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Abstract

Floating offshore wind turbines are seen as vital to harnessing the greater power potential of

higher wind speeds offshore, in deep water. Since offshore turbines are coupled with mooring

lines, an advanced model of mooring system is often required.

In this project, a novel approach of mathematical modelling of mooring system is presented. It

bases on Moving Frame Method, extensively utilizing Cartan’s concept of Moving Frames,

theory of Lie Groups, especially Special Euclidean SE(3) and Special Orthogonal SO(3)

groups, combined with concise notation derived by Frankel. By means of these principles,

the multi-segmented model of mooring line has been developed.

Hydrodynamic loads have been extended by second order forces, in the form of sum- and

difference frequency forces.

Equation of motion have been obtained via Principles of Virtual Work and Hamilton’s Principle.

The resulting equation is then solved numerically using a fourth-order Runge-Kutta method

and generalized coordinates are obtained. The overall dynamic response of FOWT is analysed

in frequency domain and both wave frequency range (WF) and low frequency range (LF) are

investigated.

As a larger goal, this project aims to establish a strong base for utilizing MFM in more advanced

analyses that can handle intricate influences. While main focus of MFM is kinetics and robotics,

this study has ambiguous idea to open the doors for MFM theory to the world of mooring line

systems, enhancing also the latter one. Advantages of both world should meet in one project ,

and therefore a new, advanced dynamics can cooperate with hydrodynamics.
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1 Introduction

In this project a new model of mooring line is developed and incorporated into catenary mooring

line system of spar-buoy type floating offshore wind turbine (FOWT), aiming to contribute

to development of existing renewable energy technologies and sustainable industrialization.

The thesis investigates the dynamic behavior of a FOWT by applying an advanced numerical

computational Moving Frame Method (MFM).

The dynamic behaviour of FOWTs is influenced by a variety of factors, including wind, currents,

and waves, which greatly contribute to its translational and rotational movement. As a result,

analysing FOWTs becomes a complex multi-body dynamic problem. However, by utilizing the

MFM, this process can be generalized by calculating the translational and rotational motion,

expressed by generalized coordinates, presented in chapter in Chapter 4.3 for platform and RNA

and in Section 5.2 for mooring lines.

The project is in line with the global Paris Agreement and the European Green Deal which is

at the Core of European Union’s ambition to become climate neutral by 2050, meeting several

Sustainable Development Goals (SDGs).

The main contribution targets Goal 7: Affordable and Clean Energy, Goal 9: Industry, Innovation,

and Infrastructure, and Goal 13: Climate Action [7], [8], [9]. But indirectly other sustainable

goals are met as well, such as Goal 8: Decent Work and Economic and Goal 12: Responsible

Consumption and Production [10], [11].

When it comes to bigger scale problem, it worth mentioning that, FOWT generates renewable

energy, ensuring everyone has access to inexpensive, dependable, clean green energy, while

consuming much less fuel derived from fossils [7]. Offshore turbines have an advantage compared

to land based turbines, since offshore areas generally experiences a stronger and more regular

wind, increasing the production of renewable energy, because the power generated by a wind

generator is a function of the cube of wind velocity. FOWT plays a crucial part in reducing

climate change through production of non-polluting power that reduces greenhouse effect[9].
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In addition, FOWTs’ deployment gives rise to innovation in renewable energy technologies by

driving resilient infrastructure development that can foster growth within the sector of offshore

wind industry[8]. Addressing the latter SDG target, smaller challenges are introduced and solved

by applying MFM for modelling of offshore turbine of type spar buoy and catenary type of

mooring lines.

1.1 Problem Statement and Objectives

The project focuses on tackling several issues, one of them concerns improvement of multi-body

system modelling, such as FOWT and mooring system, by addressing effective representation of

multi-body system in 3D space.

Although existing methods in dynamics for modelling of complex systems are reliable, they

are non-extensible due to some of the modelling issues, such as effective representation of

translational and rotational motions of physical bodies in 3D space [12]. The uniqueness of the

Moving Frame Method (MFM) lies in deriving equations of motion (EOM) from complex spatial

movements of multi-body systems, such as FOWT, while retaining the simplicity of Cartan’s

notation in both 2D and 3D spaces [13], [14]. Employing MFM in this context allows to avoid the

customary limitations of free-body diagrams, while facilitating the integration of joint reactions

and hydrodynamic forces, not only for a better dynamic response of the system but also making

it easier to compare with experimentation as well as any other modelling approach without

much deviation in their results. The overreliance on vector algebra is reduced to simplicity and

replaced by a Lie algebraic framework, making appliance of MFM promising, since it offers a

more efficient way of modelling complex dynamics of both single and multi-bodies. In Chapter

4.3 a multi-body system is represented by an assembly of platform, tower with RNA (nacelle

and rotor) and by a multi-segmented model of catenary line in Section 5.2.

Another issue this project faces is challenges related to implementation of hydrodynamics into

MFM-based model. Since, according to principles of virtual work (PVW), the hydrodynamic

forces applied to multi-body system must be at first defined in Cartesian coordinates, before

their transformation into generalized coordinates, as presented in Chapter 6. This means, that

the forces acting on the multi-body system, should be defined for each body separately, which

can be done by linearisation of a well-known equation presented by W.E. Cummins [15]. The

process is described in Chapters 3 and Chapter 6.
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However, to investigate non-linear motion of the system, it is necessary to incorporate second

order forces and such effects as waves loads of sum and difference-frequencies [16]. Utilization

of second order transfer function (QTF) enables implementation of the second order forces into

hydrodynamic loads, that acts on the system.

Then, the whole virtual work of a system is used for derivation of the equation of motion, which

in the form of second-order ordinary differential equation is solved via Runge-Kutta numerical

method.

From the above, the main objectives of the thesis are deduced as follows:

• Development of multi-segmented model of FOWT and catenary mooring line, α-bodies,

based on Moving Frame Method, with further integration to spar- buoys mooring system.

Description of the process is found in Chapter 4.3 for FOWT, and for MFM-based mooring

line in Section 5.2.

• Implementation of the hydrodynamic forces into the full-coupled MFM model of FOWT,

and incorporating as well second order forces, represented by difference-frequency second-order

wave forces, through QTF’s from OrcaFlex[17], [18], as shown in Section 3.1.1.

• Simulation in irregular seas, by solving the equations of motion (EOM), presented in the

form of differential equations through 4th order Runge-Kutta method, as described in

Chapter 7.



2 Literature Overview

Recent researches have revealed that FOWT is susceptible to unexpected movements in the lower

frequency range [19]. First order excitation forces takes mostly into account response of FOWT

with the same frequency as the passing wave. While a turbine will additionally be subjected

to forces in the low frequency range. Difference-frequency wave excitation on a FOWT vary

slowly and can create resonance if they coincide with the eigenfrequency or period of FOWT.

Therefore, the results of such a research can be crucial for risk assessment and are important for

increasing safety. Depending on environmental conditions, there is a need to incorporate second

order forces into MFM model, through implementation of second order transfer function (QTF),

to be able to better model the hydrodynamics of the FOWT.

Wave-induced second-order forces significantly affect the design and study of spar-buoy platforms

through their role in the slow-drift motion and global stability of the system. Extensive work on

this topic has been summarized by Weggel and Roesset’s study conducted in 1996 which has

produced valuable information on the dynamic behaviour of the immersed object in waves [20].

Over the recent years, researchers have been focusing on enhancement of accuracy and efficiency

of mooring line models when subjected to hydrodynamic forces. The work of Ormberg [21],

presents enhanced modelling techniques which take into account complex behaviour of mooring

system under hydrodynamic load.

Moreover, the advancement of traditional particle dynamics methods particularly in the area of

mooring line systems cannot remain unacknowledged. These have been altered to reflect the

complex behavior of mooring lines under different load situations in different ways. It is the

assertion of recent research like that of Kim and Park [22] that such models based on traditional

particle dynamics can significantly enhance the simulation of mooring line dynamics because

they simulate contact and deformation more accurately.

It has been thought that there should be created a more advanced mooring system, that would be

able to withstand extreme weather conditions, minimising losses and damage.
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One critical area of research is the hydrodynamic modeling of mooring systems, which focuses

on understanding the effect of wave, current and wind forces. Computational Fluid Dynamics

(CFD) have made it possible to simulate these forces more accurately and to understand how

mooring lines respond to them. The work done by Bai and Teng [23] is a notable achievement

that has seen the development of a holistic model that combines hydrodynamic forces with

structural responses of mooring lines thus offering better predictive capability.

Even with all of these improvements, there are still some issues when it comes to accurately

predicting how mooring lines move. One major problem is developing an integrated model

comprising numerous forces and material properties that would allow it to perform well during

real-time simulations.

This project attempts to solve this problem.



3 Hydrodynamics

In order to accurately predict the hydrodynamic interaction between the fluid and the platform,

loads that influence the system over time are considered. To represent the hydrodynamic forces

acting on a dynamic system in the time-domain, we can use Cummins equation, Eqn. 3.1, that

shows how a marine structure responds to waves, separating the variables and not relying on

added mass frequency. Cummins equation shows how to represent the equations of motion in the

time-domain.

(M+A∞) q̈ tot +
∫ t

0
K(t− τ)q̇tot (τ)dτ +Chydro q tot = Fex + fexternal (3.1)

Here

M is the mass and inertia matrix of the float

A∞ is the added-mass matrix

∫ t
0 K(t− τ)q̇tot (τ)dτ is radiation forces

Chydro is the hydrostatic restoring forces

fexternal displays external forces that acts on the platform

Fex is excitation force, represented by the sim of the first and second order excitation forces

Fex
(1) and Fex

(2)
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The forces outlined above by the Cummins equation establish an essential foundation for

constructioin of the force vector F∗, Eqn. 6.19, and processed in the equations of motion Eqn.

6.29. This force vector is structured in a way that is conducive to numerical integration using the

RK4 method.

3.1 Excitation Force

Excitation force Fex is often refered as a wave excitation force. It consists of first and second-order

excitation loads which are described by the terms Fex
(1) and Fex

(2) , see Eqn. 3.2.

Fex = Fex
(1)+Fe x

(2) (3.2)

The wave excitation force comprises two parts. First, there is the Froude-Krylov force. This

occurs when the pressure field from undisturbed waves is integrated. Next is the diffraction force,

caused by wave scattering when a body is present.

The first-order loads caused by single incoming wave trains are computed utilizing Eqn. 3.3

Fex
(1)

i = Re
(
AXie jωt) , i = 1,2, . . . ,6 (3.3)

Here, A symbolizes the complex incoming wave’s complex amplitude, providing amplitude

and phase, j stands for the imaginary number
√
−1, while Xi describes the first-order load ith

component for each amplitude. For long-crested irregular sea states lacking directional spreading,

the total load often is represented as a superposition of different wave-frequency components.

Fex
(1)

i = Re

(
N

∑
k=1

AkXi (ωk)e jωkt

)
, i = 1,2, . . . ,6, ωk = (k−1)dω (3.4)
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3.1.1 Second-Order Force

The long-crested second order wave model, is the simples representation of the wave propagation

with N2 corrections that spreads over all the sum frequencies, and another N2 corrections covering

all difference frequencies.

Longuett-Higgins developed a simple model of random wave for long-crested second order wave,

expressed in exponential form as second order wave excitation force Fex
(2) Eq. 3.5 [24]

Fex
(2)

i = Re

(
N

∑
m=1

N

∑
n=1

[
AmAnQT Fi

+ (ωm,ωn)e j(ψm+ψn)t +AmAn
∗QT Fi

− (ωm,ωn)e j(ψm−ψn)t
])

(3.5)

As seen from Eqn. 3.5, the model of the wave includes additional N2 terms, and contains

sum frequency component, defined as QT F+
t (ωm,ωn), and difference frequencies component.

Together they form a quadratic transfer function of surface elevation. QTF has a symmetric

nature and therefore can be expressed by the Eqn. 3.6.

QT F+
t (ωm,ωn) = QT F+

t (ωn,ωm) and QT F−t (ωm,ωn) = QT F−t (ωn,ωm)
∗ (3.6)

Here the asterisk (∗) is the complex conjugate, ωm and ωn are wave frequencies.

Utilizing Euler’s notation, the real part of the Eqn. 3.5 is written as:

F(2+) =
N

∑
m=1

N

∑
n=1

AmAnQT F+
mn cos(ψm +ψn)

F(2−) =
N

∑
m=1

N

∑
n=1

AmAnQT F−mn cos(ψm−ψn)

(3.7)

The correction terms of Eqn. 3.7 including sub-harmonics and super-harmonics are found as sum

- and difference frequency components:

ψm +ψn = (ωm +ωn) t +φm +φn

ψm−ψn = (ωm−ωn) t +φm−φn

(3.8)

Therefore Eqn. 3.5 is expressed in equivalent form:

F(2) =
N

∑
n=1

N

∑
m=1

AmAnQT F+
mn cos [(ωm +ωn) t +(εm + εn)]

+
N

∑
n=1

N

∑
m=1

AmAnQT F−mn cos [(ωm−ωn) t +(εm− εn)]

(3.9)
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The amplitude of QTF in equation Eqn. 3.7 is presented in the form of a symmetric matrix, as

shown in Table 3.1, where diagonal coefficients form the mean drift force, Fi, calculated by

direct pressure integration over the wet surface in equation Eqn. 3.10. While the off-diagonal

coefficients are related to the slow drift force, FSV
i [16].

Fi =
ρgζ 2

a
2

∫
L1

sin2(θ +β )ηidl (3.10)

where ζa is the wave amplitude, β is the propagation direction of a wave and θ is the directional

heading of the wave (in global coordinates).

Based on Eqn. 3.9 second order wave excitation forces are calculated, in the form of sum- and

ω j = ω5 Sym. Sym. Sym. Sym. |QT F55|
ω j = ω4 Sym. Sym. Sym. |QT F44| |QT F54|
ω j = ω3 Sym. Sym. |QT F33| |QT F43| |QT F53|
ω j = ω2 Sym. |QT F22| |QT F32| |QT F42| |QT F52|
ω j = ω1 |QT F11| |QT F21| |QT F31| |QT F41| |QT F51|

ωi = ω1 ωi = ω2 ωi = ω3 ωi = ω4 ωi = ω5

Table 3.1:
∣∣QT F(ωi,ω j)

∣∣ matrix for five wave frequencies [6].

difference frequency forces. QTF’s are obtained in OrcaWave, quadratic and potential loads are

summed up, as it is defined by Orcina, described in Eqn. 3.11 [17].

QT FOrcaFlex = Fq +Fp (3.11)

Where Fq is quadratic load, and Fp is potential load.

Mean drift load have been mapped onto matrix of quadratic load, since potential load falls to

zero for zero -difference frequencies , i.e. ∆ω = 0 when ωi = ω j. The overview over QTFs in all

6 DOF and MATLAB code are presented in Appendix A.
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3.2 Radiation forces

The radiation forces act in the opposite direction to the excitation forces as they are emitted away

from the platform. The convolution integral
∫ t

0 K(t− τ)q̇tot (τ)dτ determines radiation force by

taking into account the memory effects of the fluid and relies on past time, τ [15]. The radiation

impulse response function, K(t) is given by integral:

K(t) =
2
π

∫
∞

0
B(ω)cos(ωt)dω (3.12)

Here B(ω) represents the amplitude of the response components to a unit amplitude forcing

function with frequency, ω [15].

3.3 Added mass forces

Added mass forces are caused by the water’s inertia around the body. These forces are important

for simulating the time-dependent movement of an irregular sea state. Under waves of difference

periods, the amount of added mass varies. To separate these contributions out, Cummin has

eveloped this equation [15]. Added forces are calculated at infinite frequency by letting ω

approach inifinity, as given in Eqn. 3.13.

A∞ = lim
ω→∞

A(ω) (3.13)
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3.4 External forces

External forces applied on the model are represented by a combination of several forces acting

on the system.

3.4.1 Drag force

The drag term of Morison’s equation is applied to calculate the drag forces acting on the platform.

The viscous drag force opposes the relative motion of an object relative to the fluid.

FH =−1
2

ρrd1Cdx ẋ|ẋ| (3.14)

FV =−1
2

ρπr2Cdz ż|ż| (3.15)

MDrag =−FV dz−FH
d
2

(3.16)

Here Cdx and Cdz are the drag coefficients, ẋ, ż is the relative fluid velocity, while d and r are

diameter and radius of the platform. FDrag include all the drag components calculated above:

FDrag =


FH

FV

MDrag

 . (3.17)
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3.4.2 Hydrostatic restoring force

The hydrostatic restoring force is the force acting on a body caused by the change in hydrostatic

pressure on its wetted surface as it moves from its original position. Only heave and pitch

displacements are concerned, since there is no restoring force in horisontal direction. The

hydrostatic stiffness for vertical (heave) Sz and rotational (pitch) Sθ directions, as well as the

restoring forces and moments, are described as follows:

Sz = ρgπr2 (3.18)

Sθ =
ρgπr4

4
(3.19)

Fz =−Szz (3.20)

Mθ =−Sθ θ . (3.21)

The actual vertical hydrostatic stiffness Sz and rotational Sθ are taken from OrcaWave diffraction

model.

3.4.3 Simplification of the Force Vector

A real wind turbine has an operating rotor, subject to aerodynamic thrust forces, within a turbulent

wind field, mounted at the top of a large tower, which provides a large overturning moment.

During storm-conditions, with wind speeds > 25 m/s, the turbine will be shut down. Thus we

can simplify the force contribution from the rotor and nacelle. For describing the main forces

influencing the nacelle and rotor, a scenario in which the only acting force is the force of gravity

is concerned. It implies that the case with no wind and no rotation is applied.

Still, even with no force and rotation, the weight of the nacelle might be the reason of bending

or torsional moments. But, since it is an inertial force it provides resistance to motion. However,

the moment that acts on the nacelle due to gravity is zero, since the is no arm between the axis of

the tower and center of gravity of the nacelle, for the system analysed in this project. Otherwise
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it would be calculated with Eqn. 3.22.

Mnacelle = Fg d (3.22)

Where Fg is the gravitational force and d is the horizontal distance from the axis of the tower to

the center of gravity of the nacelle. By this simplification the force vector can be constructed,

including simplified model of wind load that act on nacelle and rotor, see Eqn. 6.20.

The foundation for more comprehensive studies that will incorporate variable wind forces at a

later stage is laid when no-wind conditions are thoroughly understood. This way the necessity of

dividing the analysis into smaller parts as part of a systematized process for solving problems is

emphasized.



4 The Moving Frame Method

In contrast to traditional vector-based dynamics, MFM adopts moving reference frame approach

of Élie Cartan [25] along with the group theory and associated algebra of Sophus Lie, allowing

to relate frames of a multi-body system. This method is further developed by Frankel [26],

Murakami [27], and described by Impelluso [28].

4.1 Main Principles of MFM

MFM is based on principles of Lie Group, and more specifically on Special Euclidean Group

SE(3) and the Special Orthogonal Group SO(3) which enables representation of 3D rotations

through matrices, by means of associated Lie algebra so(3) and body kinematics.

4.2 Body Kinematics

It can be assumed that any arbitrary point can be written without explicitly stating it, as described

in Eqn. 4.1

e′ =
(

∂

∂x1
,

∂

∂x2
,

∂

∂x3

)
(4.1)

Then, given that every coordinate in Eqn. 4.1 is normalized, a vector basis eI is derived:

eI = (eI
1,e

I
2,e

I
3) (4.2)

Eqn. 4.2 defines an inertial frame, while each individual α-body frame has it’s own vector basis,

Eqn. 4.3, attached to the mass center C(α) of the respective body.

e(α)(t) =
(

e(α)
1 (t)e(α)

2 (t)e(α)
3 (t)

)
(4.3)
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The body numbers are then sequentially assigned, starting with α = 1 for the platform and

moving inwards towards the nacelle. The general schematic for FOWT is shown in Figure 4.1

Figure 4.1: Diagram of FOWT showing position of the frames usied in this study, adapted from [1].
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The translation of body-α in reference to an inertial frame perspective is denoted as r(α)
C (t),

where the symbol x is used to represent inertial coordinates.

r(a)C (t) = eIx(α)
C (t) (4.4)

The attitude, or orientation and rotation, of eα(t) is measured from eI and represented by a 3×3

rotation matrix, Rα(t), a member of the SO(3) group, as shown in equation (4.5)

eα(t) = eI(t)Rα . (4.5)

Equation (4.6) captures the orientation of body-(α +1) with respect to body-α , as described in

equation (4.5).

e(α+1)(t) = e(α)(t)R(α+1/α)(t). (4.6)

If the orientation of the body e(α+1)(t) is desired with respect to the inertial frame, Eqn. (4.5)

can be inserted into Eqn. (4.6) as follows:

e(α+1)(t) = eIRα(t)R(α+1/α)(t) = eIR(α+1)(t). (4.7)

The frames are connected through rotation matrices, therefore the inverse of Eqs. (4.5-4.7) exists.

This implies that

R−1(t) = RT (t) (4.8)

where superscript, T, represent s the square-matrix transpose.
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4.2.1 Special Orthogonal Group SO(3)

SO(3) comes with an associated algebra, denoted as so(3), that produces the angular velocity

matrix, as shown in Eqs. 4.11-4.12 and can state any skew-symmetric matrix.

By means of SO3 and so(3) Eqn. 4.8 becomes identical with Eqn. 4.10

SO(3) =
{

R ∈ R3×3 | RT R = I,det(R) = 1
}

(4.9)

Where det is determinant of matrix, R.

The vertical line in Eqn. 4.10 means that the inverse matrix A is equal to - A∗

so(3) =
{

A ∈ R3×3 | AT =−A
}

(4.10)

Absolute from inertial frame
←−−→
ω(t)α = (R(t)α)T Ṙ(t)α (4.11)

Relative from abs.frame
←−−−−−−→
ω(t)(α/α−1) =

(
R(t)(α/α−1)

)T
Ṙ(t)(α/α−1) (4.12)

The recursive relation to previous frame, starting from frame two and up, as shown below:

←−→
ω

(α) =
(

R(α/α−1)
)T←−−→

ω
(α−1)R(α/α−1)+

(
R(α/α−1)

)T
Ṙ(α/α−1) (4.13)

Knowing that: (
R(α/α−1)

)T←−→
ω

(α)R(α/α−1) =

←−−−−−−−→(
R(α/α−1)

)T
ω

(α) (4.14)

Thus, using Eqn. 4.12, absolute frame can be rewritten as:

←−→
ω

(α) =
(

R(α/α−1)
)T←−→

ω
(α)R(α/α−1)+

←−−−−→
ω

(α/α−1) (4.15)

Or
←−→
ω

(α) =

←−−−−−−−→(
R(α/α−1)

)T
ω

(α)+
←−−−−→
ω

(α/α−1) (4.16)

Cancelling out the skew and get:

ω
(α) =

(
R(α/α−1)

)T
ω

(α)+ω
(α/α−1) (4.17)
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Two complimentary algebraic expressions that are intertwined are give as follows:

• Reverse cross- product by installing negative sign:

←→
ω s = ω(−←→s ) =−ω

←→s (4.18)

• Absorb negative sign by transpose:

−ω
←→
(s) = ω

←→s T (4.19)
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4.2.2 Special Euclidean Group SE(3)

Now that SO (3) has been presented, the properties of the special Euclidean group, SE(3), which

are used for defining the dynamics of the platform, are presented in this section. There are

two types of SE(3) Frame Connection Matrices, i.e. absolute and relative. The absolute frame

connection matrix, expressed with Eq.4.21, connects the moving frame to the inertial frame.

While the relative frame defines the relation between two moving frames, see Eqn: 4.23.

(e(α)(t) x(α)
C (t)) = (eI 0)E(α)(t) (4.20)

E(α)(t) =

R(α)(t) x(α)
C (t)

01×3 1

 (4.21)

(e(α+1/α)(t) r(α+1/α)
C (t)) = (e(α)(t) r(α)

C (t))E(α+1/α)(t) (4.22)

E(α+1/α)(t) =

R(α+1/α)(t) S(α+1/α)
C (t)

01×3 1

 (4.23)

Absolute frame has relation to inertial in comparison to SO(3):

SO(3):
←−→
ω

(α) =
(

R(α/α−1)
)T←−−→

ω
(α−1)R(α/α−1)+

(
R(α/α−1)

)T
Ṙ(α/α−1) (4.24)

SE(3):
←−→
Ω

(α) =
(

E(α/α−1)
)T←−−→

Ω
(α−1)E(α/α−1)+

(
E(α/α−1)

)T
Ė(α/α−1) (4.25)

4.2.3 Generalized Coordinates

Relation between Cartesian coordinates and generalized coordinates is expressed by Eqn. 4.26.

{
˙Xi(t)(t)

}
=
[
Bi j(t))

]{
q̇ j(t)

}
(4.26)

Where the Cartesian Ẋ(t) is defined by linear velocity ẋ(α)
c (t) and angular velocity ω(α)(t)

at the center of mass of each body, forming αx1 matrix for a system with α bodies and n- DOF

as shown in Eqn. 4.27. While q̇(t) is defined by Eqn. 4.28.

Cartesian Generalized
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{
Ẋ(t)

}
=



ẋ(1)c (t)

ω(1)(t)

ẋ(2)c (t)

ω(2)(t)
...

ẋ(α)
c (t)

ω(α)(t)



(4.27) {q̇(t)}=



q̇1(t)

q̇2(t)
...

q̇n(t)


(4.28)

4.3 Dynamics of floating Offshore Wind Turbine

In this section the dynamics of FOWT is described in detail. The theory given in previous chapter

is now applied to a model of FOWT, represented in Figure 4.1.

4.4 First Frame: Platform/Tower

Figure 4.2: Connection between inertial frame and frame 1. [1]

First frame related to inertial frame by Eqn. 4.29:

e(1)(t) = eIR(1)(t) (4.29)
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Position vector r(1)c (t) is defined by Eqn. 4.30:

r(1)c (t) = eIx(1)c (t) (4.30)

Frame connection matrix containing position and the rotation of the first frame is:

E(1)(t) =

 R(1)(t) x(1)(t)

0T
3 1

 (4.31)

The rate of change is the derivative of the frame connection matrix

Ė(1)(t) =

 Ṙ(1)(t) ẋ(1)c (t)

0T 0

 (4.32)

The inverse of the frame connection matrix

(
E(1)(t)

)−1
=

 R(1)T (t) −R(1)T (t)x(1)c (t)

0T 1

 (4.33)

The absolute time rate of frame connection matrix for the first frame:

Ω
(1) =

(
E(1)(t)

)−1
Ė(1)(t) =

 ←−−→ω(1)(t)
(

R(1)(t)
)T

ẋ(1)(t)

0T
3 0

 (4.34)

First term representing angular velocity for the first frame is extracted from the first column:

ė(l)(t) = e(1)(t)
←−−→
ω

(1)(t) (4.35)

The second term is also extracted from the second column, representing linear velocity in terms

of the first frame:

ṙ(1)(t) = e(1)(t)
(

R(1)(t)
)T

ẋ(1)(t) (4.36)

Pulling back to inertial frame, by applying Eqn. 4.29 and simplifying with Eqn. 4.9,(
R(1)(t)

)T
R(1)(t) = I and therefore term R1 vanishes:

ṙ(1)(t) = eI ẋ(1)(t) (4.37)
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4.5 Second Frame: Nacelle

Figure 4.3: Connection between frame 1 and frame 2 through path s(2/1), follow the red arrow. [1]

The nacelle is considered to be in a fixed position, so rotation R(2/1) is eliminated.

Therefore the relative frame connection is only defined by a translation from the mass center of

the tower towards mass center of the nacelle, s(2/1), as shown in Figure 4.6.

E(2/1)(t) =

 I3 s(2/1)

0T
3 1

 (4.38)

The absolute frame connection matrix E(2)(t)

E(2)(t) = E(1)(t)E(2/1)(t) =

 R(1)(t) R(1)(t)s(2/1)+ x(1)(t)

0T
3 1

 (4.39)

with the rate of change given as the time-derivative of the frame connection matrix, see equation

below:

Ė(2)(t) =

 Ṙ(1)(t) Ṙ(1)(t)s(2/1)+ ẋ(1)c (t)

0T 0

 (4.40)
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The inverse of the frame connection matrix is:

(
E(2)(t)

)−1
=

 R(1)T (t) −R(1)T (t)(R(1)(t)s(2/1)+ x(1)(t))

0T 1

 (4.41)

and the absolute time rate of frame connection matrix for the second frame:

Ω
(2)(t) =

 (R(1)(t)
)T

Ṙ(1)(t)
(

R(1)(t)
)T (

Ṙ(1)(t)s(2/1)+ ẋ(1)(t)
)

0T
3 0

 (4.42)

The first term representing angular velocity for the second frame is extracted from the first

column:

ω
(2)(t) = e(2)(t)

(
ω

(1)(t)
)

(4.43)

By applying Eqn. 4.29 and simplifying with Eqn. 4.9,

the
(

R(1)(t)
)T

R(1)(t) = I vanishes and thus relation to the inertial frame is obtained as:

ṙ(2)(t) = eI
(

R(1)(t)
←−−→
ω

(1)(t) s(2/1)+ ẋ(1)(t)
)

(4.44)

By reversing cross product with Eqn. 4.18 and absorbing the negative sign by transpose as in

Eqn. 4.19, final linear velocity can be expressed as:

ṙ(2)(t) = eI

{
R(1)(t)

(←−→
s(2/1)

)T

ω
(1)(t)+ ẋ(1)(t)

}
(4.45)
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4.6 Third Frame: Rotor

To enable future incorporation of aerodynamic forcing, the equations are presented in this Section,

assuming separate frames for each the nacelle and rotor. Those frames will be locked together as

a single-rigid body in the final code. Following the same procedure developed for the first and

second frame we obtain the third frame which is represented by RNA.

Figure 4.4: Connecting frame 2 with frame 3 through path s(3/2), follow the red arrow. [1]

e(3)(t) = e(2)(t)R(3/2)(t) = e(2)(t)


1 0 0

0 cosϕ(3/2)(t) −sin ϕ(3/2)(t)

0 sinϕ(3/2)(t) cosϕ(3/2)(t)

 (4.46)

E(3/2)(t) =

 I3x3 s(3/2)
c (t)

0 1

 R(3/2)(t) 0

0 1

=

 R(3/2)(t) s(3/2)

0 1

 (4.47)

E(3)(t) = E(2)(t)E(3/2)(t) (4.48)

E(3)(t) =

 R(1)(t) R(1)(t)s(2/1)+ x(1)(t)

0T
3 1

 R(3/2)(t) s(3/2)

0 1

 (4.49)

E(3)(t) =

 R(1)R(3/2) R(1)s(3/2)+R(1)s(2/1)+ x(1)

0 1

 (4.50)
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Ω
(3)(t) =

(
E(3)(t)

)−1
Ė(3)(t) =

 Ω
(3)
11 (t) Ω

(3)
12 (t)

0 0

 (4.51)

Ė(3)(t) =

 Ṙ(1)R(3/2)+R(1)Ṙ(3/2) Ṙ(1)s(3/2)+
{

Ṙ(1)s(2/1)+ ẋ(1)
}

0 0

 (4.52)

Realizing that ẋ(2) = Ṙ(1)s(2/1)+ ẋ(1), and therefore:

Ė(3)(t) =

 Ṙ(1)R(3/2)+R(1)Ṙ(3/2) Ṙ(1)s(3/2)+ ẋ(2)

0 0

 (4.53)

Ω
(2)
11 (t) =

(
R(1)(t)

)T (
R(3/2)(t)

)T (
Ṙ(1)(t)R(3/2)(t)+R(1)(t)Ṙ(3/2)(t)

)
(4.54)

Acknowledging that
←−−→
ω(1)(t) =

(
R(1)(t)

)T
Ṙ(1)(t) according to Eqn. 4.11,

and
←−−−−→
ω(3/2)(t) =

(
R(3/2)(t)

)T
Ṙ(3/2)(t) by Eqn. 4.12. Therefore:

Ω
(2)
11 (t) =

(
R3/2)

)T←→
ω

(1)R(3/2)+
←−−→
ω

(3/2) (4.55)

Cancel out the skew by means of Eqn. 4.17, and extracting ω(3):

ω
(3) =

(
R3/2)

)T
ω

(1)+ω
(3/2) (4.56)

Ω
(2)
12 (t) =

(
R(1)(t)

)T (
R(3/2)(t)

)T (
Ṙ(1)s(3/2)+ ẋ(2)

)
(4.57)

Simplifying expression by utilizing Eqn. 4.11 and multiplying Eqn. 4.57 with R(3/2)(t) to get rid

of the transpose of this term, by identity matrix
(

R(3/2)(t)
)T

R(3/2)(t) = I, getting:

Ω
(2)
12 (t) =

←−−→
ω

(1)(t) s(3/2)+
(

R(1)(t)
)T

ẋ(2)(t) (4.58)

Reintroducing the inertial frame, by frame relation given in Eqns. 4.29 and 4.5

ṙ(3)(t) = eI
(

R(1)(t)
←−−→
ω

(1)(t) s(3/2)+ ẋ(2)(t)
)

(4.59)
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By reversing cross- product with Eqn. 4.18 and absorbing the negative sign by transpose as in

Eqn. 4.19, final linear velocity can be expressed as:

ṙ(3)(t) = eI

(
R(1)(t)ω(1)(t)

(←−→
s(3/2)

)T

+ ẋ(2)(t)

)
(4.60)

The updated kinematics of the platform is shown in Figure 4.4 and Table 4.1.

Table 4.1: The kinematic results for frames 1-3, representing the floating offshore wind turbine in the MFM.

Body Linear velocity Angular velocity

1: Platform ẋ(1)c (t) = ẋ(1)c (t) ω(1)(t) = ω(1)(t)

2: Nacelle ẋ(2)(t) = R(1)(t)
(←−→

s(2/1)
)T

ω(1)(t)+ ẋ(1)(t) ω(2)(t) = ω(1)(t)

3: Rotor ẋ(3)(t) = R(1)(t)
(←−→

s(3/2)
)T

ω(1)(t)+ ẋ(2)(t) ω(3)(t) =
(

R3/2)
)T

ω(1)+ω(3/2)
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4.7 Generalized Coordinates of FOWT

Figure 4.5: Model of FOWT with 4 general coordinates {q̇(t)} enabled. [1]

To extract the minimal set of generalized coordinates {q̇(t)} from the equations presented in

Tabel 4.1, equations are redefined, using the respective unit vectors, according to the following

assumptions:

• The platform is considered to only translate in directions 1 and 3. It simplifies the definition

of the linear velocity for these bodies. Moving side to side is not a major concern of this

study. Because the axisymmetric geometry and only considering unidirectonal waves,

hence no transverse forcing are considered, though one should keep in mind, that this will

ignore any cross-coupling terms, which will be minor.

ẋ(1)(t) = ẋ(1)


1

0

1

= ẋ(1)e1 + ẋ(1)e3 (4.61)
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And the generalized coordinates for the platforms linear velocity are:

ẋ(1)1 (t) = ẋ(1)e1 (4.62)

ẋ(1)3 (t) = ẋ(1)e3 (4.63)

• The platform’s angular velocity is limited to rotation in the 2 direction, as other directions

are deemed to have negligible effects. Nacelle is assumed to be in fixed position at the top

of the platform and therefore doesn’t rotate.

Therefore, R(2)(t) = R(1)(t)R(2/1)(t) = R(1)(t)I = R(1)(t).

ω
(1)(t) = θ̇

(1)


0

1

0

= θ̇
(1)e2 (4.64)

• The rotor rotates is set this to zero, assuming that the offshore turbine is in parked condition,

though the facility is available in the code to set the rotational velocity to a time-varying

value. Rotor and Nacelle are considered as a single body.

ω
(3/2)(t) = ϕ̇

(3/2)


1

0

0

= ϕ̇
(3/2)e1 (4.65)

The updated kinematic results are given below:

• Platform:

ẋ(1)(t) = ẋ(1)e1 + ẋ(1)e3 (4.66)

ω
(1)(t) = θ̇e2 (4.67)

• Nacelle:

ẋ(2)(t) = R(1)(t)
(←−→

s(2/1)
)T (

θ̇e2
)︸ ︷︷ ︸

ω(1)(t)

+ ẋ(1)e1 + ẋ(1)e3︸ ︷︷ ︸
ẋ(1)(t)

(4.68)

ω
(2)(t) = θ̇e2 (4.69)
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• Rotor:

ẋ(3)(t) = R(1)(t)
(←−→

s(3/2)
)T (

θ̇e2
)
+ R(1)(t)

(←−→
s(2/1)

)T (
θ̇e2
)
+ ẋ(1)e1 + ẋ(1)e3︸ ︷︷ ︸

ẋ(2)(t)

(4.70)

ẋ(3)(t) = R(1)(t)

{(←−→
s(3/2)

)T

+

(←−→
s(2/1)

)T
}

e2︸ ︷︷ ︸
B53

θ̇
(1)+ ẋ(1)e1 + ẋ(1)e3} (4.71)

ω
(3)(t) =

(
R(3/2)

)T
(θ̇e2)+ ϕ̇

(3/2)e1 (4.72)

4.8 B -matrix of FOWT

The B-matrix has the same number of rows as Cartesian velocities
{

Ẋ(t)
}

and the same number

of columns as generalised coordinates {q̇(t)}. Therefore the Cartesian coordinate rates for three

bodies, represented by velocity vector
{

Ẋ(t)
}

, contains a 6α×1 column vector of linear and

angular velocities, where each element in the column serves as a 3 × 1 column for a different

body.

4.8.1 B-matrix

Since the B matrix is dependent on the DOF, multi-body system and coordinates that matters,

the entire Cartesian rate column for this model is 18×1 , while the full size of the B-matrix in

this scenario is 18×4, as the number of generalised coordinates {q̇(t)} is 4, see Eqn. 4.73 :
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{
Ẋ(t)

}
≡



ẋ(1)1 (t)

ẋ(1)2 (t)

ẋ(1)3 (t)

ω
(1)
1 (t)

ω
(1)
2 (t)

ω
(1)
3 (t)

ẋ(2)1 (t)

ẋ(2)2 (t)

ẋ(2)3 (t)

ω
(2)
1 (t)

ω
(2)
2 (t)

ω
(2)
3 (t)

ẋ(3)1 (t)

ẋ(3)2 (t)

ẋ(3)3 (t)

ω
(3)
1 (t)

ω
(3)
2 (t)

ω
(3)
3 (t)



≡



ẋ(1)(t)

ω(1)(t)

ẋ(2)(t)

ω(2)(t)

ẋ(3)(t)

ω(3)(t)


{q̇(t)} ≡



ẋ(1)1 (t)

ẋ(1)3 (t)

θ̇ (1)(t)

ϕ̇(3/2)(t)


(4.73)

Utilizing unit vector notation, Eqns. 4.66 -4.72 present the updated equations for the B matrix:

[B(t)] =



e1 e3
0

3×1
0

3×1

0
3×1

0
3×1 e2

0
3×1

e1 e3 R(1)(t)
←−→
s(2/1)

T
e2

0
3×1

0
3×1

0
3×1 e2

e1 e3 B53
0

3×1

0
3×1

0
3×1

(
R(3/2)(t)

)T
e2 e1


(4.74)

Here

B53 = R(1)(t)

{(←−→
s(3/2)

)T

+

(←−→
s(2/1)

)T
}

e2 (4.75)
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4.8.2 Updated B -matrix

Figure 4.6: Updated model of FOWT with excluded spin rate ϕ̇(3/2). [1]
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The Cartesian velocity and generalized essential velocity are connected using the B-matrix

presented in Section 4.8 which enables for the spin of the rotor, through rotation matrix R(3/2)(t)

and rotation rate ϕ̇(3/2) . To simulate free decay or extreme wind conditions with wind speed

above the turbine’s cut-out speed, it may be necessary to remove the ϕ̇(3/2) from the generalised

velocities and the corresponding column of the B-matrix which links the generalised velocity to

Cartesian rates. In this scenario, when the rotor does not spin, the pitch rate assumed to have

prescribed constant spin rate ϕ̇(3/2) = 0; this implies that R(3/2)(t) = I. The forces from applied

unidirectional waves allows to proceed the analysis without considering sway, roll and yaw.

Those can be easily added for generality, though, they are not exert the greatest load on the

system. Therefore the following are the new generalized coordinates:

{q̇(t)} ≡


ẋ(1)1 (t)

ẋ(1)3 (t)

θ̇ (1)(t)

 (4.76)

The full size of the B-matrix in this scenario is 18×3, as the number of generalised coordinates

{q̇(t)} is reduced to 3, as updated in Eqn. 4.76. The angular velocity ω(3)(t), given in Eqn. 4.72,

in this scenario is equal to ω(1)(t), see Eqn. 4.77, while term B63 is represented by a unit vector,

as shown in updated B-matrix, Eqn. 4.78:

ω
(3)(t) = θ̇e2 (4.77)

[B(t)] =



e1 e3
0

3×1

0
3×1

0
3×1 e2

e1 e3 R(1)(t)
←−→
s(2/1)

T
e2

0
3×1

0
3×1 e2

e1 e3 B53

0
3×1

0
3×1 e2


(4.78)

It is clear, that in this scenario, FOWT rotates at same angular speed, and ω(1) = ω(2) = ω(3),

because rows 2,4 and 6 in Eqn. 4.78 that represents ω(t), are absolutely identical.



5 Mooring model

The mooring system is represented by a unique formation of two different substructures: one

is represented by a catenary quasi-static model, and another by a dynamic MFM based model.

Complementing each other, like spirit and body, the initial catenary quasi-static model, brings the

dynamic model to life, by analogy to the myth of Pygmalion’s lifeless statue poised in readiness,

getting a soul, and becoming alive.

Every subsystem of the mooring system is aimed to solve a particular task, and structured in

a way that allows to redefine each model independently, while guaranteeing their seamless

cooperation in establishing of overall mooring line system behaviour.

• Quasi-Static Catenary Model : The quasi static method solves for tension of each

segment, allowing establishing the initial position of each segment, with an assumption

that the system is in equilibrium state. Example of solution for 10 and 100 segments is

shown in Figure 5.4. Since inertia or dampening effects do not significantly affect overall

system dynamics as is evident in the comparative studies done earlier, they are not included

into analysis.

• Dynamic, MFM based Model : Dynamic model is defined by the geometry of the initial

quasi-static models. It converts Cartesian coordinates into generalized, by reading the

latter and implementing them directly into B matrix. Then Virtual Work as an extension of

Hamilton’s principle is calculated, thus the force acting on fairlead is defined.

The duality of the catenary mooring system is reflected through theoretical framework described

in subsequent sections, and incorporated into the architecture of the MATLAB code.
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5.1 Quasi-static model

Development of the multi-segmented MFM based mooring line model is a tricky task. After many

trials and fails, the most suitable for MFM -based mooring line model, have been established by

adopting and modifying the mooring system module proposed by Jonkman, J. M. in Dynamics

Modelling and Loads Analysis of an Offshore Floating Wind Turbine [3]. While quasi-static

model is more complex compared to traditional idealized catenary line described with well-known

catenary equation y = acosh( x
a)−a, it is more suitable for dynamic simulation, since it extends

basic catenary theory, allowing inclusion of dynamic effects.

If catenary curve depends on hyperbolic functions, there should exist an equivalent representation

of them. The inverse of hyperbolic sine is such an equivalent representation, given in Eqn. 5.1,

allowing to express hyperbolic sine analytically, in different form. Therefore two non-linear

equations, representing x and y position of the catenary mooring line are obtained by Eqns. 5.5,

5.6 at fairlead, and for suspended line by 5.7, 5.8 [3].

sinh−1(x) = ln
(

x+
√

1+ x2
)

(5.1)

Initial horizontal fairlead position serves as an input for establishing an initial guess, Ho
F and V 0

F ,

based on starting values given by Peyrot and Goulois, integrated in Newton-Raphson iteration test

with Eqns. 5.2,5.3 and 5.4. This test solves for horizontal and vertical components of effective

tension at fairlead Te f f through partial derivatives organized in Jacobian matrix [29]. Whole

computational process is represented in the diagram, Figure 5.3.

Figure 5.1: Mathematical model of an n-segments mooring line, constructed by means of hyperbolic functions. [2]
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H0
F =

∣∣∣∣ωxF

2λo

∣∣∣∣ (5.2)

V 0
F =

ω

2

[
zF

tanh(λ0)
+L
]

(5.3)

Here λ0 is dimensionless parameter, depending on conditions, used to initialize the catenary line:

λ0 =


1,000,000 for xF = 0

0.2 for
√

x2
F + z2

F ≥ L.√
3
(

L2−z2
F

x2
F
−1
)

otherwise

(5.4)

The initial catenary shape is set by the tension calculated at fairlead via Eqns.5.5 and 5.6, as seen

from the diagram in Figure 5.3.

xF (HF ,VF) =
HF

ω

ln

VF

HF
+

√
1+
(

VF

HF

)2
− ln

VF −ωL
HF

+

√
1+
(

VF −ωL
HF

)2
+

HFL
EA

(5.5)

zF (HF ,VF) =
HF

ω

√1+
(

VF

HF

)2

−

√
1+
(

VF −ωL
HF

)2
+ 1

EA

(
VFL− ωL2

2

)
(5.6)

Figure 5.2: Generic catenary mooring line representation in local frame [3]
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Fairlead position
in inertial frame

Inertial-to-local
frame transformation

Fairlead position
relative to

anchor (xF ,zF)

Newton-Raphson
iteration test

xF = F (HF ,VF ,L,ω,EA,CB)

zF = F (HF ,VF ,L,ω,EA)

Fairlead Tension
(HF ,VF)

Tension at
anchor (VA,HA)

Geometry and position
of segments &

tensions within the
line, [x(s),z(s),Te(s)]

Catenary to MFM
model translation

of [x(s),z(s),Te(s)]

B matrix construction,
update force

vector with Te f f

Extracting Force
at Fairlead

Local-to-inertial
transformation

Updating mooring
force at fairlead

Mooring Line Properties
(L,ω,EA,CB)

Figure 5.3: Diagram of computational procedure.

When there is no interaction with a seabed, the position of the segments and effective tension

Te is calculated with Eqns. 5.7, 5.8 and 5.9 for every segment within the line, resulting in the

suspended catenary shape of mooring line represented in Figure 5.4.

x(s) =
HF

ω

ln

VA +ωs
HF

+

√
1+
(

VA +ωs
HF

)2
− ln

VA

HF
+

√
1+
(

VA

HF

)2
+

HFs
EA

(5.7)

z(s) =
HF

ω

√1+
(

VA +ωs
HF

)2

−

√
1+
(

VA

HF

)2
+ l

EA

(
VAs+

ωs2

2

)
(5.8)

Te(s) =
√

H2
F +(VA +ωs)2 (5.9)

Here s is unstretched distance from anchor to the α-segment.
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Figure 5.4: Effective tension distribution along the line and position of the 10 segments (left), and 100 segment
(right).

A second set of equations, Eqns. 5.10, 5.11, and 5.12, is necessary to describe a situation,

when a portion of the mooring line is lying on the seabed, as represented in Figure 5.5.

x(s) =



s for 0≤ s≤ LB− HF
CBω

s+ CBω

2EA

 s2−2
(

LB− HF
CBω

)
s

+
(

LB− HF
CBω

)
MAX

(
LB− HF

CBω
,0
) for LB− HF

CBω
≤ s≤ LB

LB +
HF
ω

ln

[
ω(s−LB)

HF
+

√
1+
(

ω(s−LB)
HF

)2
]
+ HF s

EA for LB ≤ s≤ L

+CBω

2EA

[
−L2

B +
(

LB− HF
CBω

)
MAX

(
LB− HF

CBω
,0
)]

,

(5.10)

z(s) =


0 for 0≤ s≤ LB

HF
ω

ln

[√
1+
(

ω(s−LB)
HF

)2
−1

]
+ ω(s−LB)

2

2EA for LB ≤ s≤ L
, (5.11)

Te(s) =

 MAX (HF +CBω (s−LB) ,0) for 0≤ s≤ LB√
H2

F +(ω (s−LB))
2 for LB ≤ s≤ L

. (5.12)

Utilizing segmetns positon and adopting solution of catenary problem presented by W. Whewell

already in 1830’s, the relation between segments is obtained in a similar way [30].

If the tension at the anchor is T α
e (s), and T α+1

e (s) is the tension measured at a distance s away

from the previous segment, and the line’s angle to the horizontal is equal θ , then the equilibrium

balance of force components acting on each segment of the line is:

T α
e (s)cos(θ) = T (α−1)

e (s) (5.13)
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Figure 5.5: Position of the segments and shape of the catenary line, when the seabed interaction is taking into
account 10 segments (left), and 100 segment (right, taking into account seabed interaction).

T α
e (s)sin(θ) = ωs(α−1) (5.14)

Then from the line slope:

tanθ =
ω

T (α−1)
e (s)

s =
L
a

(5.15)

where a is a constant defined by relation a = T (α−1)
e (s)

ω
and L is the total length of the line.

Now, when angle θ is defined in terms of distance between s segments, the slope can be expressed

by Eqn. 5.16, see Figure 5.2
dz
dx

= tanθ =
s
a

(5.16)

Utilizing the latter relation, the angles, in the form of the rate of change between adjacent

segments along the line, are calculated by taking the derivatives of Eqns. 5.7, 5.7 with respect

to s, as dx/ds and dz/ds. From that the angular velocity is derived as ω(s) = d2z/ds2

d2x/ds2 =
d
dsθ(s),

and angular acceleration is obtained, since ω̇(s) = d
dsω(s). These mathematical relations are

used to initialize the MFM-based model of catenary mooring line represented in Figure 5.2 and

equations given in section 5.2.
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5.2 MFM-based Catenary Model

Now, when the quasi-static catenary model, it’s shape and geometry is defined, the linear and

angular velocities for all α-segments can be obtained by establishing frames for each segment and

then constructing B-matrix grouped in a 6n× I matrix {Ẋ(t)}, as described further in following

sections of the chapter. The derived equations are based on the principles of Moving Frame

Method, based on theory of E. Cartan, as instructed by T. J. Impelusso in Advanced Dynamics

course [31].

J(α)

J(α+1)

J(α+(n−1))

J(α+n)

T α
m(s)α

m(s)α+1

m(s)α+(n−1)

m(s)α+n

T α+n

eα
1

eα
3

α segment

eα+1
1

eα+1
3

α +1 segment eα+(n−1)
1

eα+(n−1)
3

α +(n−1)1 segment

eα+n
1

eα+n
3

α +n segment

θ (α)

θ (α+1)

θ (α+(n−1))

θ (α+n)

Figure 5.2: MFM-based multi-segmented model of catenary mooring line for α-segments.

Figure 5.2 shows the developed model where absolute frames eα are installed at the center of

mass of each α- segment between the connection points J(α), which perform a joint function.

Frames positions and each segment’s length are defined by Eqs. 5.7 and 5.8, respectively, while

angle θ (α), and tension T α with Eqns. 5.15, 5.16, and 5.9, based on quasi-static model for

mooring line presented in Section 5.1. Segments mass denoted as m(s)(α) is determined by the

choice of mooring lines profile. In this project High-Modulus Polyethylene (HMPE) has been

applied to the model derived from the required minimum breaking load (MBL) and minimum

breaking strength (MBS), in accordance to DNV standards [32], [33], [34], MEG4 standard [35],

and ISO standard [36],
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5.2.1 Frame of Segment 1

An inertial frame eI is placed at the center of the first segment, which is related to moving frame,

e(1)(t), by the rotation matrix R(1)(t), establishing the orientation given by the theory presented

in the Section 5 by equation Eqn. 4.5.

e(1)(t) = eIR(1)(t) = et(t)


1 0 0

0 cosθ (1)(t) −sinθ (1)(t)

0 sinθ (1)(t) cosθ (1)(t)

 (5.17)

Fame connection matrix E(1) for the first segment is obtained from the sequence of movements

from the inertial frame towards the center of mass of the first frame of the segment 1:

1. Translate by a distance s(J
(1))

2. Rotate about axis of the inertial frame

3. Tranlsate by a distance s(1/J(1))

Expressing this in terms of frame connection matrices:

E(1)(t) =

 I3×3 s(J
(1))

0T
3 1

 R(1)(t) 0

0T
3 1

 I3×3 s(1/J(1))

0T
3 1

 (5.18)

E(1)(t) =

 R(1)(t) R(1)(t)s(1/J(1))+ s(J
(1))

0T
3 1

 (5.19)

Stating first frame connnection matrix more compact as:

(
e(1)(t)r(1)C (t)

)
=
(

eI 0
)

E(1)(t) (5.20)

Taking time rate of the first segment frame connection:

(
ė(1)(t) ṙ(1)C (t)

)
=
(

eI 0
)

Ė(1)(t) (5.21)

Ė(1)(t) =

 Ṙ(1)(t) Ṙ(1)(t)s(1/J(1))

0T
3 0

 (5.22)
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The representation of the inverse of the frame connection matrix is given by:

(
E(1)(t)

)−1
=

 (R(1)(t)
)T
−
(

R(1)(t)
)T (

R(1)(t)s(1/J(1))+ s(J
(1))
)

0T
3 1

 (5.23)

Following the definition of the Ω, which belongs to the special Euclidean group SE(3) and

its associated algebra se(3), the time rate at which the frame connection matrix changes is

represented by Ω(1). It is found by multiplying the inverse of E(1)(t) and Ė(1)(t).

Ω
(1) ≡

(
E(1)(t)

)−1
Ė(1)(t) (5.24)

(
ė(1)(t) ṙ(1)C (t)

)
=
(

e(1)(t) r(1)C (t)
)

Ω
(1)(t) (5.25)

Ω
(1) =

 ω(1)(t) v(1)(t)

0T
3 0

 (5.26)

Pulling out angular velocity ω(1)(t) from Eqn: 5.26

ė(1)(t) = e(1)(t)
←−−→
ω

(1)(t) (5.27)

The assosiated angular velocity vector is:

ω
(1)(t) = e(1)(t)


θ̇ (1)(t)

0

0

 (5.28)

And therefore, based on 5.26:

ṙ(1)C (t) = e(1)(t)v(1)C (t) = e(1)(t)
(←−−→

ω
(1)(t)s(1/J(1))

)
(5.29)

Following rules of MFM, by installing a negative sign before the position vector s(1/(J
(1)), the

skew over ω(1)(t) can be reversed, and therefore the equation Eqn. 5.29 is restated relative to the

inertial frame as:

ṙ(1)C (t) =−e(1)(t)
(←−−−→

s(1/J(1))
ω

(1)(t)
)
=−eIR(1)(t)

(←−−−→
s(1/J(1))

ω
(1)(t)

)
. (5.30)



5.2 MFM-based Catenary Model 42

Finally, linear velocity ẋ(1)(t) for segment 1 is extracted:

ẋ(1)(t) =−R(1)(t)
←−−−→
s(1/J(1))

ω
(1)(t) (5.31)

5.2.2 Frame of Segment 2

The process for defining frame 2 of the segment 2 is similar to that of frame 1.

First the orientation of the second frame is established by equation Eqn. 5.32.

e(2)(t) = e(1)(t)R(2/1)(t) = e(1)(t)


cosθ (2)(t) −sinθ (2)(t) 0

sinθ (2)(t) cosθ (2)(t) 0

0 0 1

 (5.32)

To reach frame 2 form frame 1, a fame connection matrix E(2/1) is obtained from the sequence

of movements relative to the first frame:

1. Translation by a distance s(J
(2)/1)

2. Rotation about common 3-axis by R(2/1)(t)

3. Tranlsation by a distance s(2/J(2)) to the center of segment 2

Second frame is defined as:

(
e(2)(t) r(2)C (t)

)
=
(

e(1)(t) r(1)C (t)
)

E(2/1)(t) (5.33)

Expressing this movement sequence in terms of frame connection matrix E(2/1) results in Eqn.

5.34:

E(2/1)(t) =

 R(2/1)(t) R(2/1)(t)s(2/J(2)) + s(J(2)/1)

0 1

 (5.34)

Finding inverse of E(2/1)(t):

(
E(2/1)

)−1
=

 (R(2/1)
)T

(t) −
(

R(2/1)
)T

(t)
(

R(2/1)(t)s(2/J(2))+ s(J(2)/1)
)

0 1

 (5.35)
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Therefore the rate of change is expressed by Eqn. 5.36

Ė(2/1)(t) =

 Ṙ(2/1)(t) Ṙ(2/1)(t)s(2/J(2))

0T
3 0

 (5.36)

Relative time rate is defined by Ω(2/1)(t)

Ω
(2/1)(t) =

 ←−−−−→ω(2/1)(t)
←−−−−→
ω(2/1)(t)s(2/J(2))

0T
3 0

 (5.37)

By pulling out the angular velocity term from Ω(2/1)(t) and lifting the skew, the vector is defined:

ω
(2/1)(t) = e(2)(t)


0

0

θ̇ (2)(t)

 (5.38)

Using definition given in chapter 5 by equation Eqn. 4.25, the absolute time rate of the frame

connection matrix Ω(2)(t)

Ω
(2)(t) =

(
E(2/1)

)−1
(t)Ω(1)(t)E(2/1)(t)+Ω

(2/1)(t) (5.39)

From Eqn. 5.39 and by applying rules of MFM listed in chapter 5, the linear ẋ(2)(t) and angular

velocity ω(2)(t) are defined as:

ω
(2)(t) =

(
R(2/1)(t)

)T
ω

(1)(t)+ω
(2/1)(t) (5.40)

ẋ(2) = R(1)
(←−−−−−−−−−−−−−−→

R(2/1)s(2/J(2))+ s(J
(2)/1)

)T

ω
(1)+R(2)

(←−−−→
s(2/J(2))

)T

ω
(2/1)+ ẋ(1) (5.41)

The linear ẋ(3)(t), ẋ(4)(t) and angular velocities ω(3)(t) and ω(4)(t) for segments 3 and 4 are

obtained in a similar way, resulting in Eqn.

ẋ(3) = R(2)
(←−−−−−−−−−−−−−−→

R(3/2)s(3/J(3))+ s(J
(3)/2)

)T

ω
(2)+R(3)

(←−−−→
s(3/J(3))

)T

ω
(3/2)+ ẋ(2) (5.42)

ω
(3) =

(
R(3/2)

)T (
R(2/1)

)T
ω

(1)+
(

R(3/2)
)T

ω
(2/1)+ω

(3/2)

ω
(3) =

(
R(3/1)

)T
ω

(1)+
(

R(3/2)
)T

ω
(2/1)+ω

(3/2)
(5.43)
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ẋ(4) = R(3)
(←−−−−−−−−−−−−−−→

R(4/3)s(4/J(4))+ s(J
(4)/3)

)T

ω
(3)+R(4)

(←−−−→
s(4/J(4))

)T

ω
(4/3)+ ẋ(3) (5.44)

Equations are simplified further by putting similar terms terms, and assigning them an S-term

name, as shown in Eqns. 5.45, 5.46, and 5.45.

S(2/1) =

(←−−−−−−−−−−−−−−→
R(2/1)s(2/J(2))+ s(J

(2)/1)
)T

(5.45)

S(3/2) =

(←−−−−−−−−−−−−−−→
R(3/2)s(3/J(3))+ s(J

(3)/2)
)T

(5.46)

S(4/3) =

(←−−−−−−−−−−−−−−→
R(4/3)s(4/J(4))+ s(J

(4)/3)
)T

(5.47)
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5.2.3 Frames of α- Segments

The same logic of establishing frames for α-segments, based on computation of the relative

frame connection, E(α/α−1)(t) is used to represent the relative position between two adjacent

segments. (
e(α)(t) r(α)

C (t)
)
=
(

e(α−1)(t)r(α−1)
C (t)

)
E(α/α−1)(t) (5.48)

The relative frame connection consists of relative rotation matrix R(α/α−1)(t), see first cell i Eqn.

5.49 and relative position vector, see cell [2,1].

E(α/(α−1))(t) =

 R(α/(α−1))(t) R(α/(α−1))(t)s(α/J(α)) + s(J(α)/(α−1))

0 1

 (5.49)

The inverse of the relative frame connection therefore is:

(
E(α/(α−1))

)−1
=

 (R(α/(α−1))
)T

(t) −
(

R(α/(α−1))
)T

(t)
(

R(α/(α−1))(t)s(α/J(α))+ s(J(α)/(α−1))
)

0 1

 (5.50)

Ė(α/(α−1))(t) =

 Ṙ(α/(α−1))(t) Ṙ(α/(α−1))(t)s(α/J(α))

0T
3 0

 (5.51)

Ω
(α/α−1) ≡

(
E(α/α−1)(t)

)−1
Ė(α/α−1)(t) (5.52)

The time rate of absolute frame connection matrix Ω(α) is:

Ω
(α)(t) =

(
E(α/α−1)

)−1
(t)Ω(α−1)(t)E(α/α−1)(t)+Ω

(α/α−1)(t) (5.53)

Ω
(α)(t) =

 ←−−−→ω(α)(t) v(α)(t)

0T
3 0

 (5.54)

Following same procedure, angular velocity
←−−−→
ω(α)(t) is extracted from the absolute time rate

connection matrix Ω(α) , and then processed through application of mathematical relation given

by Eqns. 4.19 and 4.18. After that, the generalized expression of angular velocity is simplified,

based on rotational relation R(α/α)(t)≡ I, allowing to express mathematically angular velocity

as:

ω
(α) =

(
R(α/1)(t)

)T
ω

(1)+

(
i=α

∑
i=2

(
R(α/i)(t)

)T
ω

(i/i−1)

)
(5.55)
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S(α/α−1) =

(←−−−−−−−−−−−−−−−−−→
R(α/α−1)s(α/Jα )+ s(α/α−1)

)T

(5.56)

ẋ(α) = R(α−1)S(α/α−1)
ω

(α−1)+R(α)

(←−−→
s(α/Jα )

)T

ω
(α/α−1)+ ẋ(α−1) (5.57)

5.3 B matrix

B matrix is organized in a similar way that for the FOWT itself defined by Eqn. 4.26.

Each column of B matrix corresponds to a certain angular velocity in the vector q̇(t). Linear

ẋ and angular velocities ω̇ of the respective α-segment fill in the B matrix from the first to the

last α -segment, as shown in Eqn. 5.58.

{
Ẋ(t)

}
≡



ẋ(1)c (t)

ω(1)(t)

ẋ(2)c (t)

ω(2)(t)
...

ẋ(α)
c (t)

ω(α)(t)



{q̇(t)} ≡



ω(1)(t)

ω(2/1)(t)

ω(3/2)(t)
...

ω(α/α−1)(t)


(5.58)

To represent dependancies on the rotational axis and inheritance of rotational direction from

the previouse segment, the Lie generators of so(3) group is infered, see Eqn. 5.59.

g1 =


1

0

0

 g2 =


0

1

0

 g3 =


0

0

1

 (5.59)

The generators can be easier understood through standard unit vectors , e1, e2 and e3 with a

magnitude of 1, as shown below:

0
3×1

=


0

0

0

 ,e1 =


1

0

0

 ,e2 =


0

1

0

 ,e3 =


0

0

1

 (5.60)

The Li generator uses alike pattern that resemble a Kronecker delta function. It assigns 1 when i



5.3 B matrix 47

equals j, otherwise it stays zero, as expressed mathematically in Eqn. 5.61

δi, j
def
=

1 if i = j

0 otherwise
(5.61)

Using this logic, Li generator affects the calculation of B matrix and consequently the outcome

of the EOM and therfore the whole dynamics of the modeled system is affected.

B(2i−1) j =
(
1−δi j

)(
R(i−1)S(i/i−1)R(i/ j)g( j/ j−1)+B(i−1) j

)
+δi jR(i)

←−−−−−−−→(
s(i/J(i−1))

)T
g(i/i−1)

(5.62)

B(2i) j =
(
1−δi j

)(
R(i/ j)

)T
g( j/ j−1)+δi jg( j/ j−1) (5.63)

Based on Eqns. 5.62 and 5.63 the terms of B-matrix can bewe directly calculated for α-segments.

[B(t)] =



B1,1
0

3×1
0

3×1 · · · 0
3×1

0
3×1

B2,1 B2,2
0

3×1 · · · 0
3×1

0
3×1

B3,1 B3,2 B3,3 · · · 0
3×1

0
3×1

B4,1 B4,2
0

3×1 · · · 0
3×1

0
3×1

B5,1 B5,2 B5,3 · · · 0
3×1

0
3×1

B6,1 B6,2 B6,3 · · · 0
3×1

0
3×1

...
...

... . . . ...
...

B(m−1),1 B(m−1),2 B(m−1),3 · · · B(m−1),(n−1) B(m−1),n

Bm,1 Bm,2 Bm,3 · · · Bm,(n−1) Bm,n



(5.64)

Taking into account the definition of generator g given by Eqns. 5.59, and 5.61, the B -terms in

B matrix (Eqns. 5.64) are calculated based on the developed computational algorithm provided

by Eqns. 5.62 and 5.63. B-terms are simlified by applying two important algebraic operations,

Eqns. 4.19 and 4.18

• If i = 1→ δ11 = 1

– B(2×1−1)1 = B1,1 = R(1)
←−−−−−−→(

s(1/J(0))
)T

g(1/0)

where g(1/0) = g1 according to initial rotation, Eqn. 5.17.

The transpose vanishes, after introducing a negative sign under algebraic operation,
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Eqn. 4.19. Therefore B1,1 =−R(1)(t)
←→
s(1)g1(t)

– B2×1,1 = B2,1 = g1

• If i = 2→ δ21 = 0 and S(2/1)=
(←−−−−−−−−−−−−−−→

R(2/1)s(2/J(2))+ s(J
(2)/1)

)T

from Eqn. 5.45

– for j = 1

* B(2×2−1)1 = B3,1 = R(1)S(2/1)R(2/1)g1 +B1,1

* B(2×2) 1 = B4,1 = (R(2/1))T g1

– for j = 2 δ22 = 1

* B3,2 =−R(2)
←−−−→
s(2/J(1))g3

* B4,2 = g3

The other terms of B-matrix are calculated based on the same algorithm through symbolic

programming in open source CAS software, Julia.jl, which uses a wrapper SymEngine C++

[37]. Another CAS software, as for example SymPy of Python , Mathematica of Wolfram Alfa

or Maple, are capable to handle this task with similar success. Assignment of active rotational

axis to odd or even indices is based on g -generator value in such a manner, that value of 1 is

being assigned to rows 3,9,15,21, and 27 and column indices 1,2,3,4,5 for even indices. And

for odd indices to rows 5,11,17,23, and 29, and column indices 1,2,3,4, and 5. This algorithm

have been implemented by means of modulus in MATLAB code and can be easily observed n

B-matrix.

5.4 Frame Connection

To represent the forces acting at fairlead on the platform in the inertial frame a vector is created

by identifying the vector connecting the platform and fairleads, given by Eqn. 5.74.

Finding the optimal vertical position of the fairlead requires identification of the points where no

coupling between surge and pitch happens. In this way, dynamic effects, such as overturning

moment, caused by wind and waves are reduced and stability of FOWT is enhanced. based

on engineering principles and knowledge within the field, an appropriate location for such a

deep-draught floating system will lie somewhere between COB and COG, but closer to the latter

[38], [39].
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There are also placed frames at points sLα (t), where the individual mooring line is connected

to the respective fairlead. These points are mooring line connection points, as represented on

Figure 5.6, and the distance between them is equal to θdelta connection = 120 ◦ = π

2∗3 = π

6 , while

fairlead connection frame, e(Fl)(t), is given in Eqn. 5.73.

Mooring Line 1

Mooring Line 2

Mooring Line 3

Mooring line connection point sLα (t) 120◦

120◦

Figure 5.6: Location of the mooring line’s connection point, sLα (t).

e(L1)(t) = e(Fl)(t)


1 0 0

0 1 0

0 0 1

 (5.65)

e(L2)(t) = e(Fl)(t)


cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 (5.66)

e(L3)(t) = e(Fl )(t)


cos(−θ) −sin(−θ) 0

sin(−θ) cos(−θ) 0

0 0 1

 (5.67)
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To determine the location of the mooring line’s connection point with respect to the fairlead

in the inertial frame, consider the following equation:

s⃗ Lα/Fl(t) = s⃗ Lα (t)− s⃗ Fl(t) (5.68)

Where mooring line connecting point vector s⃗ Lα (t) is expressend in local frame with Eqn. 5.69.

sLα (t) = eLα (t)sLα (t) = eLα (t)


sLα

1

0

sLα

3

 (5.69)

Here eLα (t) is a delta connection frame of the respective mooring line connection point, given in

5.65 -5.67, and d
2 is the radius of the platform, which assumed to be equal to the fairlead location,

which is logical.

Now, consider formulation of the location of the upper fastening point (fairlead) of a mooring

Figure 5.7: Generic mooring line geometry [4].

line, during a general displacement of the platform, adopted from Fossen T.I., given in the inertial

frame as:

rm =
{

Xp Yp Zp
}T

= r+R rpo = {rX rY rZ}T +R
{

xpo ypo zpo
}T [40] (5.70)
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Where the displacement of the origin (x,y,z) of the body frame relative to the inertial frame

is denoted by vector r =
{

rX rY rZ

}T
, while rpo is the position of the fairlead (upper

attachment point) in the body frame, as shown in Figure 5.7. Vectors in the body frame are

transformed to the inertial frame by rotation matrix of the platform R by a Euler angle triad[
φ θ ψ

]T
, Eqn. 5.71. [40]

R =


R11 R12 R13

R21 R22 R23

R31 R32 R33

 (5.71)

In the above equations, according to Fossen T.I., the change in position of the upper attachment

point, relative to changes in the platform’s orientation should be defined as:

∂ rm

∂ζi
=

∂R
∂ζi

rpo, ζi = φ ,θ ,ψ [40] (5.72)

Here φ , θ , ψ corresponds to roll, pitch and yaw angles.

In a similar way, a connection between fairlead and platform is established, by inserting a frame

e(Fl) at the vertical position of the fairleads, ensuring that its main axes are aligned with platform

principle axis.

e(Fl) = e(1)(t)I (5.73)

Here I is the identity matrix and e(1)(t) represents platform frame given by Eqn. 4.5

Therefore the position of fairlead relative to platform frame, is expressed with equation Eqn. 5.74

s⃗ (Fl/1)(t) = e(1)(t)s(Fl /1)(t) (5.74)

While in inertial frame, fairlead is defined by vector s⃗ Fl(t), and by using frames, s Fl(t) :

s⃗ Fl(t) = s⃗ (1)(t)+ s⃗ (Fl/1)(t) (5.75)

s Fl(t) = eIx(1)c (t)+ e(1)(t)s(Fl/1)(t) (5.76)
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Therefore, the vector pointing in the direction the mooring line pulls on the fairlead, is defined

by Eqn. 5.77:

s(Lα/Fl) = sLα (t)− s Fl(t) (5.77)

By re-assembling and unpacking back terms sLα (t), Eqn. 5.69, and s Fl(t), into Eqn. 5.77, the

final output which represents the vector connecting a fairlead to a mooring line connection point,

is obtained:

s(Lα/Fl) = eLα (t)sLα (t)−
(

eIx(1)c (t)+ e(1)(t)s(Fl/1)(t)
)

(5.78)

In Equation 5.77, the negative sign before the final term indicates the direction of the force

exerted by the mooring line due its tension towards mooring line connection point, that pulls

fairlead towards the anchor point.

Upon the realization that equation in Eqn. 5.78 might be further simplified by returning some

terms back to the inertial frame with Eqn. 4.29, redefined generalized vector in the inertial frame

is:

s(Lα/Fl) = e(I)R(1)(t)RLα (t)sLα (t)−
{

eIx(1)c (t)+ eI(t)R(1)(t)s(Fl/1)(t)
}

(5.79)

Suppose that there is a certain amount of tension T exerted by the mooring line along its length.

Then, the force vector F⃗ , acting in horisontal plane, at the fairlead towards the mooring line

connection point, s(Lα/Fl), is normalized and multiplyed with acting force, second term in Eqn.

6.19. ∥∥∥s(Lα/Fl)
∥∥∥ (5.80)

Which in inertial frame is represented by the unit vector:

1∥∥s(Lα/Fl)
∥∥s(Lα/Fl) (5.81)

Where
∥∥∥s(Lα/Fl)

∥∥∥ refers to the magnitude of the vector s(Lα/Fl).

Then force vector in both vertical and horizontal direction is given by Eqn. 6.19

eIFLα = eI


0

0

−F(α)
3

− eI 1∥∥s(Lα/Fl)
∥∥s(Lα/Fl)F(α)

1 (5.82)

The negative sign reveals the direction of the force, which acts towards the connection point
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of the mooring line, effectively pulling the fairlead in that direction. Note that vertical force

is represented only by it’s magnitude, since the direction of the force in the vertical plane is

considered to be aligned with gravity and the system’s vertical axis.

Therefore the total force coming from all mooring lines that acts on the platform is a sum of

individual forces in inertial frame:

FI, Ltot =
α=3

∑
α=1

eI(t)FLα (5.83)

The moment from each mooring line that acts on the platform is determined by positioning a

vector from the frame on the platform to the fairlead where the mooring line load is applied, at

s(Lα/1).

s⃗ (Lα/1) = s⃗ Lα (t)− s⃗ (1)(t) (5.84)

Where s⃗ Lα (t) is found from Eqn. 5.77 and vertical distance to fairlead.

Then the moment from all lines in inertial frame is:

MI, Ltot =
α=3

∑
α=1

eI(t)
←−−→
s(Lα/1)F I, Lα (5.85)

F(α)
1

F(α)
3

T (α)

e(I)1

e(I)3

s(Lα )

s

Grafic representation of forces that act at mooring line connection point s(Lα ).



6 Kinetics

While Kinematics studies movement irrespective of forces that causes them, concentrating

severally on the geometrical aspect. Kinetics, better known as dynamics concentrates on how

forces affects and produce motion. For simplicity, let’s refer to the Lagrangian as to the difference

between kinetic energy and potential energy.

Ł(α)(q(t), q̇(t)) = K(α)(q(t), q̇(t))−U (α)(q(t)) (6.1)

Then by integratiing the Lagrangian function over a period of time, the Action can be

expressed as:

A =
∫ t1

t0
Ł(α)(q(t), q̇(t), t)dt (6.2)

According to Hamilton’s principle, the system’s motion can be determined by pushing a

certain definite integral to minimum possible arbitrary variations, for example by applying

prescribed and therefore known initial and final conditions to the system. This allows to set the

variation of the Action to zero and obtain easily EOM:

δ

∫ t4

t0
Ł(α)(q(t), q̇(t), t)dt = 0 (6.3)

In order to consider non-conservative forces, an expanded version of Hamilton’s Principle

called the Principle of Virtual Work is used. In this approach, the Lagrangian is expressed

exclusively in terms of kinetic energy. All additional forces, whether conservative or non-conservative,

are treated as work and are placed on the right side of the equation. Moving forward, the notation

is simplified by excluding the dependencies on position and velocity.

∫ t1

t0
δK(α)(t)dt =−

∫ t1

t0
δW (α)(t)dt (6.4)
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Llinear momentum L(α)
C (t) and the angular momentum H(α)

C (t) define the kinetic energy of

each body:

H(α)
C (t) = e(α)(t)H(α)

C (t) = e(α)(t)J(α)
C ω

(α)(t) (6.5)

L(α)
C (t) = eIL(α)

C (t) = eIm(α)ẋ(α)
C (t) (6.6)

Where J(α)
C is the moment of inertia for each α-body and net kinetic energy is simply given

by Eqn. 6.7

K(α)(t) =
1
2

{
ṙ(α)

C ·L(α)
C +ω

(α) ·H(α)
C

}
(6.7)

Then net kinetic energy is just a matrix:

K(t) =
1
2
{Ẋ(t)}T [M]{Ẋ(t)} (6.8)

Where generalized mass matrix [M] is formed by the terms of masses and moments of inertia

for each body:

[M] =



m(1)I3
0

3×3
0

3×3 · · · 0
3×3

0
3×3

0
3×3 J(1)C

0
3×3 · · · 0

3×3
0

3×3

0
3×3

0
3×3 m(2)I3 · · · 0

3×3
0

3×3

0
3×3

0
3×3

0
3×3 J(2)C · · · 0

3×3
...

...
... . . . ...

0
3×3

0
3×3

0
3×3 · · · m(a)I3

0
3×3

0
3×3

0
3×3

0
3×3 · · · 0

3×3 J(a)C


(6.9)

Hamilton’s Principle doesn’t consider non-conservative forces. To address this, Hamilton’s

Principle is extended and represented already as the Engineering Principle of Virtual Work. This

means that the work done should be calculated. The MFM restricts virtual rotation and represents

it as a natural conjugate pair expressed in the moving body frame in form of angular velocity

and moment.

By skewing the virtual rotational displacement δπα(t) as shown in Eqn. 6.10, the EOM can

be established then in a simpler way.

←−−−−→
δπ

(α)(t) =
(

R(α)(t)
)T

δR(α)(t) (6.10)

The virtual Cartesian displacements {δ X̃(t)} are determined by the equation presented below.
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{δ X̃(t)}=



δx(1)(t)

δπ(1)(t)

δx(2)(t)

δπ(2)(t)
...

δx(α)(t)

δπ(α)(t)


(6.11)

Following this, the virtual Cartesian velocities {δ Ẋ(t)} represent the variation of the

velocities

{δ Ẋ(t)}=



δ ẋ(1)c (t)

δω(1)(t)

δ ẋ(2)C (t)

δω(2)(t)
...

δ ẋ(α)
c (t)

δω(α)(t)



(6.12)

When it comes to linear displacement, the change in the derivative matches the derivative of

the variation.

δ ẋ(α)
C (t) =

d
dt

δx(α)
c (t) (6.13)

But, there are limitations when it comes to variations in angular velocity:

δω
(α)(t) =

d
dt

δπ
(α)(t)+

←−−−→
ω

(α)(t)δπ
(α)(t) (6.14)

The final two equations are presented in a condensed manner as:

{δ Ẋ(t)}= {δ Ẋ(t)}+[D]{δ X̃(t)} (6.15)
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The angular velocity matrices for each segment are stored in a skew form inside [D] matrix.

[D(t)] =



0
3×3

0
3×3

0
3×3 · · · 0

3×3
0

3×3

0
3×3

←−−→
ω(1)(t) 0

3×3 · · · 0
3×3

0
3×3

0
3×3

0
3×3

0
3×3 · · · 0

3×3
0

3×3

0
3×3

0
3×3

←−−→
ω(2)(t) · · · 0

3×3
0

3×3
...

...
... . . . ...

...
0

3×3
0

3×3
0

3×3 · · · 0
3×3

←−−→
ω(a)(t)


(6.16)

Now, the kinetic energy variation defined in cartesian coordinates by Eqn. 6.17, can be expressed

in terms of genralized coordinates by Eqn.6.18.

δK(t) = {δ Ẋ(t)}T [M]{Ẋ(t)} (6.17)

δK(t) =
{

d
dt
[B(t)]{δq(t)}+[D(t)][B(t)]{δq(t)}

}T

[M][B(t)]{q̇(t)} (6.18)

For each body, a set lists a force vector containing forces and moments that should be defined

as a single column matrix {Q(t)} following the form presented below:
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{F(t)}=



F(1)
3×1(t)

M(1)
3×1(t)

F(2)
3×1(t)

M(2)
3×1(t)

F(3)
3×1(t)

M(3)
3×1(t)

...

F(α−1)
3×1 (t)

M(α−1)
3×1 (t)

F(α)
3×1(t)

M(α)
3×1(t)



(6.19)

The force vector for FOWT model in this project is given by Eqn. 6.20

{F(t)}=



F(1)
3×1(t)

M(1)
3×1(t)

F(2)
3×1(t)

M(2)
3×1(t)

F(3)
3×1(t)

M(3)
3×1(t)


=



F(1)
hydro(t)+F(1)

external

M(1)
hydro(t)+M(1)

external

F(2)
nacelle(t))

M(2)
nacelle(t))

F(3)
rotor(t)

M(3)
rotor(t)


(6.20)

The terms are:

Fhydro = Force induced by waves on the respective body

Fexternal = Force caused by external forces

Mhydro = Moment induced by waves

Mexternal = Moment caused by external forces
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In section 3 of this work, the total hydrodynamic forces and moments caused by waves,

referred as Fhydro and Mhydro are described in details. These forces include excitation, added

mass, radiation damping, and external hydrostatic stiffness. Additionally, there are also discussed

external forces and moments, Fexternal and Mexternal .

Solving EOM numerically, the resulting row vector of size 3nx1 is vtained and contains the next

time step for the essential generalized velocity q̇(t)n+1. The forces and moments that do a virtual

work can be expresed in cartesian coordinates by Eqn. 6.21:

δW = {δ X̃(t)}T{Q(t)} (6.21)

The B-matrix connects the Cartesian velocities{Ẋ(t)} to the essential generalized velocities

{q̇(t)}, as well as linking the virtual generalized displacements {δ X̃(t)} to the essential virtual

displacements {δq(t)}.

{δ X̃(t)}= [B(t)]{δq(t)} (6.22)

Updating the virtual work given in Eqn. 6.21 by the transpose the virtual work becomes:

δW (t) = {δq(t)}T {F∗(t)} (6.23)

{F∗(t)} are the essential generalized forces given by:

{F∗(t)}= [B(t)]T{Q(t)} (6.24)

When pluging in the virtual work and the variation of the kinetic energy into Eqn. 6.27, we

lay the groundwork for the EOM.

∫ t1

t0

(
{δ Ẋ(t)}T [M]{Ẋ(t)}+{δq(t)}T {F∗(t)}

)
dt = 0 (6.25)
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6.1 Equation of motion

Euler’s equation in the form shown by Eqn. 6.26 is extracted from minimizing the action and is

simplified to Eqn. 6.29 by definitions of M∗ and N∗ given in Eqns. 6.27 and 6.28.


[
B(t)T ][M]

 Ḃ(t){q̇(t)} +

B(t)]{q̈(t)}

+[D] [M] ([B(t)]{q̇(t)})


−{F∗}

= 0 (6.26)

[M∗(t)]≡ [B(t)]T [M][B(t)] (6.27)

N∗ = [B(t)]T
(
[M][Ḃ(t)]+ [D(t)][M][B(t)]

)
(6.28)

After using integration by parts on equation Eqn. 6.25 and considering that there is no virtual

displacement at the endpoints, we end up with a second-order coupled differential equation.

[M∗(t)]{q̈(t)}+[N∗(t)]{q̇(t)}= {F∗(t)} (6.29)

Extracted EOM defined in Eqn. 6.29 is solved with respect to generalized acceleration q̈(t), as

shown in Eqn. 6.29 discretized as in Eqn. 7.2

{q̈(t)}= [M∗(t)]−1 ({F∗(t)}− [N∗(t)]{q̇(t)}) (6.30)

The generalized force vector, F∗(t) is representation of generalized forces derived in Chapter 3

and included in Eqns. 6.23 to 6.25.



7 Numerical method

Prior to conducting the analysis, a force vector is defined based on hydrodynamic discussed in

Chapter 3 and Principles of Virtual, Eqns. 6.23 to 6.25 and incorporated into EOM in Section

6.1. Following this, a time series is computed using the simulation’s time interval. The wave

excitation force is then isolated from this time series for every complete cycle of the Runge-Kutta

4th-order technique and added to other forces that a acts on FOWT.

7.1 The Runge-Kutta Method

One way to calculate ordinary differential equations (ODEs) with numerical integration involves

taking a trial step at the midpoint of an interval in order to eliminate lower-order global truncation

error terms, O(hk) . The most commonly used method, the Runge-Kutta method, is especially

effective and precise with a value of k = 4. By utilizing RK4 method, we can obtain approximate

values for the solution of initial value problem (IV P) at various points such as x0, x0 +h, and

x0 +nh [41].

The Runge-Kutta method (RK4) is implemented in the general s-stage explicit form, iteratively

computing the slopes k1, k2, . . ., ks at each stage of function estimation, as shown by Eqn. 7.1.

When solving first order ODE, ẏ = f (t,y), it calculates the next value yn+1, based on the previous

value yn plus a weighted average of four increments, so that:

k1 = h f (tn + c1 h,yn)

k2 = hf
(
tn + c2 h,yn + a(2,1)k1

)
k3 = hf

(
tn + c3 h,yn + a(3,1)k1 + a(3,2)k2

)
...

ks = hf
(
tn + csh,yn +∑

s−1
i=1 a(s,i)ki

)
yn+1 = yn +∑

s
j=1 bjkj

(7.1)
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Where

• h: is the size over the interval the solution is estimated.

• tn: represents the current time.

• yn: intermediate approximation of the solution at time tn.

• c1,c2, . . . ,cs: are time coefficients of each stage, denoting the time points within the interval

the slopes are estimated.

• a(i, j): are coefficients in the Butcher tableau represent the weights applied to slopes from

previous stages to calculate the slope at stage i.

• b1,b2, . . . ,bs: are coefficients that represent the weights applied to slopesb at each stage to

get the final approximation of the solution.

The values of coefficients implemented in RK4 are given in the Butcher tableau below.

Table 7.1: Butcher tableau for RK4

c a
b

=

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

• ci are time coefficients at which the function evaluations given by Eqn. 6.30 are performed.

• The weighting coefficients ai j are used to estimate the weighted sum of intermediate stages

of function evaluations. These coefficients makes each calculation stage dependable on the

previous calculation stage. The diagonal terms aii shows the weights of the intermediate

calculations, while the off-diagonal terms ai j reveal the dependencies between stages.

• bi are values of final approximation that shows the weighted sum of the function calculations

at each stage.
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Let define q̇n at next n time step as q̇n+1, and q̈n as q̈n+1, then Eqn. 6.30 can be descretized as

[31]:

q̈n+1 = [M∗n ]
−1[F∗n −N∗n q̇n] (7.2)

Applying Eqn. 7.1 together with coefficients provided by Butcher tableau to Eqn. 6.30, results in

function approximation of the solution represented by equation Eqn. 7.7 and therefore provides

a solution for angular acceleration given in Eqn. 7.2.

k1 = [M∗n ]
−1[F∗n −N∗n q̇n] (7.3)

k2 = [M∗n+0.5∆t ]
−1
[

F∗n+0.5∆t−N∗n+0.5∆t

(
q̇n +

1
2

k1∆t
)]

(7.4)

k3 = [M∗n+0.5∆t ]
−1
[

F∗n+0.5∆t−N∗n+0.5∆t

(
q̇n +

1
2

k2∆t
)]

(7.5)

k4 = [M∗n+∆t ]
−1 [F∗n+∆t−N∗n+∆t(q̇n + k3∆t)

]
(7.6)

Then, the next value is given by:

q̇n+1 = q̇n +∆t
1
6
(k1 + k2 + k3 + k4) (7.7)

7.2 Post-processing

It is assumed that the motion of a FOWT is linearly related to surface waves. This implies that

in irregular waves it may be computed as a sum of motions arising from the regular waves of

different amplitudes, frequencies and direction of wave propagation of the relevant sea state.

As such, turbine motion for every sea state is calculated using Fast Fourier Transform (FFT)

and is presented as one-sided, unsmoothed, discrete power density function (PSD), described

with Eqn. 7.8 [19]. For this, MATLAB code has been written which is based on code from

NTNU in connection with Data Analysis linked to the course "Experimental Methods in Marine

Hydrodynamics".

The FFT of a time-seriex(t) is sampled at N points: [42]. Figure 7.1 shows transformation

principle of wave energy into response energy [5].

X [k] =
N−1

∑
n=0

x[n]e−i2πkn/N (7.8)
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Figure 7.1: Principle of Transfer of Waves into Responses [5].

where x[n] is the signal value at sample n, and k is the index in the frequency domain ranging

from 0 to N−1. The Power Spectral Density (PSD) is computed from the FFT as:

S[k] =
2∆t
N
|X [k]|2 (7.9)

where ∆t is the sampling interval, N is the total number of samples, and |X [k]|2 is the squared

magnitude of the FFT at frequency bin k. The factor of 2 accounts for the one-sided spectrum of

a real-valued signal.

The frequencies that corresponds to the FFT data are given by:

f [k] =
k

N∆t
(7.10)

for k = 0,1,2, . . . , N
2 , where N

2 is the Nyquist limit.
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7.3 Computation in MATLAB

The simulation code structure is complex and consists of several substructures, submodules and

functions. The main module handles the outer loop, solving EOM via Runge-Kutta numerical

method presented in Chapter 7.

The other submodules are responsible for initialization of the catenary mooring line. The first

module initializes quasi-static catenary model, through Newton-Raphson test as discussed in

Section 5.1.

The second module takes over parameters established in the first module, through partial

derivation of multi-segmented line, as described in Section 5.2

MFM-based model is coupled to spar FOWT model through linkage of parallel computational

processes, such as B matrix and total forces F∗ computations in parallel loop, establishing overall

EOM of the system, according to process described in Section 6.1. Figure 7.2 shows the flowchart

of the coupled analysis. Code is presented in Appendix B.
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Initialization of FOWT:
Added mass

model (OrcaFlex),
Damping and diffraction

model (OrcaFlex),
MFM model
Chapter 4.3

Initialize catenary
mooring model:

Solve for effective
tension Te f f ,
Section 5.1

Apply forces:
Set wave spectrum

Integrate QTFs
calculate second order

forces (OrcaFlex)
Chapter 3, Section 8.1

Establish MFM model:
calculate B matrix

generalized coordinates
Section 5.3

Predictor- corrector loop:
Solve EOM RK4 for

generalized coordinates
x(1)2 x(1)3 θ

(1)

ẋ(1)2 ẋ(1)3 θ̇
(1)

Sections 6.1 and 7

t ≤ tmax?
Converged ?

finish

yes

t = 0

no

Update state

no

Update state

Figure 7.2: Flowchart of the code for coupled analysis in MATLAB.



8 Results

This section presents the simulation results in MATLAB, obtained for different combinations of

the model under irregular sea state. The aim is to examine how developed MFM-based mooring

system and calculated second order forces affect the overall dynamic response of the FOWT

and how the hydrodynamic behaviour changes under different loading condition and different

configurations. Several configurations of the test are considered:

As seen from the Table 8.1 mooring line system is coupled to the spar-type platform only in

Configuration Description

1 1st order wave excitation forces without coupled mooring system
2 1st and 2d order wave excitation forces without coupled mooring system
3 1st and 2d order wave excitation forces with coupled mooring system

Table 8.1: Summary of Model Configurations

configuration 3. This way the baseline performance of the dynamic of offshore turbine itself can

be better investigated. Second order forces, presented in Section 3.1.1, are added in Configuration

2, enabling more accurate observation of motion of the FOWT in the low-frequency range (LF).

Simulation is performed in time-domain and the obtained data are post processed in frequency

domain, using method presented in Section 7.2. Due to a broad scope of the work and extensive

computational tasks in this project, time required for more prolonged simulation shortened to

500 seconds [43]. While the selected time step is set to ∆t = 0.05 s in accordance to guidelines

recommended by NREL and to avoid singularities in matrix operations.
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Scale of
Beaufort

Wind Speed
at 19.5 m above sea

Open Ocean Areas (Bretschneider) North Sea Areas (JONSWAP)
H1/3(m) T1 T2 H1/3(m) T1 T2 γ

1 2.0 1.10 5.80 5.35 0.50 3.50 3.25 3.3
2 5.0 1.20 5.90 5.45 0.65 3.80 3.55 3.3
3 8.5 1.40 6.00 5.55 0.80 4.20 3.90 3.3
4 13.5 1.70 6.10 5.60 1.10 4.60 4.30 3.3
5 19.0 2.15 6.50 6.00 1.65 5.10 4.75 3.3
6 24.5 2.90 7.20 6.65 2.50 5.70 5.30 3.3
7 30.5 3.75 7.80 7.20 3.60 6.70 6.25 3.3
8 37.0 4.90 8.40 7.75 4.85 7.90 7.35 3.3
9 44.0 6.10 9.00 8.30 6.10 8.80 8.20 3.3

10 51.5 7.45 9.60 8.80 7.45 9.50 8.85 3.3
11 59.5 8.70 10.10 9.30 8.70 10.00 9.30 3.3
12 > 64.0 10.25 10.50 9.65 10.25 10.50 9.80 3.3

Table 8.2: Wave Spectrum Parameter Estimates [5]

8.1 Wave Spectrum Model

To simulate response of the offshore platform more realistically, two irregular wave spectra are

chosen based on environmental conditions (mild, moderate and severe) presented in Table 8.2

and Figure 8.1.

The first is for a developing sea, JONSWAP spectrum, which captures the impact of wind retained

for a shorter duration or fetch on it, applicable in cases waves are still maturing. In such seas,

there typically is higher energy at the peak frequency due to clustering around more recent winds

while lesser energy toward the sides of the local spectrums. In the case when peak-enhancement

factor γ = 1, the JONSWAP spectrum simplifies to the Pierson-Moskowitz spectrum, since

JONSWAP is an extension of the PM spectrum with additional parameters which accounts for

wind-generated sea state.

The next is for fully developed sea state, Pierson-Moskowitz spectrum, assuming that the wave

field is homogeneous (uniform over an area), and isotropic (same in all directions).

Peak wave period , TP is calculated with mathematical relation T p = 1.199T1, where T1 is

taken from Table 8.2, as given by Johan Journee and William Massie. [5]. To identify potential

resonance, eigenfrequencies from Tabel 8.3 of the offshore turbine are plotted in the same Figure

8.1. Since they are at some safe distance away from the peak of the wave spectrum, the wave

energy is distributed on other frequencies, and the resonance should not happen. P-M wave

spectrum, shown in the figure, 8.1 has the peak period at 11.39 s and a low gamma value, γ = 1.

A low peak peak-enhancement factor γ = 1, results in a narrower spectral curve and a greater
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Figure 8.1: Theoretical wave spectra used in the simulation. fn is eigenfrequencies given in a Tabel 8.3.

proportion of the energy is concentrated in the low frequencies. The spectrum is steep and thus it

is expected that movements in low frequencies range (LF) excited by the second-order forces

will be noticeable.

DOF T0 [s] fn [Hz] ωn [rad/s]
Surge, X 149.3 0.0067 0.042
Heave, Z 27.7 0.0361 0.227
Pitch, Θ 35.7 0.0280 0.176

Table 8.3: Spar-buoy undamped eigenperiods, T0, and eigenfrequencies in Hz and rad/s. [1]

One should notice, that FOWT is assumed to be in a "parked" position, intentionally halted

and secured. Hydrodynamic forces are examined independently from the influence of wind

forces, aerodynamics is not concerned in this project.
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8.1.1 Load Cases

Based on presented wave spectrum several load cases are defined according to different sea

states, presented in the Table 8.4 below: Frequency limits presented in Table 8.5 are determined

Sea State Load Case Spectrum Hs [m] Tp [s] 1/Tp [s−1]

Mild (Mild Breeze) O1 JONSWAP, γ = 3.3 0.80 5.04 0.198
Moderate (Strong Breeze) M1 JONSWAP, γ = 3.3 2.50 6.83 0.146

Severe (Storm) S1 Pierson Moskowitz, γ = 1 7.45 11.39 0.088

Table 8.4: Load cases specification

utilizing the symmetry around the peak frequency of the related wave spectra, by including an

octave above and below 1/Tp in the interval 1/Tp
2 to 2/Tp.

Load Case Low-Frequency Range [Hz] Wave-Frequency Range [Hz]

O1 0.005 to 0.098 0.099 to 0.396
M1 0.005 to 0.072 0.073 to 0.292
S1 0.005 to 0.043 0.044 to 0.176

Table 8.5: Frequency Limits of Power Spectral Density for all cases.

8.1.2 QTF Description

QTF have been plotted in MATLAB, using Eqn. 3.11 as presented in Section3.1.1. The results for

DOF1, 3, and 5 in Figures 13a, 13b and 13c presented in Appendix A, show sharp resonant peaks

at specific frequency pairs ( fm, fn), which imply possible critical operational conditions. The

identified frequencies as seen from contour and surface plots are defined by following frequency

pairs:

• Surge: max. 2399.41 kN
m2 at ( fm = 0.03 Hz , fn = 0.18 Hz)

• Heave: max. 374.27.41 kN
m2 at ( fm = 0.03 Hz , fn = 0.15 Hz)

• Pitch: max. 89588.31 kNm
m2 at ( fm = 0.03 Hz , fn = 0.03 Hz)

The identified critical frequencies are situated in LF -range and it is expected noticable dynamic

response in this region. It is observed that QTF potential force is equal zero at ∆ f = 0. Threfore

the main diagonal, drawn as a red diagonal line, is defined by mean drift force, where equality

between wave frequencies, fm = fn is observed.
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Figure 8.2: Contour plot (left) and surface plot (right) of QTF Moment for DOF5.

8.2 Dynamic Response

As seen from Figures 20 and 21, there is noticable second order induced motion in low-frequency

range (LF) for DOF3 and 5. All model configurations seems to produce similar result, except

for DOF1, in surge direction, where the biggest excitation in LF -range is mooring line induced.

Same result is observed for load case M1 in moderate sea state and S1 in severe state. Though it

is observed wave excited motion for DOF5 in wave frequency range (WF) in case S1 in severe

state.

The results presented in Table 8.6 shows that the biggest displacement is in surge direction,

DOF1 for case S1 in severe sea state. The same yields pitch rotation in DOF2, represented by

θ (1), depicting how much the platform tilts forward and backward from its equilibrium position.

Load Cases x(1)1 [m2

Hz ] x(1)3 [m2

Hz ] θ (1) [deg2

Hz ]

O1 1126.2 9684.8 5.2×10−7

M1 752.1 9621.8 4.0×10−5

S1 48331.1 9188.9 0.061

Table 8.6: Summary of maximum motion of the platform in Degrees of Freedom (DOFs) 1, 3, and 5.
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Figure 8.3: Rotation in pitch, θ (1) for load case S1 presented as PSD in frequency domain.

8.3 Force Excitation

The transient behaviour of the offshore platform can be evaluated based on data collected

through simulation presented in Tables 1, 2 and 3 for each case respectively. According to

values calculated with Eqn. 8.1, first order excitation force, has highest max value and standard

deviation σ compared to other forces in load cases M1 and S1 as well as variance, while total

force F∗ takes leadership in load case O1, in mild sea state and also shows higher variability in

force magnitude over time, possibly due to wave interactions and changing directions. Calculated

percentage increase in variance from LCO1 to LCS1 between first order excitation force and

total force F∗ is equal to approximately 39.035% and increase in standard deviation is estimated

to 1.878.25%.

σ =

√√√√ 1
N−1

N

∑
i−1

(xi−µ)2 (8.1)

Here σ is standard deviation, µ is the mean, and N−1 represents Bessel’s correction.

Figures 8.5 and 8.8 show the transformation of excitation forces that acts on the platform. The

total force F∗ dominates in load case O1, at identified critical frequency f = 0.03, as discussed in

the Section 8.1.2. In addition this effect is amplified by presense of hiv and pitch eigenfrequencies,

in the low- frequency range.
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So the distinct peak occurs at f = 0.034 Hz, as seen from Figure 8.5. The force F∗ migrates

Figure 8.4 Figure 8.5

Figure 8.6: All forces compared to difference frequency force in hiv for load case O1 presented as PSD in frequency
domain

to wave frequency region, where first order excitation force takes over. And now, the highest

amplitude that dominates wave frequency range belongs to the first order excitation force, as

demonstrated in Figure 8.8 .

Figure 8.7 Figure 8.8

Figure 8.9: Total Moment∗ compared to first order excitation moment in pitch for load case S1 presented as
time-series (left) and as PSD in frequency domain (right).



9 Conclusions

An innovative approach based on Moving Frame Method for effectively modelling and analysing

FOWT of spar buoy type and catenary mooring system, designed as multi-segmented entity with

adjustable number of segments, has been developed and employed into analysis. The applied

modelling principle is novel, because the most of acknowledgement MFM have gotten in robotic

field, while it has not been used for modelling of mooring system before.

The established mooring model is based on Jonkmans proposal of quasi-static catenary mooring

module, which has been greatly modified and adopted to fit the projects needs, as presented in

section 5.1. The catenary model is used to initialize an MFM-based multi-segmented mooring

line through partial derivation, dx/ds and dz/ds of Eqns. 5.5 and 5.6, which defines suspended

mooring line.

A multi-segmented mooring line has been constructed according to the principles of MFM,

extensively using relative and absolute frames in the matrix form. The generalized coordinates,

q, have been defined for both spar buoy and mooring line, through B−matrix, calculated in C++

based Julia.jl, as presented in the Sections 4.8 and 5.3

The uniqueness of developed MFM-based multi-segmented model of mooring line lies in

generic nature of constructed model, that can be extended up to α-segments, allowing as

well initialization of the segments to be defined and changed according to desired line type

(for example taut), component type, (for example lying on the seabed), and by material the

components are made of, for by usual for deep water chain− wire/line −chain components.

Though, to simplify the task of the project, suspended catenary line with uniform material

properties of high modulus polyethylene (HPME) is being used.

Hydrodynamic forces incorporated into the system, have been extended by second order forces,

utilizing second transfer function (QTF) from OrcaFlex, enabling representation of the motion in

the lower frequency range, as shown in Section 3.1.1, Chapter 8 and overview of QTFs is given

in Appendix A.
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EOM is derived via Principles of Virtual Work, based on Eqns. 6.23 to 6.25, as shown in Section

6.1 and, in the form of differential equations, solved through 4th order Runge-Kutta method,

following method described in the Section 7.1.

Results obtained from the simulation in time domain, shows that total force F∗ is mostly

characterized by the contribution of the first order excitation force in wave frequency range (WF),

as described in Section 8.3. Though it is observed noticeable dynamic response in low-frequency

range, from 0.03 to 0.20 Hz, as shown in Section 8.2. Based on analyse of QTFs performed in

Sections 8.1.2 and results obtained for second order forces from simulation, shown in Section

8.3 it is assumed that dynamic response in low -frequency range is induced by second order

excitation forces.

The findings of this project provides additional evidence and confirms results obtained by

specialists at the National Renewable Energy Laboratory (NREL) [19]. Whether developed

system has contribution to this motion is still not obvious and remain a subject for a further

research.

9.1 Futher Work

To investigate the reason why hydrodynamic response is observable mostly in low frequency

range, the overall dynamics of the offshore turbine should be investigated more thoroughly,

by performing several tests in different sea states. In addition, to overcome transient time, the

simulation length should be extended. There could be a need to include additional DOFs and

extend the minimum set of the generalized coordinates of both developed mooring system and

of the FOWT itself. Work has already started and will continue as the inclusion of the Moving

Frame Method cannot be underestimated in hydrodynamic computations.
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Appendices

The appendices contain additional material that backs up the main theory and methodology

presented in this thesis. They aim to provide the reader with a more thorough comprehension of

the methods used and the data supporting the research results. Overview of appendices:

Appendix A: QTF for all DOF

For a detailed explanation, see Section Second-Order Force on page 8.

Appendix B:: Excitation Forces

The results obtained from simulation are provided for all cases in DOF1, 3, and 5. The

forces that are listed there are the total force F∗, first order excitation force, sum-and

difference frequency forces. These are plotted in one figure for comparison.

Appendix C:: Dynamic Response

In the same way as forces, the dynamic response of FOWT is presented in DOF1,3 and 5

for all cases. Model configurations are compared against each other.

Appendix D::MATLAB code

Detailed MATLAB code used to represent methodology of initialization of quasi-static

model of catenary mooring line, according to procedure described in the Section 5.1.

Appendix E:: MATLAB code

In this appendix a set of different functions and scripts for post-processing of obtained

data is presented. Fast Fourier Transformation (FFT) to Power Spectral Density function

is among them. All scripts are annotated to help understand the computational steps and

algorithms used in processing and analysing the dataset.

The main code with MFM -based developed mooring line together with Outer loop code and

calculation of QTFs are to be found in separate .zip file, because of the size of the code itself. As

it is too large and would interfere the consistency of the text of the thesis.
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QTF

Figure 1: Amplitude of quadratic QTF force, surge.

Figure 2: Amplitude of quadratic QTF force, sway.



QTF 82

Figure 3: Amplitude of quadratic QTF force, heave.

Figure 4: Amplitude of quadratic QTF moment, roll.

Figure 5: Amplitude of quadratic QTF moment, pitch.
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Figure 6: Amplitude of quadratic QTF moment, yaw

Figure 7: Amplitude of potential QTF force, surge.

Figure 8: Amplitude of potential QTF force, sway.
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Figure 9: Amplitude of potential QTF force, heave.

Figure 10: Amplitude of potential QTF moment, roll.

Figure 11: Amplitude of potential QTF moment, pitch.
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Figure 12: Amplitude of potential QTF moment, yaw
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(a) Contour plot (left) and surface plot (right) of QTF Force in DOF1

(b) Contour plot (left) and surface plot (right) of QTF Force in DOF3

(c) Contour plot (left) and surface plot (right) of QTF Moment for DOF5

Figure 13: Contour plots of QTF Force for DOF1, 3, and QTF Moment for DOF 5. The red line represents mean
drift force, ∆ω = 0.



Appendix B:

Excitation Forces

Force Min Max σ µ σ2

F1 −1.0147×107 1.1220×107 2.0788×106 1.7320×103 4.3216×1012

F(2−) −662.1226 3.6761×103 1.1791×103 2.3144×103 1.3904×106

F(2+) −825.0153 3.6761×103 1.1885×103 2.3105×103 1.4125×106

F∗ −1.1082×107 1.1213×107 4.3629×106 3.6157×104 1.9035×1013

Table 1: Standard deviation, σ , variance, σ2, mean, maximum, and minimum values obtained for Load Case O1.

Force Min Max σ µ σ2

F1 −7.37×107 6.96×107 1.49×107 −1.5403×104 2.21×1014

F(2−) −2.42×103 1.10×104 3.76×103 2.43×103 1.42×107

F(2+) −2.42×103 1.10×104 3.76×103 2.44×103 1.41×107

F∗ −2.75×107 3.61×107 5.63×106 3.17×104 3.23×1013

Table 2: Standard deviation, σ , variance, σ2, mean, maximum, and minimum values obtained for Load Case 2.

Force Min Max σ µ σ2

F1 −4.5470×108 4.7758×108 8.6309×107 1.1557×105 7.4493×1015

F(2−) −3.7823×103 1.7242×104 5.6217×103 1.0795×104 3.1604×107

F(2+) −3.7823×103 1.7242×104 5.5633×103 1.0833×104 3.0905×107

F∗ −1.7224×108 1.8097×108 3.1218×107 3.7248×104 9.7456×1014

Table 3: Standard deviation, σ , variance, σ2, mean, maximum, and minimum values obtained for Load Case 3.



Excitation Forces 88

(a) (b)

(c) (d)

(e) (f)

Figure 14: Total force F∗ and Moment∗ compared to 1st order excitation force and moment in surge (a, b), hiv (c, d)
and pitch (e, f), for load case O1 presented as time-series (left) and as PSD in frequency domain (right)
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(a) (b)

(c) (d)

(e) (f)

Figure 15: Total force F∗ and Moment∗ compared to 1st order excitation force and moment in surge (a, b), hiv (c, d)
and pitch (e, f), for load case M1 presented as time-series (left) and as PSD in frequency domain (right)
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(a) (b)

(c) (d)

(e) (f)

Figure 16: Total force F∗ and Moment∗ compared to 1st order excitation force and moment in surge (a, b), hiv (c, d)
and pitch (e, f), for load case S1 presented as time-series (left) and as PSD in frequency domain (right)
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(a) (b)

(c) (d)

(e) (f)

Figure 17: All forces compared to differance frequency force and moment in surge (a, b), hiv (c, d) and pitch (e, f),
for load case O1 presented as PSD in frequency domain
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(a) (b)

(c) (d)

(e) (f)

Figure 18: All forces compared to differance frequency force and moment in surge (a, b), hiv (c, d) and pitch (e, f),
for load case M1 presented as PSD in frequency domain
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(a) (b)

(c) (d)

(e) (f)

Figure 19: All forces compared to differance frequency forces and moment in surge (a, b), hiv (c, d) and pitch (e, f),
for load case S1 presented as PSD in frequency domain
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Dynamic Response

Figure 20: Displacement in hiv direction, x(1)3 for load case O1 presented as PSD in frequency domain.
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Figure 21: Rotation in pitch, θ (1) for load case O1 presented as PSD in frequency domain.

Figure 22: Displacement in hiv direction, x(1)3 for load case M1 presented as PSD in frequency domain.

Figure 23: Rotation in pitch, θ (1) for load case M1 presented as PSD in frequency domain.
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Figure 24: Displacement in hiv direction, x(1)3 for load case S1 presented as PSD in frequency domain.

Figure 25: Rotation in pitch, θ (1) for load case S1 presented as PSD in frequency domain.



Appendix D:

MATLAB code: Quasi-static Catenary Model

1 clear all; close all; clc;

2 % Initializes quasi - static catenary line model

3 % Calculates position for eachs segment and effective Tension , Teff

4 % based on Jonkman model and equations , described

5 % in chapter Mooring model , section Quasi - static model .

6 [omega , EA ,L,s] = Cpar ();

7 load(’CData .mat ’);

8 Cgen= CparData .Cgen;

9 Cpar= CparData .Cpar;

10 Ppar= CparData .Ppar;

11 h=Cgen.h;

12 s=Cgen.s; % segments along the line

13 CB=Cpar.CB;

14 x_F=Cpar.x_F;

15 x = zeros (size(s));

16 z = zeros (size(s));

17 Teff = zeros (size(s));

18 for i = 1: length (s)

19 [H_F , V_F , T_H , T_V , V_A , L_B , H_norm , V_norm , Teff] = getfairleadTension ();

20 % suspended catenary line

21 [x(i), z(i)] = get_Position (s(i), H_F , V_A , omega , EA);

22 % uncomment for line laid down on the seabed

23 % [x(i), z(i), Teff(i)] = get_Position (s(i), H_F , V_A , omega , EA , L_B , CB , L);

24 end

25 % % Plotting

26 % x=Cpar. scale *x; % to represent in local frame

27 % % segments vs Teff separate plot

28 % figure ;

29 % subplot (2, 1, 1);

30 % plot(x, z, ’bo -’, ’DisplayName ’, ’Mooring line model ’);

31 % xlabel (’ Horizontal Position , x (m)’, ’Interpreter ’,’latex ’);

32 % ylabel (’ Vertical Position , z (m)’, ’Interpreter ’,’latex ’);

33 % % title (’ Local coordinat system of the mooring line .’);

34 % grid on;

35 % legend ;
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36 % subplot (2, 1, 2);

37 % plot(s, Teff , ’ko -’, ’DisplayName ’, ’Effective tension ’);

38 % xlabel (’ length of segments , s (m)’, ’Interpreter ’,’latex ’);

39 % ylabel (’ Effective Tension , $T_eff$ (N)’, ’Interpreter ’,’latex ’);

40 % title (’ Effective tension , $T_eff$ , along the line ’, ’Interpreter ’,’latex ’);

41 % grid on;

42 % legend ;

43 % % segments position vs Te in one 2 Dplot

44 % figure ;

45 % % Plot x vs z on left y-axis

46 % yyaxis left;

47 % plot(x, z, ’bo -’, ’DisplayName ’, ’Mooring Line Model ’);

48 % xlabel (’ Horizontal Position , x [m]’,’ Interpreter ’,’latex ’, ’HandleVisibility ’,’off ’);

49 % ylabel (’ Vertical Position , z [m]’, ’Interpreter ’,’latex ’);

50 % % ymax = max(z);

51 % % ylim ([0 , ymax * 1.01]) ; % adding ca % 10% above the max value

52 % % title (’ Effective tension , $T_eff$ along the line ’, ’Interpreter ’,’latex ’);

53 % grid on;

54 % hold on;

55 % % Plot x vs Te on right y-axis

56 % yyaxis right ;

57 % plot(x, Teff , ’r-’, ’DisplayName ’, ’Effective Tension ’);

58 % ylabel (’ Effective Tension , $T_eff$ (N)’, ’Interpreter ’,’latex ’);

59 % legend (’show ’, ’Location ’, ’northwest ’);

60 % %%3D representation of position vs Te

61 % figure ;

62 % ax1 = axes;

63 % plot3 (ax1 , x, zeros (size(s)), z, ’bo -’, ’DisplayName ’, ’Mooring Line Model ’);

64 % % plot3 (ax1 , x, s, z, ’bo -’, ’DisplayName ’, ’Mooring Line Model ’);

65 % xlabel (’ Horizontal Position , x (m)’, ’Interpreter ’,’latex ’);

66 % ylabel (’ ’);

67 % zlabel (’ ’);

68 % grid on;

69 % % title (’3D Plot of Mooring Line Model and Effective Tension ’);

70 % hold on;

71 % ax2 = axes;

72 % plot3 (ax2 , x, zeros (size(s)), Teff , ’r-’, ’DisplayName ’, ’Effective Tension ’);

73 % % plot3 (ax2 , x, s, Teff , ’r-’, ’DisplayName ’, ’Effective Tension ’);

74 % ax2. Color = ’none ’;

75 % ax2. XAxis . Visible = ’off ’;

76 % ax2. YAxis . Visible = ’off ’;

77 % ax1. ZAxis . Visible = ’off ’;

78 % ax2. ZAxis . Visible = ’on ’;

79 % ax2. ZColor = ’r ’;

80 % ax2. Position = ax1. Position ;

81 % zlabel (ax2 , ’Effective Tension , $T_eff$ (N)’, ’Interpreter ’,’latex ’);

82 % hold on;

83 % linkprop ([ax1 , ax2], ’View ’);

84 % grid on;
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85 % legend ([ ax1. Children ; ax2. Children ], ...

86 % {’ Mooring Line Model ’, ’Effective Tension ’}, ’Interpreter ’,’latex ’,’Location ’, ’northwest ’);

1

2 function [H_F , V_F , T_H , T_V , V_A , L_B , H_norm , V_norm , Teff] = getfairleadTension ();

3 % clear all; close all; clc;

4 load(’CData .mat ’);

5 Cgen= CparData .Cgen;

6 Cpar= CparData .Cpar;

7 Ppar= CparData .Ppar;

8 h=Cgen.h;

9 s=Cgen.s;

10 CB=Cpar.CB;

11 xf=Ppar.xfl;

12 x_F=xf; %in platform frame

13 % x_F=Cpar.x_F ;% in anchor frame

14 z_F=Cpar.z_F;% in anchor frame

15 % % zf=Ppar.zfl;

16 % % z_F=zf; in platform frame

17

18 % lambda_0 based on fairlead position

19 if x_F == 0

20 lambda_0 = 1000000;

21 elseif sqrt(x_F ^2 + z_F ^2) >= L

22 lambda_0 = 0.2;

23 else

24 lambda_0 = sqrt (3 * ((L^2 - z_F ^2) / x_F ^2 - 1)); %eq. (2 -40)

25 end

26

27 % Initial guesses for tensions based on Peyrot and Goulois

28 T_H = abs( omega * x_F/ (2 * lambda_0 )); % eq. (2 -39a) Initial horizontal tension guess

29 T_V = ( omega / 2) * (z_F/ tanh( lambda_0 ) + L); % eq. (2 -39b) Initial vertical tension guess

30

31 % Newton - Raphson Method to solve for T_H and T_V

32

33 [T_H , T_V] = estimateTensions (T_H , T_V , omega , L, EA , x_F , z_F);

34 H_F=T_H;

35 V_F = T_V;

36

37

38 % components of the effective tension in the mooring line at the anchor , HA and VA ,

39 % Determine H_F V_A based on seabed condition

40 %

41 L_B = Cpar.L - V_F / omega ; % eq :(2 -38) s.39 Length of mooring line resting on the seabed (m)

42

43 if L_B > 0

44 H_A = max(H_F - Cpar.CB * omega * L_B , 0); % eq. (2 -42a) s.41

45 V_A = 0;% (2 -42b) s. 41

46 else
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47 H_A = H_F; %eq. (2 -41a)

48 V_A = V_F - omega * Cpar.L;% (2 -42a) s. 41

49 end

50

51 % Calculate effective tension and normalized components for each segment

52 Teff = sqrt(H_F ^2 + (V_A + omega * s).^2);

53 H_norm = H_F * Teff ./ sqrt(H_F ^2 + (V_A + omega * s).^2);

54 V_norm = (V_A + omega * s) .* Teff ./ sqrt(H_F ^2 + (V_A + omega * s).^2);

55 % % uncomment below lines for case with seabed

56 % % Calculate the effective tension T_e(s) and its components

57 % for i = 1: length (s)

58 % if s(i) <= L_B

59 % Teff(i) = max(H_F + CB * omega * (s(i) - L_B), 0); % for 0 <= s <= L_B

60 % % Horizontal and vertical components

61 % H_norm (i) = H_F;

62 % V_norm (i) = 0;

63 % else % for L_B <= s <= L

64 % Teff(i) = sqrt(H_F ^2 + ( omega * (s(i) - L_B))^2);

65 % H_norm (i) = H_F * Teff(i) / sqrt(H_F ^2 + (V_A + omega * s(i))^2);

66 % V_norm (i) = (V_A + omega * s(i)) * Teff(i) / sqrt(H_F ^2 + (V_A + omega * s(i))^2);

67 % end

68 % end

69 %

70 %

71 end

1 function [x, z] = get_Position (s, H_F , V_A , omega , EA)

2 % based on Jonkmans equation given in https :// www.nrel.gov/docs/ fy08osti /41958. pdf

3 % horizontal position x(s) of segments

4 x = (H_F / omega ) * (log (( V_A + omega * s) / H_F + sqrt (1 + ...

5 (( V_A + omega * s) / H_F)^2)) ...

6 - log (( V_A / H_F) + sqrt (1 + (V_A / H_F)^2))) + ...

7 (H_F * s / EA); % eq. (2 -43a) s 41

8

9 % vertical position z(s) of segments

10 z = (H_F / omega ) * (sqrt (1 + (( V_A + omega * s) / H_F)^2) ...

11 - sqrt (1 + (V_A / H_F)^2)) ...

12 + (1 / EA) * (V_A * s + ( omega * s^2) / 2); % eq (2 -43b) s 41

13

14 end

15 % %%%%%%%% uncomment for case with line laid down

16 % on the seabed equations 2 -45 2 -46

17 % function [x, z, Te] = get_Position (s, H_F , V_A , ...

18 % omega , EA , L_B , CB , L)

19 % % Calculate the horizontal position x(s) based on extended conditions

20 % if s <= L_B - (H_F / (CB * omega ))

21 % x = s; % for 0 <= s <= L_B - H_F / ...

22 % (C_B * omega )

23 % elseif s <= L_B
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24 % x = s + (CB * omega / (2 * EA)) * ...

25 % (s^2 - 2 * (L_B - (H_F / (CB * omega ))) * s + ...

26 % (L_B - (H_F / (CB * omega ))) * max(L_B -

27 % (H_F / (CB * omega )), 0));

28 % else % for L_B <= s <= L

29 % x = L_B + (H_F / omega ) * ...

30 % log (( omega * (s - L_B) / H_F) + sqrt (1 + ...

31 % ( omega * (s - L_B) / H_F).^2)) + ...

32 % (H_F * s / EA) + (CB * omega / (2 * EA)) * ...

33 % (-L_B ^2 + (L_B - ...

34 % (H_F / (CB * omega ))) * max(L_B - (H_F / (CB * omega )), 0));

35 % end

36 %

37 % % Calculate the vertical

38 % position z(s) based on extended conditions

39 % if s <= L_B

40 % z = 0; % for 0 <= s <= L_B

41 % else % for L_B <= s <= L

42 % z = (H_F / omega ) * log(sqrt (1 + ...

43 % ( omega * (s - L_B) / H_F).^2) - 1) + ...

44 % ( omega * (s - L_B).^2 / (2 * EA));

45 % end

46 % if s <= L_B

47 % Te = max(H_F + CB * omega * ...

48 % (s - L_B), 0); % for 0 <= s <= L_B

49 % % Horizontal and vertical components

50 % H_normalized = H_F;

51 % V_normalized = 0;

52 % else % for L_B <= s <= L

53 % Te= sqrt(H_F ^2 + ( omega * ...

54 % (s - L_B))^2);

55 % H_normalized = H_F * Te / sqrt(H_F ^2 + (V_A + omega * s)^2);

56 % V_normalized = (V_A + omega * s) ...

57 % * Te / sqrt(H_F ^2 + (V_A + omega * s)^2);

58 % end

59 %

60 % end

1 function [T_H , T_V] = estimateTensions (T_H , T_V , omega , L, EA , x_F , z_F)

2

3 tolerance = 1e -6; % Convergence tolerance

4 max_iter = 100; % Maximum number of iterations

5 for iter = 1: max_iter

6 % estimate x z for fairlead , based guessed and Newton - Raphson test

7 [x_est , z_est ] = mooringLineEquations (T_H , T_V , omega , L, EA);

8

9 % errors

10 error_x = x_F - x_est ;

11 error_z = z_F - z_est ;
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12 H_F=T_H;

13 V_F = T_V;

14 % Establishing Jacobian with partial derivatives

15 dx_dH =-( log ((V_F -L.* omega )./ H_F+sqrt (1.0./ H_F .^2.*...

16 (V_F -L.* omega ) .^2+1.0) )-log(V_F ./ H_F +...

17 sqrt (1.0./ H_F .^2.* V_F .^2+1.0) ))./ omega +L./ EA ...

18 +( H_F .*((1.0./ H_F .^2.*( V_F -L.* omega )...

19 +1.0./ H_F .^3.*1.0./ sqrt (1.0./ H_F .^2.*( V_F -L.* omega ).^2 ...

20 +1.0) .*( V_F -L.* omega ).^2) ./(( V_F -L.* omega )./ H_F+ ...

21 sqrt (1.0./ H_F .^2.*( V_F -L.* omega ) .^2+1.0) )- ...

22 (1.0./ H_F .^2.* V_F +1.0./ H_F .^3.* V_F .^2.*1.0./ ...

23 sqrt (1.0./ H_F .^2.* V_F .^2+1.0) )./( V_F ./ H_F+ ...

24 sqrt (1.0./ H_F .^2.* V_F .^2+1.0) )))./ omega ;

25 dx_dV =-( H_F .*((1.0./ H_F +(1.0./ H_F .^2.*( V_F .*2.0 ...

26 -L.* omega .*2.0) .*1.0./ sqrt (1.0./ H_F .^2.*( V_F ...

27 -L.* omega ) .^2+1.0) ) ./2.0) ./(( V_F ...

28 -L.* omega )./ H_F+sqrt (1.0./ H_F .^2.*( V_F ...

29 -L.* omega ) .^2+1.0) ) -(1.0./ H_F +1.0./ H_F .^2.* V_F .*1.0./ ...

30 sqrt (1.0./ H_F .^2.* V_F .^2+1.0) )./( V_F ./ H_F ...

31 +sqrt (1.0./ H_F .^2.* V_F .^2+1.0) )))./ omega ;

32 dz_dH =( sqrt (1.0./ H_F .^2.* V_F .^2+1.0) - ...

33 sqrt (1.0./ H_F .^2.*( V_F -L.* omega ).^2 ...

34 +1.0) )./ omega +( H_F .*(1.0./ H_F .^3.* ...

35 1.0./ sqrt (1.0./ H_F .^2.*( V_F -L.* omega ).^2 ...

36 +1.0) .*( V_F -L.* omega ).^2 - ...

37 1.0./ H_F .^3.* V_F .^2.*1.0./ sqrt (1.0./ H_F .^2.* ...

38 V_F .^2+1.0) ))./ omega ;

39 dz_dV =L./EA -( H_F .*((1.0./ H_F .^2.*( V_F .*2.0 -L.* ...

40 omega .*2.0) .*1.0./ sqrt (1.0./ H_F .^2.*( V_F -L.* omega ).^2 ...

41 +1.0) ) ./2.0 -1.0./ H_F .^2.* V_F .* ...

42 1.0./ sqrt (1.0./ H_F .^2.* V_F .^2+1.0) ))./ omega ;

43

44 J = [dx_dH , dx_dV ;

45 dz_dH , dz_dV ];

46 % Updating Newton - Raphson

47 delta = J \ [ error_x ; error_z ];

48 T_H = T_H + delta (1);

49 T_V = T_V + delta (2);

50 % Cheking Convergence

51 if norm( delta ) < tolerance

52 % fprintf (’ Converged after %d iterations .\n’, iter);

53 return ;

54 end

55 end

56

57 end

1 function [iseg] = Mech ();

2 %%The High - Modulus Polyethylene (HMPE) line designed specifically
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3 % for the model used in simulation

4 % according to DIN EN ISO 1141 standard and

5 % OCIMF Mooring Equipment Guidelines (MEG4)

6 % Diameter

7 iseg = struct ();

8 iseg.d = 0.18; % [m] % based on calculations performed for designed moorig line

9 d=iseg.d;% approx . 24.8107 [kg/m]

10

11 iseg.A = pi * iseg.d ^2/4; % approx . 0.0254 [m^2]

12

13 iseg. rho_HMPE = 975; % Density of HMPE [kg/m^3]

14

15 % Mass per unit length

16 iseg. masspm =iseg.A*iseg. rho_HMPE ;

17 masspm =iseg. masspm ;

18 % exporting s segments length and applying it on the MFM model

19 [omega , EA ,L,s] = Cpar ();

20 L1 = s(2) -s(1); % [m]

21 L2 = s(3) -s(2); % [m]

22

23 % Mass per segment in kg

24 mass1 = iseg. masspm ;

25 mass2 = iseg. masspm ;

26

27

28 iseg.m1 = mass1 ;

29 iseg.m2 = mass1 ;

30 iseg.L1 = L1;

31 iseg.L2 = L2;

32

33 iseg.J11 = pi*d ^4/64; % approx . [kgm ^2]

34 iseg.J12 = pi*d ^4/64;

35

36 %J13 =J23 is small , therefore negligible .

37 iseg.J13 =0;

38 iseg.J21 = pi*d ^4/64;

39 iseg.J22 = pi*d ^4/64;

40 iseg.J23 =0;

41

42 MechData = struct (’iseg ’, iseg);

43 save ’MechData .mat ’ -v7 .3;

44 end
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MATLAB code: Post-processing

1 clc; clear ; close all;

2 %This function calculates Power Spectral Density (PSD)

3 % of a time - domain signal using Fast Fourier Transformation

4 % described in 7.2 Post - processing

5 %%%%% CONTROL Combinations

6 % Default ALL =0, three wave forces , 1st order vs sum - differance frequency forces

7 %All =0, except includeFstar -> plot all four forces

8 %All =0, except exclude1ordF =1-> only 2d order forces

9 %All =0, except excludeSDForce =1-> plot F* vs 1 order force

10 logScale =1; % loglog xy , switch between scales , bedre for cluster signals

11 includeFstar =1; % includes Fstar in plot

12 exclude1ordF =0; % excludes 1st order wave force , to see only sum - differancies forces

13 excludeSOForces =0; % excludes 2-nd order wave forces , to check Fstar vs 1st order Force

14 % Eigenperiods and corresponding frequencies

15 T0= [149.3 , 27.7 , 35.7]; % eigenperiods , T0

16 ef= 1 ./ T0; %

17

18 setSurge =0; % surge active

19 setHeave =0; % aktivere / deaktivere hiv

20 setPitch =0; % pitch rotation

21 % Defines the cases and selects data files accordinly

22 case1 = 0; % Mild Sea State (Case 1)

23 case2 = 0; % Moderate Sea state (Case 2)

24 case3 = 1; % Severe Sea State (Case 3)

25 % %%%%%%%%%%%%%%%%%% Defines Wave Spectrum Model

26 if case1

27 getName = {’Case1_uML .mat ’};

28 T1 = 4.20; % Defines Wave Spectrum Model

29 elseif case2

30 getName = {’Case2_uML .mat ’};

31 T1 = 5.70;

32 elseif case3

33 getName = {’Case3_uML .mat ’};

34 T1 = 9.50;

35 else
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36 getName = {’Case1_uQTF_uML .mat ’};

37 end

38 keepTrackLegend = {’1st order force only ’, ...

39 ’sum - differance force included ’ ,...

40 ’all forces + mooring lines ’};

41 Tp = 1.199 * T1;

42 fp = 1 / Tp;

43 LF= [0.005 , fp /2 -0.009]; % defines low - frequency range based on Tp

44 WF = [fp/2, 2* fp ]; % defines wave - frequency range based in Tp

45 df1 = 0.0001; % step1 in LF , to get better resolution

46 df2 = 0.001; % step in LF

47 f = [0.001: df1 :0.99 , 1: df2 :10]; % Frequency vector up to 10 Hz

48

49 % Data processing parameters

50 dt = 0.05; % simulation step

51 fNyq = 1 / (2 * dt); % nyquist frequency

52 cutoff = [0.3 , 4] / (2 * pi); % apply filter to remove noise

53

54 figure ;

55 hold on;

56 setMultLegend = {}; % For several time - series

57

58

59 for k = 1: length ( getName )

60 data = load( getName {k});%load data

61

62 if includeFstar == 1

63 % Include all forces , including Fstar

64 forceChoice = {’Fstar ’, ’Fdiff ’, ’Fdiff2 ’, ’Fsum2 ’};

65 if setPitch ==1

66 renameLegend = {’Moment *’, ’1st order moment ’ ,...

67 ’difference - frequency moment ’, ’sum - frequency moment ’};

68 else

69 renameLegend = {’F*’, ’1st order force ’, ...

70 ’difference - frequency force ’, ’sum - frequency force ’};

71 end

72

73 elseif includeFstar ~= 1 && exclude1ordF ~= 1 ...

74 && excludeSOForces == 0

75 % Include only 1st order and sum - difference forces ,

76 % exclude Fstar if flag is not set to include it

77 forceChoice = {’Fdiff ’, ’Fdiff2 ’, ’Fsum2 ’};

78

79 if setPitch ==1

80 renameLegend = {’1st order moment ’, ...

81 ’difference - frequency moment ’, ’sum - frequency moment ’};

82

83 else

84 renameLegend = {’1st order force ’, ...
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85 ’difference - frequency force ’, ’sum - frequency force ’};

86

87 end

88 elseif excludeSOForces == 1 && includeFstar == 0

89

90 forceChoice = {’Fstar ’, ’Fdiff ’};

91 if setPitch ==1

92 renameLegend = {’Moment *’, ’1st order moment ’};

93 else

94 renameLegend = {’F*’, ’1st order force ’};

95 end

96 elseif exclude1ordF == 1

97

98 forceChoice = {’Fdiff2 ’, ’Fsum2 ’};

99

100 if setPitch ==1

101 renameLegend = {’difference - frequency moment ’, ...

102 ’sum - frequency moment ’};

103 else

104 renameLegend = {’difference - frequency force ’, ...

105 ’sum - frequency force ’};

106

107 end

108 else

109 % Default

110 forceChoice = {};

111 renameLegend = {};

112 disp(’Undefined control combination . Please , reset .’);

113 continue ; %do nothing in for loop

114 end

115

116 % Check if Fstar is present and loaded properly

117 fstarPresent = isfield (data , ’Fstar ’);

118

119 % Adjust time and duration based on the presence of Fstar

120 if fstarPresent

121 simLength = 499; % Fstar data

122 time = data.t(2: end); % adjust to Fstar by skipping

123 else

124 simLength = 500;

125 time = data.t; % Use the full time vector

126 end

127 % for time - serie with different length compared to other . Fstar is less

128 for j = 1: length ( forceChoice )

129 varName = forceChoice {j};

130 if isfield (data , varName )

131 resMatrix = real( getfield (data , varName ));

132 [nRows , nCols ] = size( resMatrix );

133 % Special processing if Fstar is present
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134 % and not currently processing Fstar

135 if fstarPresent && strcmp (varName , ’Fstar ’) ...

136 == 0 && nCols > 1

137 % Skip the first column for

138 % all forces other than Fstar

139 if setSurge == 1 && nRows >= 1

140 response = resMatrix (1, 2: end);

141 elseif setHeave == 1 && nRows >= 2

142 response = resMatrix (2, 2: end);

143 elseif nRows >= 3

144 response = resMatrix (3, 2: end);

145 else

146 error ([ ’Less rows than expected %s ... ’ ...

147 ’in file %s’], varName , getName {k});

148 end

149 elseif fstarPresent == 0 || strcmp (varName , ...

150 ’Fstar ’) == 1

151 %if Fstar is not included in analyse ,

152 % proceed as normal

153 if setSurge == 1 && nRows >= 1

154 response = resMatrix (1, :);

155 elseif setHeave == 1 && nRows >= 2

156 response = resMatrix (2, :);

157 elseif nRows >= 3

158 response = resMatrix (3, :);

159 else

160 error ([ ’Less rows than expected %s ... ’ ...

161 ’in file %s’], varName , getName {k});

162 end

163 end

164 else

165 warning (’Variable %s not found in file %s’, ...

166 varName , getName {k});

167 end

168

169 % interpolate to get unifrm time

170 t = -simLength /2: dt: simLength /2;

171 xint = interp1 (time , response , t);

172

173 % Apply bandpass filter

174 [b, a] = butter (4, cutoff / fNyq , ’bandpass ’);

175 xint_filtered = filtfilt (b, a, xint);

176

177 % Calculate PSD

178 SxxN = psd_fft ( xint_filtered ’ - mean( xint_filtered ), 3, f, 1 / dt);

179 Sxx=SxxN /1000; %to kN

180

181 currentLegend = sprintf (’%s - %s’, keepTrackLegend {k}, varName );

182 % Plot
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183 if logScale ==1

184 % inlogaritmic scale

185 loglog (f, Sxx , ’LineWidth ’, 2, ’DisplayName ’ ,...

186 currentLegend );

187 set(gca , ’XScale ’, ’log ’, ’YScale ’, ’log ’);

188 % Set both axes to logarithmic

189 grid on;

190 else

191 plot (f, Sxx , ’LineWidth ’, 2, ’DisplayName ’, currentLegend );

192 set(gca , ’FontSize ’, 10);

193 xlim ([0 2* fp ]);

194 end

195 keepTrackLegend {end + 1} = currentLegend ; % Collect legend entry

196

197 % if exclude1ordF || excludeSDForces ==1

198 % Annotate directly on the plot with transparent background

199 %for 2 vars or if max have long distance from each other

200 % Find indices and values of the maximum Z value

201 [maxValue , linearIndexesOfMaxes ] = max(Sxx (:));

202 [rowOfMax , colOfMax ] = ind2sub (size(Sxx), linearIndexesOfMaxes );

203 maxX = f(rowOfMax , colOfMax );

204 text(maxX , maxValue + 0.05* maxValue , ...

205 sprintf (’max: %.2e at $f$ =%.3f Hz ’ ,...

206 maxValue , maxX), ’Interpreter ’, ’latex ’, ...

207 ’Color ’, ’red ’, ’FontSize ’, 10, ...

208 ’BackgroundColor ’, ’none ’, ’Position ’, [maxX , maxValue ]);

209 hold on;

210 % else

211 % %Do nothing

212 % end

213 end

214 end

215

216

217 if setSurge ==1

218 hy= ylabel (’ PSD $[\ frac{kN ^2}{ Hz }]$’); % surge force

219 ht= title (’Surge Force ’, ’fontsize ’, 12)

220

221 elseif setHeave ==1

222 hy= ylabel (’ PSD $[\ frac{kN ^2}{ Hz }]$’); %hiv Force

223 ht= title (’Hiv Force ’, ’fontsize ’, 12)

224 else

225

226 hy= ylabel (’ PSD $[\ frac{kN ^2m^2}{ Hz }]$’); % pitch moment

227 ht= title (’Pitch Moment ’, ’fontsize ’, 12)

228 end

229

230

231 hx= xlabel (’f, [Hz]’);
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232 % hl= legend ( legendEntries , ’Location ’, ’northeast ’);

233 hl= legend ( renameLegend , ’Location ’, ’best ’);

234 % ht= title (’ ’);

235

236 set ([hx ,hy ,hl , ht],’fontsize ’ ,10, ’Interpreter ’,’latex ’);

237

238 y_limits = ylim;

239 %draw LF range and WF range

240 fill ([ LF (1) , LF (1) , LF (2) , LF (2)], ...

241 [ y_limits (1) , y_limits (2) , y_limits (2) , y_limits (1)], ...

242 ’r’, ’FaceAlpha ’, 0.09 , ’EdgeColor ’, ’none ’, ’DisplayName ’ ,...

243 ’Low - Frequency Range ’);

244

245 % Wave Frequency Window

246 fill ([ WF (1) , WF (1) , WF (2) , WF (2)], ...

247 [ y_limits (1) , y_limits (2) , y_limits (2) , y_limits (1)], ...

248 ’c’, ’FaceAlpha ’, 0.09 , ’EdgeColor ’, ’none ’, ...

249 ’DisplayName ’, ’Wave - Frequency Range ’);

250

251 % eigenfrequencies of the FOWT

252 %rad/s

253 % hxl= xline (ef (1:3) ,’k-.’,’ $\omega_n$ ’ ,...

254 % ’LabelHorizontalAlignment ’,’right ’, ’HandleVisibility ’,’off ’, ...

255 % ’Interpreter ’,’latex ’); hold on

256 %Hz

257 hxl= xline (ef (1:3) ,’k -. ’,’ $f_n$ ’,’LabelHorizontalAlignment ’ ,...

258 ’center ’, ’HandleVisibility ’,’off ’, ’Interpreter ’,’latex ’); hold on

259 hold off;

1 clc; clear ; close all;

2 % % Eigenperiods and corresponding frequencies

3 T0 = [149.3 , 27.7 , 35.7];

4 ef= 1 ./ T0; %

5 %DOF

6 setSurge =0; % surge active

7 setHeave =0; % aktivere / deaktivere hiv

8 setPitch =1; % yrotation

9

10 % Define load cases based on sea states

11 case1 = 0; % Mild Sea State (Case 1)

12 case2 = 0; % Moderate Sea state (Case 2)

13 case3 = 1; % Severe Sea State (Case 3)

14 %all three configurations ,i.e. only 1st order force ,

15 % w QTFs , m mooring

16 % system

17 if case1 ==1

18 getName = {’Case1_uML_uQTF .mat ’,’Case1_uML .mat ’ ,...

19 ’Full_Case1 .mat ’};

20 T1 = 4.20;
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21 elseif case2 ==1

22 getName = {’Case2_uML_uQTF .mat ’,’Case2_uML .mat ’ ,...

23 ’Full_Case2 .mat ’};

24 T1 = 5.70;

25 elseif case3 ==1

26 getName = {’Case3_uML_uQTF .mat ’,’Case3_uML .mat ’ ,...

27 ’Full_Case3 .mat ’};

28 T1 = 9.50;

29 else

30 getName = {’Case1_uML_uQTF .mat ’,’Case1_uML .mat ’ ,...

31 ’Full_Case1 .mat ’};

32 end

33 Tp = 1.199 * T1; % Calculate Tp based on T1

34 fp =1/ Tp;

35 LF= [0.005 , fp /2 -0.009]; % Adjusted to prevent overlapping

36 WF = [fp/2, 2* fp]

37 fileContent = {’1st order force ’, ’1st + 2nd order force ’ ,...

38 ’with mooring system ’};

39

40 simLength = 500;

41 dt = 0.05;

42 fNyq = 1 / (2 * dt);

43 fs = 2 * fNyq; % Sampling frequency

44

45 figure ;

46 hold on;

47

48 nameLegends = {}; % Initialize outside the loop to collect all entries

49 % Define line styles

50 lineStyles = {’--’, ’:’, ’ -.’}; % List of line styles

51 for k = 1: length ( getName )

52 data = load( getName {k});

53 time = data.t;

54

55 if setSurge == 1

56 response = data. q_surge1 (1 ,:);

57 % dataDescription = ’Surge displacement ’;

58 dataDescription =’ ’;

59 elseif setHeave == 1

60 response =real(data. q_heave1 (1 ,:));

61 % dataDescription = ’Hiv displacement ’;

62 dataDescription =’ ’;

63 elseif setPitch ==1

64 response =data. q_pitch1 (1 ,:);

65 % dataDescription = ’Pitch rotation ’;

66 dataDescription =’ ’;

67 elseif FdiffFlag ==1

68 response =data. Fdiff (3 ,:);

69 response =real(data. Fdiff (3 ,:));
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70 dataDescription = ’Wave Force ’;

71 else

72 continue ; % do nothing

73 end

74 t=- simLength /2: dt: simLength /2;

75 xint= interp1 (time ,response ,t); % Interpolate data

76 cutoff =[0.3 4]/(2* pi); %Cut -off frequencies

77 [b,a]= butter (4, cutoff /fNyq ,’bandpass ’); %Get filter coefficients

78 df1 =0.0001;

79 df2 =0.001;

80 f1 =0.001: df1 :0.99;

81 f2 =1: df2:fNyq;

82 f=[ f1 f2 ]; % appends frequencies

83 Sxx= psd_fft (xint ’-mean(xint) ,3,f ,1/ dt); %PSD of unfiltered data

84 plot(f, Sxx , ’LineStyle ’, ...

85 lineStyles {mod(k-1, length ( lineStyles )) + 1}, ’LineWidth ’, 1.5);

86 currentLegend = sprintf (’%s %s’, fileContent {k}, dataDescription );

87 nameLegends {end + 1} = currentLegend ; % Collect legend entry

88 end

89 % eigenfrequencies of the FOWT

90 %rad/s

91 % hxl= xline (ef (1:3) ,’k-.’,’ $\omega_n$ ’ ,...

92 % ’LabelHorizontalAlignment ’,’right ’, ...

93 % ’HandleVisibility ’,’off ’, ’Interpreter ’,’latex ’); hold on

94 %Hz

95 hxl= xline (ef (1:3) ,’k -. ’,’ $f_n$ ’ ,...

96 ’LabelHorizontalAlignment ’,’center ’, ...

97 ’HandleVisibility ’,’off ’, ’Interpreter ’,’latex ’); hold on

98

99 if setSurge ==1

100 hy= ylabel (’ PSD $[\ frac{m^2}{ Hz }]$’);

101 ht= title (’Surge displacement ’, ’fontsize ’, 12)

102

103 elseif setHeave ==1

104 hy= ylabel (’ PSD $[\ frac{m^2}{ Hz }]$’);

105 ht= title (’Hiv displacement ’, ’fontsize ’, 12)

106 else

107

108 hy= ylabel (’ PSD $[\ frac{deg ^2}{ Hz }]$’);

109 ht= title (’Pitch Rotation ’, ’fontsize ’, 12)

110 end

111 xlim ([0 2* fp ]);

112

113 hx= xlabel (’f, [Hz]’);

114 hl= legend ( nameLegends , ’Location ’, ’northeast ’);

115

116 % ht= title (’ ’);

117

118 set ([hx ,hy ,hl , ht],’fontsize ’ ,10, ’Interpreter ’,’latex ’);
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119

120 % Find indices and values of the maximum Z value

121 [maxValue , linearIndexesOfMaxes ] = max(Sxx (:));

122 [rowOfMax , colOfMax ] = ind2sub (size(Sxx), linearIndexesOfMaxes );

123 maxX = f(rowOfMax , colOfMax );

124

125 % Annotate directly on the plot with transparent background

126 text(maxX , maxValue + 0.05* maxValue , ...

127 sprintf (’max: %.2e at $f$ =%.3f Hz ’, ...

128 maxValue , maxX), ’Interpreter ’, ’latex ’, ...

129 ’Color ’, ’red ’, ’FontSize ’, 10, ...

130 ’BackgroundColor ’, ’none ’, ’Position ’, [maxX , maxValue ]);

131

132 y_limits = ylim;

133

134 % Low Frequency Range

135 fill ([ LF (1) , LF (1) , LF (2) , LF (2)], ...

136 [ y_limits (1) , y_limits (2) , ...

137 y_limits (2) , y_limits (1)], ’r’, ...

138 ’FaceAlpha ’, 0.06 , ’EdgeColor ’, ...

139 ’none ’, ’DisplayName ’, ’Low - Frequency Range ’);

140

141 % Wave Frequency Range

142 fill ([ WF (1) , WF (1) , WF (2) , WF (2)], ...

143 [ y_limits (1) , y_limits (2) , y_limits (2) , ...

144 y_limits (1)], ’c’, ’FaceAlpha ’, 0.06 , ...

145 ’EdgeColor ’, ’none ’, ’DisplayName ’, ’Wave - Frequency Range ’);

146 hold off;

147 set(gca , ’FontSize ’, 10);

1 clc; clear ; close all;

2 %This function calculates Power Spectral Density (PSD)

3 % of a time - domain signal using Fast Fourier Transformation

4 % described in 7.2 Post - processing

5 %%%%% CONTROL Combinations

6 % Default ALL =0, three wave forces , 1st order

7 % vs sum - differance frequency forces

8 %All =0, except includeFstar -> plot all four forces

9 %All =0, except exclude1ordF =1-> only 2d order forces

10 %All =0, except excludeSDForce =1-> plot F* vs 1 order force

11 logScale =1; % loglog xy , switch between scales ,

12 % bedre for cluster signals

13 includeFstar =0; % includes Fstar in plot

14 exclude1ordF =0; % excludes 1st order wave force , to

15 % see only sum - differancies forces

16 excludeSOForces =1; % excludes 2-nd order wave forces ,

17 % to check Fstar vs 1st order Force

18 % Eigenperiods and corresponding frequencies

19 T0= [149.3 , 27.7 , 35.7]; % eigenperiods , T0
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20 ef= 1 ./ T0; %

21

22 setSurge =0; % surge active

23 setHeave =0; % aktivere / deaktivere hiv

24 setPitch =1; % pitch rotation

25 % Defines the cases and selects data files accordinly

26 case1 = 0; % Mild Sea State (Case 1)

27 case2 = 0; % Moderate Sea state (Case 2)

28 case3 = 1; % Severe Sea State (Case 3)

29 % %%%%%%%%%%%%%%%%%% Defines Wave Spectrum Model

30 if case1

31 getName = {’Case1_uML .mat ’};

32 T1 = 4.20; % Defines Wave Spectrum Model

33 elseif case2

34 getName = {’Case2_uML .mat ’};

35 T1 = 5.70;

36 elseif case3

37 getName = {’Case3_uML .mat ’};

38 T1 = 9.50;

39 else

40 getName = {’Case1_uQTF_uML .mat ’};

41 end

42 keepTrackLegend = {’1st order force only ’,

43 ’sum - differance force included ’,’all forces + mooring lines ’};

44 Tp = 1.199 * T1;

45 fp = 1 / Tp;

46 LF= [0.005 , fp /2 -0.009]; % defines low - frequency range based on Tp

47 WF = [fp/2, 2* fp ]; % defines wave - frequency range based in Tp

48 df1 = 0.0001; % step1 in LF , to get better resolution

49 df2 = 0.001; % step in LF

50 f = [0.001: df1 :0.99 , 1: df2 :10]; % Frequency vector up to 10 Hz

51

52 % Data processing parameters

53 dt = 0.05; % simulation step

54 fNyq = 1 / (2 * dt); % nyquist frequency

55 cutoff = [0.3 , 4] / (2 * pi); % apply filter to remove noise

56

57 figure ;

58 hold on;

59 setMultLegend = {}; % For several time - series

60

61

62 for k = 1: length ( getName )

63 data = load( getName {k});%load data

64

65 if includeFstar == 1

66 % Include all forces , including Fstar

67 forceChoice = {’Fstar ’, ’Fdiff ’, ’Fdiff2 ’ ,...

68 ’Fsum2 ’};
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69 if setPitch ==1

70 renameLegend = {’Moment *’, ’1st order moment ’ ,...

71 ’difference - frequency moment ’, ’sum - frequency moment ’};

72 else

73 renameLegend = {’F*’, ’1st order force ’, ...

74 ’difference - frequency force ’, ’sum - frequency force ’};

75 end

76

77 elseif includeFstar ~= 1 && exclude1ordF ~= 1...

78 && excludeSOForces == 0

79 % Include only 1st order and sum - difference

80 % forces , exclude Fstar if flag is not set to include it

81 forceChoice = {’Fdiff ’, ’Fdiff2 ’, ’Fsum2 ’};

82

83 if setPitch ==1

84 renameLegend = {’1st order moment ’, ...

85 ’difference - frequency moment ’, ’sum - frequency moment ’};

86

87 else

88 renameLegend = {’1st order force ’, ...

89 ’difference - frequency force ’, ’sum - frequency force ’};

90

91 end

92 elseif excludeSOForces == 1 && includeFstar == 0

93

94 forceChoice = {’Fstar ’, ’Fdiff ’};

95 if setPitch ==1

96 renameLegend = {’Moment *’, ’1st order moment ’};

97 else

98 renameLegend = {’F*’, ’1st order force ’};

99 end

100 elseif exclude1ordF == 1

101

102 forceChoice = {’Fdiff2 ’, ’Fsum2 ’};

103

104 if setPitch ==1

105 renameLegend = {’difference - frequency moment ’, ...

106 ’sum - frequency moment ’};

107 else

108 renameLegend = {’difference - frequency force ’, ...

109 ’sum - frequency force ’};

110

111 end

112 else

113 % Default

114 forceChoice = {};

115 renameLegend = {};

116 disp(’Undefined control combination . Please , reset .’);

117 continue ; %do nothing in for loop
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118 end

119

120 % Check if Fstar is present and loaded properly

121 fstarPresent = isfield (data , ’Fstar ’);

122

123 % Adjust time and duration based on the presence of Fstar

124 if fstarPresent

125 simLength = 499; % Fstar data

126 time = data.t(2: end); % adjust to Fstar by skipping

127 else

128 simLength = 500;

129 time = data.t; % Use the full time vector

130 end

131 % for time - serie with different length compared to other . Fstar is less

132 for j = 1: length ( forceChoice )

133 varName = forceChoice {j};

134 if isfield (data , varName )

135 resMatrix = real( getfield (data , varName ));

136 [nRows , nCols ] = size( resMatrix );

137 % Special processing if Fstar is present

138 % and not currently processing Fstar

139 if fstarPresent && strcmp (varName ,.. ...

140 ’Fstar ’) == 0 && nCols > 1

141 % Skip the first column for all

142 % forces other than Fstar

143 if setSurge == 1 && nRows >= 1

144 response = resMatrix (1, 2: end);

145 elseif setHeave == 1 && nRows >= 2

146 response = resMatrix (2, 2: end);

147 elseif nRows >= 3

148 response = resMatrix (3, 2: end);

149 else

150 error ([ ’Less rows than expected ...%s ’ ...

151 ’in file %s’], varName , getName {k});

152 end

153 elseif fstarPresent == 0 || strcmp (varName , ...

154 ’Fstar ’) == 1

155 %if Fstar is not included in analyse ,

156 % proceed as normal

157 if setSurge == 1 && nRows >= 1

158 response = resMatrix (1, :);

159 elseif setHeave == 1 && nRows >= 2

160 response = resMatrix (2, :);

161 elseif nRows >= 3

162 response = resMatrix (3, :);

163 else

164 error ([ ’Less rows than expected %s ’ ...

165 ’in file %s’], varName , getName {k});

166 end
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167 end

168 else

169 warning ([ ’Variable %s not found in ’ ...

170 ’file %s’], varName , getName {k});

171 end

172

173 plot(time , response ); hold on

174

175 [ maxResponse , idxMax ] = max( response ); % Get the maximum

176 alue and its index

177 maxTime = time( idxMax ); % Find the corresponding

178 % time of the maximum

179

180 % picks up max and draw circle

181 plot(maxTime , maxResponse , ’ro ’, ’MarkerSize ’, ...

182 10, ’MarkerFaceColor ’, ’none ’, ’HandleVisibility ’, ’off ’);

183

184 text(maxTime , maxResponse , sprintf ([ ’Max: %.2e at ’ ...

185 ’ %.2f s’], maxResponse , maxTime ), ...

186 ’VerticalAlignment ’, ’bottom ’, ...

187 ’HorizontalAlignment ’, ’right ’, ’Interpreter ’, ...

188 ’latex ’, ’Color ’,’red ’);

189

190 if setSurge ==1

191 hy= ylabel (’ $[N]$’);

192 ht= title (’Surge Force ’, ’fontsize ’, 12)

193

194 elseif setHeave ==1

195 hy= ylabel (’ $[{N}]$’);

196 ht= title (’Hiv Force ’, ’fontsize ’, 12)

197 else

198 hy= ylabel (’ $[Nm]$’);

199 ht= title (’Pitch Moment ’, ’fontsize ’, 12)

200 end

201

202 end

203 end

204 hx= xlabel (’time , [s]’);

205 hl= legend ( renameLegend , ’Location ’, ’best ’);

206 % ht= title (’ ’); omit legend

207 set ([hx ,hy ,hl , ht],’fontsize ’ ,10, ’Interpreter ’,’latex ’);

1 function [S,Sraw ]= psd_fft (x,Ns ,f,fs)

2

3 Nt= floor (size(x ,1) /2) *2;

4 x=x(1:Nt ,:);

5 dt =1/ fs; %Step size

6 T=Nt*dt; % Record length

7 S=fft(x); % Compute dft by fft. fft specificities ( added zeroes ) are handled
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8 % internally .

9 S=2* dt/Nt*abs(S(1: Nt /2+1 ,:)).^2; % Compute PSD: one - sided ( multiply by 2) ,

10 % distributed ( divide by sampling freq) average of fft ( divide by number of

11 % points ) squared

12 fS = 1/ dt *(0:( Nt /2))/Nt; % Output frequencies , up to number of points /2 ( higher

13 % frequencies only show a folded version of low frequencies )

14 for i=1: size(x ,2)

15 S(:,i)=[S(1,i)/2; smooth (S(2: end ,i),Ns)]; % Smoothing by moving average

16 end

17 Sraw.S=S;

18 Sraw.f=fS;

19 S= interp1 (fS ,S,f); % Interpolation to desired output frequencies

1 clc; clear ; close all;

2 %This function calculates theoretical JONSWAP in rad/s and in Hz

3 HztoradFlag =0; % represents initial Hz in rad/s

4 % Initialize sea state cases

5 seaProfile = [

6 struct (’Hs ’, 0.8 , ’T1 ’, 4.20 , ’gamma ’, 3.3) , % Mild sea state

7 struct (’Hs ’, 2.5 , ’T1 ’, 5.70 , ’gamma ’, 3.3) , % Moderate sea state

8 struct (’Hs ’, 7.45 , ’T1 ’, 9.50 , ’gamma ’, 1) % Severe sea state

9 ];

10 % initialaize frequency

11 df1 = 0.0001;

12 df2 = 0.001;

13 f1 = 0.001: df1 :0.99; % low frequencies

14 f2 = 1: df2 :2;

15 f = [f1 f2 ];

16 figure ;

17 hold on;

18 nLegends = {}; % Initialize legend entries

19

20 % Loop through each sea state case and plot

21 for i = 1: length ( seaProfile )

22 caseData = seaProfile (i);

23 Tp = 1.199 * caseData .T1; % Calculate peak period based on T1

24 T0 = [149.3 , 27.7 , 35.7];

25 ef= 1 ./ T0; % eigenfrequencies

26 fp =1/ Tp;

27 % Legend shift according to seaProfile

28 if caseData . gamma == 1

29 legendText = sprintf ([ ’Pierson - Moskowitz Hs =%.2f,’ ...

30 ’ Tp =%.2f, gamma =%.1f’], caseData .Hs , Tp , ...

31 caseData . gamma );

32 else

33 legendText = sprintf ([ ’JONSWAP Hs =%.2f,’ ...

34 ’ Tp =%.2f, gamma =%.1f’], caseData .Hs , Tp , ...

35 caseData . gamma );

36 end
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37 if HztoradFlag ==1

38 ef=ef *2* pi;

39 % rad/s

40 Sxx_theory = jonswapDLS ( f, caseData .Hs , ...

41 Tp , caseData .gamma , ’rad ’);

42 %i J.M.J. Journee and W.W. Massie

43 OFFSHORE HYDROMECHANICS ",

44 % First Edition eqs 5.112 5.113 fw/df =2 pi ->S(w)= initial S(f)/2 pi

45 % https :// ocw. tudelft .nl/wp - content /...

46 % uploads / OffshoreHydromechanics_Journee_Massie .pdf

47 plot( f*(2* pi),Sxx_theory , ’k:’);%

48 hx= xlabel (’$\omega , [\ frac{rad }{s}]$’)

49 hy= ylabel (’$S (\ omega )[\ frac{m^2 rad }{s}]$’);

50

51 plotHandle = plot(f*2*pi , Sxx_theory , ...

52 ’DisplayName ’, legendText );

53 nLegends {end +1} = plotHandle ; % Collect handles for legend

54 xlim ([0 3])

55 else

56 ef=ef;

57 %Hz

58 Sxx_theory = jonswapDLS ( f, caseData .Hs , Tp , ...

59 caseData .gamma , ’Hz ’);

60 plot(f, Sxx_theory , ’b’, LineStyle =’ -.’);

61 hx= xlabel (’f, [Hz]’)

62 hy= ylabel (’$S(f)[\ frac{m^2}{ Hz }]$’);

63 xlim ([0 0.5])

64 % Plot spectrum

65 plotHandle = plot(f, Sxx_theory , ’DisplayName ’, ...

66 legendText ,’LineWidth ’ ,1.5);

67 nLegends {end +1} = plotHandle ; % Collect

68 andles for legend

69

70 end

71 end

72 if HztoradFlag ==1

73 hxl= xline (ef (1:3) ,’k -. ’,’ $\ omega_n$ ’, ...

74 ’LabelHorizontalAlignment ’,’right ’, ...

75 ’HandleVisibility ’,’off ’, ’Interpreter ’,’latex ’);

76 else

77 hxl= xline (ef (1:3) ,’k -. ’,’ $f_n$ ’, ...

78 ’LabelHorizontalAlignment ’,’right ’, ...

79 ’HandleVisibility ’,’off ’, ’Interpreter ’,’latex ’);

80 end

81 hl= legend ([ nLegends {:}] , ’Location ’, ...

82 ’best ’,’Interpreter ’,’latex ’);

83 ht= title (’JONSWAP Spectra for Various Sea States ’);

84 ht= title (’ ’);

85 set ([hx ,hy ,hl ,ht],’fontsize ’ ,9, ’Interpreter ’,’latex ’);
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86 hold off; %stop adding to the plot

1 function [ S,f ] = jonswapDLS ( f,Hs ,Tp ,gamma , domain )

2 g =9.81;

3

4 fp =1./ Tp; % spectral peak frequency

5

6 if isempty (f)

7 f =0:0.001:10; % frequency range to plot over;

8 f= repmat (f ,[ size(fp ,2) ,1]);

9 end

10 switch domain

11 case ’Hz ’

12 f=f;

13 fp=fp;

14 case ’rad ’

15 f=2* pi .*f;

16 fp =2* pi*fp;

17 end

18

19 alpha = (5/16) *( Hs ^2) *( fp ^4) /(g^2) *(1 -0.287.* log( gamma ));

20

21 sigma = zeros (size(f ,1) ,size(f ,2));

22 % spectral width parameter :

23 sigma (f <= fp) =0.07;

24 sigma (f>fp) =0.09;

25

26 S= alpha *g ^2.*( f.^ -5) .* exp (( -5/4) .*((f./ fp).^ -4)).* gamma .^( exp ( -0.5.*((f-fp)./( sigma .* fp)).^2));

27

28

29 end
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