
Automatic Encoding From Natural
Language to First-Order Horn Clauses

Emma Bjørkås

Dept. of Information Science and Media Studies
University in Bergen

Bergen, Norway

Marija Slavkovik

Supervisor

ii

iii

iv

Abstract

A central topic within the field of machine ethics, and other fields where moral rea-
soning is needed, is to incorporate large quanta of (moral) rules represented in natural
language using a formal specification that can be used for reasoning. The problem lies
in the difficulty of automatically encoding natural language to logic. The task demands
a need for knowledge engineers to manually encode moral rules, a solution that is ex-
pensive, with a low degree of efficiency and scalability. With the introduction of large
language models comes the opportunity to explore the advantages they may provide in
this task. We investigate how we can create a system able to automatically encode nat-
ural language norms to logic using GPT-4 as the main encoding element. We use norms
from the Commonsense Norm Bank from the literature which contains a collection of
both common sense and counter-intuitive norms and manually analyse how well GPT-
4 is able to encode these norms to first-order logic (FOL). Additionally, we convert all
FOL-encoded formulas to Horn clauses and analyse what types of norms that cannot be
expressed in Horn. We find that our encoding system is able to encode 51% of the norms
accurately to FOL in terms of syntactic properties and semantic faithfulness. We find
that the mistakes GPT-4 makes for the remaining 49% of the encodings are numerous
and of varying degrees of predictability and severity. We show how the implementation
of a sentiment analysis model can serve as an mitigation tool to one of these distinct
mistakes.

v

vi

Contents

Chapter 1 – Introduction 1
1.1 Problem Description and Motivation . 1
1.2 Research Questions and Success Criteria 5
1.3 Contribution . 5
1.4 Organisation of Thesis . 6

Chapter 2 – Background 7
2.1 Natural Language Processing . 7
2.2 First-Order Logic . 13
2.3 Logic Programming . 18
2.4 Commonsense Norm Bank . 21

Chapter 3 – Related work 23
3.1 Natural Language Processing and Large Language Models 23
3.2 Moral Conflict . 26

Chapter 4 – Methodology 29
4.1 Research Design . 29
4.2 Tools and Methods . 33

Chapter 5 – Experiments 39
5.1 NL Norm Dataset . 39
5.2 Encoding System . 40
5.3 Sentiment Analysis . 57
5.4 Inconsistency Checker . 58
5.5 Evaluating Faithfulness of First-Order Logic Encodings 61

Chapter 6 – Results 63
6.1 Encoding System . 63
6.2 Sentiment Analysis . 64
6.3 Inconsistency Checker . 65
6.4 Evaluation of Faithfulness . 66

Chapter 7 – Analysis of Encoding Mistakes 67
7.1 Syntactically Invalid Encodings . 68

vii

7.2 Wrong Encodings . 70
7.3 Lacking Encodings . 79
7.4 Not Horn . 85

Chapter 8 – Discussion 91
8.1 First-Order Logic Faithfulness . 91
8.2 Horn Clause Mistakes . 92
8.3 GPT-4 and Knowledge Engineering . 94

Chapter 9 – Conclusions and Future work 95
9.1 Research Questions and Success Criteria 95
9.2 Contribution . 96
9.3 Limitations and Future Work . 97
9.4 Final Thoughts . 97

Chapter 10 – Appendix 99
A Literature Search Method . 99

Bibliography 100

viii

Acknowledgments

First and foremost, I would like to thank my supervisor Marija Slavkovik for always
providing encouragement, expertise, and an endless supply of gaming anecdotes that I
never understood. I would like to express my gratitute to Luca Fossen for his help in
creating the NL norm dataset and faithfulness classifications. Also, thank you to my
brother, Eivind Bjørkås, and Ana Ozaki for taking the time to suggest helpful insights
and correct stupid formulations. :)

Thank you to Vanessa, Didrik, Anton, Kristian (and sometimes Snorre) in room 645
for being the silliest gooses and smartest rubber ducks. Also, thank you to the rest of the
“pauserommet” people for creating fun and lighthearted breaks in a stressful time. Love
you all. <3

I acknowledge the use of OpenAI’s ChatGPT 41 and the academic writing tool Writeful2

to explain concepts for my own understanding and refine the academic language of this
thesis. The language refinement was performed by instructing the tools to rephrase
certain blocks of text or accepting Writeful’s automatic language suggestions. In the
following paragraphs I provide an example that demonstrates the use of these tools.

I gave ChatGPT-4 the following instruction. “Rephrase this paragraph to fit into a
related work chapter intro for a master thesis: In this chapter we explain the current
research done in the relevant topics. Specifically when it comes to how LLMs are used
in NLP task and the topics of logic encoding and prompt engineering. Additionally, we
include a summary of relevant research within the field of moral conflict to underline the
problem of conflicting norms in autonomous systems.”

The model’s response was: “This chapter provides an overview of existing research
pertinent to the themes addressed in this thesis. It delves into the utilization of large
language models (LLMs) in natural language processing (NLP) tasks, with particular
attention on logic encoding and prompt engineering. Furthermore, the chapter includes
a review of studies related to moral conflicts, highlighting the issue of conflicting norms
in autonomous systems, which underscores the significance of this research within the
broader field.”

Elements of this response was incorporated into the paragraph seen in Chapter 3.

1https://chatgpt.com
2https://www.writefull.com/

ix

https://chatgpt.com
https://www.writefull.com/

x

Chapter 1

Introduction

1.1 Problem Description and Motivation

Artificial intelligence (AI) is embedded in our daily lives, whether it is clear to those
who interact with it or not. Many devices are increasingly becoming more capable of
unsupervised operation [Zhang and Lu, 2021]. Your watch knows when you should relax
and your rice cooker can determine when the cooking is complete. As machines gain
autonomy, they also play roles in ethical decision-making, essentially functioning as moral
arbiters. Is it acceptable that your streaming service decides what is inappropriate to
show to your children? Is it acceptable for your refrigerator to deny you access to late-
night snacks based on health data from your bathroom scale? Who decides what is the
right thing for a machine to do? These are some of the questions that are addressed
within the field of machine ethics [Anderson and Anderson, 2007].

One of the objectives of machine ethics research is to automate ethical behavior by
machines and other artificial agents. Machine ethics lies in the intersection between moral
philosophy and computer science, as it deals with determining what ethical theories should
be developed or implemented in moral machines, as well as how to implement them in a
way that ensures ethical machine behavior [Tolmeijer et al., 2021, Slavkovik, 2022].

As more and more aspects of our daily lives are influenced by machine-made deci-
sions and the scope and importance of the machine-made decisions increases, there is
an increasing need to consider the moral foundation these decisions are based on. By
introducing carefully considered and well-implemented moral foundations in autonomous
machines, we can limit the negative consequences that follow from their actions that ul-
timately affect people. As we are able to make improvements in machine ethics, it will
create room for incorporating machines in tasks that are today seen as too risky to be
performed by machines. When making decisions, a machine is often faster, better able to
calculate and compare consequences of actions, more consistent, and more efficient than
people [Conitzer, 2023]. By improving machine ethics, qualities could be utilized in tasks

1

2 Introduction

that depend on ethical decision making, such as self-driving cars or automatic diagnosis
of diseases [Zhang and Lu, 2021]. Research in machine ethics is, in other words, crucial to
improving the moral groundwork of the machines already implemented into our daily life,
as well as to further explore the numerous possibilities of machine involvement that lie
ahead. The problem lies in how we should build these machines to perform these tasks.

There are two main architectural approaches for implementing ethical machines, these
being top-down of ethical theories and bottom-up approaches. A top-down approach to
machine ethics means to capture the essence of moral judgment through some principles,
rules, or goals against which all moral situations can be considered [Wallach et al., 2008].
The problem with top-down theories, such as the classic consequentialist and deonto-
logical approaches, or even public laws, is that they are rarely able to cover all aspects
that may require moral judgment. People make moral decisions every day, sometimes
guided by public law and sometimes guided by social norms. Social norms exist in areas
not covered by public law, such as the intimate and private sphere. Social norms are
rules of morality that people expect others to follow. These rules come from the private
sphere of society and are often based on a common sense that most people share. Take
the example of what movies and TV shows a child should be allowed to watch. It is
not stated in public law what movies children of certain ages are allowed to watch. Still,
these are situations that a moral agent, such as one implemented into a streaming service,
might have to consider. How do we determine moral rules covering these aspects of life?
A bottom-up approach determines what is the right thing to do based on aggregating
common opinions among people [Conitzer et al., 2024]. That means, according to social
choice, the most ethically correct course of action in a situation is the action deemed
most ethically correct by “most people” [Baum, 2020]. We believe that moral norms can
be used to represent the opinions of most people in AMAs.

By creating a moral knowledge base (KB) of a non-contradicting collection of norms
and rules, one can create autonomous moral machines (AMAs) that are better able to
justify their moral decisions by referring to the rules on which they are based [Wallach
and Allen, 2009]. When creating moral KBs it is important to ensure that the set of
rules does not contain contradictions, as decisions based on explicitly inconsistent pairs
of rules will be absurd. Imagine creating a KB that contains the two rules “selling energy
drinks to teenagers is good” and “selling energy drinks to teenagers is bad”. An AMA
built on this KB would be unable to deduce a moral judgment about the situation.

Conitzer [2023] points to one major problem when implementing social choice as a
moral foundation in AMAs: “In general, we want the type of input or feedback that
we ask of humans to be (1) natural to give, (2) informative about their preferences and
values, and (3) of a type that can be used to align AI systems. For example, with current
methods, having humans comment on an AI output in an open-ended text box may satisfy

1.1. Problem Description and Motivation 3

1 and 2, but not 3”. People express themselves in terms of natural language (NL), such as
English, Norwegian or Japanese, while machines are instructed in terms of programming
languages, such as Python, Java or C++. This creates a gap between the language most
people use to express feedback, and the appropriate language used to instruct machines.
Ideally, one could instruct machines using natural language. The challenges related to
this is called the “NL to machine encoding problem”.

One solution to the NL-to-machine-encoding problem is to use experts who are knowl-
edgeable both in NL and machine-readable language to bridge the gap between these two
sides. Knowledge engineering is the process by which experts consider how to structure
and represent elements to be used as the knowledge base in a system. Using knowledge
engineers has the advantage of creating transparency in terms of reasoning, and the pro-
cess is relatively easy to control, although it is not entirely without issues [Shore, 1996].
When systems grow larger, the disadvantages often outweigh the advantages. Expert
knowledge engineering often requires time and resources that might be unavailable, and
the process of adding elements to the KB or editing existing elements in the KB often
proves too difficult to maintain [Brachman and Levesque, 2004].

Some claim that complex large language models (LLMs) such as OpenAI’s GPT-4
and Google’s Gemini have revolutionized modern AI and opened up a wide spectrum of
possibilities when it comes to working with data and language processing [Min et al.,
2023, Zhao et al., 2023, Bubeck et al., 2023, Wu and Hu, 2023, Wei et al., 2023]. LLMs
are able to construct knowledge about numerous different fields, and can create relations
between elements in text. The question is if we can use this tool to simulate a knowledge
engineer that is able to scale to larger systems. LLMs come with their own disadvantages,
the most prominent being their tendency to provide incorrect information in a convincing
manner, their limited domain-specific knowledge, and their poor ability to reason [Hadi
et al., 2023]. If we want to exploit this technology in knowledge engineering moral KBs in
AMAs, we need to identify the LLM’s capacity for the tasks and understand the model’s
shortcomings. How closely can an LLM simulate a knowledge engineer in the field of
machine ethics?

In this thesis, we attempt to use GPT-4 to automatically encode moral norms, ex-
pressed in human natural language, as machine-readable instructions that can be used
as a moral KB in an AMA. We choose to represent the NL norms as first-order Horn
clauses, which are first-order logic (FOL) expressions in a specific format that can be
used as machine instructions. First-order Horn clauses were chosen over any other logic
structure because they can be handled by most logic programming languages available,
such as Prolog1 and ASP [Baral, 2003], and other automated theorem provers such as
Isabelle2. We use the logical representations to analyze two aspects of logic encoding:

1see e.g. https://www.swi-prolog.org
2see e.g. https://isabelle.in.tum.de/Isar/

4 Introduction

Figure 1.1: Thesis Outline Illustration

(1) what types of NL norms cannot be represented in first-order Horn, and (2) what
mistakes does GPT-4 tend to make when asked to perform such a task? To ensure that
the resulting set of machine-readable norms can be used as a KB for an AMA, we include
an inconsistency checker that tells us whether or not the set of Horn clauses contains ex-
plicitly inconsistent clauses. We also show one approach to improving the system based
on the mistakes identified by implementing a sentiment analysis model to correct these
mistakes. A general outline of the solution approach presented in this thesis is illustrated
in Figure 1.1.

In our implementation, we utilize techniques from the field of prompt engineering to
construct a prompt that instructs the GPT-4 in encoding NL to FOL. Using techniques
from natural language parsing, we are able to automatically verify whether or not the
GPT-4 output follows the correct FOL syntax. We manually compare the output of the
encoding system with the original norm sentence to determine the faithfulness of the
automatic encodings in terms of intended meaning. We fine-tune the language model
DistilBERT [Sanh et al., 2020] to create a sentiment analysis model used to improve the
GPT-4 encodings3. In the end, we implement the resulting Horn representations of the
norms to a logic program to find inconsistencies within the set of Horn clauses. We use
an answer set programming solver, which is a simple and powerful declarative modeling
language [Gebser et al., 2013].

We draw on knowledge from the fields of natural language processing (NLP), artifi-
cial intelligence, logic, sentiment analysis, and answer set programming (ASP). We use
artificial intelligence to create logical representations of natural language sentences, and
NLP in combination with FOL to verify the structure of these representations. We use
the NLP tool sentiment analysis to show the possibility of enhancing one aspect of the
GPT-encodings. Techniques within the field of logic are further applied to convert FOL

3DistilBERT is a distilled version of the popular LLM BERT [Devlin et al., 2019].

1.2. Research Questions and Success Criteria 5

formulas to equivalent logic representations, such as Horn clauses. We use declarative
logic programming to implement the inconsistency checker through the ASP language
Clingo.

1.2 Research Questions and Success Criteria

The research question pursued in this thesis is:

• RQ: How can human language norms be converted into machine readable data rep-
resented by Horn Clauses, and which norms cannot be expressed in Horn Clauses?

To evaluate the success of the work in this thesis, specific criteria have been estab-
lished in alignment with the overarching goals of the research. First, the thesis must
demonstrate a comprehensive understanding of the theoretical framework on which it
is based. Second, the research must introduce an encoding system that shows GPT-4’s
ability to encode natural language norms to FOL formulas. Third, the thesis should
identify and describe the norm patterns that GPT-4 is unable to convert to FOL. Lastly,
the thesis should contribute to the field of logic by describing the NL norm patterns that
cannot be transformed to first-order Horn clauses.

When using deep learning models, one typically focuses on the accuracy of the model
as a success criterion, perhaps specifically on counting false positive and false negative
representations. In this thesis, we do not focus on such quantitative evaluations, but
rather on the qualitative evaluations of the encoding system. The thesis aims to be a
proof of concept, rather than a pilot implementation of a large volume of encodings to be
used in a specific AMA. Thus, it is not necessary to encode a large number of examples
and quantify the accuracy, but rather encode a smaller number and qualitatively analyze
the mistakes in order to understand them.

1.3 Contribution

The thesis contributes to the fields of AI, machine ethics, and knowledge representation
and reasoning by exploring the possibilities of using modern LLMs to solve the NL-to-
machin- encoding problem.

The main contributions of the theses are the following:

(1) a proof of concept to demonstrate the ability to convert natural language norms to
machine-readable representations of norms,

(2) a detailed analysis on the limitations of GPT-4 capabilities to encode NL norms to
FOL,

6 Introduction

(3) identification of what types of norm structures cannot be encoded to Horn clauses,

(4) a dataset of NL norms with their respective manually encoded baseline FOLs, and

(5) a dataset of NL norms and their respective GPT-4-encoded FOL and Horn repre-
sentations along with an evaluation of the faithfulness of the GPT-4 encodings in
terms of meaning.

1.4 Organisation of Thesis

This thesis is structured in nine main chapters, each designed to provide a comprehensive
overview of the relevant theories, implementation methods, and contributions. Chapters 2
and 3 provide a conceptual background and a review of the relevant literature, specifically
the topics of NLP, FOL, logic programming, and moral conflict. Chapter 4 outlines the
methods and tools used in the implementation of the encoding system, the sentiment
analysis model, and the inconsistency checker. Chapter 5 gives implementation details of
the encoding system, explains how we performed the evaluation of the faithfulness of the
encodings, and details the creation of the sentiment analysis model and the inconsistency
checker. In addition, we describe how we performed the final round of automatic norm
encodings to be used in further analysis and discussion. Chapter 6 presents the results
of the experiments from the previous chapter. Chapter 7 provides an in-depth analysis
on both the encoding mistakes made by GPT-4 and the norms that were unable to be
represented in Horn clauses. Chapter 8 discusses some of the results of the analysis of
encoding mistakes and reflects on how the results of this analysis are related to the current
development of general use of LLMs. Chapter 9 concludes the thesis with a summary of
the findings, limitations of the work, and suggestions for further work.

Appendices are included to provide additional context and reference material. The
code and results produced for this thesis can be found on GitHub4.

4https://github.com/emmabjor/nl-horn-master/tree/main

https://github.com/emmabjor/nl-horn-master/tree/main

Chapter 2

Background

In this chapter, we introduce and define the key concepts and terminologies that are
essential to understand the themes and methods presented in the subsequent chapters of
this thesis. The background provided in this chapter serves as a foundation, offering clear
and precise definitions and the necessary context to understand the research carried out.
By establishing a common language and framework, we ensure that the ideas discussed
in later chapters are approachable and comprehensible. In this chapter, we delve into the
field of natural language processing (NLP), specifically natural language parsing, large
language models (LLMs), and linguistic meaning. Additionally, we specify the syntax of
first-order logic (FOL) and first-order Horn clauses. The chapter then provides a brief
description of logic programming and answer set programming. Lastly, the dataset that
provides the norms for this thesis, the Commonsense Norm Bank, is described.

2.1 Natural Language Processing

The way humans communicate through written and spoken words is crucial for efficient
information exchange [Kapetanios et al., 2013]. Natural language processing (NLP) is
a collection of computational techniques for automatic analysis and representation of
human languages, where the goal is to convert natural language output into usable results
[Maulud et al., 2021, Chowdhary, 2020].

The birth of NLP has often been attributed to the introduction of the Turing test
proposed by Alan Turing in his paper “Computing Machinery and Intelligence” in 1950
[Turing, 1950]. This test is supposed to determine how well a machine is able to imitate
human language and is often linked to the idea of determining intelligence in machines
[Fanni et al., 2023]. Since then, NLP has been applied to tasks such as text classification,
translation, summarization, knowledge retrieval, and text generation [Chowdhary, 2020].
In recent years, there has been major advancement in the field of NLP. Google introduced
the Word2Vec algorithm in 2013, which uses neural networks to learn word associations

7

8 Background

from free text alone 1. In 2018 this technology was further developed with the introduction
of BERT (birdirectional encoder representations from transformers), a language model
that is able to learn not only from the individual words themselves, but also from the
context in which they are written [Fanni et al., 2023].

Traditional NLP sentence analysis is often divided into semantic analyses and syntax
analyses. Semantic analyses serve to determine what a sentence means and are often
performed by translating natural language into a language that uses simpler semantics,
such as formal logic. Syntactic analyses aim to determine the structure of a sentence
through a process called parsing [Chowdhary, 2020].

Before the introduction of large language models (LLMs), natural language parsing
was the main technique used to identify structures in text [Chowdhary, 2020]. We describe
the process of natural language parsing followed by the functionality of LLMs in the
following sections.

2.1.1 Natural Language Parsing

Natural language parsing is the process of computing the structural description of a
sentence through “[...] mathematical characterization of derivations in the grammar using
a specified algorithm” [Chowdhary, 2020]. The goal of natural language parsing is to
identify the different components of a sentence and how they relate to each other by
assigning a tree structure to the sentence. Tree parsing can be especially useful when
trying to determine whether or not a sentence follows a specific grammatical structure,
which plays an especially important role in language translation [Chowdhary, 2020]. The
syntactic parsing process consists of searching through all possible parse trees until the
correct tree is found. The parse tree output displays dominance and precedence relations
between parts of a sentence, often including attribute-value annotations that capture
aspects of the linguistic description [Sharma et al., 2013]. This is possible as natural
language is structured into classified phrases, which can be broken down into smaller
and smaller constituent phrases, until we end up with the ultimate constituents. Noun
phrases (NP) and verb phrases (VP) are examples of such classification phrases in the
English language.

Grammar defines rules for how phrases are allowed to be structured. In order to create
a parse tree of a sentence that describes its phrase structure, it is necessary to define a
grammar that specifies rules for how words and phrases can be combined. Context-
free grammar (CFG) is used to specify the syntax of a language and is widely used for
languages where hierarchy and nesting of structures are important. A CFG consists of
a set of production rules that describe how symbols of the language can be combined to
form valid strings [Chowdhary, 2020]. Example 2.1.1 shows a simple grammar definition

1Word2vec project information: https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/

2.1. Natural Language Processing 9

using CFG and how we can further use this structure to create a parse tree of a sentence.

We define a simple CFG:

S → NP VP

NP → Det N

V P → V

Det → the

N → cat | dog

V → sleeps

In this CFG notation, a sentence (S) is made up of a noun phrase (NP) followed by a
verb phrase (VB). A noun phrase (NP) is made up of a determiner (Det) followed by
a noun (N). A verb phrase (VB) is just a verb (V). The determiner (Det) is the word
“the”. The noun (N) is the word “cat” or the word “dog”. Lastly, the verb (V) is the
word “sleeps”. Using this grammar, we can generate the sentences “the cat sleeps” or
the sentence “the dog sleeps”. Parsing the sentence “the cat sleeps” would result in the
following parse tree:

S

NP

Det

the

N

cat

VP

V

sleeps

Example 2.1.1

Although tree parsing is a useful tool to employ to verify the structure of a machine-
translated sentence, it is no longer the state-of-the-art technique for translating sentences.
Parse tree translation finds the statistically best translation for each word based on its
role in the sentence [Koehn, 2009]. Deep learning models, such as LLMs, on the other
hand, represent words using vectors capable of incorporating the context of the word
and find the best translation based on this [Topal et al., 2021]. We explain the use and
architecture of LLMs in the next section.

10 Background

Figure 2.1: Transformer model architecture [Vaswani et al., 2017]

2.1.2 Large Language Models

Large language models are language models pre-trained on large amounts of text. The
models learn how words and phrases commonly operate in relation to each other and use
this to predict the most likely words to use in response to a request [OpenAI, 2024c].

OpenAI launched one of their newest LLM in March 2023, GPT-4, which is claimed
to outperform previous models and other state-of-the-art systems when it comes to tra-
ditional NLP tasks [OpenAI et al., 2023].

Transformer Model

Most of the pre-trained LLMs that are widely used today utilize the transformer archi-
tecture introduced by Vaswani et al. [2017]. Unlike other popular deep learning models,
such as sequence-based recurrent neural networks (RNNs), which process text sequen-
tially, transformers utilize a mechanism called “self-attention”. A model processing text
sequentially is limited in its parallelization and long-range dependency capabilities, while
self-attention enables the transformer model to process text data in parallel, allowing it
to handle long-range dependencies throughout the text [Topal et al., 2021].

The transformer model is mainly composed of an encoder and a decoder, as illustrated

2.1. Natural Language Processing 11

in Figure 2.1. These parts can be used independently or in combination [Min et al., 2023].

An encoder-only model, such as BERT2 [Devlin et al., 2019], strictly uses the encoder
part of the transformer model, illustrated by the left component in Figure 2.1 [Min
et al., 2023]. The encoder component includes a self-attention layer and a fully connected
feed-forward network. It takes text as input and creates embeddings by encoding each
word in the text input to a sequence of numbers, called a feature vector. The feature
vector represents the meaning of the word. The self-attention layer of the encoder makes
sure that this representation encompasses the context in which the word is used by also
considering the words on either side of it. This means that the word “bow” will get
different representations of the feature vectors in the two sentences from Example 2.1.2
as they have different meanings depending on the context in which they are used in
[Vaswani et al., 2017, Hugging Face, 2023].

“Take a bow at the end of the play.”
“Take a bow and an arrow to shoot.”

Example 2.1.2

A decoder-only (or auto-regressive) model, such as the GPT models, strictly uses
the decoder part of the transformer model, illustrated by the right component in Figure
2.1 [Min et al., 2023]. The decoder consists of the same self-attention and feed forward
network layers as the encoder but has an additional masked self-attention layer. Similar
to the encoder, the decoder creates a feature vector representation of the input text.
However, in contrast to the encoder, this feature vector will not take the words on both
sides of the target word into consideration, but rather only the words on one of the sides.
Usually, only words on the left side will be considered and those on the right side will
be masked. This means that only the context found on the left side of the target word
will affect the feature vector representation of the target word. This is why the decoder
component is said to be uni-directional as it only considers the context in one direction,
in contrast to the bi-directional encoder. This quality can be advantageous in casual
language modeling, which is the process of generating text sequences by continuously
“guessing” (using statistical probability) the following word in a sequence. The model
outputs the next word in the sequence and then reuses the sequence of outputs to generate
the next following word, and so on in what is called an auto-regressive manner. This
continues until the decoder outputs what is considered to be a stopping value, like a dot,
that represents the end of the sequence. The context size, that is, how many output

2The BERT model and a range of other BERT-based models can be found and used through the
HuggingFace community https://huggingface.co/docs/transformers/en/model_doc/bert

https://huggingface.co/docs/transformers/en/model_doc/bert

12 Background

words the model includes in its input, differs from model to model. GPT-2, for example,
has a maximum context size of 1024 words [Vaswani et al., 2017, Hugging Face, 2023].

An encoder-decoder (or sequence-to-sequence) model, such as BART, uses the encoder
and decoder components in combination [Min et al., 2023]. Figure 2.1 shows how the
encoder and decoder are connected in an encoder-decoder model. In this architecture, the
numerical feature vector from the encoder, in addition to the initial start-sequence, is used
as input to the decoder. The decoder creates the output in an auto-regressive manner
where each word prediction is based on both the feature vector from the encoder and the
previous output-sequence generated by the decoder [Vaswani et al., 2017, Hugging Face,
2023].

Prompt Engineering

Prompt engineering is defined as the process of designing effective input prompts that
elicit desirable responses from language models [Ekin, 2023]. The prompt is the set of
instructions that is provided to the LM and describes the task we want the LM to perform.
Differences in the engineering quality of the prompt can lead to significant differences in
the quality and relevance of the model output [White et al., 2023].

By refining the prompts based on established prompt engineering techniques and
iteratively modifying the prompts based on the model’s generated output, one can nurture
more accurate and precise LM responses [Ekin, 2023, Velásquez-Henao et al., 2023].

2.1.3 Linguistic Meaning

Meaning is defined as a relation between symbols of a language and certain entities
independent of that language [Gamut, 1991]. More specifically, it is the meaning of all
types of constituent and expression in the language, as well as the relationship between
them [Allan, 2001, p. 5]. Within the field of language and linguistics, semantics is the
study of meaning in human languages. Humans construct meanings not just on a word-
level, but dependent on the context of the phrases, sentences, and longer text in which
the word is used. This is because the meaning of individual words can change within the
context in which they are used, as illustrated in the two “bow”-sentences from Example
2.1.2 [Allan, 2001, p. 6].

The ability to distinguish words based on context is not unique for humans. As ex-
plained in Section 2.1.2, language models using the Transformer architecture incorporate
the context surrounding a word in its representation. However, this is not the same as
constructing true meaning from the language. As LMs are ultimately trained to learn
form and patterns in text data, they cannot possess any meaning in terms of understand-
ing the relation between natural language expressions and the communicative intent (the
real-life object) they are evoking [Bender and Koller, 2020, Bender et al., 2021]. Bender

2.2. First-Order Logic 13

and Koller [2020] illustrate this claim by introducing a thought experiment called “the
Octopus test”. The Octopus test presents an imaginary scenario in which an intelligent
deep-sea octopus secretly taps into a conversation between two stranded individuals who
communicate via an underwater cable. The octopus is completely unfamiliar with any
kind of natural language and lacks experiential context to the concepts the two indi-
viduals are discussing, but it is able to learn patterns in the conversation and predict
responses based on this. After a while of listening and learning, the octopus can con-
vincingly imitate either individual in similar conversations, for example explaining in fine
detail the difference between a papaya and a guava. However, if the octopus was phys-
ically presented with the two fruits, it would not be able to say which fruit is which.
This is because, although the octopus can recreate natural language utterances, it does
not know what those utterances mean or what they refer to [Bender and Koller, 2020].
These arguments can also be said to hold for a language model, where the LM acts as
the octopus in a dialog. The LM knows how to create responses, but not what those
responses mean.

People have a predisposition not only to construct meaning for themselves but also
to project that construction onto others. That is, we implicitly assume that other people
who are communicating with us share the same grounding of communicative intent to
real-life objects as we do [Bender et al., 2021]. The illusion that LMs seem to have real
understanding and meaning, acting like what Bender et al. [2021] call a stochastic parrot,
is most likely due to this human tendency. Although LMs and computer programs do
not have meaning in the sense that humans do, we are still able to represent meaningful
entities in machine-readable language through logic.

2.2 First-Order Logic

2.2.1 Logic and Encoding Meaning

Logic is a form of language that can express knowledge in a computer-tractable form
[Russell and Norvig, 2010]. We use logic as a tool for reasoning [Makinson, 2012, p. 189].
Traditional computer programming consists of creating programs using large structures
of logic. By providing a computer with relatively simple but precise logical commands,
we can achieve formidable results, such as solving complex mathematical equations or
creating entire virtual worlds for gaming purposes [Bjørkeng, 2018, p. 23].

The reason why logic constitutes such a powerful tool is that it provides a way of
expressing meaning in a more strict and defined way than natural language does. Al-
though logic is unable to make machines understand concepts in the way humans do, it
can provide a way to represent these concepts in a way that machines can utilize.

14 Background

2.2.2 A Precis of First-Order Logic

First-order logic (FOL) is a collection of formal logic systems that generally consist of ob-
jects with certain properties and relationships between these objects [Russell and Norvig,
2010]. The syntax of FOL is built up of the following elements:

• Terms : A logical expression that refer to an object. A term can be either a constant
symbol or a variable symbol.

– Constant symbols (A, B, OLA, NORWAY): Symbols that refers to exactly
one object.

– Variable symbols (x, y, v1, v2): Symbols that can be substituted with multiple
objects.

• Predicates (P, R, Person, FromCountry): Symbols that refer to a particular relation
between objects.

• Logical Connectives or Junctions (¬,∧,∨,→,↔): Logical symbols that combine
atomic sentences to create complex sentences. ¬ represents negation, ∧ represents
conjunction, ∨ represents disjunction, → represents implication, and ↔ represents
biconditional.

• Quantifiers (∀,∃): Logical symbols that express properties of a collection of objects.
∀ represents “all” and ∃ represents “at least one”.

An atomic formula, R(t1, ..., tn), is represented by a predicate R followed by a left
parenthesis, followed by n constant or variable symbols ti, where n is the number of places
of the predicate, with commas separating the terms, followed by a right parenthesis. Each
predicate symbol has a fixed number of places to be filled by constants or variables.

We use logical connectives to combine atomic formulas into complex sentences such
as P (Q)∧FromCountry(OLA,NORWAY), which means that the two atomic formulas
P(Q) and FromCountry(OLA, NORWAY) are both true simultaneously. The negation
symbol, ¬, is used with single atomic formulas to express negation of said formula, for
example ¬FromCountry(OLA, SWEDEN)

The sentence “All Norwegians are Europeans” can be expressed in FOL using the uni-
versal quantifier as ∀x(Norwegian(x) → European(x)). The FOL formula can be read
as “for all x’s, if the x is Norwegian then the x is European”.

Example 2.2.1

2.2. First-Order Logic 15

Quantifiers are used in combination with variables. Universal quantification (∀) is
used to express properties over all objects of a certain kind. An example of the use of
universal quantifier can be seen in Example 2.2.1. In contrast, the existential quantifier
(∃) expresses properties over a specific set of objects without having to name the objects
[Makinson, 2012, p. 189-239][Boolos et al., 2007, p. 106-112]. An example of the use of
existential quantifier can be seen in Example 2.2.2

The sentence “Someone is from Norway and Sweden” can be expressed using the exis-
tential quantifier as ∃x(FromCountry(x,NORWAY)∧FromCountry(x, SWEDEN)).
This FOL formula can be read as “there exists at least one x, where x is from the coun-
try Norway and x is from the country Sweden”.

Example 2.2.2

Boolos et al. [2007] define a well formed formula (WFF) in FOL in the following:
“[...]anything that is a (well formed first-order) formula can be built up from atomic
formulas in a sequence of finitely many steps - called a formation sequence - by applying
negation, junctions, and quantifications to simpler formulas” [Boolos et al., 2007, p. 107].
That means, if and only if F is a WFF, so is its negation, ¬F . And, if and only if F and
G are WFF, then so are their conjunction, (F ∧ G), disjunction, (F ∨ G), conditional,
(F → G) or biconditional, (F ↔ G). Example 2.2.3 shows a well-formed FOL, referred
to as a syntactically valid FOL. Example 2.2.4 shows an FOL that is not well formed,
referred to as an syntactically invalid FOL.

FOL: ∀x((FromCountry(x,NORWAY) ∨ FromCountry(x, SWEDEN) ∨
FromCountry(x,DENMARK) → Scandinavian(x))

We can interpret this WFF to mean “for all x, if x is from Norway or x is from Sweden
or x is from Denmark, then x is Scandinavian”.

Example 2.2.3

2.2.3 Clause Normal Form

An FOL formula written in clause normal form is equivalent to the original formula in
terms of satisfiability, but formulated with a special syntactic structure [Makinson, 2012,
p. 204]. If two formulas are satisfiably equivalent, then one formula is satisfiable if and
only if the other is [Boolos et al., 2007, p. 243]. Formulas written in clause normal form

16 Background

FOL: ∀x(FromCountry(Norwegian(x), NORWAY) ∨
FromCountry(x, SWEDEN), F romCountry(x,DENMARK)

The FOL is not WFF as the atomic formula FromCountry(Norwegian(x), NORWAY)
is not well formed and the two atomic formulas FromCountry(x,SWEDEN) and From-
Country(x,DENMARK) are combined using an invalid connective.

Example 2.2.4

have the advantage of providing a consistent and predictable structure which is necessary
when used in automatic processing. There are several types of normal forms. The ones
considered in this thesis are described below.

Disjunctive Normal Form

A single disjunction is defined as any disjunction of atomic formulas and is written on the
form p1∧ ...∧pn, where pi is a valid first-order atomic formula. A formula is in disjuntive
normal form (DNF) if and only if it consists of a disjunction (∨) of conjunctions (∧),
or in other words, a distribution of OR’s over AND’s, on the form seen in Equation 2.1,
where pi and qi are valid first-order atomic formulas [Makinson, 2012, p. 202-203]. Note
that a single conjunction is also considered a valid DNF structure.

(p1 ∧ ... ∧ pn) ∨ ... ∨ (q1 ∧ ... ∧ qm) (2.1)

Conjunctive Normal Form

A single conjunction is defined as any conjunction of atomic formulas and is written on
the form form p1 ∨ ... ∨ pn, where pi is a valid first-order atomic formula. A formula is
in conjunctive normal form (CNF) if and only if it consists of a conjunction (∧) of one
or more disjunctions (∨), or in other words, a distribution of AND’s over OR’s, on the
form seen in Equation 2.2, where pi and qi are valid first-order atomic formulas [Makinson,
2012, p. 204-205]. Note that a single disjunction is also considered a valid CNF structure.

(p1 ∨ ... ∨ pn) ∧ ... ∧ (q1 ∨ ... ∨ qm) (2.2)

Skolem Normal Form

Skolem normal form is a specific type of clause normal form where all existential quanti-
fiers are removed from the formula [Boolos et al., 2007]. Removing existential quantifiers
from an FOL formula is done through the process of Skolemization. Each variable that
is quantified by an existential quantifier is replaced with a Skolem constant or a Skolem

2.2. First-Order Logic 17

function. An existentially quantified variable that exists independently of any other quan-
tifier can simply be replaced with a unique constant, which can be seen as replacing the
variable with a unique name for the individuals represented by the existentially quanti-
fied variable. For example, the Skolemized version of the formula ∃x(Fx) is simply F (A),
where A is a unique constant not used elsewhere. When the existentially quantified vari-
able exists within the scope of an universally quantified variable, we need to represent
the variable using a Skolem function [Boolos et al., 2007, p. 237-243]. A Skolem function
is a unique function, fi, for each existentially quantified variable that contains the the
variables for each universally quantified variable the existentially quantified variable ex-
ists within the scope of. We show how an FOL formula is converted to the Skolem form
in Example 2.2.5.

The FOL formula:
∀x∀y∃z(F (x) ∧ (G(y) ∨H(z))

is converted into Skolem normal form through the process of Skolemization to the for-
mula:

F (x) ∧ (G(y) ∨H(f(x, y)))

where the existentially quantified variable, z, is replaced by a Skolem function, f, that
exist in the context of the higher-order universially quantified variables, x and y.

Example 2.2.5

2.2.4 Horn Clauses

Horn clauses are a particular type of first-order normal form clauses. A Horn clause a
is a formula on the form seen in Formula 2.3 or Formula 2.4, where pi and q are valid
first-order atomic formulas with universally quantified variables.

¬p1 ∨ ... ∨ ¬pn ∨ q (2.3)

¬p1 ∨ ... ∨ ¬pn (2.4)

Horn sentences are conjunctions of Horn clauses. A positive, or definite, Horn clause
has exactly one positive atomic formula, as in Formula 2.3. A negative Horn clause has
zero positive atomic formulas, as in Formula 2.4. A definite Horn clause like Formula 2.3
can also be written as: p1 ∧ ... ∧ pn → q, where the parte before the implication symbol
→ is called the antecedent and the part after the implication symbol → is called the
consequent [Brachman and Levesque, 2004, p. 85-86].

18 Background

All other formulations are considered invalid Horn. That is, clauses that, when writ-
ten as a disjunction of atomic formulas, contain two or more positive atomic formulas.
Formula 2.5 shows the format of an invalid Horn clause, as at least two atomic formulas
(q1 and q2) are positive. We can extend the number of conjuncted atomic formulas in
Formula 2.5 indefinitely with positive or negative atomic formulas, but as long as there
are at least two positive atomic formulas, it will always be considered invalid Horn.

¬p1 ∨ ... ∨ ¬pn ∨ q1 ∨ q2 ∨ ... ∨ qm (2.5)

We describe the Horn clause structure as Horn clauses are commonly used in logic
programming.

2.3 Logic Programming

Logic programming is defined as the use of logic to perform computation, often built
upon Horn clause logic [Kowalski, 2013]. Logic programming was first introduced by
Green [1969] as a way to use clausal form logic to represent computer programs [Lloyd,
2012]. In 1972, Kowalski and Colmerauer implemented the first Prolog system using
SL-resolution (linear resulution with selection function) using the full clausal form of
FOL [Kowalski, 2013]. Since then, the Prolog language has extended to many different
branches or dialects and remains one of the most popular logic programming languages
to this day.

With the development of Datalog and answer set programming (ASP), logic program-
ming has become more declarative, which means that the user describes what is counted
as a solution to a problem without specifying an algorithm to solve it [Kowalski, 2013].
Logic programming played an important role in the development of expert systems, as ex-
pert systems are built on declarative representations of expert knowledge [Merritt, 2012].
Logic-based approaches to AI suggest that autonomous agents should use knowledge bases
to create models of their environments and goals. These knowledge bases should be a
collection of statements in a declarative language that includes common sense knowledge
as well as expert knowledge that the agent needs to perform specific tasks [Erdem et al.,
2016].

2.3.1 Answer Set Programming

Answer set programming is a form of logic programming that uses a declarative pro-
gramming methodology. The answer set solvers perform a search to find stable models
consisting of all facts that can be derived from the rules defined in the program [Lifschitz,
2019, p. 1-4]. This can be thought of as a set of beliefs that are rational to be held given

2.3. Logic Programming 19

the collection of rules and facts stated in the program [Erdem et al., 2016].
ASP-based languages and Prolog appear similar, but use different computational

mechanisms. Prolog allows the user to describe how a solution should be reached, while
ASP approaches only allows the declaration of relationships and constraints [Lifschitz,
2019]. Prolog computes a result to a query using SLD resolution (Selective Linear Defi-
nite clause resulution), depth-first search, and backtracking by representing the possible
solution to the query as branches in a solution tree and exploring branch by branch until
a solution is found or no further progress can be made. ASP approaches, on the other
hand, computes stable models that contain a collection of truths that together satisfy
the rules of the problem. If there are multiple such collections, ASP approaches will find
all the stable models. Lastly, Prolog and ASP languages differ in the way they represent
negation. ASP languages support both strong (or classical) negation as well as negation
as failure, whereas Prolog only supports negation as failure. Negation as failure, not p,
means p is assumed to be false if it cannot be proven true. Strong negation, -p, means
that p is explicitly false [Lifschitz, 2008].

Clingo is one of the more widely used ASP languages and is a part of Potassco (Pots-
dam Answer Set Solving Collection), a collection of ASP-related tools created at the
University of Potsdam [Lifschitz, 2019].

A Clingo program consists of rules, facts and constraints. These structures are formed
from atoms. An atom consists of a predicate symbol and an optional list of arguments
enclosed in parentheses. An atom, a rule, or another syntactic expression is ground if it
does not contain variables. A typical rule in the Clingo programming language consists
of a head and a body separated by the “if” symbol :- and with a period at the end, such
as:

q(X) :- p(X).

which can be read as P (x) → Q(x).
Rules that do not contain :- (a rule head without its body) is called a fact, such as:

p(a).

A rule with no head is called a constraint and is used to define scenarios that should
not be present in any stable model, such as:

:- p(X).

By declaring rules and constraints that show what is allowed (or not allowed) and
facts that show what exists within the program, an ASP solver can find stable models
that find all possible facts to be derived from the program. If no stable models are found,
it means that the rules and facts are conflicting and that the program will terminate as
unsatisfiable [Lifschitz, 2008]. A simple satisfiable Clingo program is shown in Example
2.3.1. An unsatisfiable Clingo program is shown in in Example 2.3.2.

20 Background

% Define the parent relationships using facts
parent(john, mary).
parent(john, tom).
parent(mary, sue).
parent(mary, tim).
parent(tom, kate).

% Define the granparent relationships using a rule
grandparent(X, Y) :- parent(X,Z), parent(Z,Y).

% Output the grandparents
#show grandparent/2

This program will yield one stable model. By asking the program to
#show grandparent/2, the output will show the grounded grandparent relations that
are possible in this model. The output will be:

Stable Model 1:
grandparent(john, sue).
grandparent(john, tim).
grandparent(john, kate).

Example 2.3.1: Satisfiable Clingo script

% Define the parent relationships using facts
parent(john, mary).
parent(john, tom).
parent(mary, sue).
parent(mary, john).
parent(tom, kate).

% Define the parent constraint
:- parent(X,Y), parent(Y,X).

This program will terminate as unsatisfiable as the two facts parent(john,mary)
and parent(mary,john) directly conflict the parent constraint, which says that no pair
of people can be defined as the parents of each other.

Example 2.3.2: Unsatisfiable Clingo script

2.4. Commonsense Norm Bank 21

2.4 Commonsense Norm Bank

The Commonsense Norm Bank dataset, created by Jiang et al. [2021] for the Delphi ex-
periment3, contains 1.7 million examples of descriptive judgments on everyday situations.
The judgments consist of different aspects of social norms and ethics drawn from five dif-
ferent data sources: SOCIAL CHEMISTRY [Forbes et al., 2021], ETHICS [Hendrycks
et al., 2021], Moral Stories [Emelin et al., 2021], Social Bias Inference Corpus (SBIC)
[Sap et al., 2020] and SCRUPLES [Lourie et al., 2021].

The different sources are combined and categorized into two different data types:
depictions/questions of everyday situations (referred to as “free-form”) and statements
with moral implications (referred to as “yes/no”) [Jiang et al., 2021]. Examples of free-
form sentences can be seen in Example 2.4.1. As we want our system to be able to convert
statements with moral implications, we are only interested in the yes/no types.

“expensive items usually looking better than cheap items”
“Am I allowed to punish someone?”
“letting dogs be neglected and alone”
“Sue plops down onto her friends couch”

Example 2.4.1: Commonsense Norm Bank free-form sentences [Jiang et al., 2021]

The yes/no category consists of social norms/rules of thumb that include an action and
the judgment of the said action, such as “it is kind to express concern over your neighbor’s
friend”, where “express concern over your neighbor’s friend” is the action, which we call
the norm part of the sentence, and “it is kind” is the judgment of the action, which we
call the evaluation part of the sentence.

Table 2.4.2 shows ten examples of sentences from this category. These sentences are
taken mainly from the Social Chemistry corpus created by Forbes et al. [2021]. The
Social Chemistry corpus was constructed using 104,000 real-life situations gathered from
four domains: titles of posts in the subreddits “r/confessions” and “r/amitheasshole”,
sentences from the ROCStories corpus and titles from the “Dear Abby” advice column
archives [Forbes et al., 2021]. For each of these situations, crowd workers wrote 1 to 5
rules of thumb inspired by the situation, resulting in 292,000 rules [Forbes et al., 2021].
In addition to these 292,000 rules of thumb from the Social Chemistry corpus, Jiang et al.
[2021] introduced noisy syntactic forms of the rules to increase robustness, resulting in a
total of 478,000 statements of ethical judgments4.

3A demo of the Delphi prototype can be found at https://delphi.allenai.org
4We accessed this data set by reaching out to the author of Jiang et al. [2021].

https://delphi.allenai.org

22 Background

People should not get a divorce.
It’s rude to try to force a person to do something they don’t want to do.
It’s not okay to want others to know what is right.
You should not always learn how to do your job right.
It’s irrational to not want to be inconvenienced by new habits.
You shouldn’t put up with a parent’s rude and cruel behavior.
It is bad to go out with people who you like.
It’s fine to spend time watching a movie.
You should accept someone’s excuse for being racist.
It’s good to spend time with your partner.

Example 2.4.2: Commonsense Norm Bank norms [Yang et al., 2023]

Chapter 3

Related work

In this chapter, we present the existing research on relevant topics that provides the
basis for the work in this thesis. This chapter specifically explores how LLMs are employed
in NLP tasks, with particular attention to logic encoding and prompt engineering. We
include a summary of research within the field of moral conflict to highlight the problem
of having conflicting norms within autonomous systems. The methodology used in the
literature search can be found in Appendix A.

3.1 Natural Language Processing and Large Language

Models

3.1.1 Natural Language Processing Tasks

The idea of pre-training a language model was first suggested by Collobert and Weston
[2008] as a way for computers to automatically learn features rather than handcraft them.
With the introduction of the neural network architecture called the Transformer model, it
became possible to scale up neural model training, which was the predominant approach
at the time, in a way not possible with earlier approaches [Vaswani et al., 2017, Min
et al., 2023]. The current most popular large pre-trained language models, such as GPT,
BERT, and BART are all based on the Transformer architecture [OpenAI et al., 2023,
Devlin et al., 2019, Lewis et al., 2019].

Min et al. [2023] summarize recent developments when it comes to using LLMs in
NLP tasks in their survey overview and finds that there are three trending paradigms in
the use of pre-trained language models (PLMs) for NLP. These are fine-tuning PLMs,
using prompt-based learning and text generation tasks [Min et al., 2023].

Bubeck et al. [2023] argue how the current development of LLMs, especially the GPT-
4 model, exhibit remarkable capabilities in several domains, especially in that of language
processing tasks.

23

24 Related work

Basu et al. [2021] present a semantic-driven approach to natural language understand-
ing based on semantic knowledge mapping rather than machine learning approaches that
learn patterns based on training data. They propose a method of using sentence parse
trees in combination with VerbNet1 to map the parse tree to the knowledge it represents
[Basu et al., 2021]. They present two applications of this approach, SQuARE (Semantic-
based Question Answering and Reasoning Engine) and StaCK (Stateful Conversational
Agent using Commonsense Knowledge), that are able to represent knowledge in ASP
by using semantic driven ASP code generation that maps a sentence’s parse tree to the
skeletal parse tree found in the VerbNet lexicon based on the verbs in the sentence. They
found both applications to perform better than machine learning based systems in regard
to accuracy and explainability [Basu et al., 2021].

Hu et al. [2024] present a survey of Knowledge Enhanced Pre-trained Language Models
(KR-PLMs) in natural language understanding (NLU) and natural language generation
(NLG). Within the fields of NLU and NLG there are several types of knowledge that can
be explicitly incorporated into a PLM, and Hu et al. [2024] propose taxonomies for both
fields and the relevant work within the taxonomies.

The goal of NLU is to enable machines to understand and interpret data expressed
in NL. Hu et al. [2024] argue that within the field of NLU, knowledge can be incorpo-
rated to a PLM as text, linguistic knowledge, knowledge graph (KG) and rule knowledge.
Text knowledge is retrieved from general-domain text collections. Examples of linguis-
tic knowledge is Part-of-Speech (POS) tagging and sentiment tags of words. Knowledge
graphs are expressions meant to represent real world knowledge in the structured form of
a graph which can help improve semantic and relational understanding in PLMs. Rule
knowledge is incorporated by formalizing rules from external sources to logic representa-
tions, and thus facilitate better reasoning in the PLM [Hu et al., 2024]. An example of
a system incorporating rule knowledge is RuleBERT, which trains the LLM BERT on a
set of soft Horn rules to create probability predictions for a given natural language (NL)
hypothesis [Saeed et al., 2021].

The goal of NLG is to enable machines to generate data expressed in NL in a way
similar to how humans do it. Within the field of NLG, Hu et al. [2024] argue that
the performance of a PLM can be enhanced by incorporating retrieval-based or KG-
based knowledge. In retrieval-based methods, additional relevant knowledge is retrieved
from external sources and used to guide the generation process. KG-based methods use
knowledge graphs representations to input the relevant knowledge used in the generation
process [Hu et al., 2024].

The fields of NLU and NLG are important when it comes to logic encoding, the task
of converting NL statements to logic representations.

1A lexicon providing skeletal parse trees, thematic roles and semantic representations of each verb
class.

3.1. Natural Language Processing and Large Language Models 25

3.1.2 Logic Encoding

Prior to the rise of LLM, encoding tasks were developed to convert natural language to
logic using approaches such as reinforcement learning [Lu et al., 2022] and neural networks
[Singh et al., 2020, Petrucci et al., 2018].

Han et al. [2022] demonstrate different LM’s abilities to perform natural language
reasoning with FOL by fine-tuning and prompting the medium and large language mod-
els GPT-3.5, BERT, RoBERTa, GPT-NeoX, OPT, and Codex on a gold-standard data
set containing pairs of natural language sentences and their manually encoded FOL rep-
resentation. They specifically tested GPT-3 and Codex’s ability to translate from NL
to FOL and found the models to perform only slightly better than random [Han et al.,
2022].

Yang et al. [2023] display a system called LogicLlama that enhances the performance
of the GPT-3.5 model by first prompting GPT-3.5 to encode natural language sentences
to FOL, and then using a fine-tuned language model calledLlama-7B model to correct
these results. Yang et al. [2023] compared the results to those produced by prompting
GPT-4 alone and found that using GPT-4 is as good in encoding from NL to FOL as the
LogicLlama system.

Rajasekharan et al. [2023] present a system called STAR (Semantic parsing Trans-
former and ASP Reasoner) which uses LLMs to generate predicates from a sentence
representing the semantic properties of the sentence, and use ASP to reason with these
predicates. In addition, the ASP reasoning system is equipped with commonsense knowl-
edge related to the predicates. The STAR system is evaluated by comparing its accuracy
to that of the accuracy of GPT-3 on three different reasoning tasks. These tasks are,
solving qualitative reasoning problems, solving math word problems and acting as a ho-
tel concierge holding a conversations with a user looking for restaurant recommendations.
Their experiments show that GPT-3 is able to extract knowledge predicates from sen-
tences with high accuracy using few examples [Rajasekharan et al., 2023]. The STAR
system outperforms the GPT-3 model in the qualitative reasoning task and conversa-
tional task, and performs equally well as GPT-3 on the math word task [Rajasekharan
et al., 2023].

3.1.3 Prompt Engineering

Min et al. [2023] argue that the use of prompt-based learning is one of the state-of-the-art
approaches to using LLMs for NLP tasks. Research in the field of prompt engineering has
focused on formulating a set of concrete prompt engineering techniques or methods that
can be used quantitatively and yield consistent results [White et al., 2023, Ekin, 2023,
Velásquez-Henao et al., 2023, Arora et al., 2022, Wei et al., 2023, Zhou et al., 2023].

26 Related work

Liu et al. [2021] give a systematic review of prompting methods in NLP by organizing
the existing work within the field along several dimensions. They argue that the NLP
paradigm has shifted from mainly using a “pre-train, fine-tune” approach to a “pre-train,
prompt, and predict” approach. Instead of adapting pre-trained LMs via objective engi-
neering, prompts are formulated to manipulate the model to predict the desired output
[Liu et al., 2021]. Liu et al. [2021] identify basic design choices to be considered in prompt-
ing methods, these being pre-trained model choice, prompt engineering, expanding the
paradigm and prompt-based training strategies. They give an extensive overview of the
different works in which these prompting methods have been applied to, describing the
tasks and PLMs used [Liu et al., 2021].

Zhu et al. [2023] suggest a benchmark designed to measure the resilience of LLMs to
adversarial prompts, in addition to a comprehensive analysis of prompt robustness and
transferability. The benchmark, PromptBench, considers how well the LLMs are able to
respond to perturbations in prompts and thus identifies key attributes of robust prompts
[Zhu et al., 2023].

3.2 Moral Conflict

Moral conflict, or moral dilemmas, is defined in the field of moral philosophy as situations
in which an agent has moral reasons to perform two actions, but doing both actions causes
a conflict [McConnell, 2022]. When AMAs are guided by norm inputs from multiple
different stakeholders, dilemmas in the form of normative conflicts may arise.

Santos et al. [2017] give an overview of the current state-of-the-art solutions to de-
tecting and resolving normative conflicts in multi-agent systems. These techniques are
analyzed based on whether they address conflicts at the design stage or during runtime,
and whether they handle direct or indirect conflicts. The techniques are compared in
terms of strengths and weaknesses, and how they are applied in practical scenarios. The
paper organizes the existing literature according to which technique they use and describe
how they compare against each other.

Liao et al. [2023] propose a solution to the moral conflict problem by introducing an
ethical recommendation component using techniques from normative systems and formal
argumentation theory. This component solves the moral conflict between different stake-
holders by considering the arguments in each stakeholder’s normative system, combining
the normative systems, or deciding which of the stakeholder takes preference over the oth-
ers. This component is meant to represent a Jiminy Cricket-like figure from the story of
Pinoccio, acting as an ethical advisor to the AMA by producing moral recommendations
through resolving normative dilemmas.

The works outlined in this chapter provide a useful baseline for the methods and

3.2. Moral Conflict 27

experiments that will be described in the following chapters of this thesis.

28 Related work

Chapter 4

Methodology

In this chapter, we describe the methods and tools used to develop a system that
can encode natural language sentences that express norms into first-order Horn logic
representations. The chapter includes a detailed examination of the methods used in the
implementation of the system and the analytical methods applied to assess its outcomes.

Section 4.1 of this chapter outlines the research design choices applied to two distinct
parts of the research and also specifies the boundaries for the FOL encodings. Section 4.2
describes the tools and methods that were used collectively in both parts of the research.

4.1 Research Design

The work in this thesis can be divided into two distinct parts. The first is a developmental
part, which consists of the implementation of an encoding system aimed at encoding
natural language norms to Horn clause representations, as well as the implementation of
a sentiment analysis model and an inconsistency checker. The second is an analytical
part, which consists of the analysis of the results of the encoding system performed to
draw conclusions about the effectiveness and limitations of the encoding system. The
research designs for each of these parts are described individually.

The main goal of the developmental research part is to create a system able to convert
natural language norms into first-order Horn clauses. The implementation of the encoding
system involves breaking down the encoding task into several distinct steps, as illustrated
in Figure 4.1.

The first step is to encode norms from the Commonsense Norm Bank into FOL rep-
resentations. In the second step, the syntax of the FOL representations is verified. In the
third step, verified FOLs are converted to conjunctive normal form (CNF). In the final
step, CNFs are checked to determine if they can be categorized as valid Horn. Splitting
the task into these particular steps gives us the opportunity to use existing tools found
in the literature described in Chapter 3.

29

30 Methodology

In hindsight, we found that by splitting up the encoding task, we gained more insight
into where the system might need improvement. The system was evaluated iteratively
and the implementation strategy improved. This iterative evaluation provided insight
and ideas for further development of the system. The implementation of a sentiment
analysis model and an inconsistency checker was motivated by the insight found through
continuously evaluating the encoding system.

Figure 4.1: Illustration of encoding system

The analytical part of the research has three main goals. The first goal is to estimate
the faithfulness of the encoding system in terms of meaning. That is, to assess whether
the automatically encoded FOLs represent the intended meaning of the original norms in
a sufficient manner. The second goal is to identify what types of norms GPT-4 encodes
to FOL inaccurately. The third goal is to identify what types of norms that cannot be

4.1. Research Design 31

encoded to Horn clause representations. These three analyses are performed separately on
a specific set of norms processed by the encoding system. In the faithfulness evaluation,
predefined categories of faithfulness are used, in which each encoding will be classified.
In the other two identification analyses, specific observations about each individual norm
are gradually merged into more general patterns.

4.1.1 Delimitation of FOL Encodings

In order to obtain consistent encoding from the GPT-4 model that will generate definite
Horn clauses, we choose to delimit the syntactic properties of the FOL encodings. As the
NL sentences are moral norms we expect the sentences to be semi-structured, consisting
of a situation and a moral judgment over said situation. The FOL encoding format is
defined as follows:

To adhere to the definite Horn clause format, each encoding should be an implication
where the antecedent represents the situation as a conjunction of predicates. We call this
part of the norm “the norm part”. The consequent should represent the moral judgment
of the situation using a predicate evaluation, with the moral judgment as a constant, such
as evaluation(GOOD) or evaluation(BAD). We call this part of the norm “the evaluation
part”. An example of a FOL and its respective norm and evaluation part is shown in
Example 4.1.1.

FOL: ∀x(F (x) ∧G(x) → evaluation(GOOD))
Norm part: ∀x(F (x) ∧G(x))
Evaluation part: evaluation(GOOD)

Example 4.1.1: FOL norm and evaluation parts

After an initial look at the norms in the Commonsense Norm Bank, we found that
a wide range of moral judgment terms were being used, such as “good”, “bad”, “nice”,
“okay”, “not expected”, “terrible”, etc. We counted 84 different moral judgment terms
used in 900 examples. Some examples of norms with different moral judgements can
be seen in Example 2.4.2. Our initial implementation of the encoding system set out
to encode each norm with their explicit judgment term as the moral judgment in the
FOL encoding, such as evaluation(TERRIBLE). However, we realized that doing this
will create complications when trying to find inconsistencies at a later stage. That is, all
negative judgment terms, such as “bad”, “not expected” or “terrible”, would need to be
defined as conflicting with all positive judgment terms, such as “good”, “nice” or “okay”.
To avoid this problem, we label all norms into one of two categories; norms that contain
a positive moral judgment or norms that contain a negative moral judgment.

32 Methodology

Positive moral judgments should be encoded with the consequent evaluation(GOOD),
while negative moral judgments should strictly be encoded with the consequent evalua-
tion(BAD). Such that “it’s okay to help children” and “it’s good to help children” should
both be encoded with the evaluation part evaluation(GOOD), while “it’s terrible to hurt
children” and “it’s bad to hurt children” should both be encoded with the evaluation part
evaluation(BAD). We recognize that this may limit the expressiveness of the FOLs as
there are norms that are difficult to categorize as having a positive or negative moral
evaluation, such as the sentences “it’s not hard to move away from a good group of
friends”, or “having sex with your friends isn’t a terrible idea”. However, we decided that
the simplification that it provides outweighs the limitation of expressiveness. Example
4.1.2 shows how we want the NL norms to be encoded.

Norm: “it’s okay to help children”
FOL: ∀x∀y(Child(x) ∧Help(y, x) → evaluation(GOOD))

Norm: “it’s terrible to hurt children”
FOL: ∀x∀y(Child(x) ∧Hurt(y, x) → evaluation(BAD))

Example 4.1.2: Norms and their FOL representations

Each NL norm that expresses the evaluation part using either the phrase “you should”
or “you should not” should be interpreted respectively as “it’s good to” or “it’s bad to”. We
show examples of norms containing these phrases and their ideal encodings in Example
4.1.3.

Norm: “you should always pay back your loans”
FOL: ∀x∀y(Loan(x) ∧BelongsTo(x, y) ∧ PayBack(y, x) → evaluation(GOOD))

Norm: “you shouldn’t give in to cravings”
FOL: ∀x∀y(Craving(x) ∧GiveInTo(y, x) → evaluation(BAD))

Example 4.1.3: Norms and their FOL representation

The evaluation predicate should not be negated. If the moral implication assumes
negation, this should be represented in the evaluation constant. For example, the norm
“it’s not good to develop bad habits”, in which “not good” is considered to be the eval-
uation part of the norm, the evaluation part of the encoding should be expressed as
evaluation(BAD) rather than ¬evaluation(GOOD). We show the ideal encoding of the

4.2. Tools and Methods 33

norm in Example 4.1.4.

Norm: “it’s not good to develop bad habits”
FOL: ∀x∀y(Habit(x) ∧Bad(x) ∧Develop(y, x) → evaluation(BAD))

Example 4.1.4: Norm and its FOL representation

The logical connective symbolizing equivalence = should not be used because parts
of the FOL syntax verifier and parts of the CNF converter of the encoding system are
not equipped to handle this structure (see Sections 5.2.2 and 5.2.3). Instead, constants
or existential quantifiers should be used in the FOL encodings where equality is implied.
The encoding of this structure is shown in Example 4.1.5.

Norm “it’s bad to have different pets”
FOL: ∀x∃y∃z(Pet(y) ∧ Pet(z) ∧Have(x, y) ∧Have(x, z) → evaluation(BAD))

Example 4.1.5: Norm and its FOL representation

Lastly, norms that are not grammatically correct or have nonsensical formulations
should not be encoded. The sentence “it’s not okay to of not examined who you are
until now” is an example of such a nonsensical instance found in the Commonsense Norm
Bank.

4.2 Tools and Methods

4.2.1 NL Norm Dataset

We created the NL norm dataset to use as a validation set for the automatic encoding. The
NL norm dataset is a set consisting of 1001 NORM-FOL pairs. The norms are natural
language sentences extracted from the yes/no category from the Commonsense Norm
Bank describing a situation and a judgment over said situation. Each norm is paired
with a manually constructed FOL encoding following the FOL delimitation defined in
Section 4.1.1. We show example norms and their respective FOL encodings from the NL
norm dataset in Example 4.2.1.

The FOL encodings in this dataset can be used as a correct baseline, to which we can
compare the automatic encodings created by the encoding system. We choose to limit
this set to 1001 instances, as the time and resources demanded to expand it beyond this
proved too costly, and as the goal of this thesis is to obtain qualitative understanding

34 Methodology

Norm: “you shouldn’t get romantically involved with your friend’s parent”
FOL: ∀x∀y∀z(FriendOf(x, y) ∧ ParentOf(z, x) ∧ GetRomanticallyInvolved(y, z) →
evaluation(BAD))

Norm: “it’s ok to be addicted to harmful drugs”
FOL: ∀x∀y(Drug(x) ∧Harmful(x) ∧ AddictedTo(y, x) → evaluation(GOOD))

Norm: “it’s good to treat service workers well”.
FOL: ∀x∀y(ServiceWorker(x) ∧ TreatWell(y, x) → evaluation(GOOD))

Example 4.2.1: Norms and their manual encodings from the NL norm dataset

rather than quantitative results, we do not need a large dataset to base our findings on.

4.2.2 Programming Tools

We attempted to use the encoding solution provided by Yang et al. [2023], the LogicLlama
model, for the task of encoding norms to FOL. However, at the time of writing, we were
not able to get the model to work. We reached out to the creators of the model, but
their advice did not solve the problems we encountered. Since Yang et al. [2023] show
that LogicLlama’s overall ability to encode natural language into FOL does not surpass
that of OpenAI’s GPT-4 model, we decided to use the GPT-4 model instead [Yang et al.,
2023].

To implement the encoding system, we mainly use the programming language Python
(version 3.8.18) [Van Rossum and Drake, 2009] and the code editor Visual Studio Code.
The programming languages Julia [Bezanson et al., 2017] and Clingo [Gebser et al.,
2019] are integrated for specific purposes. The main packages required in our implemen-
tation are numpy (version 1.24.4) [Harris et al., 2020], pandas (version 2.0.3) [McKinney,
2010], nltk (version 3.8.1) [Bird et al., 2009], openai (version 1.11.1) and juliacall

(version 0.9.15) [Li, 2019]. We access the GPT-4 model using OpenAI’s Python API
OpenAI [2024d].

A syntax verifier program created by Yang et al. [2023] is included in the encoding
system as a way to verify the syntax of the FOL encodings created by GPT-4. The syntax
verifier program is accessible through the public LogicLlama GitHub repository1 [Yang
et al., 2023]. Yang et al. [2023] created this program by defining a context-free grammar
that coincides with the requirements of a well-formed FOL formula. The program takes
an FOL formula as input and generates a string that represents the syntactic structure
of the FOL formula. Using this string, the program creates a CFG object that can be
processed by a CFG parser using Python’s NLTK module [Bird et al., 2009]. The parser

1https://github.com/gblackout/LogicLLaMA

https://github.com/gblackout/LogicLLaMA

4.2. Tools and Methods 35

returns a valid NLTK parse tree according to the specified grammar. If no valid parse tree
can be found, the FOL is considered syntactically invalid, and a None object is returned.

In order to convert FOLs to CNF structures, we use code from a public repository
found on GitHub2 that offers a solution to this problem [Alharthi, 2019]. The pro-
gram is written in the programming language Julia [Bezanson et al., 2017], and we use
JuliaCall [Li, 2019] to integrate it with our Python-based encoding system. The CNF
conversion program performs a number of actions step-by-step on an FOL formula. The
actions consist of eliminating implications, moving negations, standardizing variables,
skolemization, and distributing conjunctions and disjunctions. The program returns the
FOL formula structured in CNF format.

4.2.3 Prompt Engineering

In order to get the GPT-4 model to encode NL norms to FOL we provide it with a
prompt, which is a message that instructs the model to perform a certain task. OpenAI
and Microsoft provide information on the different techniques used when constructing
such a prompt to get better results from LLMs, a method often referred to as prompt
engineering [OpenAI, 2024b, Microsoft, 2024a]. The techniques we choose to consider
are general system message adjustments, few-shot learning, self-correction, fine-tuning,
chain-of-thought prompting, and temperature adjustment. Each of these are described
in detail below.

The prompt system message provides the large language model with precise instruc-
tions on what we want it to do [Microsoft, 2024a]. A prompt system message can be either
simple, giving the language model a clear and concise instruction, or more comprehensive,
giving the model a more detailed instruction that may yield less precise answers.

Few-shot learning is a prompt strategy in which a set of examples is provided in the
prompt input messages that show user input along with the preferred system response.
This is provided to show, rather than tell, how the LLM should respond to a certain
request, both in terms of content and format [OpenAI, 2024b].

Self-correction is a form of multi-turn dialogue in which the interaction between the
user and the LLM unfolds over multiple turns, with each turn building on the previous
one [Microsoft, 2024b]. Wu and Hu [2023] found in their research on the exploration
of prompt engineering for language translation that this method tends to improve the
quality of translations when using GPT-3.5.

OpenAI offers the ability to fine-tune its models, which means that you can provide
domain-specific training data to the model that could improve its performance [OpenAI,
2024a]. In practice, this would work as an expansion of the few-shot learning described
above, but instead of including three examples in the prompt, the model would be trained

2https://github.com/wjdanalharthi/First-order-Logic-resolution

https://github.com/wjdanalharthi/First-order-Logic-resolution

36 Methodology

on a much larger number of examples.

Chain-of-thought (CoT) prompting is, similar to self-correction, a multi-turn dialogue
approach that divides a task into multiple smaller steps by creating several prompts each
instructing one step toward the ultimate goal [Microsoft, 2024a]. According to Wei et al.
[2023], CoT prompting of LLMs significantly improves the model’s ability to perform
reasoning.

The temperature parameter in the GPT models determines the randomness of the
output. The temperature can be set to values between 0.0 and 2.0, where values closer to
0.0 create strict, concrete, and focused responses, while values closer to 2.0 introduce a
larger degree of randomness in the model and create more divergent responses [Microsoft,
2024a].

4.2.4 Sentiment Analysis

Sentiment analysis (SA) is a text classification tool that aims to study people’s opinions,
attitudes, and emotions. It is most commonly used to identify opinions expressed in
written customer reviews. Sentiment analysis can be performed on three different levels:
document-level, sentence-level, and aspect-level. In document-level and sentence-level
SA, the sentiment analysis model tries to classify whether a text expresses positive or
negative sentiment without separating opinions over different entities or aspects within
the same text. The only difference between the two comes down to the length of the
text. Document-level SA considers a whole document, whereas sentence-level SA only
considers a sentence. Aspect-level SA differs from document- and sentence-level SA in
that it aims to classify the sentiment with respect to the specific entities over which they
express the sentiment [Medhat et al., 2014].

The DistilBERT Base Model3 is an example of a pre-trained language model. Dis-
tilBERT is a distilled version of BERT, which is pre-trained for language understanding
[Devlin et al., 2019]. DistilBERT has 97% of BERT’s language understanding capabili-
ties, with a parameter size reduction of 40% compared to the original model [Sanh et al.,
2020]. This ensures that the DistilBERT model runs 60% faster than the original BERT
model, while still maintaining over 95% of BERT’s performance capabilities [Hugging
Face, 2024].

We use the DistilBERT base model to create a sentiment analysis model to enhance
the encoding system. We chose this model in particular as it was recommended by
HuggingFace for most use cases of sentiment analysis [Pascual, 2022].

3The model can be found on HuggingFace: https://huggingface.co/distilbert/distilbert-b
ase-uncased

https://huggingface.co/distilbert/distilbert-base-uncased
https://huggingface.co/distilbert/distilbert-base-uncased

4.2. Tools and Methods 37

4.2.5 Answer Set Programming

We use ASP to create an inconsistency checker that can find conflict within a set of
Horn-clause-represented norms. We choose to use ASP over any other logic programming
language as it provides the opportunity to use strong negation, which is convenient when
expressing Horn clauses containing negated atomic formulas. This task could likely be
solved using other logic programming languages, but since this task is considered more
of a proof of concept rather than a fully optimized part of the encoding system, we do
not explore more than one solution.

4.2.6 Manual Assessment

To evaluate and analyze the encoding system implemented in the developmental part,
we choose to manually assess the FOL and Horn clause outputs of the system in the
analytical part. Although manual assessment is time-consuming and prone to human
errors, we choose this over any other automatic semantic evaluation technique, as current
automatic alternatives in this field have been shown to be lacking compared to human
evaluation [Roy et al., 2021].

In the next chapter, we describe how we use the tools and methods outlined in this
chapter to implement our solutions.

38 Methodology

Chapter 5

Experiments

In this chapter, we outline the experimental part of the thesis and describe the imple-
mentation of practical components. The methods and tools used in the implementation
are presented in Chapter 4.

We begin with Section 5.1, where we discuss the creation of the NL norm dataset. Sec-
tion 5.2 includes a detailed description of how each part of the encoding system’s overall
encoding process was implemented. Sections 5.3 and 5.4 describe the implementation of
methods meant to improve and expand the encoding system and its applications. These
are the sentiment analysis model and the inconsistency checker. Section 5.5 describes how
the enconding system’s ability to capture sentiment in its FOL encodings was assessed1.

5.1 NL Norm Dataset

We extracted a subset of the Commonsense Norm Bank to create the NL norm dataset
described in Section 4.2.1. The NL norm dataset consists of 1001 norms selected from the
yes/no category of the Commonsense Norm Bank in a semi-structured manner. For every
100 norms in the yes/no category, we copied the first 10 to 11 norms into the NL norm
dataset until we reached 1001 instances. Sentences that were discovered to be nonsensical
or not considered norms were deleted from the NL norm dataset and new norms from
the yes/no category of the Commonsense Norm Bank were added to replace them.

We extended the dataset by manually encoding the 1001 norms to their respective
FOL representations according to the FOL delimitations defined in Section 4.1.1. This
was done before the execution of the final round of automatic encoding and resulted in
a NL-FOL validation set that was used in the evaluation of the encoding system. This
ensured that we could consider the automatically encoded norms against the manually
encoded norms. This was done to counteract confirmation bias when evaluating the
accuracy of the automatic encodings. The manual FOL encoding was done by the author

1The code for all components can be found on GitHub: https://github.com/emmabjor/nl-hor
n-master/tree/main

39

https://github.com/emmabjor/nl-horn-master/tree/main
https://github.com/emmabjor/nl-horn-master/tree/main

40 Experiments

and a bachelor’s student in information science, both of whom have taken several courses
in logic at the University of Bergen.

5.2 Encoding System

The encoding system converts natural language norms into first-order Horn representa-
tions. The implementation of the system was organized into separate connected parts by
dividing the encoding task into multiple steps, as shown in Figure 4.1. The first step in
this system is the encoding of an NL norm to a general FOL representation. The second
step determines whether the FOL encoding is a well-formed formula. FOL encodings con-
sidered to not be well-formed are stored for analysis. All well-formed formulas proceed
to the third step, where the FOLs are converted into conjunctive normal form (CNF).
In the fourth step, we consider whether the CNF-converted FOLs follow the first-order
Horn requirements. In the end, we are left with a set of FOL encodings considered to
be Horn, a set of FOL encodings not considered to be Horn, and a set of invalid FOL
encodings. The valid Horn encodings can be further processed to find inconsistencies in
the set, while the invalid FOL and Horn encodings are stored for analysis.

The following subsections describe each step of the encoding system in detail. After
implementing the encoding system as a complete and working pipeline, the system was
used to encode all norms from the NL norm dataset to FOH to create the results used in
the analyses. It is important to note that, as the implementation of the encoding system
was an iterative process, some decisions were made at later stages in the implementa-
tion process, which are reflected in some of the descriptions and examples from earlier
iterations. In the beginning of the implementation process, we talked about “translat-
ing” norms to first-order Horn clauses instead of “encoding” norms, and this is evident
in some of the explanations and figures throughout this thesis. The decision to limit the
evaluation part of the FOL encodings to strictly evaluation(GOOD) or evaluation(BAD)
was also made at a later stage in the process, and therefore some examples may include
other evaluation constants than strictly these.

5.2.1 Natural Language to First-Order Logic Encoding

The first step in the encoding system is to encode norms from natural language English
to well-formed FOL formulas. This is done by instructing OpenAI’s GPT-4 model using
a prompt. The following section describes in detail the prompt strategy that was used in
this task. We then describe the system settings and context used when creating the final
FOL encodings of the NL dataset that were further processed and analyzed in the thesis.

5.2. Encoding System 41

Prompt Engineering Techniques

Much of the work in implementing the encoding system consisted of adjusting and spec-
ifying the encoding instructions provided to GPT-4 through prompt engineering. This
prompt engineering process was performed and reviewed iteratively using subsets of the
NL norm dataset. As prompt engineering is a process of trial and error using different
techniques and prompt formulations, this phase brought some insight that affected the
choices made in the remaining implementation process.

We constructed approximately 12 different variations of prompts using a combination
of the techniques described in Section 4.2.3. We tested the different prompt variations on
10 to 60 NL norms and manually reviewed the resulting encodings to find the combination
of techniques that yielded the best results based on syntactic and semantic validity. Fatal
errors were recognized, and the prompt was reformulated to avoid the errors in the next
variation. Example 5.2.1 shows one such reformulation that was done.

In one of the early prompt iterations, the phrase “cannot afford” was encoded to
the predicate “CannotAfford′′ instead of the more logically substantial predicate
“¬Afford′′. We therefore added the following sentence to the prompt: Use the
negation-symbol in the antecedent when predicates express negation, such that “do/-
can/will not < Predicate >” encodes to “¬ < Predicate >′′.

Example 5.2.1

In the remainder of this section, we will describe in detail how we tested each of
the prompt strategy techniques described in Section 4.2.3, and consequently how we
implemented the ones we chose to include.

Prompt system message: In the prompt system message we specify the symbols the
encodings should contain, the desired format of the output, and clarifications on how the
model should or should not encode specified cases. We found that a more detailed system
instruction describing multiple do’s and don’ts yielded the best results. The instructions
we chose to include were based on multiple manual reviews of the results of the different
system message variations. Listings 5.1 and 5.2 show the evolution from the first system
message to one of the final system messages.

You are an assistant that translates English natural language sentences

into well formulated first -order logic formulas.

Strictly use these signs and operators: ’∨’, ’∧’, ’→’, ’↔’, ’∀’, ’∃’,
’¬’, ’(’, ’)’, ’,’.

Listing 5.1: System message for first prompt variation

42 Experiments

You are a system tasked with translating sentences from natural

language English to first -order logic formulas.

Ensure precise and valid first -order formulas that convey the explicit

sentiment of the original sentence as accurately as possible.

Use the following symbols: ’∨’, ’∧’, ’→’, ’↔’, ’∀’, ’∃’, ’¬’, ’(’, ’)’,

’,’.

Use variables in lowercase (e.g., "x", "y", "z"), constants in

uppercase (e.g., "BAD", "EMMA", "FACEBOOK"), and predicates (e.g.,

"People(x)", "Friends(EMMA ,y)", "Explains(x,y,z)").

Ensure that the scope of a predicate does not contain other predicates

or nested structures.

Don ’t negate variables or constants.

Each formula should be formulated as an implication , where the

conclusion should always be "evaluation(GOOD)" or "evaluation(BAD)".

Use the negation -symbol in the antecedent when predicates express

negation , such that "do/can/will not <predicate >" translates to

"¬<Predicate >()".
When "you should" is stated it implies the consequence

evaluation(GOOD)".

When "you shouln ’t" is stated it implies the consequence

evaluation(BAD)".

When something is positively stated , such as "it ’s ok" or "it ’s

expected", it implies the consequence "evaluation(GOOD)".

When something is negatively stated , such as "it ’s rude" or "it ’s not

expected", it implies the consequence "evaluation(BAD)".

When "others" or "someone else" is mentioned , these should be

represented with existential quantifier , such that "other people"

translates to "∃x(People(x)).
When "sometimes" is expressed , all quantifiers should be existential ,

such that "sometimes people eat meat" translates to "∃x∃y(People(x) ∧
Meat(y) ∧ Eat(x,y))".

Make sure each action/property that has an actor is connected to its

actor , e.g. "your things" translates to "Thing(x) ∧ BelongsTo(x,y)", or

"your family" translates to "FamilyOf(x,y)".

It ’s better to divide the formula into several predicates that express

separate parts rather than combining all information into a single

predicate , e.g. "old man" translates to "Man(x) ∧ Old(x)".

Double check that all requirements specified above are met before

giving your answer.

Try reading out loud your translation to make sure the sentiment aligns

with the English sentence before giving your answer.

Adjust if sentiment does not align.

Listing 5.2: System message for final prompt variation

Few-shot learning: We carefully constructed three examples for each prompt that
show different NL norms and the ideal FOL encoding for each norm. We chose the

5.2. Encoding System 43

examples based on the results from previous prompt testing that showed which cases
needed to be exemplified, rather than just explained in the system message. We tested
variations using zero-, one-, three-, and five-shot prompts and found that including three
examples proved to be the middle ground between covering enough cases and avoiding
overfitting. Overfitting occurs when a model is too closely fit to the training data in such
a way that it does not generealize well to new data [Müller and Guido, 2016, p. 28]. The
examples used in one of the final prompts can be seen in Listing 5.3.

{"role": "user", "content ":

"it ’s fine to care about your family ’s history ."},

{"role": "assistant", "content ":

"∀x∀y∀z(FamilyOf(x,y) ∧ HistoryOf(z,x) ∧ CaresAbout(y,z) →
evaluation(GOOD))"},

{"role": "user", "content ":

"you shouldn ’t talk to other people about your fetishes ."},

{"role": "assistant", "content ":

"∀x∀y∃z(Fetish(x) ∧ BelongsTo(x,y) ∧ People(z) ∧ TalkToAbout(y,z,x) →
evaluation(BAD))"},

{"role": "user", "content ":

"it ’s not ok to be frustrated when you work at the University of

Bergen ."},

{"role": "assistant", "content ":

"∀x(WorksAt(x, UNIVERSITY_OF_BERGEN) ∧ Frustrated(x) → evaluation(BAD))"}

Listing 5.3: Example of a three-shot prompt strategy

Self-correction: We tested out the self-correction technique by creating two separate
prompts. In the first prompt, referred to as “the initial prompt”, we ask the GPT-4 model
to simply encode the NL norm to FOL according to the FOL delimitation specified in
Section 4.1.1. In the second prompt, referred to as “the adjustment prompt”, we ask the
GPT-4 model to improve and correct the result from the initial prompting. By giving the
model a second attempt to improve an existing formula rather than creating one from
scratch we give the model more time to reevaluate its own encoding and catch missing
or incorrect parts of the initial encoding [OpenAI, 2024b]. In this second adjustment
prompt, the GPT-4 model gets a similar system message as in the initial prompt, but
with the focus on correcting an already existing formula to make it as syntactically correct
and semantically equivalent to the original NL norm as possible. This adjustment prompt
also makes use of few-shot learning by providing three new examples showing how we
want GPT-4 to correct the encodings. If an encoding does not need correction, the model
is instructed to return the formula as is. Listing 5.8 show the adjustment prompt that
was created used to correct the result of the initial prompt seen in Listing 5.7.

We manually reviewed how well GPT-4 was able to encode norms using the initial

44 Experiments

prompt alone versus using the initial prompt followed by the adjustment prompt. We
found that the encoding results improved when the model was asked to adjust the initial
encodings. In one of the early prompt variations, we found that 12 of 33 FOL encodings
were improved, semantically and/or syntactically, by the adjustment prompt. Six FOL
encodings became worse, and the remaining 15 neither improved nor worsened from the
initial prompt to the adjustment prompt. These results convinced us that applying self-
correction using an adjustment prompt would prove valuable for the encoding system. It
is important to note that as the phrasing of the prompts improved and the properties of
the encodings were adjusted, the gap between the quality of the results from the initial
prompt alone and the quality of the results from the initial prompt coupled with the
adjustment prompt was reduced. In the final prompt variations (see Listings 5.7 and
5.8), we found that for some batches of norms the adjustment prompt improved just as
many encodings as it worsened. For a few batches, the adjustment prompt worsened even
more than it improved. We show an example of how the adjustment prompt worsened
the encodings from the initial prompt in Example 5.2.2.

Norm: “it’s bad for your health scare to be averted.”
Initial prompt output: ∀x∀y(HealthScare(x) ∧ BelongsTo(x, y) ∧ Averted(x) →
evaluation(BAD))
Adjustment prompt output: ∀x∀y(HealthScare(x) ∧ BelongsTo(x, y) ∧
Averted(x) → evaluation(GOOD)).

In this example, the adjustment prompt changed the evaluation constant from “BAD”
to “GOOD”, thus making the final FOL output semantically express the opposite of
what the original norm intended.

Example 5.2.2

In most of the cases where the adjustment prompt worsened the result of the initial
prompt, the error that occurred was consistent and predictable, and therefore also possible
to correct. This will be elaborated on in Section 5.3 and in Chapter 7. For this particular
reason, we decided to include the adjustment prompt in the final prompt variation.

Fine-tuning: We created two different fine-tuned models to determine whether or
not this would improve the encoding results compared to using the GPT-4 model with-
out fine-tuning. One model was fine-tuned using NL-FOL pairs (corresponding to the
few-shot learning in the initial prompt), while another was fine-tuned using NL-FOL-
CORRECTED tuples (corresponding to the few-shot learning in the adjustment prompt).
Each of the fine-tuned models were trained on 50 manually encoded such NL-FOL pairs

5.2. Encoding System 45

(or NL-FOL-CORRECTED tuples), using the GPT-3.5-turbo-1106 model. We chose to
use the GPT-3-turbo model, as this was the latest model available for fine-tuning and the
model recommended by OpenAI to use in fine-tuning tasks [OpenAI, 2024a]. Fine-tuning
of the GPT-4 model was not an option at the time of writing.

We reviewed the fine-tuned models by prompting the models to encode 10 unseen
NL norms and manually inspected the results. The results of the fine-tuned models
were compared to the results of prompting the GPT-4 model on the same unseen NL
norms, using a combination of the self-correction and few-shot methods described above.
We call the approach that uses the prompts from Listings 5.7 and 5.8 without fine-
tuning the “baseline model”. When prompting the fine-tuned models, we used the system
message from the initial prompt and/or the adjustment prompt in Listings 5.7 and 5.8,
without few-shot learning. We tested three different prompt strategies for the fine-tuned
models. The first strategy was to use the NL-FOL fine-tuned model on its own. The
second strategy was to use self-correction by having the NL-FOL-CORRECTED fine-
tuned model correct the output of the initial prompting of the GPT-4 model. The
last strategy was to use self-correction by having the NL-FOL-CORRECTED fine-tuned
model correct the output of the NL-FOL fine-tuned model. Each of the three fine-tuning
strategies resulted in only 3/10 correctly encoded FOLs, while the baseline model resulted
in 7/10 correctly encoded FOLs.

On the basis of these results, we decided not to use the fine-tuned models. It is
important to note that expanding the training data to include more than 50 examples,
as well as evaluating more than 10 unseen examples, could yield better results. However,
due to the limited time and resources, we chose not to further explore this possibility.

Chain-of-Thought (CoT): We tried using CoT prompting by splitting the encoding
prompt into three separate prompts, each of which performs a step toward the overall
goal of converting the NL sentence to FOL. Each step gets the original NL norm and
the result of the previous step as input and is instructed to use this result to perform its
task. We formulated each CoT prompt with independent system messages and three-shot
learning meant to instruct GPT-4 on how to independently perform the specific tasks.

The first prompt in the CoT prompt strategy focused on identifying predicates and
the moral evaluation of the norm. The first CoT prompt can be seen in Listing 5.4. The
second CoT prompt was instructed to identify quantifiers and populate the predicates
found in the first prompt with the appropriate variables. The second prompt can be seen
in Listing 5.5. The third and final CoT prompt was tasked with formulating the final
FOL as an implication using the quantifiers and predicates populated from the second
prompt. The third prompt can be seen in Listing 5.6.

The results of each of the prompts were manually evaluated, and the system messages
and few-shot instances were reformulated as needed. However, by splitting up an encoding

46 Experiments

task into these individual steps, it seemed a crucial holistic view, which considers the
sentence as a whole, was lost. This led to worse results compared to the baseline model
approach.

{"role ":" system", "content ":

""" You are a system tasked with identifying first -order predicates and

moral evaluation in a sentence.

You should identify all predicates in the sentence and write them down

in the following format: ’Predicate(<var1>, <var2>, ...)’.

Predicates are often verbs , adjectives , or nouns.

Adjective - and noun -predicates usually take one argument , for example

’_ is good ’ translates to ’Good(<val1>)’, or ’person ’ translates to

’Person(<val1>)’.

Most verb -predicates requre two arguments , for example ’_ works at _’

translates to WorksAt(<val1>, <val2>)’.

Some verb -predicates requre three or more arguments , for example ’_

wants _ to steal _’ translates to ’WantsToSteal(<val1>, <val2>,

<val3>)’.

Each sentence will have a moral evaluation , which should be written as

’evaluation(<evaluation >)’.

’you should ’ implies a universally good evaluation (’evaluation(GOOD)’)

and ’you shouldn ’t’ a bad evaluation (’evaluation(BAD)’).

When ’it’s nice ’, ’it’s not expected ’, etc. is stated , it implies a

consequence interpreted as ’evaluation(NICE)’,

’evaluation(NOT_EXPECTED)’, etc.

You get three examples showing correct identification and the wanted

output format ."""},

{"role": "user", "content ":

"you shouldn ’t pry into your child ’s personal buisness ."},

{"role": "assistant", "content ":

"evaluation(BAD), PryInto(<val1>, <val2>), ChildOf(<val1>, <val2>),

PersonalBusinessOf(<val1>, <val2>)"},

{"role": "user", "content ":

"people are not expected to love their family ."},

{"role": "assistant", "content ":

"evaluation(BAD), Love(<val1>, <val2>), People(<val1>),

FamilyOf(<val1>, <val2>)"},

{"role": "user", "content ":

"it ’s ok to not join in on fun activities in New York."},

{"role": "assistant", "content ":

"evaluation(GOOD), JoinIn(<val1>, <val2>), FunActivity(<val1>),

In(val1, val 2)"}

Listing 5.4: Prompt 1 in CoT approach.

5.2. Encoding System 47

{"role ":" system", "content ":

""" You are a system tasked with identifying first -order variables ,

constants and quantifiers for predicates in a sentence.

You should fill in the <vals > in the provided predicates with the

apprpriate variable , using ’x’, ’y’, ’z’ in lowecase , or with the

appropriate constant using for example ’EMMA ’, ’UNIVERSITYOFBERGEN ’,

etc. in uppercase.

Make sure the variables are consistent across predicates.

For each variable , you need to identify the correct quantifier , which

should be written as ’∀<variable >’ or ’∃<variable >’.
The ’evaluation ’-predicate shall not be filled in.

’you ’ and ’it ’ implies quantification ’everyone ’.

You get three examples showing correct identification and the wanted

output format ."""},

{"role": "user", "content ":

"Sentence: it’s good to care about your family ’s history. \

Predicates: evaluation(BAD), PryInto(<val1>, <val2>), ChildOf(<val1>,

<val2>), PersonalBusinessOf(<val1>, <val2>)"},

{"role": "assistant", "content ":

"∀x, ∀y, ∀z, evaluation(BAD), PryInto(x, y), ChildOf(y, x),

PersonalBusinessOf(z, y)"},

{"role": "user", "content ":

"Sentence: people are not expected to love their family. \

Predicates: evaluation(BAD), Love(<val1>, <val2>), People(<val1>),

FamilyOf(<val1>, <val2>)"},

{"role": "assistant", "content ":

"∀x, ∀y, evaluation(BAD), Love(x, y), People(x), FamilyOf(y, x)"},

{"role": "user", "content ":

"Sentence: it’s ok to not join in on fun activities in New York. \

Predicates: evaluation(GOOD), JoinIn(<val1>, <val2>),

FunActivity(<val1>), In(val1, val2)"},

{"role": "assistant", "content ":

"∀x, ∀y, evaluation(GOOD), JoinIn(x, y), FunActivity(y),

In(y, NEWYORK)"}

Listing 5.5: Prompt 2 in CoT approach.

{"role ":" system", "content ":

""" You are a system tasked with constructing valid first -order

sentences using the predicates , variables and quantifiers provided.

You should ensure precise and valid first -order formulas that convey

the explicit sentiment of the original sentence as accurately as

possible.

You should only use the predicates , variables and quantifiers provided.

48 Experiments

You should formulate each sentence as an implication , where the

conclusion should always be the ’evaluation ’-predicate.

You should not use nested predicates.

Use the following symbols: ’∨’, ’∧’, ’→’, ’↔’, ’∀’, ’∃’, ’¬’, ’(’, ’)’,

’,’.

You get three examples showing correct identification and the wanted

output format ."""},

{"role": "user", "content ":

"Sentence: it’s good to care about your family ’s history. \

Predicates: ∀x, ∀y, ∀z, evaluation(BAD), PryInto(x, y), ChildOf(y, x),

PersonalBusinessOf(z, y)"},

{"role": "assistant", "content ":

"∀x∀y∀z(PryInto(y,z) ∧ ChildOf(x,y) ∧ PersonalBuisnessOf(z,x) →
evaluation(BAD))"},

{"role": "user", "content ":

"Sentence: people are not expected to love their family. \

Predicates: ∀x, ∀y, evaluation(BAD), Love(x, y), People(x),

FamilyOf(y, x)"},

{"role": "assistant", "content ":

"∀x∀y(Love(x,y) ∧ People(x) ∧ FamilyOf(y,x) → evaluation(BAD))"},

{"role": "user", "content ":

"Sentence: it’s ok to not join in on fun activities in New York. \

Predicates: ∀x, ∀y, evaluation(GOOD), JoinIn(x, y), FunActivity(y),

In(y, NEWYORK)"},

{"role": "assistant", "content ":

"∀x∀y(¬JoinIn(x,y) ∧ FunActivity(y) ∧ In(y,NEWYORK) →
evaluation(GOOD))"}

Listing 5.6: Prompt 3 in CoT approach.

Temperature: We tested the temperature values 0.2, 0.5, 1.0, 1.2, 1.5, and 1.8 for
both the initial and adjustment prompt and manually reviewed the results. We found
that the default temperature value of 1.0 gave the best results.

System Settings for Running Final FOL Encodings

After considering several combinations of the different prompting techniques, we decided
that the best prompt strategy was to use a detailed system message, 3-shot learning with
self-correction and a temperature of 1.0. The final initial prompt can be seen in Listing
5.7 and the final adjustment prompt in Listing 5.8. As there are indefinite combinations
of system message formulations and prompt techniques used in prompt engineering, we
realize that there may be other combinations of techniques and approaches that would
yield better results than the one we chose. Furthermore, the combinations of approaches

5.2. Encoding System 49

that we reviewed were tested on a small subset of the data, anywhere between 10 to 60
sample norms. This may have led to a small sample bias in the evaluation, which means
that the data sample set is too small to ensure that the results are generalizable for the
rest of the dataset [Van de Schoot and Miocević, 2020, p. 51].

{"role ":" system", "content ":

""" You are a system tasked with translating sentences from natural

language English to first -order logic formulas.

Ensure precise and valid first -order formulas that convey the explicit

sentiment of the original sentence as accurately as possible.

Use the following symbols: ’∨’, ’∧’, ’→’, ’↔’, ’∀’, ’∃’, ’¬’, ’(’, ’)’,

’,’.

Use variables in lowercase (e.g., "x", "y", "z"), constants in

uppercase (e.g., "BAD", "EMMA", "FACEBOOK"), and predicates (e.g.,

"People(x)", "Friends(EMMA ,y)", "Explains(x,y,z)").

Ensure that the scope of a predicate does not contain other predicates

or nested structures.

Don ’t negate variables or constants.

Each formula should be formulated as an implication , where the

conclusion should always be "evaluation(GOOD)" or "evaluation(BAD)".

Use the negation -symbol in the antecedent when predicates express

negation , such that "do/can/will not <predicate >" translates to

"¬<Predicate >()".
When "you should" is stated it implies the consequence

"evaluation(GOOD)".

When "you shouln ’t" is stated it implies the consequence

"evaluation(BAD)".

When something is positively stated , such as "it ’s ok" or "it ’s

expected", it implies the consequence "evaluation(GOOD)".

When something is negatively stated , such as "it ’s rude" or "it ’s not

expected", it implies the consequence "evaluation(BAD)".

When "others" or "someone else" is mentioned , these should be

represented with existential quantifier , such that "other people"

translates to "∃x(People(x)).
When "sometimes" is expressed , all quantifiers should be existential ,

such that "sometimes people eat meat" translates to "∃x∃y(People(x) ∧
Meat(y) ∧ Eat(x,y))".

Make sure each action/property that has an actor is connected to its

actor , e.g. "your things" translates to "Thing(x) ∧ BelongsTo(x,y)", or

"your family" translates to "FamilyOf(x,y)".

It ’s better to divide the formula into several predicates that express

separate parts rather than combining all information into a single

predicate , e.g. "old man" translates to "Man(x) ∧ Old(x)".

Double check that all requirements specified above are met before

giving your answer.

Try reading out loud your translation to make sure the sentiment aligns

with the English sentence before giving your answer.

50 Experiments

Adjust if sentiment does not align.

You get three examples that show correct translations and the wanted

output format ."""},

{"role": "user", "content ":

"it ’s fine to care about your family ’s history ."},

{"role": "assistant", "content ":

"∀x∀y∀z(FamilyOf(x,y) ∧ HistoryOf(z,x) ∧ CaresAbout(y,z) →
evaluation(GOOD))"},

{"role": "user", "content ":

"you shouldn ’t talk to other people about your fetishes ."},

{"role": "assistant", "content ":

"∀x∀y∃z(Fetish(x) ∧ BelongsTo(x,y) ∧ People(z) ∧ TalkToAbout(y,z,x) →
evaluation(BAD))"},

{"role": "user", "content ":

"it ’s not ok to be frustrated when you work at the University of

Bergen ."},

{"role": "assistant", "content ":

"∀x(WorksAt(x, UNIVERSITY_OF_BERGEN) ∧ Frustrated(x) →
evaluation(BAD))"}

Listing 5.7: Initial prompt

{"role ":" system", "content ":

""" You are a system tasked with correcting a first -order formula to

make sure it captures the explicit sentiment expressed in the natural

language sentence as accurately and complete as logically possible.

If the first -order formula does not need correction , you should answer

with the formula exactly as it is without any changes or explanations.

Do not change the evaluation constant unless the evaluation sentiment

expressed in the natural language sentence is different from the one in

the provided formula.

Use the following symbols: "∨", "∧", "→", "↔", "∀", "∃", "¬", "(", ")",

",".

Use variables in lowercase (e.g., "x", "y", "z"), constants in

uppercase (e.g., "BAD", "EMMA", "FACEBOOK"), and predicates (e.g.,

"People(x)", "Friends(EMMA ,y)", "Explains(x,y,z)").

Ensure that the scope of a predicate does not contain other predicates

or any nested structures.

Don ’t negate variables or constants.

Each formula should be formulated as an implication , where the

conclusion should always be "evaluation(GOOD)" or "evaluation(BAD)".

Use the negation -symbol in the antecedent when predicates express

negation , such that "do/can/will not <predicate >" translates to

"¬<Predicate >()".

5.2. Encoding System 51

When "you should" is stated it implies the consequence

"evaluation(GOOD)".

When "you shouln ’t" is stated it implies the consequence

evaluation(BAD)".

When something is positively stated , such as "it ’s ok" or "it ’s

expected", it implies the consequence "evaluation(GOOD)".

When something is negatively stated , such as "it ’s rude" or "it ’s not

expected", it implies the consequence "evaluation(BAD)".

When "others" or "someone else" is mentioned , this should be

represented with existential quantifier , such that "other people"

translates to "∃x(People(x))".
When "sometimes" is expressed , all quantifiers should be existential ,

such that "sometimes people eat meat" translates to "∃x∃y(People(x) ∧
Meat(y) ∧ Eat(x,y))".

Make sure each action/property that has an actor is connected to its

actor , e.g. "someone ’s things" translates to "Thing(x) ∧
BelongsTo(x,y)", or "your family" translates to "FamilyOf(x,y)".

It ’s better to divide the formula into several predicates that express

separate parts rather than combining all information into a single

predicate , e.g. "old man" translates to "Man(x) ∧ Old(x)".

Double check that all requirements specified above are met before

giving your answer.

Try reading out loud your translation to make sure the sentiment aligns

with the English sentence before giving your answer.

Adjust if sentiment does not align.

Once again , if the first -order formula does not need correction , you

should answer with the formula exactly as it is without any changes or

explanations.

You get three examples that show correct adjustment and the wanted

output format ."""},

{"role": "user", "content ":

"NL English sentence: it is ok to kiss someone else ’s significant

other.

Formula: ∃x∀y∀z(HasSignificantOther(x,y) ∧ Kiss(z,y) →
evaluation(GOOD))"},

{"role": "assistant", "content ":

"∃x∀y∀z(HasSignificantOther(x,y) ∧ Kiss(z,y) → evaluation(GOOD))"},

{"role": "user", "content ":

"NL English sentence: you shouldn ’t drink someone ’s beer.

Formula: ∀x∀y(People(x) ∧ Beer(y) ∧ Drink(x,y) → evaluation(BAD))"},

{"role": "assistant", "content ":

"∀x∀y∀z(Beer(y) ∧ BelongsTo(y,x) ∧ Drink(z,y) → evaluation(BAD))"},

{"role": "user", "content ":

52 Experiments

"NL English sentence: it ’s ok to not join in on fun activities.

Formula: ∀x∀y(Activity(x) ∧ Fun(x) ∧ NotJoinInOn(y,x) →
evaluation(GOOD))"},

{"role": "assistant", "content ":

"∀x∀y(Activity(x) ∧ Fun(x) ∧ ¬JoinInOn(y,x) → evaluation(GOOD))"}

Listing 5.8: Adjustment prompt

The 1001 norms from the NL norm dataset were encoded into FOL using the final
prompt variations seen in Listings 5.7 and 5.8. The norms were first encoded by GPT-
4 using the initial prompt from Listing 5.7. The encoding result of this interaction was
then corrected by GPT-4 using the adjustment prompt from Listing 5.8. We executed the
encoding by dividing the norms into 10 batches of 100 to 101 norms in each batch. Each
batch was run through the FOL encoding part of the system. The FOL encoding was
executed between 8. February 2024 and 12. February 2024. Each batch had a runtime
of 8 to 11 minutes and an average cost of $5,432, resulting in a cumulative runtime of
93 minutes and a total cost of $54,38. The batches were run on a MacBook Pro 13-inch
2020 model.

5.2.2 First-Order Logic Syntax Verifier

As the GPT-4 model used to encode NL norms to FOL can generate syntactically invalid
FOL formulas, that is, FOL formulas that are not well-formed, it is important to have a
separate syntax checker that can verify which encodings are well-formed and which are
not. This is the second step of the encoding system. We utilize the FOL syntax verifier
created by Yang et al. [2023] to solve this task by labeling those that cannot be parsed
by the syntax verifier as Syntactically invalid encodings. We see an example of an FOL
encoding that is labeled Syntactically invalid by the syntax verifier in Example 5.2.3.

Norm: “you should not always get registration information when in an accident”.
FOL: ∀x∀y(Accident(x) ∧ In(y, x) ∧ Always(Get(y,RegistrationInformation(x)))
→ evaluation(BAD))

The reason why this specific FOL encoding should be labeled Syntactically Invalid
is that it contains a nested predicate Always(Get(y,RegistrationInformation(x))),
which violates the requirements of a WFF.

Example 5.2.3: FOL encoding labeled Syntactically invalid by the FOL syntax verifier

One limitation of this verifier is that it evaluates FOLs containing conjunctions of valid
implications, where all implications use the same quantified variable, as invalid. These
are FOLs such as Formula 5.1, where F, G, and H are predicates and x is a variable

5.2. Encoding System 53

symbol that is used in two separate implications in a conjunction. In the definition of
what constitutes a WFF defined in Section 2.2.4, there are no specifications that make
this structure not a WFF.

∀x(F (x) → G(x)) ∧ ∀x(H(x) → G(x)) (5.1)

5.2.3 Converting First-Order Formulas to Conjunctive Normal

Form

After encoding the natural language norms to FOL, and filtering out the FOLs that are
not well-formed using a syntax verifier, we convert the well-formed FOLs to CNF. By
converting the FOLs to CNF, we can at a later stage easily determine whether or not the
FOLs are considered valid Horn Clauses. As explained in Chapter 2.2.3, a formula is in
CNF if and only if it consists of a conjunction of one or more disjunctions.

The CNF conversion program2 performs a number of actions step-by-step on an FOL
formula. The actions consist of eliminating implications, moving negations, standardizing
variables, skolemization, and distributing conjunctions and disjunctions. Each of these
actions, in addition to the preprocessing required prior to the CNF conversion, will be
explained in detail below.

Preprocessing

The CNF conversion program takes as input a list of well-formed FOL formulas and
converts each FOL to CNF. The program requires that the FOL strings in the input
list are formatted as follows. The FOLs have to be WFF, all quantifiers have to be
on the leftmost side of the formula, all variables within a formula have to be unique,
and the FOLs have to be expressed using a defined set of operator symbols. Through
preprocessing, we ensure that each FOL follows this certain format before converting it
to CNF. We describe the implemented preprocessing steps below using an example.

An NL norm, “a girl should be friends with some girls and enemies with all boys”, can
be represented in FOL as in Formula 5.2. This FOL example represents the structure of
the output generated by the GPT-4 encodings. Using this FOL example, we will show
how we process the encoded FOLs before converting them to CNF.

∀x(∃y(Girl(x) ∧Girl(y) ∧ Friends(x, y)) ∧ ∀y(Boy(y) ∧ Enemies(x, y)) →

evaluation(GOOD))

(5.2)

2Found on GitHub: https://github.com/wjdanalharthi/First-order-Logic-resolution

https://github.com/wjdanalharthi/First-order-Logic-resolution

54 Experiments

The first step in the preprocessing is to rename all duplicate variables. We iterate
through each character in the formula and give each quantified variable its own unique
name. The parentheses indicate for each variable which quantifier it lies within the scope
of and the variables are renamed thereafter. The result of renaming all the variables in
Formula 5.2 can be seen in Formula 5.3

∀x0(∃y0(Girl(x0) ∧Girl(y0) ∧ Friends(x0, y0)) ∧ ∀y1(Boy(y1) ∧ Enemies(x0, y1)) →

evaluation(GOOD))

(5.3)
In the next step, we move all quantifiers to the left side of the formula by using

simple string manipulation. The result of applying this step to Formula 5.3 can be seen
in Formula 5.4.

∀x0∃y0∀y1((Girl(x0) ∧Girl(y0) ∧ Friends(x0, y0)) ∧ (Boy(y1) ∧ Enemies(x0, y1)) →

evaluation(GOOD))

(5.4)
The FOL syntax verfier described in Section 5.2.2 required the FOL string to consist

of the following operator symbols: ∀,∃,∨,∧,→,↔,¬, while the CNF conversion program
requires the operator symbols to be, respectively ∀,∃, |,&,==>,<==>,∼. We used the
built-in Python method replace to replace each operator instance with its respective
alternative representation. After applying this method to Formula 5.4, we get our final
preprocessing output, seen in Formula 5.5.

∀x0∃y0∀y1((Girl(x0) & Girl(y0) & Friends(x0, y0)) & (Boy(y1) &

Enemies(x0, y1)) ==> evaluation(GOOD))

(5.5)

CNF Conversion Program

The CNF converter program takes as input a list of strings that express FOL formulas
in the format exemplified in Formula 5.5. For each FOL string in the input list, the
conversion program starts by tokenizing and parsing the string to a nested array of
elements, each element separated according to the parentheses’ scopes in the FOL string.

Next, each element in the array is converted to an instance of Clause or Quantifier,
which are defined class objects, based on the operators that exist in the element. Each
Clause instance is then converted to CNF by eliminating implications from the clause,
then moving negation inward, and finally distributing AND over OR in the clause. We
describe each of these steps in detail.

5.2. Encoding System 55

The process of eliminating implications is based on the operator of the clause. If the
clause’s operator is conditional (==>) it transforms the clause into a disjunction of the
negation of the antecedent and the consequent. If the clause’s operator is a biconditional
(<==>) it transforms the clause into a conjunction of two disjunctions. If the clause’s
operator is not an implication, it simply returns the clause with its arguments.

The process of moving negation inward is based on the clause’s operator and the
argument within the clause. If the clause’s operator is a negation (¬), and the negated
argument’s operator is a Quantifier, then the quantifier is replaced by the alternative
quantifier and the negation moved one place to the right. If the clause’s operator is a
negation and the negated argument’s operator is a conjunction (&) it transforms the
clause into a disjunction of the negations of the arguments. If the clause’s operator is
a negation and the negated argument’s operator is a disjunction (|) it transforms the
clause into a conjunction of the negations of the arguments. If the clause’s operator is
negated and the clause is a symbol or has no arguments, it simply returns the clause. If
the clause’s operator is not a negation, the clause is returned as is.

The process of distributing AND over OR is based on the clause’s operator. If the
clause’s operator is a disjunction (|) it finds the first argument that is a conjunction and
distributes the conjunction over the rest of the arguments. If there is no such argument,
it simply returns the clause. If the clause’s operator is a conjunction (&) it distributes
AND over OR in each of the arguments. If the clause’s operator is neither a disjunction
nor a conjunction, it simply returns the clause.

Lastly, the program performs skolemization on the CNF converted clause. Skolem-
ization, as described in Section 2.2.3 is the process of removing existential quantifiers
from an FOL by replacing each existential quantifier with a Skolem function or a Skolem
constant. When an existential quantifier is found in the clause, it checks if there are any
universal quantifiers in its scope. If there are no universal quantifiers in scope, it generates
a new unique Skolem constant and replaces the existentially quantified variable with this
constant. If there are universal quantifiers in scope, it generates a new unique Skolem
function and replaces the existentially quantified variables with this function. In addi-
tion, new unique variables are generated for each universal quantifier and its associated
variables, and the universal quantifier itself is removed from the formula.

In the end, we are left with a skolemized FOL on a CNF format, stripped of quantifiers,
and with unique variables. When the CNF conversion program is applied to Formula 5.5,
the result can be seen in Formula 5.6.

56 Experiments

evaluation(GOOD) | ∼Girl(v0) | ∼Girl(f1(v0)) | ∼Friends(v0, v1) | ∼Boy(v2) |

∼Enemies(v0, v2)

(5.6)

5.2.4 Horn Clause Validation

The final part of the encoding system involves automatically checking whether the CNF-
converted FOLs are valid Horn clauses or not. As explained in Section 2.2.4, valid Horn
clauses are clauses in normal form with zero or one positive atomic formula. Valid Horn
sentences are conjunctions of valid Horn clauses. Since the FOL formulas have already
been converted to CNF, we simply need to check if the CNF clauses contain more than
one positive atomic formula. If it does, then the formula is not a valid Horn clause.
Otherwise, it is considered to be a valid Horn clause.

For each syntactically valid CNF-converted FOL formula, the process of determin-
ing whether the formula is valid Horn consists of two steps. First, each conjunction of
disjunctions in the CNF-converted FOL is separated into an array containing the indi-
vidual disjunctions. If the formula consists of one single disjunction, the list will contain
only this single element. Second, for each disjunction in the list, we count the number
of positive atomic formulas. If the number is greater than one for one or more of the
disjunctions, the formula is classified as an invalid Horn clause. Otherwise, the formula
is classified as valid Horn. We show the FOL and CNF notations of a valid Horn clause
in Example 5.2.4, and the notations for an invalid Horn clause in Example 5.2.5

FOL: ∀x∀y(F (x) ∧G(y) → H(x, y))
CNF notation: ¬F (x) ∨ ¬G(y) ∨H(x, y)

The CNF notation shows that there is only one positive atomic formula,
namely H(x,y) which means that the Horn clause is a valid definite Horn clause.

Example 5.2.4: Valid Horn clause FOL and CNF

The FOL encoding, syntactic evaluation, CNF conversion, and Horn clause validation
described in this section have been integrated into a pipeline that makes up the complete
encoding system, as illustrated in Figure 4.1. The pipeline iterates through a tsv file con-
taining NL norms in the form of strings. Each NL norm is encoded to FOL by prompting
the GPT-4 model twice, first to create an initial encoding and then to adjust the result

5.3. Sentiment Analysis 57

FOL: ∀x∀y(F (x) ∧ ¬G(y) → H(x, y))
CNF notation: ¬F (x) ∨G(y) ∨H(x, y)

The CNF notation shows that there is more than one positive atomic formula, namely
G(y) and H(x,y), which means that the formula is not considered to be valid Horn.

Example 5.2.5: Invalid Horn clause FOL and CNF

of the initial encoding. The syntax of the FOL encodings is automatically evaluated.
All syntactically valid FOL encodings are converted to CNF in order to ultimately be
evaluated as valid Horn clauses or not. The results of running 1001 sentences from the
NL norm dataset through the encoding system pipeline will be explored in further detail
in Chapters 6 and 7.

5.3 Sentiment Analysis

While iteratively testing and improving the NL to FOL encoding part of the encoding
system described in Section 5.2, we noticed a recurring pattern in the wrongly encoded
norms. That is, the GPT-4 model had a tendency to change the evaluation constant to
“GOOD” if the norm part of the sentence could be commonly considered to be positive,
even though the sentence expresses it to be negative, and vice versa. We call these
instances “counter-intuitive norms”, and list examples of these instances in Example 5.3.1.
This property of the FOL-encodings will be elaborated in more detail in Chapter 7. Based
on this observation, we wanted to explore the possibility of determining the evaluation
constant of a norm using alternative methods to the GPT-4 model. We explored the
possibility of using a sentiment analysis model for this task.

“It is good to hurt other people”
“You shouldn’t do things you like”
“You should read the Communist manifesto because it is wrong”
“It’s bad to pay back money you owe”

Example 5.3.1: Counter-intuitive norms

We manually created a dataset of 992 NORM-LABEL pairs where each instance con-
sists of a norm from the Commonsense Norm Bank and a label, either 1 (positive) or
0 (negative), representing the sentences’ interpreted evaluation sentiment. The selected
norms were different from those used in the NL norm dataset. We used this NORM-
LABEL dataset to fine-tune the language model DistilBERT, creating a sentiment anal-

58 Experiments

ysis model capable of predicting the evaluation constant of a norm. The fine-tuned SA
model takes an NL norm as input and outputs the appropriate label, 0 or 1, corresponding
to the sentiment, “GOOD” or “BAD”, of the evaluation part of the norm.

To determine how well the sentiment analysis model is able to label norms compared
to the GPT-4 model used in the encoding system, we needed to know what the correct
labeling should be for each of the 1001 norms encoded by GPT. We labeled the 1001 norms
from the NL norm dataset with their correct evaluation constant, “GOOD” or “BAD”,
based on the evaluation constant used in the manually encoded baseline FOLs. Using
this, we could compare how well the sentiment analysis model and GPT-4 encodings
performed when applied to the same 1001 norms. The results of this comparison will be
further elaborated on in Chapter 6.

5.4 Inconsistency Checker

While manually encoding norms to FOL representations, we noticed that several of the
norms were inconsistent in the manner that two or more norms consisted of the same
norm part with different, conflicting evaluation parts. Example 5.4.1 shows intuitively
conflicting norms. We want to be able to identify these types of conflicts if they exist in
a set of Horn clauses representing norms.

“it is wrong for a teacher to bully a student”
“it is right for a teacher to bully a student”

Example 5.4.1: Norms that are inconsistent with each other

We have implemented a solution to finding such Horn clause inconsistencies using
Clingo, one of the most widely used ASP systems. All valid Horn clause representations
encoded from the NL norm dataset were represented as ASP facts and rules and written to
a Clingo script. When this script is run, it will automatically tell us if the facts defined in
the script are satisfiable or unsatisfiable according to the defined rules and which norms
cause the conflict. A set of facts that are unsatisfiable is a set of facts that contain
inconsistencies, meaning that two or more facts cannot exist at the same time according
to the defined rules. We have limited our encoding system to strictly create logical
implications where the antecedent represents the norm part, which expresses the behavior
that should or should not be encouraged, and the consequent represents the evaluation
part of the norm, which expresses whether or not the norm part is encouraged or not. An
inconsistency in these types of encodings thus occurs when two Horn clause encodings
consist of the same norm part, with different evaluation constants in the evaluation part.

5.4. Inconsistency Checker 59

Example 5.4.2 shows how the Horn clause representations of the norms in Example 5.4.1
are inconsistent in this manner.

Norm: “it is wrong for a teacher to bully a student”
Horn clause: ¬Teacher(v1) ∨ ¬Student(v2) ∨ ¬Bullies(v1, v2) ∨ evaluation(BAD)

Norm: “it is right for a teacher to bully a student”
Horn clause: ¬Teacher(v3) ∨ ¬Student(v4) ∨ ¬Bullies(v3, v4) ∨ evaluation(GOOD)

In the two Horn clauses, the norm parts are identical (except for the use of different
variables), while the evaluation constants in the evaluation parts are different, making
the two encodings inconsistent.

Example 5.4.2: Inconsistent norms and their Horn clause representations

6{fact(bad, (−teacher(v1),−student(v2),−bullies(v1, v2)));

fact(bad, (−teacher(v1),−bullies(v1, v2),−student(v2)));

fact(bad, (−student(v2),−teacher(v1),−bullies(v1, v2)));

fact(bad, (−student(v2),−bullies(v1, v2),−teacher(v1)));

fact(bad, (−bullies(v1, v2),−teacher(v1),−student(v2)));

fact(bad, (−bullies(v1, v2),−student(v2),−teacher(v1)))}6

(5.7)

To create an ASP program that will be able to recognize these inconsistent structures
in a set of Horn clauses, we chose to represent each valid Horn clause as one ASP fact
and one ASP rule. Each Horn clause fact is constructed to be a nested predicate, named
fact, consisting of two arguments; the evaluation constant of the Horn clause evaluation
part, and a tuple containing the predicates and variables of the norm part of the Horn
clause. To ground the fact, we replace the Horn clause variables with constants. We show
an example of how we want a Horn clause to be represented as a fact in Example 5.4.3.

Horn clause: ¬Teacher(v1) ∨ ¬Student(v2) ∨ ¬Bullies(v1, v2) ∨ evaluation(BAD)
ASP fact: fact(bad, (−teacher(v1),−student(v2),−bullies(v1, v2))).

Example 5.4.3: Horn clause and its ASP fact representation

In order to ensure that the order of the predicates in the norm part is unimportant,

60 Experiments

we extend the rule to include all permutations of possible orders of predicates and specify
that all permutations should be considered true at the same time. The final ASP fact
representation of the Horn clause from Example 5.4.2, expressing the wrongness of a
teacher bullying a student, is represented in Equation 5.7. The number six informs the
program that all six permutations of the fact must be considered true simultaneously.
The representation of the constricting Horn clause from Example 5.4.2, which expresses
the rightness of a teacher bullying a student, can be seen in Equation 5.8.

6{fact(good, (−teacher(v3),−student(v4),−bullies(v3, v4)));

fact(good, (−teacher(v3),−bullies(v3),−student(v4)));

fact(good, (−student(v4),−teacher(v3),−bullies(v3, v4)));

fact(good, (−student(v4),−bullies(v3, v4),−teacher(v3)));

fact(good, (−bullies(v3, v4),−teacher(v3),−student(v4)));

fact(good, (−bullies(v3, v4),−student(v4),−teacher(v3)))}6

(5.8)

We ultimately want the program to recognize “illegal” combinations of facts, where
Equations 5.7 and 5.8 are examples that, when combined, would constitute such an illegal
combination. We explain to the program what constitutes an illegal combination by
creating ASP rules. We create one rule for each Horn clause fact, the rule expressing that
this Horn clause fact cannot exist alongside a conflicting fact. That is, a fact containing
the same norm arguments but a different evaluation argument. In the rule, the variables
of the Horn clause are represented as ASP variables in order to ensure that facts using
different constants are still encompassed by the same rule. We express this by creating a
headless rule with the body consisting of both the “good” and “bad” fact representations
of the norm.

A headless rule, or a constraint, entails that the elements of the body cannot be
true at the same time. Equation 5.9 shows the rule that accompany the facts from
Equations 5.7 and 5.8. As these two facts consist of the same norm part predicates, they
will be represented by the same rule. This rule says that the fact predicate containing
the constant “GOOD”, and the tuple with those distinct predicates, and another fact
predicate containing the constant “BAD” and the tuple with those distinct predicates
(though with different variables) cannot both be true at the same time. When the facts
from Equations 5.7 and 5.8 and the rule from Equation 5.9 occur in the same Clingo
program, the program will terminate as “unsatisfiable”.

5.5. Evaluating Faithfulness of First-Order Logic Encodings 61

: −fact(good, (−teacher(V 1),−student(V 2),−bullies(V 1, V 2))),

fact(bad, (−teacher(W1),−student(W2),−bullies(W1,W2))).

(5.9)

We created a Python script that iteratively converts each single valid Horn clause
from the automatically encoded norms from the NL norm dataset into a fact and a rule
on the form described above. The facts and rules were then automatically written into a
Clingo ASP program. When running the Clingo program, the ASP solvers will search for
stable models within the program. Inconsistencies ensure that no stable models can be
found and the program terminates as “unsatisfiable”. The termination of a program as
“unsatisfiable” indicates the presence of two or more Horn clauses sharing identical norm
parts but differing in their evaluation constants in the Horn clause set. If there are no in-
consistencies, the program will terminate as “satisfiable”. We isolated the clauses creating
inconsistencies by iteratively removing clauses from the script until it became satisfiable.
It is important to be able to determine whether or not a set of norm representations to
be used as a moral KB in an AMA contains inconsistent instances, as this is unwanted.

5.5 Evaluating Faithfulness of First-Order Logic En-

codings

To assess the encoding system’s faithfulness in terms of intended meaning, we manually
compared the 1001 automatically encoded FOL formulas with their respective manual
encodings and evaluated the similarity based on structure, interpreted meaning, and
predicate names. As there are several ways of representing a sentence in FOL, the auto-
matically encoded FOL and the manually encoded FOL did not need to be identical for
them to be considered equivalent.

We created three levels of faithfulness and classified each valid automatically encoded
FOL into one of these three categories. Table 5.1 shows examples from all categories.
The three classification categories are:

1. Wrong encodings: FOLs classified as Wrong are syntactically valid, but the most
likely interpreted meaning of the FOL does not align with the meaning of its norm.
In Table 5.1, we see that the FOL encoding of the norm “you should ask too much
of your family” is categorized as Wrong because the evaluation constant in the
FOL encoding is “BAD”, when it should be “GOOD”, thus expressing the complete
opposite of what the original norm expresses.

2. Lacking encodings: FOLs classified as Lacking are syntactically valid and express a
similar interpreted meaning as the original norm. However, there are some lacking

62 Experiments

dimensions of the FOL in terms of precision when compared to the original norm. In
Table 5.1, we see that the FOL-encoding of the norm “you should expect your friends
to reveal everything about themselves to you” is classified as Lacking because the
predicate SelfRevealing lacks a variable representing the concept to be revealed.
We can argue that the FOL encoding still expresses the most crucial elements of
the norm, but we still find it lacking in some more trivial aspects.

3. Accurate encodings: FOLs classified as Accurate are syntactically valid FOLs where
the interpreteded meaning of the FOLs aligns with that of the original norm. In
Table 5.1, we see that the FOL encoding of the norm “you shouldn’t try to steal
your friend’s significant other” is an example of a norm which FOL encoding is
classified as Accurate. We recognize the FOL to be Accurate as even though some
of the predicate names are different, the difference is trivial and the meaning is fully
captured in the encoded FOL when compared to the original norm.

The classification of the automatically encoded FOLs was done by the author, along-
side the supervisor for this thesis and a bachelor’s student in information science. Al-
though the classification categories and the criteria for what types of FOLs each category
should include were established and informed prior to the classification process, it is im-
portant to note that the classifications are likely not fully consistent between the three
individuals. The results of the faithfulness evaluation will be further elaborated on in
Chapters 6 and 7.

NL norm Manual FOL encoding GPT-4 FOL encoding Classification
category

you should ask too much
of your family.

∀x∀y(Family(x, y) ∧
AskTooMuch(y, x) →
evaluation(GOOD))

∀x∀y(FamilyOf(y, x) ∧
AsksTooMuch(x, y) →
evaluation(BAD))

Wrong

you should expect your
friends to reveal every-
thing about themselves to
you.

∀x∀y∀z(Friends(x, y) ∧
ExpectToReveal(x, y, z) ∧
About(z, y) →
evaluation(GOOD))

∀x∀y(Friends(x, y) ∧
∀z(SelfRevealing(y, z) →
evaluation(GOOD)))

Lacking

you shouldn’t try to steal
your friend’s significant
other

∀x∀y∀z(Friend(y, x) ∧
SignificantOther(z, y) ∧
TryToSteal(x, z) →
evaluation(BAD))

∀x∀y∀z(Friends(x, y) ∧
HasSignificantOther(y, z) ∧
TriesToSteal(x, z) →
evaluation(BAD))

Accurate

Table 5.1: Three examples of faithfulness evaluations of GPT-encoded FOLs

Chapter 6

Results

In this chapter, we describe the results of running norms from the NL norm dataset
through the encoding system and the results of the sentiment analysis model and incon-
sistency checker proposed as solutions to further improve the encoding system. Section
6.1 presents the results of encoding the 1001 natural language norms from the NL norm
dataset into FOL, utilizing the methods outlined in Section 5.2. Section 6.2 details the
results of the sentiment analysis model described in Section 5.3. Section 6.3 presents the
result of using the inconsistency checker described in Section 5.4 on the valid Horn encod-
ings from the NL norm dataset. Lastly, Section 6.4 describes the result of the evaluation
of faithfulness of the encoding created by the encoding system1.

6.1 Encoding System

The 1001 natural language sentences from the NL norm dataset were processed by the
encoding system described in Section 5.2. The results were stored in a tsv file, containing
the 1001 NL norms, their corresponding FOL encodings, and the syntactic assessments
of these encodings. Table 6.1 illustrates the content of the tsv file using two example
instances. We explain each column in the tsv file.

The column called “num” refers to the index number that the norm had in the Com-
monsense Norm Bank file. The “input_sequence” column contains the natural language
norm. The “fol-translation” column contains the output from prompting the GPT-4 model
to encode the norm from “input_sequence” to FOL using the initial prompt alone (see
Listing 5.7). The “fol-eval” column contains the syntactic evaluation of the FOL encoding
in “fol-translation” using the FOL syntax verifier described in Section 5.2.2. The value
in this column is either 1, representing a syntactically valid FOL, or 0, representing a
syntactically invalid FOL. The “fol_adjustment-translation” column contains the output

1The files containing the encoded norms with their faithfulness evaluation and the Clingo script
containing valid Horn clauses converted to ASP can be found in the “results” folder of the GitHub
repository containing related code (https://github.com/emmabjor/nl-horn-master/tree/main)

63

https://github.com/emmabjor/nl-horn-master/tree/main

64 Results

from prompting the GPT-4 model to adjust the result of the “fol-translation”, using the
adjustment prompt (see Listing 5.8).

The “fol_adjustment-eval” column contains the syntax evaluation of the adjusted
FOL encoding from “fol_adjustment-translation” using the FOL syntax verifier. The
“cnf” column contains the FOL from “fol_adjustment-translation” converted to CNF.
The “cnf-eval” column contains the syntax evaluation of the cnf-converted FOL using
the FOL syntax verifier. FOL. The “horn” column contains the Horn-verified CNF from
the “cnf” column. If the CNF is not considered a valid Horn, this field will contain
the string “INVALID HORN”, and the last column, “horn-eval”, will contain the number
0. Otherwise, the “horn” column contains the CNF formula using the original operator
symbols, and the “horn-eval” column contains the number 1.

Of the 1001 FOL encodings returned from the initial prompt call, 967 were evaluated
as syntactically valid, which means that they are considered well-formed formulas in the
FOL language. After adjusting all 1001 initial FOL encodings using the adjustment
prompt, 960 encodings were evaluated as syntactically valid. The remaining 41 adjusted
FOL encodings were evaluated as syntactically invalid and were not processed further in
the encoding system. Of the 960 syntactically valid FOL encodings, 816 encodings were
considered syntactically valid Horn clauses. The remaining 152 FOL encodings were
structured in a way that is not considered valid Horn.

6.2 Sentiment Analysis

As described in Section 5.3, while designing the prompts to be used in the FOL encoding
part of the encoding system, we noticed that the GPT-4 model had a tendency to create
correct norm predicates using incorrect evaluation constants. That means that the model
used the evaluation constant “GOOD” if the norm part of the sentence can be commonly
considered to be positive, even though the sentence expresses it to be negative, or vice
versa. By manually examining the 1001 automatically encoded FOL formulas, we counted
75 encoding instances in which this phenomenon occurred.

In Section 5.3 we describe how we labeled the norms from the NL norm dataset with
their respective “GOOD” and “BAD” labels, to be used as a baseline of correct labeling for
this set. A total of 539 norms were labeled “GOOD” and 461 norms were labeled “BAD”.
One norm did not receive either label, as it was encoded using a different evaluation
label than “GOOD” or “BAD”. This instance was removed from the dataset. We used
the fine-tuned sentiment analysis model to predict the evaluation constant labels of the
norms in the NL norm dataset and compared the results with the correct baseline labels.
In addition, we compared the evaluation constants of the GPT-4 model’s encodings to
the correct baseline labels. The result of these two comparisons can be seen in Table 6.2.

6.3. Inconsistency Checker 65

Column Example instance 1 Example instance 2
num 1 2205

input_sequence you should ask too much of your
family.

you should not always punish people
for their wrongdoings.

fol-translation
∀x∀y(FamilyOf(y, x) ∧
AsksTooMuch(x, y) →
evaluation(GOOD))

INVALID FOL:
∀x∀y(Wrongdoing(y) ∧
Committed(x, y) ∧
¬∀time(PunishAt(x, y, time)) →
evaluation(GOOD))

fol-eval 1 0

fol_adjustment-
translation

∀x∀y(FamilyOf(y, x) ∧
AsksTooMuch(x, y) →
evaluation(BAD))

∀x∀y(People(x) ∧Wrongdoing(y) ∧
Committed(x, y) ∧
¬AlwaysPunish(x, y) →
evaluation(GOOD))

fol_adjustment-
eval 1 1

cnf
evaluation(BAD) |
∼FamilyOf(v4, v3) |
∼AsksTooMuch(v3, v4)

evaluation(GOOD) |
∼People(v93) |
∼Wrongdoing(v94) |
∼Committed(v93, v94) |
AlwaysPunish(v93, v94)

cnf-eval 1 1

horn
(¬FamilyOf(v4, v3) ∨
¬AsksTooMuch(v3, v4) ∨
evaluation(BAD))

INVALID HORN

horn-eval 1 0

Table 6.1: Content of system encoding results

We see from Table 6.2 that the sentiment analysis model (SA model) correctly labeled
0.99 of the norms labeled “BAD” and 0.98 of the norms labeled “GOOD”. In comparison,
the GPT-4 model correctly labeled only 0.83 of the norms labeled “BAD” and 0.92 of
the norms labeled “GOOD”. This result shows that the sentiment analysis model does a
better job of finding the correct evaluation labels than the GPT-4 model.

SA model GPT-4 model
model / BAD GOOD BAD GOOD
baseline
BAD 0.99 0.10 0.83 0.17

GOOD 0.20 0.98 0.08 0.92

Table 6.2: Overlap of predicted evaluation constant for sentiment analysis model and
GPT-4 model compared to baseline evaluation constant

6.3 Inconsistency Checker

In Section 5.4, we describe how we use an ASP satisfiability solver to check whether
or not the set of Horn Clause-represented norms outputed from the encoding system is

66 Results

consistent.
The 816 valid Horn Clause encodings were converted to ASP facts and rules and

written to a Clingo script following the method outlined in Section 5.4. When running the
script, the solver is unable to find any stable models and deems the program unsatisfiable.
This means that there are inconsistencies in the Horn Clauses fed to the ASP program.

When we isolated the clauses causing the program to terminate as unsatisfiable, we
found four clauses. These were the clauses encoded from the norms “it is right for a
teacher to bully a student” and “it is wrong for a teacher to bully a student” and two
individual clauses that contained a dash (-) in the predicate names, leading to unsatisfiable
representations. The two norms mentioned have clauses that express conflicting attitudes
towards a teacher bullying a student and we therefore expected these norms to cause an
inconsistency.

6.4 Evaluation of Faithfulness

In Section 5.5, we describe how we evaluate how well the encoding system captures the
interpreted meaning of the original NL norms in their respective FOL encoding. This was
done by defining three categories with different levels of faithfulness and then manually
classifying each FOL encoding into one of these categories. The three categories being
Wrong encodings, Lacking encodings, and Accurate encodings.

After categorizing each of the 1001 encoded FOLs into one of these three faithfulness
categories, we ended up with 284 norms classified as Wrong, 168 norms classified as
Lacking, and 508 norms classified as Accurate.

Chapter 7

Analysis of Encoding Mistakes

This chapter means to point out common structures or patterns in faulty FOL encod-
ings and invalid Horn clause representations found in the 1001 encoded norms from the
NL norm dataset. The motivation behind this is to inherently figure out what types of
norms the encoding system is not able to accurately convert to Horn clauses and what
mistakes are made in the GPT-encoding process. Faulty FOL representations are repre-
sentations that are syntactically invalid, meaning that they are not WFF, or that lack a
faithful representation of meaning. We analyze them in an effort to recognize what types
of mistakes GPT-4 makes when encoding FOL formulas. By figuring out what mistakes
are being made, there is a greater chance of being able to mitigate these issues and gain
more precise results in the future. Additionally, we use this section to look into what
types of norms cannot be encoded to valid Horn clause structure, even though they might
have been correctly represented in FOL. This is done to gain insight on what limitations
there might be in representing norms as Horn clauses.

We have identified faulty representations of the FOL and Horn clauses on three dif-
ferent occasions:

1. Within the encoding system, we used a syntax verifier (described in Section 5.2.2)
to identify FOL encodings that did not follow a well-formed FOL syntax. These
encodings and belonging norms were classified as Syntactically invalid encodings.

2. In the evaluation of faithfulness of FOL encodings described in Section 5.5, we
identify two additional classification categories containing faulty FOL encodings,
called Wrong encodings and Lacking encodings. These categories include FOLs
that are well-formed, but not accurate in terms of intended meaning.

3. The fourth and final classification category is found in the last step of the encoding
system, where we filter out FOL encodings that do not have a valid Horn structure.
These invalid Horn formulas belong to the classification category called Not Horn.

In the end, we are left with four faulty classification categories that will be analyzed in

67

68 Analysis of Encoding Mistakes

this chapter; Syntactically invalid encodings, Wrong encodings, Lacking encodings, and
Not Horn.

We analyzed the FOL encodings and accompanying norms within the four faulty
classification categories in the following way. First, for each encoding in each of the
four classification categories, we identified the main general reason for that instance
being classified in this particular category. In other words, what attribute exists in the
FOL encoding of the norm that led to this instance belonging to this category over any
other category? We grouped the instances into several attribute pattern categories for
each classification category based on these observations. Some instances have attributes
that belong to several attribute patterns and were therefore sorted into multiple pattern
categories. Some attribute pattern categories were further divided into subcategories.
Second, we went through each of these attribute pattern categories and tried to identify
patterns in the NL norms accompanying the FOL encodings. This was done to generalize
what types of norms led to specific FOL attributes when encoded by the encoding system.
As many of the attribute pattern categories had few instances, it was difficult to find
patterns in the NL norms within all attribute pattern categories. It is important to note
that the category definitions and categorization of FOLs were done on the basis of the
author’s intuition alone. There may exist patterns within the FOL mistakes other than
the ones mentioned here.

Similar attribute pattern categories and subcategories exist within both the Wrong
and Lacking classification categories. The difference between the FOL encodings classified
between the two comes down to how much the mistake impacts the change in meaning
between the FOL and the NL norm. A minor change will be classified as Lacking, while a
major change will be classified as Wrong. An overview of all attribute pattern categories
and subcategories, including the number of instances in each category, can be found in
Table 7.1.

7.1 Syntactically Invalid Encodings

As described in Section 5.2.2, FOL encodings that did not meet the criteria required for a
well-formed FOL formula were classified as Syntactically invalid. For the 41 Syntactically
invalid FOLs, we identified one recurring attribute pattern, nested predicate, in which 34
FOL encodings were classified. For the remaining FOL encodings, we did not find any
recurring patterns. We describe what characterize the FOLs and accompanying norms in
the nested predicate category below.

7.1. Syntactically Invalid Encodings 69

Classification category Attribute pattern categories and subcategories
Syntactically invalid encodings (41) Nested predicate (34)

Wrong encodings (283)

Content errors (85):
- Missing part (43)
- Actor-action disconnect (36)
- Negation excluded/included (5)

Interpretive errors (72):
- Wrong evaluation constant (69)
- Over-interpretations (3)

Format errors (64):
- Extra conditional (36)
- You constant (9)
- Quantifier in predicate (6)

Variable/constant errors (47):
- Mixed variable (27)
- Missing variable (17)
- Constant excluded/included (3)

Predicate errors (18):
- Split predicate (13)
- Extra predicate (5)

Time property errors (3)

Lacking encodings (168)

Predicate errors (89):
- Split/unsplit predicate (28)
- Extra predicate (26)
- Imprecise predicate naming (20)
- Missing predicate (18)

Variable/constant errors (65):
- Missing variable (37)
- Mixed variable (13)
- Extra variable (9)
- Constant included (6)

Wrong quantifier (20)
Missing part (6)

Not Horns (152)

Negation phrase in norm part (101)
Negation phrase in evaluation part (32)
Negatively quantified (9)
Inequality (6)
Encoding errors (4)

Table 7.1: Overview of encoding error categories

7.1.1 Nested predicate

We call structures on the form F (G), where F and G are both atomic formulas, for a
nested predicate. That is, when one atomic formula is defined within the scope of another
atomic formula. FOLs with this structure are not WFF. 34 of the 41 Syntactically invalid
FOLs contained some variation of this nested predicate structure. An example from this
category is presented in Example 7.1.1.

We find that 25 of the 34 nested predicate FOL encodings have a NL norm structure
similar to that in Example 7.1.1. That is, norms in which someone performs an act over
someone or something else. This includes phrases like “x tells y something”, “x thinks y
is something”, or “x wants y to do something”, which tended to be encoded respectively

70 Analysis of Encoding Mistakes

Norm: “you shouldn’t be understanding when your spouse thinks you’re up to some-
thing”
FOL encoding: ∀x∀y(SpouseOf(x, y) ∧ Thinks(y, UpToSomething(x)) ∧
Understanding(x) → evaluation(BAD))

We see in this FOL that the predicate UpToSomething exists within the scope of the
predicate Thinks.

Example 7.1.1: Nested predicate

as Tells(x, Something(y)), Think(x, Something(y)) and Wants(x, DoSomething(y))

7.2 Wrong Encodings

We classify FOL encodings that are WFF but cannot be said to express the same inter-
preted meaning as their NL norm as Wrong. For the 283 Wrong FOLs, we identified six
recurring attribute pattern categories. The attribute pattern categories and the numbers
of instances in each category are: content errors (85), interpretive errors (72), format
errors (64), variable/constant errors (47), predicate errors (18) and time property errors
(3). For five of the six attribute patterns, we identified several subcategories. Some
FOL encodings were classified into several main- or subcategories. We describe what
characterizes the FOLs and norms in each of the six categories and their subcategories
below.

7.2.1 Content errors

We found 85 FOL encodings that displayed content errors. The FOLs in this category
are WFF with the expected format and structure, but the content of the FOL makes the
intended meaning wrong when compared to the original norm. We identified three sub-
categories within this content error category: missing part (43), actor-action disconnect
(36) and negation excluded/included (5). We describe the three subcategories below.

Missing part errors occur when a vital part of the norm is left out of the FOL
encoding. The consequence of not representing this part in the FOL encoding is that
the interpreted meaning of the FOL becomes significantly different from the meaning of
the NL norm. We found 43 encodings that fall into this subcategory. Two examples are
presented in Example 7.2.1.

We found two recurring patterns in the norms that belong to the FOL encodings
within this subcategory. The first is that six of the 43 norms contained some form of
additional information to the actual norm. In the norm, “you shouldn’t always be careful

7.2. Wrong Encodings 71

Norm: “you shouldn’t always be careful when swimming in case a wave hits you”
FOL encoding: ∀x∀y(People(x) ∧ Swimming(x) ∧ AlwaysBeCareful(x) →
evaluation(BAD))

In this example, we see that the “in case a wave hits you” part of the norm is not in-
cluded in the FOL encoding.

Norm: ‘you have to be faithful to a partner if you don’t feel like it”
FOL encoding: ∀x∀y(PartnerOf(y, x) ∧ ¬FeelsLikeBeingFaithful(x, y) →
evaluation(BAD))

In this example, we see that the “have to be faithful” part of the norm is not included
in the FOL encoding.

Example 7.2.1: Missing part error

when swimming in case a wave hits you” from Example 7.2.1, the part that was excluded
in the FOL encoding, “in case a wave hits you” is more of a justification of the actual
norm, “you shouldn’t always be careful when swimming”. The second norm structure
that we found to be repeated within this subcategory were norms that express both
intent toward and execution of an action. For example, for the norm “you have to be
faithful to a partner if you don’t feel like it” from Example 7.2.1, an FOL encoding would
ideally represent both the intent of being faithful to a partner and the execution of being
faithful to a partner. However, in the actual encoding, only one of these dimensions is
included. There were four norms with this type of structure that fell into this particular
attribute pattern subcategory.

Actor-action disconnect errors occur when an action requires an actor, but the actor
is either not mentioned, or is mentioned but not connected to the action. This means
that the action and actor are represented independently of each other, and we lose the
important aspect of someone actually performing the action. We found 36 FOL encodings
that fall into this subcategory. Two norm examples from this category are presented in
Example 7.2.2.

Apart from the fact that all the norms that fall under this attribute pattern subcat-
egory have in some way an actor and action, we found that 15 of the norms included
ditransitive verbs. Ditransitive verbs are verbs that take two objects. In the sentence
“it’s bad to feed wild animals domesticated food” from Example 7.2.2, the verb “feed” is a
ditransitive verb, as it takes both “wild animals” and “domesticated food” as objects. In
these 15 cases, the ditransitive verbs were the ones that lacked the actor-action connection
in the FOL encodings.

72 Analysis of Encoding Mistakes

Norm: “it’s bad to feed wild animals domesticated food”
FOL encoding: ∀x∀y(WildAnimal(x) ∧ DomesticatedFood(y) ∧ Feed(x, y) →
evaluation(BAD))

This encoding lacks an actor to do the leaving. A more precise encoding would be to
change the predicate Feed(x,y) to ∀x(Feed(x, y, z)).

Norm: “it’s okay to regret leaving someone”
Encoding: ∀x∀y(Leaves(x, y) ∧Regrets(x) → evaluation(GOOD))

In this encoding, the encoding does not connect the regretting to the leaving, only that
individual x regrets in general.

Example 7.2.2: Actor-action disconnect error

Negation excluded/included errors occur when a predicate should have been negated
in accordance with the norm but is not, or when a predicate that should not be negated
in accordance with the norm is negated. The consequence of excluding or including a
negation is that the meaning expressed in the FOL encoding directly contradicts the sen-
timent expressed in the NL norm. Five FOL encodings contained this error. An example
from this category is presented in Example 7.2.3.

Norm: “you shouldn’t console your loved ones when they are upset”
FOL encoding: ∀x∀y(LovedOnes(y, x) ∧ Upset(y) ∧ ¬Consoles(x, y) →
evaluation(BAD))

We see that by negating the predicate Consoles(x,y), the meaning in the FOL encoding
can be interpreted as “you shouldn’t not console your loved ones when they are upset”,
which is the complete opposite of what the original norm expresses.

Example 7.2.3: Negation excluded/included error

Four out of the five norms with FOL encodings that had this negation excluded/in-
cluded error expressed what we call counter-intuitive norms. That means they express
norms that seem to be counter-intuitive to what the most people would think. Exam-
ples of these types of norms are listed in Example 5.3.1. We can assume that some
over-interpretation from GPT-4 has been present during the encoding of these norms.

7.2. Wrong Encodings 73

7.2.2 Interpretive errors

FOL encodings identified as Wrong as a result of GPT-4 performing its own interpre-
tations of the norm fall into the category interpretive errors. We identified 72 FOL
encodings that contain this attribute. We divide this attribute pattern category into two
subcategories: wrong evaluation constant (69) and over-interpretation (3).

Wrong evaluation constant errors occur when the system encodes a norm to FOL
using the opposite evaluation constant to what would be the correct one according to the
interpretation of the norm. Either the encoding uses the evaluation constant “GOOD”
when it is supposed to be “BAD”, or vice versa. An example from this category is
presented in Example 7.2.4.

Norm: “it’s okay to verbally abuse someone”
FOL encoding: ∀x∀y(AbusesV erbally(x, y) → evaluation(BAD))

In this case, we see that the FOL encoding of the norm is syntactically correct and
faithfully expresses the same meaning as the norm, with the exception of the evalua-
tion constant. The norm says that it is okay to verbally abuse someone, which means
that the evaluation constant should be “GOOD”, but instead the FOL encoding uses
the evaluation constant “BAD”.

Example 7.2.4: Wrong evaluation constant error

We found that 63 of the 69 FOL encodings classified in the wrong evaluation constant
category were counter-intuitive norms.

Over-interpretation occurs when the FOL encoding is based on an overly free inter-
pretation of the norm, rather than strictly sticking to the explicit content expressed in
the norm. Three FOL encodings were classified with this attribute. We can in some of
the cases argue that the intended meaning expressed in the norm is not changed in the
over-interpreted FOL encoding. However, as the system has been instructed to create
encodings that convey the explicit meaning of the norm (see Listings 5.7 and 5.8), in-
terpretations that go beyond this were classified as an interpretive mistake. An example
from this category is presented in Example 7.2.5.

We found no distinct patterns in the NL norms that had encodings within this sub-
category.

74 Analysis of Encoding Mistakes

Norm: “people should leave online slang online”
FOL encoding: ∀x∀y(People(x) ∧ OnlineSlang(y) ∧ UsesOutsideInternet(x, y) →
evaluation(BAD))

This FOL does not express the exact same meaning as the original sentence, although
we can argue that it expresses a consequence of the original sentence.

Example 7.2.5: Over-interpretation

7.2.3 Format errors

FOL encodings are classified as containing format errors when the FOL is WFF but does
not follow the format specified in the prompt. We found 64 norms that fall into this
attribute pattern category. These 64 norms can be further divided into three different
subcategories, these being extra conditional (36), you constant (9), and quantifier in
predicate (6). These subcategories are described in detail below.

Extra conditional errors occur in all FOL encodings consisting of a nested implica-
tion structure. This means that there exists an implication within the scope of another
implication, on the form p → q → r, where p, q and r are atomic formulas. This struc-
ture conflicts with the instruction prompt used in the system, which says that each FOL
encoding should consist of a single implication (see Listings 5.7 and 5.8). An example
from this category is presented in Example 7.2.6.

Norm: “you’re expected to make sure food you serve to others is safe to eat”
FOL encoding: ∀x∀y∀z(ServesTo(x, y, z) ∧ Food(z) → SafeToEat(z) →
evaluation(GOOD))

We see that the norm part of the FOL encoding is an implication of its own.

Example 7.2.6: Extra conditional error

The most apparent pattern within the norms that have FOL encodings that fall into
this attribute pattern subcategory is that many of the norms are structured on an if-
then form. That means that the norms express an implication within their norm part
using the words “if” or “when”. For example “if you don’t like a particular subreddit, you
should visit it” or “when you leave food out in the open, you shouldn’t be surprised when
animals get into it.” We found that 17 out of the 36 norms that fall into this subcategory
has this particular if-then form.

7.2. Wrong Encodings 75

You constant errors occur when one or several predicates in the FOL encoding contain
a specific constant, “YOU”. This error is present in nine FOL encodings. We identify this
as a format error because the few-shot learning in the prompts (see Listings 5.7 and 5.8)
clearly show that norms expressing “you” should be encoded using quantified variables
instead of a constant. An example from this category is presented in Example 7.2.7.

Norm: “it’s not okay to let something little take over your thoughts”
FOL encoding: ∀x∀y(Little(x) ∧ Thought(y) ∧ BelongsTo(y, Y OU) ∧
TakeOver(x, y) → evaluation(BAD))

The actor in the norm is represented by the constant “YOU”, instead of as a universally
quantified variable.

Example 7.2.7: You constant error

Seven out of the nine norms that have encodings in this category use the word “you”
explicitly in the sentence.

Quantifier in predicate errors are FOL encodings where the scope of a variable is
expressed though the quantifiers, as well as in the predicate names. In these cases, the
correct encodings should only rely on using correct quantifiers to express this dimension
of the norm. However, in six cases, this dimension was also included in the predicates.
An example from this category is presented in Example 7.2.8.

Norm: ‘you should always pay off your student loans”
FOL encoding: ∀x∀y(BelongsTo(x, y) ∧ StudentLoan(x) ∧ AlwaysPaysOff(y, x) →
evaluation(GOOD))

In the FOL encoding, the word “always” is unneccesarily included in the predicate Al-
waysPaysOff.

Example 7.2.8: Quantifier in predicate error

In all six cases where this mistake is apparent, the norm expresses “always” or “nothing”
explicitly in the norm part.

76 Analysis of Encoding Mistakes

7.2.4 Variable/constant errors

We identified 47 FOL encodings that contain variable/constant errors, which means the
FOLs are WFF, have the desired structure and format, and all necessary predicates. How-
ever, some errors have been made with regard to the variables or constants within the
predicates that have led to an incorrect FOL representation of the original NL norm state-
ment. We identified three subcategories within this attribute pattern category: mixed
variable (27), missing variables (17) and constant excluded/included (3). These subcate-
gories are described in detail below.

Mixed variable errors occur when the necessary variables are present, but the place-
ment of variables within the predicates is not as we would expect. This means that either,
the variables within one predicate have swapped positions, that the wrong variables are
used, or that extra variables are included. We found 27 FOL encodings that belong in
this subcategory. An example from this category is presented in Example 7.2.9.

Norm: “you shouldn’t balance relationships and friendships”
FOL encoding: ∀x∀y∀z(Relationship(x, y) ∧ Friends(y, z) ∧Balance(x, z) →
evaluation(BAD))

We would expect the relationship and friends relations to be represented as one-place
predicate and the balance relation to be represented as a three-place predicate contain-
ing the actor, the relationship variable and the friends variable. By representing the
relationship and friends relations as two-place predicates, the variables used in the bal-
ance predicate relate to the people in these relations rather than to the relations them-
selves.

Example 7.2.9: Mixed variable error

We found no distinct patterns in the NL norms that had encodings within this sub-
category.

Missing variable errors occur when a predicate in the FOL encoding is missing a
variable that is essential to convey the sentiment of the norm. The attributes charac-
terizing the FOLs in this subcategory are similar to the attributes in the actor-action
disconnect subcategory described in Section 7.2.1, as some actor-action disconnect errors
are due to missing variables. However, actor-action disconnect errors apply strictly to
the instances where these missing variables create a disconnect between an action and
the one performing the action. All other instances of missing variables are classified into
this missing variables subcategory. We found in total 17 FOL encodings belonging to this

7.2. Wrong Encodings 77

subcategory. An example is presented in Example 7.2.10.

Norm: “it’s fine to want good things for yourself”
FOL encoding: ∀x∀y(GoodThings(y) ∧WantsFor(x, y) → evaluation(GOOD))

The encoding lacks a variable in the predicate WantsFor(x,y). As the individual, x,
wants the good thing, y, for the individual, x, the precise encoding should be Wants-
For(x,y,x).

Example 7.2.10: Missing variable error

In five of the 17 norms that had FOL encodings belonging to the missing variables
subcategory, the missing variable should have represented a reflexive pronoun. Reflexive
pronouns are pronouns ending in -selv or -selves, where the individual acts as both the
subject and the object of the sentence. In the norm from Example 7.2.10, “it’s fine to
want good things for yourself”, the individual who acts as the subject of the sentence,
the actor wanting good things for someone, also acts as the object of the sentence, which
is the person for whom they want good things for.

Constant excluded/included errors occur when the FOL encoding use a constant
to represent entities that we would expect to be represented using variables or predicates,
or vice versa. We found three FOL encodings that contain this particular mistake. An
example from this category is presented in Example 7.2.11.

Norm: “it’s okay to prefer certain brand”
FOL encoding: ∀x∀y(Brand(y) ∧ Prefers(x, y) → evaluation(GOOD))

We would expect the phrase “a certain brand” to be represented as a constant, as it
describes a very specific instance.

Example 7.2.11: Constant excluded/included error

We found no distinct patterns in the NL norms that had encodings within this sub-
category.

7.2.5 Predicate errors

We identified 18 FOL encodings that contain predicate errors, which means that the
FOLs are WFF, have the desired structure and format, but errors have been made with

78 Analysis of Encoding Mistakes

respect to the predicates used, leading to an incorrect representation of the original NL
norm statement. We identified two subcategories within this attribute pattern category:
split predicate (13) and extra predicate (5). Both subcategories are described in detail
below.

Split predicate errors are errors where a part of the norm that should ideally be
expressed in FOL as a single predicate has been split up into multiple separate predicates
in the FOL encoding. The consequence of this is that we lose a vital connection between
dependent parts of a sentence. We found 13 FOL encodings with this attribute. An
example is presented in Example 7.2.12.

Norm: “it is immature to spend your time watching cartoons”
FOL encoding: ∀x∀y(Time(x) ∧ Cartoons(y) ∧ SpendT ime(x, y) ∧ Watch(x) →
evaluation(BAD))

In this case, we see that the predicates with their appropriate variables SpendTime(x,y)
and Watch(x) would more accurately represent the phrase “x spend time watching y” if
they were combined into a single predicate SpendTimeWatching(x,y).

Example 7.2.12: Split predicate error

We found no distinct patterns in the NL norms that had encodings within this sub-
category.

Extra predicate errors can be defined as FOL encodings that express dimensions not
mentioned in the NL norm. We found five FOL encodings with extra predicate error
leading to a major change in the intended meaning of the FOL encoding compared to the
original NL norm. An example from this category is presented in Example 7.2.13.

Norm: “it’s unwholesome to seek out young girls for sexual gratification”
FOL encoding: ∀x∀y∀z(Man(x) ∧ Girl(y) ∧ Y oung(y) ∧
SeeksFor(x, y, SEXUAL_GRATIFICATION) → evaluation(BAD))

The FOL expresses that the individual x seeking sexual gratification also has the prop-
erty Man. However, this is not expressed in the NL norm. This particular extra predi-
cate mistake is likely due to bias in the GPT-4 training data.

Example 7.2.13: Extra predicate error

We found no distinct patterns in the NL norms that had encodings within this sub-

7.3. Lacking Encodings 79

category.

7.2.6 Time property errors

Three norms were encoded incorrectly as a consequence of the way the FOL encodings
expressed time dimensions using temporal phrases. Temporal phrases provide a temporal
context for the situation, such as “after a while”, or “from a while ago”. An example from
this category is presented in Example 7.2.14.

Norm: “it’s irrational to get tired of guests after a while”
FOL encoding: ∀x∀y(Guest(y) ∧ AfterAWhile(x, y) ∧ TiredOf(x, y) →
evaluation(BAD))

We see here that the encoding becomes wrong in terms of meaning because the tempo-
ral phrase “after a while” is represented as an isolated predicate that is not connected
in any way to the situation.

Example 7.2.14: Time property error

The only pattern in the norms accompanying the FOL encodings in this attribute
pattern category is that they all express temporal dimensions in one way or another.

7.3 Lacking Encodings

We classify FOL encodings that are WFF and express a similar interpreted meaning as its
NL norm as Lacking. Compared to FOL encodings classified as Wrong, the FOL encodings
classified as Lacking can be argued to express a much more similar interpreted meaning as
the original norm. For the 168 FOL encodings that were classified as Lacking we identified
four attribute pattern categories: predicate errors (89), variable/constant errors (65),
wrong quantifier (20) and missing part (6). For two of the four main attribute pattern
categories, we identified several subcategories. Some FOL encodings were categorized
into several main- or subcategories. We describe what characterize the FOLs and norms
in each of the four main categories and their subcategories below.

7.3.1 Predicate errors

We found 89 FOL encodings that have some sort of predicate error. This means that
the FOLs are WFFs, have the desired structure and format, but mistakes have been

80 Analysis of Encoding Mistakes

made in regard to the predicates that are being used, which leads to a suboptimal FOL
representation of the original NL norm statement. We identified four subcategories within
this attribute pattern category: split/unsplit predicate (28), extra predicate (26), imprecise
predicate naming (20), and missing predicate (18). Each subcategory is described in detail
below.

Split/unsplit predicate errors occur when a representation that should ideally be
captured by a single predicate is split into multiple predicates. Or, vice versa, when a
representation that should be expressed through multiple predicates in order to capture
specific details is merged into a single predicate. We found 28 FOL encodings that belong
in this split/unsplit predicate subcategory. Two examples are presented in Example 7.3.1.

Norm: “it’s bad to be very smart”
FOL encoding: ∀x(Smart(x) ∧ V ery(x) → evaluation(BAD))

In this example, the phrase “very smart” should be merged into one predicate, VeryS-
mart to make the phrase make sense, as something cannot simply have the quality
“very” without another attribute associated with it.

Norm: “it’s not a good thing to eat fruit when you’re craving something sweet”
FOL encoding: ∀x∀y(Fruit(x) ∧ CravingSweet(y) ∧ EatWhen(y, x) ∧
evaluation(BAD))

In this example, the FOL would be more generalizable if the predicate CravingSweet
had been further broken down into two predicates Sweet and Craving.

Example 7.3.1: Split/unsplit predicate error

The only recurring pattern found within the norms that had FOL encodings belonging
to this category was that four of the norms use some kind of temporal preposition, such as
“after”, “before”, or “ahead”. We see that these prepositions are often treated as individual
predicates, when we would ideally like for them to be merged in with another predicate.
For example, in the sentence “relax after a hard day”, the preposition “after” should be
included in the predicate that expresses “relax” rather than as its own predicate, creating
the joint predicate RelaxAfter.

Extra predicate errors occur when the FOL encodings include a predicate that is
unnecessary to capture the interpreted meaning of the NL norm. We found 26 FOL
encodings that were categorized within this extra predicate subcategory. An example is
presented in Example 7.3.2.

7.3. Lacking Encodings 81

Norm: “you shouldn’t be a bad influence on kids”
FOL encoding: ∀x∀y(Person(x) ∧ Kids(y) ∧ BadInfluenceOn(x, y) →
evaluation(BAD))

The norm does not specify that the actor in this scenario is a person, but this attribute
is nonetheless included in the FOL. Note that within the context it is safe to assume
that these norms mainly concern people as actors, and therefore it is not deemed a cru-
cial error but rather imprecise in terms of interpreted meaning.

Example 7.3.2: Extra predicate error

There are 20 FOL encodings within this category that make the same mistake as in
Example 7.3.2, where the encoding adds an extra Person or People predicate without
this being specified in the norm. We found no distinct patterns in the NL norms that
are encoded with this additional Person predicate when compared to the norms that are
encoded without the addition Person predicate.

Imprecise predicate naming occurs when a predicates name does not fully capture
the phenomenon it is supposed to represent. As predicate names do not necessarily
affect the logical representation of a sentence, they are not categorized as crucial errors.
However, the naming of predicates is important to those who use the logic, and imprecise
predicate naming could have logical consequences if two different phenomena share the
same predicate name, or two identical phenomena use different predicate names. An
example from this category is presented in Example 7.3.3.

Norm: “you should physically fight”
FOL encoding: ∀x(Fight(x) → evaluation(GOOD))

The structure of the FOL and the variables included are as we would expect, but the
predicate does not specify the physical dimension in the Fight predicate. A more accu-
rate predicate name would be PhysicallyFight.

Example 7.3.3: Imprecise predicate naming

We found no distinct patterns in the NL norms that had encodings within this sub-
category.

Missing predicate errors occur when an FOL encoding is missing a dimension ex-
pressed in the NL norm that could be solved by adding a single predicate to the FOL
encoding. There are 18 of these missing predicate mistakes in the FOL encodings. An

82 Analysis of Encoding Mistakes

example from this category is presented in Example 7.3.4.

Norm: “it’s bad if you have romantic feelings for your doctor”
FOL encoding: ∀x∀y(Doctor(y) ∧HasRomanticFeelings(x, y) → evaluation(BAD))

This encoding can be interpreted to mean that it is bad if you have romantic feel-
ings for any doctor. The FOL misses some kind of relational predicate, such as Be-
longsTo(y,x), to ensure that the doctor is yours.

Example 7.3.4: Missing predicate error

We found that seven of the 18 FOL encodings in this subcategory lack a relation
predicate that expresses possession, such as in Example 7.3.4. Possessive pronouns are
pronouns that express someone’s possession of something else, such as “your”, “his”, “some-
one’s”, etc. The inclusion of a relation predicate in cases where possessive pronouns are
used has been instructed in the prompt system message (see Listings 5.7 and 5.8).

7.3.2 Variable/constant errors

We found 65 FOL encodings that contain a variable/constant error. FOLs within this
category are WFFs and have the desired structure and format and all the necessary pred-
icates. However, some mistake has been made with regard to the variables or constants
within the predicates, which has led to an imprecise representation of the original NL
norm statement. We identified four subcategories within this attribute pattern category:
missing variable (37), mixed variable (13), extra variable (9), and constant included (6).
Each subcategory is explained in detail below.

Missing variable errors occur when a predicate in the FOL encoding is missing a
variable that should preferably have been there. We found 37 FOL encodings classified
within this subcategory. An example is presented in Example 7.3.5.

We found no distinct patterns in the NL norms that had encodings within this sub-
category.

Mixed variable errors occur in the FOLs where all the necessary variables are in-
cluded, but the placement of the variables within the predicates could lead to a misinter-
pretation in terms of meaning when compared to the original norm. We found 13 FOL
encodings classified within this category. An example is presented in Example 7.3.6.

We found no distinct patterns in the NL norms that had encodings within this sub-
category.

7.3. Lacking Encodings 83

Norm: “it is comforting to ease your friends paranoia”
FOL encoding: ∀x∀y(Friends(x, y) ∧ Paranoia(y) ∧ Eases(x, y) →
evaluation(GOOD))

In the encoding, “paranoia” is not represented with its own variable, and therefore the
meaning of the FOL encoding is most likely interpreted as “it is comforting to ease your
friend who has paranoia” (as long as we interpret the predicate Paranoia(y) to mean
“individual y has paranoia”), which is not explicitly equivalent to what the original
norm expresses.

Example 7.3.5: Missing variable error

Norm: “if you love your job, you should quit it”
FOL encoding: ∀x∀y(JOB(y) ∧ BelongsTo(x, y) ∧ Loves(x, y) ∧ Quits(x, y) →
evaluation(GOOD))

In this encoding, we see that the order of the variables within the predicate Be-
longsTo(x,y) would arguably be more correct if they swapped positions. In the FOL
encoding, we can interpret the FOL to mean that the actor x belongs to the job y. It
can be argued that this is a valid way of representing someone’s job. However, since
the norm states “your job” using a possessive pronoun to represent the actor, we would
prefer the order of the variables within the BelongsTo(x,y) predicate to be the other
way around, BelongsTo(y,x), expressing that the job, y, belongs to the actor, x.

Example 7.3.6: Mixed variable error

Extra variable errors occur when a superfluous variable is added to a predicate. That
is, a variable that does not necessarily contain any information. Nine FOL encodings were
identified as having this particular attribute. An example from this category is presented
in Example 7.3.7.

We found no distinct patterns in the NL norms that had encodings within this sub-
category.

Constant included errors occur when the FOL encoding uses a constant in a setting
where it would be more natural to use a variable or predicate. The use of a constant
instead of a variable or predicate may affect the generalizability and preciseness of the
FOLs. Six FOL encodings belong to this subcategory. An example is presented in
Example 7.3.8.

We found no distinct patterns in the NL norms that had encodings within this cate-
gory.

84 Analysis of Encoding Mistakes

Norm: “it’s understandable if blind dates don’t go well”
FOL encoding: ∀x∀y(BlindDate(x, y) ∧ ¬GoesWell(x, y) → evaluation(GOOD))

In the NL norm, a blind date is described as a single object and should therefore be
represented using a single variable. It could be argued that the predicate BlindDate
should naturally take two objects, namely the two individuals on the date. However,
the norm does not specify the blind date to be between two people, so we do not as-
sume that information here. Furthermore, the FOL encoding would be imprecise since
the predicate GoesWell(x,y) would then not describe the date itself as going well, but
rather the two individuals going well, which would ultimately be an imprecise encoding
of the norm.

Example 7.3.7: Extra variable error

Norm: “it’s bad for a college student to live at home”
FOL encoding: ∀x∀y(Student(x,COLLEGE) ∧ Home(y) ∧ LivesAt(x, y) →
evaluation(BAD))

It would be preferable to represent “college” as a predicate, as a college is more nat-
urally thought of as a general category than a specific individual, since multiple in-
stances can be defined as a college.

Example 7.3.8: Constant included error

7.3.3 Wrong quantifier

We found 20 FOL encodings that use one or more wrong quantifiers. This means that the
FOL uses an existential quantifier over a variable that should be universally quantified,
or vice versa. We identify this category as Lacking rather than Wrong because, although
the use of wrong quantifier changes the specification of who is included in the variables,
it is predictable and a small mistake that can be argued to not affect the core norm part
of the encoding. An example from this category is presented in Example 7.3.9.

Norm: “people should date others based solely on their age”
FOL encoding: ∀x∀y∀z(People(x) ∧ People(z) ∧ AgeOf(y, z) ∧
DateBasedOn(x, z, y) → evaluation(GOOD))

The variable representing “others” is universally quantified in this FOL encoding. As
the phrase “others” refers to a specific set of people, or, in other words, all people ex-
cept you, this variable should be represented existentially. This has been explicitly in-
structed in the prompt system message (see Listings 5.7 and 5.8).

Example 7.3.9: Wrong quantifier

7.4. Not Horn 85

We found that 12 of the 20 norms with FOL encodings belonging to this category
referred in some way to “others”, “someone else”, or “somewhere else”. In other words,
phrases that refer to anyone or anywhere except for you or here. These are phrases that
should be represented using the existential quantifier, ∃, but in these cases are represented
using the universal quantifier, ∀.

7.3.4 Missing part

Six FOL encodings were identified as containing a missing part error, which is when a
less vital part of the NL norms is left out of the FOL encoding. That means that each
norm within this category could be rewritten in a way where the part left out in the FOL
encoding was not included in the norm, but the norm would still mean more or less the
same. An example from this category is presented in Example 7.3.10.

Norm: “one should be honest with people about their past whether it’s good or bad”
FOL encoding: ∀x∀y(People(y)∧Past(x)∧HonestAbout(x, y) → evaluation(GOOD))

The phrase “whether it’s good or bad” from the norm is excluded from the FOL. We
note that the exclusion of this phrase does not change the intent of the norm, as the
phrase expresses a tautology.

Example 7.3.10: Missing part

Five out of six norms that had FOL encodings within this category included additional
information that arguably is redundant to the actual norm part of the sentence. These
additional parts are either a further specification of the situation or a reason for acting
according to the norm.

7.4 Not Horn

We classify valid FOL encodings that do not meet the first-order Horn criteria specified
in Section 2.2.4 as Not Horn. Unlike the attribute pattern categories described for the
classification categories Semantically invalid encodings, Wrong encodings and Lacking
encodings, all FOL encodings within the Not Horn classification category are classified
as such for the same reason. This reason being that, when restructured into CNF, each
clause contains more than one positive atomic formula. This means that we will not
identify the characteristics of the FOL encodings, as they are all the same, but rather we
will focus only on the characteristics found in the norms belonging to the FOL encodings
classified as Not Horn. We analyze the Not Horn FOL encodings from all syntactically

86 Analysis of Encoding Mistakes

valid categories, Wrong, Lacking and Accurate to cover as many instances as possible.
For the 152 norms belonging to the FOL encodings that were classified as Not Horn,
we identified five norm attribute patterns: negation phrase in norm part (101), negation
phrase in evaluation part (32), negatively quantified (9), inequality (6), and encoding
errors (4). We describe what characterizes the norms in each of the five categories below.

7.4.1 Negation phrase in norm part

We found that 101 of the Not Horn norms contain some sort of explicit or implicit
negation phrase in the norm part of the sentence. This means that the word “not”, or
any equivalent or related expressions, is mentioned in the norm part. Explicit mentions
include the word “not”, as well as abbreviations of the word, such as “won’t”, “can’t” and
“isn’t”. Implicit mentions include “not”-equivalent words, such as “never” and “without”, or
“not”-adjacent words, such as “no longer”, “doubt”, “stop”, “avoid” and so on. All explicit
and implicit negation phrases are listed in Definition 1. An example of a norm using
explicit negation in the norm part is presented in Example 7.4.1, and an example of a
norm using implicit negation in the norm part is presented in Example 7.4.2.

Definition 1. Negation phrases: not, won’t, can’t, isn’t, never, stop, without, no longer,
doubt, avoid, nothing, no one, not always, not everyone.

Norm: “it’s expected that you won’t cut off family members”
FOL encoding: ∀x∀y(FamilyOf(x, y) ∧ ¬CutsOff(x, y) → evaluation(GOOD))
CNF notation: evaluation(GOOD) ∨ ¬FamilyOf(x, y) ∨ CutsOff(x, y)

In the FOL encoding, we clearly see how the “won’t cut off” part of the norm has
resulted in a negated predicate, ¬CutOff , in the antecedent of the FOL encoding.
When converting an implication to CNF, each predicate in the antecedent is negated
and together with the consequence form a conjunction of disjunctions. We see that
the CNF converted FOL encoding of the norm contains more than one positive atomic
formula, evaluation(GOOD) and CutsOff(x,y), and is therefore classified as Not Horn.
The Not Horn classification is a direct cause of the FOL implication that has a positive
consequence and one or more negated predicates in the antecedent. As all FOL encod-
ings in this system should be encoded with a positive consequence, as instructed in the
prompt system message (see Listings 5.7 and 5.8), it is the use of the word “won’t” in
the norm part of the norm, leading to a negated predicate in the norm part of the en-
coding, that ultimately causes the FOL encoding to become Not Horn.

Example 7.4.1: Explicit negation phrase in norm part

The encoding patterns shown in Examples 7.4.1 and 7.4.2, where a negated atomic
formula in the norm part occurs as a consequence of a negation phrase in the norm part of

7.4. Not Horn 87

Norm: “it’s wrong to take pictures of people without their consent”
FOL encoding: ∀x∀y∀z(Picture(x)∧People(y)∧Take(z, x, y)∧¬HasConsent(y, z) →
evaluation(BAD))
CNF notation: evaluation(BAD) ∨ ¬Picture(x) ∨ ¬People(y) ∨ ¬Take(z, x, y) ∨
HasConsent(y, z)

The positive predicate HasConsent in the CNF notation is a direct consequence of the
use of the phrase “without their consent” in the norm, and together with the positive
evaluation part, this ensures that the FOL encoding is Not Horn.

Example 7.4.2: Implicit negation phrase in norm part

the norm, are consistent for all 101 norms classified as Not Horn that use some variation
of a negation phrase in the norm part.

7.4.2 Negation phrase in evaluation part

We found that 32 norms were classified as Not Horn as a consequence of an expressed
negation in the evaluation part, such as “should not”, or “not expected”, being incorporated
into the norm part of the FOL. This resulted in two positive predicates when converted
to CNF, which consequently led to the formula being Not Horn. An example of a norm
from this category is presented in Example 7.4.3.

Norm: “people are not expected to take care of their loved ones”
FOL encoding: ∀x∀y(Loves(x, y) ∧ ¬TakesCareOf(y, x) → evaluation(GOOD))
CNF notation: evaluation(GOOD) ∨ ¬Loves(x, y) ∨ TakesCareOf(y, x)

In the FOL we see that the negation from the evaluation part, “not expected”, is at-
tached to the predicate TakesCareOf rather than being encoded to evaluation(BAD).
The consequence of this is that we get two positive predicates in the CNF converted
FOL and the formula is therefore considered Not Horn. We can argue that the result
of this encoding is imprecise, since the sentence “people are not expected to take care
of their loved ones” does not necessarily mean the same as “people are expected to not
take care of their loved ones”, which is what we would interpret the FOL encoding to
express.

Example 7.4.3: Negation phrase in evaluation part

It is clearly stated in the prompt instruction in the encoding system (see Listings 5.7
and 5.8) that negatively stated evaluations, such as “not expected”, should be encoded to
evaluation(BAD). By including the negation in the norm part instead of in the evaluation
part, the encoding disregards the prompt instructions and the intended meaning of the

88 Analysis of Encoding Mistakes

resulting FOL encoding changes. We find this to be a fault in the encoding system rather
than in the Horn clause format. All 32 norms and their respective FOL encodings within
this category adhere to the same pattern as in Example 7.4.3.

7.4.3 Negatively quantified

For nine norms, the crucial attribute that led to their FOL encoding being Not Horn,
was the negation of quantifiers. The negation of quantifiers in the FOL encodings is a
direct result of the norms containing the phrases “no one”, “not always”, “not everyone”,
or “nothing”. An example from this category is presented in Example 7.4.4.

Norm: “you should stay with someone you have nothing in common with”
FOL encoding: ∀x∀y(StaysWith(x, y) ∧ ¬∃z(Common(x, y, z)) →
evaluation(GOOD))
CNF notation: evaluation(GOOD) ∨ ¬StaysWith(x, y) ∨ Common(x, y, f0(x, y))

We see here that the phrase “nothing in common with” is encoded to
¬∃z(Common(x, y, z). In the CNF conversion process described in Chapter 4, negated
existential quantifiers are replaced by universal quantifiers, and the negation is moved
inward. This leads to the predicate Common being negated, and we get two positive
predicates in the CNF converted formula, causing the formula to be Not Horn.

Example 7.4.4: Negatively quantified

A similar structure to the norm presented in Example 7.4.4 is evident with all Not
Horn-classified norms containing the phrases “no one”, “not always”, “not everyone” or
“nothing” in the norm part.

7.4.4 Inequality

Six norms within the Not Horn category were encoded using some version of a negated
predicate, ¬Equal(x, y), supposed to convey that y is “other people” or “someone else”
compared to x. It is the use of this predicate that ultimately leads to the FOL encoding
being Not Horn. An example from this category is presented in Example 7.4.5.

The use of an Equality predicate is either superfluous or not preferred when encoding
norms containing the phrases “other people” or “someone else”. The prompt instruction
(see Listings 5.7 and 5.8) clearly states that these phrases should be encoded using ex-
istential quantifiers instead of inequality predicates. We find this to be a fault in the
encoding system rather than in the Horn clause format.

7.4. Not Horn 89

Norm: “you shouldn’t call other people besides your partner”
FOL encoding: ∀x∀y∃z(PartnerOf(x, y) ∧ People(z) ∧ ¬SamePerson(y, z) ∧
Calls(x, z) → evaluation(BAD))
CNF notation: evaluation(BAD) ∨ ¬PartnerOf(x, y) ∨ ¬People(f1(x, y)) ∨
SamePerson(y, f1(x, y)) ∨ ¬Calls(x, f1(x, y))

In this example, we see the introduction of the negated predicate SamePerson used to
emphasize that the individual “partner”, x, is different from “other people”, z.

Example 7.4.5: Inequality

7.4.5 Encoding errors

For the final four norms, the main attribute that led to their FOL encoding being Not
Horn were based on random errors made during the encoding. These errors were either
a consequence of over-interpretation done by the system or by including wrongly negated
predicates. No patterns were found in the norms within this category.

90 Analysis of Encoding Mistakes

Chapter 8

Discussion

In this chapter, we present some topics worthy of discussion based on the findings in
this thesis. We start by discussing the faithfulness of the encoded FOLs in a bigger picture
and how these insights are valuable. In Section 8.2 we discuss the limitations of the Horn
clause mistakes following the FOL encodings. We finish the chapter by discussing the use
of GPT-4 as a knowledge engineer simulator in Section 8.3.

8.1 First-Order Logic Faithfulness

In the analysis of faulty FOL encodings described in Chapter 7, we found numerous types
of encoding mistakes. These are the mistakes that follow from the GPT-4 encoding of
norms from the NL norm dataset in terms of syntax and intended meaning. Among
the three classifications of FOL encodings, Syntactically Invalid, Wrong and Lacking,
we count 11 distinct attribute pattern categories, which are listed in Table 7.1. Each
attribute pattern category contains FOL encodings that have the same fault attribute.
Each FOL that was encoded wrong in terms of syntax or meaning was categorized into
one or more of these categories, based on the attribute that led to the FOL being wrong.
In addition, we count 25 attribute subcategories, which are categories that further specify
the mistake attributes. The high number of attribute pattern categories indicates that
the types of mistakes GPT-4 makes when encoding FOLs are relatively unpredictable.

Some of the observed attribute pattern categories are more unpredictable than others,
in terms of what specifically causes the mistake. In general, it seems to be more difficult
to predict which norms would be encoded with variable/constant- or predicate errors
than to predict which norms would be encoded with interpretative errors, time property
errors, or missing parts. This is likely due to the fact that predicates and variables
are present in multiple places in each FOL encoding, and the mistake can occur in any
one of these places. As long as we cannot find any patterns in which a specific norm
attribute leads to this predicate/variable error, the occurrence of such an error is hard
to predict. Interpretive errors, time property errors, and missing parts, on the other

91

92 Discussion

hand, are limited to distinct parts of the FOL and may only be relevant in certain norm
structures. These norm structures include norms that express counter-intuitive moral
judgments, norms that contain temporal dimensions, and norms that include redundant
additional information. For the more predictable classification patterns, it is easier to
implement improvement solutions. We show an example of how this can be done with the
FOLs classified with wrong evaluation constant (subcategory of interpretative errors) by
creating a sentiment analysis model able to correct the majority of these mistakes. This
shows how analyzing the mistakes made in GPT-4 encoding can help us find solutions
that will mitigate these issues and produce better results.

In the encoding system described in this thesis, we found that GPT-4 is able to encode
51% of norms from the NL norm dataset to FOLs containing no faults using the specific
instructions and parameters described. Although these are arguably good results, we still
need to turn the focus to the FOL encodings that were not encoded without fault. For
systems such as AMAs that perform actions that could lead to consequences for people,
it is crucial to ensure that the knowledge bases on which they are built do not contain
faulty rules or instructions. By analyzing the potential faults of current alternatives for
constructing such KBs, it is easier to improve these alternatives.

The findings in this thesis present both opportunities and challenges for the task of
developing ethical autonomous systems. By automatically aligning machine behavior
with societal norms through social choice aggregation, we can efficiently create systems
that behave in ways consistent with human values.

GPT-4 is a large language model that, simply put, creates responses by constructing
“educated guesses” based on user input and patterns from its training data. Although
the model has learned from a vast amount of data exactly how to make these guesses, it
lacks a human-level understanding of the concepts it considers. Additionally, the data on
which GPT-4 is trained is human-based text, which contains common human errors, such
as over-generalizing and biases [Van Dis et al., 2023]. The constructed guesses of GPT-
4 will therefore undoubtedly contain occasional errors. Exactly how faulty the model’s
responses are will depend on the tasks and the topics that are considered, in addition to
how well the users are able to design the instructions that are given to the model.

8.2 Horn Clause Mistakes

For the Not Horn mistakes, we find a much narrower and more predictable set of mistake
patterns. In general, we find that norms that in some way express negation in the norm
part of the sentence lead to FOLs that are not Horn. These are the norms described in
the negation phrase in norm part pattern attribute category. Examples of such norms can
be seen in Example 8.2.1. Since the encoding system is set up in a way where we always

8.2. Horn Clause Mistakes 93

want positive predicates in the consequent (the evaluation part), we simply need one or
more predicates in the norm part to be negated in order for the FOL representation to
not be Horn. The distinct phrases that led to negation in the norm part of the FOL
encoding are listed in Definition 1.

“it’s expected that you won’t cut off family members”
“you shouldn’t trust anyone who isn’t trustworthy.”
“it’s bad to not take things seriously.”
“it’s rude to borrow money from a friend and never pay them back.”
“it’s wrong to take pictures of people without their consent.”

Example 8.2.1: Norms with negation phrase in norm part

The second largest group of norms leading to invalid Horn representations is the
negation phrase in evaluation part-category. Examples of norm belonging to this group
can be seen in Example 8.2.2.

“people are not expected to take care of their loved ones”
“getting circumcised isn’t normal”
“it is not creative work to write an english paper.”
“if you get a flat tire your spouse isn’t expected to help you change it.”

Example 8.2.2: Norms with negation phrase in evaluation part

We argue that the faults in this category is due to faulty encoding by GPT-4 rather
than an invalid Horn pattern in the norm. This is because it is clearly stated in the prompt
instruction in the system that negated evaluations should be represented in the evaluation
part of the encoding. There are some additional norm categories that lead to Not Horn
classification such as the use of negated quantifiers and inequality representations which
are less predictable than the “negation phrase” categories, but these only make up a
minority of the Not Horns.

By limiting norm structure inputs and using pattern matching tools, such as Regular
Expressions (RegEx), we believe that some of these norm patterns leading to invalid
Horn representations can be detected and rephrased. Limiting the variability of moral
judgments in the inputs by restricting phrasing of the evaluation part to be “it’s good
to...” or “it’s bad to...” ensures that no norms should contain a negation phrase in the
evaluation part.

Using pattern matching tools, the specific phrases leading to invalid Horn structures

94 Discussion

when used in the norm part can be easily identified in a norm input and requested to be
rephrased. Although these suggested methods will not ensure that all norms are phrased
in a way that guarantees they are encoded with valid Horn clause structure, we argue that
implementing a filter system based on the findings in this thesis could generally improve
the process of encoding norms to Horn clause structure.

8.3 GPT-4 and Knowledge Engineering

We clearly see how the “independent thinking” of GPT-4 allows the model to encode a
wide variety of sentence structures with limited domain-specific training data. However, it
also allows the model to consider irrelevant interpretations in the encoding process, which
can lead to syntactically valid FOLs that are unfaithful in terms of meaning. These results
can be hard to automatically recognize, as there are currently no sufficient methods to
measure and compare meaning. This demonstrates the need for expert evaluations in
combination with automatic encoding methods. Manually encoding FOLs from scratch
takes time and requires knowledge engineers with a good understanding of logic and
encoding. Manually reviewing and correcting suggested FOL encodings, on the other
hand, requires less time and training. This was experienced first-hand during this thesis,
as the time spent on evaluating the faithfulness of the proposed FOL encodings was much
shorter than the time spent encoding FOLs from scratch for the NL norm dataset. The
benefits of incorporating human correction to automatic encoding are something we find
through this thesis to be worth exploring further.

The use of AI systems has the potential to contribute to a number of different fields
by serving as an aid to human expertise. At this point, we cannot and should not expect
these systems to replace human expertise, as demonstrated by the GPT encoding results
of this thesis. However, by identifying and addressing the mistakes that GPT makes in
specific tasks, we can still leverage its capabilities. By using GPT’s ability to encode
norms in combination with sentiment analysis corrections and human expert verification,
we believe that one can significantly reduce the need for human expertise.

Chapter 9

Conclusions and Future work

In this thesis, we have explored automatic encoding of natural language norms into
first-order Horn clauses, with the aim of aligning autonomous machine behavior with
societal norms. Our study used OpenAI’s GPT-4 model as a key component of the
encoding system, employing prompt engineering strategies and utilizing tools such as
sentiment analysis to mitigate mistakes made by GPT-4 and answer set programming to
find inconsistencies in the encodings.

9.1 Research Questions and Success Criteria

We discuss how the thesis addresses each success criterion listed in Chapter 1 and how
the research question is answered.

First, the thesis demonstrates a comprehensive understanding of the theoretical frame-
work upon which it is based. Chapters 2 and 3 introduce the theoretical concepts and
literature related to the subjects and objectives included in this thesis. We outline the
problem of encoding natural language to logic by presenting the basis of natural language
parsing and LLMs and summarizing the latest relevant research on the topic. We present
the problem of moral conflict and inconsistency in AMAs and approaches to how this can
be solved by explaining the basics of logic programming and summarizing the research
in this field.

Second, the research introduces an encoding system that shows GPT-4’s ability to
encode natural language norms to FOL formulas. This is done by using GPT-4 as the
main tool for encoding natural language norms into FOL representations. By manually
counting the instances that are encoded accurately in terms of syntax and intended
meaning, we show how well GPT-4 is able to encode norms to FOL.

Third, the thesis identifies and describes the norm patterns that GPT-4 is unable to
convert to FOL. We present a thorough analysis in Sections 7.1, 7.2 and 7.3 on the types
of norms that GPT-4 is not able to encode well, both in terms of syntax and meaning.
The analysis describes the FOL attributes that lead to faulty representations and whether

95

96 Conclusions and Future work

there are patterns in the norms that cause the faults.
Finally, in Section 7.4 the thesis describes the norm patterns that cannot be trans-

formed to first-order Horn clauses and the reasons why this is the case. We identify
multiple such patterns that highlight the limitations of the Horn logic structure.

Through the course of our research, we addressed the research question and met the
success criteria established in Chapter 1. We demonstrated the feasibility of encoding
human norms into Horn clause representations using GPT-4, in accordance with the RQ,
and evaluated the effectiveness of our encoding system against the established bench-
marks. We used the results of the encoding system to identify norms that cannot be
expressed as Horn clauses. We identified norms that explicitly or implicitly mention a
negation phrase in the norm part of the sentence to be the most common of the norm
structures incompatible with the Horn clause format.

9.2 Contribution

The key contributions of this thesis include:

• Encoding System: We developed a system that converts natural language norms
into machine-readable first-order Horn clauses, contributing to the field of AI ethics.

• Analysis of GPT-4 Limitations: We conducted a detailed analysis of the types of
natural language norms that GPT-4 struggles to accurately encode into FOL.

• Identification of Horn clause limitations: We identified specific norm structures that
are inherently incompatible with Horn clauses, contributing valuable insights into
the limitations of this logic format.

• Datasets: We produced two datasets, one with natural language norms and their re-
spective manually created FOL encodings, called the NL norm dataset. The second
dataset contains the norms from the NL norm dataset along with their automati-
cally encoded first-order and Horn clause representations, including evaluations of
their faithfulness.

The findings are a contribution to the field of machine ethics, but there are many
other areas in which logic reasoning and consistency checking are valuable, such as moral
conflict and knowledge representation and reasoning. By showcasing how GPT-4 and
similar LLMs can serve as knowledge engineers, we open new possibilities for develop-
ing autonomous systems that align with social values. Additionally, our inconsistency
checker ensures logical consistency, an important aspect in machine ethics that prevents
conflicting norms from undermining the ethical behavior of autonomous agents.

9.3. Limitations and Future Work 97

9.3 Limitations and Future Work

Although the encoding system performed well, it has some limitations. The reliance on
restricted moral judgments in the evaluation part of the encodings may limit expressive-
ness, and the handling of more complex norm structures could be improved. Future work
should focus on refining the prompt engineering strategies, exploring alternative logical
formats, and exploring how alternative language models compare to GPT-4 in terms of
encoding. Additional strategies for correcting the mistakes made by GPT-4 should be
explored and implemented into the system. The inconsistency checker should be adjusted
to create full-scale knowledge bases to be used in autonomous moral machines. We rec-
ommend finding ways to filter out norms that tend to lead to invalid Horn structures
based on the findings in this thesis. Finally, it should be verified whether the collabora-
tion between automated encoding and manual correction is more effective than employing
either approach independently.

9.4 Final Thoughts

In conclusion, this thesis presents a proof of concept for automated encoding of natural
language norms for autonomous moral agents, contributing to the broader goal of ensuring
ethical machine behavior. As autonomous systems become more integrated into our lives,
aligning their decision making with human values becomes increasingly important, and
the work presented here offers a foundational step in that direction.

98 Conclusions and Future work

Chapter 10

Appendix

A Literature Search Method

The motivation for this thesis comes from the works of Ozaki et al. [2022] and Jiang
et al. [2021]. Hence, these articles served as a starting point for our literature review. We
started with a very narrow focus, solely on the topic of natural language to Horn clause
encoding. We searched the following online repositories: Google Scholar, dblp.org, Papers
with Code, and arXiv. We chose these academic databases because they are perceived
as the best for providing research in computer science. The databases allow different
parts of the articles to be searched; Google Scholar lets you search in the full text of the
publication, including title, abstract, and authors, arXiv and Papers with Code searches
are based on title, author, and abstract, while DBLP restricts the search to titles only.
The initial search was carried out using the following search phrases:

• “natural language to horn clause logic”

• “natural language horn clause transla-
tion”

• “horn clause parser”

• “NL to horn”

• “horn logic translation”

• “natural language horn parsing”

• “NLP horn logic”

In the narrow search, only articles published between 1990 and the early 2000s ap-
peared. The field of modern NLP combines the use of new-age technologies, such as
machine learning and artificial intelligence, with classical natural language processing
techniques. This field experienced a great development in the early 2010s with the intro-
duction of digital assistants such as Siri, Apple’s voice-controlled assistant, and modern
deep learning algorithms such as the Transformer model [Vaswani et al., 2017, Schmid-
huber, 2015, Apple Inc., 2023]. Based on this, we chose to limit the search even more
and only include articles published after 2010.

99

100 Appendix

We were unable to find any out-of-the-box tools that could convert natural language
norms into Horn clauses. However, we were able to find tools that encode NL sentences
in FOL. As Horn is a fragment of FOL, these are useful to us. We found more than
five articles on the topic of NL to FOL translation and decided to prioritise the newest
publications. Furthermore, we manually searched the reference list of the latest article
on the topic, Yang et al. [2023], and found five additional relevant articles. Articles
older than 2010 or with newer available research were excluded. All included articles are
primary sources.

The final phase of the literature review consisted of searching for work within the fields
of moral conflict and prompt engineering. We wanted to provide a general understanding
of the problem of moral conflicts and the most common approaches to solving the problem.
We found a literature review on the topic by Santos et al. [2017] that provides an overview
of the most prominent research in the field. In addition, we searched Google Scholar
to find well-established prompt engineering techniques on which we base the GPT-4
interaction. We found an in-depth overview of recent advances in LM by Min et al.
[2023], as well as a range of articles exploring the application and results of several
prompt engineering techniques.

The literature search lasted from August 2023 to May 2024, and all research is limited
to up until this point in time.

Bibliography

Wjdan Alharthi. First-order logic resolution. https://github.com/wjdanalharthi/F

irst-order-Logic-resolution, 2019. Accessed January 2024.

K. Allan. Natural Language Semantics. Wiley, 2001. ISBN 9780631192961. URL https:

//books.google.no/books?id=xX-5QgAACAAJ.

Michael Anderson and Susan Leigh Anderson. The status of machine ethics: a report
from the AAAI Symposium. Minds and Machines, 17(1):1–10, March 2007. ISSN
1572-8641. doi: 10.1007/s11023-007-9053-7. URL https://doi.org/10.1007/s110

23-007-9053-7.

Apple Inc. Siri. https://www.apple.com/siri/, April 2023. Accessed April 2024.

Simran Arora, Avanika Narayan, Mayee F Chen, Laurel Orr, Neel Guha, Kush Bhatia,
Ines Chami, and Christopher Re. Ask me anything: A simple strategy for prompting
language models. In The Eleventh International Conference on Learning Representa-
tions, 2022.

https://github.com/wjdanalharthi/First-order-Logic-resolution
https://github.com/wjdanalharthi/First-order-Logic-resolution
https://books.google.no/books?id=xX-5QgAACAAJ
https://books.google.no/books?id=xX-5QgAACAAJ
https://doi.org/10.1007/s11023-007-9053-7
https://doi.org/10.1007/s11023-007-9053-7
https://www.apple.com/siri/

Bibliography 101

Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, 2003. ISBN 978-0-521-81802-5.

Kinjal Basu, Sarat Varanasi, Farhad Shakerin, Joaquin Arias, and Gopal Gupta.
Knowledge-driven natural language understanding of english text and its applications,
2021.

Seth D Baum. Social choice ethics in artificial intelligence. Ai & Society, 35(1):165–176,
2020.

Emily M. Bender and Alexander Koller. Climbing towards NLU: On meaning, form,
and understanding in the age of data. In Dan Jurafsky, Joyce Chai, Natalie Schluter,
and Joel Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 5185–5198, Online, July 2020. Association for
Computational Linguistics. doi: 10.18653/v1/2020.acl-main.463. URL https:

//aclanthology.org/2020.acl-main.463.

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell.
On the dangers of stochastic parrots: Can language models be too big? In Proceedings
of the 2021 ACM Conference on Fairness, Accountability, and Transparency, FAccT
’21, page 610–623, New York, NY, USA, 2021. Association for Computing Machinery.
ISBN 9781450383097. doi: 10.1145/3442188.3445922. URL https://doi.org/10.1

145/3442188.3445922.

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia: A fresh
approach to numerical computing. SIAM Review, 59:65–98, 2017. doi: 10.1137/1410
00671.pdf.

Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python:
analyzing text with the natural language toolkit. " O’Reilly Media, Inc.", 2009.

Per Kristian Bjørkeng. Kunstig intelligens: Den usynlige revolusjonen. Vega Forlag AS,
2 edition, 2018.

George S. Boolos, John P. Burgess, and Richard C. Jeffrey. Computability and Logic.
Cambridge University Press, 5 edition, 2007.

Ronald Brachman and Hector Levesque. Knowledge Representation and Reasoning. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004. ISBN 1558609326.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz,
Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid
Palangi, Marco Tulio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence:
Early experiments with gpt-4, 2023.

https://aclanthology.org/2020.acl-main.463
https://aclanthology.org/2020.acl-main.463
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922

102 Appendix

K. R. Chowdhary. Natural Language Processing, pages 603–649. Springer India, New
Delhi, 2020. ISBN 978-81-322-3972-7. doi: 10.1007/978-81-322-3972-7_19. URL
https://doi.org/10.1007/978-81-322-3972-7_19.

Ronan Collobert and Jason Weston. A unified architecture for natural language pro-
cessing: deep neural networks with multitask learning. In Proceedings of the 25th
International Conference on Machine Learning, ICML ’08, page 160–167, New York,
NY, USA, 2008. Association for Computing Machinery. ISBN 9781605582054. doi:
10.1145/1390156.1390177. URL https://doi.org/10.1145/1390156.1390177.

Vincent Conitzer. Why should we ever automate moral decision making? In CEUR
Workshop Proceedings, volume 3547. CEUR Workshop Proceedings, 2023.

Vincent Conitzer, Rachel Freedman, Jobst Heitzig, Wesley H Holliday, Bob M Jacobs,
Nathan Lambert, Milan Mossé, Eric Pacuit, Stuart Russell, Hailey Schoelkopf, et al.
Social choice for ai alignment: Dealing with diverse human feedback. arXiv preprint
arXiv:2404.10271, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding, 2019.

Sabit Ekin. Prompt engineering for chatgpt: A quick guide to techniques, tips, and best
practices. Authorea Preprints, May 2023. doi: 10.36227/techrxiv.22683919.v2. URL
http://dx.doi.org/10.36227/techrxiv.22683919.v2.

Denis Emelin, Ronan Le Bras, Jena D. Hwang, Maxwell Forbes, and Yejin Choi. Moral
stories: Situated reasoning about norms, intents, actions, and their consequences. In
Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih, editors,
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 698–718, Online and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.54.
URL https://aclanthology.org/2021.emnlp-main.54.

Esra Erdem, Michael Gelfond, and Nicola Leone. Applications of answer set program-
ming. AI Magazine, 37(3):53–68, Oct. 2016. doi: 10.1609/aimag.v37i3.2678. URL
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2678.

Salvatore Claudio Fanni, Maria Febi, Gayane Aghakhanyan, and Emanuele Neri. Natural
Language Processing, pages 87–99. Springer International Publishing, Cham, 2023.
ISBN 978-3-031-25928-9. doi: 10.1007/978-3-031-25928-9_5. URL https://doi.or

g/10.1007/978-3-031-25928-9_5.

https://doi.org/10.1007/978-81-322-3972-7_19
https://doi.org/10.1145/1390156.1390177
http://dx.doi.org/10.36227/techrxiv.22683919.v2
https://aclanthology.org/2021.emnlp-main.54
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2678
https://doi.org/10.1007/978-3-031-25928-9_5
https://doi.org/10.1007/978-3-031-25928-9_5

Bibliography 103

Maxwell Forbes, Jena D. Hwang, Vered Shwartz, Maarten Sap, and Yejin Choi. Social
chemistry 101: Learning to reason about social and moral norms, 2021.

LTF Gamut. Logic, language, and meaning, volume 1: Introduction to logic, volume 1.
University of Chicago Press, 1991.

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Motivation,
pages 1–10. Springer International Publishing, Cham, 2013. ISBN 978-3-031-01561-8.
doi: 10.1007/978-3-031-01561-8_1. URL https://doi.org/10.1007/978-3-031-0

1561-8_1.

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Chaub. Multi-shot
asp solving with clingo. Theory and Practice of Logic Programming, 19(1):27–82, 2019.
doi: 10.1017/S1471068418000054.

Claude Cordell Green. The application of theorem proving to question-answering systems.
Stanford University, 1969.

Muhammad Usman Hadi, Rizwan Qureshi, Abbas Shah, Muhammad Irfan, Anas Zafar,
Muhammad Bilal Shaikh, Naveed Akhtar, Jia Wu, Seyedali Mirjalili, et al. A survey
on large language models: Applications, challenges, limitations, and practical usage.
Authorea Preprints, 2023.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Luke Benson,
Lucy Sun, Ekaterina Zubova, Yujie Qiao, Matthew Burtell, David Peng, Jonathan Fan,
Yixin Liu, Brian Wong, Malcolm Sailor, Ansong Ni, Linyong Nan, Jungo Kasai, Tao
Yu, Rui Zhang, Shafiq Joty, Alexander R. Fabbri, Wojciech Kryscinski, Xi Victoria
Lin, Caiming Xiong, and Dragomir Radev. Folio: Natural language reasoning with
first-order logic, 2022.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli
Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J.
Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew
Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,
Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature,
585(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2. URL https:

//doi.org/10.1038/s41586-020-2649-2.

Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and
Jacob Steinhardt. Aligning {ai} with shared human values. In International Conference
on Learning Representations, 2021. URL https://openreview.net/forum?id=dNy_

RKzJacY.

https://doi.org/10.1007/978-3-031-01561-8_1
https://doi.org/10.1007/978-3-031-01561-8_1
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://openreview.net/forum?id=dNy_RKzJacY
https://openreview.net/forum?id=dNy_RKzJacY

104 Appendix

Linmei Hu, Zeyi Liu, Ziwang Zhao, Lei Hou, Liqiang Nie, and Juanzi Li. A survey of
knowledge enhanced pre-trained language models. IEEE Transactions on Knowledge
and Data Engineering, 36(4):1413–1430, 2024. doi: 10.1109/TKDE.2023.3310002.

Hugging Face. Transformers, what can they do? https://huggingface.co/learn/nlp

-course/en/chapter1/4, 2023. Accessed May 2024.

Hugging Face. Distilbert documentation. https://huggingface.co/docs/transforme

rs/en/model_doc/distilbert, 2024. Accessed May 2024.

Liwei Jiang, Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Maxwell Forbes,
Jon Borchardt, Jenny T Liang, Oren Etzioni, Maarten Sap, and Yejin Choi. Delphi:
Towards machine ethics and norms. ArXiv, abs/2110.07574, 2021. URL https://ap

i.semanticscholar.org/CorpusID:238857096.

Epaminondas Kapetanios, Doina Tatar, and Christian Sacarea. Natural language pro-
cessing: semantic aspects. CRC Press, 2013.

Philipp Koehn. Statistical machine translation. Cambridge University Press, 2009.

Robert Kowalski. Logic programming in the 1970s. In Pedro Cabalar and Tran Cao
Son, editors, Logic Programming and Nonmonotonic Reasoning, pages 11–22, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-40564-8.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed,
Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-
sequence pre-training for natural language generation, translation, and comprehension,
2019.

Changcheng Li. JuliaCall: an R package for seamless integration between R and Julia.
The Journal of Open Source Software, 4(35):1284, 2019. doi: 10.21105/joss.01284.

Beishui Liao, Pere Pardo, Marija Slavkovik, and Leon van der Torre. The jiminy advisor:
Moral agreements among stakeholders based on norms and argumentation. Journal of
Artificial Intelligence Research, 77:737–792, 07 2023. doi: 10.1613/jair.1.14368.

Vladimir Lifschitz. What is answer set programming? Association for the Advancement
of Artificial Intelligence, 2008.

Vladimir Lifschitz. Answer set programming, volume 3. Springer Heidelberg, 2019.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham
Neubig. Pre-train, prompt, and predict: A systematic survey of prompting methods in
natural language processing, 2021.

https://huggingface.co/learn/nlp-course/en/chapter1/4
https://huggingface.co/learn/nlp-course/en/chapter1/4
https://huggingface.co/docs/transformers/en/model_doc/distilbert
https://huggingface.co/docs/transformers/en/model_doc/distilbert
https://api.semanticscholar.org/CorpusID:238857096
https://api.semanticscholar.org/CorpusID:238857096

Bibliography 105

John W Lloyd. Foundations of logic programming. Springer Science & Business Media,
2012.

Nicholas Lourie, Ronan Le Bras, and Yejin Choi. Scruples: A corpus of community
ethical judgments on 32,000 real-life anecdotes, 2021.

Xuantao Lu, Jingping Liu, Zhouhong Gu, Hanwen Tong, Chenhao Xie, Junyang Huang,
Yanghua Xiao, and Wenguang Wang. Parsing natural language into propositional and
first-order logic with dual reinforcement learning. In Proceedings of the 29th Interna-
tional Conference on Computational Linguistics, pages 5419–5431, Gyeongju, Republic
of Korea, October 2022. International Committee on Computational Linguistics. URL
https://aclanthology.org/2022.coling-1.481.

D. Makinson. Sets, Logic and Maths for Computing. Undergraduate Topics in Computer
Science. Springer London, 2012. ISBN 9781447125006. URL https://books.google

.no/books?id=zz9wDBjsqlAC.

Dastan Hussen Maulud, Subhi RM Zeebaree, Karwan Jacksi, Mohammed A Mohammed
Sadeeq, and Karzan Hussein Sharif. State of art for semantic analysis of natural
language processing. Qubahan academic journal, 1(2):21–28, 2021.

Terrance McConnell. Moral Dilemmas. In Edward N. Zalta and Uri Nodelman, edi-
tors, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford
University, Fall 2022 edition, 2022.

Wes McKinney. Data Structures for Statistical Computing in Python. In Stéfan van der
Walt and Jarrod Millman, editors, Proceedings of the 9th Python in Science Conference,
pages 56 – 61, 2010. doi: 10.25080/Majora-92bf1922-00a.

Walaa Medhat, Ahmed Hassan, and Hoda Korashy. Sentiment analysis algorithms and
applications: A survey. Ain Shams Engineering Journal, 5(4):1093–1113, 2014. ISSN
2090-4479. doi: https://doi.org/10.1016/j.asej.2014.04.011. URL https://www.scie

ncedirect.com/science/article/pii/S2090447914000550.

Dennis Merritt. Building expert systems in Prolog. Springer Science & Business Media,
2012.

Microsoft. Prompt engineering techniques, 2024a. URL https://learn.microsoft.co

m/en-us/azure/ai-services/openai/concepts/advanced-prompt-engineering?p

ivots=programming-language-chat-completions. Accessed January 2024.

Microsoft. Use follow-up prompts to create multiple turns of a conversation, 2024b. URL
https://learn.microsoft.com/en-us/azure/ai-services/qnamaker/how-to/mu

lti-turn. Accessed January 2024.

https://aclanthology.org/2022.coling-1.481
https://books.google.no/books?id=zz9wDBjsqlAC
https://books.google.no/books?id=zz9wDBjsqlAC
https://www.sciencedirect.com/science/article/pii/S2090447914000550
https://www.sciencedirect.com/science/article/pii/S2090447914000550
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/advanced-prompt-engineering?pivots=programming-language-chat-completions
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/advanced-prompt-engineering?pivots=programming-language-chat-completions
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/advanced-prompt-engineering?pivots=programming-language-chat-completions
https://learn.microsoft.com/en-us/azure/ai-services/qnamaker/how-to/multi-turn
https://learn.microsoft.com/en-us/azure/ai-services/qnamaker/how-to/multi-turn

106 Appendix

Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu Nguyen,
Oscar Sainz, Eneko Agirre, Ilana Heintz, and Dan Roth. Recent advances in natural
language processing via large pre-trained language models: A survey. ACM Comput.
Surv., 56(2), sep 2023. ISSN 0360-0300. doi: 10.1145/3605943. URL https://doi.or

g/10.1145/3605943.

A.C. Müller and S. Guido. Introduction to Machine Learning with Python: A Guide for
Data Scientists. O’Reilly Media, 2016. ISBN 9781449369903. URL https://books.

google.no/books?id=1-4lDQAAQBAJ.

OpenAI. Fine-tuning, 2024a. URL https://platform.openai.com/docs/guides/fine

-tuning. Accessed January 2024.

OpenAI. Prompt engineering, 2024b. URL https://platform.openai.com/docs/gui

des/prompt-engineering. Accessed January 2024.

OpenAI. How chatgpt and our language models are developed. https://help.openai.
com/en/articles/7842364-how-chatgpt-and-our-language-models-are-devel

oped, 2024c. Accessed January 2024.

OpenAI. Openai python api. https://platform.openai.com/docs/api-reference/i

ntroduction, 2024d. Version 1.11.1.

OpenAI, :, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya,
Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shya-
mal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Bal-
tescu, Haiming Bao, Mo Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel
Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine
Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles Brundage, Kevin
Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea Carl-
son, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu,
Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory De-
careaux, Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan,
Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David
Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte, Isabella Fulford,
Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh,
Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene,
Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey,
Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga,

https://doi.org/10.1145/3605943
https://doi.org/10.1145/3605943
https://books.google.no/books?id=1-4lDQAAQBAJ
https://books.google.no/books?id=1-4lDQAAQBAJ
https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/guides/prompt-engineering
https://platform.openai.com/docs/guides/prompt-engineering
https://help.openai.com/en/articles/7842364-how-chatgpt-and-our-language-models-are-developed
https://help.openai.com/en/articles/7842364-how-chatgpt-and-our-language-models-are-developed
https://help.openai.com/en/articles/7842364-how-chatgpt-and-our-language-models-are-developed
https://platform.openai.com/docs/api-reference/introduction
https://platform.openai.com/docs/api-reference/introduction

Bibliography 107

Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin,
Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser,
Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kil-
patrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Hendrik Kirchner, Jamie Kiros,
Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan,
Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly
Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna
Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv Markovski, Bianca Mar-
tin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney, Christine
McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa,
Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Rei-
ichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long
Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantu-
liano, Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail
Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr Pong,
Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Rad-
ford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman,
Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian
Sohl, Benjamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski Such,
Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine Thompson,
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry
Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss,
Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Ja-
son Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren
Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin
Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang,
Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph.
Gpt-4 technical report, 2023.

Ana Ozaki, Anum Rehman, Philip Turk, and Marija Slavkovik. Finding common ground
for incoherent horn expressions. CoRR, abs/2209.06455, 2022. doi: 10.48550/ARXIV
.2209.06455. URL https://doi.org/10.48550/arXiv.2209.06455.

https://doi.org/10.48550/arXiv.2209.06455

108 Appendix

Federico Pascual. Getting started with sentiment analysis using python. https://hugg

ingface.co/blog/sentiment-analysis-python, February 2022.

Giulio Petrucci, Marco Rospocher, and Chiara Ghidini. Expressive ontology learning
as neural machine translation. Journal of Web Semantics, 52-53:66–82, 2018. ISSN
1570-8268. doi: https://doi.org/10.1016/j.websem.2018.10.002. URL https:

//www.sciencedirect.com/science/article/pii/S1570826818300507.

Abhiramon Rajasekharan, Yankai Zeng, Parth Padalkar, and Gopal Gupta. Reliable nat-
ural language understanding with large language models and answer set programming.
Electronic Proceedings in Theoretical Computer Science, 385:274–287, September 2023.
ISSN 2075-2180. doi: 10.4204/eptcs.385.27. URL http://dx.doi.org/10.4204/EPT

CS.385.27.

Devjeet Roy, Sarah Fakhoury, and Venera Arnaoudova. Reassessing automatic evaluation
metrics for code summarization tasks. In Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2021, page 1105–1116, New York, NY, USA, 2021.
Association for Computing Machinery. ISBN 9781450385626. doi: 10.1145/3468264.
3468588. URL https://doi.org/10.1145/3468264.3468588.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, 3 edition, 2010.

Mohammed Saeed, Naser Ahmadi, Preslav Nakov, and Paolo Papotti. Rulebert: Teaching
soft rules to pre-trained language models, 2021.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter, 2020.

Jessica Santos, Jean Zahn, Eduardo Silvestre, Viviane Silva, and Wamberto Vasconcelos.
Detection and resolution of normative conflicts in multi-agent systems: a literature
survey. Autonomous Agents and Multi-Agent Systems, 31, 11 2017. doi: 10.1007/s104
58-017-9362-z.

Maarten Sap, Saadia Gabriel, Lianhui Qin, Dan Jurafsky, Noah A. Smith, and Yejin
Choi. Social bias frames: Reasoning about social and power implications of language.
In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault, editors, Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, pages
5477–5490, Online, July 2020. Association for Computational Linguistics. doi: 10.186
53/v1/2020.acl-main.486. URL https://aclanthology.org/2020.acl-main.486.

https://huggingface.co/blog/sentiment-analysis-python
https://huggingface.co/blog/sentiment-analysis-python
https://www.sciencedirect.com/science/article/pii/S1570826818300507
https://www.sciencedirect.com/science/article/pii/S1570826818300507
http://dx.doi.org/10.4204/EPTCS.385.27
http://dx.doi.org/10.4204/EPTCS.385.27
https://doi.org/10.1145/3468264.3468588
https://aclanthology.org/2020.acl-main.486

Bibliography 109

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,
61:85–117, 2015. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2014.09.003.
URL https://www.sciencedirect.com/science/article/pii/S089360801400213

5.

Pankaj Sharma, Naveen Malik, Naeem Akhtar, and Hardeep Rohilla. Parsing techniques:
A review. International Journal of Advanced Research in Engineering and Applied
Sciences, 2(10):65–76, 2013. URL http://www.garph.co.uk/IJAREAS.

Barry Shore. Bias in the development and use of an expert system: implications for life
cycle costs. Industrial Management & Data Systems, 96(4):18–26, 1996.

Hrituraj Singh, Milan Aggrawal, and Balaji Krishnamurthy. Exploring neural models for
parsing natural language into first-order logic, 2020.

Marija Slavkovik. Automating Moral Reasoning. In Camille Bourgaux, Ana Ozaki,
and Rafael Peñaloza, editors, International Research School in Artificial Intelligence
in Bergen (AIB 2022), volume 99 of Open Access Series in Informatics (OASIcs),
pages 6:1–6:13, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. ISBN 978-3-95977-228-0. doi: 10.4230/OASIcs.AIB.2022.6. URL https:

//drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.AIB.2022.6.

Suzanne Tolmeijer, Markus Kneer, Cristina Sarasua, Markus Christen, and Abraham
Bernstein. Implementations in machine ethics: A survey. ACM Comput. Surv., 53(6),
dec 2021. ISSN 0360-0300. doi: 10.1145/3419633. URL https://doi.org/10.1145/

3419633.

M. Onat Topal, Anil Bas, and Imke van Heerden. Exploring transformers in natural
language generation: Gpt, bert, and xlnet, 2021.

Alan M. Turing. Computing machinery and intelligence. Mind, LIX:433–460, 1950. URL
https://api.semanticscholar.org/CorpusID:14636783.

Rens Van de Schoot and Milica Miocević. Small sample size solutions: A guide for applied
researchers and practitioners. Taylor & Francis, 2020.

Eva AM Van Dis, Johan Bollen, Willem Zuidema, Robert Van Rooij, and Claudi L
Bockting. Chatgpt: five priorities for research. Nature, 614(7947):224–226, 2023.

Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace, Scotts
Valley, CA, 2009. ISBN 1441412697.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR,
abs/1706.03762, 2017. URL http://arxiv.org/abs/1706.03762.

https://www.sciencedirect.com/science/article/pii/S0893608014002135
https://www.sciencedirect.com/science/article/pii/S0893608014002135
http://www.garph.co.uk/IJAREAS
https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.AIB.2022.6
https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.AIB.2022.6
https://doi.org/10.1145/3419633
https://doi.org/10.1145/3419633
https://api.semanticscholar.org/CorpusID:14636783
http://arxiv.org/abs/1706.03762

110 Appendix

Juan David Velásquez-Henao, Carlos Jaime Franco-Cardona, and Lorena Cadavid-
Higuita. Prompt engineering: a methodology for optimizing interactions with ai-
language models in the field of engineering. DYNA, 90(230):9–17, nov. 2023. doi:
10.15446/dyna.v90n230.111700. URL https://revistas.unal.edu.co/index.php

/dyna/article/view/111700.

Wendell Wallach and Colin Allen. Moral Machines: Teaching Robots Right from Wrong.
Oxford University Press, 02 2009. ISBN 9780195374049. doi: 10.1093/acprof:oso/97
80195374049.001.0001. URL https://doi.org/10.1093/acprof:oso/978019537404

9.001.0001.

Wendell Wallach, Colin Allen, and Iva Smit. Machine morality: bottom-up and top-down
approaches for modelling human moral faculties. AI & SOCIETY, 22(4):565–582, 2008.
ISSN 1435-5655. doi: 10.1007/s00146-007-0099-0. URL https://doi.org/10.1007/

s00146-007-0099-0.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia,
Ed Chi, Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in
large language models, 2023.

Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert,
Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C. Schmidt. A prompt pattern
catalog to enhance prompt engineering with chatgpt, 2023.

Yangjian Wu and Gang Hu. Exploring prompt engineering with GPT language models
for document-level machine translation: Insights and findings. In Philipp Koehn, Barry
Haddow, Tom Kocmi, and Christof Monz, editors, Proceedings of the Eighth Conference
on Machine Translation, pages 166–169, Singapore, December 2023. Association for
Computational Linguistics. doi: 10.18653/v1/2023.wmt-1.15. URL https://aclant

hology.org/2023.wmt-1.15.

Yuan Yang, Siheng Xiong, Ali Payani, Ehsan Shareghi, and Faramarz Fekri. Harnessing
the power of large language models for natural language to first-order logic translation,
2023.

Caiming Zhang and Yang Lu. Study on artificial intelligence: The state of the art
and future prospects. Journal of Industrial Information Integration, 23:100224, 2021.
ISSN 2452-414X. doi: https://doi.org/10.1016/j.jii.2021.100224. URL https:

//www.sciencedirect.com/science/article/pii/S2452414X21000248.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian
Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen,

https://revistas.unal.edu.co/index.php/dyna/article/view/111700
https://revistas.unal.edu.co/index.php/dyna/article/view/111700
https://doi.org/10.1093/acprof:oso/9780195374049.001.0001
https://doi.org/10.1093/acprof:oso/9780195374049.001.0001
https://doi.org/10.1007/s00146-007-0099-0
https://doi.org/10.1007/s00146-007-0099-0
https://aclanthology.org/2023.wmt-1.15
https://aclanthology.org/2023.wmt-1.15
https://www.sciencedirect.com/science/article/pii/S2452414X21000248
https://www.sciencedirect.com/science/article/pii/S2452414X21000248

Bibliography 111

Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu
Liu, Jian-Yun Nie, and Ji-Rong Wen. A survey of large language models, 2023.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-most
prompting enables complex reasoning in large language models, 2023.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen Wang, Hao Chen, Yidong Wang, Linyi
Yang, Wei Ye, Yue Zhang, Neil Zhenqiang Gong, and Xing Xie. Promptbench: Towards
evaluating the robustness of large language models on adversarial prompts, 2023.

	Chapter 1 – Introduction
	Problem Description and Motivation
	Research Questions and Success Criteria
	Contribution
	Organisation of Thesis

	Chapter 2 – Background
	Natural Language Processing
	First-Order Logic
	Logic Programming
	Commonsense Norm Bank

	Chapter 3 – Related work
	Natural Language Processing and Large Language Models
	Moral Conflict

	Chapter 4 – Methodology
	Research Design
	Tools and Methods

	Chapter 5 – Experiments
	NL Norm Dataset
	Encoding System
	Sentiment Analysis
	Inconsistency Checker
	Evaluating Faithfulness of First-Order Logic Encodings

	Chapter 6 – Results
	Encoding System
	Sentiment Analysis
	Inconsistency Checker
	Evaluation of Faithfulness

	Chapter 7 – Analysis of Encoding Mistakes
	Syntactically Invalid Encodings
	Wrong Encodings
	Lacking Encodings
	Not Horn

	Chapter 8 – Discussion
	First-Order Logic Faithfulness
	Horn Clause Mistakes
	GPT-4 and Knowledge Engineering

	Chapter 9 – Conclusions and Future work
	Research Questions and Success Criteria
	Contribution
	Limitations and Future Work
	Final Thoughts

	Chapter 10 – Appendix
	Literature Search Method

	Bibliography

