4. Ascending amplitude. Voltage difference (uV) between spike
peak and spike start. Values are greater than 0. A greater value cor-
responds to a larger amplitude of the first half-wave.

2.3.2.5. Descending amplitude. Voltage difference (uV) between
spike peak and spike end. Values are greater than 0. A greater value
corresponds to a larger amplitude of the second half-wave.

2.3.2.6. Duration. Milliseconds from spike start to spike end. Values
are greater than 0. A greater value corresponds to a broader spike
component of the IED.

2.3.2.7. Area of slow-wave. A Gaussian wave was fitted to the time
series segment defined as the slow-wave using MATLAB’s fit func-
tion (MATLAB). The signal was shifted so that the positive maxi-
mum was at baseline (0 uV). The trapezoidal integral, defined by
the start and end point of the slow-wave, was then subtracted from
the area of the fitted Gaussian to give the estimated area of the
slow-wave in pV*second (weber, a unit derived from the Interna-
tional System of Units). Values are positive, zero, or negative. A
greater positive value corresponds to a larger slow-wave area.
Negative values can result from a poor model fit.

2.3.2.8. Spike asymmetry. Duration of the first half-wave divided by
the duration of the second half-wave as defined by Henze et al.
(2002). Values are real numbers greater than 0. A value less than
1 corresponds to a shorter duration of the first half-wave compared
to the second half-wave. A value greater than 1 corresponds to a
longer duration of the first half-wave compared to the second
half-wave.

To provide a visual reference for EEGers, an average IED was cal-
culated from the raw EEG signal for each age group. The IEDs were
averaged centered on the spike peaks as time zero. 95% confidence
intervals were calculated for each age group from 10,000 bootstrap
samples.

2.4. IED localization

IED visual localization was examined on a regional level where
each electrode containing IEDs was assigned to one out of thirteen
topographical brain regions frontal (left/midline/right), central (left/
midline/right), temporal (left/right), parietal (left/midline/right) and
occipital (right/left). Ordinal categories were used for multiple lin-
ear regression, with regions frontal, temporal, central, parietal and
occipital, and laterality left, right and other. IEDs were classified as

frontal if regional localization included the frontal region. Remain-
ing observations were successively classified as temporal, central,
parietal and occipital. IEDs were classified as left if localized strictly
to the left hemisphere and/or midline, as right if localized strictly to
the right hemisphere and/or midline, or as other.

2.5. Statistics

Pearson’s chi-squared test was used to examine the association
between age and epilepsy type and IED morphology, and multiple
logistic regression to test age dependency for IED localization. The
non-parametric Kruskal-Wallis-test was used to examine age
dependency for quantitative IED measures (sharpness, ascending
slope, ascending amplitude, duration, spike asymmetry, area of
slow-wave). We performed linear regression of the IED quantita-
tive measures (sharpness, ascending slope, ascending amplitude,
duration, slow-wave area) as the dependent variable and age, eti-
ology, region and laterality as independent variables, in order to
control for the possible effect of location. A p-value threshold of
p <0.01 was chosen due to the numerous comparisons that were
undertaken.

2.6. Software

Nicolet™ EEG system was used to record and display EEGs for
visual analysis. Clinical EEG reports were made with SCORE EEG
(versions 1.0.9.4012 to 2.9.16.24). All EEG reports were stored in
the SCORE database, a structured SQL database. Quantitative anno-
tation was implemented in custom software built on EEGLAB. All
statistics were handled in Stata. Scripts will be made available on
GitHub (Bregger and Aanestad, 2019).

2.7. Ethical approval

The study was approved by the Regional Committees for Medi-
cal and Health Research Ethics (reference code 2017/1512/REK
vest).

3. Results
3.1. Demography

The mean age of all 10,547 included patients was 35 years, and
48.9% were females (Table 1). The occurrence of both epilepsy and
epilepsy type depended on gender (p<0.01 and p<0.001,
respectively).

3.2. Epilepsy type

Epilepsy type depended on age (p < 0.001, Fig. 3). Focal epilepsy
was the most common type in all age groups, with the highest
occurrence in children and elderly people. Generalized epilepsy
had its peak in adolescence. The age groups 20-29 and 30-39 years
had the lowest occurrence of epilepsy.

Table 1
Demographic characteristics of patients included in the study.

N= Female % (95% CI) Age in years mean (SD)

Diagnosis

Epilepsy 1270 52.5 (49.8-55.3) 35.3 (28.3)

No epilepsy 8971 48.4 (47.4-49.4) 34.8 (25.3)

Total 10,241 48.9 (47.9-49.9) 349 (25.7)

Epilepsy type

Generalized 198 65.2 (58.2-71.5) 22.8(16.3)

Focal 850 49.8 (46.4-53.1) 40.1 (30.3)

Other 222 51.8 (45.2-58.3) 28.1(28.3)
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Fig. 3. Occurence of generalized, focal and unspecified epilepsy, by age, in patients
referred for standard or sleep-deprived EEG (N = 10547).

3.3. IED morphology by age

The average time series by age illustrate trends in quantitative
measures (Fig. 4 and Supplementary Figure 1). The various mea-
sures of IED morphology showed that IEDs became blunter with
increasing age, and also that slow-waves became less pronounced
(Fig. 5A-F). Spike sharpness, slope, amplitude, duration and slow-
wave area all depended on age (p < 0.001, Table 2).

3.3.1. Age trends by visual classification
The occurrence of spikes and slow-waves both depended on age
when examined by visual analysis (p<0.001 and p<0.001.

Fig. 5A). Spikes and slow-waves were more often reported in the
younger age groups (Fig. 5A). In the age groups 1-19 years, 70%
of focal spikes were classified as having a following slow-wave,
whereas this was the case for only 30% above age 80 years.

3.3.2. Spike sharpness

Spike sharpness, measured as the approximation D = d?V/dt?
around the peak, had its maximum in infancy with median
D =4.5. It then declined slowly with increasing age to a minimum
with median D = 2.0 above age 80 years. A sharpness of D =1 was
in the 10th percentile below age 70 years. A sharpness of D=6
was in the 75th percentile at age 0-9 years, but in the 90th per-
centile or above in patients older than 9 years. The distribution
of sharpness was wider below age 10 than above.

3.3.3. Spike slope

Ascending and descending slopes were increasingly steep dur-
ing the first decade of life, up to a median 2.5 pV/ms in the age
group 1-9years, but then gradually less steep with a further
increase in age, down to a median of 1 uV/ms. Slopes of 1 uV/ms
were in the 5th percentile in age groups 1-19 years, while in the
25th percentile or higher for other age groups. Slopes of 3 pV/ms
were in the 75th percentile in age groups 0-19 years, and in the
90th percentile or higher at ages above 20 years. The distribution
of spike slopes was wider below age 10 than above, and declining
with age.

3.3.4. Spike amplitude

Spike ascending amplitude had a similar age distribution as
spike slopes, with an increase from infancy to early childhood up
to a median of 100 pV in age group 1-9 years, and then a gradual
decline to a median of 60 uV. An ascending amplitude of 40 uV
was in the 25th percentile or lower for all age groups. 100 pV
was in the 75th percentile at age 0-19 years, while in the 90th per-
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Fig. 4. Average IED time series in focal epilepsy by age categories in years. 95% confidence levels are shown by shaded grey area (barely visible for most age groups). The
average was calculated with spike peak defined as time = 0 ms, from 200 ms before until 400 ms after the spike peak, at the electrode where the IED was most convincingly
epileptiform (N = 868).
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Fig. 5. Morphology and quantitative measures of IEDs by age categories (years). Occurrence is given by percentage with a 95% confidence interval for morphology classified
by visual interpretation (A). Median, interquartile range, 5th percentile and 95th percentile is given for the quantitative measures (B-F). A: Occurrence of spikes and slow-
waves components in morphological descriptors of IED according to visual analysis with SCORE in focal epilepsy by age. (N = 875). B: Sharpness of the IED spike component
around peak (N = 868). C: Ascending and descending slope of the IED spike component in pVolt per ms (N = 868). D: Ascending and descending amplitudes of the IED first and
second half waves (N = 868). E: Duration of the IED spike component in milliseconds (N = 868). F: Area of the slow-wave in weber (N = 868).

centile or higher above age 20. Spike descending amplitude was
larger compared to the ascending amplitude for all age groups. It
had a maximum of 140 1V in infants, then a gradual decrease,
before stabilizing at 80 uV for all age groups 20-101 years. The dis-
tribution of spike amplitudes was wider below age 10 than above.

3.3.5. Spike duration

Spike duration decreased from early infancy to a minimum
median of 90 ms in early childhood. Then it gradually increased
with age to a median of 130 ms. Spike duration <60 ms was in
the 5th percentile above age 50 years. A spike duration of > 200 ms
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Regression model for quantitative IED measures by EEG region, laterality and age category (years).

Sharpness Slope Amplitude Duration (ms) Slow-wave area
Coef. (nV/ms2) p-value Coef. (duV/ms)  p-value Coef. (uV)  p-value Coef. (ms) p-value Coef. (weber) p-value
Base value <0.001 <0.001 <0.001 <0.001 <0.001
Constant 58 73 141 98,6 323
Region 0,02 0,08 029 0,94 <0.01
Frontal (Reference category)
Temporal -0,8 -09 -7,6 0,7 —4,5
Central -1 -09 -188 2,7 -83
Parietal -0,1 -0,1 0 19 -4,1
Occipital 09 0,6 18 -6,9 -72
Laterality <0.01 <0.001 0,01 <0.001 0,02
Left (Reference category)
Right 05 038 9,6 28 23
Other 038 1,2 17 -8,7 44
Etiology 0,04 <0.01 <0.001 <0.01 <0,001
Idiopathic -1,1 -12 -16,22 -43 132
Symptomatic (Reference category)
Undetermined -04 -09 =22 -9,6 -94
Age category <0.001 <0,001 <0,001 <0,001 <0,001
<1 -16 -27 -353 55,6 6,6
1-9 (Reference category)
10-19 1,7 22 ~405 7.6 -109
20-29 -19 -32 -66,3 ~11 -148
30-39 -28 4,4 -76,5 48 -223
40-49 -28 -42 ~756 8,0 -20,5
50-59 2,6 4,4 715 16,9 -199
60-69 -3 4,4 772 15,4 -16,8
70-79 -3,1 -45 -769 19,1 -19,2
80-101 -39 -52 -79,7 35,3 -199
Adjusted R-squared 0,14 0,19 0,16 0,14 0,15
was in the 90th percentile in infants < 1 year old, and in the 95th °
percentile or above for all ages 1-101 years. The distribution of =] * Sharpness
spike durations was wider below age 1 years than any other age, * Onsetslope
then reached a minimum at ages 1-9 years. Amplitude
o Duration
G: © * Slow after-wave
3.3.6. Slow-wave 2
The slow-wave area was largest and most variable in infancy e
with median 20 weber. It decreased during early childhood to a go >
median of 15 weber, but with substantial variability for age group s i
1-9 years. It then stabilized at a median of around 10 weber for the 5 |5
. 8
age groups 10-101 years. Slow-waves with an area of 50 weber =34
were in the 90th percentile at age 0-9 years, and in the 99th per-
centile or higher for ages above 10 years.
3
i S . . . . . . . . .
3.3.7. Spike asymmetry <1 19 1019 2020 30-39 40-49 50-59 60-69 70-79 80-101

Spike asymmetry had a median around 0.8 for all groups and
did not depend on age (results not shown in Fig. 5).

3.3.8. Regression model

Multiple linear regression models for quantitative [ED measures
by brain region, laterality, etiology and age, showed that age had
the strongest effect on all of these measures (Table 2). Idiopathic
and undetermined etiology had a subtractive effect on spike slope,
spike amplitude, spike duration and slow-wave. For ease of inter-
pretation the percent changes in age coefficients are shown in
Fig. 6. The oldest patient group had the most pronounced change
for all quantitative measures, and the coefficient change from the
base value ranged from 36% to 72%. The only exception was for
slow-wave area.

3.4. Localization of focal IEDs

IED localization depended on age for most brain regions
(p <0.001). The exceptions were the right frontal, right temporal
and left parietal regions (Fig. 7). [IEDs became more lateralized with
increasing age. The occipital and central regions rarely showed

Age (categories)

Fig. 6. Percent change in the coefficient size of age (years) from a linear regression
of quantitative IED measures by age adjusted for brain region, laterality and
etiology. The age group 1-9 years was used as reference in the regression model.

IEDs in elderly patients. IEDs were increasingly common over the
left hemisphere with increasing age.

4. Discussion

We have shown that the morphology of IEDs depends on age.
Focal IEDs become more common with age, and their quantitative
characteristics change. With increasing age IEDs appear less sharp,
have lower amplitudes, have less prominent slow-waves, and their
scalp localization becomes more lateralized. They also occur more
frequently over the left hemisphere. Spike asymmetry was our only
IED measure that did not vary by age, and this IED criterion applies
evenly for all ages. Our findings can help EEG readers in detecting
and correctly describing IEDs in patients of various age.
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Fig. 7. Regional occurrence of IEDs by age (years) as scored by visual analysis (N = 844). One head model is shown for each age group. Circles represent EEG regions. Intensity
of red indicates the percentage of IEDs that occurred in the corresponding region and age group.

Guidelines for classifying IEDs do not include quantitative crite-
ria, and no provision has been made for changes in the criteria with
age. Our data provide such quantitative characteristics to guide the
EEGer in IED detection and classification. All quantitative measures
falling outside the 5th or 95th percentile of these age distributions
should be interpreted cautiously to avoid false positive IED detec-
tion. For example, if an EEG reader is contemplating whether a
sharp wave with ascending slope of less than 1 pV/ms represents
an IED in a 15 year old patient, this would be a rare IED event.
The possibility that the wave instead represents an artifact or a
physiological waveform should be examined more closely. On
the other hand, if the patient was 90 years old, the ascending slope
would be well within the interquartile range and even close to the
median value for the corresponding age group. It is apparent from
our findings that the spike detector, human or computer, cannot
operate with the same set of thresholds for patients of various
ages. Furthermore, the observed differences imply that the sensi-
tivity and specificity in IED detection might not be the same across
age groups.

IEDs with a duration of less than 35 ms were infrequent in our
material, while IEDs with a duration greater than 200 ms were
seen occasionally, mostly in the very young and very elderly. No
limits for the duration of IEDs are given in the definition of epilep-
tiform activity. Spikes and sharp waves are defined separately as
epileptiform transients with a duration of 20 to less than 70 ms
and 70 ms to 200 ms respectively, effectively rendering a portion
of the IEDs in our material unnamed. The glossary of terms should
not exclude [EDs by arbitrary limitations.

Despite blunted and low amplitude IEDs, the oldest age group
had the highest occurrence of focal IEDs. The prevalence of epi-
lepsy is higher in the elderly (Beghi and Giussani, 2018), but the
sensitivity of EEG decreases with age as the occurrence of IEDs in
elderly with epilepsy is less frequent than in younger patients
(Drury and Beydoun, 1998). A higher signal-to-noise ratio due to
lower background activity power in older patients (Dustman
et al., 1999) makes their IEDs stand out more. Life expectancy is
increasing and the oldest segment of the population is expanding
(Christensen et al., 2009). To diagnose epilepsy and detect IEDs
with sufficient sensitivity and specificity in elderly patients will
be of even greater importance in the future and needs special
attention in diagnostic workup.

The quantitative IED measures are not independent variables.
They are mostly measures of the same triangular-like shape that
constitutes the spike. Still, each measure represents visually dis-
tinct and meaningful properties of the IED. The measures display
a similar percent wise change by age when controlled for IED local-
ization, laterality and etiology. No attempt was made to explain if,
and how, one quantitative IED measure predicts another. The aim
of this study was rather to test the hypotheses that IED morphol-
ogy and IED occurrence change with age, which were confirmed
for both.

We included all EEGs examined at our department for this
study, not excluding those with referral reasons other than a sus-

picion of epilepsy. 63% of the patients were referred with an indi-
cation related to epilepsy (data not shown). This included patients
for whom the epilepsy diagnosis had not yet been established, and
those with an established diagnosis where monitoring or follow-up
was requested to guide therapy. The occurrence of epilepsy had a
bimodal distribution with two peaks, one at age 1-9 years and
another at 80-101 years. Our laboratory is the only EEG provider
in our region, and so our material consisted of an unselected and
complete EEG patient population referred from a wide range of
general practitioners and specialists.

This is a cross-sectional study. We annotated only the first IED
of the first epileptiform EEG for each patient, which may not have
been the most prominent or informative. Variability of IEDs within
the same EEG occurs, but was not examined in this study. Our
regression model might have better explained the quantitative
IED measures with access to variables such as background activity
power, patient medication, intracranial imaging data and seizure
frequency. Decreasing general EEG amplitude with age is a known
phenomenon (Dustman et al., 1999), and this may influence the
amplitude also of IEDs.

5. Conclusions

Focal IEDs occurred most frequently in children and elderly.
IEDs have age-dependent characteristics. With increasing age, focal
IEDs appeared less sharp, had lower amplitudes, and had less
prominent slow-waves. With increasing life expectancy these
changes in IED morphology have increasing relevance. A spike
detector, human or computer, should not operate with the same
set of thresholds for patients at various ages.
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A New Score for Sharp Discharges in the EEG Predicts Epilepsy
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Purpose: A challenge in EEG interpretation is to correctly classify
suspicious focal sharp activity as epileptiform or not. A predictive
score was developed from morphologic features of the first focal
sharp discharge, which can help in this decision.

Methods: From a clinical standard EEG database, the authors
identified 2,063 patients without a previous epilepsy diagnosis
who had a focal sharp discharge in their EEG. Morphologic
features (amplitude, area of slow wave, etc.) were extracted using
an open source one-click algorithm in EEGLAB, masked to clinical
classification. A score was developed from these features and
validated with the clinical diagnosis of epilepsy over 2 to 6 years of
follow-up. Independent external validation was performed in Kural
long-term video-EEG monitoring dataset.

Results: The score for the first focal sharp discharge had a
moderate predictive performance for the clinical designation as
the EEG being epileptiform (area under the receiver operating
characteristics curve = 0.86). Best specificity was 91% and
sensitivity 55%. The score also predicted a future epilepsy

Detection of interictal epileptiform discharges (IEDs) is a major
task in the clinical review of EEG.!~ A common challenge in
EEG interpretation is to classify focal sharp-appearing activity as
epileptiform or not. Visual analysis is the current gold standard
for this classification, but interrater agreement is only moderate.*~’

No quantitative guidelines exist to help in classifying sharp-
appearing activity as epileptiform or not. The score in the study by
Halford et al® classified discharges for likelihood of being
epileptiform on a 1 to 5 Likert scale, but this score has limited
use and variable reproducibility. The 2017 EEG glossary® intro-
duced a criterion-based scoring of epileptiform activity, but with
limited data to support the criteria. These new criteria apply
qualitative terms for morphologic properties of IEDs and do not
give any quantitative definitions. The EEG reader has to rely on
experience and training when evaluating whether a transient fulfills
qualitative IED criteria. Kural et al.!® examined the new criteria and
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diagnosis (area under the receiver operating characteristics
curve = 0.70). Best specificity was 86% and sensitivity 38%.
Validation on the external dataset had an area under the
receiver operating characteristics curve = 0.80. Clinical EEG
identification of focal interictal epileptiform discharges had an
area under the receiver operating characteristics curve = 0.73
for prediction of epilepsy. The score was based on amplitude,
slope, difference from background, slow after-wave area, and
age. Interrater reproducibility was high (ICC = 0.91).
Conclusions: The designation of the first focal sharp discharge as
epileptiform depends on reproducible morphologic features.
Characteristic features were amplitude, slope, slow after-wave
area, and difference from background. The score was predictive
of future epilepsy. Halford semiquantitative scale had similar
diagnostic performance but lower reproducibility.

Key Words: Epileptiform, Morphology, Quantitative, SCORE,
Validation, Feature.

(J Clin Neurophysiol 2021;00: 1-8)

concluded that five of six criteria should be fulfilled for optimal
visual acceptance of epileptiform discharges.

Misdiagnosis of epilepsy is common.!! Missed epileptiform
activity in the EEG occurs on occasion.!? Specialized epilepsy
centers report a high prevalence of false-positive EEGs!?-# and
urge a conservative approach in IED assessment. While a higher
specificity may be sensible for such centres, meta-analyses of
EEG interpretation after a first seizure show the need to balance
sensitivity and specificity.!>!?

Most studies involving IED quantification have included
development and application of automated spike detectors.!¢~!% A
few studies have examined specific quantitative IED features and
their relation to a future epilepsy diagnosis,?® their correlation with
human IED detection,?! their reproducibility,?® age dependency,?>?3
and how they can contribute to epilepsy syndrome classification.>*>

The aim of this article was to develop a publicly available
predictive score, the Bergen Epileptiform Morphology Score
(BEMS), from morphologic features of the first suspicious sharp
discharge, which can help in the classification of sharp-appearing as
epileptiform or not. We improved an existing freely available
algorithm?? to measure morphology of sharp-appearing activity with
one click on the pointed peak. The best morphologic features were
combined into a predictive score.

METHODS

Patients and EEGs
We included all consecutive inpatients and outpatients who
had standard EEGs or sleep-deprived EEGs recorded in our EEG

Journal of Clinical Neurophysiology Volume 00, Number 00, Month 2021 1
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laboratory facilities at Haukeland University Hospital, during the
period March 4, 2013 to October 29, 2017, that were reported in
SCORE EEG,?¢ and that had nonepileptiform sharp transients or
focal epileptiform activity (Fig. 1).

We excluded all patients who had an EEG before the
inclusion period, a prior clinical diagnosis of epilepsy (since
January 1, 1999), or a nonfocal epilepsy finding on EEG. For
each of the remaining patients, we selected their first EEG with
either (1) interictal epileptiform discharges (IEDs) and an EEG
conclusion of focal epilepsy, hereafter simplified as “focal IEDs,”
or (2) sharp transients, wicket spikes, small sharp spikes (benign
epileptiform transients of sleep), 6-Hz spike and slow wave,

14337 EEGs
from 10791 patients

v

13143 EEGs

and subsequent EEGs in SCORE

I
\ 2 v

rudimentary spike-wave complex, hereafter simplified as “sharp
transients,” without an EEG conclusion of epilepsy. The EEG
conclusion was drawn by the EEG interpreter during the initial
clinical evaluation of the EEG and based on the EEG findings
together with available clinical and paraclinical information, sim-
ilar to the recommended “clinical correlation” section of the
American Clinical Neurophysiology Society Guideline report
template.?’ Patients were categorized into clinical outcomes of (1)
epilepsy or (2) not epilepsy according to whether they had
received a clinical diagnosis of epilepsy in the hospital records
during follow-up until November 27, 2019. We selected for each
patient the first EEG that contained sharp activity, and in that EEG,

4473 EEGs from 2688 patients who had prior
EEGs not in SCORE, a previously known clinical
diagnosis of epilepsy or missing data

from 10138 patients in SCORE ‘ I
8670 EEGs
from 7450 patients with first f————

6607 EEGs from 5387 patients
No sharp transients or IEDs, not focal epilepsy,

epileptic seizure*

1713 patients 350 patients
First EEG with sharp First EEG with focal
transients, not EEG IEDs, EEG conclusion
conclusion epilepsy focal epilepsy

| J
L 2

2063 patients

Quantitative measures of
morphology

1013 Patients
Internal validation set

1013 Patients

Internal training set

37 patients
> o
missing data

100 Patients
External validation set

FIG. 1.
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Flow chart of patients. *EEG recordings with epileptic seizures were excluded.
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Morphologic averages of sharp transients and focal IEDs in standard EEG. Average time series of sharp transients (N = 1,677) and

IEDs (N = 349). One SD is shown by shaded grey areas. The average was calculated with the spiky component peak defined as time = 0 ms,
from 200 ms before until 400 ms after the peak, and from the electrode where the sharp transient or IED was most convincingly

epileptiform. IED, interictal epileptiform discharge.

we measured morphologic features of the first sharp discharge.
The EEGs were randomized into two equally sized groups for
multivariate analysis; one training set for dose—response modeling
and elimination of similar features and another validation set.

EEG Recordings

Electrodes were applied according to the 10 to 20 system
with a minimum of 21 and a maximum of 26 electrodes.
Recording length was 20 minutes for standard EEGs and
60 minutes for sleep-deprived EEGs. NicoletOne EEG system
was used to record and display EEGs.

IED Features

We selected the first sharp discharge marked as a sharp
transient or an IED during the clinical EEG review. If several
sharp appearing waves were present on the same EEG page, the
most convincing epileptiform wave was chosen. Blinding was
done for the clinical description as either a sharp transient or a
focal IED. The first author of this article evaluated all sharp
discharges, and the last author evaluated a random subset of 244
sharp discharges. All discharges were also scored according to
the 5-point Likert scale by Halford et al.® We assessed the
interrater reproducibility of Halford scale on the 244 sharp
discharges evaluated by both authors.

Morphologic features of the sharp discharges were obtained
using a custom-built tool in MATLAB?3/EEGLAB?® described
previously.?? The code is freely available (https:/github.com/
janbrogger/EpiOneClick). The software automatically determines

clinicalneurophys.com

11 features of the sharp discharge. These were ascending and
descending spike amplitudes, ascending and descending spike
slopes, spike sharpness according to Frost,3® spike duration,
spike asymmetry according to Henze et al.,>! spike to back-
ground power, slow after-wave area, background amplitude, and
spatial extent of the negative spike pole. A detailed description of
the algorithm is given in Supplemental Digital Content 1 (see
S1, http://links.lww.com/JCNP/A155), interrater reproducibility
data for two authors using it in Supplemental Digital Content 1
(see S2, http://links.lww.com/JCNP/A155), and inter-method
data for sharp discharges that were annotated in a previous
study?? using four mouse clicks in Supplemental Digital
Content 1 (see S3, http://links.lww.com/JCNP/A155).

Multivariate Predictive Modeling

The model included spike descending amplitude, spike onset
slope, slow after-wave area, spike to background power, and
patient age as predictor variables. This model was applied on the
validation set and an independent external dataset.' The BEMS
was calculated by multiplying the model coefficients by 10,
rounding and centering the score. Model probabilities by this
score were calculated by averaging probabilities from the logistic
regression model.

Validation on an External Dataset

The developed BEMS was applied on an external and
independent dataset!® to assess generalizability. This dataset
consists of one short EEG segment per patient. Each EEG

Journal of Clinical Neurophysiology Volume 00, Number 00, Month 2021 3
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segment contains a sharp transient (epileptiform or nonepilepti-
form). Characteristics that differed from our primary dataset were
patient selection (long-term video-EEG monitoring), greater
pretest probability of epilepsy (54%), and an outcome defined
by recorded seizures as either epileptic or nonepileptic on long-
term video-EEG monitoring.

Statistics

The diagnostic performance of the multivariate predictive
model and of each sharp discharge feature for both EEG and
clinical outcome was quantified as sensitivity, specificity, and
area under the receiver operating characteristics curve (AUC) for
included EEGs. Accuracy, the percentage of correctly classified
observations, was calculated for the BEMS performance in the
external dataset. The multivariate logistic model building was
performed with univariate dose-response estimation using
locally weighted regression®? and quartiles to guide the selection
of multiple cut points for each feature. We used logistic regres-
sion with EEG outcome as the dependent variable to exclude
nonsignificant features by using Wald test. The cumulative
incidence of a diagnosis of epilepsy was estimated with Stata
sterreg,3? accounting for death as a competing risk.>* The diag-
nostic performance of the clinical EEG conclusion and the
BEMS score in predicting clinical outcome (future epilepsy) was
estimated from the cumulative incidence of epilepsy at up to 6
years of follow-up. Interrater agreement for the BEMS score was
calculated using intraclass correlation. Interrater agreement for
Halford semiquantitative score was calculated with Cohen3?
kappa.

A formal sample size calculation was not performed for the
main study as we used all the available data. However, we

decided that events per variable should be >10.3¢ We selected
50% of the EEGs for the prediction model development and 50%
for validation to have sufficient statistical power for all
categorical variables in the final validation model.

Software

Nicolet EEG system was used to record and display EEGs
for clinical visual analysis. Clinical EEG reports were made with
SCORE EEG (versions 1.0.9.4012 to 2.9.16.24). All EEG reports
were stored in the SCORE EEG database, a structured SQL
database. Quantitative annotation was implemented in custom
software built on EEGLAB. All statistics were handled in Stata.?3

Ethical Approval

The study was approved by the Regional Committees for
Medical and Health Research Ethics (reference code 2017/1512/
REK vest).

RESULTS

Demography

Two thousand twenty-six patients were included after
excluding 653 patients that were not reported in SCORE
EEG,?¢ 2,688 patients who had an EEG before the inclusion
period, a previously known clinical diagnosis of epilepsy or
missing data, 5,387 patients who did not have sharp transients or
focal IEDs in their EEGs or who had an epileptic seizure during
their EEG recordings, and 37 patients because of missing data
with regard to morphologic measurements. Included patients had
a wide age range (see Table S4, Supplemental Digital Content

TABLE 1. BEMS for Classifying a Sharp Discharge as Focal IED or as a Sharp Transient
Predictor Corresponding Epileptiform Criterion Category Points
Spike descending amplitude (V) Criterion 1 0-69 1
70-89 0
90-119 7
>119 17
Spike onset slope (V/ms) Criterion 1 0-0.9 0
1.0-1.4 4
1.5-1.9 5
>1.9 11
Spike to background power (%) Criterion 3 >8.5 0
4.7-8.5 9
2.6-4.6 6
0-2.5 14
Slow after-wave area (weber) Criterion 4 0-4 0
5-9 6
10-19 11
>19 19
Age (years) None 0-9 16
10-19 0
20-59 12
>59 25

BEMS is calculated by summing the individual scores for spike amplitude, spike onset slope, spike to background power, slow after-wave area, and age. See Fig. 3 for BEMS-to-

probability translation.

BEMS, Bergen Epileptiform Morphology Score; IED, interictal epileptiform discharge.

4 Journal of Clinical Neurophysiology Volume 00, Number 00, Month 2021
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FIG. 3. Mean model-predicted probability of IED by morphology

score in the validation set. IED, interictal epileptiform discharge.

1, http:/links.lww.com/JCNP/A155), with a mean age of 39
years (SD = 27) and a female overrepresentation (56%). Patients
with focal IEDs (n = 350) were 5 years older on average than
patients with sharp transients (n = 1,713). Ninety percent of
included EEGs were the patient’s first EEG, and 93% were
standard EEGs, reflecting the aim to examine the earliest EEG
containing sharp activity. Seventy-six percent of patients were
referred with a clinical suspicion of epilepsy. The time interval
between the date of the included EEG and follow-up ranged from
769 to 2,447 days. Sixty-five percent of the patients who was
diagnosed with epilepsy during follow-up had one or several
acute emergency hospital admissions for epilepsy.

Morphologic Features
The distribution of morphologic features, except for spike
duration, differed significantly between the two EEG outcome

A g

Incidence of epilepsy % (95% C..)

T T T
24-32 33-43 44-79

BEMS score, 5 categories

T
0-16 17-23

categories (see Table S1, Supplemental Digital Content 1,
http://links.lww.com/JCNP/A155). However, there was also
considerable overlap between them (see Table S2, Supplemen-
tal Digital Content 1, http:/links.lww.com/JCNP/A155; Fig. 2).
Descending amplitude, slow after-wave area and preceding
background power had an AUC >0.7. Spike to background
power, spike sharpness, duration, onset slope, descending slope,
ascending amplitude, Henze asymmetry, and number of channels
had an AUC = 0.7. The BEMS score had the same performance
as the visually assessed Halford score; AUC = 0.84 for both. The
AUC was 0.70 for both BEMS and Halford score for the clinical
outcome of epilepsy and was <0.64 for all univariate quantita-
tive features.

Prediction of EEG Outcome in Validation Set

Table 1 shows how the IED features contributed to the
BEMS score in the validation set (N = 1,013). The AUC for the
BEMS score and in the multivariate logistic regression model
was the same, with AUC = 0.86. A cut point of 46 on BEMS had
a specificity of 91% for a clinical EEG conclusion of epileptiform
activity, with a sensitivity of 55%. A cut point of 29 had a
specificity of 57% with a sensitivity of 90%. The translation from
the BEMS score to probability based on this model is given in
Fig. 3. Odds ratios for the BEMS categories in the validation
dataset are shown in Supplemental Digital Content 1 (see
Figure S3, http://links.lww.com/JCNP/A155).

Prediction of Epilepsy

A higher BEMS was associated with a higher risk of
epilepsy (Fig. 4A; N = 2026). The cumulative incidence of a
clinical diagnosis of epilepsy in up to 6 years of follow-up was
10% in patients with a BEMS of 0 to 16 points, 14% with a
BEMS of 17 to 23 points, 23% with a BEMS of 24 to 32 points,
34% with a BEMS of 33 to 43 points, and 50% with a BEMS of
44 to 79 points. The receiver operating AUC was 0.70 for both
Halford score and for BEMS in five quantiles with clinical

Sensitivity

T T T

T
0 ;2 4

o
[

6
1-specificity

FIG. 4. A, Cumulative incidence of epilepsy after 6 years of follow-up according to BEMS in five quantiles. B, Receiver operating characteristic
curve for cut points of the BEMS score in five quantiles. The area under the receiver operating characteristics curve is 0.7. BEMS, Bergen

Epileptiform Morphology Score.
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epilepsy diagnosis as the outcome (Fig. 4B). The cumulative
incidence of epilepsy was 60% with a BEMS score of 54 or
greater.

Compared with BEMS, the clinical EEG identification of
focal IEDs had better diagnostic prediction of epilepsy (see
Figure S4, Supplemental Digital Content 1, http://links.lww.
com/JCNP/A155). Eighty-nine percent of patients with epilepsy
were diagnosed within 1 year after their EEG. The cumulative
incidence of epilepsy at 6 years of follow-up was 16% in those
with EEGs containing sharp transients only and 78% in those
with focal IEDs. This corresponds to a sensitivity of 52%, a
specificity of 95%, and an AUC of 0.73.

Validation on an External Dataset

The external and independent dataset'® contained 100 short
EEG segments from 100 patients, out of which 54 had epilepsy.
The receiver operating AUC for BEMS was 0.80. A cut point of
53 on BEMS gave a specificity of 91%, sensitivity of 41%, and
accuracy of 64% for a clinical and EEG-based diagnosis of
epilepsy. A cut point of 29 on BEMS had a specificity of 50%,
sensitivity of 98%, and accuracy of 76%. A cut point at 46, equal
to the best performing cut point in our internal validation set, had
a specificity of 83%, sensitivity of 57%, and accuracy of 69%.
The distributions of morphologic features are shown in Fig. 5
alongside the internal dataset for comparison.

DISCUSSION
We have shown that distinct morphologic features of the
first suspicious sharp discharge in an EEG can be combined into
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Scatter plot matrix of the predictors for the internal dataset (left half) and the external dataset (right half).

a simple score. This score predicts classification as epileptiform
activity with a value similar to that of a visually assessed
semiquantitative Halford score but with higher reproducibility.
Application of the BEMS annotation tool on sharp EEG activity
is fast (less than 1 second) and straightforward (one click on the
peak). The score should be of interest to treating physicians as a
higher score carries a higher risk of epilepsy. It can provide
instant feedback to EEG readers in training by the score and its
contributing features. Three of the criteria for epileptiform
activity’ (spike sharpness, different wave duration, and slow
after-wave) are included in our new score. They were all shown
to be important predictors of IEDs and for a clinical diagnosis of
epilepsy. The same criteria had the highest interrater reproduc-
ibility among seven raters in a recent article by Kural et al.!0-37
and also among three raters in their successive article. A
combination of spike sharpness, slow after-wave, and a dipole
suggesting a source within the brain gave the highest accuracy
regarding a clinical diagnosis of epilepsy (93%) in their latter
paper.>”

The score had a similar and good performance when applied
to an external and independent dataset, demonstrating general-
izability of BEMS. This result confirms that the included
morphologic features are relevant not only locally but also where
the sharp discharge selection, patient population, pretest proba-
bility, and outcome assessment differ.

Four of the features included in the score correspond to
criteria in the definition of epileptiform EEG activity.” Whether
these criteria capture the essence of IED morphology has not
been proven. However, we have now shown that the first, second,
and fourth criteria represent important and reproducible predic-
tors for epileptiform activity. Spike descending amplitude and
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spike onset slope are both features that correspond to the visual
perception of spikiness (criterion 1). Spike to background power
associates with the amount of background activity having a
similar wave duration as the spike (criterion 2). Slow after-wave
area is a relevant measure for slow wave prominence (criterion
4). While no single measure is able to cover all subjective
interpretations of qualitative criteria, we consider these BEMS
features to fit criterion 1, 2, and 4 well. Applying the score
elucidates the visual features that contribute to the evaluation of
sharp discharges. Such transparency should benefit EEG readers
and also in their education.

Only those features that contributed to the classification of
EEG outcome in the multivariate model were included in BEMS.
The omitted features might be considered in future attempts to
further improve the epileptiform criteria. Spike asymmetry
according to Henze3! was not statistically significant in the
multivariate model. This was surprising as spike asymmetry is
included in the definition of epileptiform activity. Findings from
our previous study also suggested that spike asymmetry was a
prominent feature in all age groups.?? Jing et al.3® noted that IED
candidates were more likely to be scored as IEDs on visual
inspection if they were asymmetric. Asymmetry seems therefore
to be a characteristic feature of all IED candidates but not
important to distinguish between focal IED associated with
epilepsy and sharp transients.

An advantage of BEMS was its high reproducibility. The
new annotation tool reported in this article is an improvement of
our previous tool,?? requiring only one mouse click instead of
four. This reduces the workload for research studies and clinical
use. Some of the features in the score can be assessed using any
clinical EEG software. Our univariate reference ranges provide
guidance for these simple features. This algorithm should be easy
to implement for any EEG vendor. A click on the same IED peak
will always produce identical markings and measures. Any rater
differences stem only from each rater’s subjective assessment in
a narrow time window as to which sharp discharge is selected for
analysis.

We found a poor interrater agreement of Halford score for
single sharp discharges, in line with previous reports.®
Morphology-based EEG assessment is one way of improving
reproducibility. The agreement regarding whether an EEG
contains any IEDs is higher than agreement regarding the
evaluation of individual IEDs.3843 In visual EEG evaluation, a
single sharp discharge is rarely sufficient to confidently conclude
whether an IED is present. Our findings of imperfect AUCs for
both the Halford score and the BEMS illustrate this. Definitions
of IED do not include intra-EEG IED frequency or variation.
However, in routine visual evaluation, consecutive sharp dis-
charges might accumulate evidence to tip the scale in favor of
IED. A measure for spike incidence may add predictive power
concerning the clinical diagnosis of epilepsy, even though it is
not an intrinsic morphologic feature.

This study represents a large cohort of unselected patients
with epileptiform activity. A strength of this study is that we have
examined one training dataset, one validation dataset, and a third
independent and external dataset. This study has some limita-
tions. Detailed information regarding how the clinical diagnosis
of epilepsy was made is lacking. The EEG interpretation may

clinicalneurophys.com

have impacted the clinical conclusion. The predictive model’s
performance measures for the clinical epilepsy diagnosis are
therefore likely to be optimistic. The study would have benefited
from a broader panel of expert raters to substantiate measures of
interrater reproducibility.

The designation of the first focal suspicious sharp discharge
as epileptiform depends to a large degree on reproducible
morphologic features that can be made into a clinical score. Best
separating features were amplitude, slope, slow after-wave area,
and difference from background. Duration and asymmetry did
not contribute. The score was predictive of future epilepsy.
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Purpose: The purpose of this study is to investigate the impact of Bergen
Epileptiform Morphology Score (BEMS) and interictal epileptiform discharge (IED)
candidate count in EEG classification.

Methods: We included 400 consecutive patients from a clinical SCORE EEG
database during 2013-2017 who had focal sharp discharges in their EEG, but
no previous diagnosis of epilepsy. Three blinded EEG readers marked all IED
candidates. BEMS and IED candidate counts were combined to classify EEGs as
epileptiform or non-epileptiform. Diagnostic performance was assessed and then
validated in an external dataset.

Results: Interictal epileptiform discharge (IED) candidate count and BEMS were
moderately correlated. The optimal criteria to classify an EEG as epileptiform
were either one spike at BEMS >=58, two at >=47, or seven at >=36. These criteria
had almost perfect inter-rater reliability (Gwet's AC1 0.96), reasonable sensitivity
of 56-64%, and high specificity of 98-99%. The sensitivity was 27-37%, and
the specificity was 93-97% for a follow-up diagnosis of epilepsy. In the external
dataset, the sensitivity for an epileptiform EEG was 60-70%, and the specificity
was 90-93%.

Conclusion: Quantified EEG spike morphology (BEMS) and IED candidate count
can be combined to classify an EEG as epileptiform with high reliability but with
lower sensitivity than regular visual EEG review.

KEYWORDS

epileptiform, morphology, count, quantitative, EEG, validation

Introduction

The definition of epileptiform activity includes qualitative criteria to guide EEG readers in
detecting interictal epileptiform discharges (IEDs) (1). According to the criteria, typical
morphological traits of an IED are a spiky peak, a wave duration that is different from the
background waves, an asymmetric waveform, a slow after-wave, disrupted background activity,
and a dipole suggesting that the source of the transient is in the brain. The diagnostic value of
morphological IED features has been discussed extensively (2-5). Inter-rater agreement (IRA)
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has been assessed for specific morphological features (2, 4), and
optimal combinations of the criteria have been validated (3).

The IED criteria describe the evaluation of single transients
without discussing the possible role of recurring sharp transients. It is
unclear whether additional EEG phenomena such as IED counts are
relevant for a diagnosis of epilepsy. An EEG conclusion should
be based not only on a single graphoelement but also on all available
data in an EEG recording. IRA seems to be better for overall EEG
interpretation than individual IEDs (4, 6-9). The literature is sparse
regarding spike count in routine scalp EEG. Kural et al. (10)
demonstrated that a higher IED count is required to conclude that an
EEG contains epileptiform activity when the IEDs have a less typical
epileptiform morphology. Spike count has been assessed for specific
epilepsy types, such as continuous spike-wave during sleep (11, 12),
benign epilepsy with centro-temporal spikes (13), temporal lobe
epilepsy (14), and juvenile myoclonic epilepsy (15). Latency to the first
IED, a measure analogous to spike count has been examined in long-
term EEG recordings (16).

We have previously described the Bergen Epileptiform
Morphology Score (BEMS) (17), a score from 0 to 86 for sharp
transients, where a higher value indicates a more typical epileptiform
morphology. BEMS is calculated from carefully selected and visually
relatable morphological IED features (spike slope, spike amplitude,
spike similarity to background, and slow after-wave area) and patients’
age, as IED morphology depends on age (18). BEMS classified the first
sharp discharge in an EEG with a similar performance as an EEG rater
both regarding the EEG conclusion (AUC=0.86) and a future epilepsy
diagnosis (AUC=0.70). With BEMS as an established score for the
single sharp discharge, it is possible to assess additional factors that
may be relevant to spike identification. This study aimed to examine
whether the combination of BEMS and the number of sharp
discharges, referred to as IED candidate count in this study, can
improve the diagnostic performance when classifying EEGs as
epileptiform or non-epileptiform.

Materials and methods

Patients and EEGs

We selected a random subsample of EEGs from the total material
described in our previous study (17). The original material included
all consecutive patients who had standard EEGs or sleep-deprived
EEGs recorded in our EEG laboratory at Haukeland University
Hospital during the period of 4 March 2013-29 October 2017, which
were reported in SCORE EEG (19). We included only those patients
who had all their EEGs recorded at our laboratory during the inclusion
period, no epileptiform activity in prior EEGs (interictal epileptiform
activity or non-focal IEDs), and no prior clinical diagnosis of epilepsy
(ICD-10G40/G41 since 1999) in their hospital medical records. The
first EEG for each patient that contained an epileptiform or
non-epileptiform sharp discharge was analyzed. Hospital database
records were examined for a clinical epilepsy diagnosis until 27
November 2019. The subsample of EEGs selected for this study was
then randomized again and divided into two equally sized datasets
(DS1 and DS2). DS1 was reserved as a training set to find optimal cut
points for the predictor variables. An external dataset (DS3), described
by the study mentioned in (10), was used for external validation. In
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total, 30 out of 60 patients in DS3 had epilepsy, confirmed by recording
of their habitual paroxysmal events during long-term EEG monitoring
(LTM). The patients included in DS3 were 1year or older with a
median age of 33 years. Their 20-min interictal EEG had to contain
sharp transients. Patients were excluded if their LTM was inconclusive
regarding epileptic or non-epileptic seizures.

EEG recordings

Electrodes were applied according to the 10-20 system, with a
minimum of 21 and a maximum of 26 electrodes. The 26 electrode
montages included three subtemporal electrodes on each side and Fpz.
The recording length was 20 min for standard EEGs and 60 min for
sleep-deprived EEGs. The sampling rate was 500 samples per second.
NicoletOne™ EEG system was used to record and display EEGs for
the clinical EEG classification which was used as an outcome, while
EEGs were displayed in EEGLAB (20) for the marking of
IED candidates.

IED candidates

We defined IED candidates as sharp transients that could
be suspected to be IED, excluding physiological transients (21) and
artifacts that mimic epileptiform discharges. Three clinical
neurophysiologists, with at least 6years of experience in EEG
interpretation, marked all IED candidates chronologically in each
EEG until a maximum count of 40, using a tool that has been
described previously (17, 18). Only the channel in which the IED
candidate had the most typical epileptiform features was marked for
quantitative morphological analysis. We defined a maximum count to
reduce the workload and with the assumption that higher counts
would not have a significant impact on the performance of
classification. In the event of spike trains or IEDs in close temporal
proximity, only one distinct spiky component was analyzed per epoch
of 1s. If no IED candidate was identified in an EEG, a negative peak
from the background activity on the last page of the EEG recording
was marked instead. The IED candidates were marked independently
by the three raters (rater 1-3) and blinded to patient data, any previous
EEG markings, and the ordinary clinical EEG report. Raters 1 and 2
marked IED candidates in DS1, DS2, and DS3, while rater 3 marked
in DS2 and DS3 to increase the number of raters for validation.

IED candidate-derived diagnostic markers

The following diagnostic markers were derived from the marked
IED candidates in DS1:

BEMS,,.: The IED candidate with the highest BEMS in an EEG.
BEMS,,,,: The sum of BEMS for all IED candidates in one EEG.

IED candidate count: The number of IED candidates in one EEG.
Diagnostic classifier: We searched through combinations of three
pairwise IED candidate counts and BEMS thresholds to find the
combination with the highest average diagnostic accuracy and

IRA when applied as three criteria-sets, where one criteria-set
had to be fulfilled to classify an EEG as epileptiform. All
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combinations were assessed for raters 1 and 2 in DS1 with
pre-specified constraints for computational feasibility as follows:
The range of BEMS was constrained between 40 and 70 points
for the first criteria-set, 30 and 60 points for the second
criteria-set, and 20 and 50 points for the third criteria-set. In
addition, the BEMS threshold differences between criteria-sets
could not be less than 10 points. A total of 5,456 combinations
were assessed. The number of criteria-sets was chosen based on
the combination of criteria sets given in the study by Kural et al.
(10). Adding further criteria-sets was considered to be too
computationally demanding, with diminishing returns regarding
diagnostic performance.

In addition to the diagnostic markers, the mean BEMS for all IED
candidates in one EEG, defined as BEMS,,..,,,, was calculated.

Statistics

The diagnostic markers BEMS,,,,, BEMS,,,,,, IED candidate
count, and the binary classification by the diagnostic classifier were
grouped according to the EEG conclusion (focal IED or sharp
transient). As a secondary outcome measure, these markers were
grouped according to whether the patients were diagnosed with
epilepsy or not during the follow-up. The diagnostic performance
was assessed by measures of sensitivity, specificity, accuracy (the
percentage that was correctly classified), and IRA. We calculated the
intraclass correlation coefficient (ICC) as a measure of IRA between
the raters. IRA between raters for binary classifications was
calculated as Gwet’s AC1 (22). Pearson’s correlation coefficient was
calculated for BEMS and IED candidate counts. Optimal cut points
for the diagnostic markers were chosen in DS1 for raters 1 and 2 as
the lowest possible value that corresponded to the highest accuracy,
with specificity of >90% for the EEG conclusion. When the optimal
cut points differed between the raters, the mean defined the
common cut point, except for the diagnostic classifier, where a joint
set of combinations was selected that maximized the sum of
accuracy and Cohen’s kappa for raters 1 and 2. The performance of
the diagnostic classifier and the diagnostic markers was finally
assessed in DS2 and DS3, regarding the EEG-conclusion of
non-epileptiform transients and IED and the diagnosis of epilepsy
during the follow-up. Since candidate counts were limited between
1 and 40, we calculated the estimated candidate count with a
Poisson model with 1 as the lower censoring limit and 40 as the
upper censoring limit.

Results
Patient and EEG characteristics

The original material from our previous study contained a total of
14,337 EEGs. A total of 4,473 EEGs were excluded due to an
incomplete EEG history in the SCORE database, a previous diagnosis
of epilepsy, or missing data. In total, 6,607 EEGs were excluded
because no IEDs or sharp transients had been scored in the clinical
report, or the EEG contained a seizure. A subsample of 400 EEGs from
400 different patients was randomly selected from the remaining 2,063
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candidates and divided equally into DS1 and DS2. A total of 383
patients were analyzed after excluding 17 patients due to technical
difficulties in the process of loading or reading the EEG. Patient age
distributions were similar in DS1 and DS2, with a mean age of 39 years
and standard deviation (SD) of 28 years (Table 1). In total, 42 out of
383 patients (11%) died during follow-up. The proportion that had
EEGs containing clinically scored IEDs differed between DS1 (21%)
and DS2 (13%), while those diagnosed with epilepsy were 30% in DS1
and 27% in DS2. The IED candidate count had a wide range with a
maximum of 40/min. The estimated mean candidate peak rate was
only 0.1-0.4/min for the three raters, which corresponds to 2-8
suspicious peaks in a 20-min EEG.

Relationship between IED candidate count
and spike morphology

Spike morphology and IED candidate count had a positive
association in each of the three datasets (Figure 1). BEMS,,,, and IED
candidate count had a correlation coefficient (CC) of 0.62 for rater 1,
0.67 for rater 2, and 0.66 for rater 3 in DS1 and DS2 combined (DS2
only for rater 3). The CC for raters 1, 2, and 3 in DS3 was 0.62, 0.60,
and 0.61, respectively. BEMS,,,, and IED candidate count had a
correlation of 0.41, 0.42, and 0.37 in the combined DS1 and DS2 for
raters 1, 2 and 3, respectively. The significance level was p <0.001 for
all correlation coefficients.

Diagnostic performance in DS1

The accuracy and IRA data for BEMS,,,,, BEMS,,,, and IED
candidate count in DS1 are shown in Figure 2. The cut points applied
for all three raters were 50 for BEMS,,,,, 465 for BEMS,,,,, and 18 for
IED candidate count. The IRA was substantial for all diagnostic
markers; ICC and Gwet’s AC1 were 0.76 (95% CI=0.69-0.81) and 0.88
(95% CI=0.85-0.96) for BEMS,,.,, 0.68 (95% CI=0.59-0.75) and 0.86
(95% CI=0.80-0.93) for BEMS,, and 0.73 (95% CI=0.65-0.79) and
0.90 (95% CI=0.83-0.95) for IED candidate count, respectively. The
diagnostic performance when applying the common cut points for the
individual raters was as follows: For BEMS,,,, the sensitivity was 64%
(95% CI =48-78), specificity was 89% (95% CI=83-93), and accuracy
was 84% (95% CI=78-89) for rater 1 and sensitivity was 64% (95%
CI=48-78), specificity was 92% (95% CI=86-96), and accuracy was
86% (95% CI=80-90) for rater 2. For BEMS,,,, the sensitivity was
71% (95% CI=55-84), specificity was 92% (95% CI=87-96), and
accuracy was 88% (95% CI =82-92) for rater 1 and the sensitivity was
64% (95% CI=48-78), specificity was 99% (95% CI=95-100), and
accuracy was 91% (95% CI=87-95) for rater 2. For IED candidate
count, the sensitivity was 64% (95% CI=48-78), specificity was 96%
(95% CI=92-99), and accuracy was 89% (95% CI =84-93) for rater 1
and the sensitivity was 60% (95% CI=43-74), specificity was 99%
(95% CI=95-100), and accuracy was 90% (95% CI=85-94) for rater
2. The diagnostic classifier with the highest combined accuracy and
IRA for both raters was as follows: One IED candidate with BEMS
>=58, two IED candidates with BEMS >=47, or seven IED candidates
with BEMS > =36. The sensitivity, specificity, and accuracy were 67%
(95% CI=51-80), 92% (95% CI=86-95), and 86% (95% CI=81-91)
for rater 1 and 62% (95% CI=46-76), 96% (95% CI=92-99), and 89%
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TABLE 1 Patient and EEG characteristics.

DS1

Sample size, n= 196

10.3389/fneur.2023.1165592

DS2 Total

187 383

Age in years, mean

(SD) (min-max) 37.3 40.5

(28.3) (0-100)

(26.7) (0-94) 38.9 (27.5) (0-100)

Death rate during
follow-up, % 12.8

9.1 11.0

EEG-conclusion IED,
% 21.4

134 17.5

Epilepsy at follow-up,
% 30.1

27.3 28.7

1ED candidates per
minute for rater 1
(Censored), mean

(min-max) 14 (0.0-25.6) 11

(0.0-23.2) 12 (0.0-25.6)

IED candidates per
minute for rater 1

(Uncensored), mean 0.36

0.34 0.35

IED candidates per
minute for rater 2
(Censored), mean

(min-max) 13 (0.0-39.6) 0.6

(0.0-16.8) 1.0 (0.0-39.6)

1ED candidates per
minute for rater 2

(Uncensored), mean 0.12

0.09 0.10

IED candidates per
minute for rater 3
(Censored), mean

(min-max) * 1.0

(0.0-22.9) 1.0 (0.0-22.9)

IED candidates per
minute for rater 3

(Uncensored), mean *

0.14 0.14

*: Rater 3 did not mark IED candidates in DS1.

(95% CI=84-93) for rater 2, respectively. IRA was almost perfect with
Gwet’s AC1=0.89 (95% CI=0.83-0.95).

Diagnostic performance in DS2 and DS3

Diagnostic performance for the various markers in DS1 and DS2
is shown in Table 2. Gwet's AC1 was >0.89 for all diagnostic markers
in DS2 and varied from 0.57 to 0.73 in DS3. The diagnostic classifier
had the highest IRA in both datasets with Gwet's AC1 of 0.96 in DS2
and 0.73 in DS3. The sensitivity for the markers was 60-67% in DS2
and 33-70% in DS3. The specificity was 96-99% in DS2 and 86-91%
in DS3. Supplemental Digital Content 1shows rater-specific
performance measures with 95% confidence intervals. The diagnostic
performance of our current standard of care, the clinical EEG
conclusion, which also served as a reference standard for the
diagnostic markers, had a sensitivity of 41% (95% CI=28-56) and a
specificity of 97% (95% CI=93-99) for the follow-up diagnosis of
epilepsy in DS2.
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Discussion

We have shown in a large study of routine scalp EEGs that there
is a positive correlation between characteristic epileptiform IED
morphology and IED candidate count. EEGs with distinct epileptiform
discharges had a high IED candidate count, while EEGs with less
characteristic epileptiform activity as defined by BEMS had a lower
IED candidate count. Quantified EEG spike morphology (BEMS) and
IED candidate count can be combined to classify an EEG as
epileptiform with high reliability but with somewhat lower sensitivity
than regular visual EEG review.

Interictal epileptiform discharge (IED) candidate count was an
important predictor of epileptiform activity in our study. We suggest
that the IED candidate count should be added in a future update of
the criteria for epileptiform discharges that was proposed by the
International Federation of Clinical Neurophysiology (IFCN). IED
candidate count is not an inherent property of epileptiform
morphology but rather provides a context for its interpretation.
We suspect that a higher IED candidate count strengthens the EEG
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FIGURE 1
Scatter plots with IED candidate count and BEMS,,,, for the three raters. The datasets DS1 and DS2 (n=383) are shown in (A—C) (rater 3 examined DS2
only). The dataset DS3 (n=60) is shown in (D—F). Observations are labeled according to epileptiform (+) or non-epileptiform (@) EEG in DS1 and DS2,
and epilepsy (+) or not epilepsy (@) in DS3. Jitter (0.4) has been added to increase visibility of overlapping symbols. Most EEGs in DS1 and DS2 (A-C) fell
into two clusters, similar for all three raters. The cluster in the lower left corner contains EEGs with infrequent IED candidates and a low BEMS,.,, while
the cluster in the upper right corner contains EEGs with frequent IED candidates with a high BEMS,,..,. A minority of the EEGs were scattered between
the two clusters. This two-cluster pattern was less evident for DS3 (D—F)

reader’s confidence in spike detection and reduces the likelihood of
false positives, a well-known challenge in visual spike detection (23).
Background noise can imitate epileptiform activity once or twice but
not repetitively. Some physiological sharp transients can occur
repeatedly but have recognizable morphology (21). When spotting a
definite epileptiform discharge by visual interpretation, less prominent
discharges in the same region are more easily included as IEDs. It
depends on the signal-to-noise ratio whether one or more discharges
are needed to distinguish a spike from background activity. Signal
averaging is a well-known method in signal analysis and applies the
same principle. Each addition of raw signal to the running average
flattens background noise while the signal of interest remains
unchanged. While one epileptiform discharge might fulfill only a few
IFCN criteria, the average of many discharges meets more criteria, and
morphological uncertainties are eliminated.

We have described the IED candidate count in a large dataset
where all EEGs had at least one epileptiform or non-epileptiform
sharp discharge scored at the time of the clinical EEG report. The
average IED candidate count was estimated to be between two and
eight per 20-min EEG. IED candidate count is entirely based on visual
interpretation of scalp EEG and does not reveal the intracranial or
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“true” spike count. Some intracranial IEDs are not detected in scalp
EEG (24). Their visibility depends on variables, such as source depth,
cortical area, and geometry (25).

Our study had a high IRA. To be able to test the reproducibility of
our classification model, we divided our internal EEGs into two
independent data sets (DS1 and DS2) and used the second data set for
validation, also including a third EEG rater. The inter-rater agreement
was substantial to almost perfect between the three raters for the
diagnostic classifier, demonstrating robustness regarding variability in
the selection of IED candidates between the raters. Our assessment of
IED candidate morphology is entirely objective by applying the
algorithm for the BEMS score, analogous to a subjective visual
assessment of epileptiform criteria. The BEMS algorithm is publicly
available for use by equipment manufacturers.

The diagnostic classifier was built using a traditional and
explainable analytic approach that classified EEGs as epileptiform or
non-epileptiform with high reproducibility and specificity but with
lower sensitivity than a routine clinical EEG examination. Possible
explanations for the limited sensitivity could be that the BEMS score
did not capture enough information per IED candidate or that the
clinical information available to the clinical interpreter of the EEG

frontiersin.org



Aanestad et al.

10.3389/fneur.2023.1165592

>

60 70 80 90 100

Accuracy (%)
40 50

30

Rater 1
Rater 2

o
<

Difference of BEMSmax for rater 1 and 2

-40

30 40 50
BEMSmax cutpoint

70 80

m

20 40 60 80
Mean of BEMSmax for rater 1 and 2

@]

Accuracy (%)
30 40 50 60 70 80 90 100

20

10

BEMSsum cutpoint

. =
=y i g
N
s o~
E L]
o ©
8 -3
— .
o a2 .
= [ S .
. =
3 2 . *
%’. g L . e® o .
83l D o L2 LY o« v
(40 g e o ® e e . ¢
Sgf v S
<v )
8 Ec . L i
S8
b &
o
o] 2 .
=
3
°L : : " &
0 400 800 1200 1600 2000 2400 2800 o 400 2000 2400 2800

20

Difference of IED candidate count for rater 1 and 2

-20

800 1200 1600
Mean of BEMSsum for rater 1 and 2

o
~ A
&

FIGURE 2

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 4
|IED candidate count cutpoint

(A-C): Accuracy for BEMS,.., (A), BEMS,,,, (B) and IED candidate count (C), with the EEG conclusion as outcome for rater 1 and 2 in DS1. The optimal
rater specific cut points are indicated by a dot (rater 1) and a square (rater 2). The vertical dashed lines indicate common cut points. (D—F): Bland—
Altman plots for BEMS,., (D), BEMS,,, (E), and IED candidate count (F) for rater 1 and 2 in DS1. Mean values are plotted along the x-axis, mean
differences between rater 1 and 2 along the y-axis. BEMS,,, had the most evenly distributed means between rater 1 and 2, while BEMS,,, and IED
candidate count had increasing differences between the two raters for higher means.

10 20 30 40
Mean of IED candidate count for rater 1 and 2

Frontiers in Neurology

06

frontiersin.org



Aanestad et al.

contained decisive information to tip the scales. We found a gray area
of ambiguous EEGs that had neither infrequent and unconvincing
IED candidates nor numerous and highly epileptiform IED candidates.
Experienced clinical EEG interpreters can add diagnostic value in
such cases.

Future studies of EEG interpretation should focus on difficult
borderline EEGs.

There are several limitations to this study. We did not have access
or the capacity to analyze clinical and paraclinical patient data that can
be thought to influence or explain BEMS and IED candidate count,
e.g., what evidence was available to the clinicians that diagnosed the
patients with epilepsy, type of epilepsy syndrome, seizure burden, use
of anti-seizure medication, imaging data, neurological comorbidities,
IED candidate localization, and topography. Individual rater threshold
differences were relatively large for IED candidate count and BEMS,,,
(Figure 2), affecting the diagnostic performance negatively since a
common threshold will differ from each of the rater’s optimal cut
point. The IED candidate count threshold differences imply that the
difficulties when deciding whether an EEG waveform is an IED
candidate are comparable to that of IED classification. The low inter-
rater threshold difference and healthy Bland-Altman plot for BEMS,,.
(Figure 2) suggest that the IED candidate selection by a human rater
combined with automated quantitative BEMS scores reliably identifies
the IED candidate with the most typical epileptiform characteristics
in an EEG.

We validated the diagnostic performance and IRA of the
diagnostic markers by examining an external EEG dataset (DS3) that
had different patient characteristics, prevalence of positive outcomes,
and reference standards. DS3 consisted of patients who had required
long-term video-EEG monitoring (LTM) in their work-up, as opposed
to our internal datasets which included routine EEGs from a wide
variety of referrers and reasons for requesting an EEG. The pretest IED
probability was lower in DS1 and DS2 compared with DS3. The low
prevalence of focal IEDs in our internal datasets approximates the
actual prevalence in the patient population that is referred to our EEG
laboratory for a routine EEG, which can be estimated at 8% from our
previous studies (18). Validating the diagnostic markers on DS3 was
a “trial by fire” due to the different dataset characteristics outlined

10.3389/fneur.2023.1165592

above. The optimal cut point for any quantitative diagnostic marker
depends on pretest probability, and its application will be more
suitable for similar datasets. The gold standard in DS3, the
classification of habitual seizures as epileptic or non-epileptic by LTM,
is an outcome measure of a higher standard than those in DS1 and
DS2, which were focal IEDs as classified by the attending physician
and the presence of a follow-up diagnosis of epilepsy in the hospital
database records.

Conclusion

Interictal epileptiform discharge (IED) candidate count is a
relevant predictor variable in the classification of EEGs as epileptiform
or non-epileptiform. IED candidate count correlated positively with
IED candidate morphology. Based on our data, we suggest the
following criteria for definite interictal epileptiform activity: either at
least one very typical epileptiform discharge (BEMS>=58), or at least
two moderately typical epileptiform discharges (BEMS>=47), or at
least seven less distinct epileptiform discharges (BEMS>=36).
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TABLE 2 Mean performance of diagnostic markers between 3 raters when applying the common cut points that were developed in DS1 for rater

land 2.
DS2 (N=187) DS3 (N=60)
Interrater EEG conclusion Epilepsy Interrater Epilepsy
agreement agreement
Sensitivity = Specificity = Sensitivity =~ Specificity Sensitivity =~ Specificity

Gwet's AC1 % % % % Gwet's AC1 % %
BEMSmax* 0.90 60 96 29 95 057 70 86
BEMSsum** 0.94 67 98 32 98 0.69 56 94
1ED candidate
count 0.93 60 98 29 97 0.70 33 96
Diagnostic
classifier® 0.96 60 99 26 97 0.73 63 91
Clinical EEG
conclusion 51 96

Asterisks indicate appliance of common cutpoints. *: BEMSmax >=50. **: BEMSsum >=465. ***: IED candidate count >=18. *¥**: either 1 IED candidate with BEMS >=58, 2 with BEMS

>=47 or 7 with BEMS >=36.
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