
Parallel Computing 118 (2023) 103051

A
0

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Targeting performance and user-friendliness: GPU-accelerated finite element
computation with automated code generation in FEniCS
James D. Trotter a,∗, Johannes Langguth a,b, Xing Cai a,c

a Simula Research Laboratory, Kristian Augusts gate 23, Oslo, 0164, Norway
b Department of Informatics, University of Bergen, P.O. Box 7803, Bergen, 5020, Norway
c Department of Informatics, University of Oslo, P.O. Box 1080 Blindern, Oslo, 0316, Norway

A R T I C L E I N F O

Keywords:
Finite element method
Automated code generation
GPU computing
CUDA
Unstructured mesh

A B S T R A C T

This paper studies the use of automated code generation to provide user-friendly GPU acceleration for solving
partial differential equations (PDEs) with finite element methods. By extending the FEniCS framework and its
automated compiler, we have achieved that a high-level description of finite element computations written
in the Unified Form Language is auto-translated to parallelised CUDA C++ code. The auto-generated code
provides GPU offloading for the finite element assembly of linear equation systems which are then solved by
a GPU-supported linear algebra backend.

Specifically, we explore several auto-generated optimisations of the resulting CUDA C++ code. Numerical
experiments show that GPU-based linear system assembly for a typical PDE with first-order elements can
benefit from using a lookup table to avoid repeatedly carrying out numerous binary searches, and that further
performance gains can be obtained by assembling a sparse matrix row by row. More importantly, the extended
FEniCS compiler is able to seamlessly couple the assembly and solution phases for GPU acceleration, so that
all unnecessary CPU–GPU data transfers are eliminated. Detailed experiments are used to quantify the negative
impact of these data transfers, which can entirely destroy the potential of GPU acceleration if the assembly and
solution phases are offloaded to GPU separately. Finally, a complete, auto-generated GPU-based PDE solver
for a nonlinear solid mechanics application is used to demonstrate a substantial speedup over running on
dual-socket multi-core CPUs, including GPU acceleration of algebraic multigrid as the preconditioner.
1. Introduction

Numerically solving partial differential equations (PDEs) is one of
the most important tasks in scientific computing, and the finite element
method (FEM) is among the most powerful tools for this task. Finite
element codes normally require hand-written computational kernels,
particularly for assembling systems of linear equations as the result of
finite element discretisation. However, achieving good performance for
these kernels requires considerable effort through manual optimisation
and careful tuning of the code. Moreover, such efforts may have to be
repeated when the PDE or details concerning the discretisation change,
or simply if the code is to be run on different hardware. As a result,
writing performant FEM codes is already challenging for experts in
high-performance computing, and it may be out of reach for domain
scientists or others lacking specialist knowledge or time to carry out
low-level performance tuning.

A more friendly alternative is to offer a high-level, domain-specific
language for describing finite element-based computations, together

∗ Corresponding author.
E-mail addresses: james@simula.no (J.D. Trotter), langguth@simula.no (J. Langguth), xingca@simula.no (X. Cai).

with a specialised compiler that automatically translates such descrip-
tions to low-level, optimised code for problem-specific kernels. This
strategy is used by some open-source frameworks such as FEniCS [1]
and Firedrake [2], thus providing high-performance, parallel PDE
solvers in a user-friendly manner for real-world applications running
on clusters of multi-core CPUs.

While developing finite element codes for efficient use of multi-core
CPUs is difficult, porting them to accelerators such as GPUs can be
even harder. Nevertheless, the performance and energy efficiency of
modern accelerators are very appealing for such codes, which has led to
increasing support for GPUs in projects such as libCEED [3], PETSc [4],
MFEM [5] and deal.II [6]. Considerable effort has also been devoted
to GPU-accelerated linear solvers [7–11]. Moreover, matrix-free and
high-order finite element methods, particularly in the case of tensor-
product elements, are advocated due to increased arithmetic intensity
and reduced memory footprint [3], which enables more efficient use of
vailable online 6 October 2023
167-8191/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.parco.2023.103051
Received 27 December 2022; Received in revised form 13 September 2023; Accept
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ed 21 September 2023

https://www.elsevier.com/locate/parco
http://www.elsevier.com/locate/parco
mailto:james@simula.no
mailto:langguth@simula.no
mailto:xingca@simula.no
https://doi.org/10.1016/j.parco.2023.103051
https://doi.org/10.1016/j.parco.2023.103051
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2023.103051&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Parallel Computing 118 (2023) 103051J.D. Trotter et al.

a
w
t
o

b
a
d
i
t
b
T
i
c
o
d
S

2

t
a
s
i
a
s

P
S

m
w
s
d
(
a
f
m
b
i
v

v
r
t
i
t
s
p
e
t
t

2

v

GPU hardware. For example, MFEM [5] and deal.II [6] offload matrix-
free methods (see [5, Section 6.3] and [6, Section 3.7]) to GPUs, where
linear systems are not assembled explicitly, but finite element integrals
are instead evaluated and used on-the-fly as they are needed.

In this paper, we focus on the frequently encountered case of low-
order tetrahedral elements, for which it is still common practice to
explicitly assemble a global linear system. Currently, this must be done
on the CPU in most finite element libraries. The assembled matrix and
right-hand side vector must be subsequently transferred to the GPU for
offloading the linear system solver. This paper describes how we have
extended FEniCS with automated generation of GPU code for finite
element assembly. In addition, coupled with a GPU-supported linear
algebra backend, we use FEniCS to deliver finite element solvers with
fully GPU-accelerated linear system assembly and solution. Moreover,
we present a quantitative study of the impact of various CUDA opti-
misations applicable to auto-generated finite element assembly code.
Our work is fully compatible with all the other features of FEniCS,
which means that nonlinearity, vector PDEs, unstructured meshes,
complicated boundary conditions, and so on, pose no hindrance to GPU
acceleration. The scope of the current paper is offloading to a single
GPU, which is an important step towards the multi-GPU acceleration
of finite element methods with automated code generation.

This paper presents a seamless GPU offloading of both the assembly
nd solution phases in a high-level, user-friendly finite element frame-
ork supported by automated code generation. This approach avoids

he unnecessary CPU–GPU data transfers, which can severely harm the
verall performance. Our main contributions are as follows:

• automatic generation of CUDA kernels for offloading per-element
computations to NVIDIA GPUs, together with a practical imple-
mentation in FEniCS;

• a comparison of different offloading strategies for the entire finite
element assembly procedure, along with additional performance
optimisations;

• detailed microbenchmarks and profiling, which provide insight
into application- and kernel-level performance bottlenecks, in-
cluding a careful review of data transfers between CPU and
GPU;

• a rigorous performance comparison with state-of-the-art, auto-
mated finite element solvers on multicore CPUs;

• demonstration of a complete, nonlinear PDE solver using auto-
mated code generation and GPU-offloading on NVIDIA A100.

The rest of the paper is organised as follows. First, we provide some
ackground on finite element assembly, automated code generation
nd the FEniCS PDE solver framework in Section 2. In Section 3, we
escribe our GPU-offloaded finite element assembly algorithm, includ-
ng how we extended the built-in automated code generation features of
he FEniCS form compiler. We also discuss some optimisations that can
e applied to improve the performance of the fully offloaded assembly.
hen, in Section 4, we present numerical experiments and results to

llustrate key parts of the development and optimisation process, in-
luding the effectiveness of various optimisations and the performance
f the final GPU-based assembly algorithm. This is followed by a
iscussion of related work in Section 5 and concluding remarks in
ection 6.

. Finite element assembly and automated code generation

Roughly speaking, finite element solvers may be broken down into
wo major computational phases, where the first phase consists of
ssembling systems of linear equations and the second phase concerns
olving them. Since solving a linear system is a generic procedure used
n many types of numerical computations, its GPU acceleration is

well studied subject [9]. On the other hand, the phase of linear
2

ystem assembly, which discretises a PDE following the finite element
principle, is a less studied area with respect to automated code gen-
eration and, particularly, GPU acceleration. In this section, we give a
brief description of the assembly phase. The purpose is to show the
main computational steps involved and explain how automated code
generation can be applied.

2.1. Finite element assembly

The finite element assembly procedure begins with a decomposition
of the problem domain into a mesh of non-overlapping cells, called
elements. There are many choices of the element type, such as triangles
in 2D and tetrahedra in 3D. In any case, the numerical solution of the
PDE under consideration is sought in each element as a combination of
prescribed shape functions, which are typically piecewise polynomials.
The goal of the assembly procedure is to create a global linear system,
𝐴𝑥 = 𝑏, where the solution vector 𝑥 will contain the weights, often
referred to as degrees of freedom, for combining the shape functions into
the overall numerical solution.

The global matrix 𝐴 and right-hand side vector 𝑏 are obtained
by adding together contributions from individual elements. Since the
shape functions can span across neighbouring elements, each non-zero
value in 𝐴 or 𝑏 is normally a sum of values from several elements. Fur-
thermore, the matrix 𝐴 is always sparse, because each shape function
is only non-zero in a small number of elements. In addition, the non-
zero values will be irregularly placed in 𝐴 when using an unstructured
computational mesh.

Algorithm 1 shows a high-level pseudocode for the case of assem-
bling a global matrix. The overall procedure loops over each element,
𝑇 , to compute a small, dense element matrix 𝐴𝑇 . As a rule, some form
of numerical quadrature is usually involved, but the precise details
surrounding how to form element matrices and vectors depend on the
choice of shape functions as well as the so-called variational form of the
DE in question (an example will be given for Poisson’s equation in
ection 2.2).

For each element, step 1 is to obtain the vertex coordinates of the
esh cell, which must be read from memory in an irregular fashion
hen an unstructured mesh is used. Depending on the PDE being

olved, it may also be necessary to similarly fetch some problem-
ependent coefficient values from memory. Then, an element matrix
or vector) is computed in step 2, making use of the vertex coordinates
nd coefficients, as well as details specific to the target PDE and shape
unctions being used. At this point, some additional work (step 3)
ay be needed to correctly enforce boundary conditions, e.g., Dirichlet

oundary conditions. We omit the details, but note that in the case of
nhomogeneous Dirichlet boundary conditions, certain element matrix
alues also contribute to the assembled right-hand side vector.

Finally, once an element vector or matrix has been computed, its
alues are added to the global vector or matrix. To this end, step 4
equires a map of the global degrees of freedom that each element con-
ributes to. For matrix assembly, the map designates rows and columns
n the global matrix where element matrix values must be added. If
he global matrix is stored in a sparse format, such as compressed
parse row (CSR), an additional step is needed to locate the correct
osition in the 1D array of non-zero global matrix values where an
lement matrix contribution should be added. A common strategy is
o perform a binary search in the list of column indices associated with
he non-zero values of the appropriate row in the sparse matrix.

.2. Element matrices and vectors

To provide a simple example of computing the element matrix and
ector, we consider Poisson’s equation on a polygonal domain 𝛺 ⊂ 𝐑𝑑

with a boundary 𝜕𝛺 and a very simple boundary condition,
2
− 𝜅∇ 𝑢 = 𝑓 in 𝛺, 𝑢 = 0 on 𝜕𝛺, (1)

Parallel Computing 118 (2023) 103051J.D. Trotter et al.

g
(

𝑎

H
s
e

i
(

Algorithm 1 Pseudocode for elementwise assembly of a global matrix 𝐴.
Data: elements 𝑇1, 𝑇2,… , 𝑇𝑁 , vertices 𝑥1, 𝑥2,… , 𝑥𝑀 , and degrees of freedom for each element: 𝜇𝑇1 , 𝜇𝑇2 ,… , 𝜇𝑇𝑁
for 𝑖 = 1, 2,… , 𝑁 do

Let 𝑇𝑖 = [𝑥𝑖1 𝑥𝑖2 … 𝑥𝑖𝑚] and 𝜇𝑇𝑖 = {𝑘1, 𝑘2,… , 𝑘𝑛}
step 1: gather vertex coordinates 𝑥𝑖1 ,… , 𝑥𝑖𝑚
step 2: compute element matrix 𝐴𝑇𝑖
step 3: modify rows and columns of 𝐴𝑇𝑖 in case of Dirichlet boundary conditions
step 4: add 𝐴𝑇𝑖 to global matrix 𝐴 (i.e., 𝐴𝑘𝑝 ,𝑘𝑞 ← (𝐴𝑇𝑖)𝑝,𝑞 for 0 ≤ 𝑝, 𝑞 < 𝑛)

end for
where 𝑢 is the solution to be found, 𝜅 > 0 is a constant and 𝑓 is a
iven source term. The corresponding variational form has two parts
a bilinear form and a linear form) as follows:

(𝑣, 𝑢) = ∫𝛺
𝜅∇𝑣 ⋅ ∇𝑢 d𝑥, 𝐿(𝑣) = ∫𝛺

𝑓𝑣 d𝑥. (2)

ere 𝑣 denotes a test function belonging to an appropriate function
pace depending on the element type and shape functions. See, for
xample, [12], for further details.

On a mesh cell 𝑇 , the element matrix 𝐴𝑇 is computed by evaluating
ntegrals over 𝑇 (for each pair of 𝑝, 𝑞),

𝐴𝑇
)

𝑝,𝑞 = ∫𝑇
𝜅∇𝜓𝑇𝑝 ⋅ ∇𝜙𝑇𝑞 d𝑥, (3)

where 𝜓𝑇𝑝 and 𝜙𝑇𝑞 are non-zero local shape functions on 𝑇 (also called
local test and trial functions). Each value in the element vector 𝑏𝑇 is
calculated by ∫𝑇 𝑓𝜓

𝑇
𝑝 d𝑥.

To implement a complete finite element assembly procedure, one
must program the computational kernels for computing element matri-
ces and vectors for the particular problem at hand. Such kernels can
either be hand-written for each variational form, or be automatically
generated from a high-level description.

2.3. Unified Form Language

The Unified Form Language (UFL) [13] is a high-level language for
specifying variational forms in a manner close to their mathematical
description. It is used by multiple projects, including FEniCS, to enable
user-defined variational forms expressed as integrals over cells, interior
faces, and boundary faces of a mesh. The user indicates whether an
integral is to be taken over the whole mesh or some user-defined
regions. Furthermore, the user can freely choose the desired element
type and shape function [14] for the test and trial functions, as well as
prescribing any coefficients that may be involved.

UFL is a domain-specific language embedded in Python, so users
can take advantage of Python’s features when writing variational forms.
This becomes particularly useful in more advanced PDE solver applica-
tions. The code in Algorithm 2 shows UFL descriptions of the standard
variational form for Poisson’s equation (1). Here, linear Lagrange el-
ements on tetrahedral mesh cells are prescribed for the trial and test
functions u and v and for the coefficient (source term) f. The bilinear
and linear forms from Eq. (2) are spelt out using grad and inner to
indicate the gradient operator and dot product, whereas dx signifies
integration over the domain.

2.4. Compiling variational forms

The FEniCS form compiler (FFC) is responsible for translating varia-
tional forms written in UFL into kernels needed for the finite element
assembly. As usual for a compiler, FFC internally constructs an abstract
syntax tree, which provides the possibility of program transformations
and optimisations (if needed) before FFC finally translates the result
to plain C code. This approach allows for runtime code generation
and just-in-time (JIT) compilation by later invoking a C compiler at
3

runtime.
Algorithm 2 Variational form for Poisson’s equation in UFL.

cell = tetrahedrontetrahedrontetrahedron
element = FiniteElementFiniteElementFiniteElement(" Lagrange " , cell, 1)
coords = VectorElementVectorElementVectorElement(" Lagrange " , cell, 1)
mesh = MeshMeshMesh(coords)
V = FunctionSpaceFunctionSpaceFunctionSpace(mesh, element)
u = TrialFunctionTrialFunctionTrialFunction(V)
v = TestFunctionTestFunctionTestFunction(V)
f = CoefficientCoefficientCoefficient(V)
kappa = ConstantConstantConstant(mesh)
a = kappa * innerinnerinner(gradgradgrad(u),gradgradgrad(v))*dxdxdx
L = innerinnerinner(f,v)*dxdxdx

In addition to its form language and compiler, FEniCS also internally
uses a high-level C++ library, called DOLFIN. The objective is to tie
the automated code generation together with all the other components
needed in finite element solvers, such as handling unstructured, com-
putational meshes, carrying out finite element assembly, and solving
the resulting linear equation systems.

The C code generated by FFC follows a predefined template and
includes functions for mapping between arbitrary mesh cells and refer-
ence cells, evaluating shape functions and their derivatives, as well as
performing numerical quadrature needed to compute element matrices
and vectors. In FEniCS’s terminology, the generated functions for com-
puting element vectors and matrices are referred to as tabulate tensor
kernels. Although such kernels usually involve numerical integration
over a reference element, FEniCS frequently employs an optimisation
technique based on tensor contractions to factor out terms that are
independent of element geometry [15]. In particular, for affine meshes
and variational forms with constant coefficients, integrals are precom-
puted exactly during code generation and there is no need to perform
numerical integration at runtime. In cases where quadrature is still
needed (e.g., variable coefficients), FEniCS will generate quadrature
loops after automatically selecting a suitable quadrature scheme and
degree. For example, the quadrature schemes described in [16] or the
collapsed Gauss schemes are used for triangles and tetrahedra, whereas
tensor product quadrature rules are used for tensor-product elements.

Various other code generation and optimisation techniques have
been proposed for FFC, including simplifying expressions through con-
stant folding and common subexpression elimination [17,18], as well
as various loop optimisations like loop hoisting, fusion or splitting [19–
21]. Further details are found in the FEniCS book [1] or in references
given in Section 5. Nevertheless, the main optimisation currently em-
ployed by FFC involves precomputing certain integrals, if possible.
Otherwise, FFC performs a fairly straightforward translation to C code,
with the assumption that the C compiler is capable of further optimising
the generated code to a sufficient degree.

3. GPU implementation of finite element assembly

In this section, we explain how we have enabled FEniCS to offload
finite element assembly to GPUs, including different offloading strate-
gies and optimisations that have been incorporated into our extended

versions of FFC and the DOLFIN library used inside FEniCS.

Parallel Computing 118 (2023) 103051J.D. Trotter et al.

t

Our approach is based on using CUDA [22], which is the most
popular method of GPU programming as of now. CUDA extends C++
to allow offloading subprograms, called CUDA kernels, from a host
CPU by launching them on a device (i.e., GPU). Each CUDA kernel is
executed on the device by a large number of concurrent threads, often
requiring fine-grain data parallelism to make use of all the available
hardware resources. This fine-grain parallelism is a good match for the
finite element assembly phase, and also the solution phase to a large
extent. Moreover, like many sparse computations, the performance of
finite element solvers is mostly limited by memory bandwidth (see,
e.g., [23,24]). As a result, the high-bandwidth memory commonly
employed in GPU accelerators (e.g., [25]) should give an advantage
compared to executing the same computations on the host CPU.

3.1. Auto-generating CUDA kernels

Recall that the form compiler, FFC, is responsible for translating
variational forms written in UFL into tabulate tensor kernels needed
for computing element vectors and matrices, i.e., step 2 in Algorithm 1.
Our first step towards offloading to a CUDA device is to extend FFC to
emit tabulate tensor kernels compatible with CUDA C++. This is ac-
complished by first automatically annotating generated functions with
a __global__ execution space specifier, thus instructing the CUDA
C++ compiler that the function must be callable from the host in the
form of a CUDA kernel launch [26]. Second, we address various minor
incompatibilities, such as letting the extended FFC replace the C99
keyword restrict with the __restrict__ keyword, since the lat-
ter is supported in CUDA C++. These automatically inserted keywords
in the generated code mitigate pointer aliasing issues that otherwise
prevent critical compiler optimisations, such as reordering and common
subexpression elimination. Finally, the extended FEniCS framework has
taken care to avoid including external header files, which would other-
wise complicate runtime code compilation that takes place later (see,
e.g., [27]). We apply these changes to FFC by modifying the predefined
template that is used to emit the final, auto-generated code.

The generated CUDA kernels are written such that a single CUDA
thread computes an entire element vector or matrix. More fine-grained
data parallelism is possible, especially in the case of higher-order
elements (see, e.g., [28–30]). Furthermore, there may be room for other
improvements by tuning the generated CUDA kernels. However, we
find that the CUDA code produced by the extended FFC, combined with
optimisations of the CUDA C++ compiler, are already sufficient to pro-
vide good performance for offloading assembly to GPUs. We therefore
defer additional performance tuning of the generated CUDA kernels
to a future work and instead focus on strategies and performance
considerations with respect to offloading the overall finite element
assembly algorithm.

3.2. Runtime compilation of CUDA C++

Since the PDE-specific variational forms are usually provided at
runtime, we use NVIDIA’s runtime compilation API (NVRTC) [31]
to process the auto-generated CUDA code and thereby obtain CUDA
kernels that can be launched on a GPU. Given a string of CUDA
C++ source code, NVRTC produces compiled and optimised assem-
bly language code for the PTX instruction set architecture. The PTX
assembly is then loaded using the CUDA driver API [22] by calling
the function cuModuleLoadDataEx, which further compiles PTX
assembly to CUDA device code for a specific GPU model. Once a module
is loaded, the host may offload computations to a CUDA device by
launching CUDA kernels for any functions that are annotated with the
4

__global__ keyword.
3.3. Transferring data to GPU memory

Prior to offloading, the required input data must be copied from
host memory to device memory, including degrees of freedom for
each element, mapping info, vertex coordinates, coefficients, as well
as boundary markers for Dirichlet boundary conditions (if any). One
option is to make use of CUDA’s unified memory model [26], which
provides a common address space and automatically manages data
transfers between host and device memory. However, transferring data
between host and device is prone to become a performance bottleneck,
so we choose to manage data transfers within the extended FEniCS
framework explicitly using cudaMemcpy. Consequently, we augment
various classes and data structures in DOLFIN (the accompanying C++
library of FEniCS) to mirror and synchronise data that must be present
in both host- and device-side memory.

Besides the data needed for assembly, the resulting linear sys-
tem may also need to reside in GPU memory if a subsequent linear
solver runs on the same device. At least in the case of offloading
the entire assembly procedure, as discussed in Section 3.5, there is
no need to copy the matrix or vector back to the host. For FEniCS
and other codes that use PETSc [32] to perform sparse linear algebra,
special care must be taken to use MatSeqAIJCUSPARSEGetArray
and MatSeqAIJCUSPARSERestoreArray,1 which provide direct
access to sparse matrix data on the device. Thus, the extended FEniCS
framework internally creates a device-side pointer to the non-zero
matrix values, performs assembly on the GPU, and passes the assembled
matrix directly to a GPU-enabled linear solver without transferring any
data to the host. Numerical experiments in Section 4 are provided to
demonstrate the importance of this issue.

3.4. Partial offloading

Section 3.1 has described how FFC is extended to generate CUDA
compatible code for step 2 in Algorithm 1, also called tabulate tensor
kernels. GPU offloading of the other steps of Algorithm 1 requires
further extensions of FEniCS. First, we note that naively launching a
CUDA kernel for each element incurs too much overhead and would
prevent any acceleration. The solution is instead to devise higher-level
CUDA kernels that loop over every element in parallel, calling the
auto-generated tabulate tensor kernels to compute element matrices or
vectors. Assigning one thread per element ensures an ample amount of
parallelism. For example, tens of thousands of elements or more can be
processed in parallel on an NVIDIA V100 GPU, which has 80 streaming
multiprocessors (SMs) and typically employs up to 2048 threads per
SM.

Returning to Algorithm 1, offloading steps 1–3 is straightforward,
whereas the final step of adding element matrices to the global matrix
requires some subtlety, as will be discussed in Section 3.5. Algorithm 3
shows an example of an auto-generated CUDA kernel for a ‘‘partial
offloading’’ of the assembly, i.e., only steps 1–3 of Algorithm 1. This
is for the purpose of comparing with a ‘‘full offloading’’ approach
to be described in the following subsections. The ‘‘partial offloading’’
approach is easier to code, but suffers from lower performance.

For the purpose of illustration, the example in Algorithm 3 (and
subsequent examples in Algorithms 4 and 5) was generated from a
bilinear form based on first-order elements on a tetrahedral mesh, and
it therefore involves 4-by-4 element matrices. This can be seen in the
various constants appearing in array sizes and loop ranges throughout
the generated code. For other variational forms, element types and
polynomial degrees, the size of the element matrices may be different
and the form compiler will generate code accordingly.

The main CUDA kernel of Algorithm 3 is a grid-stride loop, where
hread 𝑖 computes element vectors or matrices for cells 𝑖, 𝑖 + 𝑁 ,

1 These functions were added in PETSc 3.16.4.

Parallel Computing 118 (2023) 103051J.D. Trotter et al.

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3

𝑖 + 2𝑁 , and so on, with 𝑁 being the total number of threads. The
cell vertex coordinates are stored in per-thread arrays with automatic
storage duration, which means that the CUDA compiler will try to
place the data in registers. If that is not possible, local memory is
used, potentially transferring to and from GPU device memory. Each
call to tabulate_tensor computes an element matrix or vector (see
Section 2.4), placing the computed values in device memory. Moreover,
element matrix values are adjusted whenever Dirichlet boundary con-
ditions apply. Afterwards, all the element matrices are transferred from
device memory to host memory, where each element matrix is added
to the global matrix by calling the PETSc function MatSetValues.

Algorithm 3 Auto-generated CUDA C++ code for the ‘‘partial
offloading’’ approach. This example uses 4 × 4 element matrices,
corresponding to first-order elements on a tetrahedral mesh.

1 voidvoidvoid __global__ cuda_local_assembly(
2 intintint num_active_cells , constconstconst intintint * active_cells ,
3 constconstconst intintint * vertices_per_cell ,
4 constconstconst doubledoubledouble * vertex_coords ,
5 intintint num_coeffs_per_cell , constconstconst doubledoubledouble * coeffs,
6 constconstconst doubledoubledouble * constants ,
7 constconstconst intintint * dofmap0, constconstconst intintint * dofmap1,
8 constconstconst charcharchar * bc0, constconstconst charcharchar * bc1,
9 doubledoubledouble * values)
0 {
1 forforfor (intintint i=blockIdx.x*blockDim.x+threadIdx.x;
2 i < num_active_cells;
3 i += blockDim.x * gridDim.x) {
4 // Set element matrix values to zero
5 doubledoubledouble* Ae = &values[i*4*4];
6 forforfor (intintint j = 0; j < 4*4; j++) Ae[j] = 0.0;
7
8 // Gather cell vertex coords/coefficients
9 intintint c = active_cells[i];
0 doubledoubledouble cell_vertex_coords[4*3];
1 forforfor (intintint j = 0; j < 4; j++) {
2 intintint vertex = vertices_per_cell[c*4+j];
3 forforfor (intintint k = 0; k < 3; k++)
4 cell_vertex_coords[j*3+k] =
5 vertex_coords[vertex*3+k];
6 }
7 constconstconst doubledoubledouble * cell_coeffs = &coeffs[
8 c*num_coeffs_per_cell];
9
0 // Compute element matrix
1 tabulate_tensor(Ae, cell_coeffs , constants ,
2 cell_vertex_coords);
3
4 // Handle Dirichlet boundary conditions (...)
5 }
6 }

3.5. Full offloading

To offload the entire assembly, we next consider how step 4 in
Algorithm 1 can also be moved from the host to a GPU. First, it is
necessary to maintain a copy of the sparse matrix data structure on the
CUDA device. If we assume that the global matrix is stored in the CSR
format, then the row pointers and column indices of non-zero matrix
entries are copied to device memory prior to assembly. This is done
only once, since the matrix structure usually does not change. After
the assembly is finished, the newly computed global matrix values can
always be transferred from device memory to host memory, if needed.
On the other hand, transferring the data is costly and it can be a great
advantage to avoid doing so unnecessarily, for example, in cases where
the solver is also offloaded to the GPU. Note that the amount of data
transferred depends on the connectivity of the mesh and the particular
discretisation used, but it is always much less than the partial offloading
approach considered in the previous section.
5

Algorithm 4 Auto-generated CUDA C++ code for global matrix assem-
bly in the ‘‘full offloading’’ approach. Some parts of this CUDA kernel
are identical to Algorithm 3 and have therefore been abbreviated.

1 voidvoidvoid __global__ cuda_global_assembly(
2 (...) // Input arguments (see Algorithm 3)
3 constconstconst intintint * rowptr,
4 constconstconst intintint * colidx,
5 doubledoubledouble * values)
6 {
7 forforfor (intintint i=blockIdx.x*blockDim.x+threadIdx.x;
8 i < num_active_cells;
9 i += blockDim.x * gridDim.x)
0 {
1 (...) // Set element matrix to zero
2 (...) // Gather vertex coords/coefficients
3 (...) // Compute element matrix
4
5 // Add values to global matrix, skipping
6 // degrees of freedom subject to
7 // Dirichlet boundary conditions
8 forforfor (intintint j = 0; j < 4; j++) {
9 intintint row = dofmap0[c*4+j];
0 ififif (bc0 && bc0[row]) continuecontinuecontinue;
1 forforfor (intintint k = 0; k < 4; k++) {
2 intintint column = dofmap1[c*4+k];
3 ififif (bc1 && bc1[column]) continuecontinuecontinue;
4 intintint r = binary_search(
5 rowptr[row+1] - rowptr[row],
6 &colidx[rowptr[row]], column);
7 r += rowptr[row];
8 atomicAdd(&values[r], Ae[j*4+k]);
9 }
0 }
1 }
2 }

The CUDA kernel for the ‘‘full offloading’’ approach is shown in
Algorithm 4, which is added to DOLFIN in the extended FEniCS frame-
work. There are two main differences compared with Algorithm 3. First,
element matrices are now stored in per-thread arrays with automatic
storage duration, meaning that the compiler will use registers or local
memory. Second, for each cell, a final step is carried out, where a
binary search is performed for each entry of the element matrix to find
the corresponding position in the array of global matrix values. Once
the correct location is found, the element matrix value is added to the
global matrix using an atomic operation, which is necessary to avoid
race conditions between threads that may attempt to update the same
value simultaneously.

3.6. Lookup table for global matrix values

Because sparse matrix storage formats (e.g., CSR) usually require a
search when adding element matrix values to a global matrix, our fully
offloaded assembly algorithm becomes prone to branch divergence. The
result is a severe slowdown whenever threads in a warp are led to exe-
cute different code paths during searches. Closer examination using the
NVIDIA Visual Profiler [33] confirms that certain source code lines of
the binary search procedure in Algorithm 4 are associated with as much
as 90% branch divergence. Moreover, the profiler reveals that for 95%
of program counter samples retrieved during execution, threads are
stalled waiting on memory dependencies, meaning that performance
is limited by memory latency rather than compute capacity or memory
bandwidth.

To alleviate this performance bottleneck, we investigate the effect
of using a lookup table to replace the costly binary searches needed in
Algorithm 4. The same concept proved highly beneficial also for CPU-
based assembly in previous work [24]. The idea is to perform binary
searches for element matrix entries only once as a pre-computation,

Parallel Computing 118 (2023) 103051J.D. Trotter et al.

a
w

e
T
a
d
i

(

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3

and the results are stored in a lookup table. The CUDA kernel in Algo-
rithm 5—which is also discussed further in the next section—illustrates
how the lookup table (nonzero_locations) is consulted during
ssembly to directly obtain the locations of global matrix non-zeros to
hich an element contributes.

Generally, the lookup table can anyway be obtained at little or no
xtra cost while setting up the matrix sparsity pattern prior to assembly.
he savings can therefore be substantial, especially when repeatedly
ssembling a global matrix with the same sparsity pattern, for example,
uring every time step in a time-dependent problem or every iteration
n a nonlinear solver.

The lookup table itself requires an additional 4𝑀𝑛2 bytes to be read
from global memory, where 𝑀 is the number of mesh cells and 𝑛 is the
number of rows and columns of an element matrix. (Each entry in the
lookup table is an integer of 4 bytes.) On the other hand, it is no longer
necessary to read degree-of-freedom maps (dofmap0 and dofmap1,
markers for Dirichlet boundary conditions (bc0 and bc1), row pointers
rowptr) or column indices (colidx) of the global matrix, which

amount to 8𝑀𝑛, 2𝑁 , 4(𝑁 + 1), and 4𝐾 bytes, respectively, where 𝑁
is the number of rows and columns and 𝐾 is the number of non-
zeros of the global matrix. Moreover, accesses to the lookup table are
easily coalesced and therefore enjoy the high bandwidth of the device
memory.

3.7. Rowwise assembly

Even after eliminating branch divergence, there are some challenges
remaining with respect to the fully offloaded assembly procedure. First,
there is some contention caused by separate threads writing to the same
cache line in the atomic add operation (i.e., line 28 in Algorithm 4).
Second, large parts of the data, including vertex coordinates, coeffi-
cients, and especially the matrix non-zeros, are accessed in an irregular
fashion. Both of these problems may lead to poor use of the memory
subsystem.

We therefore include an alternative algorithm, previously proposed
by Cecka, Lew and Darve [34], and also considered in our previous
work on CPU-based assembly [24], that involves assembling the global
matrix row by row. The main advantage of this method is that accesses
to the global matrix become more regular compared to elementwise
assembly, reducing the overall memory traffic as well as cache line
contention associated with the atomic add. On the other hand, some
redundant work is performed if a thread uses the auto-generated tab-
ulate_tensor kernel to compute an entire element matrix, but only
the values of a single row are needed. In the context of our automated
CUDA code generation, the benefit of rowwise assembly is thus unclear,
but the numerical experiments in Section 4.2 show that it may indeed
be worthwhile.

The resulting algorithm, shown in Algorithm 5, requires a map-
ping from the global degrees of freedom of the test space to the
mesh cells that contain them (cells_per_dof). Since the num-
ber of cells per degree of freedom varies, a compressed row format
is used to indicate the first and last cell for each degree of free-
dom (cells_per_dof_ptr). In addition, there is an auxiliary array
(element_matrix_rows) that is used to look up which row in the
element matrix is needed for a given global degree of freedom and mesh
cell. More specifically, after computing the element matrix, we loop
over the rows of the element matrix, and the conditional statement on
line 22 in Algorithm 5 uses element_matrix_rows to select a single
row of the element matrix that is added to the global matrix.

Recall that the outer loop in Algorithms 3 and 4 ranges over the
cells of the mesh. In contrast, the outer loop in Algorithm 5 ranges
simultaneously over every matrix row of the global matrix and every
mesh cell that contains the degree of freedom corresponding to that
row. As a result, every degree of freedom in every mesh cell is assigned
to a thread. This particular work division requires us to perform atomic
6

updates of the global matrix to avoid race conditions, just like in
Algorithm 5 Auto-generated CUDA C++ code for rowwise assembly
of a global matrix. Some parts of this CUDA kernel are identical to
Algorithm 3 and have therefore been abbreviated.

1 voidvoidvoid __global__ cuda_rowwise_assembly(
2 (...) // Input arguments (see Algorithm 3)
3 constconstconst intintint * cells_per_dof_ptr ,
4 constconstconst intintint * cells_per_dof ,
5 constconstconst intintint * nonzero_locations , // Lookup table
6 constconstconst intintint * element_matrix_rows ,
7 intintint num_rows,
8 doubledoubledouble * values)
9 {
0 forforfor (intintint p=blockIdx.x*blockDim.x+threadIdx.x;
1 p < cells_per_dof_ptr[num_rows];
2 p += blockDim.x * gridDim.x)
3 {
4 (...) // Set element matrix to zero
5 (...) // Gather vertex coords/coefficients
6 (...) // Compute element matrix
7
8 // Add values to global matrix, skipping
9 // degrees of freedom subject to
0 // Dirichlet boundary conditions
1 forforfor (intintint j = 0; j < 4; j++) {
2 ififif (j != element_matrix_rows[p]) continuecontinuecontinue;
3 forforfor (intintint k = 0; k < 4; k++) {
4 intintint l = ((p/warpSize)*4+k)*warpSize +
5 p % warpSize;
6 intintint r = nonzero_locations[l];
7 ififif (r < 0) continuecontinuecontinue;
8 atomicAdd(&values[r], Ae[j*4+k]);
9 }
0 }
1 }
2 }

Algorithm 4, because global degrees of freedom that belong to more
than one mesh cell may be shared by different threads. It is possible
to instead assign an entire row of the global matrix to a single thread
and thus avoid the need for atomic operations. But the cost of these
atomic operations on the GPU appears to be small, and the scheme we
have chosen instead leads to good load balancing even if there is a large
variation in the number of cells from one degree of freedom to another.

While the rowwise assembly shown in Algorithm 5 invokes the
tabulate_tensor kernel to compute the entire element matrix
every time, we also explored an alternative version with a modified
tabulate_tensor kernel that computes only the single element
matrix row that is needed. As a result, fewer redundant computations
are needed overall. These two rowwise methods are compared in
Section 4.2.

4. Numerical experiments

In this section, we measure our GPU-based finite element assem-
bly implementations to highlight strengths and weaknesses of vari-
ous approaches and the effectiveness of the proposed optimisations.
We also validate our GPU-enabled form compiler using a nonlinear
solid mechanics problem and a detailed comparison of CPU and GPU
performance.

4.1. Experimental setup

Our GPU experiments were carried out on NVIDIA V100 and
NVIDIA A100 GPUs. In addition, some experiments were carried out on
three different dual-socket, multi-core CPU systems featuring Intel Xeon
Gold 6130, AMD Epyc 7601 (‘‘Naples’’) and AMD Epyc 7763 (‘‘Milan’’)
CPUs. An overview is found in Table 1, including measurements of
achievable bandwidth based on BabelStream [35] for the NVIDIA
GPUs, and the STREAM benchmark [36] for the CPUs. Throughout the

benchmarks presented here, we use CUDA 10.1 and 11.7 on NVIDIA

Parallel Computing 118 (2023) 103051J.D. Trotter et al.

t
v
A

m
f
s
s
d
s
r

4

o
F
m
t
d
m
m
V
b

b
e
t
o
a
b
t
c
f
7
N

I
C

Table 1
Hardware used in our experiments.

NVIDIA V100 NVIDIA A100 Intel Xeon Gold 6130 AMD Epyc 7601 AMD Epyc 7763

Microarchitecture Volta Ampere Skylake Zen Zen 3
SMs/cores 80 108 32 64 128
Frequency 1.46 GHz 1.41 GHz 1.9–3.6 GHz 2.7–3.2 GHz 2.5–3.5 GHz
FP64 performance 7450 Gflop/s 9750 Gflop/s 1946 Gflop/s 1382 Gflop/s 5120 Gflop/s
Memory bandwidth 898 GB/s 2039 GB/s 256 GB/s 342 GB/s 410 GB/s
STREAM triad 887 GB/s 1771 GB/s 147.1 GB/s 161.4 GB/s 256.5 GB/s
Table 2
Computational meshes used in numerical experiments.

Mesh Vertices Cells

Uniform mesh 1 226 981 1 296 000
Uniform mesh 2 531 441 3 072 000
Uniform mesh 3 1 030 301 6 000 000
Uniform mesh 4 1 771 561 10 368 000
Uniform mesh 5 2 803 221 16 464 000
Uniform mesh 6 4 173 281 24 576 000
Uniform mesh 7 5 929 741 34 992 000
Uniform mesh 8 8 120 601 48 000 000
Cardiac mesh 1 1 255 775 6 735 654
Cardiac mesh 2 1 958 816 10 697 116
Cardiac mesh 3 2 226 802 12 255 517
Cardiac mesh 4 3 019 809 16 907 270

V100 and A100, respectively. Furthermore, GCC 11.2.0 was used with
the compiler flags -O3 -march=native. Finally, our implementation
hat supports GPU offloading was carried out based on a development
ersion of FEniCSx, an upcoming, redesign of the FEniCS framework.
ll the codes are archived and made available in Zenodo [37].

The following experiments use two sets of unstructured, tetrahedral
eshes with up to 48 million tetrahedral cells, as shown in Table 2. The

irst set consists of standard, uniform discretisations of the unit cube
ubdivided into 603 up to 2003 equal-sized, smaller cubes, each further
ubdivided into six tetrahedra. The remaining meshes are from a car-
iac modelling application [38], based on patient data from a Danish
tudy on cardiac disease [39]. These meshes are more representative of
eal-world applications involving unstructured meshes.

.2. Offloading finite element assembly to a GPU

In this section, we consider the performance of different GPU-
ffloaded assembly algorithms for Poisson’s equation (see Section 2).
or this, we use the cardiac meshes and one of the mid-sized uniform
eshes. The main results are shown in Table 3, which compares

he performance of assembling a matrix for Poisson’s equation using
ifferent CUDA-based assembly algorithms on NVIDIA V100. Perfor-
ance is reported as the number of degrees-of-freedom per second, in
illions, or Mdof/s. In the following, we have also used the NVIDIA
isual Profiler to measure register usage, occupancy, achieved memory
andwidth, thread divergence, and so on.

For comparison, the performance of FEniCS’s MPI-parallel, CPU-
ased assembly on Xeon and Epyc (Naples) is also shown. Note, how-
ver, that the current CPU version of FEniCS has not been fully op-
imised. Therefore, we also show the performance of a standalone,
ptimised benchmark that implements an OpenMP-parallel, CPU-based
ssembler for the Poisson problem with first-order elements. This CPU
enchmark uses both the lookup table and rowwise assembly optimisa-
ions, which yield significantly improved performance. Further details
an be found in [24]. Using 64 cores on Naples, the best performance
or assembling a matrix for Cardiac mesh 4 on the CPU is about
0 Mdof/s. Nonetheless, the best version of GPU-based assembly on
VIDIA V100 is about four times faster at 286 Mdof/s.

The ineffectiveness of the partial offloading approach is very clear.
ts poor performance is a result of expensive data transfers between
7

PU and GPU and the fact that only a single core of the host CPU
is used when adding element matrices to the global matrix. We are
limited to a single core in this case because there is currently no easy
way of extending the CPU-based global assembly code in FEniCS to
use more cores with shared memory parallelism. The alternative is to
use one MPI process per core, possibly allowing processes to share the
same GPU. We plan to extend our GPU-accelerated approach to support
distributed-memory parallelism through MPI in the future, but the
partial offloading approach would still suffer from CPU-GPU transfers.

In contrast, a tremendous acceleration is achieved by fully of-
floading the assembly. The achieved performance varies from about
85 to 230 Mdof/s, which shows that the size and structure of the
computational mesh has a significant performance impact. Detailed
profiling confirms that larger, unstructured meshes, such as Cardiac
mesh 2, 3 and 4, benefit less from caching on NVIDIA V100 when
accessing vertex coordinates and global matrix data. Profiling also
reveals that performance is mostly limited by memory latency, since
the achieved throughput is nowhere near the available bandwidth and
the floating-point and other functional units are far from saturated.

As discussed in Section 3.6, the latency observed for the CUDA
kernel in the ‘‘full offloading’’ approach is closely related to the binary
search procedure that is employed, which leads to a considerable
amount of divergence among threads in a warp. Table 3 shows that re-
placing binary searches with a lookup table leads to a notable speedup
of about 1.7 to 1.9× for the larger meshes. In addition to almost
entirely eliminating thread divergence, the number of registers per
thread is reduced from 82 to 64, and the occupancy (i.e., the number
of active threads) is thus increased from 31% (640 threads) to 50%
(1024 threads). In other words, there are more threads available to
hide potential memory latencies. At this point, the achieved memory
bandwidth is about 350 GB/s, which is nearly 40% of the 900 GB/s
theoretical maximum. Improved coalescing of global memory accesses
could possibly improve performance further, but it is not clear how this
can be achieved for the irregular memory accesses involved in reading
vertex coordinates.

Finally, a further speedup of up to 70% is gained by employing
the rowwise assembly algorithm for our benchmark problem. The
motivation for employing the rowwise algorithm was primarily its
improved data locality for writing to the global matrix. This behaviour
is indeed confirmed by profiling, which shows, for example, that cell-
wise assembly for Cardiac mesh 4 results in more than 2 GiB of data
written from the NVIDIA V100’s L2 cache to device memory, whereas
the rowwise method results in only a quarter of that at 500 MiB.
Furthermore, the rowwise approach appears to use even fewer registers,
only 55 per thread, and thus reaches a slightly higher occupancy of 56%
(1152 threads). The achieved memory bandwidth for this CUDA kernel
is about 510 GB/s, or 57% of the theoretical maximum, which should
be considered a high degree of bandwidth usage bearing in mind the
significant amount of irregular memory accesses involved.

One of the remaining challenges in the rowwise CUDA kernel in
Algorithm 5 is the conditional statement on line 22, which is used
to select a single row of the element matrix that should be added
to the thread’s current row of the global matrix. As one might ex-
pect, this leads to some thread divergence and is therefore a poten-
tial performance issue. We have also briefly experimented with an
alternative version of the rowwise method by modifying the tabu-

late_tensor kernel to compute only the single element matrix row

Parallel Computing 118 (2023) 103051J.D. Trotter et al.
Table 3
Performance (in Mdof/s) of matrix assembly for Poisson’s equation with linear (P1) elements on dual-socket Intel Xeon Gold 6130 and AMD Epyc ‘‘Naples’’ 7601 CPUs, and an
NVIDIA V100 GPU.

P1 elements Xeon Gold 6130 (CPU) Epyc ‘‘Naples’’ 7601 (CPU) NVIDIA V100 (GPU)

Mesh FEniCS Optimised FEniCS Optimised Partial offload Full offload Lookup table Rowwise

Uniform mesh 3 7.06 58.83 10.03 76.96 0.64 188.97 229.57 279.37
Cardiac mesh 1 6.60 64.38 10.46 71.48 0.39 229.78 220.57 320.67
Cardiac mesh 2 6.41 56.82 10.27 64.11 0.37 97.73 180.11 309.89
Cardiac mesh 3 6.38 59.05 10.67 69.61 0.35 85.34 165.31 292.08
Cardiac mesh 4 6.18 58.83 10.36 70.23 0.38 104.04 178.00 286.03
Table 4
Performance (in Mdof/s) of matrix assembly for Poisson’s equation with quadratic (P2)
elements on dual-socket AMD Epyc ‘‘Naples’’ 7601 and NVIDIA V100.

P2 elements Naples (CPU) NVIDIA V100 (GPU)

Mesh FEniCS Full offload Lookup table Rowwise

Uniform mesh 3 11.5 61.1 13.1 1.5
Cardiac mesh 1 12.1 51.3 13.2 1.6
Cardiac mesh 2 12.1 46.0 13.0 1.5
Cardiac mesh 3 12.1 47.7 12.9 1.5
Cardiac mesh 4 12.0 48.8 13.0 1.5

that is needed, and the problem of thread divergence is avoided. Using
the NVIDIA profiler, we can confirm that thread divergence is elimi-
nated, and this alternative implementation yields a small improvement
for Cardiac mesh 4, where the performance reaches 295 Mdof/s, and the
achieved bandwidth is 560 GB/s. Although these results indicate that a
slight improvement may be achieved, implementing this version of the
rowwise assembly approach in an automated way would require further
changes to the FEniCS form compiler. This is not easily achievable
within the scope of this paper, but it may be worth pursuing in the
future.

Finally, we compare the performance of our GPU-accelerated as-
sembly in FEniCS with GPU-accelerated matrix assembly provided by
the MFEM library [5]. For this comparison, we use the ex1p example
code included in MFEM to assemble a matrix for Poisson’s equation
on a unit cube mesh consisting of 1 million linear, hexahedral ele-
ments. Using MFEM’s ‘‘full assembly’’ mode and the CUDA backend,
the overall matrix assembly takes 1.42 seconds on an NVIDIA V100
GPU. For a fairer comparison, we choose to exclude the time of MFEM
spent on copying data between host and device and some additional
processing. Profiling reveals that 234 ms is spent in the CUDA kernel
EADiffusionAssemble3D, which computes element matrices for
every element. The GPU-accelerated MFEM performance for this partic-
ular example thus corresponds to 4.27 Mdof/s, which lies somewhere
between the ‘‘partial offload’’ and ‘‘full offload’’ approaches reported in
Table 3. According to the NVIDIA profiler, this CUDA kernel of MFEM
requires the maximum amount of 255 registers per thread and thus
suffers from register spilling and low occupancy.

4.3. Quadratic elements

Table 4 compares CPU and GPU performance of matrix assembly for
Poisson’s equation when using quadratic (P2) elements. On the Naples
CPU, performance is about 12 Mdof/s, so the assembly time per degree-
of-freedom remains almost the same as for linear elements. On the
NVIDIA V100 GPU, the cost per degree-of-freedom is higher than for
linear elements, and the ‘‘full offload’’ strategy yields a performance
of 46 to 61 Mdof/s. Thus, a speedup of about 4–5× is achieved by
GPU offloading. Unlike linear elements, however, the lookup table and
rowwise strategies result in lower performance. While all the three
CUDA versions suffer from high register pressure, the NVRTC compiler
reports 9.5 KiB of spill loads and stores for the lookup table and
rowwise variants, which is about 7 times more than the ‘‘full offload’’
counterpart. Moreover, due to the increased element matrix size, the
rowwise kernel performs considerably more redundant work compared
8

Fig. 1. Time (in seconds) spent in assembly and subsequent data copies between GPU
device memory and main memory for the 3D Poisson’s equation with Cardiac mesh 4
on NVIDIA V100.

to the case of linear elements, and is thus not worthwhile for quadratic
elements.

Note that as the polynomial order increases, the issue of register
pressure becomes even more problematic. Improved code generation
may alleviate the issue, but other strategies like matrix-free methods
are better suited for reducing the overall memory traffic. Moreover,
higher-order elements require more memory usage, which becomes a
limiting factor when using a single GPU.

4.4. Impact of CPU–GPU data transfers

Fig. 1 compares the time spent on performing assembly with the
time required to subsequently transfer data between host and device,
as explained in Section 3.3. Measurements obtained with the NVIDIA
profiler indicate that the effective bandwidths of these transfers are
4.6 and 13.0 GB/s for pageable and page-locked memory, respectively.
Thus, even in the case of page-locked memory, where the effective
bandwidth is quite close to the theoretical maximum bandwidth of
16 GB/s, data transfers nearly triple the overall global assembly time.
Even worse, for the optimised, rowwise assembly, transferring global
matrix values back and forth would increase the overall assembly time
by a factor of about five. These results clearly stress the importance of
avoiding unnecessarily transferring data between the CPU and GPU. In
this case, for the assembled linear system to remain on the GPU, a fast
GPU-based linear solver is needed.

4.5. GPU-accelerating a nonlinear hyperelasticity solver

Finally, we employ our automated code generation and GPU-
offloading capabilities to investigate the performance of GPU-
accelerated assembly and solution of a more challenging, nonlinear
solid mechanics problem described by Ølgaard and Wells [40]. We
note that the problem features a nonlinear, vector PDE with variable

coefficients, a mixture of boundary conditions, and an unstructured

Parallel Computing 118 (2023) 103051J.D. Trotter et al.

w
A
i

𝜓

𝐹

i
l

𝐿

3D computational mesh. This illustrates the generality of the imple-
mented form compiler and the automated code generation approach
for GPU-based assembly and solution for finite element methods.

The physical problem is posed as finding a 3D displacement field
𝑢∶𝛺 → 𝐑3 for a solid body by minimising the total potential energy of
a hyperelastic material model:

𝛱(𝑢) = ∫𝛺
𝜓(𝑢) d𝑥 − ∫𝛺

𝐵 ⋅ 𝑢 d𝑥 − ∫𝜕𝛺
𝑇 ⋅ 𝑢 d𝑠, (4)

here 𝐵 is a body force and 𝑇 is a traction force on the boundary.
lso, 𝜓 is the stored strain energy density function, which, in this case,

s based on a Neo-Hookean elastic stored energy model,

=
𝜇
2
(𝐼𝑐 − 3) − 𝜇 ln(𝐽) + 𝜆

2
ln(𝐽)2. (5)

Here 𝜇 and 𝜆 are Lamé parameters that depend on the material, 𝐽 =
det(𝐹), 𝐼𝑐 = trace(𝐶), 𝐶 = 𝐹 𝑇𝐹 is the right Cauchy–Green tensor, and

= 𝐼 + ∇𝑢 is the deformation gradient.
The variational formulation of the above minimisation problem

s obtained from directional derivatives of the energy functional 𝛱 ,
eading to the following pair of forms:

(𝑢; 𝑣) = 𝐷𝑣𝛱 = lim
𝜖→0

𝑑𝛱(𝑢 + 𝜖𝑣)
𝑑𝜖

(6)

𝑎(𝑢; 𝛿𝑢, 𝑣) = 𝐷𝛿𝑢𝐿 = lim
𝜖→0

𝑑𝐿(𝑢 + 𝜖𝛿𝑢; 𝑣)
𝑑𝜖

. (7)

For further details, we refer the reader to [40].
Newton’s method is used to solve the nonlinear hyperelasticity

problem. The solver converges when the L2 norm of the (absolute)
difference in the approximate solutions from one iteration to the pre-
vious iteration falls below a tolerance of 10−12. The linear system that
arises during each Newton iteration is symmetric and positive definite,
and we therefore solve it using the conjugate gradient (CG) method,
with two different preconditioners and a convergence tolerance of 10−5

for the L2 norm of the relative residual. The first preconditioner is
a simple diagonal scaling (Jacobi) method, whereas the second is a
more advanced algebraic multigrid (AMG) method. The CG solver is
PETSc’s native implementation, which employs PETSc’s own functions
for sparse matrix–vector multiply, dot product and vector addition
when running on the CPU. When the PETSc CG solver runs on the GPU,
it uses NVIDIA’s cuSPARSE [41] and cuBLAS [42] libraries to offload
sparse matrix and vector operations. Furthermore, PETSc’s native AMG
preconditioner is used when running on the CPU, whereas Hypre’s
BoomerAMG [10] is used for AMG preconditioning on the GPU.

For the GPU-accelerated assembly, we employ the fully offloaded
assembly algorithm with a lookup table, since it outperforms rowwise
assembly for the current problem. Detailed profiling with the NVIDIA
profiler reveals that the CUDA kernel for rowwise assembly requires
higher register usage, which in turn leads to reduced occupancy and
lower performance.

Table 5 shows the time and performance of assembly on NVIDIA
A100 and on up to four dual-socket AMD Epyc ‘‘Milan’’ CPU nodes.
Assembly performance is reported as the number of million degrees-
of-freedom per second per Newton iteration. Table 6 shows the solver
performance for both Jacobi and AMG preconditioning, reported as the
number of million degrees-of-freedom per second per CG iteration.

Regarding assembly, a single NVIDIA A100 yields a speedup of 2.3–
3.0× compared to four CPU nodes. With respect to the linear solver,
performance depends much more on the problem size and the amount
of cache reuse. In the case of Jacobi preconditioning, doubling the
number of CPU nodes more than doubles performance as the total
amount of cache memory increases and more data is read from cache
rather than main memory. For example, Cardiac mesh 4 involves about
9 million degrees of freedom, and the entire solution vector occupies
approximately 70 MiB. Moreover, if we ignore the sparse matrix, a
typical CG procedure requires the right-hand side, solution and three
9

auxiliary vectors, yielding a memory footprint of about 350 MiB. Since
each Milan node has 512 MiB of L3 cache and 64 MiB of L2 cache,
the effective bandwidth of the CPUs thus greatly increases as a larger
portion of the vector data resides in L2 cache.

With Jacobi preconditioning, NVIDIA A100 outperforms 2 CPU
nodes by up to 58% for the largest mesh, while yielding a slowdown
of about 30% for some of the smallest meshes. Although the Jacobi
solver is accelerated considerably by moving to a GPU, it provides poor
preconditioning and generally requires a large number of iterations.
Table 6 shows that the convergence rate and overall performance for
both CPU and GPU is greatly improved by using AMG preconditioning.
For the largest uniform meshes, a single NVIDIA A100 GPU provides
comparable performance to a single CPU node, whereas for the cardiac
meshes, the NVIDIA A100 yields a speedup of about 1.7× compared to
a single CPU node and reaches about 85% of the performance of 2 CPU
nodes.

While this example shows that a state-of-the-art preconditioned
linear solver can be accelerated by offloading to a GPU, the topic of fast
and effective GPU-accelerated preconditioners is still an active research
topic (see, e.g., [8,9,43–45]). We expect to see improvements in this
area in the future.

5. Related work

The implementation of FEniCS is described in the FEniCS book [1],
alongside several applications to solving PDEs. During the course of
the development of FFC and other, related form compilers, numerous
strategies have been explored with regards to generating and optimis-
ing code for computing element vectors and matrices. For example,
a tensor representation [15,46,47] or computer algebra [17,18] can
sometimes be used to simplify or compute integrals exactly. Other
approaches include optimising tabulate tensor kernels based on numer-
ical integration [48], various low-level loop optimisations [19–21], or
explicit vectorisation [49]. In addition, [28,30] were able to optimise
GPU kernels for computing element matrices through well-considered
assignment of work to different threads and memory layout for data in
global memory, as well as the use of shared memory to speed up certain
memory accesses. Another approach, also based on code generation,
is taken by libCEED [3], which allows user-defined, problem-specific
functions to be defined at quadrature points, and uses just-in-time
(JIT) compilation and kernel fusion to avoid unnecessarily moving
intermediate results to and from device memory.

The translation from Unified Form Language to GPU kernels and
a prototype compiler was discussed by Markall et al. [50]. However,
prior work in the context of automated code generation only consid-
ered the ‘‘partial offloading’’ strategy [51,52]. This approach requires
transferring large amounts of intermediate data between GPU and CPU
for the element matrices and vectors. Moreover, partial offloading is
rarely justified when using low-order finite elements, since calculating
element matrices is relatively cheap. Instead, most of the time is spent
in the final stage of adding values to the global matrix, which does not
benefit from offloading in this approach. These issues can be somewhat
mitigated, at least for higher-order elements, by resorting to matrix-free
methods [5,6,29,53] and variants thereof [51], where global matrix
assembly is avoided entirely. A matrix-free linear solver must then be
used, and it must also be offloaded to the GPU. Although this may
be a suitable approach in some scenarios, there are other situations
where assembling a global matrix cannot be avoided, such as when
using direct solvers or factorisation-based preconditioners.

Cecka, Lew and Darve [34] studied several different GPU-based
algorithms for global assembly for the Poisson problem, including the
usual cellwise algorithm, a rowwise algorithm, which we adopted in
Section 3.7, and a third algorithm that assigns each non-zero of the
global matrix to a separate thread. Experiments show that the third
method can be worthwhile, though there are challenges related to
limited availability of shared memory, load imbalance, and a large

number of redundant operations being carried out.

Parallel Computing 118 (2023) 103051J.D. Trotter et al.

H
l
C
c
i

l
i
d
G
a
g
m
a
g
m
L
c

Table 5
Total time (in seconds), number of Newton iterations, and performance (in Mdof/s/Newton iteration) of assembly for a 3D nonlinear hyperelasticity problem on an NVIDIA A100
GPU and up to 4 dual-socket AMD Epyc ‘‘Milan’’ 7763 CPU nodes.

NVIDIA A100 (GPU) 1 Milan CPU node 2 Milan CPU nodes 4 Milan CPU nodes

Mesh Iterations Time [s] Mdof/s/it Time [s] Mdof/s/it Time [s] Mdof/s/it Time [s] Mdof/s/it

Uniform mesh 1 5 0.05 68.9 0.45 7.6 0.31 10.9 0.24 13.9
Uniform mesh 2 5 0.11 75.2 1.23 6.5 0.67 11.9 0.40 20.0
Uniform mesh 3 5 0.19 83.4 1.53 10.1 0.87 17.9 0.53 28.9
Uniform mesh 4 5 0.32 84.1 2.64 10.0 1.48 18.0 0.85 31.3
Uniform mesh 5 5 0.50 84.0 4.18 10.1 2.24 18.7 1.29 32.6
Uniform mesh 6 5 0.75 83.4 5.21 12.0 3.41 18.3 1.71 36.6
Uniform mesh 7 5 1.07 83.3 7.15 12.4 3.92 22.7 2.48 35.9
Uniform mesh 8 5 1.64 74.2 9.56 12.7 5.34 22.8 3.04 40.1
Cardiac mesh 1 6 0.26 88.1 2.04 11.1 1.12 20.1 0.70 32.2
Cardiac mesh 2 7 0.49 84.5 3.80 10.8 1.95 21.1 1.14 36.0
Cardiac mesh 3 7 0.57 82.5 4.10 11.4 2.23 21.0 1.29 36.4
Cardiac mesh 4 8 0.87 83.3 6.31 11.5 3.40 21.3 1.96 37.1
Table 6
Total time (in seconds), total number of CG iterations, and performance (in Mdof/s/CG iteration) for a CG solver with Jacobi or AMG preconditioning with respect to a 3D
nonlinear hyperelasticity problem on an NVIDIA A100 GPU and up to 4 dual-socket AMD Epyc ‘‘Milan’’ 7763 CPU nodes. The CG solver with AMG preconditioning runs out of
memory for ‘‘Uniform mesh 8’’ on NVIDIA A100.

NVIDIA A100 (GPU) 1 Milan CPU node 2 Milan CPU nodes 4 Milan CPU nodes

Mesh Time [s] Iterations Mdof/s/it Time [s] Iterations Mdof/s/it Time [s] Iterations Mdof/s/it Time [s] Iterations Mdof/s/it

CG/Jacobi
Uniform mesh 1 2.5 4 616 1239.8 3.3 4 611 962.4 3.5 4 608 901.5 3.5 4 612 905.3
Uniform mesh 2 6.8 6 077 1433.2 9.9 6 072 981.3 8.6 6 077 1127.5 6.2 5 995 1533.6
Uniform mesh 3 13.2 7 259 1703.1 26.7 7 257 841.2 8.9 7 256 2527.1 5.2 7 256 4312.6
Uniform mesh 4 27.7 9 091 1742.5 67.7 9 088 713.3 38.7 9 090 1248.1 10.8 9 086 4453.1
Uniform mesh 5 49.3 10 571 1802.5 144.4 10 566 615.4 73.6 10 562 1207.1 37.0 10 569 2400.8
Uniform mesh 6 82.5 12 064 1830.3 241.2 12 061 626.0 128.5 12 061 1175.2 65.1 12 064 2321.2
Uniform mesh 7 133.3 13 552 1808.2 388.3 13 554 621.0 202.9 13 553 1188.5 109.1 13 555 2211.1
Uniform mesh 8 194.9 14 870 1858.7 612.7 14 874 591.3 307.0 14 873 1180.2 165.0 14 875 2196.4
Cardiac mesh 1 44.0 22 041 1888.5 91.1 21 886 904.8 31.7 21 996 2615.5 11.2 21 923 7344.2
Cardiac mesh 2 79.2 26 230 1945.5 193.0 26 277 800.3 82.0 26 225 1879.2 23.6 26 167 6508.5
Cardiac mesh 3 98.1 28 599 1947.2 241.5 28 597 791.2 107.4 28 601 1779.3 33.6 28 601 5686.9
Cardiac mesh 4 145.4 31 058 1934.5 378.8 31 330 749.3 181.1 31 160 1559.1 67.4 31 014 4166.5

CG/AMG
Uniform mesh 1 2.6 182 47.3 1.9 147 52.7 2.0 150 52.5 2.2 145 45.4
Uniform mesh 2 5.3 175 53.1 4.4 153 55.2 2.7 153 90.9 3.0 151 80.0
Uniform mesh 3 9.5 178 58.2 8.6 159 57.3 5.4 156 90.0 4.0 159 122.7
Uniform mesh 4 17.3 180 55.4 15.6 162 55.3 8.3 161 102.9 5.2 164 168.0
Uniform mesh 5 27.5 183 56.0 25.2 171 57.0 14.0 168 100.6 8.5 170 168.7
Uniform mesh 6 36.9 183 62.0 36.9 168 57.0 20.4 172 105.8 11.8 175 185.4
Uniform mesh 7 52.9 187 62.9 53.3 176 58.8 29.1 177 108.3 15.7 174 197.1
Uniform mesh 8 — — — 74.6 180 58.7 40.2 180 109.1 22.0 182 201.9
Cardiac mesh 1 11.3 445 149.0 18.2 360 74.7 9.2 364 149.9 4.7 347 281.1
Cardiac mesh 2 18.9 493 153.0 32.4 399 72.3 16.3 398 143.1 11.6 383 193.5
Cardiac mesh 3 21.5 466 144.5 37.9 407 71.7 18.3 391 143.0 10.1 387 255.3
Cardiac mesh 4 33.7 557 150.0 56.8 435 69.3 28.3 433 138.4 17.3 442 231.5
For a time-dependent, nonlinear diffusion equation, Pichler and
aase [54] offload assembly to a GPU using the CUDA C++ template

ibrary Thrust [55], whose high-level interface is used to avoid writing
UDA kernels. Moreover, global assembly is carried out using a pre-
omputed lookup table to add element matrix values to a global matrix,
n the same way that is described in Section 3.6.

An example of GPU acceleration of both assembly and solution of
inear systems for a finite element problem is given by Fu et al. [56],
ncluding a more advanced linear solver based on the conjugate gra-
ient method with an algebraic multigrid preconditioner. Reguly and
iles [23] thoroughly investigate GPU acceleration for both assembly
nd solution of linear systems for the Poisson problem, comparing
lobal assembly using different sparse matrix formats to matrix-free
ethods. Roughly speaking, the linear solver benefits from global

ssembly whenever first-order elements are used, while other strate-
ies may be advantageous for second-, third- and fourth-order ele-
ents. Further research on matrix-free methods has been conducted by

jungkvist [53] and Kronbichler and Ljungkvist [57] as well as in the
10

ontext of libCEED [3,58].
6. Conclusion

We have enabled an automated and seamless GPU offloading for
both the assembly and solution phases of finite element computations
prescribed in the high-level UFL format. This is achieved by extending
the FEniCS framework’s form compiler, FFC, to automatically generate
CUDA code, as well as extending the DOLFIN library with supporting
CUDA kernels for offloading the entire finite element assembly pro-
cedure. Our experiments show that GPU acceleration is achieved for
linear system assembly in the case of 1st and 2nd-order elements on
affine, tetrahedral meshes. Moreover, GPU offloading shows the most
promise for problems where assembly accounts for a significant part of
the execution time, for example, if assembly is performed repeatedly
or a fast GPU-accelerated linear solver can be used. As an example, we
offload an advanced, nonlinear PDE solver to illustrate the potential for
GPU acceleration while still retaining the ease of use offered by UFL as
a high-level, domain-specific language for finite element problems.

Furthermore, the GPU-offloaded assembly can be further sped up by
replacing costly binary searches with the use of a precomputed lookup

Parallel Computing 118 (2023) 103051J.D. Trotter et al.
table. Performing the assembly row by row is also shown to improve
performance, at least for Poisson’s equation with first-order elements.

We stress the need for paying careful attention to CPU–GPU data
transfers to successfully accelerate finite element computations. Other-
wise, the cost of transferring data can easily outweigh the performance
improvements achieved by offloading in the first place. From this
perspective, our strategy is different from that chosen by many other
libraries, which are based on separately offloading the assembly and
solution phases to a GPU. Indeed, a high-level view of the entire PDE
solving procedure is necessary to benefit from seamlessly integrated
GPU acceleration.

Users of the FEniCS framework can now benefit from GPU-
offloading without needing to sacrifice the other advanced features
of FEniCS. In a wider context, our approach should readily extend to
also support AMD GPUs through the HIP programming model. Thus,
for automated finite element codes, easy and efficient use of yet more
exascale-class GPUs is undoubtedly within reach. In the future, we plan
to extend our current work to the use of multiple GPUs in a distributed
setting, thus enabling GPU-acceleration for much larger problems.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This work was supported by the Research Council of Norway under
contract 251186 and by the European High-Performance Computing
Joint Undertaking grant agreement 956213 (SparCity). Also, the re-
search presented in this paper has benefited from the Experimental
Infrastructure for Exploration of Exascale Computing (eX3), which is fi-
nancially supported by the Research Council of Norway under contract
270053.

References

[1] A. Logg, K.-A. Mardal, G.N. Wells (Eds.), Automated Solution of Differential
Equations by the Finite Element Method, Springer, Berlin, 2012, http://dx.doi.
org/10.1007/978-3-642-23099-8.

[2] F. Rathgeber, D.A. Ham, L. Mitchell, M. Lange, F. Luporini, A.T.T. Mcrae, G.-
T. Bercea, G.R. Markall, P.H.J. Kelly, Firedrake: Automating the finite element
method by composing abstractions, ACM Trans. Math. Software 43 (3) (2016)
http://dx.doi.org/10.1145/2998441.

[3] A. Abdelfattah, V. Barra, N. Beams, R. Bleile, J. Brown, J.-S. Camier, R. Carson,
N. Chalmers, V. Dobrev, Y. Dudouit, P. Fischer, A. Karakus, S. Kerkemeier, T.
Kolev, Y.-H. Lan, E. Merzari, M. Min, M. Phillips, T. Rathnayake, R. Rieben, T.
Stitt, A. Tomboulides, S. Tomov, V. Tomov, A. Vargas, T. Warburton, K. Weiss,
GPU algorithms for efficient exascale discretizations, Parallel Comput. 108 (2021)
http://dx.doi.org/10.1016/j.parco.2021.102841.

[4] R.T. Mills, M.F. Adams, S. Balay, J. Brown, A. Dener, M. Knepley, S.E. Kruger,
H. Morgan, T. Munson, K. Rupp, B.F. Smith, S. Zampini, H. Zhang, J. Zhang,
Toward performance-portable PETSc for GPU-based exascale systems, Parallel
Comput. 108 (2021) http://dx.doi.org/10.1016/j.parco.2021.102831.

[5] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny, V.
Dobrev, Y. Dudouit, A. Fisher, T. Kolev, W. Pazner, M. Stowell, V. Tomov, I.
Akkerman, J. Dahm, D. Medina, S. Zampini, MFEM: A modular finite element
methods library, Comput. Math. Appl. 81 (2021) 42–74, http://dx.doi.org/10.
1016/j.camwa.2020.06.009.

[6] D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M.
Maier, J.-P. Pelteret, B. Turcksin, D. Wells, The deal.II finite element library:
Design, features, and insights, Comput. Math. Appl. 81 (2021) 407–422, http:
//dx.doi.org/10.1016/j.camwa.2020.02.022.
11
[7] M. Naumov, M. Arsaev, P. Castonguay, J. Cohen, J. Demouth, J. Eaton, S. Layton,
N. Markovskiy, I. Reguly, N. Sakharnykh, V. Sellappan, R. Strzodka, AmgX:
A library for GPU accelerated algebraic multigrid and preconditioned iterative
methods, SIAM J. Sci. Comput. 37 (5) (2015) S602–S626, http://dx.doi.org/10.
1137/140980260, arXiv:https://doi.org/10.1137/140980260.

[8] H. Anzt, M. Gates, J. Dongarra, M. Kreutzer, G. Wellein, M. Köhler, Precon-
ditioned Krylov solvers on GPUs, Parallel Comput. 68 (2017) 32–44, http:
//dx.doi.org/10.1016/j.parco.2017.05.006.

[9] H. Anzt, E. Boman, R. Falgout, P. Ghysels, M. Heroux, X. Li, L.C. McInnes, R.T.
Mills, S. Rajamanickam, K. Rupp, B. Smith, I. Yamazaki, U.M. Yang, Preparing
sparse solvers for exascale computing, Phil. Trans. R. Soc. A 378 (2166) (2020)
http://dx.doi.org/10.1098/rsta.2019.0053.

[10] R.D. Falgout, R. Li, B. Sjögreen, L. Wang, U.M. Yang, Porting hypre to heteroge-
neous computer architectures: Strategies and experiences, Parallel Comput. 108
(2021) http://dx.doi.org/10.1016/j.parco.2021.102840.

[11] X.S. Li, P. Lin, Y. Liu, P. Sao, Newly released capabilities in the distributed-
memory SuperLU sparse direct solver, ACM Trans. Math. Software 49 (1) (2023)
http://dx.doi.org/10.1145/3577197.

[12] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, in: Classics in Ap-
plied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia,
2002.

[13] M.S. Alnæs, A. Logg, K.B. Ølgaard, M.B. Rognes, G.N. Wells, Unified form lan-
guage: A domain-specific language for weak formulations of partial differential
equations, ACM Trans. Math. Software 40 (2) (2014) http://dx.doi.org/10.1145/
2566630.

[14] D.N. Arnold, A. Logg, Periodic table of the finite elements, SIAM News 47 (2014)
URL http://www.femtable.org/.

[15] R.C. Kirby, A. Logg, A compiler for variational forms, ACM Trans. Math. Software
32 (3) (2006) 417–444, http://dx.doi.org/10.1145/1163641.1163644.

[16] P. Keast, Moderate-degree tetrahedral quadrature formulas, Comput. Methods
Appl. Mech. Engrg. 55 (3) (1986) 339–348, http://dx.doi.org/10.1016/0045-
7825(86)90059-9.

[17] M.S. Alnæs, K.-A. Mardal, On the efficiency of symbolic computations combined
with code generation for finite element methods, ACM Trans. Math. Software 37
(1) (2010) http://dx.doi.org/10.1145/1644001.1644007.

[18] F.P. Russell, P.H.J. Kelly, Optimized code generation for finite element local
assembly using symbolic manipulation, ACM Trans. Math. Software 39 (4) (2013)
http://dx.doi.org/10.1145/2491491.2491496.

[19] F. Luporini, A.L. Varbanescu, F. Rathgeber, G.-T. Bercea, J. Ramanujam, D.A.
Ham, P.H.J. Kelly, Cross-loop optimization of arithmetic intensity for finite
element local assembly, ACM Trans. Archit. Code Optim. 11 (4) (2015) http:
//dx.doi.org/10.1145/2687415.

[20] F. Luporini, D.A. Ham, P.H.J. Kelly, An algorithm for the optimization of
finite element integration loops, ACM Trans. Math. Software 44 (1) (2017)
http://dx.doi.org/10.1145/3054944.

[21] M. Homolya, L. Mitchell, F. Luporini, D.A. Ham, TSFC: A structure-preserving
form compiler, SIAM J. Sci. Comput. 40 (3) (2018) 401–428, http://dx.doi.org/
10.1137/17M1130642.

[22] NVIDIA Corporation, CUDA driver API: API reference manual, 2019, URL https:
//docs.nvidia.com/cuda/cuda-driver-api/.

[23] I.Z. Reguly, M.B. Giles, Finite element algorithms and data structures on
graphical processing units, Int. J. Parallel Program. 43 (2) (2015) 203–239,
http://dx.doi.org/10.1007/s10766-013-0301-6.

[24] J.D. Trotter, X. Cai, S.W. Funke, On memory traffic and optimisations for low-
order finite element assembly algorithms on multi-core CPUs, ACM Trans. Math.
Software 48 (2) (2022) http://dx.doi.org/10.1145/3503925.

[25] NVIDIA Corporation, NVIDIA Tesla V100 GPU architecture, 2017, URL
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-
whitepaper.pdf.

[26] NVIDIA Corporation, CUDA C++ programming guide, 2022, URL https://docs.
nvidia.com/cuda/cuda-c-programming-guide/.

[27] B. Barsdell, K. Clark, Jitify: CUDA C++ runtime compilation made easy, in: GPU
Technology Conference 2017, San Jose, CA, 2017.

[28] M.G. Knepley, A.R. Terrel, Finite element integration on GPUs, ACM Trans. Math.
Software 39 (2) (2013) http://dx.doi.org/10.1145/2427023.2427027.

[29] K. Świrydowicz, N. Chalmers, A. Karakus, T. Warburton, Acceleration of
tensor-product operations for high-order finite element methods, Int. J. High
Perform. Comput. Appl. 33 (4) (2019) 735–757, http://dx.doi.org/10.1177/
1094342018816368.

[30] K. Banaś, P. Płaszewski, P. Macioł, Numerical integration on GPUs for higher
order finite elements, Comput. Math. Appl. 67 (6) (2014) 1319–1344, http:
//dx.doi.org/10.1016/j.camwa.2014.01.021.

[31] NVIDIA Corporation, NVRTC – CUDA runtime compilation user guide, 2019, URL
https://docs.nvidia.com/cuda/nvrtc/.

[32] S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L.
Dalcin, A. Dener, V. Eijkhout, W.D. Gropp, D. Karpeyev, D. Kaushik, M.G.
Knepley, D.A. May, L.C. McInnes, R.T. Mills, T. Munson, K. Rupp, P. Sanan,
B.F. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc Web page, 2019, URL
https://www.mcs.anl.gov/petsc.

http://dx.doi.org/10.1007/978-3-642-23099-8
http://dx.doi.org/10.1007/978-3-642-23099-8
http://dx.doi.org/10.1007/978-3-642-23099-8
http://dx.doi.org/10.1145/2998441
http://dx.doi.org/10.1016/j.parco.2021.102841
http://dx.doi.org/10.1016/j.parco.2021.102831
http://dx.doi.org/10.1016/j.camwa.2020.06.009
http://dx.doi.org/10.1016/j.camwa.2020.06.009
http://dx.doi.org/10.1016/j.camwa.2020.06.009
http://dx.doi.org/10.1016/j.camwa.2020.02.022
http://dx.doi.org/10.1016/j.camwa.2020.02.022
http://dx.doi.org/10.1016/j.camwa.2020.02.022
http://dx.doi.org/10.1137/140980260
http://dx.doi.org/10.1137/140980260
http://dx.doi.org/10.1137/140980260
https://doi.org/10.1137/140980260
http://dx.doi.org/10.1016/j.parco.2017.05.006
http://dx.doi.org/10.1016/j.parco.2017.05.006
http://dx.doi.org/10.1016/j.parco.2017.05.006
http://dx.doi.org/10.1098/rsta.2019.0053
http://dx.doi.org/10.1016/j.parco.2021.102840
http://dx.doi.org/10.1145/3577197
http://refhub.elsevier.com/S0167-8191(23)00057-1/sb12
http://refhub.elsevier.com/S0167-8191(23)00057-1/sb12
http://refhub.elsevier.com/S0167-8191(23)00057-1/sb12
http://refhub.elsevier.com/S0167-8191(23)00057-1/sb12
http://refhub.elsevier.com/S0167-8191(23)00057-1/sb12
http://dx.doi.org/10.1145/2566630
http://dx.doi.org/10.1145/2566630
http://dx.doi.org/10.1145/2566630
http://www.femtable.org/
http://dx.doi.org/10.1145/1163641.1163644
http://dx.doi.org/10.1016/0045-7825(86)90059-9
http://dx.doi.org/10.1016/0045-7825(86)90059-9
http://dx.doi.org/10.1016/0045-7825(86)90059-9
http://dx.doi.org/10.1145/1644001.1644007
http://dx.doi.org/10.1145/2491491.2491496
http://dx.doi.org/10.1145/2687415
http://dx.doi.org/10.1145/2687415
http://dx.doi.org/10.1145/2687415
http://dx.doi.org/10.1145/3054944
http://dx.doi.org/10.1137/17M1130642
http://dx.doi.org/10.1137/17M1130642
http://dx.doi.org/10.1137/17M1130642
https://docs.nvidia.com/cuda/cuda-driver-api/
https://docs.nvidia.com/cuda/cuda-driver-api/
https://docs.nvidia.com/cuda/cuda-driver-api/
http://dx.doi.org/10.1007/s10766-013-0301-6
http://dx.doi.org/10.1145/3503925
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://refhub.elsevier.com/S0167-8191(23)00057-1/sb27
http://refhub.elsevier.com/S0167-8191(23)00057-1/sb27
http://refhub.elsevier.com/S0167-8191(23)00057-1/sb27
http://dx.doi.org/10.1145/2427023.2427027
http://dx.doi.org/10.1177/1094342018816368
http://dx.doi.org/10.1177/1094342018816368
http://dx.doi.org/10.1177/1094342018816368
http://dx.doi.org/10.1016/j.camwa.2014.01.021
http://dx.doi.org/10.1016/j.camwa.2014.01.021
http://dx.doi.org/10.1016/j.camwa.2014.01.021
https://docs.nvidia.com/cuda/nvrtc/
https://www.mcs.anl.gov/petsc

Parallel Computing 118 (2023) 103051J.D. Trotter et al.
[33] NVIDIA Corporation, CUDA toolkit, 2022, URL https://developer.nvidia.com/
cuda-toolkit.

[34] C. Cecka, A.J. Lew, E. Darve, Assembly of finite element methods on graphics
processors, Internat. J. Numer. Methods Engrg. 85 (5) (2010) 640–669, http:
//dx.doi.org/10.1002/nme.2989.

[35] T. Deakin, J. Price, M. Martineau, S. McIntosh-Smith, Evaluating attainable
memory bandwidth of parallel programming models via BabelStream, Int. J.
Comput. Sci. Eng. 17 (3) (2018) 247–262, http://dx.doi.org/10.1504/IJCSE.
2018.095847.

[36] J.D. McCalpin, STREAM: Sustainable memory bandwidth in high performance
computers, 2013, URL https://www.cs.virginia.edu/stream/.

[37] J.D. Trotter, Software for "Targeting performance and user-friendliness: GPU-
accelerated finite element computation with automated code generation in
FEniCS", 2023, http://dx.doi.org/10.5281/zenodo.7854931.

[38] M. Marciniak, H. Arevalo, J. Tfelt-Hansen, T. Jespersen, R. Jabbari, C. Glinge,
K.A. Ahtarovski, N. Vejlstrup, T. Engstrom, M.M. Maleckar, K. McLeod, From
CMR image to patient-specific simulation and population-based analysis: Tutorial
for an openly available image-processing pipeline, in: T. Mansi, K. McLeod, M.
Pop, K. Rhode, M. Sermesant, A. Young (Eds.), STACOM 2016: Statistical Atlases
and Computational Models of the Heart. Imaging and Modelling Challenges,
Springer International Publishing, Cham, 2017, pp. 106–117, http://dx.doi.org/
10.1007/978-3-319-52718-5_12.

[39] R. Jabbari, T. Engstrøm, C. Glinge, B. Risgaard, J. Jabbari, B.G. Winkel, C.J.
Terkelsen, H.-H. Tilsted, L.O. Jensen, M. Hougaard, S.E. Chiuve, F. Pedersen,
J.H. Svendsen, S. Haunsø, C.M. Albert, J. Tfelt-Hansen, Incidence and risk factors
of ventricular fibrillation before primary angioplasty in patients with first ST-
elevation myocardial infarction: a nationwide study in Denmark, J. Am. Heart
Assoc. 4 (1) (2015) http://dx.doi.org/10.1161/JAHA.114.001399.

[40] K.B. Ølgaard, G.N. Wells, Applications in solid mechanics, in: A. Logg, K.-A.
Mardal, G.N. Wells (Eds.), Automated Solution of Differential Equations by the
Finite Element Method, Springer, Berlin, 2012, pp. 505–526, http://dx.doi.org/
10.1007/978-3-642-23099-8, Ch. 26.

[41] NVIDIA Corporation, cuSPARSE library, 2022, URL https://docs.nvidia.com/
cuda/cusparse/index.html.

[42] NVIDIA Corporation, cuBLAS library user guide, 2022, URL https://docs.nvidia.
com/cuda/pdf/CUBLAS_Library.pdf.

[43] H. Liu, B. Yang, Z. Chen, Accelerating algebraic multigrid solvers on NVIDIA
GPUs, Comput. Math. Appl. 70 (5) (2015) 1162–1181, http://dx.doi.org/10.
1016/j.camwa.2015.07.005.

[44] Y. Chen, X. Tian, H.a. Liu, Parallel ILU preconditioners in GPU computation, Soft
Comput. 22 (2018) 8187–8205, http://dx.doi.org/10.1007/s00500-017-2764-7.

[45] J.I. Aliaga, E. Dufrechou, P. Ezzatti, E.S. Quintana-Ortí, An efficient GPU version
of the preconditioned GMRES method, J. Supercomput. 75 (2019) 1455–1469,
http://dx.doi.org/10.1007/s11227-018-2658-1.
12
[46] R.C. Kirby, M. Knepley, A. Logg, L.R. Scott, Optimizing the evaluation of finite
element matrices, SIAM J. Sci. Comput. 27 (3) (2005) 741–758, http://dx.doi.
org/10.1137/040607824.

[47] M.E. Rognes, R.C. Kirby, A. Logg, Efficient assembly of 𝐻(div) and 𝐻(curl)
conforming finite elements, SIAM J. Sci. Comput. 31 (6) (2009) 4130–4151,
http://dx.doi.org/10.1137/08073901X.

[48] K.B. Ølgaard, G.N. Wells, Optimizations for quadrature representations of finite
element tensors through automated code generation, ACM Trans. Math. Software
37 (1) (2010) http://dx.doi.org/10.1145/1644001.1644009.

[49] T. Sun, L. Mitchell, K. Kulkarni, A. Klöckner, D.A. Ham, P.H. Kelly, A study
of vectorization for matrix-free finite element methods, Int. J. High Perform.
Comput. Appl. (2020) http://dx.doi.org/10.1177/1094342020945005.

[50] G.R. Markall, D.A. Ham, P.H. Kelly, Towards generating optimised finite element
solvers for GPUs from high-level specifications, Procedia Comput. Sci. 1 (1)
(2010) 1815–1823, http://dx.doi.org/10.1016/j.procs.2010.04.203, ICCS 2010.

[51] G.R. Markall, A. Slemmer, D.A. Ham, P.H.J. Kelly, C.D. Cantwell, S.J. Sherwin,
Finite element assembly strategies on multi-core and many-core architectures,
Internat. J. Numer. Methods Fluids 71 (1) (2013) 80–97, http://dx.doi.org/10.
1002/fld.3648.

[52] G.R. Markall, F. Rathgeber, L. Mitchell, N. Loriant, C. Bertolli, D.A. Ham, P.H.
Kelly, Performance-portable finite element assembly using PyOP2 and FEniCS, in:
J.M. Kunkel, T. Ludwig, H.W. Meuer (Eds.), 28th International Supercomputing
Conference, ISC 2013, in: Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg, 2013, pp. 279–289, http://dx.doi.org/10.1007/978-3-642-38750-
0_21.

[53] K. Ljungkvist, Matrix-free finite-element operator application on graphics pro-
cessing units, in: L. Lopes, J. Žilinskas, A. Costan, R.G. Cascella, G. Kecskemeti,
E. Jeannot, M. Cannataro, L. Ricci, S. Benkner, S. Petit, V. Scarano, J. Gracia, S.
Hunold, S.L. Scott, S. Lankes, C. Lengauer, J. Carretero, J. Breitbart, M. Alexander
(Eds.), Euro-Par 2014: Parallel Processing Workshops, Springer International
Publishing, Cham, 2014, pp. 450–461, http://dx.doi.org/10.1007/978-3-319-
14313-2_38.

[54] F. Pichler, G. Haase, Finite element method completely implemented for graphic
processor units using parallel algorithm libraries, Int. J. High Perform. Comput.
Appl. 33 (1) (2017) 53–66, http://dx.doi.org/10.1177/1094342017694703.

[55] NVIDIA Corporation, Thrust quick start guide, 2020, URL https://docs.nvidia.
com/cuda/thrust/.

[56] Z. Fu, T.J. Lewis, R.M. Kirby, R.T. Whitaker, Architecting the finite element
method pipeline for the GPU, J. Comput. Appl. Math. 257 (2014) 195–211,
http://dx.doi.org/10.1016/j.cam.2013.09.001.

[57] M. Kronbichler, K. Ljungkvist, Multigrid for matrix-free high-order finite element
computations on graphics processors, ACM Trans. Parallel Comput. 6 (1) (2019)
http://dx.doi.org/10.1145/3322813.

[58] J. Brown, V. Barra, N. Beams, L. Ghaffari, M. Knepley, W. Moses, R. Shakeri,
K. Stengel, J.L. Thompson, J. Zhang, Performance portable solid mechanics
via matrix-free 𝑝-multigrid, 2022, http://dx.doi.org/10.48550/arXiv.2204.01722,
arXiv:2204.01722.

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
http://dx.doi.org/10.1002/nme.2989
http://dx.doi.org/10.1002/nme.2989
http://dx.doi.org/10.1002/nme.2989
http://dx.doi.org/10.1504/IJCSE.2018.095847
http://dx.doi.org/10.1504/IJCSE.2018.095847
http://dx.doi.org/10.1504/IJCSE.2018.095847
https://www.cs.virginia.edu/stream/
http://dx.doi.org/10.5281/zenodo.7854931
http://dx.doi.org/10.1007/978-3-319-52718-5_12
http://dx.doi.org/10.1007/978-3-319-52718-5_12
http://dx.doi.org/10.1007/978-3-319-52718-5_12
http://dx.doi.org/10.1161/JAHA.114.001399
http://dx.doi.org/10.1007/978-3-642-23099-8
http://dx.doi.org/10.1007/978-3-642-23099-8
http://dx.doi.org/10.1007/978-3-642-23099-8
https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/pdf/CUBLAS_Library.pdf
https://docs.nvidia.com/cuda/pdf/CUBLAS_Library.pdf
https://docs.nvidia.com/cuda/pdf/CUBLAS_Library.pdf
http://dx.doi.org/10.1016/j.camwa.2015.07.005
http://dx.doi.org/10.1016/j.camwa.2015.07.005
http://dx.doi.org/10.1016/j.camwa.2015.07.005
http://dx.doi.org/10.1007/s00500-017-2764-7
http://dx.doi.org/10.1007/s11227-018-2658-1
http://dx.doi.org/10.1137/040607824
http://dx.doi.org/10.1137/040607824
http://dx.doi.org/10.1137/040607824
http://dx.doi.org/10.1137/08073901X
http://dx.doi.org/10.1145/1644001.1644009
http://dx.doi.org/10.1177/1094342020945005
http://dx.doi.org/10.1016/j.procs.2010.04.203
http://dx.doi.org/10.1002/fld.3648
http://dx.doi.org/10.1002/fld.3648
http://dx.doi.org/10.1002/fld.3648
http://dx.doi.org/10.1007/978-3-642-38750-0_21
http://dx.doi.org/10.1007/978-3-642-38750-0_21
http://dx.doi.org/10.1007/978-3-642-38750-0_21
http://dx.doi.org/10.1007/978-3-319-14313-2_38
http://dx.doi.org/10.1007/978-3-319-14313-2_38
http://dx.doi.org/10.1007/978-3-319-14313-2_38
http://dx.doi.org/10.1177/1094342017694703
https://docs.nvidia.com/cuda/thrust/
https://docs.nvidia.com/cuda/thrust/
https://docs.nvidia.com/cuda/thrust/
http://dx.doi.org/10.1016/j.cam.2013.09.001
http://dx.doi.org/10.1145/3322813
http://dx.doi.org/10.48550/arXiv.2204.01722
http://arxiv.org/abs/2204.01722

	Targeting performance and user-friendliness: GPU-accelerated finite element computation with automated code generation in FEniCS
	Introduction
	Finite element assembly and automated code generation
	Finite element assembly
	Element matrices and vectors
	Unified Form Language
	Compiling variational forms

	GPU implementation of finite element assembly
	Auto-generating CUDA kernels
	Runtime compilation of CUDA C++
	Transferring data to GPU memory
	Partial offloading
	Full offloading
	Lookup table for global matrix values
	Rowwise assembly

	Numerical experiments
	Experimental setup
	Offloading finite element assembly to a GPU
	Quadratic elements
	Impact of CPU–GPU data transfers
	GPU-accelerating a nonlinear hyperelasticity solver

	Related work
	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

