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Abstract

Offshore wind turbines are approaching 300 m.a.s.l., where the dynamics of
the atmospheric turbulence remain unclear. Present understanding is limited,
with direct measurements above 100 m from the sea surface being scarce.

The thesis assesses the feasibility of deducing the along-wind spectrum
from measurements of the vertical velocity combined with numerical mod-
eling, using the uniform shear model (Mann, 1994). The vertical component
experiences less influence from mesoscale motions, enhancing stationarity
and potentially simplifying instrumentation and data collection. The primary
objective is to determine if the along-wind standard deviation (σu), the gov-
erning parameter in modeling wind loads on wind turbines (Wiley et al.,
2023), can be accurately estimated from the deduced along-wind spectrum.

The method was tested on sonic anemometer data from the FINO1 plat-
form at 81.5 m collected during 2007 and 2008 for two different cases: 1) all
velocity components were known, and 2) only the vertical component was
known. Fitting to all components showed good agreement between the es-
timated σu and the target values. Encountering local minima was a challenge
when fitting to only the vertical component. This was partially avoided by
using a narrower wavenumber interval and lower iteration tolerances in the
fitting. The method performed quite well for mean wind speeds up to 17
m s−1. For higher mean wind speeds, σu was significantly underestimated,
possibly due to underestimation of the model parameter Γ.

Additionally, the method was briefly tested on vertical velocity data from
a Leosphere WindCube 100S, with a novel attempt to correct for spatial
averaging. Lack of simultaneous point-measurements prevented verification
of the correction method and the deduced along-wind spectrum obtained
from fitting the uniform shear model to the original and corrected spectrum.
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Acronyms

ABL atmospheric boundary layer

CW continuous wave

DBS doppler beam swinging

LOS line-of-sight

MOST Monin-Obukhov similarity theory

PPI plan position indicator

PSD power spectral density

RDT rapid distortion theory

RHI range height indicator

RMSE root mean square error

US uniform shear

VAD velocity azimuth display
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Chapter 1

Introduction

1.1 Motivation

The world is facing one of the greatest crises in history - the climate crisis
(Hoegh-Guldberg et al., 2019). A crucial step in mitigating this crisis is to
significantly reduce, preferably phase out, the use of fossil fuel. To facilit-
ate this transition, there is an urgent need to strengthen renewable energy
production. Following hydropower, wind power stands presently as the
second-largest contributor to global renewable electricity generation (IEA,
2023). Together with solar energy, wind plays a central role in realizing the
IEA’s ambitious goal of achieving Net Zero Emissions by 2050 (IEA, 2021).
To reach this target, wind electricity production must reach 7400 TWh by
2030, requiring an average annual capacity increase of 17%. However, as of
2022, the annual increase stood at 14% (IEA, 2023). The continued growth
of wind power is essential for meeting renewable energy targets and combat-
ing the climate crisis, necessitating ongoing research and innovation in the
field.

Wind turbines have grown in size since the early 2000s (EERE, 2023).
This is because the power production of a wind turbine is proportional
to the square of the rotor radius and the cube of the wind speed, which
generally increases with altitude. Offshore environments are characterized by
higher wind speeds and lower atmospheric turbulence compared to onshore,
facilitating wind energy production. This has led to offshore wind turbines
reaching heights of nearly 300 m above sea level. At such heights the
dynamics of atmospheric turbulence remain unclear. Present understanding
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is limited, with direct measurements above 100 m from the sea surface being
scarce. This gap in knowledge represents a significant obstacle in the field
of wind energy research, as identified by Veers et al. (2019).

1.2 Problem statement and objectives
This study aims to enhance our understanding of offshore wind turbulence
from 50 m to 300 m above the surface by combining field measurements
and numerical modelling, using the uniform shear model (Mann, 1994). The
along-wind spectrum is of particular interest as the standard deviation of the
along-wind component (σu) can be estimated from its spectrum. σu is the
governing parameter in modeling of wind loads on a wind turbine (Wiley
et al., 2023). Therefore, the objectives of the thesis are to:

• assess the feasibility of deducing the along-wind spectrum from meas-
urements of only the vertical wind component,

• assess if σu can be accurately estimated from the deduced spectrum.

To the author’s knowledge, such a study has not been conducted before. The
motivation for using only the vertical component lies in its lesser sensitivity
to non-turbulent (mesoscale) motions compared to the horizontal compon-
ents, thereby resulting in greater stationarity. In wind energy, atmospheric
turbulence is assumed to be a stationary random process. For such a frame-
work, examining the statistical properties of wind is relevant only when
the process is stationary. Hence, stationarity acts as a crucial criterion for
conducting a meaningful analysis of wind data. Another benefit of using the
vertical component is that the instrumentation and data collection process
may be simplified if only one wind component is required, for instance by
using a Doppler wind lidar.

The outline for the thesis is visualized in Fig. 1.1. In chapter 2, the
theoretical background are explained. Chapter 3 describes the two data sets
used in the thesis, the first obtained from sonic measurements at the FINO1
platform (section 3.1) and the second from lidar measurements from the
Lollex field campaign at Rødby harbour (section 3.2). Chapter 4 presents
the method for fitting the uniform shear (US) model to data. The results and
discussion are divided into three; chapter 5, chapter 6, and chapter 7. The
final conclusions and thoughts about future work are presented in chapter 8.
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Chapter 2

Background

2.1 The atmospheric boundary layer
The atmospheric boundary layer (ABL) is the lowermost part of the atmo-
sphere that is directly influenced by the presence of the surface of the earth.
The ABL responds to surface forcings like frictional drag, evaporation and
heat transfer within an hour or less (Stull, 1988). The height of the ABL
varies between a couple of hundred meters to a few kilometers (Pal & Lee,
2019).

2.1.1 Turbulence

The wind speed can be modelled as a three-dimensional random process with
three components; the along-wind u (x-axis), the crosswind v (y-axis) and
vertical w (positive z-axis). For each component (u,v,w), the instantaneous
velocity can be decomposed in a mean part (denoted by an overline) and a
fluctuating (turbulent) part (denoted with a prime). This is called Reynolds
decomposition, and is given by (Monin, 1958):

u = u+u′ (2.1)

v = v+ v′ (2.2)

w = w+w′ (2.3)

where the overbar denotes the time average.
If the flow is assumed horizontal and stationary, the vertical and lateral

velocities are zero in average (v = w ≈ 0 m s−1). For structural design, it is



6 Background

also assumed that the fluctuating part is a stationary and Gaussian random
process (Davenport, 1964).

Turbulence can be idealized as consisting of several irregular swirls
of motions of different sizes called eddies. Taylor’s hypothesis states that
turbulence can be considered frozen as it advects past a sensor (Taylor, 1997).
Turbulence is not really frozen. However, the simplification holds when the
temporal scale for the eddies to evolve is larger than the time required for
the eddy to advect past the sensor (Stull, 1988). Taylor’s hypothesis makes it
possible to convert time series into spatial series. Using Taylor’s hypothesis,
the wavenumber k can be written as

k =
2π f

u
(2.4)

where u is the mean wind speed and f is the frequency.
The relative strength of eddies of different time scales is given by the

power spectral density (PSD) of the wind fluctuations (Stull, 1988). The
spectral density function of two stationary time series x(t) and y(t) is defined
as the Fourier transform of the correlation function Rxy between them. The
correlation function is called cross-correlation function if the two time series
represent different data and autocorrelation function if the two time series
are equal. The autospectral and the cross-spectral density functions are given
by Bendat & Piersol (1980)

Sxx(ω) =
∫ +∞

−∞

Rxx(τ)e−iωτ dω (2.5)

Sxy(ω) =
∫ +∞

−∞

Rxy(τ)e−iωτ dω (2.6)

where ω is the angular frequency and τ is a time delay. The relation in
Eq. (2.5) is called the Wiener-Khinchin theorem (Khintchine, 1934). Equa-
tions (2.5) and (2.6) are called two-sided spectra because they are defined
over all frequencies. In practice, it is more convenient to work with positive
frequencies only (single-sided spectra).

Van der Hoven (1957) found that there is a spectral gap in the horizontal
velocity spectra at a period of about 1 hour (Fig. 2.1), due to the lack of
physical processes corresponding to these frequencies. The spectral gap
separates the turbulent fluctuations from the fluctuations associated with
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mesoscale motion. When studying turbulence, the record duration is usually
between 10 and 60 minutes, to ensure that the observed fluctuations are
caused by turbulence.

Brought to you by UNIVERSITETSBIBLIOTEKET I | Unauthenticated | Downloaded 09/11/23 02:26 PM UTC

Figure 2.1: Horizontal wind speed spectrum reprinted from Van der Hoven
(1957). At about 100 m.

The standard deviation of the wind velocity component can be retrieved
using Newland (2012)

σi =

√∫
∞

0
Si( f )d f (2.7)

which is also related to the Wiener-Khinchin theorem (Eq. (2.5)). The
standard deviation of the along-wind component (σu) governs wind load
modeling on wind turbines, which is reflected in the work by Wiley et al.
(2023).

The turbulence intensity is a conventional method for quantifying turbu-
lence within the wind energy industry, and is defined by

Ii =
σi

u
. (2.8)

The turbulence intensity is for instance used in classification of wind turbines
(IEC 61400-1, 2005).

IEC 61400-1 (2005) states that the representative value of the along-wind
turbulence standard deviation in the normal turbulence model shall be given
by the 90th percentile for a given hub height wind speed. For offshore wind
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conditions, the 10-min standard deviation of the along-wind component may
be calculated from (IEC 61400-3, 2009)

σu,10-min =
uhub

ln(zhub/z0)
+1.28×1.44× I15 (2.9)

where I15 is the average value of hub height turbulence intensity at uhub =

15 m s−1 and the surface roughness parameter z0 can be derived from the
Charnock expression

z0 =
AC

g

[
κuhub

ln(zhub/z0)

]2

(2.10)

where g is the gravitational acceleration, κ ≈ 0.4 is the von Kármán constant
and AC is Charnock’s constant. AC = 0.011 is recommended for open sea
(IEC 61400-3, 2009). The 1-hour average turbulence standard deviation can
be related to σu,10-min by

σu,1-hour = σ1,10-min +0.2 m s−1. (2.11)

2.1.2 Atmospheric stability

The dynamic stability of the atmosphere is often described using the nondi-
mensional stability parameter

ζ =
z

LMO
(2.12)

where z is the measurement height and LMO is the Obukhov length. The
Obukhov length is defined as (Monin & Obukhov, 1954)

LMO =
−θvu3

∗0

κg(w′θ ′
v)0

(2.13)

where θv is the mean virtual potential temperature, u∗0 is the friction velocity
at the surface, κ ≈ 0.4 is the von Kármán constant, g is the gravitational
acceleration and (w′θ ′

v)0 is the surface flux of virtual potential temper-
ature (Stull, 1988). Monin-Obukhov similarity theory (MOST) assumes
that fluxes are constant with height in the surface layer, i.e. u∗0 ≈ u∗ and
(w′θ ′

v)0 ≈ (w′θ ′
v) (Monin & Obukhov, 1954). θv is well approximated by
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the sonic temperature (Cheynet et al., 2018). Using these assumptions the
local Obukhov length

LMO =
−θvu3

∗
κg(w′θ ′

v)
(2.14)

can be estimated by a 3D ultrasonic anemometer. The stability of the at-
mosphere is given by the sign of the stability parameter. ζ < 0 implies
dynamically unstable and ζ > 0 implies stable atmosphere. Atmospheric
stability may influence wind turbine loads significantly, see e.g. Sathe et al.
(2013); Jacobsen & Godvik (2021).

2.2 The uniform shear turbulence model
Mann (1994) presented two models of the spectral tensor of homogeneous,
neutral atmospheric surface-layer turbulence. The first one is the uniform
shear (US) model without blockage, and the second one includes blockage
(US+B). The blockage implies that the flow cannot penetrate the ground,
and that the turbulence field is thus affected to a greater extent by the
surface than without blockage. However, the US+B model is challenging to
implement and Mann (1994) recommend the use of the simpler US model
for engineering applications. The US model is the recommended turbulence
model in IEC 61400-1 (2005), and will be used in this thesis. The spectral
velocity tensor is modeled using three input parameters:

• Γ - the non-dimensional eddy lifetime parameter

• L [m] - the turbulence length scale

• αε2/3 [m4/3 s−2] - the spectral multiplier in the inertial subrange,
where α is the spectral Kolmogorov constant and ε is the energy
dissipation rate

The US model assumes that the fluctuations are rapidly distorted by a
uniform mean velocity shear, and this distortion is modelled using rapid
distortion theory (RDT). The initial turbulence conditions are assumed to be
isotropic (the same in all directions), and are represented by the isotropic
von Kármán tensor. The turbulence will become more and more anisotropic
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in time as the eddies are stretched by the shear, which happens on a time
period proportional to the wavenumber-dependent eddy lifetime. Therefore,
Γ is also commonly called the anisotropy parameter. If Γ is zero, the velocity
tensor is fully isotropic and given by the von Kármán tensor. Increasing Γ

leads to increase in the along and cross-wind variances while the vertical
variance decreases (IEC 61400-1, 2005). Physically, this means that the
eddies are stretched in the along-wind direction and tilted relative to the
xy-plane. In terms of the velocity spectra, increasing Γ will lower the peak
of Sw, slightly shift the peak towards higher wavenumbers and increase the
energy at low wavenumbers (Fig. 2.2 upper panel). However, increasing Γ

will increase the peak of Su and shift it towards lower wavenumbers. The
model parameter L represents a typical turbulence length scale. Increasing L
increases the peak and shifts it towards low wavenumbers for both Su and
Sw (Fig. 2.2 middle panel). The model parameter αε2/3 can be interpreted
as a parameter that scales with the intensity of turbulence. Thus, higher tur-
bulence intensity will be associated with greater values of αε2/3. Increasing
αε2/3 increases the energy for all wavenumbers without shifting the peak of
either Su or Sw (Fig. 2.2 lower panel).

Even though the US model is developed for neutrally stratified tur-
bulence, it has also been used for non-neutral conditions, where the best
parameter values for such situations have been investigated using both on-
shore (Chougule, 2013; Peña et al., 2010) and offshore measurements (Maré
& Mann, 2014).
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2.3 Lidar
Traditionally, meteorological masts have been used for in-situ turbulence
measurements by sonic anemometers. In the North Sea, the tallest masts are
typically 100 m tall. Altitudes where large offshore wind turbines operate
are generally out of reach of such masts. Doppler lidar (light detecting
and ranging) remote sensing is an attractive alternative to the conventional
meteorological mast, because of its mobility and absence of need for tall
and expensive structures to reach the desired measurement height. Instead,
Doppler lidars can be placed at ships, platforms or buoys (Gottschall et al.,
2017) and measure the wind speed at several hundred meters above sea
level. The basic principles of Doppler lidar technology and challenges due
to spatial averaging effects will be presented in the following section.

2.3.1 Basic principles

A Doppler lidar emits laser light with a fixed frequency that are backscattered
by atmospheric aerosols. The aerosols are assumed to be moving with the
wind speed, and the frequency of the reflected beam ( fr) is therefore shifted
relative to the emitted frequency ( fe). The frequency shift is detected by
the lidar, from which the line-of-sight (LOS) wind speed (vLOS) can be
calculated using (Reuder et al., 2021)

fr = fe

(
1+2

vLOS

c

)
(2.15)

where c is the speed of light (3.0 · 108 m s−1). As a single measurement
is only a one-dimensional projection of the velocity vector, three linearly
independent measurements are needed to reproduce the three dimensional
velocity vector.

There are two main categories of Doppler lidar systems; coherent detec-
tion lidar and direct detection lidar. A coherent lidar system measures the
shift in frequency by comparing the returned signal to a reference signal,
while a direct detection system measures the frequency shift by using an
optical filter to resolve it into its spectral characteristics (Liu et al., 2019).
Coherent lidar systems have several advantages compared to direct lidar
systems (Liu et al., 2019). There are two main types of Doppler lidars using
a coherent detection system; continuous wave (CW) lidars and pulsed lidars.
For a CW lidar, the probe length increases with the square of the distance,
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thereby also increasing the spatial averaging effects (Cheynet, 2016). Thus,
CW lidars are not relevant for turbulence measurements at long distances.
The probe length (and therefore also spatial averaging) of a pulsed lidar is
constant along the beam, making it more suitable for long-range measure-
ments. For this reason, only pulsed lidars will be further considered in the
thesis.

A pulsed Doppler lidar emits laser light in pulses, and it can therefore
measure the wind speed at several distances along the line-of-sight quasi-
simultaneously (Puccioni & Iungo, 2021). At any temporal moment, only
a limited part of the line-of-sight, a pencil shaped volume known as the
probe volume, will be illuminated by the laser beam pulse (Cariou, 2013).
Consequently, the detected backscattered signal at a particular time comes
from a probe volume at a specific distance from the lidar. The length of each
probe volume is the same, but the distance between them (the range gate),
can be chosen to achieve a desired overlap. The distance from the lidar to
the probe volume can be found from the time difference between the emitted
and received pulse (Cariou, 2013).

The head of a Doppler lidar can be either rotating or non-rotating. A
Doppler wind lidar profiler does not have a rotating head, thus only allowing
vertical profiles of the mean wind speed to be measured using either the
doppler beam swinging (DBS) or velocity azimuth display (VAD) mode.
A scanning Doppler lidar has a rotating head which makes it possible to
have several scanning modes in addition to the DBS or VAD mode; the
plan position indicator (PPI), the range height indicator (RHI) and LOS
(staring) mode. The scanning modes are characterized by the radial distance,
the azimuth angle Φ (defined with respect to the North) and the elevation
angle Ψ (defined with respect to a horizontal plane). In this thesis, only
measurements from vertical staring mode (Fig. 2.3a) and the 4-beam DBS
mode (Fig. 2.3b) from a scanning lidar are utilized, hence only these modes
will be explained. Unlike the other modes, staring mode uses only one
single beam with fixed elevation and azimuth angle, allowing for a higher
sampling frequency. The vertical scanning mode (Ψ = 90◦) can be used for
measurements of vertical velocity variances. Fig. 2.3b shows the 4-beam
DBS mode, which uses four LOS measurements spaced equally 90° apart
at a fixed elevation angle Ψ. While a lidar profiler can only measure wind
speed up to 300 m from the instrument, a scanning Doppler wind lidar can
reach distances beyond 1 km.
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Figure 2.3: Sketch of (a) vertical staring mode and (b) 4-beam DBS mode
inspired by Fig.2 in Reuder et al. (2021).

2.3.2 The spatial averaging effect

The estimated velocity is a spatial average of the true LOS velocity over
the probe volume. The spatial averaging effect is generally considered as a
convolution of the true LOS wind field with an unknown weighting function
φ characterizing the energy distribution of the laser pulse along the probe
length volume (Puccioni & Iungo, 2021), which can be written as (Mann
et al., 2009)

vLOS(r) =
∫

∞

−∞

φ(s)n ·v(s+ r)nds (2.16)

where n is a unit vector along the beam, s is the integration variable and r is
the focus distance from the lidar, defined as the center of the probe volume
of interest. The spatial resolution of a pulsed Doppler lidar depends on the
pulse width and the travelled distance of the pulse. The spatial resolution can
be improved by shortening the pulse duration, but this needs to be selected
carefully to ensure accuracy of the velocity estimation (Liu et al., 2019).

When the laser beam is aligned with the wind direction, Equation (2.16)
can be calculated directly using a scalar convolution product (Mann et al.,
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2009). The vertical velocity can be measured directly by choosing an el-
evation angle of 90°, and is thus such a scenario. For a pulsed lidar, the
weighting function is commonly expressed as

φ(s) =

{
l−|s|

l2 , if |s|< l

0, otherwise
(2.17)

where l is the length of the probe volume and s is the LOS position within
the considered probe volume. The corresponding spectral transfer function,
i.e. the Fourier transform of Eq. (2.17), is

H(k) =
[

sin(kl/2)
kl/2

]
(2.18)

where k is the wavenumber given by Eq. (2.4). Doppler wind lidar measure-
ments can be considered as the result of the actual wind field undergoing
low-pass filtering (Sjöholm et al., 2009). The influence of probe volume
length on the vertical wind spectrum is illustrated in Fig. 2.4 where the
filtered Sw is obtained by

(Sw)filtered = H2Sw. (2.19)

Lidars can measure 10 minutes mean wind speed with acceptable ac-
curacy, as proven in several studies by comparing lidar measurements with
measurements from anemometers, see for example Cheynet et al. (2017)
where measurements by a WindCube 100S prototype is compared to sonic
anemometer measurements. For turbulence measurements, the impact of
spatial averaging becomes significant, and an effective solution to address
this issue is yet to be identified.

Rearranging Eq. (2.19) so that it is solved for Sw is a simplified method
to correct for spatial averaging. However, the spectral transfer function
is close to zero at high wavenumbers (Fig. 2.5 right panel), leading to
”overcorrection” of Sw (Fig. 2.5 left panel). A novel aspect of the thesis,
aiming to limit the overcorrection, is to add a regularization method to
the deconvolution process by including a constant λ , so that the corrected
deconvoluted spectrum is on the form

(Sw)corrected =
(Sw)lidar
H2 +λ

. (2.20)
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2.4 Previous studies
To this author’s knowledge there has been no previous studies assessing
whether σu can be estimated from the along-wind spectrum retrieved from
vertical measurements alone. However, the relation between σu and σw

has been investigated by several authors. Solari & Piccardo (2001) found
that there are great variability among studies in the ratio σw/σu based on
measurements. In their analysis, the selected experimental measurements
showed σw/σu ranging from 0.40 to 0.64.

A common assumption for estimating σu from the vertical component is
(IEC 61400-1, 2005)

σu = 2σw. (2.21)

In Engineering Sciences Data Unit (ESDU) (2001) the ratio σw/σu for
neutral atmosphere is given by

σw

σu
= 1−0.45cos4

(
π

2
z
h

)
(2.22)

where z is the height and h is the ABL depth. This relation is based on
simultaneous measurements of σu and σw, which states that the ratio re-
main essentially constant regardless of the terrain characteristics. h can be
estimated using

h =
u∗
6 f

(2.23)

where f is the Coriolis parameter.

2.5 Key assumptions
In wind energy, atmospheric turbulence is assumed to be a stationary random
process. In the marine atmospheric boundary layer around 20% to 30% of
wind conditions may be non-stationary (Cheynet et al., 2018), but the frame-
work of non-stationary wind is beyond the scope of this thesis. Turbulence
is assumed to be a Gaussian ergodic random process, which means that
the time average operator is a good approximation of the ensemble aver-
age. Gaussian turbulence implies that it can described adequately by only
focusing on the second-order turbulence characteristics (the mean and vari-
ance/standard deviation) (Davenport, 1964). In this thesis, vertical profiles
of σu is of interest, so the turbulence is not assumed to be homogeneous.
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Chapter 3

Data

3.1 FINO1
Reference data were collected at the FINO1 platform located in the North
Sea (Fig. 3.1) during 2007 and 2008. The 20 m high jacket platform has
a steel square lattice tower of 81 m height and linearly decreasing width
from 3.5 m at its base to 1.4 m at its top (Fig. 3.2). The reference data
were collected from a Gill R3-50 sonic anemometer at 81.5 m a.s.l. with a
sampling frequency of 10 Hz. The sonic anemometer is mounted with an
azimuth of 311° on a boom of length 3 m on the north-west side of the mast
on a corner of the rectangular lattice. More information about the location
and instrumentation can be found in Cheynet et al. (2018).

Figure 3.1: The location of the FINO1 platform (Cheynet et al., 2018).
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Figure 3.2: Sketch of the FINO1 platform (Cheynet et al., 2018).

The data set had undergone some data processing before being provided
to this author. To avoid disturbance from the tower, only wind directions
from 190° to 359° were considered. Wind speeds were filtered from 5 to
28 m s−1 to be consistent with wind speeds at which turbines operate,
and hours with turbulence intensity higher than 0.2 or below 0.001 were
disregarded, as these are considered abnormal fluctuations. PSD for each
velocity component were computed using the periodogram with a Hamming
window. A stationarity test was performed, and only data passing this test
are considered in this thesis. These processed wind spectra were assigned to
the author for further analysis.

As data from high altitudes are of interest of this thesis, only data from
81.5 m height were considered. A quality check of the data, aiming to
eliminate samples displaying unrealistic PSD in the inertial subrange, was
performed. This were done by fitting a pointed model based on Olesen et al.
(1984) to the vertical velocity spectra using a least-square method. The
pointed model is on the form

f Sw =
A f

1+B fC (3.1)

where A, B and C are constants to be determined. C is the slope on a log-log
graph when the spectrum is plotted against frequency. Theoretically, the
slope should be equal to 5/3 in the inertial subrange. Two criteria were
created for the slope and the root mean square error (RMSE) calculated from
f Sw from the data set and the pointed model, and only samples satisfying
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one of these were kept in the analysis. The criteria were: 1) slope > 1.1 and
RMSE < 0.03 m2s−2 or 2) slope > 1.5 and RMSE < 0.1 m2s−2. In other
words, the spectrum might meet the criteria despite exhibiting unfavorable
slope if its RMSE is low, or if it demonstrates a favorable slope despite
having a comparatively higher RMSE. Samples not satisfying the criteria
were assumed to have unrealistic PSD in the inertial subrange. A spectrum
that satisfies both criteria is visualized in Fig. 3.3. The number of samples
left after removing the samples not satisfying either of the criteria are shown
in Table 3.1. The stability is classified in consistency with Cheynet et al.
(2018). inpaint nans (D’Errico, 2012) versions of the original sonic data
have been used. This function aims to non-linearly interpolate over data
marked as NaNs (Not a Number).

10 3 10 2 10 1 100

f (Hz)

10 3

10 2

10 1

fS
w
 (m

2  s
2 )

slope = 1.7 
RMSE = 0.01 m2 s 2

Sonic spectrum
Fitted pointed model

Figure 3.3: A pointed model fitted to sonic measurement of the vertical wind
spectrum. The measurements are taken by a sonic anemometer at 81.5 height
at the FINO1 platform in January 2008.
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Table 3.1: The number of samples before and after removing bad Sw meas-
urements based on fitting the vertical wind spectrum to a pointed model. The
samples are collected by a sonic anemometer at FINO1 at 81.5 m during
2007 and 2008.

Stability Before After

Stable (ζ ≥ 0.1) 1942 1871
Neutral (−0.1 < ζ < 0.1) 2074 2007
Unstable (ζ ≤−0.1) 2934 2787

3.2 Lollex field campaign
The lidar measurements were taken during the Lollex field campaign per-
formed as part of the H2020 MSCA-ITN Train2Wind in Denmark. From Oc-
tober to December 2022 a scanning wind lidar system, using the Leosphere
WindCube 100S, was operating on shore at the RWE base in Rødby harbour
(Fig. 3.4). The lidar operated in an alternating configuration with 25 minutes
of vertical staring mode (Fig. 2.3a) to measure vertical velocity variances,
followed by 5 minutes of DBS mode (Fig. 2.3b) for wind profiling. Velocity
data from the lidar were collected with a sampling frequency of 1 Hz. The
range gate length was 25 m with an overlap of 60% resulting in an along-
beam spatial resolution of 10 m. The measurement heights ranged from 50
m to 2630 m above the surface.
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Figure 3.4: Leosphere WindCube 100S placed at Rødby harbour (photo
courtesy of Shokoufeh Malekmohammadi).
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Chapter 4

Method for fitting the US model

The US model was fitted to velocity spectra from the FINO1 platform for
two different cases; 1) all velocity spectra (Su, Sv, Sw and Suw) were known
and 2) only the vertical spectrum (Sw) was known. The fitting function
fitMann.m (Cheynet, 2022) uses a least-square method to fit the US model
to data, estimating the model parameters Γ, L and αε2/3. In addition to
wind spectra, the fitting function requires single-sided wavenumbers in the
along-wind direction. For both cases, this required information about the
horizontal mean wind speed (u), to convert the frequency from the spectral
analysis to wavenumber using Eq. (2.4). The fitting function also has some
optional inputs. The initial guess used in the fitting was Γ = 3, L = 40 m and
αε2/3 = 0.1 m4/3 s−2, which was chosen after testing the fitting function
on data from FINO1. The initial guess can affect the convergence of the
fitting algorithm. Using MultiStart in Matlab was considered unnecessary
since the initial guess was satisfactory in most cases, and its implementation
would come at the expense of the effectiveness of the method. Tolerances for
the fitting procedure (denoted tolX and tolFun in the fitting function) were
also used as inputs, and different values were tested. Tolerances are used to
ensure that convergence of the fitting algorithm is achieved, thus a smaller
tolerance is usually recommended but at the cost on heavier computational
cost. The parameter limits in the fitting function were adjusted based on
parameter values obtained in fittings to the FINO1 data, see Table 4.1.

Several fittings were performed with different wavenumber intervals
and iteration tolerances to decide which gave the best fitting results. For
each fitting, a minimum k value (kmin) and a maximum k value (kmax) were
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Table 4.1: Parameter limits used initially in the fitting function.

Model Initial Initial Adjusted Adjusted
parameter minimum max minimum max

Γ 0 6 0.5 4.5
L [m] 1 100 1 300
αε2/3 [m4/3 s−2] 0 2 0 2

chosen, and a new logarithmically spaced k array was created based on these
chosen endpoints. The velocity spectra obtained from spectral analysis of
the sonic data (later denoted with ”sonic” as subscript) were interpolated
over this new k array, and the interpolated versions were used in the fittings.
The interpolated spectra and the resulting σu obtained from the interpolated
along-wind spectrum will be referred to using the subscript ”targ” (short
for ”target”). The estimated model parameters obtained from fitting the US
model to the target spectra were used to generate new wind spectra using
the function MannTurb.m (Cheynet, 2022). The generated spectra will be
referred to using the subscript ”Mann”. The quality of the fittings were
checked by comparing the standard deviation of u (Eq. (2.7)) calculated
from (Su)targ and (Su)Mann

(σu)targ =

√∫ fmax

fmin

(Su)targ d f (4.1)

(σu)Mann =

√∫ fmax

fmin

(Su)Mann d f (4.2)

where fmin and fmax are calculated from the chosen kmin and kmax in the
fitting using Eq. (2.4). A visualization of the integrals are shown in Fig. 4.1,
where the darkest blue area in the upper panel corresponds to the integral
in Eq. (4.1) and the darkest pink area in the lower panel correspond to the
integral in Eq. (4.2). (σu)targ and (σu)Mann are not realistic representations of
the actual σu, because they are calculated over a limited f interval, giving a
smaller value than the actual σu (which we are interested in when calculated
wind loads). However, the numbers are helpful in checking the quality of
the fitting.
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Figure 4.1: Upper panel: visualization of the integrals in Eq. (4.1), Eq. (4.3)
and Eq. (4.5). Lower panel: visualization of the integrals in Eq. (4.2),
Eq. (4.4) and Eq. (4.6).

The estimated parameters obtained in fittings with a limited k interval,
were used to generate spectra over the original k interval from the spectral
analysis of the sonic data. These extended spectra generated by the model
parameters will be referred to with subscript ”ME”, which is short for ”Mann
Extended”. The quality of the extended results were checked by comparing
σu calculated from (Su)sonic and (Su)ME

(σu)sonic =

√∫
( f )sonic

(Su)sonic d f (4.3)



28 Method for fitting the US model

(σu)ME =

√∫
( f )ME

(Su)ME d f (4.4)

The US model does not simulate mesoscale motion or very large eddies
generated by buoyancy, so its ability to model low-frequency turbulence with
a period beyond 10 minutes is limited. To be consistent with IEC guidelines,
the data were then filtered by only including frequencies larger than 1/600
Hz, which corresponds to a time period of 10 minutes. This will be denoted
”F” for ”filtered”. The quality of the results only including frequencies above
1/600 Hz were checked by comparing the σu (Eq. (2.7)) calculated from
(Su)sonic F and (Su)MEF for frequencies above 1/600 Hz

(σu)sonic F =

√∫
( f )sonic>

1
600 Hz

(Su)sonic F d f (4.5)

(σu)MEF =

√∫
( f )ME>

1
600 Hz

(Su)MEF d f (4.6)

The (extended and) filtered results were compared to Eq. (2.21) and Eq. (2.9).
A list explaining the different name definitions is found in Table 4.2.
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Table 4.2: Name definitions used in the thesis.

Sonic data
(Si)sonic Spectrum obtained from spectral analysis of sonic data.
( f )sonic The corresponding frequencies from the spectral ana-

lysis.
(k)sonic Calculated from ( f )sonic using Eq. (2.4).
(σi)sonic Square root of (Si)sonic integrated over ( f )sonic. Calcu-

lated using Eq. (4.3).
(Si)sonic F Equal to (Si)sonic for ( f )sonic > 1/600 Hz
(σi)sonic F Square root of (Si)sonic F integrated over ( f )sonic >

1
600 Hz. Calculated using Eq. (4.5).

Target spectra
(k)targ A new logarithmically spaced k array created from the

chosen kmin and kmax in the fitting.
( f )targ Calculated from (k)targ using Eq. (2.4).
(Si)targ (Si)sonic has been interpolated over (k)targ. This is the

spectra that the US model is fitted to.
(σi)targ Square root of (Si)targ integrated over ( f )targ. Calcu-

lated using Eq. (4.1).

Fitting results
(Si)Mann Spectra generated from the estimated parameters ob-

tained in the fitting with the limited k interval.
(k)Mann Obtained from MannTurb.m when generating (Si)Mann.
( f )Mann Calculated from (k)Mann using Eq. (2.4).
(σi)Mann Square root of (Si)Mann integrated over ( f )Mann. Calcu-

lated using Eq. (4.2).

Extended fitting results
(Si)ME The estimated parameters obtained in fitting with the

limited k interval have been used to generate spectra
for a k interval matching (k)sonic.

(k)ME Obtained from MannTurb.m when generating (Si)ME.
( f )ME Calculated from (k)ME using Eq. (2.4).
(σi)ME Square root of (Si)ME integrated over ( f )ME. Calcu-

lated using Eq. (4.4).
(Si)MEF Equal to (Si)ME for ( f )ME > 1

600 Hz
(σi)MEF Square root of (Si)MEF integrated over ( f )ME > 1

600 Hz.
Calculated using Eq. (4.6).
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Chapter 5

Validating the US model fitted to
all wind components

5.1 Limited wavenumber interval

Fitting the US model to all velocity components works relatively well for all
the tested k intervals and tolerances, at least when comparing the resulting
(σu)Mann and (σu)targ. Spectral values with kmax > 1.0 m−1 were not tested
in case the spectra had undergone a low-pass filter to avoid aliasing (noise
at high frequencies) before being handed to the author. Fig. 5.1 compares
(σu)Mann and (σu)targ obtained from fittings to data from January 2008 for
different combinations of k intervals and tolerances. The vertically aligned
panels share the same k interval but have different iteration tolerances, 10−3

for the upper panels and 10−4 for the lower panels. Except for a few outliers,
the dots follow nicely a y = x line for all stabilities, resulting in relatively
low RMSE values for all six situations. This indicates that the US model can
be used for all stability conditions, which is consistent with prior research
(Chougule, 2013; Peña et al., 2010; Maré & Mann, 2014). Choosing iteration
tolerances of 10−3 or 10−4 made no difference to the results in terms of the
RMSE.

The outliers in the left panels of Fig. 5.1 are associated with (Su)targ
and (Sw)targ that do not look like typical wind spectra, an example of this is
visualized in Fig. 5.2a. However, the vertical wind spectrum passes the slope
and RMSE criteria defined in section 3.1 for them to be kept in the analysis.
The slope of the pointed model fitted to Sw from the data set is 1.2, which
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Figure 5.1: Comparison of (σu)Mann and (σu)targ obtained from fitting the US
model to all velocity components using different kmin, kmax and tolerances.
The figure is based on 381 samples obtained from measurements at 81.5 m
at FINO1 in January 2008. The dashed line shows y = x.

is much less than the theoretical value of 5/3. However, the RMSE value
of the data and the pointed model is only 0.002 m2s−2, thereby ensuring
fulfillment of the first criterion defined in section 3.1 for a vertical spectrum
showing realistic behavior in the inertial subrange. A successful criteria
definition that eliminated all poor spectra was not achieved, so the method
for filtering out poor Sw samples is not fully adequate. Alternatively, each
spectrum could have been manually inspected, but this would have been too
time-consuming given the large number of samples. It is possible that the
stationarity test conducted prior to this author obtaining the data set was
not reliable, resulting in some of the samples being non-stationary. This
could potentially lead to unusual PSD at low frequencies. The US model
overestimates both Su and Sw when 0.001 m−1 ≤ k ≤ 1.0 m−1 in the fitting
(left panels of Fig. 5.2a). For narrower k intervals (middle and right panels)
the US model fit better, resulting in no outliers in the middle and left panels
of Fig. 5.1. The good correspondence between (σu)Mann and (σu)targ are
probably because the PSD values are very low in these k intervals, resulting
in low deviation despite the dissimilar appearance of the graphs in the middle
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and right panels of Fig. 5.2a. To ensure that the poor fit in Fig. 5.2a was
not due to poor initial guess of the model parameters, several other initial
guesses were tested, without any of them resulting in a better fit.

A sample that has a good fit in each k interval is shown in Fig. 5.2b, where
the mean wind speed is high (u = 21.3 m s−1) and the atmosphere is stable
(ζ = 0.2). (σu)Mann is equal to its target value in each situation (see lower
center of each panel). The slope of the pointed model fitted to the vertical
wind spectrum from the data set is 1.7 (which is the desired value), and the
RMSE of the measured Sw and the pointed model is 0.02 m2s−2. Note that
the peak of Sw lies in all of the tested k intervals, but the peak of Su is at lower
wavenumbers, only captured by the interval 0.001 m s−1 ≤ k ≤ 1.0 m s−1.
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(a) Untypical target wind spectra with u = 7.9 m s−1 and ζ =−0.6 (unstable).

10 2

10 1

100

kS
i (

m
 s

1 )

kmin = 0.001 m 1

kmax = 1.0 m 1

tolX = 10 3

tolFun = 10 3

( u)targ = 1.4 m s 1 
( u)Mann = 1.4 m s 1

kmin = 0.02 m 1

kmax = 1.0 m 1

tolX = 10 3

tolFun = 10 3

( u)targ = 0.8 m s 1 
( u)Mann = 0.8 m s 1

kmin = 0.02 m 1

kmax = 0.8 m 1

tolX = 10 3

tolFun = 10 3

( u)targ = 0.8 m s 1 
( u)Mann = 0.8 m s 1

10 2 100

k (m 1)

10 2

10 1

100

kS
i (

m
 s

1 )

kmin = 0.001 m 1

kmax = 1.0 m 1

tolX = 10 4

tolFun = 10 4

( u)targ = 1.4 m s 1 
( u)Mann = 1.4 m s 1

(Su)Mann (Su)targ (Sw)Mann (Sw)targ

10 2 100

k (m 1)

kmin = 0.02 m 1

kmax = 1.0 m 1

tolX = 10 4

tolFun = 10 4

( u)targ = 0.8 m s 1 
( u)Mann = 0.8 m s 1

10 2 100

k (m 1)

kmin = 0.02 m 1

kmax = 0.8 m 1

tolX = 10 4

tolFun = 10 4

( u)targ = 0.8 m s 1 
( u)Mann = 0.8 m s 1

(b) Typical target spectra with u = 21.3 m s−1 and ζ = 0.2 (stable).

Figure 5.2: The US model fitted to all wind components for two different
samples using different kmin, kmax and tolerances. The samples are collected
in January 2008 at 81.5 m at FINO1.



5.2 Extended wavenumber interval 35

5.2 Extended wavenumber interval

Extending the k interval by generating along-wind spectra for an interval
corresponding to (k)sonic from parameters obtained from fittings with a
limited k interval, does not work well when including all frequencies, see
Fig. A.1. This is probably because the US model cannot model large eddies
(small wavenumbers) from non-turbulent motion, as illustrated in Fig. 5.3.
Mathematically, this can be explained because the wind spectra in the US
model are unimodal functions. This is also the reason why kmin below 0.001
m−1 were not tested in fittings.
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Figure 5.3: Along-wind spectrum obtained from sonic measurements from
January 2008 and fitting the US model to the measurements when all
wind components were known. The fitting was performed for the inter-
val 0.001 m−1 ≤ k ≤ 1.0 m−1. ζ = 0.05, u = 12.1 m s−1

When only considering frequencies larger than 1/600 Hz, the results are
much better. The correspondence between (σu)MEF and (σu)sonic F depends
on the range of the fitted k interval (Fig. 5.4). A broad k interval in the fitting
leads to better σu correspondence than a narrower k, which is different
from when only the k interval used in the fitting were considered. As for the
limited k interval, when looking at one particular interval, the RMSE remains
unchanged for both tolerances. Tolerances of 10−3 may be favorable due to
the lower iteration time and decreased computational costs. However, it is
also more risky due to possible local minima. For January 2008, the broad
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k interval 0.001 m−1 ≤ k ≤ 1.0 m−1 gives the lowest RMSE (0.04 m s−1

for both tolerances). Observing plots of the wind spectra, it appears that
the peak of Sw typically occurs above k = 0.02 m−1, making the peak of
Sw visible in all the considered k intervals in Fig. 5.4. The peak of Su

typically occurs at lower wavenumbers, posing a challenge in accurately
estimating Su when kmin = 0.02 m−1. This is because the peak falls outside
the fitting interval, which might result in poor estimation of σu. Some poor
fitting might be due to insufficient initial guess of the model parameters,
which is equal in all fittings. In this thesis, two different combinations of
k intervals and tolerances will be analysed in detail, the broad k interval
with kmin = 0.001 m−1, kmax = 1.0 m−1 and tolX = tolFun = 10−3 (upper
left panel of Fig. 5.4) and the narrow k interval with kmin = 0.02 m−1,
kmax = 0.8 m−1 and tolX = tolFun = 10−4 (lower right panel of Fig. 5.4).
These two fitting inputs are chosen based on the first one giving very good
results when all velocity components are known and the second giving rather
good results when only Sw is known (which will be seen in chapter 6).
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Figure 5.4: Comparison of (σu)MEF and (σu)sonic F obtained from fitting
the US model to all velocity components using different kmin, kmax and
tolerances. The figure is based on 381 samples obtained from measurements
at 81.5 m at FINO1 in January 2008. The dashed line shows y = x.
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So far, only data from January 2008 (381 samples) have been included.
When including all months in 2007 and 2008 (6665 samples), (σu)MEF
and (σu)sonic F still match well for 0.001 m−1 ≤ k ≤ 1.0 m−1 and iteration
tolerances 10−3 (Fig. 5.5a), with RMSE values of 0.03 m s−1, 0.05 m s−1

and 0.04 m s−1 for stable, neutral and unstable atmosphere. Using tolerances
of 10−3 or 10−4 lead to the same RMSE (when using only one significant
digit), see Fig. B.1a in appendix B for tolerances 10−4. Due to the reduced
iteration time, tolerances of 10−3 for this k interval will be used. The density
plots of (σu)MEF vs (σu)sonic F (corresponding to Fig. 5.5a) follows very
good the y = x line (Fig. 5.5b).
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Figure 5.5: (σu)sonic F obtained from Eq. (2.7) for frequencies above 1/600
Hz. (σu)MEF obtained from fitting the US model to data of all wind compon-
ents, calculated using Eq. (4.6). The figure is based on 1871 stable, 2007
neutral and 2787 unstable samples collected by sonic anemometer at height
81.5 m at FINO1 during 2007 and 2008. The dashed line shows y = x.
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Fittings with 0.02 m−1 ≤ k ≤ 0.8 m−1, which gave very good match
between (σu)Mann and (σu)targ (Fig. 5.1 right panels), give large spread
and RMSE when comparing (σu)MEF and (σu)sonic F for both tolerances
(see Fig. 5.6a for tolerances 10−4). The choice of tolerances make a small
difference to the RMSE value for the k interval 0.02 m−1 ≤ k ≤ 0.8 m−1. For
stable and neutral conditions, the two tolerances result in the same RMSE.
For unstable situations, tolerances of 10−4 result in RMSE of 0.1 m s−1 while
10−3 give RMSE of 0.2 m s−1 (see Fig. B.2a in appendix B for tolerances
10−3). Thus, for the k interval 0.02 m−1 ≤ k ≤ 0.8 m−1, tolerances of 10−4

are analysed further. For this fitting option, the majority of the points lie
below y = x for neutral and unstable atmosphere (Fig. 5.6b). In other words,
the US model has a tendency to underestimate σu for 0.02 m−1 ≤ k ≤
0.8 m−1 and tolerances 10−4.



5.3 Model parameters 39

0 1 2 3
( u)sonic_F (m s 1)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
(

u)
M

EF
 (m

 s
1 )

RMSE = 0.1 m s 1

kmin = 0.02 m 1

kmax = 0.8 m 1

tolX = 10 4

tolFun = 10 4

Stable
(   0.1)

0 1 2 3
( u)sonic_F (m s 1)

RMSE = 0.2 m s 1

Neutral
(-0.1 <  < 0.1)

0 1 2 3
( u)sonic_F (m s 1)

RMSE = 0.1 m s 1

Unstable
(   -0.1)

1.0

0.5

0.0

0.5

1.0

(a) Scatter plot with colors showing stability.

0 1 2
( u)sonic_F (m s 1)

0.0

0.5

1.0

1.5

2.0

(
u)

M
EF

 (m
 s

1 )

kmin = 0.02 m 1

kmax = 0.8 m 1

tolX = 10 4

tolFun = 10 4

Stable
(   0.1)

0 1 2
( u)sonic_F (m s 1)

Neutral
(-0.1 <  < 0.1)

0 1 2
( u)sonic_F (m s 1)

Unstable
(   -0.1)

0

5

10

15

20

25

nu
m

be
r o

f p
oi

nt
s

(b) Density plot with colors showing number of points.

Figure 5.6: (σu)sonic F obtained from Eq. (2.7) for frequencies above 1/600
Hz. (σu)MEF obtained from fitting the US model to data of all wind compon-
ents, calculated using Eq. (4.6). The figure is based on 1871 stable, 2007
neutral and 2787 unstable samples collected by sonic anemometer at height
81.5 m at FINO1 during 2007 and 2008. The dashed line shows y = x.

5.3 Model parameters

The estimated model parameter values obtained from fittings with kmin =

0.001 m−1, kmax = 1 m−1 and tolerances 10−3 are considered reliable due to
the strong σu correspondence for frequencies larger than 1/600 Hz (Fig. 5.5a
and Fig. 5.5b). In contrast to Γ and αε2/3, the mean value of L vary signific-
antly with stability (Table 5.1), with relatively small turbulence length scale
for stable atmosphere and large for unstable. The standard deviation of each
parameter is large compared to its mean value, meaning that there is large
variation in parameter values for each stability condition.
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Table 5.1: Mean values and standard deviation of the model parameters
after stability obtained from fittings with all velocity components known
and kmin = 0.001 m−1, kmax = 1 m−1 and tolerances 10−3. Stable: ζ ≥ 0.1,
neutral: −0.1 < ζ < 0.1, unstable: ζ ≤−0.1

Model parameter Stable Neutral Unstable

Γ 2.7±0.6 3.4±0.7 2.9±1.0
L [m] 33±35 83±57 157±89
αε2/3 [m4/3 s−2] 0.03±0.02 0.03±0.01 0.01±0.01

Fig. 5.7 compares Γ, L and αε2/3 obtained from fittings with kmin =

0.001 m−1, kmax = 1 m−1 and tolX = tolFun = 10−3 with the correspond-
ing parameters obtained when kmin = 0.02 m−1, kmax = 0.8 m−1 and tolX =

tolFun = 10−4. Note the different color scaling for each parameter. As il-
lustrated in Fig. 2.2 (which uses parameter values matching the FINO1
results), varying Γ or L significantly affects the Su and Sw curves at low
wavenumbers. At high wavenumbers, the curves (particularly Su) maintain
a similar shape despite different parameter values. Changing αε2/3 on the
other hand, makes a big difference to the energy level of both Su and Sw at all
wavenumbers. The wavenumber interval 0.02 m−1 ≤ k ≤ 0.8 m−1 consists
of relatively high wavenumbers, placed to the right in Fig. 2.2. Fig. 2.2
suggests that obtaining accurate estimations of Γ and L within this interval
can be challenging, and this is partly the observations in Fig. 5.7. The es-
timation of αε2/3 from fittings in the narrow k interval is quite good (the
density plot follows y = x quite good), with some overestimation for low
αε2/3 values and some underestimation for high values. Changing αε2/3

has great impact of the energy level of Su and Sw in this k interval, and
that may explain why rater good estimations of αε2/3 is achievable. The
estimation of L looks quite good until it flats out somewhere below 75 m
at the y axis. Increasing L shifts the peak of both Su and Sw towards lower
wavenumbers. The higher value of L, the more to the left the peak of Su is in
a plot corresponding to the middle panel of Fig. 2.2, and the more similar
the curves become at high wavenumbers. The same holds for Sw. It may be
difficult to estimate L in the interval 0.02 m−1 ≤ k ≤ 0.8 m−1 because when
L becomes sufficiently large, a wide range of L values give approximately
the same curves in this interval. This may explain the shape of the plot in the
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middle panel of Fig. 5.7. The Γ values obtained for the narrow k interval do
not match the values obtained for the broad interval (left panel of Fig. 5.7).
The anisotropy parameter Γ affects the height and location of the peak of
both Su and Sw, though the shift in Sw’s peak is very small. The peak of Su is
not in the interval 0.02 m−1 ≤ k ≤ 0.8. Since both Γ and L affect the location
(in terms of k) of Su, maybe this can be the reason why it is more difficult
give a good estimation of these parameters compared to αε2/3. However, L
decides the location (in terms of k) of the peak of Sw, and since this is in the
interval, L can still be estimated with quite good accuracy up to a certain
value.

2 4

1

2

3

4

50 100
L (m)

25

50

75

100

L 
(m

)

0.02 0.04 0.06
2/3 (m4/3 s 2)

0.02

0.04

0.06

2/
3  (

m
4/

3  s
2 )

X-axis:
All components known
kmin = 0.001 m 1

kmax = 1.0 m 1

tolX = 10 3

tolFun = 10 3

Y-axis:
All components known
kmin = 0.02 m 1

kmax = 0.8 m 1

tolX = 10 4

tolFun = 10 4

0

20

40

60

80

100

120

nu
m

be
r o

f p
oi

nt
s

0

10

20

30

40

50

nu
m

be
r o

f p
oi

nt
s

0

25

50

75

100

125

150

nu
m

be
r o

f p
oi

nt
s

Figure 5.7: Comparison of the model parameters Γ (left panel), L (middle
panel) and αε2/3 (right panel) obtained from fitting the US model to data
using different inputs (written under ”X-axis” and ”Y-axis”). The figure is
based on 6665 samples collected during 2007 and 2008 at 81.5 m at FINO1.
The dotted line shows y = x.

Fig. 5.8 shows the relation between the model parameters obtained from
fittings with 0.001 m−1 ≤ k ≤ 1.0 m−1 and tolerances 10−3 with the mean
wind speed. For low mean wind speeds (5 m s−1 to 10 m s−1) the value of
Γ varies between 0.5 and 4.5 (which are the parameter limits in the fitting
function). For higher u there is lower occurrence of small Γ values. For
u > 20 m s−1, the minimum Γ value estimated is 2.5. The value of L varies
significantly for low wind speeds. For wind speeds above 20 m s−1, L is
usually less than 100 m. The highest estimated L for wind speeds above 20
m s−1 is 171 m. αε2/3 increases with u, and is often below 0.03 m4/3 s−2

for mean wind speeds below 8 m s−1. For wind speeds above 20 m s−1

αε2/3 usually exceeds 0.03 m4/3 s−2. A similar figure for kmin = 0.02 m−1,
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kmax = 0.8 m−1 and tolerances 10−4 can be seen in Fig. D.1 in appendix D.
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Figure 5.8: Relating the model parameters Γ (left panel), L (middle panel)
and αε2/3 (right panel) to u. The model parameters are obtained from fitting
the US model to all wind components. ”guess” refers to the initial guess of
the model parameters, and is on the form [Γ, L, αε2/3]. The figure is based
on 6665 samples collected during 2007 and 2008 at 81.5 m at FINO1.

5.4 Comparison with IEC standards

Fig. 5.9a shows σu at 81.5 m a.s.l., as a function of the mean wind speed, with
errrorbars marking the 10th and 90th percentile. The bin width is 0.5 m s−1,
in consistency with IEC 61400-3 (2009), and the center of each bin is at each
half m s−1. The Mann values (pink dots) are (σu)MEF obtained from fitting
the US model to all velocity components with kmin = 0.001 m−1, kmax =

1.0 m−1 and tolerances 10−3. The sonic values (blue dots) corresponds to
(σu)sonic F. The Mann and sonic values match very well for all wind speeds,
but the overlap is particularly good for wind speeds below 10 m s−1. There
are some deviation for high wind speeds, but the number of samples for
these wind speeds are very low. The dashed line shows the representative
value of σu as presented by IEC 61400-3 (2009) calculated from Eq. (2.9).
Here zhub = 81.5 m, I15 is calculated as the mean turbulence intensity for
mean wind speeds between 14.75 m s−1 and 15.25 m s−1 from the sonic data
(that is the blue dot at 15 m s−1 in Fig. 5.9b), and z0 is obtained numerically
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from Eq. (2.10). IEC accounts for the 90th percentile, and the curve lies
well above the 90th percentile calculated for both the Mann and sonic σu,
except for mean wind speeds below 7 m s−1. This may suggest that the IEC
representation is somewhat too high (conservative), which is also stated by
several other studies (Ernst & Seume, 2012; Colone et al., 2018; Cheynet
et al., 2024). The same can be observed for the 1-hour σu when comparing
Eq. (2.11) with the 90th percentile of the measured 1-hour σu from the sonic
data (Fig. 5.10), although the deviation is less than for the 10-min averages.
As to the question of whether (σu)sonic F is a realistic representation of the
10-min based σu, this cannot be checked because only 1-hour averages are
available in the data set, and these will be higher than 10-min averages.

Fig. 5.9b is a similar figure as Fig. 5.9a, but for the turbulence intensity
rather than σu. The turbulence intensity decreases with wind speed up to
mean wind speed of 8 m s−1, and increases with wind speed above this
(except for at very high wind speeds). The sea roughness increases with
the wind speed, which will contribute to increased turbulence intensity. The
correspondence between the binned turbulence intensity calculated from
(σu)MEF (pink dots) and (σu)sonic F (blue dots) is good. For mean wind
speeds 26.5, 27.5 and 28.0 m s−1 there are only one sample, thus there are
no 10th or 90th percentile visible in Fig. 5.9 and Fig. 5.10.
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(a) σu as a function of u. The dashed line is calculated using Eq. (2.9).
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Figure 5.9: (a) σu and (b) Iu as a function of u. The bin width is 0.5 m s−1,
and the center of each bin is placed at each half m s−1. The error bars mark
the 10th and 90th percentile. The blue dots are calculated from (σu)sonic F.
The pink dots are calculated from (σu)MEF obtained from fitting the US
model to all velocity components. The figure is based on 6665 samples
collected during 2007 and 2008 at 81.5 m at FINO1.



5.4 Comparison with IEC standards 45

5 10 15 20 25
u (m s 1)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

u (
m

 s
1 )

IEC 61400-3 u, 1 hour

measured u

Number of u values

0

100

200

300

400

500

600

Nu
m

be
r o

f v
al

ue
s

Figure 5.10: σu as a function of u. The bin width is 0.5 m s−1, and the
center of each bin is placed at each half m s−1. The error bars mark the
10th and 90th percentile. The dashed line is calculated using Eq. (2.11) for
1-hour statistics. The green dots are measured by sonic anemometer over an
averaging period of one hour. The figure is based on 6665 samples collected
during 2007 and 2008 at 81.5 m at FINO1.
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Chapter 6

Fitting the US model to the
vertical component only

6.1 Limited wavenumber interval

The results after fitting the US model to the vertical component only, give
quite different results than when all components are known. When only the
vertical component is known, the agreement between (σu)Mann and (σu)targ
is significantly affected by the choice of k interval in the fitting. Several
different combinations of k intervals and iteration tolerances were tested
on data collected in January 2008 to see which combination led to the best
correspondence between (σu)Mann and (σu)targ. Six of these are shown in
Fig. 6.1, with three different k intervals placed horizontally, the upper panels
having tolerances of 10−3 and the lower panels having tolerances of 10−4.
The broad k interval 0.001 m−1 ≤ k ≤ 1.0 m−1 (left panels), which give
very good fitting results both for the limited and extended k interval when
all components are known, results in significantly higher RMSE than the
other narrower intervals with a higher kmin. In all situations in Fig. 6.1, the
US model does a slight overestimation of (σu)Mann compared to (σu)targ for
low wind speeds, except for a few outliers. The wind spectra (Su)targ and
(Sw)targ corresponding to these outliers do not look like typical wind spectra,
but they still satisfy the slope and RMSE criteria defined in section 3.1. Note
that these outliers are not the same samples as the outliers in the left panels
of Fig. 5.1 mentioned in section 5.1. This emphasizes that the method for
filtering out poor measurements is sometimes insufficient.
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Figure 6.1: Comparison of (σu)Mann and (σu)targ obtained from fitting the
US model to Sw using different kmin, kmax and tolerances. The figure is based
on 381 samples obtained from measurements at 81.5 m at FINO1 in January
2008.

The choice of iteration tolerances exert a notable influence on the scatter
plots in Fig. 6.1, but the two tolerances lead to the same RMSE value
(when considering only one significant digit) for the k intervals in the
left and middle panels. For 0.001 m−1 ≤ k ≤ 1.0 m−1 (left panels), choos-
ing tolerances of 10−3 tends to overestimate (σu)Mann when (σu)targ <

1.0 m s−1. The overestimation happens especially for mean wind speeds
below 20 m s−1, and is also observed in similar plots created for each month
of 2007 and 2008. The overestimation of (σu)Mann is due to overestimation
of (Su)Mann, which seem to be a common result when fitting the US model
to Sw only, using kmin = 0.001 m−1, kmax = 1.0 m−1 and tolerances 10−3.
Such tendencies are not observed in fittings when all components are known.
The overestimation of (Su)Mann for kmin = 0.001 m−1, kmax = 1.0 m−1 and
tolerances 10−3 will be discussed further in section 6.3. Iteration tolerances
of 10−4 give the same RMSE value, but there are more points below the
y = x line compared to tolerances of 10−3. At high mean wind speeds, σu

is underestimated by the US model for 0.001 m−1 ≤ k ≤ 1.0 m−1 (the two
yellow dots in the left panels of Fig. 6.1). This trend is also evident for
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other intervals of k, though to a significantly lesser extent. The wind spec-
tra corresponding to these two yellow dots look normal, and have good
fits when all components are known. When only the vertical component is
known, (Sw)Mann fits good to (Sw)targ (even better than when all components
are known), but the estimation of the along-wind spectrum is bad (which
explains the outlier tendencies in Fig. 6.1).

Of all the tested combinations, the smallest RMSE is obtained for
kmin = 0.02 m−1, kmax = 0.8 m−1 and tolerances 10−4 (lower right panel of
Fig. 6.1). Note that narrower k intervals than this were tested, but did not res-
ult in a lower RMSE. The fitting options kmin = 0.02 m−1, kmax = 0.8 m−1

and tolerances 10−4 generally give low RMSE for all months when compar-
ing (σu)Mann and (σu)targ.

6.2 Extended wavenumber interval

As for the case when all components are known, the results are not good
when extending the k interval to match the original (k)sonic (Fig. A.2), but
they are better when only frequencies larger than 1/600 Hz are considered.
For January 2008, comparing (σu)MEF and (σu)sonic F result in the same
RMSE (when only considering one significant digit) for the different k
intervals and tolerances in Fig. 6.2. However, the scatter plots look quite
different for the two tolerance options, tolerance 10−3 generally leads to
more points above the y = x line (the upper panels of Fig. 6.2). In all
cases, (σu)MEF is underestimated compared to (σu)sonic F for very high wind
speeds.

When including all samples from 2007 and 2008, the results are (not sur-
prisingly) worse when only Sw is known compared to when all components
are known. For fittings to Sw only, with kmin = 0.001 m−1, kmax = 1.0 m−1

and tolerances 10−3, the RMSE values are the same for all stability cases
(Fig. 6.3a), and are in the same order of magnitude as for all component fit-
tings in Fig. 5.6a with a narrower k interval at high values (kmin = 0.02 m−1

and kmax = 0.8 m−1). The density plots (Fig. 6.3b) show that the majority
of the points lie above the y = x line for all stability cases, thus the US
model tends to overestimate σu for kmin = 0.001 m−1, kmax = 1.0 m−1 and
tolerances 10−3. This is consistent with plots of (Su)Mann, which is often
overestimated for 0.001 m−1 ≤ k ≤ 1.0 m−1.
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Figure 6.2: Comparison of (σu)MEF and (σu)sonic F obtained from fitting the
US model to Sw using different kmin, kmax and tolerances. The figure is based
on 381 samples obtained from measurements at 81.5 m in January 2008.
The dashed line shows y = x.

Fitting the US model to Sw only with kmin = 0.02 m−1, kmax = 0.8 m−1

and tolerances 10−4 result in lower RMSE for stable and unstable atmo-
sphere (Fig. 6.4a) compared to the Sw only fitting with the broader k interval
in Fig. 6.3a. However, it seem like the narrower k interval gives larger scatter,
especially for stable and neutral conditions. The density plots in Fig. 6.4b
show that also for this k interval and tolerances, the majority of the points
lie above the y = x line, but more points lie closer to the line than the case in
Fig. 6.3b. The density plots also demonstrate that there are few points that
deviate significantly from the line in Fig. 6.4a. Thus, choosing a higher kmin
value and a quite narrow interval may be favorable when only Sw is known
compared to when all components are known. When all the components are
known, the relatively broad k interval 0.001 m−1 ≤ k ≤ 1.0 m−1 gives the
best fitting results.
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(b) Density plot with colors showing number of points.

Figure 6.3: (σu)sonic F obtained from Eq. (2.7) for frequencies above 1/600
Hz. (σu)MEF obtained from fitting the US model to data of the vertical wind
component, calculated using Eq. (4.6). The figure is based on 1871 stable,
2007 neutral and 2787 unstable samples collected by sonic anemometer at
height 81.5 m at FINO1 during 2007 and 2008. The dashed line shows y = x.
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(b) Density plot with colors showing number of points.

Figure 6.4: (σu)sonic F obtained from Eq. (2.7) for frequencies above 1/600
Hz. (σu)MEF obtained from fitting the US model to data of the vertical wind
component, calculated using Eq. (4.6). The figure is based on 1871 stable,
2007 neutral and 2787 unstable samples collected by sonic anemometer at
height 81.5 m at FINO1 during 2007 and 2008. The dashed line shows y = x.
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6.3 Model parameters

Fig. 6.5 compares the model parameters obtained from fitting the US
model to the vertical component only with the corresponding paramet-
ers obtained when all velocity components were known, both cases using
kmin = 0.001 m−1, kmax = 1.0 m−1 and tolerances 10−3 in the fittings. Again,
the values obtained from fittings to all component using these inputs are
considered good estimations. The Γ values obtained from fittings to Sw

corresponds poorly to the estimation of Γ when all components are known.
This is as expected because a good estimation of Γ requires information
about both Su and Sw, as changing Γ has a substantial influence on Su but
not so much on Sw. Γ is overestimated in 79% of the cases when only the
vertical component is known, which will contribute to overestimation of
Su and thereby also σu. The estimation of αε2/3 is associated with large
uncertainties, with no evident relationship between the parameters obtained
when only Sw is known and the parameters obtained when all components
are known. Generally, αε2/3 is also overestimated in fittings to only the
vertical component (93% of the cases), which contributes to overestimation
of Su (and σu), as this parameter scales with turbulence intensity. Fitting the
US model to the vertical component generally underestimates L (84% of the
cases), it seem like the pattern in the middle panel of Fig. 6.5 follows some
line with a slope smaller than one. Underestimation of L will contribute to
underestimation of Su and thus also σu. However, the overestimation of Γ

and αε2/3 outweighs the underestimation of L, resulting in an overall overes-
timation of σu as observed in Fig. 6.3b. The combination of underestimating
L and overestimating Γ and αε2/3 applies to 65% of the samples, and in
97% of these cases (σu)MEF is overestimated compared to (σu)sonic F.

It is observed from spectrum plots that in some cases (Sw)Mann obtained
from fitting the US model to Sw is a poor fit to its target spectrum, while
the corresponding all-component fit is relatively good, both cases using
kmin = 0.001 m−1, kmax = 1.0 m−1 and tolerances 10−3. A typical such
situation is shown in Fig. 6.6. While the all-component fit gives very good
correspondence between (σu)sonic F and (σu)MEF (both being 0.5 m s−1),
fitting to the vertical component overestimates σu with (σu)MEF = 0.7 m s−1.
The poor fit might be because the fitting function found a local minimum
rather than a local maximum, which can be a challenge when MultiStart
is not used. Using Multistart in Matlab, multiple solutions of a problem
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Figure 6.5: Comparison of the model parameters Γ (left panel), L (middle
panel) and αε2/3 (right panel) obtained from fitting the US model to data
using different inputs (written under ”X-axis” and ”Y-axis”). The figure is
based on 6665 samples collected during 2007 and 2008 at 81.5 m at FINO1.
The dashed line shows y = x.

can be found by starting from different initial guesses, aiming to identify
the global solution. Nevertheless, this approach is time-consuming. Given
that one of the main goals of this thesis is to employ an efficient method,
the decision was made to avoid using MultiStart. The initial guess (Γ = 3,
L = 40 m and αε2/3 = 0.1 m4/3 s−2) is the same in all fittings, which may
not suit all samples. To check if the bad fitting to Sw in the right panel of
Fig. 6.6 is due to a local minimum, the initial guess was changed to the
model parameters obtained when all components where known, namely
Γ = 3.5, L = 61 m and αε2/3 = 0.01 m4/3 s−2. This did indeed improve
the fitting result significantly (Fig. 6.7), with estimated model parameters
Γ = 3.3, L = 38 m and αε2/3 = 0.02 m4/3 s−2. Even though this L value
is still rather different from the all component L, the fitting resulted in
(σu)MEF = 0.5 m s−1, which was the goal. The improved outcome suggests
that a local minimum was encountered in the initial fitting. Local minima
seem to be a small issue when all components are known (as these results
are generally very good), but the effect becomes significant when fitting the
US model to the vertical component only. Information lacks when only Sw

is available, thus increasing the probability of encountering local minima.
Therefore, when only Sw is known, the iteration tolerances might need to be
smaller than when all wind components are available. Using tolerances of
10−4 instead of 10−3 for kmin = 0.001 m−1 and kmax = 1.0 m−1 do indeed
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give better fitting results for the sample in Fig. 6.6, see Fig. F.1 in appendix F.
The parameter estimations are significantly better using 10−4, especially
for L, see Fig. C.1 in appendix C. However, the overall (σu)MEF results are
not very good (see Fig. B.3 and Fig. E.1), so changing the tolerances is not
enough to provide good σu estimations.
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Figure 6.6: Sonic wind spectra obtained from measurements at 81.5 m
height at the FINO1 platform in February 2008 (ζ = 0.03 (neutral), u =

11.5 m s−1). The vertical dashed lines show kmin and kmax used when fitting
the US model to all wind components (left panel) and only Sw (right panel).

The initial guess of αε2/3 is 0.1 m4/3 s−2, which is much larger than
the common estimated values (Fig. 6.5). This initial guess is based on early
testing of the fitting function to the FINO1 data, and it is likely that a smaller
value would have been more appropriate. For fittings when all components
are known, this does not seem to be an issue. Since local minima is a
challenge when only Sw is known, the poor initial guess for αε2/3 may
affect these fittings significantly. Fig. 6.8 is a similar figure as Fig. 6.5,
with the same input parameters except a new initial guess (0.03 m4/3 s−2)
for αε2/3 for the Y-axis. Using this lower αε2/3 as initial guess gives less
overestimation of αε2/3. This also leads to density plots of σu lying closer
to the y = x line, see Fig. B.4b in appendix B. For tolerances 10−4 and
new initial guess for αε2/3, the estimation of L and αε2/3 looks quite good
(Fig. C.2), but the estimation of σu is still not very good, see Fig. B.5.
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Figure 6.7: Sonic wind spectra obtained from measurements at 81.5 m
height at the FINO1 platform in February 2008 (ζ = 0.03 (neutral), u =

11.5 m s−1). The vertical dashed lines show kmin and kmax used when fitting
the US model to Sw. The same fitting inputs as in the right panel in Fig. 6.6,
but with new initial guess for the model parameters: Γ = 3.5, L = 61 m and
αε2/3 = 0.01 m4/3 s−2.

Fig. 6.9 compares the model parameters obtained from fitting the US
model to Sw only with kmin = 0.02 m−1, kmax = 0.8 m−1 and tolerances
10−4 with the parameters obtained in all component fittings with kmin =

0.001 m−1, kmax = 1.0 m−1 and tolerances 10−3. In other words, it compares
the model parameters in Fig. 6.4b and Fig. 5.5b. The estimation of Γ is
challenging as expected, due to lack of information about Su. L follows
quite good the y = x line, however the colors are more diffuse (meaning less
dense and larger spread) than in Fig. 5.7 and Fig. 6.5. Increasing L results in
Sw having both a higher peak and shifting it towards lower wavenumbers.
Changing L thus has a considerable impact on Sw. The peak of Sw is generally
in the interval 0.02 m−1 ≤ k ≤ 0.8 m−1, which might explain why L can
be estimated fairly good in this interval solely based on Sw. As for all
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Figure 6.8: Comparison of the model parameters Γ (left panel), L (middle
panel) and αε2/3 (right panel) obtained from fitting the US model to data
using different inputs (written under ”X-axis” and ”Y-axis”). The figure is
based on 6665 samples collected during 2007 and 2008 at 81.5 m at FINO1.
The dashed line shows y = x. Similar as Fig. 6.5, but with new initial guess
for αε2/3 on the Y-axis: αε2/3 = 0.03 m4/3 s−2.

component fitting with the same k interval and tolerances (Fig. 5.7), there
seem to be some flattening below 75 m, however this is less obvious when
only Sw is known. Like for the all component fitting, it might be difficult to
estimate L in the interval 0.02 m−1 ≤ k ≤ 0.8 m−1 because when L becomes
sufficiently large, a wide range of L values give approximately the same
Su and Sw curves in this interval. αε2/3 do not follow y = x, it tends to be
slightly overestimated, but the estimation is still quite good. For a similar
figure as Fig. 6.9, but with new initial guess (0.03 m4/3 s−2) for αε2/3, see
Fig. C.3 in appendix C. The estimation of L and αε2/3 looks better, and there
is some change in the estimation of (σu)MEF, see Fig. B.6 and Fig. E.4. Since
changing the initial guess for αε2/3 from 0.1 m4/3 s−2 to 0.03 m4/3 s−2 was
done quite late in the work on the thesis, the choice were made to continue
the analysis with the original initial guess.

For Sw only fitting in the interval 0.02 m−1 ≤ k ≤ 0.8 m−1 it is difficult to
make an overall conclusion, because of the substantial variation in outcomes
when observing plots of the wind spectra. The estimated parameters are
(of course) depending on the shape of Sw in this interval. In the right panel
of Fig. 6.10, it is observed that just to the right of the kmin line, it appears
as if (Su)sonic F is about to slope more steeply downward to the left than it
actually does. This leads to the fitting function estimating parameters that
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Figure 6.9: Comparison of the model parameters Γ (left panel), L (middle
panel) and αε2/3 (right panel) obtained from fitting the US model to data
using different inputs (written under ”X-axis” and ”Y-axis”). The figure is
based on 6665 samples collected during 2007 and 2008 at 81.5 m at FINO1.
The dashed line shows y = x.

result in an overly sharp (Sw)MEF (dark blue curve) with too low energy at
low wavenumbers. Γ is close to zero (isotropic turbulence). These parameters
generate an along-wind spectrum that do not look like the sonic spectrum
at all, which result in bad correspondence between (σu)sonic F and (σu)MEF.
Changing the initial guess to the values obtained in the all component fitting
in the left panel of Fig. 6.10 makes little difference to the results, with the
estimated parameters being Γ = 0.8, L = 38 m and αε2/3 = 0.04 m4/3 s−2.
This may indicate that the bad fitting in this case is not due to local minima,
rather lack of information of Sw because the kmin value is too large for
this particular sample. The thought behind choosing such a large kmin as
0.02 m−1, is that the uncertainty increases as the frequency decreases. The
interval 0.02 m−1 ≤ k ≤ 0.8 m−1 is chosen because it gave the lowest RMSE
when comparing (σu)Mann and (σu)targ when only considering data from
January 2008. This kmin value is maybe not optimal.

The model parameters obtained from fitting the US model to Sw using
kmin = 0.02 m−1, kmax = 0.8 m−1 and tolerances 10−4 are plotted against
u in Fig. 6.11. There is no evident relationship between Γ or L and the
mean wind speed. αε2/3 increases with u, like in Fig. 5.8. For low mean
wind speeds, the value of αε2/3 is also quite low, typically in the range
0.01 m4/3 s−2 to 0.02 m4/3 s−2 for mean wind speeds between 5 m s−1

and 8 m s−1. Low values of αε2/3 lead to low PSD values. As previously
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Figure 6.10: Sonic wind spectra obtained from measurements at 81.5 m
height at the FINO1 platform in February 2008 (ζ =−0.05 (near neutral),
u = 20.6 m s−1). The vertical dashed lines show kmin and kmax used when
fitting the US model to all wind components (left panel) and only Sw (right
panel).

stated, the US model estimates αε2/3 quite well solely based on Sw with
kmin = 0.02 m−1, kmax = 0.8 m−1 and tolerances 10−4. Therefore, if the
αε2/3 value obtained from fitting the US model to all wind components
(with kmin = 0.001 m−1, kmax = 1.0 m−1 and tolerances 10−3) is low, the
corresponding value obtained from fitting to Sw with kmin = 0.02 m−1,
kmax = 0.8 m−1 and tolerances 10−4 is also low. When only Sw is known,
the parameters are adjusted to fit Sw, which means that the estimated para-
meters may provide a better fit to Sw compared to the all component fit with
kmin = 0.001 m−1, kmax = 1.0 m−1 and tolerances 10−3. For small αε2/3,
what seems to be a small adjustment in the shape of the (Sw)MEF curve
can lead to large adjustments in the values of Γ and L and quite significant
adjustments in the shape of the (Su)MEF curve. Since the PSD values are
very low for small αε2/3, the agreement between (σu)MEF and (σu)sonic F
will still be quite good, without (Su)MEF necessarily being a good match
to (Su)sonic F. For high mean wind speeds (u > 20 m s−1), αε2/3 typically
exceeds 0.4 m4/3 s−2, resulting in high PSD values. This means that large
adjustments of Γ and L (which again result in small adjustments in the
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shape of (Sw)MEF) will have a significant impact on (Su)MEF and thereby
also (σu)MEF. Generally Γ is underestimated for u > 20 m s−1 (86% of the
cases) compared to the values in Fig. 5.8. For u > 20 m s −1, the value of Γ

in Fig. 6.11 varies from 0.5 up to 4.5. This is quite different from the case
in Fig. 5.8, where the minimum Γ value is 2.5 for such mean wind speeds.
When u > 20 m s−1 and Γ is underestimated, (σu)MEF is underestimated in
97% of the cases. This may explain why it is challenging to make a good
estimation of σu solely based on fitting the US model to Sw at mean high
wind speeds. This challenge is evident across all the inputs that have been
tested, see for instance Fig. E.1, Fig. E.2, Fig. E.4 in appendix E.
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Figure 6.11: Relating the model parameters Γ (left panel), L (middle panel)
and αε2/3 (right panel) to u. The model parameters are obtained from
fitting the US model to Sw. ”guess” refers to the initial guess of the model
parameters, and is on the form [Γ, L, αε2/3]. The figure is based on 6665
samples collected during 2007 and 2008 at 81.5 m at FINO1.

6.4 Comparison with IEC standards

Fig. 6.12a shows the results when the standard deviation of the along-wind
component is estimated using Eq. (2.21), which is in accordance with the
IEC guidelines. Here, the standard deviation of the vertical component is cal-
culated using Eq. (2.7) for frequencies above 1/600 Hz, namely (σw)sonic F.
Eq. (2.21) overestimates σu, as most point lie above the y = x line, with
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only a few exceptions. This is emphasized by the density plot in Fig. 6.12b.
Fitting the US model to the vertical component only with kmin = 0.02 m−1,
kmax = 0.8 m−1 and tolerances 10−4 (Fig. 6.4a) results in lower RMSE for
stable and unstable atmosphere compared to the IEC method. For neutral
atmosphere, the RMSE is the same for both methods, despite Fig. 6.4a show-
ing large scatter. By comparing the density plot in Fig. 6.12b with Fig. 6.4b,
it seems like fitting the US model to Sw gives a better estimation of σu than
Eq. (2.21), because the density plot is closer to the y = x line.
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Figure 6.12: Comparing (σu)sonic F with 2(σw)sonic F in accordance to
Eq. (2.21). (σi)sonic F calculated using Eq. (2.7) for f > 1/600 Hz. The
figure is based on 6665 samples collected during 2007 and 2008 at 81.5 m
at FINO1.

Fig. 6.13a shows σu at 81.5 m a.s.l., as a function of the mean wind
speed, with errror bars and bins defined in the same way as for Fig. 5.9a.
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The Mann values are (σu)MEF obtained from fitting the US model to Sw only
with kmin = 0.02 m−1, kmax = 0.8 m−1 and tolerances 10−4. For mean wind
speeds below 15 m s−1 the Mann values are a little bit higher than the sonic
values. For wind speeds above 15 m s−1, the sonic values exceed the Mann
values, but also the number of samples in these bins is lower than for mean
wind speed below 15 m s−1. Note that the maximum number of values are at
10 m s−1 and 10.5 m s−1, corresponding to wind speeds in the ranges 9.75-
10.25 m s−1 and 10.25-10.75 m s−1. These values are in the typical rated
wind speed region. For instance, the 15 MW IEA reference wind turbine
has a rated wind speed of 10.59 m s−1 (Gaertner et al., 2020). The sonic σu

values generally increase with increasing mean wind speed, but with a few
exceptions after u exceeds 21.5 m s−1, where there are few samples. This
pattern also applies to the Mann σu, but with even greater variation at the
highest wind speeds. The challenge of (σu)MEF being underestimated for
high wind speeds, as explained in section 6.3, is clearly visible in Fig. 6.13a,
where the deviation between Mann and sonic is large. As seen in Fig. 5.9a
the US model underestimates σu for high mean wind speeds also when all
components are known, though to a significantly lesser extent. Estimating
σu from fitting the US model to Sw seems to work relatively well for mean
wind speeds up to 17 m s−1, as the deviation between the Mann and sonic
values for these wind speeds are quite small (0.08 m s−1 or less). For mean
wind speeds exceeding this, the method performs poorly. The Mann and
sonic 90th percentile corresponds quite good up to 20 m s−1, but have
large deviation from the 90th percentile as given by IEC (Eq. (2.9)). As
mentioned in section 5.4 about Fig. 5.9a, Eq. (2.9) might estimate too large
values for the 90th percentile. Thus, the large deviation from the Mann
90th percentile to the dashed line does not necessarily mean that the 90th
percentile estimated from fitting the US model to Sw is poor. For high mean
wind speeds, the Mann error bars are much longer than the sonic error bars,
which means that there is larger spread in the (σu)MEF estimated from fitting
the US model model to Sw than (σu)sonic F values for high wind speeds. The
length of the error bars match quite well for mean wind speeds up to 15
m s−1. For mean wind speeds below 20 m s−1, the difference between the
turbulence intensity estimated from the sonic and Mann values is 0.01 or
less (Fig. 6.13b). To know whether a deviation of 0.01 is significant when
it comes to wind loads on a wind turbine, aeroelastic simulation is needed,
which is out of the scope of this thesis.
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(a) σu as a function of u. The dashed line is calculated using Eq. (2.9).
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Figure 6.13: (a) σu and (b) Iu as a function of u. The bin width is 0.5 m s−1,
and the center of each bin is placed at each half m s−1. The error bars mark
the 10th and 90th percentile. The blue dots are calculated from (σu)sonic F.
The pink dots are calculated from (σu)MEF obtained from fitting the US
model to Sw. The figure is based on 6665 samples collected during 2007 and
2008 at 81.5 m at FINO1.
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Chapter 7

Application to lidar data

The lidar data is measured onshore at Rødby harbour, while FINO1 is located
offshore. As there is more turbulence onshore than offshore due to higher
surface roughness, the turbulence intensity is expected to be higher at Rødby
harbour than at the FINO1 platform. However, the turbulence intensity on
the harbour will depend on the analysed sector. To ensure comparability
between the turbulence intensity at the two sites (in the sense that the wind
comes from similar surface roughness), only wind speeds limited to a sector
open to the sea are included from the lidar measurements at the harbour.
This corresponds to wind directions of 130° to 295° at Rødby harbour. Since
there are no available measurements of the wind direction from the lidar
data set, wind directions from NORA3 (Cheynet, 2024) are used to filter the
lidar measurements. The NORA3 data set does not provide data at height
80 m, so an average of the wind direction at height 50 m and 100 m are
used. This is a simplified approach to determine the wind direction, which
may not give precise results. Nevertheless, it is considered sufficient for the
intended purpose. The FINO1 (sonic) data only considers wind direction
from 190° to 359° to avoid disturbances from the mast. The most frequently
observed turbulence intensity measured offshore by the sonic at FINO1 is
higher than the most common turbulence intensity measured onshore by the
lidar (Fig. 7.1). Spatial averaging of the lidar measurements may explain
why the turbulence intensity is higher at the FINO1 platform than at Rødby
harbour, which is opposite of expectations.

If the peak of the vertical lidar spectrum had been outside of the k interval
affected by spatial averaging, the US model could have been fitted directly



66 Application to lidar data

0.00 0.02 0.04 0.06 0.08 0.10
Iw

0

10

20

30

40

50

60

70

De
ns

ity

(Iw)lidar

(Iw)sonic

z = 80 m

Figure 7.1: Distribution of turbulence intensity. Lidar: based on measure-
ments from a Leosphere WindCube 100S in staring mode at Rødby harbour
during November 2022 at height 80.0 m. Only wind directions from 130° to
295° (wind from the ocean) are considered for the lidar data. Sonic: Meas-
urements by a sonic anemometer at the FINO1 platform at 81.5 m during
November 2008. For the sonic data, only wind directions from 190° to 359°
are considered.

to the spectrum without first attempting deconvolution. Unfortunately, this
is not the case, thus spatial averaging correction must be conducted before
fitting. Deconvoluting Sw by rearranging Eq. (2.19) does not work well,
because the spectral transfer function is close to zero at high wavenumbers,
resulting in the spectrum having a rapid growth (blue curve Fig. 7.2). The
regularization method in Eq. (2.20) performs poorly because of difficulty in
finding a λ that corrects well for high values of k but does not impact low
k values (Fig. 7.2 green curve). Therefore, λ is selectively introduced only
beyond a certain threshold (klim), determined empirically in conjunction
with λ . klim = 0.13 m−1 and λ = 0.3 seem appropriate choices, see pink
curve Fig. 7.2. This sample is from height 80.0 m, to be comparable to the
sonic spectra collected at FINO1. The original lidar spectrum (black curve
Fig. 7.2) and the one corrected with λ above klim (pink curve Fig. 7.2) looks
like the convoluted spectrum with probe length 25 m (black curve) and
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the original sonic spectrum (pink curve) in Fig. 2.4. This suggests that the
very simplified correction method of this thesis may work to some extent.
However, since there are no simultaneous point-measurements (for instance
by sonic anemometers) from the site, there is no way to validate the lidar
measurements or if this simplified deconvolution method is sufficient to
correct for spatial averaging.
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Figure 7.2: Sw obtained from vertical wind measurements taken by a
Leosphere WindCube 100S in staring mode with probe length 25 m. The
sample is from 15th of November 2022 at 17:47:29 at height 80.0 m, with
u = 11.2 m s−1. The black curve shows the original Sw obtained from spec-
tral analysis of the lidar data. Sw is deconvoluted using Eq. (2.19) (blue
curve), and Eq. (2.20) for all k (green curve) and k > 0.13 m (pink curve).

Since the sampling rate of the lidar is 1 Hz, the highest measurable
frequency (Nyquist frequency) is 0.5 Hz, which is quite different from the
sonic anemometer’s max frequency of 5 Hz. The sampling period is 25
minutes, meaning that the lowest measurable frequency is 0.001 Hz. As for
the FINO1 measurements, this thesis is interested in frequencies above 1/600
Hz (0.002 Hz). The fitting interval of 0.02 m−1 ≤ k ≤ 0.8 m−1 was found
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favorable when testing fitting the US model to the vertical component of the
FINO1 data. Because of the low sampling rate of the lidar, the maximum
measured k value is lower than the desired kmax = 0.8 m−1. Therefore,
the fitting procedure is tested for kmin = 0.02 m s−1 and using the highest
measured k (0.3 m−1) as kmax on the original lidar spectrum and the corrected
(with λ above k = .13 m−1) spectrum in Fig. 7.2. The initial guess of the
model parameters is Γ = 3, L = 40 m and αε2/3 = 0.1 m4/3 s−2, which is
the same as the default for fitting to FINO1 data. kmin = 0.02 m s−1 is too
large, because the US model underestimates the spectrum due to the shape
of Sw right above kmin (like the case in the right panel of Fig. 6.10). kmin is
therefore adjusted to 0.01 m s−1. The fitting results are shown in Fig. 7.3,
where the upper panel is the original lidar spectrum and the lower panel is the
corrected spectrum. There is some difference in the model parameters due
to the spectrum shape at high wavenumbers. The US model overestimates
Sw slightly for the original lidar spectrum at high wavenumbers. However,
spatial averaging is expected at these wavenumbers, so overestimation here
may actually give a more realistic PSD than the original lidar spectrum.
The fitting to the corrected spectrum looks quite good. The fittings result
in (σu)MEF = 0.8 m s−1 when fitted to the original lidar Sw and (σu)MEF =

1.1 m s−1 when fitted to the corrected spectrum. Again, the accuracy of
(Su)MEF and (σu)MEF cannot be verified because of lack of sonic data. The
mean wind speed is 11.2 m s−1, which is in a range where there is good
correspondence between (σu)MEF and (σu)sonic F in Fig. 6.13a.

Fig. 7.4 shows the vertical profile of u, σw and Iw from the sample
corresponding to the vertical wind spectrum in Fig. 7.2 and Fig. 7.3. The
Leosphere Windcube 100S had a dead zone of 50 m, and the measurements
stopped at 220 m for this sample, which is quite low. The mean wind speed
increases with height, and the standard deviation and turbulence intensity
of the vertical component decrease with height except for between 110 m
and 140 m. The stability of the atmosphere is unknown, but the mean wind
speeds are relatively high. Fig. 7.5 shows σu (left panel) and Iu (right panel)
calculated from σw using different methods. The orange curve results from
Eq. (2.22) (Engineering Sciences Data Unit (ESDU), 2001) with h = 225 m
(found from inspection of the lidar measurements). The purple curve is
calculated using Eq. (2.21) (IEC 61400-1, 2005). The ESDU equation holds
for neutral atmosphere (strong winds). At hub height the difference between
the two standards are large, which means that the choice of standard has a
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great impact on σu and Iu. Fig. 7.5 also includes σu and Iu obtained from
fitting the US model to Sw using both the original lidar spectrum (black
curve) and a corrected spectrum (pink curve). For z = 80.0 m the original
lidar spectrum corresponds to the black curve in Fig. 7.2 and Fig. 7.3 (upper
panel). The corrected spectrum is deconvoluted and corrected with λ = 0.3
for k > 0.13 m−1 using Eq. (2.20), which for z = 80.0 m corresponds to
the pink curve in Fig. 7.2 and Fig. 7.3 (lower panel). Note that in Fig. 7.5,
the integration (when estimating σu from fitting the US model to Sw) is
performed over all frequencies included in the original spectral analysis of
the lidar measurements, not just above 1/600 Hz (as it is in Fig. 7.3). This
is done to ensure that the values obtained from fitting are comparable to
the ESDU and IEC equations which are based on σw measurements with
averaging period of 25 minutes, thus including frequencies below 1/600
Hz. While the ESDU and IEC equations result in rather smooth profiles,
with the ESDU profiles decreasing with height, σu obtained from fitting
the US model to the original and corrected Sw give large variations in the
profiles. This may indicate that the method works bad, especially that the
corrected deconvolution method is insufficient. λ and klim are empirically
adjusted to Sw at height 80.0 m. From Fig. 7.5 it can be seen that the pink
curve is close to the ESDU curve at this height. The chosen λ and klim may
not suit the spectra at the other heights, and should probably be adjusted
for each spectrum. This emphasizes the shortfall of the correction method
of this thesis. It is also worth noting that due to lack of σu measurements,
it is unknown whether the ESDU or IEC equation actually give good σu

estimations.
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Figure 7.3: The US model fitted to Sw obtained from vertical velocity
measurements by a Leosphere WindCube 100S (probe volume length 25
m) in staring mode 15th of November 2022 at 17:47:29 at 80.0 m, with
u = 11.2 m s−1. Upper panel: (Sw)lidar is from the original spectral analysis
of the lidar measurements. Lower panel: the original lidar spectrum is de-
convoluted and corrected using Eq. (2.20) with λ = 0.3 for k > 0.13 m.
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Figure 7.4: Data collected by a Leosphere WindCube 100S (probe length 25
m) 15th of November 2022 at 17:47:29 at Rødby harbour. Left panel: profile
of u collected in 4-beam DBS mode. Middle panel: profile of σw collected
in vertical staring mode. Right panel: the resulting Iw = σw/u.
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Eq. (2.20) with applying λ = 0.3 for k > 0.13 m−1. The sample is collected
15th of November 2022 at 17:47:29 at Rødby harbour.



Chapter 8

Conclusions

The thesis investigated the feasibility of deducing the along-wind spectrum
and the resulting σu from measurements of the vertical wind speed combined
with numerical modeling, using the uniform shear (US) model (Mann, 1994).
The method for fitting the US model to data was tested on measurements
taken by sonic anemometer at 81.5 m at the FINO1 platform for two different
cases: 1) all velocity components were known, and 2) only Sw was known.
The method was also briefly tested on vertical velocity measurements taken
by a Leosphere WindCube 100S, which included a novel aspect of correcting
for spatial averaging.

8.1 Evaluation of thesis objectives

Fitting the US model to all velocity components worked well for all the tested
k intervals and iteration tolerances, as indicated by the agreement between
the resulting (σu)Mann and (σu)targ. After extending the fitting results and
only including f > 1/600 Hz, the best agreement between (σu)MEF and
(σu)sonic F was obtained using a relatively broad k interval in the fitting.
The extended and filtered results were especially good using the fitting
inputs kmin = 0.001 m−1, kmax = 1.0 m−1 and iteration tolerances of 10−3,
which resulted in good correspondence between (σu)MEF and (σu)sonic F for
all stabilities. Thus, the model parameters obtained in these fittings were
considered reliable estimations, against which parameters from fittings to
the vertical component were later compared.

The results revealed that the accuracy of fitting the US model to only



74 Conclusions

the vertical component was affected by the k interval used in the fitting.
Encountering local minima during the optimization process, rather than
the desired global minima, posed a significant challenge. This was partic-
ularly evident when attempting to fit the US model to Sw using the inputs
kmin = 0.001 m−1, kmax = 1.0 m−1, and iteration tolerances 10−3. In many
cases, this led to overestimation of (Su)MEF and consequently (σu)MEF.
Using tolerances of 10−4 and adjusting the initial guess of αε2/3 from
0.1 m4/3 s−2 to 0.03 m4/3 s−2 led to some improvement. However, using
the fitting inputs kmin = 0.02 m s−1, kmax = 0.8 m s−1 and tolerances 10−4

gave better agreement between (σu)MEF and (σu)sonic F. It seemed like en-
countering local minimum was less of an issue for this narrow k interval.
Nonetheless, selecting such a narrow interval could pose challenges if the
spectrum within this range exhibits a shape that diverges from the char-
acteristics observed outside of the interval. The estimation of αε2/3 from
fitting the US model to Sw with kmin = 0.02 m s−1, kmax = 0.8 m s−1 and
iteration tolerances 10−4 was quite good. The results revealed that the devi-
ation between (σu)sonic F and (σu)MEF obtained from such fittings was only
0.08 m s−1 or less for mean wind speeds up to 17 m s−1. For turbulence
intensity, this corresponded to a difference of 0.01 or less. This implies that
the along-wind spectrum can quite well be deduced from measurements of
only the vertical component for mean wind speeds up to this. At higher mean
wind speeds, the PSD values are so large that poor estimations of L and Γ

affect the generated along-wind spectrum and therefore also σu significantly.
Particularly, underestimation of Γ seemed to be a challenge for high mean
wind speeds. Thus, the results indicate that for very high mean wind speeds,
neither the along-wind spectrum nor σu could accurately be retrieved from
vertical measurements only using the method of this thesis.

The height of the mast at FINO1 is not sufficient for drawing conclusions
regarding the accuracy of estimating σu from fitting the US model to Sw at
altitudes relevant to wind turbine operation. The US model was fitted to the
vertical wind spectrum obtained from lidar measurements, both the original
spectrum and one that had undergone an attempt of correcting for the spatial
averaging effect. The correction method introduced a constant, λ , beyond a
threshold kmin, with both values determined empirically using a spectrum
at a height of 80.0 m. Validation of the fitting results and the correction
attempt presented in this thesis was not possible due to lack of available
point measurements. However, large variation with height in the estimated
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σu from the corrected spectrum implied that the correction method did not
work well on all spectra.

8.2 Future work
To properly test the method on lidar measurements, a robust approach for
correcting the spatial averaging is first required. Therefore, it is recommen-
ded that future work focuses on developing reliable methods to correct for
spatial averaging. Alternative ways to estimate Γ would be interesting, as
this model parameter seems to be the most challenging to estimate from
measurements of only the vertical component. For future work, the author
would also recommend using a higher lower limit for Γ for high wind speeds,
to avoid some of the underestimation.
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Appendix A

Extended comparison

The figures compare (σu)ME and (σu)sonic, thus including frequencies below
1/600 Hz. (σu)ME is calculated using Eq. (4.4) with (Su)ME and ( f )ME ob-
tained from fitting the US model to data of either all velocity components or
only Sw, using different kmin, kmax and tolerances. (σu)sonic is obtained from
Eq. (4.3). The figures are based on 381 samples obtained from measurements
at 81.5 m at FINO1 in January 2008. The dashed line shows y = x.
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Figure A.1: The US model fitted to all components.
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Figure A.2: The US model fitted to Sw.



Appendix B

Filtered comparison

The figures compare (σu)MEF and (σu)sonic F, thus only including frequen-
cies above 1/600 Hz. (σu)sonic F is obtained from Eq. (4.5). (σu)MEF is
calculated using Eq. (4.6) with (Su)MEF and ( f )MEF obtained from fitting
the US model to data of either all velocity components or only Sw. If not
otherwise specified, the initial guess is [Γ, L, αε2/3] = [3, 40, 0.1]. The
figures are based on 1871 stable, 2007 neutral and 2787 unstable samples
collected by sonic anemometer at height 81.5 m at FINO1 during 2007 and
2008. The dashed line shows y = x.
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Figure B.1: The US model fitted to all components.
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Figure B.2: The US model fitted to all components.
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Figure B.3: The US model fitted to Sw.
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Figure B.4: The US model fitted to Sw.
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(b) Density plot with colors showing number of points.

Figure B.5: The US model fitted to Sw.
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Figure B.6: The US model fitted to Sw.
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Appendix C

Model parameters

The fogures compare the model parameters Γ (left panel), L (middle panel)
and αε2/3 (right panel) obtained from fitting the US model to data using
different inputs (written under ”X-axis” and ”Y-axis”). The figures are based
on 6665 samples collected during 2007 and 2008 at 81.5 m at FINO1. The
dashed line shows y = x.
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Appendix D

Comparing model parameters
with mean wind speed
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Figure D.1: Relating the model parameters Γ (left panel), L (middle panel)
and αε2/3 (right panel) to u. The model parameters are obtained from fitting
the US model to all wind components. ”guess” refers to the initial guess of
the model parameters, and is on the form [Γ, L, αε2/3]. The figure is based
on 6665 samples collected during 2007 and 2008 at 81.5 m at FINO1.
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Appendix E

Comparison with IEC 61400-3

σu as a function of u. The bin width is 0.5 m s−1, and the center of each bin
is placed at each half m s−1. The error bars mark the 10th and 90th percentile.
The dashed line is calculated using Eq. (2.9). The blue dots corresponds
to (σu)sonic F. The pink dots corresponds to (σu)MEF obtained from fitting
the US model to Sw only. If not otherwise specified, the initial guess is [Γ,
L, αε2/3] = [3, 40, 0.1]. The figures are based on 6665 samples collected
during 2007 and 2008 at 81.5 m at FINO1.
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Appendix F

Wind spectrum

Similar figure as Fig. 6.6, but the right panel having tolerances of 10−4

instead of 10−3.
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Figure F.1: Sonic wind spectra obtained from measurements at 81.5 m
height at the FINO1 platform in February 2008 (ζ = 0.03 (neutral), u =

11.5 m s−1). The vertical dashed lines show kmin and kmax used when fitting
the US model to all wind components (left panel) and only Sw (right panel).
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P., Sjöholm, M., & Enevoldsen, K. (2009). Comparison of 3D
turbulence measurements using three staring wind lidars and a
sonic anemometer. Meteorologische Zeitschrift, 18, 135–140. URL:
http://www.schweizerbart.de/papers/metz/detail/18/57207/

Comparison_of_3D_turbulence_measurements_using_thr?af=

crossref. doi:10.1127/0941-2948/2009/0370.
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