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A B S T R A C T

Duopolistic price-setting supply channels competing in a bilevel framework have been extensively studied
in single-period (static) settings. However, such supply channels typically face uncertain and time-varying
demand; and thus require a dynamic analysis. Dynamic channel optimization while addressing uncertain
demand has received limited attention due to the highly nested structure of the ensuing equilibrium problems.
The level of complexity rises when demand is dependent on current and previous prices. We consider a
decentralized (non-cooperative) supply channel whose members, a manufacturer and a retailer, competing in
a Stackelberg framework, must address the demand for a perishable commodity within a multi-period discrete-
time setting. In the first part of the paper, we propose a constructive theorem providing an explicit solution
algorithm to obtain equilibrium states at each period. Next, we prove that the resulting equilibria are subgame
perfect. In the second part, we allow the retailer (follower) to postpone the supply and pricing decisions until
demand uncertainty is resolved in each period. Using subgame perfection of the equilibria, we propose solution
algorithms that use the delayed information obtained by the postponement. Our comparative theorems and
simulated scenarios indicate that postponement strategies are always beneficial for the follower, and, for a
centralized (cooperative) channel. Whereas in a decentralized channel, due to vertical competition, there may
be scenarios wherein postponement strategies, i.e., access to extra information, turn out to be detrimental to
the manufacturer (leader).
1. Introduction

In the sequential decision-making process known as the Stackelberg
game, the equilibrium problem for a competing pair of agents in
a duopoly is solved in a bilevel setting. That is, one of the agents
in the duopoly is considered the leader (upstream agent) and acts
first. The other agent follows accordingly and hence is deemed the
follower (downstream agent). Stackelberg games have long been used
in modeling decentralized supply channels consisting of two agents, a
manufacturer and a retailer addressing uncertain demand. Typically,
the manufacturer is considered the leader, and the retailer is the fol-
lower (see for example, [1–4]). The objective of each channel member
is to maximize their respective profit. The decision variables can be
either only the supply quantity (𝑞) or a combination of supply quantity
and prices (𝑞, 𝑟). In the latter case, the supply channel is referred to as
price-setting.

The Stackelberg game model has been extensively used in find-
ing equilibrium states in decentralized price-setting supply channels
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operating in static (single-period) frameworks. However, the time-
dependent (multi-period) feedback Stackelberg game in a price-setting
channel has received limited attention in the literature due to its
complexity and the highly nested structure of the corresponding equi-
librium problems. The complexity mainly stems from the nature of the
state in a price-setting supply channel optimization problem — the un-
certain demand. In a static (single-period) supply channel optimization
problem modeled as a Stackelberg game, the inverse effect of price
on demand can be easily embedded within the objective functions. In
contrast, in a multi-period (dynamic) setting, in addition to seeking
a Nash equilibrium between themselves, the price-setting decision-
makers must keep the balance between maximizing profit in the current
period and not stifling future demand (i.e., the yet-unobserved state).
The resulting Nash–Stackelberg equilibria, as we will see, become
highly nested in time. Moreover, addressing an uncertain demand, the
downstream agent faces a newsvendor problem; thus, adding another
layer of complexity to the equilibrium problem [5,6].
vailable online 10 November 2023
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In our model, a decentralized supply channel is to address the
stochastic demand for a perishable commodity within a multi-period
time horizon. The channel is composed of two price-setting suppliers,
the manufacturer (leader) and the retailer (follower), competing in a
Stackelberg framework. The manufacturer sets the wholesale price (𝑤)
nd receives a supply quantity order from the retailer. The manufac-
urer is bound to address the retailer’s order entirely. The retailer faces
he stochastic demand signal. Thus, she has to solve a time-dependent
rice-setting newsvendor problem. In the retailer’s optimization prob-
em, the decision variables are the retail price (𝑟), and the supply
uantity (𝑞).

This paper has two main sections. In the first (Sections 3 and 4),
oth agents are risk-neutral, aiming to maximize their expected rev-
nue based on a known demand distribution, a conventional approach
ited in several studies (e.g., [2,7,8]). What sets our work apart is
he multi-period context with potential time-variance in variables and
arameters. Plus, our results apply to almost all continuous demand
istributions.1 The results, outlined in Theorem 4.1 and related corol-
aries, offer explicit multi-period feedback Stackelberg solutions. These
re termed open-loop solutions, as they do not account for demand
ncertainty feedback (no operational delay permitted).

The paper’s second part (Sections 5 and 6) focuses on postponed
eedback Stackelberg games in dynamic contexts. Drawing from [9,10],
nd [11], we allow the retailer to receive a feedback signal from
ncertain demand, permitting the delay of decision variables (𝑞 or
) until demand uncertainty clarifies. These outcomes are labeled as
losed-loop (postponement) solutions. Section 5 delves into order post-
onement, while Section 6 covers price postponement. Theorem 4.2,
onfirming that open-loop solutions are subgame perfect, links the
aper’s two segments on open-loop and closed-loop Nash–Stackelberg
quilibria.

Our results indicate that for each postponement strategy, the closed-
oop equilibria solutions are always superior to the open-loop results
or the retailer (follower). However, there may be scenarios wherein
he manufacturer is worse off if a strategy of postponement is utilized.
his is due to the imperfections caused by vertical competition within
decentralized channel. Hence, it does not happen in a centralized

hannel facing the same demand realization (see Corollary 5.6). This
inding is comparable to a result demonstrated in [12], where a supplier
n a decentralized channel with asymmetric information is better off
ithout receiving the delayed information. For a comparative analysis
f the retailer’s performance in open-loop and closed-loop solutions,
ee Theorem 5.1 (covering 𝑞-postponement scenarios) and Section 6.3
covering 𝑟-postponement scenarios).

Finally, in Section 7, we provide simulated realizations of the ran-
om scenarios described in the previous sections. The purpose of these
xamples is to provide a comparative illustration of the performance of
ach channel member with and without implementing postponement.
hat is, in a variety of scenarios, the same supply chain is to address
n uncertain demand with identical mean and volatility functions but
nder different realizations of the demand’s stochastic variable. In
ach scenario, the expected and real values of each supplier’s rev-
nues are compared. For example, certain simulation results suggest
hat in some instances, acquiring extra information via postponement
ight adversely impact the manufacturer’s revenue, as highlighted in

ections 7.2.2 and 7.3.2.

iagram of section dependency

See Diagram 1

1 In the theoretical analysis, the only restriction imposed on the uncertain
emand is that its cumulative distribution function must be invertible over its
upport. See Section 3.
2

w

2. Comparative literature analysis: Bridging the research gap

Demand uncertainty poses challenges to supply chains’ capacity,
production, and pricing decisions. The interplay between the timings
of demand realization and operational decisions endows firms with
different capabilities. In particular, flexible firms can postpone certain
operational decisions until the actual demand curve is observed [9–
11,13]. The literature highlights two primary postponement strategies:
order and price postponement.

Supply chains, particularly major online retailers like Amazon, Wal-
mart, and eBay, utilize order postponement to harness upcoming de-
mand signals. Customers can create ‘‘wish lists’’ or pre-order items
before their release, giving companies insights for determining supplier
order volumes. As a result, many retailers delay order placements until
receiving more accurate demand information. This strategy extends to
large appliances and conference organization [10,11,14]. Additionally,
apparel retailers such as Zara in their attempt to address ‘‘fast fashion’’
demands adopt two-stage ordering policies, resonating with our order
postponement study [15].

Price postponement, or responsive pricing, enables firms to adjust
prices based on factors like location, time, and customer segment to
maximize profits. This strategy shields companies from demand uncer-
tainty by setting prices after demand is known, supporting strategic
decisions in the face of unpredictable demand [13,16,17]. Its ease
of implementation is also a key benefit [13]. Examples include car
dealerships’ negotiable pricing [17], Amazon’s dynamic pricing based
on demand and customer history, and retailers signaling potential price
changes for upcoming releases [11]. Grocery providers also use this
approach [16].

The literature extensively explores postponement strategies in sup-
ply chains under uncertain, single-period demand. In a static model,
[17] examines such strategies and finds that with price flexibility,
suppliers can base capacity decisions on deterministic reasoning despite
demand uncertainty. A Nash–Stackelberg solution in a static Stackel-
berg game is presented by [11], who studies the effects of postponing
order quantity (𝑞) or retail price (𝑟) announcements and focuses on a
multiplicative uncertain demand structure. Delving into price postpone-
ment in a single-period newsvendor model, [18] determines conditions
for unimodal profit functions. Meanwhile, [19] evaluates the effects
of price postponement on production and pricing under supply risk,
suggesting that while postponement offers flexibility, it may not offset
potential fixed costs, especially for risk-averse firms. For a succinct
review of supply chain postponement strategies, one can refer to [20].
To the best of our knowledge, all of these studies are conducted within
the framework of static (single-period) models.

However, in various scenarios, especially in market-penetration
cases where new entrants introduce lower initial prices, a multi-period
analysis of pricing and demand becomes vital. Single-period solutions
often overlook the long-term impacts of pricing on demand and profit.
In multi-period frameworks, channel members not only seek equi-
librium amongst themselves but also consider the repercussions of
present pricing on future demand. This introduces a strategic dimension
where immediate profit maximization is weighed against potential
future earnings. In particular, only a multi-period model can cover
the behavior of strategic buyers — those market-savvy customers who
may postpone their purchase until they observe a considerable drop in
prices [21–23]. See also Example 6 in 7.3.3.

On the other hand, incorporating the interplay between the current
pricing decisions and future demand makes the equilibrium problems
highly nested in time. The studies in [22,24] presents a memory-
ased approach to decouple the ensuing nested equilibria problems in
decentralized channel. Following a similar approach, in the first part
f this paper (Section 4), we significantly enhance and generalize the
olution algorithm so that it incorporates postponement strategies as

ell.
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Thus, our work differs from other studies in the literature in that,
ur solution algorithm provides explicit solutions to the equilibrium
utcome of a decentralized price-setting supply channel in a dynamic
multi-period) framework, while also implementing price or order post-
onement strategies. These solutions are applicable to a general setting
here the demand is uncertain and can be characterized by an arbitrary
istribution. Moreover, many of the earlier referenced works focus
olely on a multiplicative uncertain demand structure. These purely
ultiplicative demand structures, despite their mathematical tractabil-

ty, pose a significant limitation: they assume that the coefficient of
ariation of the demand remains constant. We find this assumption to
e rather strong and not always justifiable.2 In contrast to these studies,

we consider a more general additive-multiplicative demand structure.

3. Preliminary model description

In a dynamic setting and time-dependent structure, first we propose
a general model for stochastic demand at each point in time. Then,
in Section 4, embedding this demand structure into various profit-
optimization games, we arrive at equilibria solutions for each scenario.
We divide the time scope into 𝑛 discrete intervals referred to as periods.
All the model variables and parameters are assumed to remain constant
within each period.

2 In the multiplicative uncertain demand model, 𝐷 = 𝜇(𝑟)𝜁 , where 𝜁 is the
stochastic variable with 𝐸(𝜁 ) = 1. This becomes a highly specialized case of
our model (𝐷 = 𝜇(𝑟) + 𝜎(𝑟)𝜖, 𝐸(𝜖) = 0), where the demand mean and standard
deviation are equal.
3

p

In general, we consider demand at each period 𝑘 to be a function
f the entire retail price history, and time.

𝑘 = �̃�𝑘(𝐫𝑘) + �̃�𝑘(𝐫𝑘) 𝜖𝑘 (1)

here 𝑟𝑘 is the retail price at 𝑘, 𝐫𝑘 = {𝑟1,… , 𝑟𝑘} is the set of the entire
retail price history up to period 𝑘. Moreover, �̃�𝑘(⋅) and �̃�𝑘(⋅), i.e. the
mean and standard deviation of demand respectively, are deterministic
functions of 𝐫𝑘 and time (period 𝑘). Finally, 𝜖𝑘 is the stochastic variable
at 𝑘.

The stochastic variable 𝜖𝑘 is normalized such that E[𝜖𝑘] = 0 and
Var[ϵk ] = 1. We also assume that the density function for 𝜖𝑘 and
its cumulative distribution function, 𝑓𝜖𝑘 (⋅) and 𝐹𝜖𝑘 (⋅) respectively, are
known over its support [𝜖𝑘, 𝜖𝑘]. Plus, we assume that 𝐹𝜖𝑘 is invertible
n the support interval and denote the resulting inverse cumulative
istribution function (quantile function) by 𝐹−1

𝜖𝑘
(⋅).

In a purely additive model for the uncertain demand [25], the
tandard deviation of the demand is considered to be constant and in a
urely multiplicative model [26], the coefficient of variation of demand
s assumed constant. Both assumptions are restrictive and not always
ustifiable [27]. An additive-multiplicative model, on the other hand,
llows us to cover cases with coefficient of variation of demand being
ffected by the retail price.

.1. Open-loop and closed-loop equilibria problems

Having outlined our general demand structure in Section 3, we em-
ed it in a class of channel optimization problems where the suppliers
f a perishable good face the uncertain demand described earlier. Con-
idering the uncertain demand for the product, at the beginning of each
eriod 𝑘, the manufacturer sets the optimal wholesale price 𝑤 , and
𝑘
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the retailer has to find the optimal retail price 𝑟𝑘, and order quantity
𝑞𝑘 accordingly. We denote the equilibrium values of the wholesale and
retail prices and order quantity by 𝑤∗

𝑘, 𝑟
∗
𝑘, and 𝑞∗𝑘 respectively.

In the non-postponement analysis, both the agents are risk-neutral
and their optimization problems are based on maximizing their respec-
tive expected profits within the 𝑛-period time scale. In such scenarios,
after 𝑤∗

𝑘 is announced, the retailer announces her 𝑟∗𝑘 and 𝑞∗𝑘 without
postponement.

Whereas in the order or retail price postponement scenario, the re-
tailer postpones declaration of one of her decision variables
(either 𝑞𝑘 or 𝑟𝑘) until she has observed demand uncertainty 𝜖𝑘. At each
period 𝑘, the retailer uses this extra delayed information in order
to incorporate the real value of her period (i.e. local-in-time) profit
in her optimization problem. In Theorem 5.1, its Corollary 5.4, and
in Sections 6.3 and 6.3.1 we discuss how different postponement
strategies, allowing for post-observation optimization, will affect the
profits for the two decision makers and for the whole channel.

We refer to the post-observation equilibrium variables as �̂�𝑘, �̂�𝑘, and
̂𝑘. In the subsequent sections, we refer to the non-postponement opti-
mization procedures as the open-loop, or pre-observation analyses. We
also use the terms post-observation, closed-loop, and ex-post analysis,
interchangeably to refer to the postponement analysis.

4. Pre-observation equilibria: An open-loop model without post-
ponement

At the beginning of each period, the manufacturer offers a wholesale
price. Then the retailer sends her order quantity (which may be zero) to
the manufacturer and declares her retail price to the market. At the end
of the period, if the retailer is left with a surplus of items, which means
her order quantity was larger than the actual demand, she will sell
them for a salvage price. She may or may not receive a buy-back offer
from the manufacturer for the surplus items. Because the commodity is
perishable, she will not be able to store the unsold items to be offered
to the market in the next periods.

In this section we solve the problem of maximizing the expected
profits within the whole timescale encompassing all the periods. Thus,
for instance, a pricing strategy that is optimal for a single period
problem may be found out to be suboptimal within the multi-period
setting. Thereby, the prescribed pricing and order quantity for the man-
ufacturer and the retailer will enable then to make strategic sacrifices in
order to boost the demand and rip the highest expected profits within
the multi-period timescale. The decision variables to be determined are
the wholesale price, retail price, and order quantity in each period,
and the objective functions to be maximized are the holistic discounted
expected profit for each decision maker.

4.1. The static (single-period) equilibrium problem

The final model in Section 4.5, its equilibrium structure, and our
proposed algorithm for its numerical solution presented in
Theorem 4.1, will include the general multi-period problem. However,
for illustration purposes we start out with a single-period Stackel-
berg equilibrium problem. Later we expand the scheme to solve the
generalized equilibrium problem in a multi-period (dynamic) setting.

Model Variables and Parameters

𝑤 = wholesale price per unit, (decision variable)

𝑟 = retail price per unit, 𝑟 > 𝑤 (decision variable)

𝑞 = quantity of items to be supplied to the market, (decision variable)

𝐷 = uncertain demand

𝑐𝑚 = manufacturing cost per unit, 𝑐𝑚 < 𝑤 (given parameter)

𝑐𝑟 = retailer’s marginal cost per unit, 𝑐𝑟 < 𝑟 −𝑤 (given parameter)

𝑠 = salvage price per unit
4

𝑏 = buy-back price per unit

𝜋𝑚 = manufacturer’s profit

𝜋𝑟 = retailer’s profit

Note that because this is a single-period analysis, we have suppressed
the subscripts 𝑘. In such a single-period setting the general demand
expression in (1) will turn into a specific simplified form described
below.

𝐷 = 𝜇(𝑟) + 𝜎(𝑟)𝜖 (2)

In the multi-period analysis, however, all the decision variables and
parameters may vary with time. This feature adds up to the level of
non-autonomy the model can cover.

In general the single-period equilibrium is obtained by solving the
following bilevel maximization problem.

max
𝑤

E[𝜋𝑚 ∣ 𝑞(𝑟)]

𝑠.𝑡. 𝑟, 𝑞 ∈ {argmax E[𝜋𝑟 ∣ 𝑤]}
(3)

The manufacturer’s optimization problem includes that of the retailer
(follower). An algorithm for deriving the explicit outcomes of the
Nash–Stackelberg equilibrium typically operates sequentially. First, the
follower’s optimization problem is solved to obtain her best response in
an implicit form, i.e., as a function of the leader’s decision variable (𝑤).
Next, the follower’s response is substituted in the leader’s optimization
problem to find the optimal values for her decision variables. Finally,
the leader’s optimal decision variable is brought back to the follower’s
response, this time yielding explicit results [28,29]. This procedure is
outlined in (4).

max
𝑞

E[𝜋𝑟(𝑟, 𝑤, 𝑞)] to obtain 𝑞∗(𝑟, 𝑤),

max
𝑟

E[𝜋𝑟(𝑟, 𝑤)] to obtain 𝑟∗(𝑤)

max
𝑤

E[𝜋𝑚(𝑤)] to obtain 𝑤∗ → 𝑟∗, 𝑞∗
(4)

Note that in (4), optimization procedures are applied on expected
values of the players’ profits. The profits for the retailer and the
manufacturer, denoted by 𝜋𝑟 and 𝜋𝑚 respectively, are calculated as
below.
𝜋𝑟(𝑟, 𝑞, 𝑤) = 𝑟min(𝐷, 𝑞) + 𝑠(𝑞 −𝐷)+ − 𝑐𝑟𝑞 −𝑤𝑞 + 𝑏(𝑞 −𝐷)+

= (𝑟 − 𝑠 − 𝑏) min(𝐷, 𝑞) + (𝑠 + 𝑏 − 𝑐𝑟 −𝑤)𝑞
𝑚 = (𝑤 − 𝑐𝑚)𝑞 − 𝑏(𝑞 −𝐷)+ = (𝑤 − 𝑐𝑚 − 𝑏)𝑞 + 𝑏min(𝐷, 𝑞),

(5)

here (𝑞 − 𝐷)+ denotes the positive component of (𝑞 − 𝐷); i.e. (𝑞 −
)+ = max(𝑞−𝐷, 0) indicating that the buy-back and salvage prices are

pplicable only if there exists a surplus of items.
The general solution to the bilevel optimization problem in (4) is

iven below. (See Appendix A for the proof.) A term superscripted by
n asterisk represents the optimal value for the associated variable.

𝑞∗(𝑟, 𝑤) = 𝜇(𝑟) + 𝜎(𝑟)𝐹−1
𝜖

(

𝑟 −𝑤 − 𝑐𝑟
𝑟 − 𝑠 − 𝑏

)

𝜋𝑟(𝑟, 𝑤) = (𝑟 −𝑤 − 𝑐𝑟)𝜇(𝑟) + (𝑟 − 𝑠 − 𝑏) 𝜎(𝑟)∫

𝑧

𝜖
𝑡𝑓𝜖(𝑡)𝑑𝑡

where 𝑧(𝑟, 𝑤) = 𝐹−1
𝜖

( 𝑟 −𝑤 − 𝑐𝑟
𝑟 − 𝑠 − 𝑏

)

𝜋𝑚(𝑤) = 𝜇
(

𝑟∗(𝑤)
) (

𝑤 − 𝑐𝑚
)

+ 𝜎
(

𝑟∗(𝑤)
)

[

𝑧∗(𝑤)
(

𝑤 − 𝑐𝑚 −
𝑟∗ −𝑤 − 𝑐𝑟
𝑟∗ − 𝑠 − 𝑏

)

+ 𝑏∫

𝑧∗

𝜖
𝑡𝑓𝜖(𝑡)𝑑𝑡

]

where 𝑧∗(𝑤) = 𝐹−1
𝜖

( 𝑟∗ −𝑤 − 𝑐𝑟
𝑟∗ − 𝑠 − 𝑏

)

(6)

numerical solution to max𝑤 𝜋
𝑚 will complete the procedure in (4)

and yield the equilibrium values of 𝑤∗, 𝑟∗, and 𝑞∗. In (5), for the sake
of generality, we have considered buy-back contracts represented by
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𝑏. In a buy-back contract the manufacturer pays the retailer 𝑏 < 𝑤
er unit unsold. It should be noted that a buy-back contract does not
ecessarily mean that the unsold items will be physically sent back to
he manufacturer (Chacon 2003). In order to share the risks stemming
rom market uncertainty and incentivize a larger order quantity, the
anufacturer credits the retailer for each unsold item. Obviously 𝑟 >

𝑏 + 𝑠.

4.2. The dynamic (multi-period) equilibrium problems

Having solved the open-loop equilibrium problem in a single-period
setting, we now proceed to the general open-loop problem in a multi-
period time frame. In a multi-period setting, both the manufacturer
and the retailer try to maximize their total expected profit over the
whole duration of 𝑛 periods. We start with analyzing the retailer’s opti-
mization problem. The manufacturer will face an structurally identical
problem.

max
𝐫𝑘

𝛱
𝑟
=

𝑛
∑

𝑘=1
𝛼𝑘E[𝜋𝑟𝑘|𝐷1,… , 𝐷𝑘−1] (7)

here 𝛼𝑘 is the given discount factor at period 𝑘, (𝛼1 = 1).3
From the structure of the expected profit at a single-period in (52)

nd without loss of generality we can conclude that E[𝜋𝑟𝑘] is a function
f the mean and variance of the demand, which in turn may depend on
he entire price history. The dependence of 𝜇(𝐫𝑘) and 𝜎(𝐫𝑘) on the vector

of the whole retail prices in the past makes the optimization problem
(7) highly nested.

4.3. A general solution procedure

Using the reasoning method referred to as backward induction in
dynamic programming, we begin the solution of the multi-variable
nested optimization problem by analyzing the final period. It is readily
observable that the only profit expression in (7) which depends on 𝑟𝑛
is E[𝜋𝑟𝑛]. Thus maximization of 𝛱

𝑟
with respect to 𝑟𝑛 is equivalent to

maximization of E[𝜋𝑟𝑛] with respect to 𝑟𝑛.

max
𝑟𝑛

𝛱
𝑟
≡ max

𝑟𝑛
E[𝜋𝑟𝑛] (8)

Moreover, at period 𝑛 all of the previous decision variables and
emands have become common knowledge. Therefore, given 𝐫∗𝑛−1 and
𝑛−1 = [𝐷1,… , 𝐷𝑛−1] and assuming that the mapping 𝑟𝑛 ↦ E[𝜋𝑟𝑛|𝐃𝑛−1]

has a global maximum, this global maximum can be expressed as a
function of the previous retail prices and demand history.

𝑟∗𝑛 = 𝑟∗𝑛(𝐫𝑛−1,𝐃𝑛−1) (9)

Now the backward induction method proceeds to the period 𝑛−1 where
having 𝑟∗𝑛 as expressed in (9) enables us to conclude that maximization
of 𝛱

𝑟
with respect to 𝑟𝑛−1 is equivalent to maximization of 𝛼𝑛−1E[𝜋𝑟𝑛−1]+

𝛼𝑛E[𝜋𝑟𝑛] with respect to 𝑟𝑛−1. The resulting 𝑟∗𝑛−1 will be a function of
(𝐫∗𝑛−2,𝐃𝑛−2). Inserting this new function into (7) and iterating the same
procedure backward in time, we obtain the vector 𝐫∗𝑛 .

4.4. Generalizing demand’s dependence on time and prices

The microeconomic relationship between an elastic demand struc-
ture and the current price is classically portrayed as 𝐷𝑘 = 𝜓(𝑟𝑘), where
𝑘 denotes the current period. However, not every market behaves
in such a simple manner, as strategic buyers base their purchase on
the (possibly repetitive) trends of previous prices to which they have
become anchored [30]. In general, potential buyer’s valuation of a
commodity and, in turn, their purchase decision may become biased

3 This allows for time-dependent discounting which in turn allows for
ifferent lengths of periods.
5

by their comparison of the current price and those of the past. For
example, in a specific scenario, a price increase by 20% may reduce the
customer base by, for example, 10%. Thus, a general time-dependent
model of supply and price optimization should also consider the effect
of anchoring to the past prices on current demand. Following [22],
we base our time-dependent model of uncertain demand on the simple
premise that the probability of an item being sold at time 𝑘 for the
price of 𝑟𝑘 depends on the customers’ interest, which in its own right,
in general, may depend on the past prices,

𝐷𝑘 = 𝜓𝑘(𝑟𝑘) ⋅𝛷𝑘(𝑟𝑘−1,… , 𝑟1) (10)

where the functional form 𝛷 represents price history. Obtaining such
a functional form may fall into the domain of behavioral economics.
Obviously, such a general demand model, which considers the effects
of anchoring to the past prices, also covers the classical memoryless
demand case where 𝛷𝑘 = 1. If the demand functional format remains
identical, i.e. 𝜓𝑘(𝑟𝑘) = 𝜓(𝑟𝑘), the procedure outlined in Section 4.3
turns into a repeated game. In contrast, a fully dynamic game emerges
when the functional formats for 𝜓𝑘(𝑟𝑘)s vary with time, adding to
the level of non-autonomy in the ensuing equilibrium problems. In
addition, assuming demand’s dependence on past prices, i.e. 𝛷𝑘 =
𝛷𝑘(𝑟𝑘−1,… , 𝑟1) ∶= 𝛷𝑘(𝐫𝑘−1), makes the equilibrium problems highly
nested.

In Theorems 4.1, 5.1, and 6.1 we propose solution algorithms for
the general non-autonomous dynamic games. Obviously, the proposed
solution algorithms are significant generalizations which among others,
cover the trivial 𝑛-periodic repeated games as well as the non-trivial
fully non-autonomous memory-based cases.

4.4.1. Memory-based uncertain demand structure
In our expression for memory-based demand, we embed a class of

functional forms within the uncertain demand structure such that the
demand at each period be not only a function of price at that period, but
also carry the effects of pricing policies and the demand in the previous
periods. We will refer to these functional forms as memory functions
and denote them by 𝛷𝑘(𝐫𝑘−1).

As discussed earlier, the additive-multiplicative structure of de-
mand in (1) enables us to cover general demand expressions with
non-constant coefficient of variation. Here, for the sake of greater
generality, we consider the coefficient of variation of demand to be a
function of the retail price as well.

𝐶𝑉𝐷𝑘 = 𝐶𝑉𝐷𝑘 (𝑟𝑘) (11)

In this paper we limit our analysis to the case where previous prices
scale the level of the current demand.

𝐷𝑘(𝐫𝑘) = 𝛷𝑘(𝐫𝑘−1)𝑑𝑘(𝑟𝑘)
where 𝑑𝑘(𝑟𝑘) = 𝜇𝑘(𝑟𝑘) + 𝜎𝑘(𝑟𝑘)𝜖𝑘

(12)

Comparing (12) with (1) we observe that

𝜇𝑘(𝐫𝑘) = 𝛷𝑘(𝐫𝑘−1)𝜇𝑘(𝑟𝑘)
𝜎𝑘(𝐫𝑘) = 𝛷𝑘(𝐫𝑘−1)𝜎𝑘(𝑟𝑘).

(13)

This memory-based structure enables us to explicitly incorporate the
impact of previous pricing decisions on the current demand’s mean
and standard deviation. The memory functions embedded within the
uncertain demand 𝐷𝑘(𝐫𝑘) must be such that at the 𝑘 + 1st period,
𝛷𝑘+1(𝐫𝑘) retains the information from the entire previous periods’
memories while being affected by the last piece of information that has
becomes available, i.e. 𝑟𝑘. This feature can be obtained by the following
expression.

𝛷𝑘+1 = 𝜙𝑘(𝑟𝑘) (14)

𝛷𝑘
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We call these 𝜙𝑘(𝑟𝑘)s the memory elements. Notice that the possibility
f having different functional forms for 𝜙𝑘s in different periods enables

our demand structure to cover more non-autonomy. With the memory
structure in (14), we will have:

𝛷𝑘(𝐫𝑘−1) =
𝑘
∏

𝑖=1
𝜙𝑖(𝑟𝑖−1)

𝛷1(⋅) = 𝜙1(⋅) = 1

(15)

.5. Embedding the demand structure in the equilibrium problems

The general construction outlined in Section 4.3 is sufficiently ex-
licit to enable solutions of the problem for most choices of functions
̃ and 𝜎. However, as discussed in Section 4.2 the resulting bilevel
ptimization problem in its multi-period setting is so deeply nested that
ne cannot expect to find an analytical solution. The importance of our
emory-based demand scheme lies in the structure it will create when

mbedded inside the expressions for the channel members’ expected
rofits. At each period 𝑘, we denote the local-in-time profit for the
etailer and the manufacturer by 𝜋𝑟𝑘 and 𝜋𝑚𝑘 , respectively. We state the
inal results of this section in the following two theorems.

heorem 4.1. Let n be the number of periods and assume that the uncertain
emand at period 𝑘 is given by

𝑘(𝐫𝑘) = 𝛷𝑘(𝐫𝑘−1)
(

𝜇𝑘(𝑟𝑘) + 𝜎𝑘(𝑟𝑘)𝜖𝑘
)

(16)

where

𝛷1(⋅) = 𝜙1(⋅) = 1, 𝛷𝑘(𝐫𝑘−1) =
𝑘
∏

𝑖=1
𝜙𝑖(𝑟𝑖−1)

nd where 𝜖𝑘s are continuously distributed with E[𝜖𝑘] = 0 and Var[𝜖𝑘] = 1
or all 𝑘. with 𝑓𝜖𝑘 > 0 almost everywhere on their supports. If for each 𝑘 the
ingle-period Stackelberg problem below has an equilibrium at 𝑟∗𝑘 and 𝑤

∗
𝑘

J𝑟𝑘 = 𝜋𝑟𝑘 + 𝜙𝑘+1(𝑟𝑘)
𝑟
𝑘

𝑚
𝑘 = 𝜋𝑚𝑘 + 𝜙𝑘+1(𝑟𝑘)𝑚

𝑘

(17)

here  𝑟
𝑘 and 𝑚

𝑘 are found recursively from:

 𝑟
𝑛 = 0, 𝑚

𝑘 = 0
𝑟
𝑘−1 =

𝛼𝑘−1
𝛼𝑘

J𝑟𝑘(𝑟
∗
𝑘), 𝑚

𝑘−1 =
𝛼𝑘−1
𝛼𝑘

J𝑚𝑘 (𝑤
∗
𝑘), 𝑘 = 𝑛,… , 2

(18)

and

𝜋𝑟𝑘 = (𝑟𝑘 −𝑤𝑘 − 𝑐𝑟𝑘 )𝜇𝑘(𝑟𝑘) + (𝑟𝑘 − 𝑠𝑘 − 𝑏𝑘) 𝜎𝑘(𝑟𝑘)∫

𝑧𝑘

𝜖𝑘
𝑡𝑓𝜖(𝑡)𝑑𝑡

𝜋𝑚𝑘 = 𝜇𝑘
(

𝑟∗𝑘(𝑤𝑘)
) (

𝑤𝑘 − 𝑐𝑚𝑘
)

+𝜎𝑘
(

𝑟∗𝑘(𝑤𝑘)
)

[

𝑧∗𝑘(𝑤𝑘)
(

𝑤𝑘 − 𝑐𝑚𝑘 −
𝑟∗𝑘 −𝑤𝑘 − 𝑐𝑟𝑘
𝑟∗𝑘 − 𝑠𝑘 − 𝑏𝑘

)

+𝑏𝑘 ∫

𝑧∗𝑘

𝜖𝑘
𝑡𝑓𝜖(𝑡)𝑑𝑡

]

, 𝑧∗𝑘(𝑤) = 𝐹−1
𝜖

( 𝑟∗𝑘 −𝑤𝑘 − 𝑐𝑟𝑘
𝑟∗𝑘 − 𝑠𝑘 − 𝑏𝑘

)

(19)

then the bilevel (Stackelberg) optimization problem

𝛱
𝑟
=

𝑛
∑

𝑘=1
𝛼𝑘E[𝜋𝑟𝑘] =

𝑛
∑

𝑘=1
𝛼𝑘𝛷𝑘(𝐫𝑘−1)𝜋

𝑟
𝑘

𝛱
𝑚
=

𝑛
∑

𝑘=1
𝛼𝑘E[𝜋𝑚𝑘 ] =

𝑛
∑

𝑘=1
𝛼𝑘𝛷𝑘(𝐫∗𝑘−1)𝜋

𝑚
𝑘

(20)

as an equilibrium at 𝐫∗𝑛 = [𝑟∗1 ,… , 𝑟∗𝑛] and 𝐰∗
𝑛 = [𝑤∗

1 ,… , 𝑤∗
𝑛].

The optimal order quantity at 𝑘 is then calculated as below.

∗
𝑘 = 𝛷𝑘(𝐫∗𝑘−1)

[

𝜇𝑘(𝑟∗𝑘) + 𝜎𝑘(𝑟
∗
𝑘)𝐹

−1
𝜖𝑘

( 𝑟∗𝑘 −𝑤
∗
𝑘 − 𝑐𝑟𝑘
𝑟∗𝑘

)]

(21)

See the proof and discussion in Appendix B.
6

Remark. Finding the numerical values of 𝑤∗
𝑘s allows us follow the

procedure outlined in (4) in reverse order and calculate the numerical
values of 𝑟∗𝑘(𝑤

∗
𝑘)s which in turn yield 𝑞∗𝑘s. Next, we prove that the results

of Theorem 4.1 are subgame perfect.

Theorem 4.2. The equilibrium obtained in Theorem 4.1 is subgame
perfect. That is, subsets of the equilibrium results covering the time interval
between an arbitrary period 𝑗 and 𝑛, i.e. [𝑟∗𝑗 ,… , 𝑟∗𝑛] and [𝑤∗

𝑗 ,… , 𝑤∗
𝑛] and, a

fortiori, their resulting [𝑞∗𝑗 ,… , 𝑞∗𝑛 ] will also constitute an equilibrium for the
corresponding subgame of the original problem covering that time interval:

𝐽 𝑟𝑗 = 𝛼𝑗𝛷𝑗 (𝐫𝑗−1)𝜋
𝑟
𝑗 (𝑟𝑗 ) +⋯ + 𝛼𝑛𝛷𝑛(𝐫𝑛−1)𝜋

𝑟
𝑛(𝑟𝑛)

𝐽𝑚𝑗 = 𝛼𝑗𝛷𝑗 (𝐫∗𝑗−1)𝜋
𝑟
𝑗 (𝑤𝑗 ) +⋯ + 𝛼𝑛𝛷𝑛(𝐫∗𝑛−1)𝜋

𝑟
𝑛(𝑤𝑛)

(22)

Proof. See Appendix B.1. □

In Section 6, we will use the subgame perfection of the open-
loop equilibrium in the analysis of the closed-loop equilibrium in a
price-postponement scenario.

5. Post-observation equilibrium: Postponing the order quantity

In this section, we analyze the closed-loop equilibrium in an order-
postponement scenario. At each period, the decision-making process is
divided into two phases: before and after the realization of the demand
uncertainty. At the beginning of the period, both decision-makers are
aware that the order-quantity will be sent to the manufacturer after
demand uncertainty has been resolved. At the first step in each period
𝑘, the manufacturer and the retailer set their corresponding prices ob-
tained from the open-loop equilibria solutions (given by Theorem 4.1).
The retailer, however, postpones her order quantity until after demand
randomness at that period has been resolved; i.e. 𝜖𝑘 has been observed.
In the following sections, a term superscripted by a circumflex rep-
resent the optimal value of the associated variable after employing a
postponement strategy.

At the second step, when the retailer observes demand uncertainty
𝜖𝑘, it is obvious that in order to optimize her local-in-time profit,
i.e. (𝑟∗𝑘 − 𝑤∗

𝑘 − 𝑐𝑟𝑘 ) 𝑞𝑘, she must pick the highest possible value for 𝑞𝑘
which will be 𝐷𝑘 = 𝛷𝑘(𝐫∗𝑘−1)

(

𝜇𝑘(𝑟∗𝑘) + 𝜎𝑘(𝑟
∗
𝑘)𝜖𝑘

)

. With a zero lead time,
the optimal order quantity for the retailer is simply equal to the real
demand.

̂𝑘 = 𝐷𝑘 = 𝛷𝑘(𝐫∗𝑘−1)
[

𝜇𝑘(𝑟∗𝑘, 𝑘) + 𝜎𝑘(𝑟
∗
𝑘, 𝑘) 𝜖𝑘

]

(23)

In Theorem 5.1, we show that the retailer always benefits from an
order-postponement strategy. The manufacturer on the other hand, may
either benefit from or be adversely impacted by the retailer’s deviation
from 𝑞∗𝑘 depending on whether 𝑞𝑘 > 𝑞∗𝑘 or 𝑞𝑘 < 𝑞∗𝑘 respectively.
Moreover, in the beginning of the 𝑘 + 1th period the manufacturer
faces exactly the same expected profit optimization problem as the
corresponding one in the open-loop equilibrium problem. This is be-
cause in our price-setting optimization problem, the memory functions
depend only on prices. Since in an order-postponement scenario, the
retailer changes only the order quantities obtained from the open-loop
solutions, her optimal prices 𝑟∗𝑘𝑠 remain the same and thus leaving
the memory functions unchanged. In other words, a change in order
quantity at period 𝑘 does not affect the expected profit of the man-
ufacturer in the future periods because the retailer has not deviated
from the 𝑟∗𝑘 obtained by open-loop equilibrium solution. Besides the
manufacturer has no strategic means to influence the occurrence of 𝜖𝑘.
Thus she will not deviate from previously calculated 𝑤∗

𝑘+1. Hence the
results [𝑤∗

𝑘, 𝑟
∗
𝑘, 𝑞𝑘] constitute the ex-post equilibrium state at 𝑘.

𝛱𝑟 =
𝑛
∑

𝑘=1
𝛼𝑘(𝑟∗𝑘 −𝑤

∗
𝑘 − 𝑐𝑟𝑘 ) 𝑞𝑘 (24)

𝛱𝑚 =
𝑛
∑

𝛼𝑘(𝑤∗
𝑘 − 𝑐𝑚𝑘 ) 𝑞𝑘 (25)
𝑘=1
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5.1. Comparison between open-loop and closed-loop profits

We consider two hypothetical scenarios each with a retailer facing
the same uncertain demand (𝜖𝑘). One of the two retailers does not
postpone her declaration of order quantity; instead she adheres to the
pre-observation optimal order quantity, 𝑞∗𝑘 . The other retailer postpones
her declaration of optimal order quantity 𝑞𝑘 until after observation of
̂𝑘. In this hypothetical scenario, they both face the same 𝜖𝑘. We refer
o the (real) profit obtained by the non-postponing retailer as 𝜋𝑟𝑂𝐿𝑘
open-loop profit) and to the postponing one’s as 𝜋𝑟𝐶𝐿𝑘 (closed-loop
rofit).

Below we show that for the retailers, the closed-loop profit is always
reater than or equal to the open-loop profit. Hence, for the retailer, it
s always beneficial to postpone her declaration of the order quantity
ntil after she has observed demand uncertainty.

heorem 5.1. Between two retailers who will face the same uncertain
emand 𝐷𝑘, the profit obtained by the one who postpones her order quantify
̂𝑘 until she observes the demand uncertainty 𝜖𝑘 is higher than or equal to
hat of the retailer who instead of postponing, adheres to the order quantity
btained from the open-loop equilibrium 𝑞∗𝑘 , as given by (21).

roof. See Appendix C. □

emark 5.2. Notice that while the order quantities and retail prices
rescribed by the open-loop equilibrium guarantee a non-negative
xpected profit for the retailer, the real retail profit can become negative
n extreme over-supplying cases, i.e when 𝑞∗𝑘 ≫ 𝐷𝑘 (see Remarks 7.1 for
xample 2, and the corresponding Fig. 3(a)). In contrast, order quantity
ostponement guarantees an always-positive profit for the retailer.

orollary 5.3. In the hypothetical scenario described in Theorem 5.1, the
olistic profit, over the span of n periods, for the postponing retailer is higher
han or equal to that of the non-postponing retailer.

roof. See Appendix C.1. □

.1.1. Order postponement and channel profit

orollary 5.4 (The Aggregate Channel Profit). In a hypothetical scenario
ith two price-setting decentralized channels, the aggregate channel profit
or a channel with an order-postponing retailer is higher than or equal to
hat of the channel with a non-postponing retailer.

roof. See Appendix C.2. □

emark 5.5. Corollary 5.4 shows that in an order-postponement
cenario, despite the fact that the manufacturer may lose potential
rofits due to postponement (see Example 3 in Section 7.2.2), the
hannel always benefits from postponement.

orollary 5.6 (Centralized Channel (Cooperating Agents)). In a hypothet-
cal scenario with two price-setting centralized channels, the channel that
ostpones supplying the market until after demand uncertainty has been
esolved will benefit higher than or equal to a non-postponing channel.

roof. See Appendix C.3. □

. Price postponement

In this section, we analyze another closed-loop variant of the prob-
em, in which the retailer postpones the announcement of retail price
7

ntil after the demand uncertainty has been resolved. We use essen-
ially the same notations for the model variables and parameters as
hose in Section 4. We use �̂�𝑘, and 𝑞𝑘 to denote the optimal retail price
nd order quantity, respectively.

Here, again the two players start from the open-loop equilibrium
olutions and obtain 𝐫∗𝑛 , 𝐰∗

𝑛, and 𝐪∗𝑛. At the beginning of the first period
he manufacturer sets 𝑤∗

1 and the retailer orders 𝑞1 = 𝑞∗1 . But the
etailer postpones the announcement of the retail price �̂�1 until after she
bserves 𝜖1. In Sections 6.2 and 6.3.1 we solve the equilibrium prob-
ems for each player to obtain the optimal post-observation decision
ariables at an arbitrary period 𝑘.

Furthermore, since in the price-postponement scenario the entire
emand is not necessarily addressed by the retailer, for the sake of
enerality we must also consider a (possibly time-dependent) sal-
age price for the retailer, and a buy-back contract between the two
gents.

.1. Observing the feedback: Closing the loop

In this scenario, at the beginning of the 𝑘th period the manufacturer
ets the 𝑤∗

𝑘 and the retailer orders 𝑞1 = 𝑞∗𝑘 items. However, the retailer
ostpones her declaration of the retail price until after she has observed
he demand uncertainty 𝜖𝑘.

It should be noted that while in the ex-ante analysis of the no-
ostponement equilibria states, we used the backward induction
ethod, here in the ex-post analysis of price-postponement scenario
e use a forward induction approach. Thereby, we incorporate the
ewly-revealed information in the form of feedback signals into the
ecision-making process. This is due to the fact that we now change
uture demand by our postponement.

.2. Post-observation bilevel optimization

In our analysis of the retail price-postponement scenario, we divide
he decision-making process into two steps. First, at the beginning of
ach period 𝑘, both the retailer and the manufacturer solve the expected
rofit optimization (equilibrium) problem in a Stackelberg framework
ithin the time interval {𝑘,… , 𝑛}. The manufacturer then declares the
quilibrium wholesale price and the retailer submits her order quantity
o the manufacturer. However, the retailer does not declare her retail
rice to the market. Instead, she postpones doing so until after she
bserves demand uncertainty.

In the second step, having observed 𝜖𝑘, the retailer incorporates
his new information and solves the equilibrium problem again while
onsidering the manufacturer’s response for the next periods. That is,
fter observing 𝜖𝑘 the retailer tries to find optimal retail prices within

{𝑘,… , 𝑛} while being subject to the optimality of the wholesale prices
within {𝑘 + 1,… , 𝑛}. The equilibrium solution will provide the retailer
with her post-observation optimal retail price vector [�̂�𝑘,… , �̂�𝑛]. Then
she declares the first element of her newly found optimal price vector,
�̂�𝑘, to the market.

We begin the analysis of the equilibrium problem from the first
period and using forward induction reasoning delineate a general opti-
mization procedure for all periods. At the first step in the first period,
both the retailer and the manufacturer solve the equilibrium problem
aimed at maximizing their own respective expected holistic profit while
subject to the optimality of the other player’s solution. Thus they obtain
the results of the open-loop equilibrium, i.e. {𝐫∗𝑘 ,𝐪

∗
𝑘,𝐰

∗
𝑘}. Therefore at

𝑘 = 1 the manufacturer proceeds with declaring 𝑤∗
1 and the retailer

orders 𝑞∗1 items. However, instead of declaring 𝑟∗1 to the market, the
retailer waits for the uncertainty of demand, 𝜖1 to be resolved. In the
second step and after observing 𝜖1, the retailer (and the manufacturer)
solve the following equilibrium problem to obtain the optimal retail

prices.
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max
𝐫𝑛

𝛱𝑟

max
𝑤2 ,…,𝑤𝑛

𝐽𝑚2

𝛱𝑟 = 𝜋𝑟1(𝑟1, 𝑤
∗
1 , 𝑞

∗
1 ) +⋯ + 𝛼𝑘𝛷𝑘(𝐫𝑘−1)𝜋

𝑟
𝑘(𝑟𝑘, 𝑤𝑘, 𝑞𝑘)

+⋯ + 𝛼𝑛𝛷𝑛(𝐫𝑛−1)𝜋
𝑟
𝑛(𝑟𝑛, 𝑤𝑛, 𝑞𝑛) = 𝜋𝑟1 + 𝐽

𝑟
2

𝐽𝑚2 = 𝛼2𝛷2
(

�̂�1(𝑤1)
)

𝜋𝑚2 (𝑤2) +⋯ + 𝛼𝑛𝛷𝑛
(

�̂�1(𝑤1),… , �̂�𝑛−1(𝑤𝑛−1)
)

𝜋𝑚𝑛 (𝑤𝑛)

where 𝜋𝑟1 = (𝑟1 − 𝑠1 − 𝑏1) min

𝐷1(𝑟1)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(

𝜇1(𝑟1) + 𝜎1(𝑟1)𝜖1
)

+(𝑠1 + 𝑏1 − 𝑐𝑟1 −𝑤
∗
1)𝑞

∗
1

(26)

Note that the only difference between the retailer’s problem expression
in (26) and the one in (65) is in the first term, where the expected
value of the profit in the first period 𝜋𝑟1 is replaced by the real profit 𝜋𝑟1.

hus the retailer, having observed 𝜖1, tries to find the vector of optimal
etailer prices �̂�𝑛 to optimize the sum of her real profit at the first period
𝑟
1 and the expected (discounted) profits in the future 𝐽 𝑟2 .

To solve (26) we use the backward induction reasoning again.
tarting with the retailer’s problem in the last period 𝑛 we observe
hat in order to obtain �̂�𝑛 from (26) the retailer has to solve (64) once
gain. This means that �̂�𝑛(𝑤𝑛) equals 𝑟∗𝑛(𝑤𝑛) which was obtained in
he pre-observation optimization. In general, going backward in time
rom period 𝑛 to 2, the retailer will face the exact same optimization
roblems as the ones in the pre-observation analysis, i.e. �̂�𝑘(𝑤𝑘) =
∗
𝑘(𝑤𝑘), 𝑘 ∈ {2,… , 𝑛}. However, when the backward induction reaches
he first period, it will face the only term in the objective function
hich is different from the corresponding one in (65), i.e. 𝜋𝑟1. Thus,

n general the optimal �̂�1 is different from 𝑟∗1.

max
𝑟1

𝛱𝑟 = 𝜋𝑟1(𝑟1) + 𝜙2(𝑟1)

×
[𝛼2
𝛼1
𝜋𝑟2(𝑟

∗
2) +⋯ +

𝛼𝑛
𝛼𝑘
𝜋𝑟𝑛(𝑟

∗
𝑛)

𝑛
∏

𝑖=3
𝜙𝑖(𝑟∗𝑖−1)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
 𝑟1 future expected profit, given (obtained from pre-observation analysis)

(27)

herefore the vector of optimal decision variables for the retailer after
bserving 𝜖1 is [�̂�1, 𝑟∗2 ,… , 𝑟∗𝑛] where �̂�1 is obtained from (27) and 𝑟∗𝑘s

(𝑘 = 2⋯ 𝑛) are equal to the ones obtained from the pre-observation
optimization problems.

Now we proceed to the manufacturer’s part of the equilibrium (26),
considering the effect of the new retail pricing scheme on future (time
interval {2,… , 𝑛}) demand.

max
2 ,…,𝑤𝑛

𝐽𝑚2 = max
𝑤2 ,…,𝑤𝑛

[

𝛼2𝛷2(�̂�1)𝜋
𝑚
2 (𝑤2) +⋯ + 𝛼𝑛𝛷𝑛(�̂�1, 𝑟∗2 ,… , 𝑟∗𝑛−1)𝜋

𝑚
𝑛 (𝑤𝑛)

]

where �̂�1 = �̂�1(𝑤∗
1), 𝑟

∗
𝑘 = 𝑟∗𝑘(𝑤𝑘) 1 < 𝑘

(28)

here each 𝜋𝑚𝑘 is calculated from .
Analogously, observing that the term 𝑤𝑛 appears only in the profit

xpression for the final period 𝜋𝑚𝑛 , we start the backward induction
rocess from the 𝑛th period.

max
𝑤𝑛

𝐽𝑚2 ≡ max
𝑤𝑛

𝜋𝑚𝑛 (29)

But this problem has already been solved in the open-loop analysis
and it will yield the same optimal decision variable as before, i.e. 𝑤∗

𝑛.
Going backward in time, in general, at each period 𝑗 ∈ {2,… , 𝑛}, the

anufacturer faces the optimization problem (30). Note that for this
rbitrary period 𝑗 we have max𝑤𝑗 𝐽

𝑚
2 ≡ max𝑤𝑗 𝐽

𝑚
𝑗 . This is due to the

result of Theorem 4.2 about the subgame perfection of the equilibrium
aimed at maximization of the expected profits on time interval between
2 and 𝑛.
8

max
𝑤𝑗

𝐽𝑚2 ≡ max
𝑤𝑗

𝐽𝑚𝑗 = max
𝑤𝑗

𝛼𝑘𝛷𝑗 (�̃�𝑗−1)

J𝑚𝑘 (𝑤𝑗 )
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
[

𝜋𝑚𝑘 (𝑤𝑗 ) + 𝜙𝑗+1
(

𝑟∗𝑘(𝑤𝑗 )
)

𝑚
𝑗

]

where �̃�𝑗−1 = {�̂�1(𝑤∗
1), 𝑟

∗
2(𝑤2),… , 𝑟∗𝑗−1(𝑤𝑗−1)},

𝛷𝑗 (�̃�𝑗−1) = 𝜙2(�̂�1)
𝑗

∏

𝑖=3
𝜙𝑖(𝑟∗𝑖−1)

(30)

𝑚
𝑗 =

𝛼𝑗+1
𝛼𝑗

𝜋𝑚𝑗+1(𝑤𝑗+1) +⋯ +
𝛼𝑛
𝛼𝑗
𝜋𝑚𝑛 (𝑤𝑛)

𝑛
∏

𝑖=𝑘+2
𝜙𝑖(𝑟∗𝑖−1)

𝑚
𝑛 = 0

(31)

Again we have max𝑤𝑗 𝐽
𝑚
𝑗 ≡ max𝑤𝑗 J

𝑚
𝑗 . Plus, when solving max𝑤𝑗 J

𝑚
𝑗

we observe that the choice of �̂�1 does not affect 𝑚
𝑗 . Therefore the

esults of max𝑤𝑗 J
𝑚
𝑗 will be exactly as equal to ones obtained by the

pen-loop solutions. Comparing (30) with the general expression (32),
rom the proof of Theorem 4.1 in Appendix B, we can conclude that
fter the observation of 𝜖1 and declaration of �̂�1 in the first period, the
anufacturer’s optimal price vector for the rest of the periods (from 2

o 𝑛) does not change.

max
𝑤𝑘

𝐽𝑚𝑘 (𝐰𝑘) = 𝛼𝑘𝛷𝑘(𝐫∗𝑘−1)

J𝑚𝑘 (𝑤𝑘)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
[

𝜋𝑚𝑘 (𝑤𝑘) + 𝜙𝑘+1
(

𝑟∗𝑘(𝑤𝑘)
)

𝑚
𝑘

]

(32)

However, 𝜙2(�̂�1) in (30) will scale J𝑚𝑗 differently from 𝜙2(𝑟∗1) in the
corresponding open-loop equilibrium. Hence while the same 𝑤∗

𝑗 s will
come out of the two equilibrium problems, the expected values of the
total profits will be different due to different memory elements.

After analyzing the two-step solution for the players in the period 1,
we try to find a general solution procedure at a period 𝑘. The players
arrive at period 𝑘 with the memory function containing the already
declared �̂�𝑘−1. In the first step they have to solve the following bilevel
optimization (Stackelberg equilibrium) problem.

max
𝑟𝑘 ,…,𝑟𝑛

𝐽 𝑟𝑘

max
𝑤𝑘 ,…,𝑤𝑛

𝐽𝑚𝑘
(33)

From Theorem 4.2 we know that the equilibrium aimed at maximiza-
tion of the expected profits is subgame perfect. Hence, in the first
step, each decision maker obtains a subset of her original open-loop
equilibrium results; i.e. [𝑟∗𝑘,… , 𝑟∗𝑛] and [𝑤∗

𝑘,… , 𝑤∗
𝑛]. Thus, at the first

step in period 𝑘, the manufacturer declares 𝑤∗ and the retailer orders
̂𝑘 = 𝛷𝑘(�̂�𝑘−1)

[

𝜇𝑘(𝑟∗𝑘) + 𝜎𝑘(𝑟
∗
𝑘)𝐹

−1
𝜖𝑘

( 𝑟∗𝑘−𝑤
∗
𝑘−𝑐𝑟𝑘
𝑟∗𝑘

)]

.

At the second step, after the retailer observes 𝜖𝑘 the following bilevel
equation has to be solved.

max
𝑟𝑘 ,…,𝑟𝑛

𝛼𝑘𝛷𝑘(�̂�𝑘−1)𝜋𝑟𝑘(𝑟𝑘) + 𝐽
𝑟
𝑘+1 over 𝑘,… , 𝑛 (34)

max
𝑤𝑘+1 ,…,𝑤𝑛

𝐽𝑚𝑘+1 = max
𝑤𝑘+1 ,…,𝑤𝑛

𝑛
∑

𝑖=𝑘+1
𝛼𝑖𝛷𝑖(�̃�𝑖−1)𝜋

𝑟
𝑖 (𝑤𝑖) over 𝑘 + 1,… , 𝑛

here �̃�𝑖−1 = [�̂�𝑘−1, 𝑟𝑘,… , 𝑟𝑖−1] (35)

Similarly, starting the backward induction from the final period, it
s evident that from period 𝑛 to 𝑘+1 the retailer will face the exact same
ptimization problems as the ones in the pre-observation analysis. The
nly term in the entire objective function which is different from its cor-
esponding term in (65) is 𝜋𝑟𝑘 (the real profit at 𝑘 which has replaced its
wn expected value, 𝜋𝑟𝑘). Therefore the retailer’s optimization problem

boils down to the following.
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𝐽 𝑟𝑘 = 𝛼𝑘

price history
⏞⏞⏞⏞⏞
𝛷𝑘(�̂�𝑘−1)

J𝑟𝑘 (𝑟𝑘 )
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(

𝜋𝑟𝑘(𝑟𝑘) + 𝜙𝑘+1(𝑟𝑘)
[ 𝛼𝑘+1
𝛼𝑘

𝜋𝑟𝑘+1(𝑟𝑘+1) +⋯ +
𝛼𝑛
𝛼𝑘
𝜋𝑟𝑛(𝑟𝑛)

𝑛
∏

𝑖=𝑘+2
𝜙𝑖(𝑟𝑖−1)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑟𝑘= expected (future) values, given (obtained from pre-observation problem)

)

max
𝑟𝑘

𝐽 𝑟𝑘 ≡ max
𝑟𝑘

J𝑟𝑘

(36)

ote that by the time the backward induction process reaches the 𝑘th
eriod  𝑟

𝑘 in (36), i.e. the future expected profit, is already calculated
nd is treated as a constant. Solving the single-variable optimization
roblem in (36) yields �̂�𝑘 while the rest of the optimal retail prices
emain equal to those obtained in the pre-observation (open-loop) opti-
ization problem. Thus at the second step in the 𝑘th period, the retailer

btains her optimal decision variables [�̂�𝑘(𝑤∗
𝑘), 𝑟

∗
𝑘+1(𝑤𝑘+1),… , 𝑟∗𝑛(𝑤𝑛)] as

functions of corresponding manufacturing prices.
In order to find the numerical values of �̂�𝑘(𝑤𝑘) and the rest of

the optimal retail prices, the retailer has to solve the manufacturer’s
problem of an optimal response for the next periods.

max
𝑤𝑘+1 ,…,𝑤𝑛

𝐽𝑚𝑘+1

𝐽𝑚𝑘+1 = 𝛼𝑘+1𝛷𝑘+1(�̂�𝑘)𝜋
𝑚
𝑘+1 +⋯ + 𝛼𝑛𝛷𝑘(�̂�𝑘)

𝑛
∏

𝑖=𝑘+2
𝜙𝑖(𝑟∗𝑖−1)𝜋

𝑚
𝑛

= 𝛼𝑘+1𝛷𝑘+1(�̂�𝑘)
[

𝜋𝑚𝑘+1 +⋯ +
𝛼𝑛
𝛼𝑘+1

𝑛
∏

𝑖=𝑘+2
𝜙𝑖(𝑟∗𝑖−1)𝜋

𝑚
𝑛

]

(37)

he numerical results for optimal wholesale prices are obtained using
he recursive solution procedure delineated below.

𝐽𝑚𝑗 = 𝛼𝑗𝛷𝑗 (�̃�𝑗−1)
[

𝜋𝑚𝑗 (𝑤𝑗 ) + 𝜙𝑗+1(𝑟
∗
𝑗 )

𝑚
𝑗

]

𝑘 + 1 ≤ 𝑗 ≤ 𝑛

�̃�𝑗−1 = (�̂�𝑘, 𝑟∗𝑘+1 ⋯ , 𝑟∗𝑗−1) ⇒ 𝛷𝑗 (�̃�𝑗−1) =
𝑘+1
∏

𝑖=1
𝜙𝑖(�̂�𝑖−1)

𝑗
∏

𝑖=𝑘+2
𝜙𝑖(𝑟∗𝑖−1)

(38)

𝑚
𝑛 = 0

𝑚
𝑗 =

𝛼𝑗+1
𝛼𝑗

𝜋𝑚𝑗+1(𝑤𝑗+1) +⋯ +
𝛼𝑛
𝛼𝑗
𝜋𝑚𝑛 (𝑤𝑛)

𝑛
∏

𝑖=𝑘+2
𝜙𝑖(𝑟∗𝑖−1)

(39)

omparing (37) with (76) and (77), and using the result of The-
rem 4.2, it is evident that after announcing �̂�𝑘 at period 𝑘, and
hen solving manufacturer’s optimization problem for the time interval
𝑘 + 1,… , 𝑛}, the backward induction process will yield the same
𝑤∗
𝑘+1,… , 𝑤∗

𝑛} as those obtained in the open-loop equilibrium problem.
o see this, note that in (76), at period 𝑘, the decision variable 𝑤𝑘+1
ppears only inside the bracket, while the pricing effect is factored out
ithin the memory function. When the backward induction process

eaches the 𝑘th period, 𝑚
𝑘 has already been calculated. This makes

𝑚
𝑘 a function of only 𝑤𝑘. However, the manufacturer’s expected profit
ill be different from the results of the open-loop solutions. This is
ue to the scaling factor 𝛷𝑘(�̂�𝑘−1) which in general will be different
rom 𝛷𝑘(𝐫∗𝑘−1) in (76). The results of this section are expressed in the
ollowing theorem.

heorem 6.1. In a retail price postponement scenario where the retailer
nd the manufacturer face the uncertain demand described in Theorem 4.1,
he retailer at each period 𝑘 postpones the declaration of her price until after
bserving demand uncertainty 𝜖𝑘.
Assuming that there exists an equilibrium state [𝐫∗𝑘 ,𝐰

∗
𝑘] for the open-loop

roblem described in Theorem 4.1, if the following objective function has a
lobal maximum, �̂�𝑘,

J𝑟 (𝑟 ) = 𝜋𝑟 (𝑟 ) + 𝜙 (𝑟 ) 𝑟
9

𝑘 𝑘 𝑘 𝑘 𝑘+1 𝑘 𝑘
here  𝑟
𝑘 =

𝛼𝑘+1
𝛼𝑘

𝜋𝑟𝑘+1(𝑟
∗
𝑘+1) +⋯ +

𝛼𝑛
𝛼𝑘
𝜋𝑟𝑛(𝑟

∗
𝑛)

𝑛
∏

𝑖=𝑘+2
𝜙𝑖(𝑟∗𝑖−1)

hen the closed-loop problem of price postponement has an equilibrium with
he following optimal decision variables.

�̂�𝑛 = [�̂�1,… , �̂�𝑛]

𝐰∗
𝑛 = [𝑤∗

1 ,… , 𝑤∗
𝑛]

�̂�𝑛 = [𝑞1,… , 𝑞𝑛]

where 𝑞𝑘 = 𝛷𝑘(�̂�𝑘−1)
[

𝜇𝑘(𝑟∗𝑘) + 𝜎𝑘(𝑟
∗
𝑘)𝐹

−1
𝜖𝑘

( 𝑟∗𝑘 −𝑤
∗
𝑘 − 𝑐𝑟𝑘
𝑟∗𝑘

)]

=
𝛷𝑘(�̂�𝑘−1)
𝛷𝑘(𝐫∗𝑘−1)

𝑞∗𝑘

6.3. Comparison between the open-loop and closed-loop total profits

At the end of period 𝑛, the set of post-observation optimal retail
prices, [�̂�𝑛] is the result of the optimization problem max𝐫𝑛 𝛱

𝑟 consider-
ing the real values of 𝜋𝑟𝑘s. Whereas the set of pre-observation optimal
retail prices, [𝐫∗𝑛 ] is the result of optimization max𝐫𝑛 𝛱

𝑟
considering the

xpected values of the profits at each period 𝜋𝑟𝑘s. Thus it is trivial that
in a hypothetical 𝑛-period scenario where two retailers face the same
𝜖𝑘 at each period 𝑘, the one that postpones the declaration of her prices
(�̂�𝑘s) until after observation of each 𝜖𝑘 gains higher profit compared to
the retailer who adheres to sub-optimal 𝑟∗𝑘s. In other words, in a price-
postponement scenario, because �̂�𝑘s are the results of the real profit
optimizations, any other set of decision variables (including the set
of 𝑟∗𝑘s) will be sub-optimal. Therefore, 𝛱𝑟

𝐶𝐿 ≥ 𝛱𝑟
𝑂𝐿 where 𝛱𝑟 is the

total discounted real profit gained through 𝑛 periods. Obviously, this
conclusion holds true for centralized channel, as a centralized channel’s
equilibrium problem is structurally equivalent to a that of a retailer (see
the discussion in Corollary 5.6).

6.3.1. Closed-loop optimization for the manufacturer
In general, in the closed-loop optimization scenario, at each period 𝑘

the retailer enjoys the strategic means to find an optimal �̂�𝑘 maximizing
the sum of her current profit and expected future profits. Whereas the
manufacturer always faces the structurally identical (though differently
scaled) expected profit optimization.

At each period 𝑘 after observing 𝜖𝑘, the retailer deviates from the
previously obtained equilibrium price 𝑟∗𝑘 by declaring �̂�𝑘 instead. Due
to the structure of the memory functions, this new pricing scheme will
affect the future demand and thereby the future earnings for both the
retailer and the manufacturer. The retailer’s optimization problem as
generalized in Theorem 6.1 is tailored such that an optimal �̂�𝑘 will
maximize the sum of the current real profit and expected future profits.
Thus after declaring each �̂�𝑘, it is the manufacturer’s turn to modify her
own optimal pricing scheme for the future considering the effects of the
retail prices on future demand and expected earnings.

Comparing to the non-postponement solutions, the retailer always
benefits from postponing her retail price. Whereas the manufacturer’s
may either benefit or lose potential profit compared to the non-
postponement case, depending on the structure of demand mean and
variance, and different realizations of the uncertain demand. In Sec-
tion 7.3, we provide simulated examples with price-postponement
having different effects on the manufacturer’s profit. For a hypo-
thetical scenario wherein the manufacturer is worse off due to price
postponement, see Example 5 in Section 7.3.2.

7. Monte Carlo simulations of the model

In this section, we illustrate the theoretical results and implement
the solution algorithms discussed in Sections 4, 5, and 6. In the exam-
ples analyzed in this section, we use Cobb–Douglas demand functions.
In the construction of the example scenarios and in their Monte Carlo
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Fig. 1. Retail and Wholesale Prices (a), Supply and Expected Demand (b) at Equilibrium States (Example 1, Section 7.1.1).
o
s

W
i

imulations, we use a truncated normal distribution for 𝜖s to ensure
hat the negative noise terms do not cause the entire demand to become
egative.

.1. The open-loop equilibria solutions

Following the order by which the scenarios were presented, we
egin by providing an example of the open-loop equilibria wherein no
ostponement strategies is employed; optimization takes place based
n only the expected values of discounted profits within a number of
eriods.

.1.1. Example 1. Boosting the demand through initial free distribution
For the first example, we consider the following scaled demand

unction.
𝑑𝑘(𝑟𝑘) = 𝜇𝑘(𝑟𝑘) + 𝜎𝑘(𝑟𝑘) 𝜖

where 𝜇𝑘(𝑟𝑘) =
104

𝑟3−0.01𝑘
, 𝜎𝑘(𝑟𝑘) = 0.5𝜇𝑘(𝑟𝑘) + 10∕𝑟𝑘

(40)

Multiplicative memory functions scale the future demand such that an
increase in the current retail price decreases the future demand. Thus,
the memory function at period 𝑘+1 which will scale the future demand
𝐷𝑘+1 is monotonically decreasing with respect to the retail price at all
previous periods.

𝜕𝛷𝑘+1(𝑟1,… , 𝑟𝑛)
𝜕𝑟𝑘

=
𝜕
∏𝑛

𝑘=1 𝜙𝑘+1(𝑟𝑘)
𝜕𝑟𝑘

< 0, ∀𝑘 ∈ {1,… , 𝑛} (41)

This means that the memory element at 𝑘 + 1 must be monotonically
decreasing with respect to 𝑟𝑘.
𝜕𝜙𝑘+1(𝑟𝑘)

𝜕𝑟𝑘
< 0 (42)

ere, for illustration purpose, we use the following functional structure
or memory elements

𝑘+1(𝑟𝑘) = 1 + 𝛾𝑘(𝜅𝑘 − 𝑟𝑘) (43)

here 𝛾𝑘 ≥ 0, the memory strength factor at period 𝑘, is a given
arameter. The given parameter 𝜅𝑘 ≥ 0 can be interpreted as a price
ap; i.e., any initial price above 𝜅𝑘 reduces demand, whereas demand
s more likely to increase if 𝑟𝑘 < 𝜅𝑘. If the scaling factor is negative,
.e., 𝜙𝑘+1(𝑟𝑘) ≤ 0, the optimal order 𝑞𝑘+1 is zero. To avoid this problem,
e consider

𝑘+1(𝑟𝑘) = [1 + 𝛾𝑘(𝜅𝑘 − 𝑟𝑘)]+. (44)

or simplicity, we set 𝛾𝑘 = 0.02, 𝜅𝑘 = 6, 𝛼𝑘 = 1, 𝑐𝑚𝑘 = 2, 𝑐𝑟𝑘 = 0, 𝑠𝑘 = 1,
10

nd 𝑏𝑘 = 0.1 for all 𝑘s. The number of periods, 𝑛, is set to be 40. s
The decision variables at the equilibrium state obtained from The-
rem 4.1 are given in Fig. 1. Fig. 1a illustrates 𝑟∗𝑘 and 𝑤∗

𝑘 and Fig. 1b
hows 𝑞∗𝑘 and the expected demand 𝐷𝑘 = 𝛷𝑘 𝜇𝑘 at each period. We

observe that the holistic optimization algorithm prescribes the retailer
to set 𝑟∗1,…,7 = 0 and 𝑞∗1,…,7 ≈ 0. We also observe the resulting boost in
demand mean 𝐷 in Fig. 1b to begin at period 7. The expected profits
for the two suppliers are 𝛱

𝑟
= 957.38 and 𝛱

𝑚
= 1151.66.

A strategy of this type makes good sense economically; it corre-
sponds to a situation in which a small number of items (𝑞 ≈ 0)
are given away for free at earlier periods to create increased interest
for the product in the next periods. Marketing schemes of this type,
referred to as freemium business models, are also employed by entrant
suppliers who intend to boost the demand in the future by intruding
very low prices in the beginning. According to an article published by
the Wall Street Journal, the freemium market approach is the most
effective strategy for firms seeking to expand their customer base and
enhance their value [31]. In 2015, Samsung utilized this strategy to
increase its market share by permitting Apple iPhone users to test
several of its Galaxy models for a fee of only $1 for 30 days, according
to Forbes [32]. Additionally, a Harvard Business Review report states
that online start-ups frequently adopt the freemium model [33].

7.2. Order postponement scenarios

In this section, we implement the two-step optimization algorithm
delineated in Section 5. In the first step, the retailer and the manufac-
turer, both aware of a forthcoming order-postponement phase, have to
solve the open-loop problem. In order to provide illustrative examples
of different scenarios that may happen in the second step, we simulate
different realizations of the stochastic variable 𝜖𝑘. We create these
𝜖𝑘s based on a given truncated normal distribution and normalized as
discussed in Section 3.

7.2.1. Example 2
In this section, we analyze the order-postponement strategy where

the decentralized supply channel faces the following scaled demand
function.

𝑑𝑘 = 𝜇𝑘(𝑟𝑘) + 𝜎𝑘(𝑟𝑘) 𝜖𝑘 𝜇𝑘 =
104

𝑟
2−𝛽 𝑛−𝑘𝑛
𝑘

, 𝜎𝑘(𝑟𝑘) =
1
2
𝜇𝑘(𝑟𝑘) +

5000
𝑟3

𝛼𝑘 = 0.95𝑘−1, 𝛾𝑘 = 0.01, 𝜅𝑘 = 5, 𝑐𝑚𝑘 = 2, 𝑐𝑟𝑘 = 0, 𝑠𝑘 = 𝑏𝑘 = 0, 𝑛 = 40, 𝛽 = 0.4.

(45)

e use the same functional structure in (44) for the memory elements
n this analysis with 𝛾𝑘 = 0.01 and 𝜅𝑘 = 5. Note that because both the
uppliers are aware that there will be an order-postponement, there
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Fig. 2. Retail and Wholesale Prices (a), Supply and Expected Demand (b) at Equilibrium States (Example 2, Section 7.2.1).
s no buy-back feature embedded in their contract; 𝑏𝑘 = 0. Besides,
ecause, according to (23), the retailer will always address the demand,
o salvage price is needed in the model; 𝑠𝑘 = 0.

At the beginning of the first step, solving the open-loop equilibrium
roblem, we obtain the following results.

𝛱
𝑟
= 5430.44,𝛱

𝑚
= 5066.09

ig. 2(a) illustrates the optimal retail and wholesale prices that the
uppliers set at the first step, in the beginning of each period. The equi-
ibrium state supply quantities and corresponding expected demands
re depicted in Fig. 2(b).

At each period, the retailer postpones her order-quantity until after
emand uncertainty at that period is resolved. Fig. 3(c) shows a possi-
le realization of uncertain demand stemmed from a simulated set of
𝑘s. After observing each 𝜖𝑘, the retailer sets her 𝑞𝑘 accordingly (see
q. (23)). The figure also shows the expected values of demand at each
eriod.

The demand realization shown in Fig. 3(c) results in the following
rofits for the two hypothetical channels described in Theorem 5.1
nd its Corollary 5.4. The subscripts 𝐶𝐿 and 𝑂𝐿 denote closed-loop
order-postponement) and open-loop (no-postponement) scenarios, and
he superscripts 𝑟, 𝑚, 𝑐 denote retailer, manufacturer, and (the whole)
hannel, respectively.
𝑟
𝑂𝐿 = 7123.93 < 𝛱𝑟

𝐶𝐿 = 10110.65 𝛱𝑚
𝑂𝐿 = 5066.09 < 𝛱𝑚

𝐶𝐿 = 5556.08

𝛱𝑐
𝑂𝐿 = 12190.03 < 𝛱𝑐

𝐶𝐿 = 15666.74

he results of this simulated scenario show that facing this set of
𝑘s, both the retailer and the manufacturer, and a fortiori, the whole
hannel benefit from order postponement. We also observe that in a
o-postponement scenario, the real profit obtained by the manufacturer
quals her expected profit: 𝛱𝑚

𝑂𝐿 = 𝛱
𝑚

. This is due to the fact that in
the no-postponement scenario with 𝑏𝑘 = 0, the manufacturer receives
the order quantity at the beginning of each period and thus does not
share the risk of facing an uncertain demand.4

Remark 7.1. Comparing the retailer’s open-loop and closed-loop
overall profits (in the span of the entire 𝑛 periods), we observe that she
is better off with order-postponement. This observation is compatible
with Corollary 5.3. The superiority of the closed-loop equilibrium

4 Note that only through paying a non-zero buy-back price (𝑏𝑘 ≠ 0) to
the retailer, does the manufacturer share the risk stemmed from demand
uncertainty with the retailer. In return, a 𝑏𝑘 ≠ 0 encourages the retailer to
order more items to the manufacturer.
11
solutions for the retailer is readily observable in Fig. 3(a), where the
open-loop retailer, despite having a positive overall profit, experiences
negative revenues at periods 7, 12, 15, 23, 24, 28, and 33. In contrast,
following the closed-loop equilibrium solution ensures a non-negative
profit for the retailer at all 𝑘s. Immune to the risks stemmed from mar-
ket volatility, the manufacturer never experiences negative revenues
(again, due to setting 𝑏𝑘 = 0). See Fig. 3(b).

7.2.2. Example 3. Order-postponement detrimental to the manufacturer
Different realizations of demand uncertainty 𝜖𝑘 may indeed cause

different real profits for the channel members. Iterating the simulation
with a different realization of 𝜖𝑘s, in Fig. 4, we illustrate the results of
the same channel as the one in Example 2, catering to an ensuing real-
ization of the uncertain demand. Similarly, we consider two channels
facing this realization of demand, one with an order-postponing retailer
and one with a retailer who adheres to the open-loop solutions. In this
simulation, the realized profits for these two hypothetical channels and
their individual members are as follows.

𝛱𝑟
𝑂𝐿 = 6357.22 < 𝛱𝑟

𝐶𝐿 = 8509.45 𝛱𝑚
𝑂𝐿 = 5066.09 > 𝛱𝑚

𝐶𝐿 = 4648.47

𝛱𝑐
𝑂𝐿 = 11423.32 < 𝛱𝑐

𝐶𝐿 = 13157.93

In this case, the manufacturer does not benefit from order postpone-
ment (see Fig. 4(b) for details). Despite her relatively lower profit
following the closed-loop solution procedure, the whole channel still
benefits from order postponement. This observation is consistent with
the result of Corollary 5.4.

7.3. Price postponement scenarios

In this section we provide examples of price postponement scenarios
and implement the two-step optimization algorithm discussed in Sec-
tion 6. Since in a price-postponement scenario the retailer does not
necessarily address the entire demand, for the sake of generality, we
have to consider non-zero salvage and buy-back prices in the profit
optimization expressions. In the examples, following the procedure
outlined in Theorem 6.1, at the first step, we provide the open-loop
solutions. Based on the open-loop equilibrium results, the channel
members determine their initial decision variables, i.e. the wholesale
price and the order quantity 𝑤∗

𝑘, 𝛷𝑘(�̂�𝑘−1)𝑞
∗
𝑘 , respectively. Next, we

simulate different scenarios by generating a sequence of 𝜖𝑘s based
on a given truncated normal distribution and normalized as stated in
Section 3. The retailer then observes this demand uncertainty and finds

her optimal retail price �̂�𝑘 accordingly.
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7.3.1. Example 4. Given buy-back prices
We consider the following Cobb–Douglas functions in the demand

structure. We also use the same functional structure in (44) for the
memory elements.

𝑑𝑘 = 𝜇𝑘(𝑟𝑘) + 𝜎𝑘(𝑟𝑘) 𝜖𝑘, 𝜇𝑘(𝑟𝑘) =
104

𝑟3𝑘
, 𝜎𝑘(𝑟𝑘) = 0.3𝜇𝑘(𝑟𝑘) +

100
𝑟2𝑘

𝛼𝑘 = 0.95𝑘−1, 𝛾𝑘 = 0.01, 𝜅𝑘 = 4

𝑐𝑚𝑘 = 2, 𝑐𝑟𝑘 = 0, 𝑏𝑘 = 1.5, 𝑠𝑘 = 0.1, 𝑛 = 40

(46)

The open-loop (no-postponement) solution results for this scenario are
given in Figs. 5 and 6. In Fig. 6, a supply policy change happens at
period 26 when the optimal supply policy for the retailer changes from
under-supplying the market (𝑞∗ < 𝐷) to over-supplying (𝑞∗ > 𝐷). The
orresponding expected values for the profits are as below.

𝛱
𝑟
= 1536.30,𝛱

𝑚
= 1433.55

ow that both the channel members have obtained the open-loop
olutions, at each period, the retailer updates her objective function
fter demand uncertainty is resolved. She then declares her optimal
etail price �̂�𝑘 to the market.

To compare the channel members’ performance with and without
rice-postponement, analogous to the analysis in the previous section,
e consider two hypothetical channels facing the same set of 𝜖𝑘s at each
eriod. In one channel (denoted by the subscript 𝑂𝐿), the retailer does
ot postpone her declaration of the retail price, i.e. she always adheres
o open-loop solutions for optimal prices — 𝑟∗𝑘s. In the other channel

(denoted by the subscript 𝐶𝐿), the retailer postpones her decision on
12

m

retail price after demand uncertainty is resolved and then declares �̂�𝑘
instead (following the procedure delineated in Theorem 6.1).

𝛱𝑟
𝑂𝐿 = 1784.639 < 𝛱𝑟

𝐶𝐿 = 2256.92 𝛱𝑚
𝑂𝐿 = 1547.84 < 𝛱𝑚

𝐶𝐿 = 1673.55

𝑐
𝑂𝐿 = 3332.48 < 𝛱𝑐

𝐶𝐿 = 3930.472

he closed-loop solution results for this realization of 𝜖𝑘s are given
n Figs. 7 and 8. In accordance with the results of the discussion in
ection 6.3, the total expected profit for the price-postponing retailer
following the closed-loop equilibria solutions) exceeds that of the non-
ostponing retailer who adheres to the open-loop equilibria solutions.
See Fig. 7.) Fig. 8 illustrates similar results for two hypothetical
anufacturers. For this realization of the 𝜖𝑘s, the manufacturer, too,

enefits from price-postponement strategy; 𝛱𝑚
𝑂𝐿 < 𝛱

𝑚
𝐶𝐿.

.3.2. Example 5. Price-postponement detrimental to the manufacturer
In the previous example, we observed a realization of stochastic

emand, catering to which the manufacturer was better off following a
rice-postponement strategy. This fortunate outcome, however, is not
uaranteed to occur for the manufacturer, as discussed in Section 6.3.1.
hat is, unlike the retailer who is always better off by price postpone-
ent, the manufacturer may indeed lose potential revenue following

hat strategy. In example 5, we iterate Example 4 (with the same supply
hannel and market) with another set of randomly generated 𝜖𝑘s which
urn out to be detrimental to the manufacturer. As it can be seen in
ig. 10, catering to the stochastic demand ensued from these 𝜖𝑘s, the

anufacturer would have been better off had the channel adhered to
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Fig. 5. Open-loop Equilibrium: Prices (Ex.4).

he open-loop (non-postponement) solution. The open-loop and closed-
oop equilibrium results for the two channel members and the entire
hannel have been juxtaposed below for comparison.

𝑟
𝑂𝐿 = 2009.64 < 𝛱𝑟

𝐶𝐿 = 2456.52 𝛱𝑚
𝑂𝐿 = 1651.28 > 𝛱𝑚

𝐶𝐿 = 1633.07

𝛱𝑐 = 3660.92 < 𝛱𝑐 = 4089.59
13

𝑂𝐿 𝐶𝐿
Fig. 6. Open-Loop Equilibrium: Supply & Demand (Ex.4).

It is noteworthy that despite the manufacturer’s potential loss due
to price-postponement, the entire channel still benefits from post-
ponement. That is, the retailer’s extra revenue due to postponement
outweighs the manufacturer’s potential loss; thus making 𝛱𝑐

𝐶𝐿 > 𝛱
𝑐
𝑂𝐿.

(See the retailer’s equilibrium state results in Fig. 9.)
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Fig. 7. Closed-loop Equilibrium States for the retailer, Ex.4.

Fig. 8. The manufacturer is better off by price-postponement. Ex.4.

Fig. 9. The retailer benefits from price-postponement. Ex.5.

7.3.3. Example 6. Optimal timing for supply/pricing policy change

In Example 1 (Section 7.1.1), we saw a scenario wherein the equi-
librium results given by the open-loop algorithm prescribed abrupt
changes in the pricing strategy. The solution algorithm in that example,
in addition to finding the optimal pricing and supply policies, deter-
mines the optimal duration for the costly, yet demand-boosting strategy
of free distribution (See Fig. 1). Similarly, in Example 4 (Section 7.3.1),
14

𝑟

Fig. 10. The manufacturer is worse off by price-postponement. Ex.5.

Fig. 11. Open-loop Equilibrium Prices. Ex.6.

a supply policy change was prescribed by the open-loop equilibrium
solution (See Fig. 6).

Analogously, the closed-loop equilibrium solution can be employed
to apply changes in the pricing and supply strategies at optimal times.
In this example, we present a scenario where the model determines
the optimal time for an end-season sale, when an abrupt drop in prices
oosts demand. The optimal time in this case is found to be the 31st
eriod. Pricing strategies of this type are typically employed to cater to
he preferences of strategic customers who may postpone their purchase
ntil they see a significant drop in prices. (See Figs. 11, 12, and 13.)

In this example we use the following functional structures and
arameters for the uncertain demand.

𝑘 = 𝜇𝑘(𝑟𝑘) + 𝜎𝑘(𝑟𝑘) 𝜖𝑘 𝜇𝑘 =
104

𝑟2+𝛽𝑘𝑘

, 𝜎𝑘(𝑟𝑘) = 0.5𝜇𝑘(𝑟𝑘) +
5000
𝑟3

𝛼𝑘 = 0.95𝑘−1, 𝛽 = 0.1, 𝛾𝑘 = 0.01, 𝜅𝑘 = 4, 𝑐𝑚𝑘 = 2, 𝑐𝑟𝑘 = 0, 𝑛 = 40

𝑏𝑘 = 1.5, 𝑠𝑘 = 0.1,∀𝑘 ∈ {1,… , 𝑛}.

(47)

imilarly, first, the two suppliers solve the open-loop equilibrium prob-
ems and obtain the following results. The decision variables 𝑟∗𝑘, 𝑤

∗
𝑘, 𝑞

∗
𝑘

or all periods are given in Figs. 11 and 12.

𝛱
𝑟
= 1428.49, 𝛱

𝑚
= 1081.48, 𝛱

𝑐
= 𝛱

𝑟
+𝛱

𝑚
= 2509.97

Now, at each period, the retailer postpones her choice of retail price
until demand uncertainty is resolved and then declares �̂�𝑘. The optimal
prices for a specific scenario based on a simulated realization of 𝜖𝑘s
are given in Fig. 13(c) (comparing the closed-loop �̂�s and open-loop
∗s). The corresponding profits for two hypothetical postponing and
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Fig. 12. Open-loop Equilibrium Order Quantities. Ex.6.

on-postponing channels facing the same realization of 𝜖𝑘s are given
below. In this scenario, too, both the retailer and the manufacturer
benefit from price postponement.

𝛱𝑟
𝑂𝐿 = 2307.13 < 𝛱𝑟

𝐶𝐿 = 3012.14 𝛱𝑚
𝑂𝐿 = 1289.51 < 𝛱𝑚

𝐶𝐿 = 1309.06

𝛱𝑐
𝑂𝐿 = 3596.63 < 𝛱𝑐

𝐶𝐿 = 4321.21

8. Concluding remarks

Despite the ubiquity of its potential applications, multi-period sup-
ply channel optimization in the face of uncertain, time-varying, and
price-dependent demand has received limited attention due to its high
level of complexity. The complexity partly stems from the nestedness of
the ensuing equilibria problems: in a time-dependent setting, a pricing
decision at the present may affect the demand in the future. Therefore,
in addition to reaching an equilibrium between themselves, the supply
channel members must find a balance between immediate profit and re-
duced revenue in the future. A static (single-period) analysis inevitably
cannot cover the effects of current pricing on future demand. Moreover,
the interdependence of the decision variables – supply quantity and
prices – with the behavior of strategic buyers adds another level of
complexity to the problem.

In this paper, we have developed an analytical method for the
dynamic problem of channel optimization in the face of time-varying
and uncertain demand. In doing so, we have considered two types of
settings referred to as the open-loop and closed-loop scenarios.

In the first part of the paper, covering the open-loop cases, we
developed an explicit solution algorithm for the problem of finding
Nash–Stackelberg equilibria without postponement strategies. In this
part, the agents, facing an uncertain and time-varying demand, are risk-
neutral as they try to maximize their expected profits within a given
number of periods.

The second part of the paper is dedicated to solving postponed
feedback Stackelberg games in multi-period (dynamic) frameworks.
Inspired by the (single-period) analysis in [11], we allow the follower
in the feedback Stackelberg setting to postpone one of her decisions
(either supply quantity or retail price) until after demand uncertainty is
resolved at each period. Thus, the results of this section are denoted as
closed-loop (postponement) solutions. Analogously, in the second part,
we propose solution algorithms that use the extra information obtained
due to postponement in devising optimal supply and pricing strategies.
To achieve this, we use the proven subgame perfection of the equilibria
obtained in the first part. Finally, in a number of comparison theorems
and simulated examples, we study the effect of each postponement
15

strategy on individual profits and the overall channel efficiency.
Our findings indicate that postponement strategies are always ben-
eficial for the retailer and for the centralized channel (whose revenue
structure is identical to that of a retailer). However, for a decentralized
channel, due to vertical competitions, there may be scenarios wherein
postponement strategies, i.e., access to extra information, turn out to be
detrimental to the manufacturer (the leader in the Stackelberg setting.)
Monte Carlo simulations of several archetypal scenarios demonstrate
cases wherein postponement strategies are detrimental to the manu-
facturer while the overall channel may still benefit from postponing
operational decisions. As demonstrated by our simulations, the oc-
currence of such scenarios depends on the structure of the contract
between the two supply channel members as well as the realization
of the uncertain demand. Our simulations illustrate the performance
of each channel member with and without implementing postpone-
ment, providing valuable insights into the benefits and trade-offs of
postponement strategies in practice. Our analytical solution algorithms
are presented in several constructive theorems. Thus, not only do they
prove the existence of equilibria in a wide variety of scenarios but
provide programmable instructions for simulating those scenarios. As
illustrated in the examples, these simulations can be used for further
comparative studies.
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Appendix A. A general solution to the bilevel optimization prob-
lem presented in (4)

In the procedure outlined below, we calculate the expected values of
the profits for the retailer and the manufacturer, 𝜋𝑟 and 𝜋𝑚 respectively
in (50) and (54). Each channel member tries to maximize her expected
profit by finding the optimal decision variables. Fortunately, the prob-
lem of optimizing 𝜋𝑟 with respect to 𝑞 is convex and has a closed-form
solution (52). However, the problem of optimizing 𝜋𝑟 with respect to 𝑟
and 𝜋𝑚 with respect to 𝑤 should generally be solved using numerical
methods.

In order to obtain the expected value of the retailer’s profit, we need
to calculate E

[

min(𝐷, 𝑞)
]

. Given 𝑓𝜖 , 𝐹𝜖 , and 𝜖 we define and calculate
the expected sales, , as follows.

(𝑞) ∶= E
[

min(𝐷, 𝑞)
]

= ∫

𝜖

𝜖
min(𝜇 + 𝜎𝑡, 𝑞) 𝑓𝜖(𝑡) 𝑑𝑡

= ∫

𝑞−𝜇
𝜎

𝜖
(𝜇 + 𝜎𝑡) 𝑓𝜖(𝑡) 𝑑𝑡 + ∫

𝜖

𝑞−𝜇
𝜎

𝑞 𝑓𝜖(𝑡) 𝑑𝑡

= 𝑞 − (𝑞 − 𝜇)𝐹𝜖
( 𝑞 − 𝜇

𝜎

)

+ 𝜎 ∫

𝑞−𝜇
𝜎

𝜖
𝑡𝑓𝜖(𝑡)𝑑𝑡

(48)

𝜕 (𝑞)
𝜕𝑞

= 1 − 𝐹𝜖
( 𝑞 − 𝜇

𝜎

)

(49)

From (48), we obtain the expected value of the retailer’s profit 𝜋𝑟.

𝜋𝑟(𝑟, 𝑤, 𝑞) ∶= E[𝜋𝑟(𝑟, 𝑤, 𝑞)] = (𝑟 − 𝑠 − 𝑏)(𝑞) + (𝑏 + 𝑠 − 𝑐 −𝑤) 𝑞 (50)
𝑟
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Fig. 13. Open-loop (No postponement) and Closed-loop (Price-Postponement) Equilibrium States (Example 6, Section 7.3.3).

=

he optimal order quantity for the retailer, 𝑞∗ as a function of 𝑟 and 𝑤
s now obtained as below.

𝜕𝜋𝑟

𝜕𝑞
= (𝑟 − 𝑠 − 𝑏)

(

1 − 𝐹𝜖
( 𝑞 − 𝜇

𝜎

)

)

+ (𝑏 + 𝑠 − 𝑐𝑟 −𝑤) = 0 (51)

rom the expressions in (49) and (50) it is readily observable that
[𝜋𝑟(𝑟, 𝑤, 𝑞)] is convex with respect to 𝑞; therefore, solving (51) yields
∗(𝑟, 𝑤) as the argmax of the retailer’s expected profit.

∗(𝑟, 𝑤) = 𝜇(𝑟) + 𝜎(𝑟)𝐹−1
𝜖

(

𝑟 −𝑤 − 𝑐𝑟
𝑟 − 𝑠 − 𝑏

)

(52)

ubstituting (52) in (48) and the result in (50), we obtain the following.

𝜋𝑟(𝑟, 𝑤) = (𝑟 −𝑤 − 𝑐𝑟)𝜇(𝑟) + (𝑟 − 𝑠 − 𝑏) 𝜎(𝑟)∫

𝑧

𝜖
𝑡𝑓𝜖(𝑡)𝑑𝑡

where 𝑧(𝑟, 𝑤) = 𝐹−1
𝜖

( 𝑟 −𝑤 − 𝑐𝑟
𝑟 − 𝑠 − 𝑏

)

(53)

ote that because 𝜖 < 𝑧 < 𝛿, the term ∫ 𝑧𝜖 𝑡𝑓𝜖(𝑡)𝑑𝑡 is always negative,
which in turn makes (𝑟− 𝑠− 𝑏)𝜎(𝑟) ∫ 𝑧𝜖 𝑡𝑓𝜖(𝑡)𝑑𝑡 also negative. This means
that stochasticity in demand always reduces the expected profit for the
retailer.

Following the procedure outlined in (4) a numerical solution to
max𝑟 𝜋

𝑟(𝑟, 𝑤) in (53) yields 𝑟∗(𝑤) which is in turn substituted in the
expression for the manufacturer’s expected profit (55).

𝜋𝑚 = (𝑤 − 𝑐 )𝑞 − 𝑏(𝑞 −𝐷)+ = (𝑤 − 𝑐 − 𝑏)𝑞 + 𝑏min(𝐷, 𝑞) (54)
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𝑚 𝑚
𝜋𝑚(𝑤) = 𝜇 (𝑟∗(𝑤))
(

𝑤 − 𝑐𝑚
)

+ 𝜎 (𝑟∗(𝑤))
[

𝑧∗(𝑤)
(

𝑤 − 𝑐𝑚 − 𝑟∗−𝑤−𝑐𝑟
𝑟∗−𝑠−𝑏

)

+𝑏 ∫ 𝑧
∗

𝜖 𝑡𝑓𝜖(𝑡)𝑑𝑡
]

where 𝑧∗(𝑤) = 𝐹−1
𝜖

(

𝑟∗−𝑤−𝑐𝑟
𝑟∗−𝑠−𝑏

)

(55)

Appendix B. Theorem 4.1

Proof. The memory-based expression for demand at each period 𝐷𝑘 is
given by (12). Due to linearity of the expressions for 𝜋𝑟𝑘 and 𝜋𝑚𝑘 with
respect to 𝐷 in the single-period case, for the 𝑘th period, the resulting
expressions for the order quantity and the expected values of the profits
will be as below.

𝐷𝑘(𝑘, 𝐫𝑘) = �̃�𝑘(𝐫𝑘) + �̃�𝑘(𝐫𝑘) 𝜖𝑘 = 𝛷𝑘(𝐫𝑘−1)
[

𝜇𝑘(𝑟𝑘, 𝑘) + 𝜎𝑘(𝑟𝑘, 𝑘) 𝜖𝑘
]

(56)

E[𝜋𝑟𝑘] = (𝑟𝑘 −𝑤𝑘 − 𝑐𝑟𝑘 )𝜇𝑘(𝐫𝑘) + (𝑟𝑘 − 𝑠𝑘 − 𝑏𝑘) 𝜎𝑘(𝐫𝑘)∫
𝑧𝑘

𝜖𝑘
𝑡𝑓𝜖(𝑡)𝑑𝑡

∶=𝜋𝑟𝑘
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
[

(𝑟𝑘 −𝑤𝑘 − 𝑐𝑟𝑘 )𝜇𝑘(𝑟𝑘) + (𝑟𝑘 − 𝑠𝑘 − 𝑏𝑘) 𝜎𝑘(𝑟𝑘)∫

𝑧𝑘

𝜖𝑘
𝑡𝑓𝜖(𝑡)𝑑𝑡

]

⋅𝛷𝑘(𝐫𝑘−1)

where 𝑧𝑘(𝑟𝑘, 𝑤𝑘) = 𝐹−1
𝜖

( 𝑟𝑘 −𝑤𝑘 − 𝑐𝑟𝑘
𝑟𝑘 − 𝑠𝑘 − 𝑏𝑘

)

(57)

We refer to 𝜋𝑟𝑘 as scaled expected profit for the retailer at 𝑘. Thus (57)
can be simplified as below.
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E[𝜋𝑟𝑘] = 𝜋𝑟𝑘 ⋅𝛷𝑘(𝐫𝑘−1) (58)

The manufacturer’s local-in-time expected profit is calculated as below.

E[𝜋𝑚𝑘 ] =

[

𝜇𝑘
(

𝑟∗𝑘(𝑤𝑘)
) (

𝑤𝑘 − 𝑐𝑚𝑘
)

+𝜎𝑘
(

𝑟∗𝑘(𝑤𝑘)
)

(

𝑧∗𝑘(𝑤𝑘)
(

𝑤𝑘 − 𝑐𝑚𝑘 −
𝑟∗𝑘 −𝑤𝑘 − 𝑐𝑟𝑘
𝑟∗𝑘 − 𝑠𝑘 − 𝑏𝑘

)

+𝑏𝑘 ∫

𝑧∗𝑘

𝜖𝑘
𝑡𝑓𝜖(𝑡)𝑑𝑡

)]

⋅𝛷𝑘(𝐫∗𝑘−1)

where 𝑧∗𝑘(𝑤) = 𝐹−1
𝜖

( 𝑟∗𝑘 −𝑤𝑘 − 𝑐𝑟𝑘
𝑟∗𝑘 − 𝑠𝑘 − 𝑏𝑘

)

(59)

Analogous to the single-period case, the numerical value for the optimal
order quantity is then obtained from the following expression.

𝑞∗𝑘 = 𝛷𝑘(𝐫∗𝑘−1)
[

𝜇𝑘(𝑟∗𝑘) + 𝜎𝑘(𝑟
∗
𝑘)𝐹

−1
𝜖𝑘

( 𝑟∗𝑘 −𝑤
∗
𝑘 − 𝑐𝑟𝑘
𝑟∗𝑘

)]

(60)

Similarly we refer to the term inside the brackets in as the scaled
expected profit for the manufacturer at 𝑘 and denote it by 𝜋𝑟𝑚. Whence
s simplified as below.

[𝜋𝑚𝑘 ] = 𝜋𝑚𝑘 ⋅𝛷𝑘(𝐫∗𝑘−1) (61)

In general, the argmax of the expected profit in a specific period 𝑘 for
either supplier, i.e. the result of max𝑟𝑘 ,𝑚𝑘 E[𝜋

𝑟,𝑚
𝑘 ] is not equal to the value

of the 𝑘th optimal decision variable for that supplier when the objective
function is the whole expected profit within the periods 1 to 𝑛. In other
words, in general,

max
𝑟𝑘 ,𝑚𝑘

E[𝜋𝑟,𝑚𝑘 ] ≢ max
𝑟𝑘 ,𝑚𝑘

𝛱
𝑟,𝑚
. (62)

We refer to the results of the RHS of (62) as myopic solutions and to
those of its LHS as the holistic ones. Our objective is to find the vectors
of the latter — those decision variables which, considering the effect of
the pricing in the past on current and future demand, manipulate the
demand such that they yield highest amounts of expected profits for
each decision maker over the whole time interval between 1 and 𝑛.

To that end, we begin by analyzing the retailer’s optimization
problem and re-write the general optimization problem in (7) using the
results of (58).

max
𝐫𝑛

𝛱
𝑟
= 𝜋𝑟1(𝑟1, 𝑤1, 𝑞1) +⋯ + 𝛼𝑘𝛷𝑘(𝐫𝑘−1)𝜋

𝑟
𝑘(𝑟𝑘, 𝑤𝑘, 𝑞𝑘)

+⋯ + 𝛼𝑛𝛷𝑛(𝐫𝑛−1)𝜋
𝑟
𝑛(𝑟𝑛, 𝑤𝑛, 𝑞𝑛)

(63)

nalogous to the approach adopted in Section 4.3, we observe that the
ariable 𝑟𝑛 appears only in the final discounted profit term — more
recisely in 𝜋𝑟𝑛. Thus following the backward induction process, we

begin the optimization from the final period.

max
𝑟𝑛

𝛱
𝑟
(𝐫𝑛) ≡ max

𝑟𝑛
𝜋𝑟𝑛(𝑟𝑛) (64)

At each period 𝑘 we define 𝐽 𝑟𝑘 as the discounted expected value of the
profit obtained from that period onward, i.e. within the time interval
{𝑘,… , 𝑛}.

𝐽 𝑟𝑘 = 𝛼𝑘𝛷𝑘(𝐫𝑘−1)𝜋
𝑟
𝑘(𝑟𝑘) +⋯ + 𝛼𝑛𝛷𝑛(𝐫𝑛−1)𝜋

𝑟
𝑛(𝑟𝑛) (65)

otice that 𝐽 𝑟1 = 𝛱
𝑟
. We also observe that in this structure, beginning

rom the last period, the variable 𝑟𝑘 in 𝛱𝑟 appears for the first time
in the expression for 𝐽 𝑟𝑘. Having solved the RHS of (64) we obtain 𝑟∗𝑛
and proceed to the previous period 𝑛−1. Knowing 𝑟∗𝑛 means that in the
holistic optimization problem (63) the unknown variable 𝑟𝑛−1 appears
only in the two final terms for the expected profit. This is stated below.
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p

𝐽 𝑟𝑛−1(𝐫𝑛−1) = 𝛼𝑛−1𝛷𝑛−1(𝐫𝑛−2)𝜋
𝑟
𝑛−1(𝑟𝑛−1) + 𝛼𝑛𝛷𝑛(𝐫𝑛−1)𝜋

𝑟
𝑛(𝑟

∗
𝑛)

= 𝛷𝑛−1(𝐫𝑛−2)

∶=J𝑟𝑛−1∶ a function of 𝑟𝑛−1 only
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
[

𝜋𝑟𝑛−1(𝑟𝑛−1) +
𝛼𝑛
𝛼𝑛−1

𝜙𝑛(𝑟𝑛−1) 𝜋
𝑟
𝑛(𝑟

∗
𝑛)

⏟⏟⏟
given

] (66)

The multiplier effect in (66) is the crucial observation in this paper as it
demonstrates how the problem of finding the optimal 𝑟∗𝑛−1 boils down
to the following single-variable optimization problem.

max
𝑟𝑛−1

𝛱
𝑟
(𝐫𝑛−1) ≡ max

𝑟𝑛−1
𝐽 𝑟𝑛−1(𝐫𝑛−1) ≡ max

𝑟𝑛−1
J𝑟𝑛−1(𝑟𝑛−1) (67)

Going backward in time, we can generalize this procedure as shown in
(68), given that 𝛼1 = 1 and 𝛷1(⋅) = 1.

𝐽 𝑟𝑘 ∶= 𝛼𝑘 𝛷𝑘(𝐫𝑘−1)
⏟⏞⏟⏞⏟

price history
∶=J𝑟𝑘(𝑟𝑘)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(

𝜋𝑟𝑘(𝑟𝑘) + 𝜙𝑘+1(𝑟𝑘)
[𝛼𝑘+1
𝛼𝑘

𝜋𝑟𝑘+1(𝑟
∗
𝑘+1) +⋯ +

𝛼𝑛
𝛼𝑘
𝜋𝑟𝑛(𝑟

∗
𝑛)

𝑛
∏

𝑖=𝑘+2
𝜙𝑖(𝑟∗𝑖−1)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶= 𝑟𝑘= expected (future) values, given at 𝑘th period

)

max
𝑟𝑘

𝐽 𝑟𝑘

(68)

elow, we define  𝑟
𝑘 as the scaled expected future profit within {𝑘 +

,… , 𝑛}, and J𝑟𝑘 as the scaled expected profit within {𝑘,… , 𝑛}.

𝑟
𝑘 ∶= 1

𝛼𝑘

𝑛
∑

𝑗=𝑘+1

𝑗
∏

𝑖=𝑘+2
𝜙𝑖(𝑟∗𝑖−1) ⋅ 𝛼𝑗𝜋

𝑟
𝑗 (𝑟

∗
𝑗 ) (69)

J𝑟𝑘(𝑟𝑘) ∶= 𝜋𝑟𝑘 + 𝜙𝑘+1(𝑟𝑘)
𝑟
𝑘 (70)

s it is demonstrated in (68), when the backward induction process
eaches the 𝑘th period, the scaled profit expected to gain in the future
enoted by  𝑟

𝑘 has been determined and is treated as a constant. We
lso observe the following relationship between J𝑟𝑘+1 and  𝑟

𝑘.

J𝑟𝑘+1(𝑟
∗
𝑘+1) =

𝛼𝑘
𝛼𝑘+1

 𝑟
𝑘 1 ≤ 𝑘 < 𝑛 (71)

ote that, unlike  𝑟
𝑘 and J𝑟𝑘+1, 𝐽

𝑟
𝑘+1 includes the entire pricing history

𝑘(𝐫𝑘−1) and hence is not known at 𝑘. In fact, 𝐽 𝑟𝑘s are not resolved until
he backward induction reaches 𝑘 = 1. The effect of the past repre-
ented by 𝛷𝑘(𝐫𝑘−1), though not yet determined by backward induction,
s factorized in (68) such that it only scales the expected profit from 𝑘
nward. Therefore, we will have:

max
𝑟𝑘

𝛱
𝑟
(𝐫𝑛) ≡ max

𝑟𝑘
𝐽 𝑟𝑘(𝐫𝑘) ≡ max

𝑟𝑘
J𝑟𝑘(𝑟𝑘) (72)

Combining (68) and (71) we can summarize the retailer’s part of the
multi-period bilevel optimization in the following recursive procedure.

 𝑟
𝑛 = 0 no future earning after 𝑛

max
𝑟𝑘

J𝑟𝑘(𝑟𝑘) = max
𝑟𝑘

[

𝜋𝑟𝑘(𝑟𝑘) + 𝜙𝑘+1(𝑟𝑘)
𝑟
𝑘

]

𝑘 = 𝑛,… , 1 (backward) → yields 𝑟∗𝑘

 𝑟
𝑘−1 =

𝛼𝑘−1
𝛼𝑘

J𝑟𝑘(𝑟
∗
𝑘) 𝑘 = 𝑛,… , 2 (backward)

(73)

From the procedure outlined in (73) it is readily observable that, in
general, the holistic optimal retail prices (𝑟∗𝑘s) are not the optimizers
of individual 𝜋𝑟𝑘s. The only situation where 𝑟𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝜋𝑟𝑘) is when
𝑘+1 = 𝐶𝑘, where 𝐶𝑘 is a constant. A scenario in which all the memory
lements are constants, will create identical repeated games at different
eriods.
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The same structure is employed to decouple the nested optimization
problems of the manufacturer. Notice that as in the single-period case
in (4), each 𝑟∗𝑘 is obtained as a function of manufacturing price at 𝑘,
i.e. 𝑟∗𝑘 = 𝑟∗𝑘(𝑤𝑘).

max
𝐰𝑛

𝛱
𝑚
(𝐰𝑛) = max

𝐰𝑛

𝑛
∑

𝑘=1
𝛼𝑘𝛷𝑘(𝐫∗𝑘 )𝜋

𝑚
𝑘 (𝑤𝑘) (74)

𝐽𝑚𝑘 (𝐰𝑘) =
𝑛
∑

𝑖=𝑘
𝛼𝑖𝛷𝑖(𝐫∗𝑖 )𝜋

𝑚
𝑖 (𝐰𝑖) (75)

max
𝑤𝑘

𝐽𝑚𝑘 (𝐰𝑘) = 𝛼𝑘𝛷𝑘(𝐫∗𝑘−1)

J𝑚𝑘 (𝑤𝑘)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
[

𝜋𝑚𝑘 (𝑤𝑘) + 𝜙𝑘+1
(

𝑟∗𝑘(𝑤𝑘)
)

𝑚
𝑘

]

(76)

Where 𝑚
𝑘 in (76) is the scaled expected value of future (time interval

within {𝑘 + 1,… , 𝑛}) discounted profit. By the time the backward in-
duction process reaches the 𝑘th period, 𝑚

𝑘 has already been calculated.
This makes J𝑚𝑘 a function of only 𝑤𝑘.

𝑚
𝑘 =

𝛼𝑘+1
𝛼𝑘

𝜋𝑚𝑘+1(𝑤𝑘+1) +⋯ +
𝛼𝑛
𝛼𝑘
𝜋𝑚𝑛 (𝑤𝑛)

𝑛
∏

𝑖=𝑘+2
𝜙𝑖(𝑟∗𝑖−1)

𝑚
𝑛 = 0

(77)

inally, we can decouple the nested 𝑛−variable optimization problem
nto 𝑛 single variable optimization problems.

max
𝑤𝑘

𝛱
𝑚
(𝐰𝑛) ≡ max

𝑤𝑘
𝐽𝑚𝑘 (𝐰𝑘) ≡ max

𝑤𝑘
J𝑚𝑘 (𝑤𝑘) (78)

Analogous to the retailer’s case, the manufacturer’s part of the multi-
period bilevel optimization is outlined in the following recursive pro-
cedure.

𝑚
𝑛 = 0 no future earning after 𝑛

max
𝑤𝑘

J𝑚𝑘 (𝑤𝑘) = max
𝑤𝑘

[

𝜋𝑟𝑘(𝑤𝑘) + 𝜙𝑘+1
(

𝑟𝑘(𝑤𝑘)
)

𝑚
𝑘

]

𝑘 = 𝑛,… , 1 → yields𝑤∗
𝑘

𝑚
𝑘−1 =

𝛼𝑘
𝛼𝑘−1

J𝑚𝑘 (𝑤
∗
𝑘) 𝑘 = 𝑛,… , 2.

□

(79)

.1. Theorem 4.2

roof (By Induction). We need to prove that if {𝑟∗𝑗 ,… , 𝑟∗𝑛} and {𝑤∗
𝑗 ,… ,

𝑤∗
𝑛} are subsets of the equilibrium results for [𝛱

𝑟
,𝛱

𝑚
, 1 ∶ 𝑛], then they

also constitute an equilibrium for [𝐽 𝑟𝑗 , 𝐽
𝑚
𝑗 , 𝑗 ∶ 𝑛].

Beginning from the final period, we analyze the two agents’ equilib-
rium problem. In the expressions for both 𝐽 𝑟𝑘 and 𝛱

𝑟
the variable 𝑟𝑛 ap-

pears in 𝜋𝑟𝑛(𝑟𝑛) only. The same logic is applicable to the manufacturer’s
olution procedure.

ax
𝑟𝑛

𝐽 𝑟𝑘 ≡ max
𝑟𝑛

𝜋𝑟𝑛 ≡ max
𝑟𝑛

𝛱𝑟

ax
𝑤𝑛

𝐽𝑚𝑘 ≡ max
𝑤𝑛

𝜋𝑚𝑛 ≡ max
𝑤𝑛

𝛱𝑚

hus, at 𝑛 the conclusion is obvious. The rest of the proof for an
rbitrary 𝑘, 𝑗 < 𝑘 < 𝑛 has been explained in detail within the discussion

resulting in (72) and (78). □

Appendix C. Theorem 5.1

Proof. We have to show that 𝜋𝑟𝐶𝐿𝑘 ≥ 𝜋𝑟𝑂𝐿𝑘 .

𝜋𝑟𝐶𝐿𝑘 = 𝑟∗𝑘𝐷𝑘 −𝑤∗
𝑘𝑞𝑘

(𝐷𝑘=𝑞𝑘)= (𝑟∗𝑘 −𝑤
∗
𝑘)𝐷𝑘

𝜋𝑟𝑂𝐿𝑘 = 𝑟∗𝑘min
(

𝐷𝑘
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝛷𝑘(𝐫∗𝑘−1)

[

𝜇𝑘(𝑟∗𝑘) + 𝜎𝑘(𝑟
∗
𝑘) 𝜖𝑘

]

, 𝑞∗𝑘
)

−𝑤𝑘𝑞∗𝑘
= 𝑟∗ min(𝐷𝑘, 𝑞

∗
𝑘) −𝑤

∗
𝑘𝑞

∗
𝑘
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Comparing with a no-postponement scenario, we have to analyze
two possible situations.

1 - When the retailer under-orders: 𝑞∗𝑘 < 𝐷𝑘, min(𝐷𝑘, 𝑞∗𝑘) = 𝑞∗𝑘
Then 𝜋𝑟𝑂𝐿𝑘 = (𝑟∗𝑘 −𝑤

∗
𝑘)𝑞

∗
𝑘 < (𝑟∗𝑘 −𝑤

∗
𝑘)𝐷𝑘 = 𝜋𝑟𝐶𝐿𝑘

2- When the retailer over-orders: 𝑞∗𝑘 > 𝐷𝑘, min(𝐷𝑘, 𝑞∗𝑘) = 𝐷∗
𝑘

𝜋𝑟𝑂𝐿𝑘 = 𝑟∗𝑘𝐷𝑘 −𝑤∗
𝑘𝑞

∗
𝑘 < 𝑟

∗
𝑘𝐷𝑘 −𝑤∗

𝑘𝐷𝑘 = 𝜋𝑟𝐶𝐿𝑘
Note that in the proof above, we compared 𝑞𝑘 = 𝐷𝑘 with a general

𝑞∗𝑘 ≠ 𝑞𝑘. We did not use the fact that 𝑞∗𝑘 = E[𝐷𝑘] which stems
from the a priori knowledge of the decision-makers about an order-
postponement taking place in the second step. The proof thus shows
that for a given 𝑟∗𝑘, an order quantity equal to the resulting uncertain
demand will outperform any other arbitrary order quantity, including
the one prescribed by the open-loop solution. Equality, 𝜋𝑟𝐶𝐿𝑘 = 𝜋𝑟𝑂𝐿𝑘 ,
happens when the mean of demand is equal to the real demand, 𝑞∗𝑘 =
E[𝐷𝑘] = 𝐷𝑘. □

C.1. Corollary 5.3

Proof.

𝛱𝑟
𝐶𝐿 =

𝑛
∑

𝑘=1
𝛼𝑘𝜋

𝑟
𝐶𝐿𝑘

≥
𝑛
∑

𝑘=1
𝛼𝑘𝜋

𝑟
𝑂𝐿𝑘

= 𝛱𝑟
𝑂𝐿 □

C.2. Corollary 5.4

Proof. We denote the channel profit for the postponing channel at
period 𝑘 by 𝜋𝑐𝐶𝐿𝑘 and for the non-postponing channel by 𝜋𝑐𝑂𝐿𝑘 .

𝜋𝑐𝐶𝐿𝑘 = (𝑟∗𝑘 − 𝑐𝑚𝑘 )𝐷𝑘

𝜋𝑐𝑂𝐿𝑘 = 𝑟∗𝑘 min(𝐷𝑘, 𝑞
∗
𝑘) − 𝑐𝑚𝑘𝑞

∗
𝑘

𝜋𝑐𝐶𝐿𝑘 − 𝜋
𝑐
𝑂𝐿𝑘

= (𝑟∗𝑘 − 𝑐𝑚𝑘 )𝐷𝑘 − 𝑟∗𝑘min(𝐷𝑘, 𝑞
∗
𝑘) + 𝑐𝑚𝑘𝑞

∗
𝑘

≥ (𝑟∗𝑘 − 𝑐𝑚𝑘 )
(

𝐷𝑘 − min(𝐷𝑘, 𝑞
∗
𝑘)
)

≥ 0 □

C.3. Corollary 5.6

Proof. It suffices to show that the profit expression for centralized
channels is identical to that of a retailer.

𝜋𝑐𝑘 = 𝜋𝑟𝑘 + 𝜋
𝑚
𝑘 = 𝑟min(𝐷𝑘, 𝑞𝑘) − 𝑐𝑚𝑘𝑞𝑘

We observe that a centralized channel is equivalent to a retailer
(newsvendor) who has to pay only a fixed manufacturing cost 𝑐𝑚𝑘 at
each period. Thus, the result of Theorem 5.1 is applicable to centralized
channels. □
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