# How complex is the Naineris setosa species complex? First integrative study of a presumed cosmopolitan and invasive annelid (Sedentaria: Orbiniidae) 

RICARDO ÁLVAREZ ${ }^{1, *}$ \& NATALIYA BUDAEVA ${ }^{2}$<br>${ }^{1}$ Graduate program in Oceanic Coastal Systems (PGSISCO), Federal University of Paraná, Pontal do Paraná, Paraná, Brazil. © https://orcid.org/0000-0002-3509-0187<br>${ }^{2}$ Department of Natural History, University Museum of Bergen, University of Bergen, Allégaten 41, 5007 Bergen, Norway<br>॥" nataliya.budaeva@uib.no; © https://orcid.org/0000-0001-9748-2285<br>* Corresponding author: ${ }^{\equiv 1}$ ricastralvarez@gmail.com


#### Abstract

We performed a comparative study of the specimens from the Naineris setosa complex from the Pacific and the Atlantic Oceans and re-described the syntype of $N$. setosa, including the selection of the lectotype. Molecular phylogenetic and species delimitation analyses based on two mitochondrial (COI and 16S) and one nuclear (28S) marker revealed the presence of three species. One clade with wide Amphi-Atlantic distribution was attributed as Naineris setosa s. str. The second Atlantic clade restricted to Southern and Southeastern Brazil was described as a new species, Naineris lanai sp. n. The third clade, reported from the Northwestern Pacific, was identified as a new species but was not formally described due to the presence of only juvenile-sized worms in the studied material. Detailed morphological descriptions of several diagnostic characters in the Naineris setosa complex are provided.


Key words: Integrative taxonomy, 28 S rRNA gene, mtDNA COI, 16S, cosmopolitanism, new species.

## Introduction

Naineris setosa (Verril, 1900) is a "cosmopolitan" orbiniid species originally described from intertidal shell-sand sediment in Bermuda. Due to the apparent lack of consistent morphological differences among its records, $N$. setosa was for decades assumed to have an Amphi-American distribution with records both from the East Pacific (Dean \& Blake 2015; Blake 2017) and the Atlantic (Treadwell 1901; Hartman 1951; 1957; Rioja 1960; Solis-Weiss \& Fauchald 1989; Amaral et al. 2006; Blake \& Giangrande 2011). It is currently known that truly widespread annelids are rare (Hutchings \& Kupriyanova 2018). One of such cases has been confirmed within orbiniids for a small, presumably invasive species, Proscoloplos cygnochaetus Day, 1954, and its extremely wide distribution was explained by its capacity to anchor on vessels using mucous glands and chaetae possibly in combination with architomic reproduction (Meyer et al. 2008). Several species of Naineris Blainville, 1828 currently have cosmopolitan status. Nevertheless, this should be tested based on a combination of molecular data and comparative morphological studies.

Naineris setosa is unique in lacking uncini and subuluncini in thoracic neuropodia, which makes it similar to Leitoscoloplos Day, 1977 and Scoloplella Day, 1963, but it has a rounded prostomium as in all other species of Naineris. Hartman (1957) equivocally considered N. setosa related to Leitoscoloplos based on the presence of only crenulated capillaries in thoracic neuropodia. Several attempts were made to reconstruct the phylogeny of Orbiniidae and to assess the position of Naineris among other genera. Blake (2000) proposed a phylogeny based on the morphological characters and recovered Naineris as a paraphyletic genus. Bleidorn et al. $(2005,2009)$ confirmed the monophyly of Naineris + Protoaricia based on molecular data suggesting a progenetic origin for Protoaricia either within or as a sister to Naineris. However, their most advanced analysis based on six markers included only three species of the genus, the type species Naineris quadricuspida (Fabricius, 1780), Naineris dendritica (Kinberg, 1867), and Naineris laevigata (Grube, 1855). Later, Zhadan et al. (2015) proposed several phylogenetic reconstructions of Orbiniidae based on three individual markers. They included four species of Naineris and
recovered the genus as paraphyletic or monophyletic, depending on the marker analyzed. No combined analysis was presented in the study, and the monophyletic status of the genus could not be assessed based on the combined dataset. Nevertheless, none of the phylogenetic studies included $N$. setosa in the analyses, and its phylogenetic placement within Naineris remains unclear.

Even though most of the confirmed invasive polychaetes belong to Serpulidae and Spionidae, some orbiniids, such as Scoloplos capensis (Day, 1961), Leitoscoloplos kerguelensis (McIntosh, 1885), and Naineris quadraticeps Day, 1965 were also considered as invasive (Çinar 2013). Naineris setosa was repeatedly reported as an invasive species in the Mediterranean region (Blake \& Giangrande 2011; Khedhri et al. 2014; Dean \& Blake 2015; Atzori et al. 2016); however, because none of the studies was supported by molecular data, the species should be considered as cryptogenic.

In the present study, we re-examine the type material of $N$. setosa herein designated as lectotype according to Article 74 (ICZN 1999) and perform morphological and molecular analyses of the specimens collected from various localities in the Western Atlantic, the Mediterranean, and the Northeast Pacific. Based on the results, we explore this species' genetic and morphological diversity and describe one new species from Southern and Southeastern Brazil.

## Material and methods

## Sampling

Specimens of the Naineris setosa species complex were collected intertidally along the Brazilian coast from 2020 to 2022 from Santa Catarina to Pernambuco states in different estuarine beaches, from bays and embayments (Fig. 1). The geographical localities of the collected samples are listed in Table 1. To avoid the common fragmentation of the specimens, they were sorted, anesthetized with $8 \%$ magnesium chloride in seawater, and preserved in either $4 \%$ formalin or $99.5 \%$ ethanol directly in the field. Formalin-fixed samples were subsequently transferred into $70 \%$ ethanol.


FIGURE 1. Distribution of the Naineris species described in this study.

## Morphological study

The specimens were studied using a Leica MZ stereomicroscope and a Leica DM 6000 B compound microscope. Digital photos were made with a Leica M205C stereomicroscope with a digital camera Leica DMC5400 attached and combined with the Z-stack function using Leica LAS software. Methyl green and Shirlastain A dyes were
used for increasing contrast and visualizing external morphological structures. Thoracic and abdominal parapodia were dissected and mounted on slides in glycerol to examine the chaetal morphology and composition. Scanning Electron Microscopy (SEM) images were prepared in two institutions following different protocols. At the Center for Electron Microscopy, Federal University of Paraná, the Brazilian specimens stored in $70 \%$ ethanol were run through an increasing ethanol series, critical point dried in a Bal-tec CPD030 with ethanol as the transition fluid, mounted on an aluminum stub using double-sided tape, coated with a heavy metal, and examined using a Jeol JSM 6360-LV scanning electron microscope. At the University Museum of Bergen, University of Bergen, hexamethyldisilazane (HMDS) was used for specimen dehydration, which was then coated with gold and examined under a Zeiss FESEM model GEMINI, Supra 55VP.

Terminology follows the main revisions of the family (Hartman 1957; Blake 2017, 2020, 2021). Additionally, the following morphological characters were described. Thoracic ventral groove, a continuous well-defined groove along the ventral side of the thoracic segments, is described for the first time for Naineris. Ventral groove is common in abdominal segments in orbiniids, but its thoracic projection was not previously reported in the genus. Thoracic ventral longitudinal notches were discovered in specimens collected from muddy, possibly anoxic, sediments. They can almost reach consecutive annular rings or be less pronounced. Dorsal crest, following Blake (2017), is defined as ridges between abdominal branchiae. It may vary in shape from straight to folding and from inconspicuous to well-developed and can change in its shape along the body. Thoracic neuropodia can be of different shapes, varying from fleshy with rounded boundaries to thin and flattened with folding boundaries.

The segmental origin of branchiae and dorsal organs and the number of thoracic chaetigers were determined for 10 specimens from selected populations of the N. setosa complex from Brazil. Additionally, the following features were recorded at the chaetiger 50: total width disregarding parapodia (W), total length of branchiae (Bq), dorsal crest (DC), abdominal notopodial (NoL), and neuropodial lobes (NeL).

The redescription of $N$. setosa is based on the syntype labeled as Aricia setosa Verrill, 1900, deposited in the annelid collection of the Yale Peabody Museum, USA (YPM). In the present study, this specimen is designated as the lectotype. We also studied comparative materials from the Natural History Museum of Los Angeles County, USA (LACM-AHF Poly); the Smithsonian National Museum of Natural History, USA (USNM); the American Museum of Natural History, USA (AMNH); the Florida Museum, USA (FM); the reference collection of the Invasion laboratory at the Smithsonian Environmental Research Center, Maryland, USA (SERC); the Australian Museum, Australia (AM); Polychaeta Collection of the Museu Nacional, Universidade Federal do Rio de Janeiro, Brazil (MNRJP); Polychaeta Collection of the Museu de Diversidade Biológica, Instituto de Biologia, UNICAMP, Brazil (ZUEC-POL); Coleção Biológica Prof. Edmundo F. Nonato, Instituto Oceanográfico, Universidade de São Paulo, Brazil (ColBIO); the Invertebrate collection of the University Museum of Bergen, University of Bergen, Norway (ZMBN). The Brazilian specimens of N. setosa s. str. and type materials of Naineris lanai sp. n. are deposited in the MNRJ. Detailed information is provided in Table 1.

## Molecular analyses

Thirty-five specimens from the Naineris setosa complex collected in the Eastern and Western Atlantic and the Northeastern Pacific were used for molecular analysis (Table 1). A single specimen of Naineris aurantiaca (Müller, 1858) from Pântano do Sul, Santa Catarina Island (Brazil), was used as an outgroup. Genomic DNA was extracted from ethanol-fixed tissue samples using $100 \mu \mathrm{~L}$ of QuickExtract ${ }^{\mathrm{TM}}$ solution, incubating in a thermocycler at $65^{\circ} \mathrm{C}$ for 45 min , followed by 2 min at $90^{\circ} \mathrm{C}$. Fragments of a nuclear 28 S rRNA and mitochondrial COI and 16 S rRNA were amplified in a $25 \mu \mathrm{l}$ reaction volume containing $2.5 \mu \mathrm{l} 10 \mathrm{x}$ PCR buffer, $2 \mu \mathrm{ldNP}(2.5 \mathrm{mM}), 1 \mu \mathrm{l}$ forward and reverse primers $(1 \mu \mathrm{M}), 0.15 \mu \mathrm{TaKaRa}$ Taq ( $5 \mathrm{U} / \mu \mathrm{l}$ ) with $1 \mu \mathrm{l}$ template DNA, and double-distilled water. The primers and the PCR conditions are shown in Table 2. Obtained PCR products were run on $1 \%$ agarose gel for 30 min to visualize successful amplifications. The successful PCR products were sent to Macrogen Europe for purification and bidirectional Sanger sequencing (Applied Biosystems) using the same primers as in amplification. Contigs were automatically assembled from chromatograms for forward and reverse sequences and checked by eye in Geneious Prime (2023.1).
TABLE 1. List of specimens examined in the study with voucher museum numbers, localities, GenBank accession numbers for COI, 16S and 28S, Bold Sample and Process IDs.

| Naineris | Voucher | Site | Coordinates | Collector | COI | 16SrRNA | 28SrRNA | BOLD Sample ID | BOLD Process ID |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N. setosa s. str. | MNRJP 007629 | Brazil, Santa Catarina | $27.695^{\circ} \mathrm{S} ; 48.565^{\circ} \mathrm{W}$ | R. Álvarez | OR732497 | OR732526 | OR732557 | Alvarez_NS01 | NAI001-23 |
| N. setosa s. str. | MNRJP 007630 | Brazil, Santa Catarina | $27.695^{\circ} \mathrm{S} ; 48.565^{\circ} \mathrm{W}$ | R. Álvarez | OR732496 | OR732525 | OR732556 | Alvarez_NS02 | NAI002-23 |
| N. setosa s. str. | MNRJP 007631 | Brazil, Santa Catarina | $27.695^{\circ} \mathrm{S} ; 48.565^{\circ} \mathrm{W}$ | R. Álvarez | OR732495 | OR732524 | OR732555 | Alvarez_NS03 | NAI003-23 |
| N. setosa s. str. | MNRJP 007632 | Brazil, Santa Catarina | $27.695^{\circ} \mathrm{S} ; 48.565^{\circ} \mathrm{W}$ | R. Álvarez | OR732494 | OR732523 | - | Alvarez_NS04 | NAI004-23 |
| N. setosa s. str. | MNRJP 007633 | Brazil, Santa Catarina | $27.695^{\circ} \mathrm{S} ; 48.565^{\circ} \mathrm{W}$ | R. Álvarez | OR732493 | OR732522 | OR732554 | Alvarez_NS05 | NAI005-23 |
| N. setosa s. str. | MNRJP 007628 | Brazil, Santa Catarina | $27.695^{\circ} \mathrm{S} ; 48.565^{\circ} \mathrm{W}$ | R. Álvarez | - | - | - | - | - |
| N. setosa s. str. | MNRJP 007639 | Brazil, Rio de Janeiro | $22.882^{\circ} \mathrm{S} ; 42.002^{\circ} \mathrm{W}$ | R. Álvarez | OR732492 | - | OR732553 | Alvarez_NS11 | NAI006-23 |
| N. setosa s. str. | MNRJP 007640 | Brazil, Rio de Janeiro | $22.882^{\circ} \mathrm{S} ; 42.002^{\circ} \mathrm{W}$ | R. Álvarez | OR732491 | OR732521 | OR732552 | Alvarez_NS12 | NAI007-23 |
| N. setosa s. str. | MNRJP 007641 | Brazil, Rio de Janeiro | $22.882^{\circ} \mathrm{S} ; 42.002^{\circ} \mathrm{W}$ | R. Álvarez | OR732490 | OR732520 | OR732551 | Alvarez_NS13 | NAI008-23 |
| N. setosa s. str. | MNRJP 007642 | Brazil, Rio de Janeiro | $22.882^{\circ} \mathrm{S} ; 42.002^{\circ} \mathrm{W}$ | R. Álvarez | OR732489 | OR732519 | OR732550 | Alvarez_NS14 | NAI009-23 |
| N. setosa s. str. | MNRJP 007643 | Brazil, Rio de Janeiro | $22.882^{\circ} \mathrm{S} ; 42.002^{\circ} \mathrm{W}$ | R. Álvarez | OR732509 | OR732537 | OR732569 | Alvarez_NS15 | NAI010-23 |
| N. setosa s. str. | MNRJP 007626 | Brazil, Rio de Janeiro | $22.882^{\circ} \mathrm{S} ; 42.002^{\circ} \mathrm{W}$ | R. Álvarez | - | - | - | - | - |
| N. setosa s. str. | MNRJP 007644 | Brazil, Bahia | $12.910^{\circ} \mathrm{S} ; 38.497^{\circ} \mathrm{W}$ | R. Álvarez | OR732508 | - | OR732568 | Alvarez_NS16 | NAI011-23 |
| N. setosa s. str. | MNRJP 007645 | Brazil, Bahia | $12.910^{\circ} \mathrm{S} ; 38.497^{\circ} \mathrm{W}$ | R. Álvarez | OR732507 | OR732536 | - | Alvarez_NS17 | NAI012-23 |
| N. setosa s. str. | MNRJP 007646 | Brazil, Bahia | $12.910^{\circ} \mathrm{S} ; 38.497^{\circ} \mathrm{W}$ | R. Álvarez | OR732506 | - | OR732567 | Alvarez_NS18 | NAI013-23 |
| N. setosa s. str. | MNRJP 007647 | Brazil, Bahia | $12.910^{\circ} \mathrm{S} ; 38.497^{\circ} \mathrm{W}$ | R. Álvarez | OR732505 | OR732535 | OR732566 | Alvarez_NS19 | NAI014-23 |
| N. setosa s. str. | MNRJP 007648 | Brazil, Bahia | $12.910^{\circ} \mathrm{S} ; 38.497^{\circ} \mathrm{W}$ | R. Álvarez | OR732504 | OR732534 | OR732565 | Alvarez_NS20 | NAI015-23 |
| N. setosa s. str. | MNRJP 007627 | Brazil, Bahia | $12.910^{\circ} \mathrm{S} ; 38.497^{\circ} \mathrm{W}$ | R. Álvarez | - | - | - | - | - |
| N. setosa s. str. | MNRJP 007649 | Brazil, Pernambuco | $8.355^{\circ} \mathrm{S} ; 34.953^{\circ} \mathrm{W}$ | R. Álvarez | OR732503 | OR732533 | OR732564 | Alvarez_NS21 | NAI016-23 |
| N. setosa s. str. | MNRJP 007650 | Brazil, Pernambuco | $8.355^{\circ} \mathrm{S} ; 34.953^{\circ} \mathrm{W}$ | R. Álvarez | OR732502 | OR732532 | OR732563 | Alvarez_NS22 | NAI017-23 |
| N. setosa s. str. | MNRJP 007651 | Brazil, Pernambuco | $8.355^{\circ} \mathrm{S} ; 34.953^{\circ} \mathrm{W}$ | R. Álvarez | - | OR732531 | OR732562 | Alvarez_NS23 | NAI018-23 |
| N. setosa s. str. | MNRJP 007652 | Brazil, Pernambuco | $8.355^{\circ} \mathrm{S} ; 34.953^{\circ} \mathrm{W}$ | R. Álvarez | OR732501 | OR732530 | OR732561 | Alvarez_NS24 | NAI019-23 |
| N. setosa s. str. | MNRJP 007653 | Brazil, Pernambuco | $8.355^{\circ} \mathrm{S} ; 34.953^{\circ} \mathrm{W}$ | R. Álvarez | OR732500 | OR732529 | OR732560 | Alvarez_NS25 | NAI020-23 |
| N. setosa s. str. | MNRJP 007625 | Brazil, Pernambuco | $8.355^{\circ} \mathrm{S} ; 34.953^{\circ} \mathrm{W}$ | R. Álvarez | - | - | - | - | - |
| N. setosa s. str. | ZMBN 157797 | Italy, Taranto | $40.444^{\circ} \mathrm{N} ; 17.241^{\circ} \mathrm{E}$ | J. Laganeck | OR732499 | OR732528 | OR732559 | Alvarez_NS43 | NAI021-23 |
| N. setosa s. str. | ZMBN 157798 | Italy, Livorno | $43.546^{\circ} \mathrm{N} ; 10.302^{\circ} \mathrm{E}$ | J. Laganeck | OR732498 | OR732527 | OR732558 | Alvarez_NS44 | NAI022-23 |
| N. lanai sp. n. | MNRJP 007634 | Brazil, Paraná | $25.408^{\circ} \mathrm{S} ; 48.250^{\circ} \mathrm{W}$ | R. Álvarez | OR732481 | - | OR732543 | Alvarez_NS06 | NAI023-23 |

TABLE 1. (Continued)

| Naineris | Voucher | Site | Coordinates | Collector | COI | 16SrRNA | 28SrRNA | BOLD Sample ID | BOLD Process ID |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $N$. lanai sp. n. | MNRJP 007635 | Brazil, Paraná | $25.408^{\circ} \mathrm{S} ; 48.250^{\circ} \mathrm{W}$ | R. Álvarez | OR732482 | OR732515 | OR732544 | Alvarez_NS07 | NAI024-23 |
| N. lanai sp. n. | MNRJP 007636 | Brazil, Paraná | $25.408^{\circ} \mathrm{S} ; 48.250^{\circ} \mathrm{W}$ | R. Álvarez | OR732483 | OR732516 | OR732545 | Alvarez_NS08 | NAI025-23 |
| $N . l a n a i ~ s p . n$. | MNRJP 007637 | Brazil, Paraná | $25.408^{\circ} \mathrm{S} ; 48.250^{\circ} \mathrm{W}$ | R. Álvarez | OR732484 | OR732517 | OR732546 | Alvarez_NS09 | NAI026-23 |
| $N . l a n a i ~ s p . n$. | MNRJP 007638 | Brazil, Paraná | $25.408^{\circ} \mathrm{S} ; 48.250^{\circ} \mathrm{W}$ | R. Álvarez | OR732488 | OR732518 | OR732549 | Alvarez_NS10 | NAI027-23 |
| $N .1 a n a i ~ s p . n$. | MNRJP 007618 | Brazil, Paraná | $25.408^{\circ} \mathrm{S} ; 48.250^{\circ} \mathrm{W}$ | R. Álvarez | - | - | - | - | - |
| $N . l a n a i ~ s p . n$. | MNRJP 007619 | Brazil, Paraná | $25.408^{\circ} \mathrm{S} ; 48.250^{\circ} \mathrm{W}$ | R. Álvarez | - | - | - | - | - |
| $N . l a n a i ~ s p . n$. | MNRJP 007620 | Brazil, Paraná | $25.408^{\circ} \mathrm{S} ; 48.250^{\circ} \mathrm{W}$ | R. Álvarez | - | - | - | - | - |
| $N . l a n a i ~ s p . n$. | MNRJP 007621 | Brazil, Paraná | $25.408^{\circ} \mathrm{S} ; 48.250^{\circ} \mathrm{W}$ | R. Álvarez | - | - | - | - | - |
| $N . l a n a i ~ s p . n$. | MNRJP 007622 | Brazil, Paraná | $25.408^{\circ} \mathrm{S} ; 48.250^{\circ} \mathrm{W}$ | R. Álvarez | - | - | - | - | - |
| $N .1 a n a i ~ s p . n$. | MNRJP 007623 | Brazil, Paraná | $25.408^{\circ} \mathrm{S} ; 48.250^{\circ} \mathrm{W}$ | R. Álvarez | - | - | - | - | - |
| $N . l a n a i ~ s p . n$. | MNRJP 007624 | Brazil, Paraná | $25.408^{\circ} \mathrm{S} ; 48.250^{\circ} \mathrm{W}$ | R. Álvarez | - | - | - | - | - |
| N. lanai sp. n. | MNRJP 007654 | Brazil, São Paulo | $23.815^{\circ} \mathrm{S} ; 45.406^{\circ} \mathrm{W}$ | R. Álvarez | OR732487 | - | OR732548 | Alvarez_NS28 | NAI028-23 |
| N. lanai sp. n. | MNRJP 007655 | Brazil, Rio de Janeiro | $22.939^{\circ} \mathrm{S} ; 43.877^{\circ} \mathrm{W}$ | J. Gabriel | OR732486 | - | OR732547 | Alvarez_NS36 | NAI029-23 |
| N. lanai sp. n. | MNRJP 007656 | Brazil, Rio de Janeiro | $22.939^{\circ} \mathrm{S} ; 43.877^{\circ} \mathrm{W}$ | J. Gabriel | OR732485 | - |  | Alvarez_NS38 | NAI030-23 |
| Naineris sp. | SERC 252007 | USA, California | $33.620^{\circ} \mathrm{N} ; 117.896^{\circ} \mathrm{W}$ | E. Keppel | OR732477 | OR732511 | OR732539 | Alvarez_NS46 | NAI031-23 |
| Naineris sp. | SERC 252013 | USA, California | $33.619^{\circ} \mathrm{N} ; 117.895^{\circ} \mathrm{W}$ | E. Keppel | OR732478 | OR732512 | OR732540 | Alvarez_NS47 | NAI032-23 |
| Naineris sp. | SERC 251805 | USA, California | - | E. Keppel | - | - | - | - | - |
| Naineris sp. | SERC 251985 | USA, California | - | E. Keppel | - | - | - | - | - |
| Naineris sp. | SERC 252000 | USA, California | - | E. Keppel | - | - | - | - | - |
| Naineris sp. | LACM-AHF <br> Poly | USA, California | $32.726^{\circ} \mathrm{N} ; 117.192^{\circ} \mathrm{W}$ | K. Sorensen, C. Sosa | OR732479 | OR732513 | OR732541 | Alvarez_NS33 | NAI033-23 |
| Naineris sp. | LACM-AHF <br> Poly | USA, California | $32.726^{\circ} \mathrm{N} ; 117.192^{\circ} \mathrm{W}$ | K. Sorensen, C. Sosa | OR732480 | OR732514 | OR732542 | Alvarez_NS34 | NAI034-23 |
| Naineris sp. | LACM-AHF <br> Poly | USA, California | $32.726^{\circ} \mathrm{N} ; 117.192^{\circ} \mathrm{W}$ | K. Sorensen, C. Sosa | - | OR732510 | OR732538 | Alvarez_NS35 | NAI035-23 |
| N. aurantiaca | MNRJP 007617 | Brazil, Santa Catarina | $27.783^{\circ} \mathrm{S} ; 48.506^{\circ} \mathrm{W}$ | R. Álvarez | OR795632 | OR795716 | OR795717 | Alvarez_NA01 | NAI036-23 |
| N. setosa s. str. | $\begin{aligned} & \text { YPM IZ } \\ & 001242 . \mathrm{AN} \end{aligned}$ | Bermuda, Flatt's Inlet beach | $32.322^{\circ} \mathrm{N} ; 64.739^{\circ} \mathrm{W}$ | - | - | - | - | - | - |

TABLE 1. (Continued)

| Naineris | Voucher | Site | Coordinates | Collector | COI | 16SrRNA | 28SrRNA | BOLD Sample ID | BOLD Process ID |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $N$. setosa s. str. | YPM 1303 | Bermuda | - | W. R. Coe | - | - | - | - | - |
| $N$. setosa s. str. | YPM 1384 | Bermuda | - | A. E. Verril | - | - | - | - | - |
| $N$. setosa s. str. | AMNH 1972 | Bermuda | - | - | - | - | - | - | - |
| $N$. setosa s. str. | AMNH 2508A | Bermuda, St. David's Island | - | - | - | - | - | - | - |
| $N$. setosa s. str. | USNM 34092 | Bermuda | - |  | - | - | - | - | - |
| $N$. setosa s. str. | USNM 181626 | Panama, Colon | $9.393{ }^{\circ} \mathrm{N} ; 79.838^{\circ} \mathrm{W}$ | STRI | - | - | - | - | - |
| $N$. setosa s. str. | USNM 181660 | Panama, Colon, | $9.395^{\circ} \mathrm{N} ; 79.849^{\circ} \mathrm{W}$ | STRI | - | - | - | - | - |
| $N$. setosa s. str. | USNM 174087 | Bahamas, San Salvador Island | $24.110^{\circ} \mathrm{N} ; 74.461^{\circ} \mathrm{W}$ | R. Zottoli, C. Long | - | - | - | - | - |
| $N$. setosa s. str. | USNM 55607 | P. Rico, Guanajibo | - | V. Vicente | - | - | - | - | - |
| $N$. setosa s. str. | FM 5895 | Bahamas, San Salvador Island | $24.109^{\circ} \mathrm{N} ; 74.462^{\circ} \mathrm{W}$ | G. Paulay | - | - | - | - | - |
| $N$. setosa s. str. | FM 5898 | Bahamas, San <br> Salvador Island | $24.004^{\circ} \mathrm{N} ; 74.476^{\circ} \mathrm{W}$ | G. Paulay | - | - | - | - | - |
| N. setosa s. str. | FM 5904 | Bahamas, San Salvador Island | $24.114^{\circ} \mathrm{N} ; 74.462^{\circ} \mathrm{W}$ | C. Martin | - | - | - | - | - |
| N. setosa s. str. | FM 5902 | Bahamas, San Salvador Island | $24.110^{\circ} \mathrm{N} ; 74.443^{\circ} \mathrm{W}$ | C. Martin | - | - | - | - | - |
| $N$. setosa s. str. | ColBIO IG 166 | - | - | E. F. Nonato | - | - | - | - | - |
| $N$. setosa s. str. | ColBIO 168 | - | - | E. F. Nonato | - | - | - | - | - |
| $N$. setosa s. str. | ColBIO NS20 | - | - | E. F. Nonato | - | - | - | - | - |
| $N$. cf. setosa | AM W. 22470 | Australia, Sydney | $33.873^{\circ} \mathrm{S} ; 151.175^{\circ} \mathrm{E}$ | L. Smith | - | - | - | - | - |
| N. lanai sp. n. | $\begin{aligned} & \text { ZUEC-POL } \\ & 3784 \end{aligned}$ | Brazil, São Paulo | $23.623^{\circ} \mathrm{S} ; 45.405^{\circ} \mathrm{W}$ | C. Amaral | - | - | - | - | - |
| N. lanai sp. n. | $\begin{aligned} & \text { ZUEC-POL } \\ & 3780 \end{aligned}$ | Brazil, São Paulo | $23.623^{\circ} \mathrm{S} ; 45.405^{\circ} \mathrm{W}$ | C. Amaral | - | - | - | - | - |
| N. lanai sp. n. | $\begin{aligned} & \text { ZUEC-POL } \\ & 3786 \end{aligned}$ | Brazil, São Paulo | $23.623^{\circ} \mathrm{S} ; 45.405^{\circ} \mathrm{W}$ | C. Amaral | - | - | - | - | - |
| N. lanai sp. n. | $\begin{aligned} & \text { ZUEC-POL } \\ & 16999 \end{aligned}$ | Brazil, São Paulo | $23.747^{\circ} \mathrm{S} ; 45.348^{\circ} \mathrm{W}$ | V. <br> Radashevsky | - | - | - | - | - |

TABLE 1. (Continued)

| Naineris | Voucher | Site | Coordinates | Collector | COI | 16SrRNA | 28SrRNA | BOLD Sample <br> ID |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| N. lanai sp. n. | ZUEC-POL | Brazil, São Paulo | $23.627^{\circ} \mathrm{S} ; 45.396^{\circ} \mathrm{W}$ | C. Amaral | - | - | - | - |
| ID |  |  |  |  |  |  |  |  |
| N. lanai sp. n. | ZUEC-POL |  |  |  |  |  |  |  |
|  | Brazil, São Paulo | 2771 | $23.748^{\circ} \mathrm{S} ; 45.409^{\circ} \mathrm{W}$ | C. Amaral | - | - | - |  |
| N. lanai sp. n. | MNRJP 1909 | Brazil, Sergipe | $11.427^{\circ} \mathrm{S} ; 37.335^{\circ} \mathrm{W}$ | J. Zanol | - | - |  |  |

TABLE 2. Primers and PCR protocols used in this study.

| Marker | Cycle <br> (PCR) |  |  |  |  | Primer name | Sequence ( $5^{\prime}-3^{\prime}$ ) | Direction | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| COI | 1x | 5x |  |  | 1x |  |  |  |  |
|  | $\begin{aligned} & 94^{\circ} \mathrm{C} \\ & -40 \mathrm{~s} \end{aligned}$ | $\begin{aligned} & 94^{\circ} \mathrm{C} \\ & -40 \mathrm{~s} \end{aligned}$ | $45^{\circ} \mathrm{C}-40 \mathrm{~s}$ | $72^{\circ} \mathrm{C}-120 \mathrm{~s}$ | $72^{\circ} \mathrm{C}-7 \mathrm{~min}$ | polyLCO | GAYTATWTTCAACAAATCATAAAGATATTGG | Forward | Carr et al. <br> (2011) |
|  |  | 40x |  |  |  |  |  |  |  |
|  |  | $\begin{aligned} & 94^{\circ} \mathrm{C} \\ & -40 \mathrm{~s} \end{aligned}$ | $48^{\circ} \mathrm{C}-40 \mathrm{~s}$ | $72^{\circ} \mathrm{C}-120 \mathrm{~s}$ |  | polyHCO | TAMACTTCWGGGTGACCAAARAATCA | Reverse | Carr et al. (2011) |
| 16S | 1x | 40x |  |  | 1x |  |  |  |  |
|  | $\begin{aligned} & 94^{\circ} \mathrm{C} \\ & -3 \mathrm{~min} \end{aligned}$ | $\begin{aligned} & 94^{\circ} \mathrm{C} \\ & -30 \mathrm{~s} \end{aligned}$ | $\begin{aligned} & 51^{\circ} \mathrm{C}-30 \mathrm{~s}(-0.2 \mathrm{C} \\ & \text { per cycle) } \end{aligned}$ | $72^{\circ} \mathrm{C}-70 \mathrm{~s}$ | $72^{\circ} \mathrm{C}-7 \mathrm{~min}$ | 16SarL | CGCCTGTTTATCAAAAACAT | Forward | Palumbi et al. <br> (1991) |
|  |  |  |  |  |  | 16SbrH | CCGGTCTGAACTCAGATCACGT | Reverse | Palumbi et al. (1991) |
| 16S | 1x | 40x |  |  | 1x |  |  |  |  |
|  | $\begin{aligned} & 94^{\circ} \mathrm{C} \\ & -3 \mathrm{~min} \end{aligned}$ | $\begin{aligned} & 94^{\circ} \mathrm{C} \\ & -30 \mathrm{~s} \end{aligned}$ | $52^{\circ} \mathrm{C}-30 \mathrm{~s}$ | $72^{\circ} \mathrm{C}-70 \mathrm{~s}$ | $72^{\circ} \mathrm{C}-7 \mathrm{~min}$ | AnnF | GCGGTATCCTGACCGTRCWAAGGTA | Forward | Sjölin et al. (2005) |
| 28S |  |  |  |  |  | AnnR | TCCTAAGCCAACATCGAGGTGCCAA | Reverse | Sjölin et al. (2005) |
|  | 1x | 40x |  |  | 1x |  |  |  |  |
|  | $\begin{aligned} & 94^{\circ} \mathrm{C} \\ & -40 \mathrm{~s} \end{aligned}$ | $\begin{aligned} & 94^{\circ} \mathrm{C} \\ & -40 \mathrm{~s} \end{aligned}$ | $54^{\circ} \mathrm{C}-40 \mathrm{~s}$ | $72^{\circ} \mathrm{C}-120 \mathrm{~s}$ | $72^{\circ} \mathrm{C}-7 \mathrm{~min}$ | 28v (28gg) | AAGGTAGCCAAATGCCTCGTCATC | Forward | Hillis \& Dixon (1991) |
|  |  |  |  |  |  | 28x (28ii) | GTGAATTCTGCTTCACAATGATAGGAAGAGCC | Reverse | Hillis \& Dixon (1991) |

Each of the three markers was aligned individually using MAFFT with the automatically chosen L-INSI-i option (Katoh et al. 2005). Three markers were concatenated in MegaX (Kumar et al. 2018). The phylogenetic analysis was done for individual markers and for the combined partitioned dataset (COI+16S+28S) using Maximum likelihood (ML) implemented in IQ-Tree 2.2.0. (Minh et al. 2020) with ultrafast bootstrap (Hoang et al. 2018). The substitution models were automatically selected (COI: 1st codon, TNe; 2nd codon, F81+F; 3rd codon, TPM2u+F; 16S: TIM2+F; 28S: TNe+I) (Kalyaanamoorthy et al. 2017), and the statistical support of the branches was estimated with 10000 bootstrap replicates. Mean uncorrected pairwise genetic distances (p-distances) for each of the main clades and between the main clades were calculated in MEGA11 (Tamura et al. 2021). Haplotype networks of each gene comprising specimens of the Naineris setosa complex were built using TCS (Clement et al. 2002) in PopART (Leigh \& Bryant 2015). The single-marker trees generated in ML analyses were used as the input trees in the species delimitation analyses with Bayesian implementation of the Poisson Tree Processes (bPTP) model (Zhang et al. 2013). All analyses were run on the bPTP web server (http://species.h-its.org/) with default settings and pruned outgroups. Final species delimitation hypotheses were formulated based on the combined evidence from morphology and three independent bPTP analyses of individual molecular markers.

## Results

## Phylogenetic reconstruction

We included 28 specimens of Naineris from the coast of Brazil, two specimens from the Mediterranean Sea, and five specimens from the Northeast Pacific. The independent COI, 16S, and 28 S alignments were represented by 654,512 , and 626 bases respectively. The concatenated dataset consisted of 1792 bases. The results from the ML analysis are shown in Figure 2.

The combined COI, 16S, and 28S analysis recovered three highly supported clades $(\mathrm{BP}=98-100)$. Phylogenies inferred from the individual markers showed different topologies (Figure 3). A well-supported clade of the Northeastern Pacific specimens was recovered in all analyses and was highly supported (BP $=99,94,69$; for COI, 16 S , and 28 S , respectively). In the 16 S analysis, only two clades were recovered: all Atlantic specimens formed one clade ( $\mathrm{BP}=100$ ), while the Pacific specimens formed the second clade $(\mathrm{BP}=94)$. In the 28 S phylogeny, part of the west Atlantic specimens and the specimens from the Mediterranean formed a well-supported clade ( $\mathrm{BP}=88$ ) sister to the Pacific clade $(\mathrm{BP}=69)$; however, several specimens from South and Southeastern Brazil were not recovered as a monophyletic group.

Species delimitation analysis resulted in a highly supported delimitation scheme of three putative species based on COI and two putative species based on 16 S . The delimitation results of the 28 S dataset were generally poorly supported, with the Pacific and one of the Atlantic clades delimited as two putative species and the second Atlantic clade split into six putative species (Fig. 2). Despite several conflicts in delimitation results from three molecular markers, the final species delimitation hypothesis also included information on the morphology and suggested the presence of three species in the dataset: Naineris setosa s. str. from the Western Atlantic and the Mediterranean, Naineris lanai sp. n. from the South and Southeastern coast of Brazil, and Naineris sp. from the Northeastern Pacific.

The TCS haplotype networks (Fig. 4) supported the presence of three species in the COI analysis, with $N$. setosa s. str. having the most frequent haplotype shared among different regions in the Atlantic, including the Mediterranean and the Brazilian coast. Naineris lanai sp. n. showed a high diversity of unique haplotypes found in one region - the South and Southeastern Brazilian coast. Two haplotypes of Naineris sp. were limited to the Northeastern Pacific locality. The analysis of 16 S recovered only two haplotypes in the whole dataset; one shared among all the Atlantic specimens, including both $N$. setosa s . str. and N. lanai sp. n., and the second haplotype reported in the Pacific. In the 28 S analysis, all $N$. setosa s . str. shared a single haplotype reported in the Eastern and the Western Atlantic. The unidentified species from the Northeastern Pacific and N. lanai sp. n. showed the presence of two haplotypes in 28 S .


FIGURE 2. Maximum Likelihood tree of the combined COI, 16S, and 28S dataset; numbers on nodes indicate ultrafast bootstrap support values; species delimitation results inferred by morphology and DNA-based methods are indicated right to the consensus tree; bPTP was applied separately to the individual gene trees. White bars indicate missing data.


FIGURE 3. Maximum Likelihood trees of single COI, 16S, and 28S markers; numbers on nodes indicate ultrafast bootstrap support values.


FIGURE 4. Haplotype networks of the Naineris setosa species complex based on COI (A), 16S (B), and 28S (C). Colors correspond to geographic areas. Circle sizes correspond to sample size. Numbers in parentheses show the number of substitutions between the haplotypes.

## Genetic distances

The genetic distances are summarized in Tables 3-6. The estimated genetic divergences between the three clades in COI ranged from 13.7 to $16 \%$, in 16 S from 0 to $6.1 \%$, and in 28 S from 1.1 to $1.8 \%$. The intraspecific genetic divergences in COI were $0.1-0.4 \%$ and in $28 \mathrm{~S} 0-1.1 \%$. There was no intraspecific divergence in 16 S .

TABLE 3. Percentage of uncorrected p-distance matrix within clades of the Naineris setosa species complex based on COI, 16S, and 28 SNA sequences.

| Naineris | COI | $\mathbf{1 6 S}$ | $\mathbf{2 8 S}$ |
| :--- | :--- | :--- | :--- |
| Naineris sp. | 0.001 | 0.000 | 0.011 |
| N. setosa s. str. | 0.004 | 0.000 | 0.000 |
| N. lanai sp. nov. | 0.004 | 0.000 | 0.001 |

TABLE 4. Percentage of uncorrected p-distance matrix between clades of the Naineris setosa species complex based on COI sequences.

| Naineris | Naineris sp. | N. setosa s. str. | N. lanai sp. nov. |
| :--- | :--- | :--- | :--- |
| Naineris sp. | - |  |  |
| N. setosa s. str. | 0.137 | - |  |
| N. lanai sp. nov. | 0.160 | 0.155 | - |

TABLE 5. Percentage of uncorrected p-distance matrix between clades of the Naineris setosa species complex based on 16 S sequences.

| Naineris | Naineris sp. | N. setosa s. str. | N. lanai sp. nov. |
| :--- | :--- | :--- | :--- |
| Naineris sp. | - |  |  |
| N. setosa s. str. | 0.061 | - |  |
| N. lanai sp. nov. | 0.061 | 0 | - |

TABLE 6. Percentage of uncorrected p-distance matrix between clades of the Naineris setosa species complex based on 28 S sequences.

| Naineris | Naineris sp. | N. setosa s. str. | N. lanai sp. nov. |
| :--- | :--- | :--- | :--- |
| Naineris sp. | - |  |  |
| N. setosa s. str. | 0.015 | - |  |
| N. lanai sp. nov. | 0.018 | 0.011 | - |

## Taxonomic account

Family ORBINIIDAE Hartman, 1942

## Genus Naineris Blainville, 1828

Type species. Naineris quadricuspida (Fabricius, 1780)

Diagnosis (amended from Blake 2020; Zhadan 2020). Prostomium rounded, truncated, or weakly bifid on anterior margin. Peristomium with one or two achaetous rings. Thorax with $12-30$ or more segments; branchiae first present from chaetigers $2-23$. Thoracic neuropodia with $0-2$ postchaetal lobes; no subpodial lobes. Thoracic neurochaetae include capillaries, or capillaries mixed with blunt-tipped uncini, sometimes hooded, or uncini and subuluncini. Abdominal chaetae include capillaries, sometimes furcate chaetae in notopodia, and capillaries and embedded or protruding aciculae in neuropodia. Dorsal sensory organs present in some species, being paired or multiple, rounded or as elongated semicircles. Dorsal cilia within branchiae bases present, either forming flat bands or crests.
(Figs 5-8)

Aricia setosa Verrill, 1900: 651-653.
Anthostoma latacapitata Treadwell, 1901: 203-204, figs 61-65.
Nainereis latacapitata: Treadwell 1939: 264, fig. 81.
Naineris setosa: Treadwell 1936: 55; Hartman 1957: 305, pl. 41, figs 1-6 (in part); Nonato 1981: 149-150, figs 177-179; SolisWeiss \& Fauchald 1989: 774-778, figs 2a-j; Blake \& Giangrande 2011: 20-26, figs 1-2; Khedhri et al. 2014: 83-88, fig. 2; Atzori et al. 2016: 1-6.

Material examined. Atlantic Ocean. Bermuda: YPM 001242.AN (lectotype), YPM 1303 (1 spm), YPM 1384 ( 1 spm ), USNM 34092 ( 1 spm ), AMNH 1972 ( 4 spms ), AMNH 2508A ( 2 spms ). Panama, Caribbean Sea: USNM 181626 ( 1 spm ), USNM 181660 ( 1 spm ). Puerto Rico: USNM 55607 ( 19 spms ). Bahamas. San Salvador Island, Oyster Pond: FM 5895 (1 spm), USNM 174087 ( 10 spms ), Pigeon Creek Mangrove: FM 5898 ( 1 spm ), Moon Rock Pond: FM 5904 (1 spm), Crescent Pond, FM 5902 (2 spms). Brazil. Pernambuco, Cabo de Santo Agostino: MNRJP 007649 (DNA voucher Ns21), MNRJP 007650 (DNA voucher Ns22), MNRJP 007651 (DNA voucher Ns23), MNRJP 007652 (DNA voucher Ns24), MNRJP 007653 (DNA voucher Ns25), MNRJP 007625 (5 spms). Rio de Janeiro, Cabo Frio: MNRJP 007639 (DNA voucher Ns11), MNRJP 007640 (DNA voucher Ns12), MNRJP 007641 (DNA voucher Ns13), MNRJP 007642 (DNA voucher Ns14), MNRJP 007643 (DNA voucher Ns15), MNRJP 007626 (13 spms), Ilha Grande: ColBIO IG 166 (1 spm), ColBIO IG 168 ( 2 spms ), ColBIO NS20 (7 spms). Santa Catarina, Santa Catarina Island: MNRJP 007629 (DNA voucher Ns1), MNRJP 007630 (DNA voucher Ns2), MNRJP 007631 (DNA voucher Ns3), MNRJP 007632 (DNA voucher Ns4), MNRJP 007633 (DNA voucher Ns5), MNRJP 007628 (4 spms). Bahia, Salvador: MNRJP 007644 (DNA voucher Ns16), MNRJP 007645 (DNA voucher Ns17), MNRJP 007646 (DNA voucher Ns18), MNRJP 007647 (DNA voucher Ns19), MNRJP 007648 (DNA voucher Ns20), MNRJP 007627 ( 8 spms). Italy. Taranto: ZMBN 157797 (DNA voucher Ns43). Livorno: ZMBN 157798 (DNA voucher Ns44). Australia. Rozelle Bay, Sydney: AM W. 22470 ( 4 spms ).

Type locality. Flatt's Inlet Beach, Bermuda. Shell-sand, low intertidal.
Diagnosis. Thoracic neurochaetae only crenulated capillaries, thoracic segments without ventral groove and notches, paired dorsal sensory organs present, low dorsal crest from abdominal segments, thoracic neuropodial lobe with upper papilla, as wide flanges with well-delimited boundaries.

Description (based on the lectotype). Lectotype (YPM IZ 001242.AN) incomplete, 149 chaetigers, 57 mm long, 0.7 mm wide at chaetiger 50. Color in alcohol light $\tan$ (live Brazilian specimens pale yellow with reddish branchiae, bearing long fluorescent cilia along branchial axis and between them). Thorax and abdomen marked by dorsal displacement of parapodia in abdomen (Figs 5A; 7A). Ventral surface smooth, ventral groove only present in abdominal segments (Fig. 8A, B), ventral notches absent.

Prostomium wider than long, more or less square and rounded in front and corners (Figs 5B; 7A); eyespots along lateral margins; nuchal organs discernible (Fig. 7A, B). Peristomium with two annular rings, only weakly marked; mouth opening situated ventrally and surrounded by striated lips; proboscis, not everted, presumably broad and lobed as in topotype specimens.

Branchiae first present from chaetiger 5-6, cirriform, tapering to sharp tip, with dense cilia, first branchiae long, reaching $1 / 3$ of abdominal branchiae (Fig. 5B). Conspicuous dorsal sensory organs from chaetiger 7, oval-shaped and paired, with dense cilia (Fig. 7C). Dorsal crest present from abdominal segments; straight, supported by thick base; low, approximately $1 / 4$ diameter of branchiae, ciliated.

Thorax comprises 20 chaetigers, moderately flattened (Fig. 5A). Parapodia biramous; interramal papilla absent. Notopodial lobes lanceolate. Neuropodial lobes represented by wide flanges ending above digitate papillae, with well-delimited boundaries (Figs 5A, C; 6A). Abdominal notopodial and neuropodial lobes cirriform (Figs 5D; 6B); abdominal notopodial lobes longer or equal to thoracic notopodial lobes, shorter than branchiae (Figs 5D; 6B).

Thoracic notochaetae with two bundles of about 20-30 crenulated capillaries at different levels (Figs 5C; 6A). Abdominal notochaetae arranged in two groups of $10-15$ crenulated capillaries and furcate chaetae (Figs 6B; 7F); furcate chaetae with unequal tines and tiny needles at different levels (Fig. 7F), placed in a lower position, difficult to observe; shaft bearing numerous crowded transversal rows of about $10-12$ small barbs (Fig. 7F). Thoracic neurochaetae with around seven rows of numerous capillaries (Figs 5C; 6A, E) separated into two groups by oblique gap (Fig. 5C). Abdominal neurochaetae with 5-10 capillaries and three acicular spines (Figs 6B; 7D). Pygidium missing.


FIGURE 5. Naineris setosa, lectotype (YPM IZ 001242.AN): (A) Lateral view; (B) Anterior end, dorsal view; (C) Thoracic parapodia; (D) Abdominal parapodia. bq-branchia, cc-crenulate capillaries, NeL-neuropodial lobe, NoL-notopodial lobe, pr-prostomium. Scale bars; (A-B): 0.7 mm ; (C-D): 0.35 mm .


FIGURE 6. Naineris setosa, lectotype (YPM IZ 001242.AN): (A) Thoracic parapodium (ch. 11); (B) Abdominal parapodium (ch. 91). bq—branchia (displaced), NeL—neuropodial lobe, NoL—notopodial lobe. Scale bars; (A-B): 1 mm .


FIGURE 7. Naineris setosa from Pernambuco, Brazil (MNRJP 007720) examined under SEM: (A) Anterior end, dorsal view; (B) Nuchal organ; (C) Dorsal organ; (D) Acicular spines; (F) Furcate chaetae. Naineris setosa from Bahamas under SEM (FM 5898): (E) Thoracic neurochaetae. ac-acicular spines, bq-branchia, cc-crenulated capillaries, do-dorsal organ, fc-furcate chaeta, no—nuchal organ, pr—prostomium. Scale bars; (A): $500 \mu \mathrm{~m}$; (B): $50 \mu \mathrm{~m}$; (C): $20 \mu \mathrm{~m}$; (D): $5 \mu \mathrm{~m}$; (E-F): $10 \mu \mathrm{~m}$.

Remarks. Hartman (1951) examined specimens from the Gulf of Mexico and synonymized Anthostoma lacapitata Treadwell, 1901 with Naineris setosa. Solis-Weiss \& Fauchald (1989) redescribed the syntype of $N$. setosa retaining its wide distribution in the tropical Northwest Atlantic, herein designated as the lectotype (ICZN 1999, Art. 74). Subsequently, Blake \& Giangrande (2011) reported the species as invasive in the Mediterranean Sea. The species was also reported from the Adriatic and the Tyrrhenian Seas expanding its distribution to Tunisia and Taranto (Arduini et al. 2022, Rebai et al. 2022). The records from the Pacific, such as those from Galapagos and Australia, require further revision. We examined the specimen from Galapagos studied by Blake, but it was in poor condition preventing accurate identification.

Pygidium was not observed in the lectotype, but in the examined Brazilian specimens it agreed with Solís-Weiss \& Fauchald's (1989) description, stating that N. setosa bears four anal cirri. Morphological variation of Brazilian populations of $N$. setosa s. str. is shown in Table 7.


FIGURE 8. Naineris setos $a$ from Taranto, Mediterranean Sea (ZMBN 157797): (A) Anterior end, ventral view; (B) Smooth, thoracic ventral surface. Scale bars; (A): 1 mm ; (B): $500 \mu \mathrm{~m}$.

Habitat. Shell-sand, intertidal.
Distribution. Intertidal and shallow subtidal (down to 1 m deep) zone of the Atlantic. Western Atlantic: Bermuda, Bahamas, Gulf of Mexico, Caribbean Sea, Panamá, Belize, Puerto Rico, and Brazilian coast. Presumably invasive in the Mediterranean Sea (Blake \& Giangrande 2011; Khedhri et al. 2014; Dean \& Blake 2015; Atzori et al. 2016).

Naineris lanai sp. n.
(Figs 9-11)

Material examined. Brazil. Paraná, Pinheiros Bay: MNRJP 007618 (holotype), MNRJP 007619 (2 paratypes), MNRJP 007624 (1 paratype), MNRJP 007622 (7 paratypes), MNRJP 007621 ( 10 paratypes), MNRJP 007634 (paratype, DNA voucher Ns06), MNRJP 007635 (paratype, DNA voucher Ns07), MNRJP 007636 (paratype, DNA voucher Ns08), MNRJP 007637 (paratype, DNA voucher Ns09), MNRJP 007638 (paratype, DNA voucher Ns10), MNRJP 007620 (6 paratypes), Paranaguá Bay: MNRJP 007623 (2 paratypes). Rio de Janeiro, Itacuruçá: MNRJP 007655 (paratype, DNA voucher Ns36), MNRJP 007656 (paratype, DNA voucher Ns38). São Paulo, Araçá: MNRJP 007654 (paratype, DNA voucher Ns28), Ilhabela, ZUEC-POL 16999 (2 spms), ZUEC-POL 2756 (1 spm), Caraguatatuba, ZUEC-POL 3780 ( 1 spm ), ZUEC-POL 3784 ( 1 spm ), ZUEC-POL 3786 ( 1 spm ), ZUECPOL 3771 ( 1 spm ). Sergipe. Praia do Saco: MNRJP 1909 (1 spm).
TABLE 7. Measurements and morphological variation in different populations of Naineris setosa s . str. and Naineris lanai sp. n. from its type locality (Means $+/$-standard deviation (minimum-maximum)). Th. ch.-thoracic chaetigers, Width—width at chaetiger 50, Bq. start-chaetiger where branchiae first appear, Bq. length-branchial length at chaetiger 50 , DO start-chaetiger where dorsal organs first appear, DC length-dorsal crest length at chaetiger 50, NoL—Notopodial lobe length at chaetiger 50, NeL—Neuropodial lobe length at chaetiger 50 .

| Species | Locality | Th. ch. | Width <br> $(\mathbf{m m})$ | Bq. start | Bq. length $(\mathbf{m m})$ | DO start | DC length (mm) | NoL length <br> $(\mathbf{m m})$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| N. setosa s. str. | Pernambuco | $22.2+/-1.03$ | $1.78+/-0.3$ | $6+/-0(6-6)$ | $1.0+/-0.16(0.7-$ | $8.7+/-0.82$ | $0.16+/-0.04(0.1-$ | $0.76+/-0.13$ |
|  |  | $(21-24)$ | $(1.4-2.2)$ |  | $1.2)$ | $0.29+/-0.07$ |  |  |
| $(\mathbf{m m})$ |  |  |  |  |  |  |  |  |



FIGURE 9. Naineris lanai sp. n., holotype (MNRJP 007618): (A) Complete specimen, dorsal view; (B) Anterior end, dorsal view; (C) Thoracic segments, ventrolateral view; (D) Abdominal segments, dorsal view; (E) Posterior end, dorsolateral view. ac-anal cirrus, bq-branchiae, dc-dorsal crest, do-dorsal organs, no-nuchal organ, pb-proboscis, vg-ventral groove, vn—ventral notches. Scale bars; (A): 5 mm ; (B-D): 2 mm ; (E): $500 \mu \mathrm{~m}$.

Type locality: Brazil: Paraná (Pinheiros Bay), $25.409^{\circ} \mathrm{S}, 48.251^{\circ} \mathrm{W}$, intertidal, 20 cm depth, anoxic mud, close to Spartina sp.

Etymology. Naineris lanai is named in honor of R.A.'s late Ph.D. supervisor, the Brazilian scientist Paulo da Cunha Lana, in recognition of his substantial contribution to marine science and for believing in people.

Diagnosis. Thoracic neurochaetae including crenulated capillaries only; thoracic segments with ventral groove and notches; paired dorsal sensory organs present; ciliary dorsal crest in abdominal segments folded and hypertrophied; thoracic neuropodial lobes flattened and folded with irregular boundaries, with upper papilla; notopodial lobes undivided or forked.

Description. Large species (Figs 9A; 11E), holotype complete (MNRJP 007618), 263 mm long, 5 mm wide, consisting of 431 chaetigers. Color in alcohol dark brown, with dark segmental spots; live specimens dark brown to reddish, with dark pigmented branchiae and dorsal organs, and long fluorescent cilia along axis; eyespots and nuchal organs yellowish, dorsal crest bearing long fluorescent cilia. Body separated into two distinct regions of approximately same width (Fig. 9A); thorax and abdomen, with parapodia displaced dorsally in abdomen. Ventral surface of body rough, with prominent mid-ventral groove along most of body (Figs 9C; 11C), well-marked in thoracic segments, represented by longitudinal notch on each segment, almost reaching consecutive ring (Fig. 9C).

Prostomium wide, nearly square, spatulate in front (Fig. 9B); eyespots present on lateral margins of prostomium, organized in two groups; nuchal organs present, as two lateral notches between prostomium and peristomium (Fig. 9B), more conspicuous and globular in live specimens (Fig. 11A). Peristomium as single achaetous ring; mouth opening located ventrally; proboscis wide, thick, bearing triangular lobes (Figs 9B; 11A, B), densely ciliated (Fig. 10A).

Branchiae from chaetigers 5-6, continuing along entire body (Fig. 9A, B); elongate from first pair, widest basally, tapering to narrow apex, with medial and lateral cilia. Thoracic branchiae $1 / 3$ of longest abdominal branchiae. Paired dorsal sensory organs from mid-thoracic chaetigers, anterior and medial to branchial bases, oval-shaped, clearly raised (Figs 9B; 10B). Dorsal crest present in abdominal segments; straight at first, best developed and more extended in mid-abdominal segments becoming folded, as long as or even exceeding basal width of branchiae (Figs 9A, D; 10D).

Thorax with 30 chaetigers (28-30 in paratypes), flattened. Parapodia biramous; interramal papilla absent. Thoracic notopodia with lanceolate lobes, more elongate in posterior chaetigers; forked or undivided. Neuropodial lobes wide, flat, with rough flanges with irregular borders, almost folded (Fig. 9C). Abdominal notopodial and neuropodial lobes similar in shape, triangular to lanceolate, with thin apex; notopodial lobes more prolonged than neuropodial lobes (Fig. 11D).

Thoracic notochaetae with two bundles of around 30-50 crenulated capillaries. Abdominal notochaetae with 15-20 crenulated capillaries in two bundles and furcate chaetae in lower position (Fig. 10C); each furcate chaeta with unequal tines, bearing tiny needles; shaft with small barbs. Thoracic neurochaetae with about $7-9$ rows of capillaries separated into two groups by oblique gap. Abdominal neurochaetae with 15-20 capillaries and 2-3 acicular spines.

Pygidium with terminal anus, bearing four anal cirri with forked or undivided tips, and rounded bases (Fig. 9E).


FIGURE 10. Naineris lanai sp. n. topotype specimen examined under SEM, A-B, MNRJP 007721; C-D, MNRJP 007722: (A) Cilia in the everted proboscis, ventral view; (B) Dorsal organ in thoracic segment; (C) Furcate chaetae in abdominal segment, lateral view; (D) Cilia in dorsal crest. cc-crenulated capillaries, ci-cilia, dc-dorsal crest, do-dorsal organ, fc-furcate chaetae, pb—proboscis, NoL—notopodial lobe. Scale bars; (A): 50 mm ; (B): $500 \mu \mathrm{~m}$; (C): $20 \mu \mathrm{~m}$; (D): $100 \mu \mathrm{~m}$.


## H



FIGURE 11. Habitat (H) and live (A-D, I) and preserved (E-G; paratype MRNJP 007623) specimens of Naineris lanai sp. n.: (A) Anterior end with a partially everted proboscis, dorsal view; (B) Anterior end with a completely everted proboscis, dorsal view; (C) Thoracic segments, ventral view; (D) Abdominal segments, lateral view; (E-G) Furcation in abdominal notopodial lobes; (H) Tidal flat from Ilha das Peças, Pinheiros Bay, the type locality; (I) Specimens being sorted in the laboratory. bqbranchia, do-dorsal organ, e-eyespots, no-nuchal organ, pb-proboscis, vn-ventral notch (Arrows point to furcate notopodial lobes). Scale bars; (A): 0.5 mm ; (B): 2 mm ; (C): 0.2 mm ; (D): 1 mm ; (E-G): 0.1 mm .

Remarks. Naineris lanai sp. n. is similar to $N$. setosa s. str. in having only crenulated capillaries in thoracic neuropodia, dorsal crest, and branchiae from chaetigers 5-6. It differs from N. setosa in the dorsal crest being long and folded, and having marked ventral groove in thoracic segments, flat and folded thoracic neuropodial lobes, and often divided abdominal notopodial lobes.

Considering the anoxic habitat of the species, the hypertrophied ciliary dorsal crest, and parapodial lobes, are probably an adaptation to this environment. Similar correlation was established for some species of Nereididae and Opheliidae living in anoxic conditions (Glasby et al. 2021). The shape of thoracic neuropodial lobes differs significantly in both species. In Naineris setosa s . str., neuropodial lobes are thick, elongated processes with rounded boundaries. In N. lanai sp. n., neuropodial lobes are enlarged, markedly flat, and folded with irregular boundaries. This may also be an adaptation to increase the surface area for oxygen uptake, such as in other polychaetes (Hartman 1951; Nonato et al. 1986; Radashevsky \& Lana 2009; Glasby et al. 2021).

Habitat. Large mature adults were sampled in black anoxic mud near Spartina sp. and mangroves from Pinheiros Bay, Paranaguá Estuarine Complex (Fig. 11E). Juveniles were sampled in mud from São Paulo and fouling communities from Rio de Janeiro.

Distribution. South and Southeastern Brazil, from Paraná to Rio de Janeiro, intertidal.

## Naineris sp.

(Fig. 12)

Material examined. USA, California. SERC 252007 (DNA voucher Ns46, + 1 spm ), SERC 252013 (DNA voucher Ns47, +2 spms), SERC 251805 ( 1 spm ), SERC 251985 ( $1 \mathrm{spm}, 1$ for SEM), SERC 252000 ( 2 spms ), LACM-AHF: DNA vouchers Ns33, Ns34, Ns35.


FIGURE 12. Naineris sp. examined under SEM (SERC 252000): (A) Anterior end, dorsal view; (B) Thoracic segments, dorsal view; (C) Cilia in dorsal organs; (D) Furcate chaetae in abdominal segment, lateral view; (E) Acicular spines in abdominal segments. bq-branchia, c-dorsal organ cilia, cb-ciliary band, cc-crenulated capillary chaeta, do-dorsal organ, fc-furcate chaeta, NoL—notopodial lobe, pe-peristomium, pr-prostomium. Scale bars; (A): $100 \mu \mathrm{~m}$; (B): $20 \mu \mathrm{~m}$; (C): $10 \mu \mathrm{~m}$; (D-E): $2 \mu \mathrm{~m}$.

Description. Small specimens, presumably juveniles (Fig. 12A). Color in alcohol light tan. Thorax and abdomen distinct. Prostomium anteriorly rounded (Fig. 12A); eyespots not discernible; nuchal organs present. Peristomium as 1-2 achaetous rings (Fig. 12A); mouth opening located ventrally; proboscis not everted.

Branchiae from chaetiger 6 (Fig. 12A), elongate from first pair. Paired dorsal sensory organs between branchial bases, oval-shaped (Fig. 12B, C). Dorsal crest as ciliary bands from first thoracic segment, straight (Fig. 12B).

Thorax dorsoventrally flattened. Parapodia biramous. Thoracic notopodial and neuropodial lobes lanceolate. Abdominal notopodial and neuropodial lobes triangular.

Thoracic notochaetae with crenulated capillaries only. Abdominal notochaetae including capillaries and furcate chaetae (Fig. 12D); furcate chaetae with unequal tynes and thin needles between; shaft with several transversal rows of 5-7 barbs. Thoracic neurochaetae with capillaries only. Abdominal neurochaetae with capillaries and 1-2 acute acicular spines (Fig. 12E).

Pygidium with terminal anus, bearing anal cirri, presumably four cirri.
Remarks. Based on molecular data, the examined specimens represent an undescribed species. All specimens were of small size, presumably juveniles. The species is unique in having dorsal ciliary bands from the first thoracic segments. However, the species is not formally named here due to a lack of detailed information on the adult definitive morphological characters.

## Discussion

This study is the first step toward understanding the genetic and morphological diversity of the Naineris setosa complex. The cosmopolitan distribution of N. setosa suggested by the earlier studies (Hartman 1951, 1957; SolisWeiss \& Fauchald 1989; Blake \& Giangrande 2011; Dean \& Blake 2015; Blake 2017) and its stagnated taxonomy over time can partly be explained by the fact that it was the only species of the genus bearing only capillary chaetae in thoracic neuropodia. Nevertheless, after careful examination, several morphological characters consistently differed in the worms from the studied Atlantic and Pacific populations, especially if examined in detail. For instance, the dorsal crest in $N$. setosa sensu lato is usually described in the literature as low. In the present study, we reported that the dorsal crest can vary in shape from straight to lobed, which can also change along the body. In addition, it can be hypertrophied, folded, and bear long cilia such as in Naineris lanai sp. n. collected from anoxic mud. At the same time, the species inhabiting regular marine aerated sediments show no such modifications (Blake \& Giangrande 2011).

Similarly, we observed that parapodial lobes could be undivided or forked. Forked notopodial lobes were described as a unique character in Naineris furcillata Blake, 2017. Nonetheless, this character was also reported in N. lanai sp. n., with up to two furcations in some notopodial lobes (Figure 11D-G). Similar structures were reported by Hartman (1957), who described abdominal subpodial lobes in N. setosa specimens from the Gulf of Mexico. Solis-Weiss \& Fauchald (1989) considered additional lobes a malformation. We suggest that subdivision of the parapodial lobes is characteristic for the specimens from muddy sediments with possibly reduced oxygen levels. According to Glasby et al. (2021), parapodial modifications may represent an adaptation to increasing surface area for oxygen uptake in anoxic environments.

Phylogenetic analysis utilizing several unlinked loci can aid in uncovering genetic diversity within complexes of species with similar morphology (Salicini et al. 2011; Liu et al. 2017; Qiu et al. 2020). In the present study, we attempted to delimit the species within the Naineris setosa complex by analyzing two mitochondrial and one nuclear marker. Phylogenetic analysis based on the COI marker and the combined dataset of three markers recovered three highly supported clades in the study material. Nevertheless, the individual 16 S and 28 S gene trees had different topologies. In the 16 S analysis, only two clades were recovered, one combining the specimens from the Atlantic and the other from the Pacific. The analysis based on 28 S recovered the North Pacific clade sister to the clade representing N. setosa s. str. specimens. In contrast, the South and Southeastern Brazil specimens did not form a clade. Similar results were obtained by the haplotype network analysis. Furthermore, the haplotype network of 28S showed the presence of two significantly different haplotypes in the Pacific population, with 9 substitutions present in a generally very conservative nuclear marker.

The interspecific COI distances between the species in the $N$. setosa complex ranged from 13 to $16 \%$, which was comparable with other studies on annelids using COI data for species discrimination (Taboada et al. 2015,

2017; Seixas et al. 2021). For 16S, the interspecific distances ranged from 0 to $6 \%$, which was considerably lower than in other species complexes of polychaetes (Drennan et al. 2019; Radashevsky et al. 2020). Still, they were comparable with those in Clitellata (Martinsson et al. 2020). All Atlantic specimens shared the same haplotype in 16 S , which could be explained by the low evolutionary rates in 16 S in the Naineris setosa complex and possible recent speciation events between the two Atlantic species. For 28 S , the distances ranged from $1.1 \%$ to $1.8 \%$, which was similar to other polychaete species complexes (Grosse et al. 2020; Radashevsky et al. 2020; Kolbasova \& Neretina 2021) and can be considered significant, given that 28 S evolves at low rates.

Mitonuclear discordance is expected in the animal kingdom (Rokas et al. 2003; Toews \& Brelsford 2012; Dávalos et al. 2012) and was reported for several groups of organisms (Degnan \& Rosenberg 2009; Debiasse et al. 2014; Hirano et al. 2019; Ortiz et al. 2021; Formaggioni et al. 2022), including annelids (Liu et al. 2018; Elgetany et al. 2020). Phylogenies reconstruction based on a single marker may conflict as no single gene can capture all nuances of the phylogenetic relationships of a taxon (Rokas et al. 2003). In our study, one of the mitochondrial markers, 16 S , provided less resolution than COI, indicating low evolutionary rates in the former in Naineris. The rates of evolution in different markers are poorly understood. Protein coding and non-coding genes show different evolution rates, which may also differ among codon positions within a coding gene (Liò \& Goldman 1998). A phylogenomic approach, combining many genes, may help resolving conflicting topologies (Gee 2003; Rokas et al. 2003; Bleidorn 2017).

Even though our findings support that some of the North Pacific populations of the former Naineris setosa represent a different species, the Galapagos population reported by Blake (2017) still needs to be studied with wellpreserved specimens and molecular data to discard the Amphi-American distribution. Furthermore, a specimen of Naineris (identified as $N$. australis collected off Sydney) bearing only capillaries in thoracic neuropodia, paired dorsal organs, and similar parapodial structures was found in the Australian Museum collection (W.22470, unpubl.). After examining numerous specimens of the Naineris setosa species complex, we discovered that, in some cases, broken capillary chaetae might strongly resemble uncini, especially in the old specimens (R.A. personal observations). This could probably lead to misidentification of Naineris species in scientific collections. Presumably, other similar species were misidentified as $N$. setosa worldwide, requiring further verification and subsequent revision.

We confirmed the Amphi-Atlantic distribution of Naineris setosa s. str. with two records reported from the Tyrrhenian and the Ionian Seas. This corroborated the earlier records of the species in the Mediterranean and corroborated its alien status (Blake \& Giangrande 2011; Khedhri et al. 2014; Atzori et al. 2016; Arduini et al. 2022; Rebai et al. 2022; Struck et al. 2023). The species was believed to have been introduced in the Mediterranean Sea due to aquaculture (Blake \& Giangrande 2011) and shipping as in the case of possible regional introductions within the Mediterranean (Khedri et al. 2014). Naineris setosa s. str. can be considered established in the Mediterranean since later records expanded its distribution to Egypt (Struck et al. 2023), Tunisia (Khedhri et al. 2014; Rebai et al. 2022), and the Adriatic (Blake \& Giangrande 2011), Ionian (Arduini et al. 2022), and Tyrrhenian (Atzori et al. 2016) seas. Naineris setosa was first reported in Brazil by Nonato (1981); since then, the number of Brazilian records increased (Amaral et al. 2006-2022). Even though most of our sampling in Brazil was conducted in bays near the main ports, suggesting shipping as a possible reason for the range expansion, it is hard to determine whether Brazil is part of $N$. setosa s. str. native distribution range or represents a newly colonized area. Further studies, with additional North and Tropical Atlantic samples, including the type locality, may help better understanding of the species' bioinvasive potentials, establish effective monitoring programs in affected areas, and avoid new invasions in susceptible regions.

Availability of data and material: All physical specimens used in this study are kept in the registered scientific collections. All sequences have been submitted to GenBank and BOLD (see Table 1 for accession numbers and BOLD process IDs). Alignments were uploaded to TREEBASE as nexus-formatted data (http://purl.org/phylo/ treebase/phylows/study/TB2:S30855).

## Acknowledgments

We extend our gratitude to Joana Zanol, Camila Messias (MNRJP), Cecília Amaral (ZUEC-POL), Mônica Petti (ColBIO), Gustav Paulay (FM), Stephen Keable (AM), for the loan of specimens. We thank Karen Osborn (USNM), Lily Berniker (AMNH), Eric Lasso-Wasem and Lourdes Rojas (YPM). We are grateful to Irene Heggstad (Electron
microscopic laboratory at the University of Bergen) for assistance with SEM. RA is deeply indebted to Leslie Harris (LACM) for lodging him during his visit to the LACM and for providing specimens. A special acknowledegement to Tony Phillips for providing materials during the Bodega-Bay BioBlitz (SERC) and to Erica Keppel and Gregory Ruiz for loaning materials from the Invasion lab (SERC) collection. Thanks to Joachim Langeneck for providing ethanol-fixed specimens from the Mediterranean. We also thank Louise Lindblom (UiB) for their help in molecular laboratory work. Christoph Bleidorn and an anonymous reviewer provided valuable comments that improved our manuscript. Finally, not surprisingly, RA would like to dedicate this paper to the memory of the most brilliant scientist Brazil ever produced, Paulo Lana, his late supervisor, whose passion for encouraging new generations was unsurpassed.

## Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - (Doctorate fellowship, process number: 88882.382993/2019-01) and CAPES-PRINT-UFPR (Ph. D. Exchange program, process number: $88887.696847 / 2022-00$ ). RA was also supported by the USNM with the Kenneth Jay Boss Fellowship in Invertebrate Zoology and by the LACM with the Students Collections Study Award. Sampling of Newport Dunes specimens was possible through agreement No.: P1675035 between the California Department of Fish and Wildlife (CDFW) and SERC.

## References

Amaral, A.C.Z., Nallin, S.A.H., Steneir, T.M., Forroni, T. de O. \& Gomes Filho, D. (2006) Catálogo das Espécies de Annelida Polychaeta do Brasil. Available from: http://www.ib.unicamp.br/museu_zoologia/files/lab_museu_zoologia/Catalogo_ Polychaeta_Amaral_et_al_2012.pdf (accessed 4 July 2023)
Arduini, D., Borghese, J., Gravina, M. F., Trani, R., Longo, C., Pierri, C. \& Giangrande, A. (2022) Biofouling Role in Mariculture Environment Restoration: An Example in the Mar Grande of Taranto (Mediterranean Sea). Frontiers in Marine Science, 9, 842616. https://doi.org/10.3389/fmars.2022.842616
Atzori, G., López, E., Addis, P., Sabatini, A. \& Cabiddu, S. (2016) First record of the alien polychaete Naineris setosa (Scolecida; Orbiniidae) in Tyrrhenian Sea (Western Mediterranean). Marine Biodiversity Records, 9 (1), 1-6. https://doi.org/10.1186/s41200-016-0017-6
Blainville, H. (1828) Dictionnaire des Sciences naturelles, dans lequel on traite méthodiquement des différens êtres de la nature, considérés soit en eux-mêmes, d'après l'état actuel de nos connoissances, soit relativement a l'utilité qu'en peuvent retirer la médicine, l'agriculture, le commerce et les arts. Suivi d'une biographie des plus célèbres naturalistes. FG Levrault, Strasbourg and Paris. [unknown pagination]
Blake, J.A. (2000) A new genus and species of polychaete worm (Family Orbiniidae) from methane seeps in the Gulf of Mexico, interrelationships of the genera of Orbiniidae. Cahiers de Biologie Marine, 41 (4), 435-449. https://doi.org/10.21411/CBM.A.84F1D61E
Blake, J.A. (2017) Polychaeta Orbiniidae from Antarctica, the Southern Ocean, the Abyssal Pacific Ocean, and off South America. Zootaxa, 4218 (1), 1-145. https://doi.org/10.11646/zootaxa.4218.1.1
Blake, J.A. (2020) New species and records of deep-water Orbiniidae (Annelida, Polychaeta) from the Eastern Pacific continental slope, abyssal Pacific Ocean, and the South China Sea. Zootaxa, 4730 (1), 1-61.
https://doi.org/10.11646/zootaxa.4730.1.1
Blake, J.A. (2021) New species and records of Orbiniidae (Annelida, Polychaeta) from continental shelf and slope depths of the Western North Atlantic Ocean. Zootaxa, 4930 (1), 1-123.
https://doi.org/10.11646/zootaxa.4930.1.1
Blake, J.A. \& Giangrande, A. (2011) Naineris setosa (Verrill) (Polychaeta, Orbiniidae), an American subtropical-tropical polychaete collected from an aquaculture facility in Brindisi (Adriatic Sea, Italy): A possible alien species. Italian Journal of Zoology, 78 (Supplement), 20-26. https://doi.org/10.1080/11250003.2011.577982
Bleidorn, C. (2005) Phylogenetic relationships and evolution of Orbiniidae (Annelida, Polychaeta) based on molecular data. Zoological Journal of the Linnean Society, 144 (1), 59-73. https://doi.org/10.1111/j.1096-3642.2005.00160.x
Bleidorn, C., Hill, N., Erséus, C. \& Tiedemann, R. (2009) On the role of character loss in orbiniid phylogeny (Annelida): Molecules vs. morphology. Molecular Phylogenetics and Evolution, 52 (1), 57-69.

Bleidorn, C. (2017) Phylogenomics: an introduction. Springer, Cham, 217 pp. https://doi.org/10.1007/978-3-319-54064-1
Carr, C.M., Hardy, S.M., Brown, T.M., Macdonald, T.A. \& Hebert, P.D.N. (2011) A tri-oceanic perspective: DNA Barcoding reveals geographic structure and cryptic diversity in Canadian polychaetes. PLoS ONE, 6 (7), e22232. https://doi.org/10.1371/journal.pone. 0022232
Çinar, M.E. (2013) Alien polychaete species worldwide: current status and their impacts. Journal of the Marine Biological Association of the United Kingdom, 93 (5), 1257-1278. https://doi.org/10.1017/S0025315412001646
Clement, M., Snell, Q., Walker, P., Posada, D. \& Crandall, K. (2002) TCS: estimating gene genealogies. In: Proceedings $16^{\text {th }}$ International Parallel and Distributed Processing Symposium, Fort Lauderdale, Florida, 15-19 April 2002, 0184.
Dávalos, L.M., Cirranello, A.L., Geisler, J.H. \& Simmons, N.B. (2012) Understanding phylogenetic incongruence: lessons from phyllostomid bats. Biological Reviews, 87 (4), 991-1024. https://doi.org/10.1111/j.1469-185X.2012.00240.x
Day, J.H. (1961) The polychaet fauna of South Africa. Part 6. Sedentary species dredged off Cape coasts with a few new records from the shore. Zoological Journal of the Linnean Society, 44 (299), 463-560. https://doi.org/10.1111/j.1096-3642.1961.tb01623.x
Day, J.H. (1963) The polychaete fauna of South Africa. Part 8: New species and records from grab samples and dredgings. Bulletin of the British Museum (Natural History), Series Zoology, 10 (7), 381-445. https://doi.org/10.5962/bhl.part. 20530
Day, J.H. (1965) Israel South Red Sea Expedition, 1962, Reports no. 7. Some Polychaeta from the Israel South Red Sea Expedition, 1962. Bulletin of the Sea Fisheries Research Station, Haifa, 38, 15-27.
Day, J.H. (1977) A review of the Australian and New Zealand Orbiniidae (Annelida: Polychaeta). In: Essays on Polychaetous Annelids in Memory of Dr. Olga Hartman. Allan Hancock Found, Los Angeles, California, pp. 217-246.
Dean, H.K. \& Blake, J.A. (2015) The Orbiniidae (Annelida: Polychaeta) of Pacific Costa Rica. Zootaxa, 3956 (2), 183-198. https://doi.org/10.11646/zootaxa.3956.2.2
DeBiasse, M.B., Nelson, B.J. \& Hellberg, M.E. (2014) Evaluating summary statistics used to test for incomplete lineage sorting: mito-nuclear discordance in the reef sponge Callyspongia vaginalis. Molecular Ecology, 23 (1), 225-238. https://doi.org/10.1111/mec. 12584
Degnan, J.H. \& Rosenberg, N.A. (2009) Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends in ecology \& evolution, 24 (6), 332-340. https://doi.org/10.1016/j.tree.2009.01.009
Drennan, R., Wiklund, H., Rouse, G.W., Georgieva, M.N., Wu, X., Kobayashi, G., Yoshino, K. \& Glover, A.G. (2019) Taxonomy and phylogeny of mud owls (Annelida: Sternaspidae), including a new synonymy and new records from the Southern Ocean, North East Atlantic Ocean and Pacific Ocean: challenges in morphological delimitation. Marine Biodiversity, 49, 2659-2697. https://doi.org/10.1007/s12526-019-00998-0
Elgetany, A.H., van Rensburg, H., Hektoen, M., Matthee, C., Budaeva, N., Simon, C.A. \& Struck, T.H. (2020) Species delineation in the speciation grey zone-The case of Diopatra (Annelida, Onuphidae). Zoologica Scripta, 49 (4), 516-534. https://doi.org/10.1111/zsc. 12421
Fabricius, O. (1780) Fauna Groenlandica: systematice sistens animalia Groenlandiae occidentalis hactenus indagata, quoad nomen specificum, triviale, vernaculumque: synonyma auctorum plurium, descriptionem, locum, victum, generationem, mores, usum, capturamque singuli, prout detegendi occasio fuit: maximaque parte secundum proprias observationes. Impensis Ioannis Gottlob Rothe, Hafniae, XIV + 450 pp. https://doi.org/10.5962/bhl.title. 13489
Formaggioni, A., Plazzi, F. \& Passamonti, M. (2022) Mito-nuclear coevolution and phylogenetic artifacts: the case of bivalve mollusks. Scientific Reports, 12 (1), 11040. https://doi.org/10.1038/s41598-022-15076-y
Gee, H. (2003) Ending incongruence. Nature, 425 (6960), 782-782. https://doi.org/10.1038/425782a
Glasby, C.J., Erséus, C. \& Martin, P. (2021) Annelids in extreme aquatic environments: Diversity, adaptations and evolution. Diversity, 13 (2), 1-23. https://doi.org/10.3390/d13020098
Grosse, M., Bakken, T., Nygren, A., Kongsrud, J.A. \& Capa, M. (2020) Species delimitation analyses of NE Atlantic Chaetozone (Annelida, Cirratulidae) reveals hidden diversity among a common and abundant marine annelid. Molecular phylogenetics and evolution, 149, 106852. https://doi.org/10.1016/j.ympev.2020.106852
Grube, A.E. (1855) Beschreibungen neuer oder wenig bekannter Anneliden. Archiv fur Naturgeschichte, Berlin, 21, 81-128. https://doi.org/10.5962/bhl.part. 13989
Hartman, O. (1942) A review of the types of polychaetous annelids at the Peabody Museum of Natural History, Yale University. Bulletin of the Bingham Oceanographic Collections, 8, 1-98.

Hartman, O. (1951) The littoral marine annelids of the Gulf of Mexico. Publications of the Institute of Marine Science, University of Texas, 2, 7-124.
Hartman, O. (1957) Orbiniidae, Apistobranchidae, Paraonidae and Logosomidae. Allan Hancock Pacific Expeditions, 15 (3), 211-393, pls. 20-44.
Hillis, D.M. \& Dixon, M.T. (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. The Quarterly review of biology, 66 (4), 411-453.
https://doi.org/10.1086/417338
Hirano, T., Saito, T., Tsunamoto, Y., Koseki, J., Ye, B., Do, V.T, Miura, O., Suyama, Y. \& Chiba, S. (2019) Enigmatic incongruence between mtDNA and nDNA revealed by multi-locus phylogenomic analyses in freshwater snails. Scientific Reports, 9 (1), 1-13.
https://doi.org/10.1038/s41598-019-42682-0
Hoang, D.T., Chernomor, O., Von Haeseler, A., Minh, B.Q. \& Vinh, L.S. (2018) UFBoot2: improving the ultrafast bootstrap approximation. Molecular biology and evolution, 35 (2), 518-522.
https://doi.org/10.1093/molbev/msx281
Hutchings, P. \& Kupriyanova, E. (2018) Cosmopolitan polychaetes-Fact or fiction? Personal and historical perspectives. Invertebrate systematics, 32 (1), 1-9. https://doi.org/10.1071/IS17035
Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K., Von Haeseler, A. \& Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature methods, 14 (6), 587-589. https://doi.org/10.1038/nmeth. 4285
Katoh, K., Kuma, K.I., Toh, H. \& Miyata, T. (2005) MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Research, 33, 511-518. https://doi.org/10.1093/nar/gki198
Khedhri, I., Lavesque, N., Bonifácio, P., Djabou, H. \& Afli, A. (2014) First record of Naineris setosa (Verrill, 1900) (Annelida: Polychaeta: Orbiniidae) in the Western Mediterranean Sea. BioInvasions Records, 3 (2), 83-88. https://doi.org/10.3391/bir.2014.3.2.05
Kinberg, J.G.H. (1867) Annulata nova. Öfversight af Kungliga Vetenskaps-Adakemiens Förhandlingar, Stockholm, 22, 239258.

Kolbasova, G. \& Neretina, T. (2021) A new species of Pelagobia (Lopadorrhynchidae, Annelida), with some notes on literature records of Pelagobia longicirrata Greeff, 1879. Zootaxa, 5023 (1), 77-92. https://doi.org/10.11646/zootaxa.5023.1.4
Kumar, S., Stecher, G., Li, M., Knyaz, C. \& Tamura, K. (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution, 35 (6), 1547. https://doi.org/10.1093/molbev/msy096
Kvist, S. (2016) Does a global DNA barcoding gap exist in Annelida? Mitochondrial DNA Part A, 27 (3), 2241-2252. https://doi.org/10.3109/19401736.2014.984166
Leigh, J.W. \& Bryant, D. (2015) POPART: full-feature software for haplotype network construction. Methods in ecology and evolution, 6 (9), 1110-1116. https://doi.org/10.1111/2041-210X. 12410
Liò, P. \& Goldman, N. (1998) Models of molecular evolution and phylogeny. Genome research, 8 (12), 1233-1244. https://doi.org/10.1101/gr.8.12.1233
Liu, Y., Fend, S. V., Martinsson, S., Luo, X., Ohtaka, A. \& Erséus, C. (2017) Multi-locus phylogenetic analysis of the genus Limnodrilus (Annelida: Clitellata: Naididae). Molecular Phylogenetics and Evolution, 112, 244-257. https://doi.org/10.1016/j.ympev.2017.04.019
Liu, P., Xu, L., Xu, S. L., Martínez, A., Chen, H., Cheng, D., Dumont, H., Han, B-P. \& Fontaneto, D. (2018) Species and hybrids in the genus Diaphanosoma Fischer, 1850 (Crustacea: Branchiopoda: Cladocera). Molecular phylogenetics and evolution, 118, 369-378.
https://doi.org/10.1016/j.ympev.2017.10.016
Martinsson, S., Klinth, M. \& Erséus, C. (2020) Testing species hypotheses for Fridericia magna, an enchytraeid worm (Annelida: Clitellata) with great mitochondrial variation. BMC Evolutionary Biology, 20 (1), 1-12. https://doi.org/10.1186/s12862-020-01678-5
Meyer, A., Bleidorn, C., Rouse, G.W. \& Hausen, H. (2008) Morphological and molecular data suggest a cosmopolitan distribution of the polychaete Proscoloplos cygnochaetus Day, 1954 (Annelida, Orbiniidae). Marine Biology, 153, 879-889. https://doi.org/10.1007/s00227-007-0860-4
Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., Von Haeseler, A. \& Lanfear, R. (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular biology and evolution, 37 (5), 1530-1534. https://doi.org/10.1093/molbev/msaa015
Müller, F. (1858) Einiges über die Annelidenfauna der Insel Santa Catharina an der brasilianischen Küste. Archiv für Naturgeschichte, 24 (1), 211-220.
Nonato, E.F. (1981) Contribuição ao conhecimento dos anelídeos poliquetas bentônicos da Plataforma Continental Brasileira,
entre Cabo Frio e o Arroio Chuí. Livre Docência Thesis, Universidade de São Paulo, São Paulo, 246 pp.
Nonato, E.F., Bolívar, G.A. \& Lana, P. (1986) Laonice branchiata, a new species of Spionidae (Annelida; Polychaeta) from the southeastern Brazilian coast. Revista Nerítica, 1 (3), 22-25.
https://doi.org/10.5380/rn.v1i3.41193
Ortiz, D., Pekár, S., Bilat, J. \& Alvarez, N. (2021) Poor performance of DNA barcoding and the impact of RAD loci filtering on the species delimitation of an Iberian ant-eating spider. Molecular phylogenetics and evolution, 154, 106997. https://doi.org/10.1016/j.ympev.2020.106997
Palumbi, S.R., Martin, A., Romano, S., McMillan, W.O., Stice, L. \& Grabowski, G. (1991) The simple fool's guide to PCR, Special Publication. Department of Zoology and Kewalo Marine Laboratory, University of Hawaii, Honolulu, 28 pp.
Qiu, P. L., Liu, S. Y., Bradshaw, M., Rooney-Latham, S., Takamatsu, S., Bulgakov, T. S., Tang, S.R., Feng, J., Aroge, T., Li, Y., Wang, L.L. \& Braun, U. (2020) Multi-locus phylogeny and taxonomy of an unresolved, heterogeneous species complex within the genus Golovinomyces (Ascomycota, Erysiphales), including G. ambrosiae, G. circumfusus and G. spadiceus. BMC microbiology, 20, 1-16. https://doi.org/10.1186/s12866-020-01731-9
Radashevsky, V.I. \& Lana, P. (2009) Laonice (Annelida: Spionidae) from South and Central America. Zoosymposia, 2, 265295. https://doi.org/10.11646/zoosymposia.2.1.19
Radashevsky, V.I., Malyar, V.V., Pankova, V.V., Gambi, M.C., Giangrande, A., Keppel, E., Nygren, A., Al-Kandari, M. \& Carlton, J.T. (2020) Disentangling invasions in the sea: molecular analysis of a global polychaete species complex (Annelida: Spionidae: Pseudopolydora paucibranchiata). Biological Invasions, 22 (12), 3621-3644. https://doi.org/10.1007/s10530-020-02346-x
Rebai, N., Mosbahi, N., Dauvin, J.C. \& Neifar, L. (2022) Ecological Risk Assessment of Heavy Metals and Environmental Quality of Tunisian Harbours. Journal of Marine Science and Engineering, 10 (11), 1625. https://doi.org/10.3390/jmse10111625
Rioja, E. (1960) Estudios anelidologicos. XXIV. Adiciones a la fauna de Anelidos Poliquetos de las costas orientales de México. Anales Del Instituto de Biología, México, 31, 289-316.
Rokas, A., Williams, B.L., King, N. \& Carroll, S.B. (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature, 425 (6960), 798-804. https://doi.org/10.1038/nature02053
Salicini, I., Ibáñez, C. \& Juste, J. (2011) Multilocus phylogeny and species delimitation within the Natterer's bat species complex in the Western Palearctic. Molecular Phylogenetics and Evolution, 61 (3), 888-898. https://doi.org/10.1016/j.ympev.2011.08.010
Seixas, V.C., Steiner, T.M., Solé-Cava, A.M., Amaral, A.C.Z. \& Paiva, P.C. (2021) Hidden diversity within the Diopatra cuprea complex (Annelida: Onuphidae): Morphological and genetics analyses reveal four new species in the south-west Atlantic. Zoological Journal of The Linnean Society, 191 (3), 637-671. https://doi.org/10.1093/zoolinnean/zlaa032
Solis-Weiss, V. \& Fauchald, K. (1989) Orbiniidae (Annelida: Polychaeta) from mangrove root-mats in Belize, with a revision of the protoariciin genera. Proceedings of the Biological Society of Washington, 102 (3), 772-792.
Struck, T. H., Golombek, A., Hoesel, C., Dimitrov, D. \& Elgetany, A.H. (2023) Mitochondrial Genome Evolution in AnnelidaA Systematic Study on Conservative and Variable Gene Orders and the Factors Influencing its Evolution. Systematic Biology, syad023. https://doi.org/10.1093/sysbio/syad023
Taboada, S., Riesgo, A., Bas, M., Arnedo, M. A., Cristobo, J., Rouse, G.W. \& Avila, C. (2015) Bone-eating worms spread: insights into shallow-water Osedax (Annelida, Siboglinidae) from Antarctic, Subantarctic, and Mediterranean waters. PLoS One, 10 (11), e0140341. https://doi.org/10.1371/journal.pone. 0140341
Taboada, S., Leiva, C., Bas, M., Schult, N. \& McHugh, D. (2017) Cryptic species and colonization processes in Ophryotrocha (Annelida, Dorvilleidae) inhabiting vertebrate remains in the shallow-water Mediterranean. Zoologica Scripta, 46 (5), 611-624.
https://doi.org/10.1111/zsc. 12239
Tamura, K., Stecher, G. \& Kumar, S. (2021) MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38 (7), 3022-3027. https://doi.org/10.1093/molbev/msab120
Toews, D.P. \& Brelsford, A. (2012) The biogeography of mitochondrial and nuclear discordance in animals. Molecular ecology, 21 (16), 3907-3930. https://doi.org/10.1111/j.1365-294X.2012.05664.x
Treadwell, A.L. (1901) The polychaetous annelids of Porto Rico. Bulletin of the United States National Fish Commission, 20 (2), 183-210.

Treadwell, A.L. (1936) Polychaetous annelids from the vicinity of Nonsuch Island, Bermuda. Zoologica, 21 (1), 49-68. https://doi.org/10.5962/p. 190351
Treadwell, A.L. (1939) Polychaetous annelids from Porto Rico and vicinity. In: Scientific Survey of Porto Rico and the Virgin

Islands. Vol. 16. New York Academy of Sciences, New York, New York, pp. 151-319.
Verril, A.E. (1900) Additions to the Turbellaria, Nemertina and Annelida of the Bermudas, with revisions of some New England genera and species. Transactions of the Connecticut Academy of Arts and Sciences, 10, 595-671. https://doi.org/10.5962/bhl.part. 7035
Zhadan, A., Stupnikova, A. \& Neretina, T. (2015) Orbiniidae (Annelida: Errantia) from Lizard Island, Great Barrier Reef, Australia with notes on orbiniid phylogeny. Zootaxa, 4019 (1), 773-801. https://doi.org/10.11646/zootaxa.4019.1.27
Zhadan, A. (2020) Review of Orbiniidae (Annelida, Sedentaria) from Australia. Zootaxa, 4860 (4), 451-502. https://doi.org/10.11646/zootaxa.4860.4.1
Zhang, J., Kapli, P., Pavlidis, P. \& Stamatakis, A. (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29 (22), 2869-2876.
https://doi.org/10.1093/bioinformatics/btt499

