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Abstract— Evolutionary multi-task optimization attempts to solve multiple optimization problems 

simultaneously by modeling the solution structures of two or more problems within a single encoding. 

In this paper, we report a novel way for evolutionary multi-task optimization in the reliability 

redundancy allocation problem exploiting the concepts of the popular multifactorial evolutionary 

algorithm (MFEA). We demonstrate the working of the proposed method considering two test sets and 

show how they can be concurrently solved using the MFEA. In the first test set, we consider two 

optimization tasks (case studies): the complex (bridge) system and the series-parallel system. In the 

second test set, there are two optimization tasks:  the over-speed protection system for the gas turbine 

and the life support system in a space capsule. The common attributes between the two systems, within 

a set, complement each other to enhance the evolution process through implicit knowledge transfer. We 

present the comparative results considering existing evolutionary methods such as particle swarm 

optimization, genetic algorithm, simulated annealing, differential evolution, and ant colony 

optimization. Results are analyzed and compared with other approaches, viz., PSO, GA, SA, DE and 

ACO, using the average reliability, best reliability, computation time, performance ranking, and the 

popular statistical significance test of analysis of variance (ANOVA). The outcome shows that our 

proposed approach can solve the multiple case studies of RRAP simultaneously without compromising 

the solution quality. Moreover, our MFEA based solution method tops the rank among all approaches 

and provides significant improvement in computation time where it gains 28.02% and 14.43% of 
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improvement in computation time for first and second test set, respectively, when compared with GA. 

The percentage improvements in the computational time of the MFEA significantly increases when it 

is compared with other approaches. 

Keywords— Evolutionary Multi-Task Optimization; Multifactorial optimization; Reliability-

redundancy allocation problem (RRAP); Complex (Bridge) system; Series-parallel system; Over-speed 

protection system; Life support system in a space capsule. 

I. INTRODUCTION 

In the realm of optimization algorithms, Evolutionary Multi-Task Optimization (EMTO) is a special 

type of multi-objective optimization (MOO) that utilizes the concept of multi-tasking in evolutionary 

algorithms (EAs). It attempts to solve multiple optimization problems simultaneously by modeling their 

solution structures within a single population. One of the widely used single-population EMTO 

approaches, which has been extensively utilized recently, is the multifactorial evolutionary algorithm 

(MFEA) [1]. Fig. 1 depicts the single/unified solution representations of MFEA while solving 𝐾 

number of Tasks. The task specific search space for Task-1, Task-2, and Task-k are denoted by 

𝑓1(𝑥), 𝑓2(𝑥) and 𝑓𝑘(𝑥), respectively. A unified solution (𝐹) is formed by the combination of all task 

specific search space. Here, 𝑥1
∗,  𝑥2

∗ … , 𝑥𝑘
∗  represents the solution belonging to Task-1, Task-2 and Task-

k, respectively. MFEA allows multiple individuals to evolve together which is good at different tasks. 

It enables these individual to learn together and enhance their performance in their assigned tasks [2]. 

Due to this feature, MFEA has shown significant performances in a wide range of applications and 

domains [3]. One of the complex problems where MFEA can be effectively used is reliability 

optimization.  

Reliability of a system is defined as the probability that guarantees the failure-free/flawless 

functioning of an entire system or components associated with it for a particular time frame under the 

given environment. The system complexity in engineering applications such as transportation, 

communication, electrical power systems, etc., is proportional to the complexity of reliability 

optimization. In such cases, the system reliability becomes an essential requirement for ensuring 

flawless service. Hence, maximizing the system's reliability becomes a primary objective for a 
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sustainable real-world application [4]. The reliability optimization falls under the umbrella of non-linear 

programming problems in which mainly three constraints: weight, volume, and cost, are associated. In 

order to improve the reliability of a system, two possible strategies can be considered which are 

mentioned as follows:  

a) The first strategy concentrates on optimizing the reliability of the components within the system 

under the constraints of the system resources. This strategy may increase the entire system's 

reliability until a certain level. Even though the component's reliability increases, achieving the 

desired system reliability sometimes becomes more challenging [5].  

b) The second strategy involves adding redundant components to the different subsystems. These 

components when considered as a decision variable, converts the problem of optimizing the 

reliability of the entire system as the redundancy allocation problem (RAP) [6]. 

The combination of the above two strategies is called the reliability redundancy allocation problem 

(RRAP) [7]. The goal of the RRAP is to maximize the total system reliability by determining the 

optimum component’s reliability and the number of redundant components. There are many structures 

and case studies for reliability optimization viz., series, parallel, series-parallel, complex (bridge) 

system, etc. [5], [8]. Over the years, RRAP has gained tremendous attraction by the research community 

to solve and address these cases using methods based on dynamic programming [9], Lagrangian 

multiplier [10], branch and bound, and linear programming [11]. Since RRAP is a non-linear 

optimization problem of the NP-hard category, the traditional approaches have limitations to solve the 

 
Fig. 1: Unified Representations of MFEA 
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problem efficiently [12]. Therefore, several heuristic-based approaches have also been explored by 

many researchers to solve RRAP. However, most of the studies have attempted to optimize a single 

RRAP problem at a time [13]. There are no available approaches in the literature which has attempted 

to solve two cases of RRAP simultaneously. Due to this complex nature of the RRAP, we propose to 

use MFEA for such problems which might be well-suited to handle multiple tasks and optimize them 

simultaneously. Also, it will enable us to discover the trade-offs between systems sub-components to 

find the best solution. 

In this paper, we report a novel approach of evolutionary multi-task optimization-based solution 

approach for the reliability redundancy allocation problem. The proposed approach has the ability to 

concurrently solve multiple case studies of RRAP by modeling their solution structures within a single 

encoding. It exploits the concepts of the popular multifactorial evolutionary algorithm. To demonstrate 

how two or more RRAP case studies (optimization tasks) can be concurrently solved using the 

multifactorial evolutionary algorithm, we consider two sets of case studies with different system 

structures. In the first test set, we consider two case studies: the complex (bridge) system and the series-

parallel system, and then in the second test set also there are two case studies: the over-speed protection 

system for the gas turbine and the life support system in a space capsule. The common attributes 

between the system structures of two case studies within a test set complement each other to enhance 

the evolution process through implicit knowledge transfer. We have conducted extensive simulation 

experiments and comparative results are presented considering existing evolutionary methods such as 

particle swarm optimization, genetic algorithm, simulated annealing, differential evolution, and ant 

colony optimization. Thus, we show that our proposed approach has the ability to solve the multiple 

test cases of RRAP simultaneously without compromising the solution quality. We study and analyze 

the simulation results using average reliability for convergence, best reliability and computation time 

taken by each approach. Further we also conduct the TOPSIS method [14] to rank the algorithms on 

the basis of performance score and a statistical significance test of the results is performed using the 

popular ANOVA (analysis of variance) method.  
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The major points of our contributions and related experiments are as follows: 

• It reports a novel approach of evolutionary multi-task optimization-based solution approach 

termed as MFEA (Multi-factorial evolutionary algorithm) for simultaneous optimization of the 

reliability redundancy allocation problem.  

• We show the suitability of the proposed approach by conducting experiments on four 

benchmark problems of RRAP, which are formalized under two different test sets, which are 

then compared with five popular evolutionary approaches viz., PSO, GA, SA, DE and ACO.  

• In order to establish the effectiveness of our proposed solution method in terms of solution 

quality and cost efficiency, we analyze the simulation results in terms of average reliability, best 

reliability and computation time. 

• We also employ TOPSIS based MCDM technique using average & best reliability, and 

computation time to rank the algorithms on the basis of their performance.  

• Further, we perform statistical significance test of the results using the popular ANOVA 

method.  

Further, this paper is organized as follows: Section II provides the background study on evolutionary 

approaches for RRAP. Section III provides the details regarding the four RRAP case studies. Section 

IV is divided into three phases: in the first phase, an overview of MFEA algorithm is discussed; in 

second phase, discussion regarding the working of RRAP is covered, and the final phase covers the 

proposed solution approach and provides a detailed discussion on its important steps. Section V 

provides the details of the experiment results and comparative analysis for both the test sets. Section 

VI concludes the study with a discussion on the outcome of this work, the limitations of our proposed 

approach, and possible future work.  

II. REVIEW OF RECENT EVOLUTIONARY BASED RRAP RESEARCH 

In this section, we provide a concise review of the latest literature on evolutionary algorithms based 

RRAP research. A bi-objective simulation-based optimization algorithm was designed to solve RAP 

by Chambari et al. [15]. As an example of RAP, the series-parallel system with the state of active, cold, 
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standby, mixed and k-mixed configuration was considered to solve using the popular NSGA-II. For the 

validation and effectiveness of the model, some benchmark problem was solved where the proposed 

approach outperformed with lower cost and improved reliability. A simulation sampling-based 

optimization model was modeled by Chambari et al. [16] to evaluate the reliability estimation through 

4Dscript for tackling the difficulty of finding closed form in the single objective RAP. To find the 

optimal solution, GA was applied which showed the superiority in all the benchmark set solutions. Devi 

et al. [17] proposed a hybrid GA and PSO (HGAPSO) method to obtain system reliability of single 

objective series-parallel RAP problem. Authors conducted comparison between Heuristic Algorithm 

(HA), Constraint Optimization GA and HGAPSO on the basis of results obtained by system reliability 

and CPU time taken by these methods.  Xu et al. [18] introduced a novel discrete bat algorithm to solve 

the problem of probabilistic common cause failures in heterogeneous RAP (series-parallel system) and 

Hamming-based bat movement, where Q learning based local search was adopted for better 

convergence. Modibbo et al. [19] presented a hybrid concept of estimation and optimization theory in 

RAP to help decision makers in heavily complex systems for estimation of system’s component 

reliability and problem optimization for allocation and selection. Yeh [20] developed a BAT based 

algorithm namely bound-rule-BAT (BRB) for solving series-parallel RAP with mixed components 

where BRB algorithm provides an efficient pareto solution of RAP in comparison to the existing 

algorithm of simplified swarm optimization. 

To obtain a higher reliability value, Dobani et al. [21] modeled a new heterogeneous RRAP problem 

by considering component mixing in existing RRAP problem. They solved the model using stochastic 

fractal search (SFS) which gives higher reliability and better structure. Muhuri et al. [22] have 

formulated the RRAP as a mixed integer bi-level optimization problem and proposed bi-level 

evolutionary algorithm based on quadratic approximations (BLEAQ) to maximize the reliability in the 

upper-level and minimize the total cost at lower-level. Dogahe et al. [23] proposed a new bi-objective 

model to optimize the RAP and reliability centralized maintenance (RCM) at the same time while 

considering component repair ability and non-reparability in a system. To find the trade-off between 
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system reliability and cost, three meta-heuristics namely NSGA-II, MOPSO and Multi-objective firefly 

algorithm were applied and their comparison analysis was performed. Zand et al. [24] designed a 

SCADA water resource management control center using a bi-objective RAP which aims to 

simultaneously obtain maximum reliability with minimum cost. To address this problem, MOPSO 

algorithm was designed and performance was compared with epsilon-constrained method, where 

MOPSO demonstrated superiority in the results. Sharifi et al. [25] developed a RRAP for a series 

parallel problem with multi-state components. The main objective was to minimize the system cost 

under minimum reliability and allocating the optimal set of components with the consideration of failure 

probability of each component. They utilized immune algorithm to solve the developed problem. Filho 

et al. [26] applied a multi-objective linear approach for solving RRAP, where the earlier problem 

formulation was complex, non-linear and continuous. Afterward a linear programming technique 

namely CPLEX and an epsilon restricted multi-objective optimizer was applied to solve the presented 

formulation. In [27], Nath et al.  proposed an approach to solve the RRAP considering all the objectives 

simultaneously using existing evolutionary approaches. Later, they extended the work in [28], where 

introduced a novel evolutionary approach to solve the RRAP by prioritizing the objectives. In [29], 

Alamdari et al. solved a joint availability-redundancy optimization problem using GA, SA, and an 

universal generating function, where components were considered as multi-state. 

 A HSGA was proposed by Garg et al. [30] to solve non-linear RAP which avoids individual 

weakness to ensure optimal reliability and less CPU time, compared to existing algorithms like HA, 

COGA, HPSO. Garg et al. [31] proposed a two-phase approach to solve RRAP. In first phase, an ACO 

algorithm was developed to find optimal reliability, while the second phase improved the solution by 

parameter free penalty technique. In [32], Guilani et al. developed an exact formulation based on 

Markov chain model to find optimal component sequences and the exact system reliability values 

considered for RRAP with heterogeneous components under the mixed redundancy strategy. Zhang et 

al. [33] proposed a pseudo parallel genetic algorithm (PPGA) for RAP and RRAP. In Li et al. [34], 

imperfect nodes are used to formulate global reliability for complex modern network systems. A new 
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G-mixed strategy is proposed in [35] to solve redundant component issues in reliability optimization 

problem. An algorithm namely ‘BAT-SSOA3’ was developed in [36], where a novel RRAP termed as 

general RRAP was proposed for the series-parallel structure or bridge structure to address several other 

generalized network structures and for solving the new generalized RRAP. Liu et al. [37] proposed an 

imperfect switching and a repairman for K-mixed redundancy strategy in 3 components system. Peiravi 

et al. [38] introduced a new continuous time Markov chain model for both the mixed and k-mixed 

strategy where lower limit of component can be variable size instead of fixed size. 

The main focus of existing RRAP available in the literature is to find the optimal reliability and system 

redundancy which is relatively blurry. To address the issue, Jianchun et al. [39] introduced a strength-

based RAP (SRAP) namely load strength interference model for multi-state system which further 

utilized a modified ABC algorithm. Zaretalab et al. [40] presented MO-RAP model with choice of 

selecting suppliers. To optimize the model, they have used the well-known NSGA-II and NRGA 

Algorithm. Jianchun et al. [41] optimized system reliability for newly introduced reliability based on 

multi-objective strength RAP using ABC algorithm. Shukla et al. [42] reported a brief study of MFEA 

for RRAP in an uncertain environment. One might argue that EAs for multi-objective optimization such 

as Multi-Objective EA (MOEA) are suitable for optimization problem [43] – [45], [46]. However, there 

are fundamental differences between the principles of MOEA and MFEA paradigm [1]-[3]. The aim of 

MFEA is to solve multiple tasks simultaneously through implicit parallelism of population and the tasks 

may or may not have similarity among them.   

III. PROBLEM FORMULATION 

The general optimization problem for the reliability redundancy allocation may be mathematically 

expressed as follows [6], [47]: 

𝑓 = 𝑅𝑆(𝑟, 𝑛)                                   (1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑔𝑗(𝑟, 𝑛) ≤ 𝑏, 𝑗 = 1, 2, 3, … , 𝑘 

where,  𝑅𝑠(𝑟, 𝑛) denotes the total system reliability. Here, 𝑟 and 𝑛 defines reliability of the sub-system 

and number of redundant components for the sub-system, respectively. The 𝑗𝑡ℎ resource constraint 
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function representing weight, cost and volume of system is denoted by 𝑔𝑗(𝑟, 𝑛), where k defines the 

number of constraints. The reliability function as explained in Eq. (1) changes with respect to the 

changes in the structure or configuration of the system. For instance, if a system configuration consists 

𝑚 number of sub-systems then the reliability calculation is performed as follows: 

                   𝑅𝑆(𝑟, 𝑛) = ∏  𝑚
𝑖=1 [1 − (1 − 𝑟𝑖)

𝑛𝑖]                                                    (2) 

In Eq. (2), 𝑖 denotes the 𝑖𝑡ℎ component of the system, 𝑟𝑖 represents the reliability of 𝑖𝑡ℎ component and 

𝑛𝑖 represents the number of redundant components for 𝑖𝑡ℎ sub-system. We have considered four RRAP 

problems under two different test sets. First test set include case studies such as complex (bridge) 

system, and series-parallel system [48], while the second test set has over-speed system, and life support 

system in a space capsule. Individually, all the test cases are sequentially labeled as case study 1 - 4. 

Now, we provide the mathematical description of these four cases.  

Case study 1: Complex (bridge) System 

The system structure of a complex (bridge) system is depicted in Fig. 2 (a). We have considered five 

sub-system for this case, which are connected together. The reliability function of this system is non-

linear. The mathematical formulation of this system can be written as follows: 

3
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         (a)                                                             (b) 

Fig. 2: Schematic diagram of (a) complex (bridge) system and (b) series-parallel system 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓(𝑟, 𝑛) = 𝑅1𝑅2 + 𝑅3𝑅4 + 𝑅1𝑅4𝑅5 + 𝑅2𝑅3𝑅5 −  𝑅1𝑅2𝑅3𝑅4 −  𝑅1𝑅2𝑅3𝑅5          

                                         −𝑅1𝑅2𝑅4𝑅5 −  𝑅1𝑅3𝑅4𝑅5 − 𝑅2𝑅3𝑅4𝑅5 + 2𝑅1𝑅2𝑅3𝑅4𝑅5            (3) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜       𝑔1(𝑟, 𝑛) = ∑ 𝑤𝑖𝑣𝑖
2𝑛𝑖

2 − 𝑉

𝑚

𝑖=1

≤ 0 

𝑔2(𝑟, 𝑛) = ∑  

𝑚

𝑖=1

∝𝑖 (−
1000

𝑙𝑛 (𝑟𝑖)
)𝛽𝑖[𝑛𝑖 + 𝑒𝑥𝑝 (0.25𝑛𝑖)]  

 − 𝐶 ≤ 0 
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𝑔3(𝑟, 𝑛) = ∑  

𝑚

𝑖=1

𝑤𝑖𝑛𝑖𝑒𝑥𝑝 (0.25𝑛𝑖) − 𝑊 ≤ 0 

0 ≤ 𝑟𝑖 ≤ 1, 𝑛𝑖 ∈ 𝑍+, 1 ≤ 𝑖 ≤ 𝑚 

Case study 2:  Series-parallel system 

The system structure of a series-parallel system is depicted in Fig. 2 (b). Similar to the case study-1, 

here also five sub-systems are considered and the reliability function is non-linear. The mathematical 

formulation for this case can be written as follows:  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓(𝑟, 𝑛) = 1 − (1 − 𝑅1 ∗ 𝑅2)[1 − (𝑅3 + 𝑅4 − 𝑅3 ∗ 𝑅4) ∗ 𝑅5]         (4) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜, 𝑔1(𝑟, 𝑛) = ∑  

𝑚

𝑖=1

𝑤𝑖𝑣𝑖
2𝑛𝑖

2  −  𝑉 ≤ 0 

𝑔2(𝑟, 𝑛) = ∑  

𝑚

𝑖=1

 ∝𝑖 (−
1000

𝑙𝑛 (𝑟𝑖)
)𝛽𝑖[𝑛𝑖 + 𝑒𝑥𝑝 (0.25𝑛𝑖)]  

 − 𝐶 ≤ 0 

𝑔3(𝑟, 𝑛) = ∑  

𝑚

𝑖=1

𝑤𝑖𝑛𝑖𝑒𝑥𝑝 (0.25𝑛𝑖) − 𝑊 ≤ 0 

0 ≤ 𝑟𝑖 ≤ 1, 𝑛𝑖 ∈ 𝑍+, 1 ≤ 𝑖 ≤ 𝑚 

In both case study-1 and case study-2, 𝑓(𝑟, 𝑛) is the overall system reliability. 

Case Study 3: Over-speed protection system 

This case study considers a gas turbine’s over speed protection system (OPS) [49] under the RRAP 

Gas Turbine

V1 V2 V3 V4

Air Fuel Mixture

Mechanical 

and Electrical 

overspeed 

detection 

    

2

3

2

1

4

1

4
 

 (a)                                                           (b) 

Fig. 3: Schematic diagram of (a) over speed gas turbine system and (b) space capsule. 
 

framework. The fuel supply must be cut-off if the over speed is detected in the system wherein the four 

valves (V1-V4) need to be shutdown. This control system is modeled as four stage series system. As 

shown in the Fig. 3 (a), the over-speed protection system is modeled as four stage series system. In such 
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cases, the objective is to find the optimal level of 𝑟𝑖 and 𝑛𝑖 at each stage of 𝑖 to achieve the maximum 

reliability. The mathematical formulation of OPS can be written as follows:   

     𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑅𝑆(𝑟, 𝑛) = ∏  𝑚
𝑖=1 [1 − (1 − 𝑟𝑖)

𝑛𝑖]                                           (5) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑔1(𝑟, 𝑛) = ∑  

𝑚

𝑖=1

𝑤𝑖𝑣𝑖
2𝑛𝑖

2  −  𝑉 ≤ 0 

𝑔2(𝑟, 𝑛) = ∑  

𝑚

𝑖=1

 ∝𝑖 (−
1000

𝑙𝑛 (𝑟𝑖)
)𝛽𝑖[𝑛𝑖 + 𝑒𝑥𝑝 (0.25𝑛𝑖)]  

 − 𝐶 ≤ 0 

𝑔3(𝑟, 𝑛) = ∑  

𝑚

𝑖=1

𝑤𝑖𝑛𝑖𝑒𝑥𝑝 (0.25𝑛𝑖) − 𝑊 ≤ 0 

0.5 ≤ 𝑟𝑖 ≤ 1, 𝑛𝑖 ∈ 𝑍+, 1 ≤ 𝑖 ≤ 𝑚 

In the above case studies:1-3, 𝑚, 𝑟 = (𝑟1, 𝑟2, 𝑟3, … , 𝑟𝑚) and 𝑛 = (𝑛1, 𝑛2, 𝑛3, . . , 𝑛𝑚) represents the total 

number of sub-systems inside the system, reliability and number of components of the systems 

respectively. The reliability of sub-system 𝑖 is denoted by 𝑅𝑖. For each sub-system 𝑖, its volume, cost 

and weight are represented by 𝑣𝑖, 𝑐𝑖 and  𝑤𝑖, respectively. The upper bound of the sum of the sub-

systems volume, cost, and weight are denoted by 𝑉, 𝐶, and 𝑊, respectively. The shaping factor and 

scaling factor is denoted by ∝𝑖 and 𝛽𝑖. The system volume, system cost and system weight is represented 

by  𝑔1(𝑟, 𝑛), 𝑔2(𝑟, 𝑛) and  𝑔3(𝑟, 𝑛), respectively.  

Case Study 4: Life support system in a space capsule [48] 

The life support system in a space capsule is a continuous non-linear optimization problem.  The 

schematic diagram of this problem is shown in Fig. 3 (b). This type of the complex system is mostly 

found in communication system and the high-pressure oxygen support system in a space capsule [50]. 

The aim of this problem is to minimize the cost with some specified system reliability. The life support 

system in a space capsule is consist of four components i.e., 𝑖 = 1,2,3,4 and each component having 

reliability 𝑟𝑖. Hence, the system reliability can be defined as: 

𝑅𝑠 = 1 − [(1 − 𝑟1)(1 − 𝑟4)]2 − (1 − 𝑟3)[1 − 𝑟2(1 − (1 − 𝑟1)(1 − 𝑟4))]
2
 

The mathematical formulation for the life support system in a space capsule can be written as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝑠 = 2𝐾1𝑟1
𝑎1 + 2𝐾2𝑟2

𝑎2 + 𝐾3𝑟3
𝑎3 + 2𝐾4𝑟4

𝑎4     (6) 

 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑅𝑠,𝑚𝑖𝑛 ≤ 𝑅𝑠 ≤ 1 

 𝑅𝑖,𝑚𝑖𝑛 ≤ 𝑟𝑖 ≤ 1; 𝑖 = 1,2,3,4 
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In this formulation, the lower bound of the system reliability is denoted as 𝑅𝑠,𝑚𝑖𝑛 with value 0.9. 

Similarly, the lower bound of 𝑖𝑡ℎ component’s reliability is denoted as 𝑅𝑖,𝑚𝑖𝑛 and value assigned is 0.5.  

IV. SOLUTION APPROACH 

EAs being the population based meta-heuristic algorithms are generally designed for solving two types 

of problems: single objective problem (SOP) [42] and multi-objective problem (MOP) [43], [44], [51]. 

A recent EA based framework, named MFEA, provides an architecture for solving multiple 

optimization tasks simultaneously [1]. It has been successfully applied to many real-world problems 

(for example, [52]).   

Multi-Factorial Evolutionary Algorithm (MFEA) 

This sub-section provides the detailed explanation of the MFEA. The two key purposes of solving 

multiple tasks at the same time are: i) a unified search space representation based on task’s dimension, 

and ii) a unique optimization function using a common set of population. In a multi-tasking 

environment, solving a simple optimization task may complement more complex task through 

computationally encoded knowledge (or genetic materials) transfer. Since, MFEA utilize the unified 

search space, it helps to transfer knowledge between tasks to acquire the optimal solution, which also 

lead to reduction in memory consumption and faster convergence rate [1]. 

Let’s assume K be the number of tasks, where 𝑇𝑗 defines the 𝑗𝑡ℎ  task and each task has its own 

search space, denoted as 𝑋𝑗. The objective function of 𝑇𝑗 will be 𝑓𝑗 → 𝑅. In MFEA, the multi culture 

environment is maintained by Multi Factorial Optimization (MFO). The formulation of MFO can be 

written as: 

{𝑥1, 𝑥2, … 𝑥𝑘−1, 𝑥𝑘} =𝑎𝑟𝑔 𝑚𝑖𝑛 {𝑓1(𝑥), 𝑓2(𝑥) … . . 𝑓𝑘−1(𝑥), 𝑓𝑘(𝑥)}   

where, 𝑥𝑗 is the feasible solution of 𝑋𝑗 and 𝑓𝑗 is treated as an additional factor which influences the 

evolution of a single population of individuals. The combination of all feasible solutions become a 

single search space, termed as, unified search space [1]. The 𝑗𝑡ℎ task dimension is defined as 𝑑𝑗. The 

dimension of unified search space is D. Although different task has different dimension, D will take the 
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maximum dimension among the tasks, i.e., 𝐷 = 𝑚𝑎𝑥 {𝑑1, 𝑑2 … 𝑑𝑘}. The unified search space with 

dimension D has the normalized value range from 0 to 1. 

Algorithm 1 provides the basic working structure of the MFEA algorithm. The algorithm starts with 

generating the initial population. Each individual has some common properties for task specific 

objective evaluation. Here is some basic definition of individual population properties:  

i) Factorial Cost ( 𝛹𝑗
𝑖 ) is an objective function value (𝑓𝑗) of task (𝑇𝑗) for a population individual 𝑃𝑖.  

ii) Factorial Rank (𝑟𝑗
𝑖) depicts the rank of population individual 𝑃𝑖 on task (𝑇𝑗) based on the sorted 

objective function value with respect to (𝛹𝑗  ).  

iii) Scalar Fitness(𝜙𝑖) indicates the individual rank over all tasks. Scalar fitness of individual 𝑝𝑖 is 

the inverse of 𝑟𝑗 𝑖 𝑔𝑣𝑒𝑛 𝑏𝑦 𝜙𝑖 =
1

𝑟𝑗
𝑖 
.  

iv) Skill Factor (𝜏) is the index of task 𝑡𝑗 for the individual 𝑃𝑖, which indicates the individual is best 

suited for corresponding tasks only. After generating the population, initially each individual is 

evaluated for every task to decide its task group based on the corresponding skill factor. As each 

individual only belongs to one specific task, it helps to generate new solutions/offspring in an 

effective manner. 

Algorithm 1: MFEA procedure               

i. Generate initial population randomly and set as current-population (P) 

ii. Population evaluation based on all the task in multi task environment. 

iii. Skill-factor (𝜏) computation of population-individual for dividing population into task 

specific group. 

      While (not satisfied stopping condition?) 

a. To generate offspring-population(𝐶) apply genetic operations on P. Refer to 

Algorithm 2. 

b. Evolution of C with respect to specific task only. Refer to Algorithm 3 

c. Form the intermediate-population (U) using the combination of P and C. 

d. Update both scalar fitness (𝜙) and τ of for every individual of U.  

e. Select best individuals from U based on the 𝜙 to form next P. 

      End while 
 

Algorithm 2 Assortative Mating 

i. To generate offspring 𝑃𝑎 and 𝑃𝑏  randomly selected from 𝑃 as parents. 

ii. A random number (𝑛) is generated within the range 0-1. 

if (𝜏𝑎 == 𝜏𝑏) or (n < rmp) then  

    Crossover between 𝑃𝑎 and 𝑃𝑏  will generate 𝐶𝑎 and 𝐶𝑎. 

Else  

    A slightly Mutation on 𝑃𝑎 and 𝑃𝑏  will generate 𝐶𝑎 and 𝐶𝑏 independently. 

End if 
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Algorithm 3 Vertical cultural transmission 

i. An offspring 𝑐 will either generates from crossover of  𝑃𝑎 and 𝑃𝑏   it will generate from mutation 

of any 𝑃𝑎 or 𝑃𝑏 . 

if (𝑐 belong to both 𝑃𝑎 and 𝑃𝑏  ) 

a. A random number (𝑛) is generated within the range 0-1. 

if (𝑛 < 0.5) then 

𝜏𝑎 Will be assigned as skill-factor of 𝑐. 

Else 

𝜏𝑏 Will be assigned as skill-factor of 𝑐. 

End if 

Else (c belongs to any of the 𝑃𝑎 and 𝑃𝑏  ) 

b. Skill-factor of 𝑐 will be its parent skill factor. 

End if 

 

In Algorithm 2, the assortative-mating is implemented for generating a new population, that implies 

parents having similar skill-factor or some satisfactory level of random mating probability (RMP), 

which will allow them for crossover else they will generate a new population through mutation. In 

Algorithm 3, vertical cultural transmission has been implemented, which is the process through which 

the offspring imitates their parent’s skill factor. This cultural transmission ensures task specific 

evaluation of offspring throughout the generation. The combination of offspring and current population 

will form an intermediate population. Based on the scalar fitness (𝜙), the population for next 

generations will be selected from the intermediate population, which is known as the best population 

of that generation. The best individual of the final generation is considered as an optimal solution.  

Elements of the proposed MFEA 

This sub-section discusses the proposed MFEA-based solution approach to solve two tasks. Here we 

have considered test set-1, which includes two different optimization problems taken together, viz., 

Case Study-1 and Case Study-2. These two optimization problems are treated as two different tasks of 

MFEA. In a multi-tasking environment, solving two tasks simultaneously allows the genetic materials 

between tasks to complement each other. It is based on the similarity between tasks (i.e., similar system 

structure, similar decision variable), which will ultimately lead to faster convergence of task and 

reduces the consumption of memory [1].  
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Similar to other EAs, MFEA also starts with the encoding of real-valued chromosomes, followed by 

a set of population initialization. Each individual in the population is evaluated for both the tasks to 

determine its skill factor through factorial-rank which ultimately helps to calculate the fitness value for 

the individual. Further, the elite/best solution individual is selected from the current population as parent 

to generate the new population offspring through genetic operations, namely, crossover and mutation. 

This optimization process continues to evolve until the given termination condition is satisfied. Fig. 4 

shows the flowchart to visualize the working of our proposed MFEA based solution approach for 

RRAP. We will now discuss in detail about the major steps associated with designing the MFEA 

framework for solving RRAP cases. 

Stage 1: Population initialization: 

The dimension of a chromosome is the maximum dimension of the task. For instance, in case of first 

test set, both the case studies (or optimization tasks) have similar numbers of decision variables, i.e., 

five decision variables for component reliability and five decision variables for number of redundant 

components. We have interchangeably used case studies and tasks throughout the manuscript. Here, 
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Fig. 4: Working of MFEA for RRAP. 
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Prior to the population initialization, the real valued genetic encoding of the chromosome is performed. 

the dimension of the chromosome will be ten. An example of a chromosome encoding for the addressed 

problem is illustrated in Fig. 5. Each chromosome is linked to the properties of factorial rank, factorial 

cost, scalar fitness and skill factor. Task specific population conversion is performed to optimize both 

the case studies. In our approach, we have utilized the decoding scheme of continuous problems for the 

population conversion [1].   

Stage 2: Fitness evaluation and new population selection:  

At first, for both the tasks, the factorial cost is evaluated by the task specific objective function (Eqs. 

(3) & (4)). Secondly, the ascending order sorting of factorial cost with respect to both the tasks gives 

task specific factorial rank for every chromosome. And finally, fitness value of a chromosome, namely, 

scalar-fitness value is computed on the basis of its best rank over both the tasks. The assignment of the 

skill factor to each chromosome is performed based on the factorial rank to determine the best fit 

solution for the task. Finally, the chromosome’s fitness evaluation is performed on the basis of a 

computed skill factor. The new population selection for the current generation is based on the elitist 

selection method, which ensures the survival of the best population during every iteration.  

Stage 3: Generating new population:  

Two individuals are selected randomly as parents for generating new offspring. The selected parents 

go through the most important genetic process namely assortative mating (Algorithm 2) and vertical 

cultural transmission (Algorithm 3). The assortative mating helps to mate with different task groups 

which allow implicit knowledge transfer between both the tasks. New population is generated using 

crossover if the parents have the same skill factor or the given random mating probability (RMP) is 

satisfied. Otherwise, the new population will be generated through mutation. The vertical cultural 

transmission specifies the newly generated offspring’s identity by assigning its skill factor the same as 

0.75 0.90 0.86 0.73 0.65 3 2 3 3 2 

Component Reliability Number of Component 

Fig. 5: A chromosome model for MFEA encoding. 
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their parents. If the new population is generated by crossover, then randomly either of the parent's skill 

factors will assign to the new child. Otherwise, if the new population is generated through mutation, 

then the assignment of new offspring’s skill factor will be similar to their parent’s skill factor.  The 

generated solution and existing population are truncated into new population for the next iteration.  

Stage 4: Termination Criteria:   

The procedure will terminate after a maximum number of generations is reached. Otherwise, the 

procedure will repeat from Stage 2.  

V. EXPERIMENTS, RESULT AND COMPARATIVE ANALYSIS 

For the simulation, we have considered two test sets of RRAP problems, which are solved using the 

proposed approach. Each test set includes two numerical problems of RRAP and their respective 

benchmark dataset, which are discussed in Section III. As discussed above, the two optimization 

problems in both test sets are considered as two different tasks of MFEA. We have also solved each 

case studies within test sets separately using GA [53], PSO [54], SA [55], DE [56] and ACO [57] for 

comparative analysis. The hardware specification for the execution consists of a computer having 8GB 

RAM and an Intel(R) Core (TM) i5-2400 CPU with a licensed MATLAB 2018b. Each algorithm has 

been executed for 20 independent runs.  

(a) Parameter setting: 

The size of the initial population is considered as 50 and the evolution for maximum generation is set 

as 1000 for every algorithm. The crossover probability (RMP) is set as 0.8 [1], [58], [59]. For the 

proposed MFEA approach, the selection is based on an elitist selection method which indicates that a 

better fitness valued population individual will be selected as parent; whereas in case of GA, PSO and 

such others, the parent selection method for generating offspring is based on tournament selection [47].  

(b) Input Data: 

Table I and Table II contains five separate input sets of data used in experiments for case study-1 

and case study-2, respectively. It also provides the values for shaping factor, scaling factor, weight 



18 

 

component, volume component, volume upper bound, cost bound, and weight bound for all 5 different 

sub-systems. Similarly, Table III contains four separate input sets of data and provides values of 

different parameters used for experiments for case study-3. The value of 𝐾1,  𝐾2,  𝐾3, and  𝐾4 is set as 

100, 100, 200, 150, respectively for case study-4. In addition, the values for 𝑎𝑖 are set as 0.6. The 

obtained values from the experiments of both the test sets are noted for each independent run of MFEA, 

PSO, GA, SA, DE and ACO. 

Table I. Input data for case study-1  

𝑖 105𝑥𝑖  𝛽𝑖  𝑤𝑖  𝑤𝑖𝑣𝑖
2 𝑉 𝐶 𝑊 

1 2.330 1.5 7 1    

2 1.450 1.5 8 2    

3 0.541 1.5 8 3 110 175 200 

4 8.050 1.5 6 4    

5 1.950 1.5 9 2    

Table II. Input data for case study-2 

𝑖 105𝑥𝑖  𝛽𝑖  𝑤𝑖  𝑤𝑖𝑣𝑖
2 𝑉 𝐶 𝑊 

1 2.500 1.5 2 3.5    

2 1.450 1.5 4 4    

3 0.541 1.5 5 4 180 175 100 

4 0.541 1.5 8 3.5    

5 2.100 1.5 4 3.5    

Table III. Input data for case study-3 

𝑖 105𝑥𝑖  𝛽𝑖  𝑤𝑖  𝑤𝑖𝑣𝑖
2 𝑉 𝐶 𝑊 

1 1.0 1.5 6 1    

2 2.3 1.5 6 2    

3 0.3 1.5 8 3 250 400 500 

4 2.3 1.5 7 2    

(c) Results of test set- 1 (case study-1 and case study-2): 

Table IV and Table V provides the comparative analysis of the average and best reliability values 

generated by MFEA, GA, PSO, SA, DE and ACO for case study -1 and case study-2, respectively. The 

results at the interval of 100 generations are shown in these tables for illustrating the progress more 

clearly towards convergence. Table VI compiles the best solutions achieved from the executions of  

MFEA, PSO, GA, SA, DE and ACO for the both cases of first test set. It also provides several 

measurement values associated with the best solution namely components’ reliability, number of 

redundant components, complete system reliability, along with constraints values such as volume, 

weight and cost. The constraints values obtained by the MFEA and PSO are better than the GA, SA, 
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DE and ACO in the case study-1. In case study-2, MFEA and the rest of all algorithms are providing 

similar constraints value along with better reliability, weight and volume values. 

Table IV. Average and best reliability values over varying iterations for the case study-1. 

Algorithm Convergence 

Iterations 

100 200 300 400 500 600 700 800 900 1000 

MFEA 
Average 0.997099 0.998277 0.998779 0.999070 0.999604 0.999675 0.999693 0.999694 0.999694 0.999695 

Best 0.996520 0.999134 0.999755 0.999850 0.999851 0.999851 0.999851 0.999851 0.999851 0.999851 

PSO 
Average 0.949824 0.949825 0.949825 0.999814 0.999817 0.999818 0.999818 0.999818 0.999818 0.999818 

Best 0.999865 0.999865 0.999865 0.999865 0.999865 0.999865 0.999865 0.999865 0.999865 0.999865 

GA 
Average 0.999644 0.999644 0.999644 0.999644 0.999644 0.999644 0.999644 0.999644 0.999644 0.999644 

Best 0.999835 0.999835 0.999835 0.999835 0.999835 0.999835 0.999835 0.999835 0.999835 0.999835 

SA 
Average 0.999869 0.999870 0.999870 0.999870 0.999870 0.999870 0.999870 0.999870 0.999870 0.999870 

Best 0.999889 0.999890 0.999890 0.999890 0.999890 0.999890 0.999890 0.999890 0.999890 0.999890 

DE 
Average 0.999473 0.999817 0.999858 0.999872 0.999881 0.999883 0.999884 0.999885 0.999887 0.999887 

Best 0.999580 0.999847 0.999872 0.999879 0.999887 0.999887 0.999887 0.999887 0.999889 0.999889 

ACO 
Average 0.999798 0.999877 0.999884 0.999887 0.999888 0.999889 0.999889 0.999889 0.999889 0.999890 

Best 0.999810 0.999865 0.999888 0.999889 0.999889 0.999890 0.999890 0.999890 0.999890 0.999890 

 
 

Table V. Average and best reliability values over varying iterations for the case study-2. 

Algorithm Convergence 

Iterations 

100 200 300 400 500 600 700 800 900 1000 

MFEA 

Average 0.999706 0.999843 0.999889 0.999923 0.999927 0.999928 0.999928 0.999928 0.999928 0.999851 

Best 0.999968 0.999980 0.999984 0.999984 0.999984 0.999984 0.999984 0.999984 0.999984 0.999984 

PSO 
Average 0.949969 0.949969 0.999960 0.999966 0.999967 0.999967 0.999967 0.999967 0.999967 0.999967 

Best 0.999986 0.999986 0.999986 0.999986 0.999986 0.999986 0.999986 0.999986 0.999986 0.999986 

GA 
Average 0.996027 0.996028 0.996031 0.996035 0.996035 0.996035 0.996035 0.996035 0.996036 0.996036 

Best 0.999984 0.999984 0.999984 0.999984 0.999984 0.999984 0.999984 0.999984 0.999984 0.999984 

SA 
Average 0.999982 0.999982 0.999982 0.999982 0.999982 0.999982 0.999982 0.999982 0.999982 0.999982 

Best 0.999986 0.999986 0.999986 0.999986 0.999986 0.999986 0.999986 0.999986 0.999986 0.999986 

DE 
Average 0.999923 0.999976 0.999981 0.999983 0.999984 0.999985 0.999985 0.999986 0.999986 0.999986 

Best 0.999911 0.999984 0.999984 0.999985 0.999985 0.999985 0.999986 0.999986 0.999986 0.999986 

ACO 

Average 0.999968 0.999983 0.999984 0.999984 0.999984 0.999985 0.999985 0.999985 0.999985 0.999985 

Best 0.999978 0.999983 0.999986 0.999986 0.999986 0.999986 0.999986 0.999986 0.999986 0.999986 

Figs. 6 (a) & (b) shows the plots for the average reliability values obtained using MFEA, PSO, GA, 

SA, DE and ACO for case study-1 and case study-2, respectively. It can be observed from Fig. 6(a) that 

MFEA is able to produce better solutions from the beginning of the execution and led to convergence 

within 500 generations. On the other hand, PSO converges after 400 generations with the slow progress 

in the evolution process. However, all algorithms are performing better than PSO in generating better 

solutions from the earlier stage. Fig. 6 (b) shows the average reliability values obtained from MFEA,  
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Table VI. Comparison of the best solutions obtained for case study-1 and case study-2 

Case 

study 
Algorithm Component reliability (𝑟) 

Redundant 

component 

System 

Reliability (𝑅) 
Volume Weight Cost 

1 

MFEA 0.8256, 0.8636, 0.8935, 0.7001, 0.7699 2, 3, 3, 3, 2 0.999851 93.00 192.4811 175.00 

PSO 0.8232, 0.8744, 0.9102, 0.6749, 0.6701 3, 3, 2, 3, 2 0.999865 83.00 189.427 175.00 

GA 0.8063, 0.8936, 0.8305, 0.7212, 0.7477 3, 3, 3, 2, 2 0.999835 78.00 195.53 175.00 

SA 0.8280, 0.8578, 0.9142, 0.6481, 0.7049 3, 3, 2, 4, 1 0.999890 105.00 198.44 175.00 

DE 0.8284, 0.8630, 0.9115, 0.6440, 0.6986 3, 3, 2, 4, 1 0.999889 105.00 198.44 174.92 

ACO 0.8288, 0.8571, 0.9138, 0.6491, 0.7021 3, 3, 2, 4, 1 0.999890 105.00 198.44 175.00 

2 

MFEA 0.8166, 0.8424, 0.8582, 0.8635, 0.8770 2, 2, 2, 3, 4 0.999984 180.00 98.21 175.00 

PSO 0.7764, 0.8730, 0.8902, 0.8913, 0.8631 3, 2, 2, 2, 4 0.999986 150.00 98.21 175.00 

GA 0.7332, 0.8192, 0.9119, 0.8854, 0.8786 3, 2, 2, 2, 4 0.999984 150.00 98.21 175.00 

SA 0.7753, 0.8713, 0.8912, 0.8912, 0.8630 3, 2, 2, 2, 4 0.999986 150.00 98.21 175.00 

DE 0.7791, 0.8687, 0.8837, 0.8923, 0.8644 3, 2, 2, 2, 4 0.999986 150.00 98.21 174.96 

ACO 0.7755, 0.8717, 0.8910, 0.8916, 0.8627 3, 2, 2, 2, 4 0.999986 150.00 98.21 175.00 

 
      (a)                                                                                (b) 

 
(c)                                                                     (d) 

Fig. 6:  MFEA vs. PSO vs. GA vs SA vs DE vs ACO comparison a) Average reliability values for case study-1; b) 

Average reliability values for case study-2; c) Best reliability values for case study-1, & (d) Best reliability values for 

case study-2 
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PSO, GA, SA, DE and ACO for case study-2. MFEA, GA, SA, DE and ACO are able to generate better 

solutions from the very beginning of the evolution process and converge within 100 generations. In the 

case of PSO, it converges at 500 generations with better reliability value like other algorithms. 

Similarly, Figs. 6 (c) & (d) illustrates the best convergence plots of reliability values with varying 

iterations of all six algorithms for case study-1 and case study-2, respectively. From both the figures, it 

is evident that MFEA generates solutions with optimal reliability value similar to all other algorithms. 

From the analysis and discussion, we can infer that the proposed MFEA framework is able to solve two 

RRAP problems simultaneously compared to solving each case study separately. 

(d) Results of test set- 2 (case study-3 and case study-3): 

Similar to first test set, Tables VII & VIII provides the comparative analysis for the average and best 

reliability values at the interval of 100 generations for the second test set. Corresponding to these tables, 

Figs. 7(a) & (c) shows the graph plot for average and best convergence of reliability values for case 

study-3, while Figs. 7(b) & (d) depicts the respective figures for case study-4. Table IX gives insight 

about the best solution generated using each of the six algorithms for the case study 3 & 4. It also 

provides decision variables associated with the best solution. It can be seen that solutions generated 

Table VII. Average and best reliability values over varying iterations for the case study-3. 

Algorithm Convergence 
Iterations 

100 200 300 400 500 600 700 800 900 1000 

MFEA 
Average 0.999784 0.999869 0.999883 0.999885 0.999886 0.999896 0.999899 0.999901 0.999901 0.999911 

Best 0.999955 0.999955 0.999955 0.999955 0.999955 0.999955 0.999955 0.999955 0.999955 0.999955 

PSO 
Average 0.999945 0.999946 0.999946 0.999946 0.999946 0.999946 0.999946 0.999946 0.999946 0.999946 

Best 0.999955 0.999955 0.999955 0.999955 0.999955 0.999955 0.999955 0.999955 0.999955 0.999955 

GA 
Average 0.999888 0.999888 0.999888 0.999888 0.999888 0.999888 0.999888 0.999888 0.999888 0.999888 

Best 0.999955 0.999955 0.999955 0.999955 0.999955 0.999955 0.999955 0.999955 0.999955 0.999955 

SA 
Average 0.999875 0.999875 0.999875 0.999875 0.999875 0.999875 0.999875 0.999875 0.999875 0.999875 

Best 0.999955 0.999955 0.999955 0.999955 0.999955 0.999955 0.999955 0.999955 0.999955 0.999955 

DE 
Average 0.999909 0.999945 0.999950 0.999952 0.999953 0.999954 0.999954 0.999954 0.999954 0.999955 

Best 0.999915 0.999950 0.999954 0.999954 0.999954 0.999954 0.999954 0.999955 0.999955 0.999955 

ACO 
Average 0.999942 0.999950 0.999951 0.999951 0.999951 0.999951 0.999951 0.999951 0.999951 0.999951 

Best 0.999945 0.999955 0.999955 0.999955 0.999955 0.999955 0.999955 0.999955 0.999955 0.999955 
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by each of these algorithms are feasible and give almost similar results in case study-3.  Similarly, in 

case study-4, the decision variables generated by all six algorithms are feasible. The system reliability 

value obtained from the decision variables value shows that MFEA, PSO, SE and DE give similar but 

comparatively better results than GA and ACO. Furthermore, MFEA, SA, and ACO produce marginally 

better cost value in comparison to GA, PSO and DE. 

 

Table VIII. Average and best reliability values over varying iterations for case study-4 

Algorithm Convergence 

Iterations 

100 200 300 400 500 600 700 800 900 1000 

MFEA 

Average 0.912529 0.914954 0.963362 0.963745 0.963818 0.963846 0.963875 0.963880 0.963897 0.963899 

Best 0.962848 0.963696 0.963843 0.963871 0.963901 0.963901 0.963905 0.963905 0.963905 0.963905 

PSO 
Average 0.963461 0.963570 0.963605 0.963664 0.963682 0.963689 0.963696 0.963704 0.963710 0.963725 

Best 0.963663 0.963887 0.963905 0.963905 0.963905 0.963905 0.963905 0.963905 0.963905 0.963905 

GA 

Average 0.955269 0.955272 0.955272 0.955272 0.955272 0.955272 0.955272 0.955272 0.955272 0.955272 

Best 0.963889 0.963889 0.963889 0.963889 0.963889 0.963889 0.963889 0.963889 0.963889 0.963889 

SA 
Average 0.963901 0.963901 0.963901 0.963901 0.963901 0.963901 0.963901 0.963901 0.963901 0.963901 

Best 0.963905 0.963905 0.963905 0.963905 0.963905 0.963905 0.963905 0.963905 0.963905 0.963905 

DE 
Average 0.962728 0.963659 0.963821 0.963860 0.963876 0.963885 0.963891 0.963891 0.963895 0.963896 

Best 0.962775 0.963851 0.963877 0.963877 0.963883 0.963889 0.963903 0.963903 0.963903 0.963905 

ACO 
Average 0.963893 0.963893 0.963894 0.963894 0.963894 0.963894 0.963894 0.963894 0.963894 0.963894 

Best 0.963901 0.963901 0.963902 0.963902 0.963903 0.963903 0.963903 0.963904 0.963904 0.963904 

 

 

Table IX. MFEA vs. PSO vs. GA vs SA vs DE vs ACO: analyzing the best solutions of case studies 3 & 4 

Case 

study 
Algorithm Component reliability (𝑟) 

Redundant 

component 

System 

Reliability (𝑅) 
Volume Weight Cost 

3 

MFEA 0.9022, 0.8870, 0.9485, 0.8509 5, 5, 4, 6 0.999955 195.00 484.64 400.00 

PSO 0.9017, 0.8499, 0.9481, 0.8882 5, 6, 4, 5  0.999955 195.00 475.20 400.00 

GA 0.8999, 0.8490, 0.9482, 0.8897 4, 5, 3, 4 0.999955 195.00 475.20 400.00 

SA 0.9016, 0.8882, 0.9481, 0.8499 5, 5, 4, 6 0.999955 195.00 484.64 400.00 

DE 0.9014, 0.8483, 0.9490, 0.8886 5, 6, 4, 5 0.999955 195.00 475.20 399.94 

ACO 0.9016, 0.8498, 0.9481, 0.8882 5, 6, 4, 5 0.999955 195.00 475.20 399.99 

4 

MFEA 0.6272, 0.9912, 0.5000, 0.5000 - 0.963905 - - 679.99 

PSO 0.6258, 0.9929, 0.5000, 0.5000 - 0.963905 - - 680.00 

GA 0.6337, 0.9834, 0.5000, 0.5000 - 0.963889 - - 680.00 

SA 0.6276, 0.9906, 0.5000, 0.5000 - 0.963905 - - 679.99 

DE 0.6267, 0.9918, 0.5000, 0.5000 - 0.963905 - - 680.00 

ACO 0.6250, 0.9939, 0.5000, 0.5000 - 0.963904 - - 679.99 
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Fig. 7(a) reflects the faster convergence of MFEA and DE from 200 generations. The PSO, GA, SA 

and ACO are able to converge at the start of the iteration. All six evolutionary approaches produce 

almost similar reliability values. Fig. 7 (b) shows the plot of average reliability values obtained for case 

study-4. Here, MFEA converged at 400 generations and produced better solutions. The PSO, GA, SA 

and ACO converge before 100 generations while DE converges at 200 generations. Although MFEA 

took more generations to converge in comparison to other algorithms, it has generated better solutions 

than other algorithms in addition to the fact that it has solved two problems concurrently. 

In Fig-7 (c), the convergence plot of best reliability values obtained by six evolutionary algorithms 

for case study-3 are shown. The MFEA, PSO, GA and SA are able to generate good solutions and 

converge within 100 generations. DE and ACO converged at 800 and 200 generations, respectively. 

 
            (a)                                                                                          (b) 

 
(c)                                                                    (d) 

Fig. 7: MFEA vs. PSO vs. GA vs SA vs DE vs ACO comparison a) Average reliability values for case study-3; b) 

Average reliability values for case study-4; c) Best reliability values for case study-3, & (d) Best reliability values for 

case study-4 
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Similarly, Fig. 7(d) shows the best convergence plot of reliability values for case study-4. Here, MFEA 

has generated comparable solutions to PSO, SA, DE and ACO, while it converged at 500 generations. 

Only GA converged faster, within 100 generations.  

(e) Comparing the computation times and the ranking of the algorithms: 

We have now provided the computation time analysis of MFEA and its comparison with the other 

approaches such as: PSO, GA, SA, DE, and ACO. Moreover, we have also ranked these algorithms 

using TOPSIS approach [14] which is evaluated on the basis of computation time, average and best 

reliability values obtained using every algorithm. 

(i) Comparing the computation times: 

Table X gives the comparative computation time values while solving each test set using MFEA, PSO, 

GA, SA, DE and ACO. It also provides the percentage improvements in computation time of proposed 

MFEA based approach as compared to all other approaches. It can be noticed that the computation time 

for MFEA is the least among all other five algorithms for solving each of the test sets, which is 86.74 

sec and 54.20 sec, respectively. The running time of GA and ACO are much nearer to each other for 

every set and same is the case for the PSO and DE. The evolutionary process of SA is much slower 

compared to all other approaches, taking the longest computation time among all, i.e., 4446.01 sec and 

1497 sec for first and second test sets, respectively.  

Table X. Computation time of MFEA, PSO, GA, SA, DE and ACO for first and second test sets 

Approach 

Total computation time 
Improvements in the computation time of the     

proposed MFEA based approach 

Test set 1  

(case studies 1 and 2) 

Test set 2  

(case studies 3 and 4) 

Test set 1  

(case studies 1 and 2) 

Test set 2  

(case studies 3 and 4) 

Proposed MFEA 

based approach 
86.74 54.20 - - 

GA based 

approach 
120.51 63.34 28.02% 14.43% 

ACO based 

approach 
125.26 63.21 30.75% 14.25% 

PSO based 

approach 
149.94 78.83 42.15% 31.24% 

DE based approach 150.37 79.12 42.32% 31.50% 

SA based approach 4446.1 1497.22 98.05% 96.38% 
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Also, the quantitative analysis of the proposed MFEA based approach in comparison to GA, ACO, 

PSO, DE and SA showed significant percentage improvements of 28.02%, 30.75%, 42.15%, 42.32% 

and 98.05% for first test set, and 14.43%, 14.25%, 31.24%, 31.50% and 96.38% for second test set, 

respectively. Therefore, MFEA outperforms all other algorithms in terms of computation time, which 

establishes its better suitability to solve multiple RRAP problems together considering its at par 

reliability with faster computation. 

(ii) Ranking of algorithms based on the multi-criteria decision making using TOPSIS Method: 

In this section, we analyze and evaluate all the considered methods for multi-criteria decision making 

using TOPSIS method [14]. The three performance indicators i.e., computation time, average and best 

reliability values obtained using every algorithm for test sets is adopted as an input to conduct TOPSIS. 

The steps of the straight forward TOPSIS approach is mentioned in Yadav et al. [14], where  

𝑆𝑖
+ and 𝑆𝑖

− represents the separation measure and 𝑃𝑖 represents relative closeness to the ideal solution. 

These are also termed as performance score which we have computed for our approaches and ranking 

is evaluated in the decreasing order of 𝑃𝑖. Note that, each of these measurements are equally significant 

for evaluation, therefore, an equal weightage of 0.33 is assigned to each of them. Tables XI & XII 

shows the performance score and ranks of the algorithms for first and second task set, respectively. 

From Tables XI & XII, it can be clearly seen that MFEA holds top rank with best score among all other 

algorithms for both test sets, following which GA ranks second and PSO is on the third rank. Similarly, 

the fourth rank is held by DE for both test sets and ACO bearing the 5th rank determines its worst 

performance among all approaches. Hence, from overall analysis, we can state that MFEA based 

approach is not only better in solving the problem quicker than other but also performs the best. 

Table XI. Performance score and rank of algorithms for first task set 

Algorithm 𝑆𝑖
+ 𝑆𝑖

− 𝑃𝑖 Rank 

MFEA 0.00002421488516 0.342455025 0.9999292953 1 

PSO 0.004964908577 0.3374901398 0.9855020138 3 

GA 0.00268338198 0.3398020396 0.9921649746 2 

SA 0.3424548033 0.0004036779454 0.001177389411 6 

DE 0.004998255304 0.33745679 0.9854046381 4 

ACO 0.3394294283 0.144728214 0.2989278725 5 
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Table XII. Performance score and rank of algorithms for second task set 

Algorithm 𝑆𝑖
+ 𝑆𝑖

− 𝑃𝑖 Rank 

MFEA 0.000004496091187 0.3355814168 0.99999 1 

PSO 0.005727859313 0.329853559 0.9829315361 3 

GA 0.002314254666 0.3334545214 0.9931075942 2 

SA 0.3355801698 0.0009150667394 0.002719404734 6 

DE 0.005795267174 0.3297861707 0.9827306683 4 

ACO 0.3334863713 0.1451951766 0.3033231117 5 

 

(f) Statistical significance test:  

To observe the statistical differences among the algorithms, we have conducted a one-way ANOVA 

test using the optimum reliability values found in last generations for each independent run [47]. Fig. 8 

(a)-(d) shows the results obtained by ANOVA test for the case studies-1 to 4, respectively.  

  
                                       (a)                                                                        (b) 

  
                      (c)                           (d) 

Fig. 8: Comparative results of ANOVA test based on best reliability value obtained in 20 independent runs of MFEA, 

PSO, GA, SA, DE and ACO in (a) Case study – 1 (b) Case study – 2 (c) Case study – 3 (d) Case study – 4. 
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In Fig. 8, each figure includes box plots for visualizing the median of respective algorithms reliability 

value. Fig. 8(a) demonstrates the statistical significance with median values for case study-1 for all the 

algorithms. It can be observed that MFEA, PSO, SA, DE and ACO have similar median values, whereas 

the median value obtained using MFEA is better than GA. Similarly, for the case study-2, the median 

values for all six evolutionary algorithms are almost equal, and statistically performances of all the 

algorithms (except GA) are similar to MFEA, as shown in Fig. 8(b). The median values of MFEA, GA 

and SA are almost similar, and the other three algorithms, PSO, DE and ACO, have slightly better 

median values for the case study-3, as shown in Fig. 8(c). Moreover, GA and SA are statistically 

different from PSO, DE and ACO. But, our proposed MFEA based approach has no statistical 

difference with them. For the case study-4, the median values of MFEA, PSO, SA, DE and ACO are 

almost similar, whereas GA is far away from the rest of the other five algorithms, as shown in Fig. 8(d). 

From the overall comparative analysis of results obtained for each case, we can state that MFEA 

performs better in terms of producing quality solutions, faster convergence and statistical significance. 

In addition, the MFEA based solution approach has been quite successful in solving two RRAP 

problems simultaneously. Thus, the study establishes the effective applicability of MFEA to the domain 

of study to solve multiple RRAP problems together (without any significant compromise on the solution 

quality) rather than solving each problem individually. 

VI. CONCLUSION AND FUTURE WORK 

This paper has proposed a novel approach to solve the reliability redundancy allocation problem. The 

proposed method is based on the framework of single-population based Evolutionary multi-task 

optimization i.e., multifactorial evolutionary algorithm (MFEA). To observe the applicability and the 

usefulness of our proposed approach, we have first solved two RRAP cases: series-parallel system and 

complex bridge system, simultaneously. Then, we have attempted to solve another set of RRAPs, 

namely, the over-speed protection system and the life support system in a space capsule, 

simultaneously, in the same solution approach based on the proposed MFEA framework. The well-

known single objective evolutionary and nature inspired optimizers PSO, GA, SA, DE, and ACO are 
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also implemented for comparative analysis with the proposed approach. The experimental results 

illustrate the effectiveness of the proposed MFEA framework-based approach where the generated 

solutions are feasible and competitive for applicability in the domain of RRAP. In addition, the 

proposed MFEA approach is able to effectively solve multiple cases of RRAP without compromising 

on the solution quality. Moreover, our MFEA based solution approach has outperformed all other 

algorithms in terms of computation time and provides substantial improvement compared to other 

approaches, which establishes its better suitability to solve multiple RRAP problems together 

considering its at par reliability ensuring faster computation. In the ranking among all the other 

approaches using TOPSIS method, MFEA again shows significant performance with ranking higher 

for both the test sets. The statistical significance test concludes that MFEA demonstrates comparable 

and even improved, to a certain extent, median values, compared to other evolutionary approaches such 

as PSO, SA, DE, and ACO across all the case studies. Also, MFEA is statistically performing similar 

to other algorithms except GA, which reflects different behavior.  

 In MFEA, similarities between the tasks play a decisive role in finding the optimal solutions. The 

random mating probability (RMP) is a fixed value provided at the beginning of the execution based on 

some intuition of task similarities. The poor choice of RMP may lead to negative or insufficient 

knowledge transfer, which has a direct impact on the rate of convergence of tasks. Thus, our future 

work will focus on developing a new technique of automatic knowledge transfer between tasks to 

ensure the right amount of knowledge transfer and faster convergence in the MFEA environment 

without providing any prior information regarding task similarity. Furthermore, we shall apply the 

proposed framework in the optimization problems with bigger industrial task sets to validate the 

scalability. Future research may also focus on efficient modelling of uncertainty and its positive effect 

on the overall reliability of the system. Such uncertainty could range from the data to the system 

components, which when modelled with effective approaches, may result in the development of more 

robust and reliable systems. 
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