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Abstract

Schizophrenia (SCZ) is a complex mental disorder which affects about 1 in 300 people
worldwide [1]. Individuals with SCZ can experience psychosis in the form of hallu-
cinations and delusions. The disorder has a severe impact on quality of life, not just
for the patient but for their family and friends [2]. Personalized treatment is rare and
the selection of treatment often follows a "trial and error" regime where a self-report
of symptoms decides what medication is most appropriate [3]. Thus, there is a need to
achieve a more personalized approach [4].

Since the discovery of functional magnetic resonance imaging (fMRI) in the 90s, func-
tional neuroimaging has been used to investigate brain activity in patients with psy-
chiatric disorders such as SCZ [5]. Resting-state fMRI scans can be used to classify
subjects with schizophrenia among a group of both patients and healthy controls using
machine learning (ML) [6–9]. However, few have tried to classify the various sub-
groups of the disorder using ML. The aim of this thesis is to investigate if ML based
on resting-state fMRI data (4D) can aid in subgrouping patients with SCZ. Further-
more, the feasibility of this approach to distinguish patients from healthy controls is
investigated.

The approach consists of implementing a deep learning (DL) pipeline to handle four
dimensional data, before analysing both online (N=148) and local (N=316) data. The
study also assesses how different preprocessing of images impact DL models and ex-
plores hyperparameter combinations to optimize the performance of models.

The problem addressed in the thesis is difficult and probably an ill-posed problem with
more variability than what would be ideal for sub-grouping in SCZ. Therefore, the
overall performance of the implemented ML models are lower than expected. How-
ever, to our knowledge, this is the first attempt on distinguishing between data based
on 4D neuroimaging data directly. The project shows that minimizing preprocessing,
as well as using data only from one source rather than grouping several datasets, is
beneficial. Hyperparameter selection improves performance and could potentially be
further optimized and explored to improve performance. The proposed approach is
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able to reproduce previous attempts of separation between patients and controls, even
if the analysis is performed on the raw data directly (4D) rather than feature extracted
fMRI data. Thus, the proposed approach could still be valuable in clinical research and
clinical follow up in the future.
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Chapter 1

Introduction

Since the discovery of fMRI in the 90s, functional neuroimaging has been used to in-
vestigate brain activity in subjects with psychiatric disorders [5]. Among these are
schizophrenia (SCZ), where subjects can experience psychosis in the form of halluci-
nations and delusions [1]. It is a genetically complex disorder and consists of a het-
erogeneous patient group. The disorder has a severe impact on quality of life, not just
for the subject but for their family and friends [2]. Personalized treatment is rare and
the selection of treatment often follows a "trial and error" regime where a self-report
of symptoms decides what medication is most appropriate [3]. Thus, there is a need to
achieve a more personalized approach [4]. Practitioners may use sub-groups to catego-
rize subjects based on their symptoms, e.g. paranoid-, disorganized- and catatonic SCZ.
Correct classification of the mental disorder can aid in finding a working medication
for the subject in question.

In resting-state fMRI studies, the subject will not conduct any task [10]. Instead, the
subject is instructed to rest but not fall asleep. This can be preferable in the study of
psychiatric disorders due to the technique not requiring any subjective input. Resting-
state fMRI can be used to study the functional connectivity in the brain, i.e. different
anatomically separated brain regions being connected due to their simultaneous activa-
tions or fluctuations in resting-state [11]. The functional connectivity can be used to
identify brain networks, such as brain regions involved in specific functions or tasks
[12]. A brain network that have been studied extensively using resting-state fMRI is
the default mode network [13]. Some studies have shown that functional connectivity
can contain information on disorders such as SCZ [14–16].

Resting-state fMRI scans can be used to classify subjects with SCZ among patients and
healthy controls using machine learning (ML) [6–9]. However, few have attempted
to classify the various sub-groups of the disorder using this technique. And to our
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knowledge, none have used deep learning on four dimensional fMRI time series to
classify subjects with SCZ.

The aim of this thesis is to investigate if ML based on resting-state fMRI data (4D)
can aid in the sub-grouping of subjects with SCZ. Furthermore, the feasibility of this
approach to distinguish subjects with SCZ from healthy controls is investigated. The
following steps are proposed:

• To design, implement and run a deep learning (DL) pipeline that can handle 4D
data.

• To optimize the ML model through hyperparameter fine-tuning.

• To investigate the effect of preprocessed imaging data on the performance of the
ML model.

• To perform binary and multilabel classification of subjects with SCZ using DL
models.

• To investigate and assess the performance of the models on an online dataset
(N=148) and local datasets (N=316).



Chapter 2

Theory

2.1 Functional Magnetic Resonance Imaging

2.1.1 Difference between MRI and fMRI
Magnetic Resonance Imaging (MRI) is one of the main medical imaging techniques
today [17]. It is one of the most advanced, versatile, and important imaging modali-
ties used in clinical diagnostics, treatment planning, and follow up. Because MRI does
not involve ionizing radiation, it is also extensively used in research applications. Us-
ing MRI, we can acquire anatomical images of the body to view different tissues and
organs. The main difference between structural MRI and functional MRI (fMRI) is
that structural MRI is being used for single volume captures, whereas fMRI is being
used to capture a time series of multiple volumes [18]. Structural MRI can be used to
differentiate between different tissues in the brain, i.e. gray matter, white matter and
cerebrospinal fluid (CSF), which makes it possible to detect abnormalities in the body
such as tumours. fMRI is mainly used to look at the dynamics of brain activity as a
function of time. This can give us an important understanding of the function and in-
teractions between different brain regions. fMRI can be used as a tool to compare brain
activity in healthy subjects to subjects with mental disorders such as depression, bipolar
disorder and SCZ. This furthers our understanding of possible underlying mechanisms
that are involved in the disorders.
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2.1.2 Principles of MRI
MRI uses the properties of nuclei with magnetic moment, mainly hydrogen atoms but
also sodium or phosphor, to generate signals [19]. Protons and neutrons are spin 1

2 par-
ticles with an associated magnetic moment µ . The magnitude of the magnetic moment
µ of each nucleon is given by

|µ|= γ}
√

I(I +1) (2.1)

where I is the spin number, } is the reduced Planck constant and γ is the gyromagnetic
ratio, which connects the angular momentum to the magnetic moment [19]. The gy-
romagnetic ratio is specific for each nucleus. The induced magnetic moment for each
nucleon will have a direction and strength, i.e. it has vector properties. All nuclei with
these properties are called MR active nuclei.

Within the human body, the vast majority of the MR active nuclei are hydrogen, mainly
the hydrogen atoms in water and fat [19]. Due to the absence of neutrons in the hydro-
gen atom, the single proton makes for a large magnetic moment in the hydrogen atom.
Due to thermal energy, the orientation of this magnetic moment is random until an ex-
ternal magnetic field

−→
B0 is applied. Depending on the energy level of the nuclei, they

can be oriented either with or against the magnetic field. From equation 2.1, the orien-
tation and magnitude of the magnetic moment of the hydrogen nucleus in the direction
of
−→
B0, the z-direction, is given by

−→
µz =±

1
2

γ} (2.2)

The energy levels are therefore given by

E↑ =−
1
2

γ}B0 (2.3)

where E↑ is the lower energy state, and

E↓ =
1
2

γ}B0 (2.4)

where E↓ is the higher energy state. There will always be more hydrogen atoms in the
low-energy state than in the high-energy state in the human body [20], leading to a net
magnetization parallel to the strong external magnetic field called the net magnetization
vector

−→
M which is the sum of the magnetic moments µ .
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−→
M =

n

∑
i=1

µi (2.5)

In even-numbered nuclei, the magnetic moments of protons and neutrons cancel each
other out, resulting in a zero net magnetization vector in a strong externally applied
magnetic field. In odd-numbered nuclei, however, the net magnetization is not zero.
The temporal behaviour of the net magnetization vector can be described by classical
mechanics and the Bloch equation:

d
−→
M

dt
= γ
−→
M ×−→B0 (2.6)

The remainder of the thesis describes MRI using classical physics.

Under the influence of an external magnetic field, the hydrogen atoms in the human
body will have a precessional frequency ω0 [19]. This can be modelled as the hydrogen
atoms wobbling about the magnetic field. The precessional frequency ω0, the Larmor
frequency, is determined by the Larmor equation:

ω0 = γB0 (2.7)

where γ is the gyromagnetic ratio and B0 is the external magnetic field.

2.1.3 Signal generation
For an MRI-image to be acquired, a radio frequency (RF) pulse has to be transmitted
to the system [20]. The frequency of this RF-pulse has to match the Larmor frequency
of the nuclei for a phenomenon called resonance to occur [19]. Therefore, only the
hydrogen atoms in the body will provide a signal when the appropriate frequency of
the RF-pulse is applied.

An excitation of the spin system can be achieved by adding an RF-pulse of the right
frequency [17]. The excitation causes the net magnetization vector

−→
M to change its

orientation relative to the direction of the magnetic field B0. The resulting angle, called
the flip angle, is a result of the applied duration and the amplitude of the RF-pulse.

When the RF-pulse is turned off, the processes of relaxation start [19]. This is when
the net magnetization vector

−→
M returns into alignment with the magnetic field

−→
B0. Two

important relaxation processes called T1 recovery and T2 decay occur. T1 relaxation is
the recovery of

−→
M along the main magnetic field, while T2 relaxation is the decay of

−→
M
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in the transverse plane. These processes provide the definition for the T1 spin-lattice
recovery time and the T2 spin-spin decay time, for tissues. The T1 time is defined as
the time it takes for 63% of the magnetization to recover in the longitudinal plane, while
the T2 time is the time it takes until 37% of the magnetization is left in the transverse
plane [20]. The T1 time is always longer than the T2 time in human tissues. Assuming
that the longitudinal direction is the z-direction (

−→
k ) and the transverse plane is the

xy-plane (
−→
i j ), the relaxation process can be explained with a modified Bloch equation:

d
−→
M

dt
= γ
−→
M ×−→B −

Mx
−→
i +My

−→
j

T2
−

(Mz−M0
z )
−→
k

T1
(2.8)

where Mx, My and Mz are the components of the net magnetization in the x, y and z
directions, respectively. M0

z is the original orientation along B0, typically modelled by
Boltzmann statistics, i.e. dependent on field strength, spin density and temperature.
The terms can be separated to provide the equations for the independent processes T1
and T2, respectively:

d
−→
Mz

dt
=−

(Mz−M0
z )
−→
k

T1
(2.9)

d
−→
Mxy

dt
=−
−→
Mxy

T2
(2.10)

which gives origin to the equations describing the T1 and T2 times, respectively:

Mz(t) = M0
z (1− e−

t
T1 ) (2.11)

Mxy(t) = M0
z e−

t
T2 (2.12)

Equations 2.11 and 2.12 show how the magnetization vector in the z-direction and the
xy-plane changes over time. The T1 and T2 times are shown in figures 2.1 and 2.2.
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Figure 2.1: The temporal development of T1 relaxation with the T1 time of a given tissue, marked in a
dashed line.

Figure 2.2: The temporal development of T2 relaxation with the T2 time of a given tissue, marked in a
dashed line.
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External field inhomogeneities or local variations in tissue susceptibility may lead to
an added dephasing of the magnetization [17], influencing the relaxation time to seem
shorter. This gives rise to the T2* time, also called the apparent spin-spin relaxation
time, which will always be shorter than the T2 time [21]. Structural MRI are typically
T1 or T2 weighted, while fMRI is based on utilizing the T2*.

2.1.4 Measurement and localization

In addition to the strong static main magnetic field B0 of the MR scanner, there are
also three smaller magnetic fields, one in each of the three orthogonal spatial directions
−→x , −→y and −→z [18]. These magnetic fields, Gx, Gy, and Gz, are called time-varying
gradient fields and can change in strength over time. The gradient fields allow the
origin of the measured signals to be positioned in the xyz-space. Receiver coils in
the transverse plane will detect changes in magnetic flux perpendicular to the B0 field.
After excitation, the magnetization vector is precessing in the transverse plane, and
due to Faraday’s law of induction there will be an induced current in the coil. The
created signal is termed the free induction decay (FID), which is the basis for all signal
detection in MRI. However, when performing scans clinically, it is not the FID that is
being measured but rather an echo version of it. This allows for a more efficient image
acquisition.

When creating a structural MRI image, one cross-sectional slice with a certain thick-
ness is being recorded at a time [22]. To choose a slice in the z-direction, the frequency
of the RF pulse and the strength of Gz can be changed according to the Larmor equa-
tion. The thickness can be decided by changing the bandwidth of the RF pulse or the
amplitude of the gradient.

To generate an MRI image, the data matrix k-space has to be filled [22]. Every slice
has its k-space equivalent, and the k represents the x, y, z coordinate in the Fourier do-
main. The k-space is the Fourier equivalent of the image space, and is therefore in the
frequency domain. This means that each coordinate in k-space will not represent the
same physical coordinate in the image space, which is in the spatial domain. Each co-
ordinate in k-space has a value which contains a signal proportional to the spin density,
the T1 time and the T2 time in that specific coordinate. By changing the time-varying
gradients, each coordinate in the k-space matrix can be filled with information. This
way, the whole k-space will be filled after an MRI scan. To get the image space, an
inverse Fourier transformation has to be performed on k-space.
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2.1.5 Pulse sequences

MRI images are acquired through pulse sequences [21]. The most common sequences
are spin echo and gradient echo. The sequences make use of the echo time (TE) which
is the time between the initial RF pulse and the echo that is being recorded, and the
repetition time (TR) which is the time between each excitation pulse. In most spin
echo and gradient echo sequences, k-space is filled one line per RF-pulse.

Spin echo

The spin echo pulse sequence begins with a 90° RF excitation pulse [17]. This will
align the magnetization with the transverse plane. The spins will then start to dephase
in the transverse plane, before a 180 degree pulse is applied, reversing the spin phases.
The following rephasing and dephasing generates the echo, and is the signal that is
being recorded during these types of sequences.

Gradient echo

The gradient echo pulse sequence uses the gradients to create the echo [21]. After
excitation, the gradient fields are used to cause a dephasing of the spins, which in turn
will provide an echo when they rephase because the applied gradient fields are reversed.
After TE, the echo will have a peak and this is the signal being recorded.

Echo planar imaging

Another often-used MRI technique is echo planar imaging (EPI). It is used for fast
acquisition of images and is the technique most often used in fMRI [18]. A pulse se-
quence diagram for EPI can be seen on figure 2.3. The k-space is filled up as shown in
figure 2.4. An EPI sequence works by capturing the whole k-space with just one exci-
tation. Therefore, the time-varying gradients have to be strong enough to fill the entire
k-space before significant T2 or T ∗2 decay can occur. The gradient in the x-direction
changes between the same positive and negative value to move in the horizontal direc-
tion in k-space, while the gradient in the y-direction sends blips of the same magnitude
and direction to move in the vertical direction to the next row in k-space. These blips
can be seen as the small changes in the phase encoding gradient in figure 2.3. The
number of rows in the k-space are determined by the number of echoes captured in the
scan, and the number of columns are determined by the frequency encoding matrix,
thus influencing how many echoes are captured from each slice [21].
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Figure 2.3: A pulse diagram for the EPI sequence. Figure taken from section 19.3 in [17], fig. 19.6.

Figure 2.4: The k-space being filled in an EPI sequence. Figure taken from section 19.3 in [17], fig.
19.7.
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2.1.6 Artifacts
Various artifacts can occur during MRI acquisition [18]. Artifacts can be divided into
the three main categories: subject-related, hardware-related, and software-related. Typ-
ical hardware-related artifacts in EPI results from imperfections of the magnetic fields.
Such imperfections can occur in both the strong main field and the gradient fields. This
can lead to signal losses and distortions in the images, e.g. that a readout might not
contain the full signal that it should have or that the signal has been moved to a neigh-
bouring coordinate. Subject-related artifacts can be subject movement during the MRI
acquisition. The movement can be either spatial or rotational. In addition, implants
or other foreign bodies such as braces can create artifacts. Some artifacts are always
present, such as those caused by fluid movement.

Within research using MRI, it is crucial to perform image processing. Some techniques
are performed during scanning, while others are performed after image acquisition.
There are many advanced preprocessing techniques that can be used to reduce the ef-
fects from certain artifacts on the images. Chapter 3.4 contains more information about
preprocessing techniques that accounts for artifacts such as subject movement.

Artifacts in MRI images need to be identified to verify if the images are usable. If the
artifacts severely affect the images, affected volumes can be removed, the subject can
be removed from analysis, or the subject can be rescanned for inclusion in the study.
In a data analysis context, images with artifacts that have not been removed from the
dataset can potentially negatively affect the results. In addition, there is also a limit
to motion correction and the images might have to be removed from the dataset if the
subject movement is bigger than this limit.

2.1.7 fMRI
In order to do fMRI, the images have to be captured at a high rate. The imaging tech-
nique most commonly used is EPI because of the high temporal resolution of the re-
sulting images. [18].

BOLD

Blood contains deoxyhemoglobin, which is paramagnetic [17]. By measuring the
changes in image intensity that are hypothesised to originate from a change in deoxy-
genated blood, the cerebral blood usage can be examined. This principle is the basis
for what is called Blood Oxygenation Level Dependant (BOLD) imaging, and is essen-
tial for fMRI [23]. A typical fMRI study is the finger-tapping experiment, where the
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subject is instructed to move the index finger while inside the MR-scanner. Using this
paradigm, we will see activity in the primary motor cortex, since neuronal signals are
being sent through the nervous system to initiate movement of the finger.

Neuronal activation in the brain is brief and fast. However, the BOLD response fol-
lowing the neuronal activation is delayed, and happens in the order of seconds after the
activation [18]. Therefore, the signal being recorded in fMRI is not the neuronal activ-
ity itself but the delayed hemodynamic response to the neuronal activation, which can
be recorded about 1 to 2 seconds later. Figure 2.5 shows the BOLD response to a short-
duration stimulation. Note the short initial dip in BOLD signal right after the stimulus.
Due to neuronal activity, the amount of oxygenated blood locally decreases, leading to
a BOLD signal below the baseline. The neuronal activity increases the metabolic de-
mands, increasing the amount of oxygenated blood to above baseline before reaching
its peak. When returning to baseline, the BOLD signal returns to baseline, but de-
creases below it for a while. This effect is called the poststimulus undershoot. The
signal being recorded in BOLD fMRI is the momentary loss in oxygenated blood over
time, which is associated with the neuronal activity.

Figure 2.5: The BOLD signal response to a short-duration stimulus.
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T ∗2 contrast is the basis of BOLD-contrast imaging because T ∗2 -weighted images are
sensitive to paramagnetic changes in the tissue [18]. T ∗2 -weighted BOLD contrast im-
ages have a long TR and an intermediate TE, typically 2000-3000 and 30 ms respec-
tively at 3T [24]. The TR has to be long enough to let the longitudinal recovery to be
almost complete and the T1 contrast to be minimal, in addition to the fact that the whole
k-space needs to be filled before the next excitation. If the TE time is too short, most
of the transverse magnetization will still be present, no matter the T2 time of the tissue.
This results in no T2 contrast. If the TE time is too long, all the transverse magnetiza-
tion will be lost, also resulting in no T2 contrast. The TE time also has to be set so that
it is sensitive to the local field inhomogeneities.

2.1.8 Task-based and resting-state fMRI

The two main types of fMRI studies are task-based and resting-state studies. In task-
based studies, the tasks being done by the subject are known as a paradigm, and can
consist of a block design where every other block is a task block followed by a rest
block where a fixation cross typically is presented on the screen. These blocks can be
e.g. 30 seconds long and the duration and tasks vary based on the paradigm used for the
study. For example, to study visual processing, a visual stimulus such as a flickering
chequerboard, can be presented to the subject. To study auditory processing in the audi-
tory cortex, a hearing task such as dichotic listening can be presented. Throughout the
imaging session, volumes are acquired during task blocks and resting blocks. BOLD-
EPI can be used to contrast brain activity during task and rest blocks. The goal is to
associate the activations in the brain with the tasks that the subjects are performing. A
common visual paradigm that have been used during fMRI is the Eriksen Flanker task
[25], which can be used to assess cognitive control, i.e. the ability to ignore conflicting
stimuli. In one version of the paradigm, five arrows are shown during the task block
and the task is to decide which way the middle arrow is pointing. The subject has re-
sponse grips in each hand during the fMRI session and is instructed to use the left-hand
response grip when the middle arrow is pointing to the left and vice versa. The flanker
stimuli consists of two conditions. During the congruent condition all arrows are point-
ing in the same direction, and in the incongruent condition the middle arrow points in
a different direction than the surrounding flanker arrows.

In resting-state fMRI studies, the subject will not conduct any task [10]. Instead, the
subject is instructed to rest, either with the eyes open or closed, but not asleep. This
can be preferable in the study of psychiatric disorders, due to the technique not requir-
ing any subjective input such as doing a task, making it easier to acquire. Resting-state
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fMRI can be used to study the functional connectivity in the brain, i.e. different anatom-
ically separated brain regions being connected due to their simultaneous activations or
fluctuations in resting-state [11]. The functional connectivity can be used to define
brain networks, i.e. brain regions that are responsible for specific functions or related
tasks [12]. An example of a brain network often studied with resting-state fMRI is the
default mode network. Different techniques can be utilized for computing the func-
tional connectivity. Seed-voxel based analyses rely on the choice of the initial seed in
the brain and correlate the time series of this seed to the time series of every other voxel.
Other techniques measure the whole brain functional connectivity based on data-driven
or model-free methods, e.g. independent or principal component analysis. Functional
connectivity studies can be used to study the brains of subjects with psychiatric disor-
ders, and some studies have shown the correlation of dysconnectivity within the brain
of subjects with SCZ [14–16, 26].

Task-based and resting-state fMRI can be used to investigate different aspects of brain
activity, and both methods have their strengths and weaknesses. This study will focus
on resting-state fMRI only to investigate the spontaneous fluctuations in brain activity
which can be related to the characteristics of SCZ.

2.2 Machine Learning

ML is used when conventional computer programs do not suffice [27]. Problems where
this could be the case is when recommending the next item to add to the shopping cart
in an online store, when predicting the future prices of real estate, or when classifying
disorders based on varying parameters. These kinds of ML models learn from experi-
ence, i.e. from previous examples. For the real estate example, a model could be trained
on data from previously sold real estate, such as the price, area, location, and the year it
was sold. This data would be called the training data and each instance would be called
a data point. Each data point has a corresponding label, e.g. the price of the real es-
tate, which is what the model is trying to predict. The variables that the model is using
when training, e.g. the area, location, and year, are called features. The data which is
used to test the performance of a model, where only the features are fed to the model
and not the label, are called the test data.

For ML on fMRI images, the training data could consist of a portion of a group of
subjects and the test data could be the remaining subjects. A data point could be the
whole time series for a single subject, the label could be the sub-group of that subject
and the features could be all the BOLD activations in the scan, i.e. the numerical voxel
values in their coordinate position.
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ML is the basis for artificial intelligence (AI), and there are many modern applications
of this. OpenAI has released multiple of these. Given a text prompt, ChatGPT can
create answers, provide information and hold conversation [28], DALL-E can create
custom, realistic looking images [29] and Sora can generate videos up to a minute in
length while maintaining high quality [30].

ML can be very useful on complex data, such as imaging data in medicine. Modern ML
applications in medicine can e.g. help with diagnosis and patient treatment planning,
or predict disorders and their development [31]. R. Fakoor et al. [32] have used ML to
improve the accuracy in cancer classification problems by looking at gene expression
data, Davatzikos et al. [33] have used ML to predict whether subjects lied or told the
truth during an fMRI scan and A.H. Shoeb et al. [34] managed to use ML to detect the
onset of epileptic seizures by looking at EEG data.

A ML algorithm works by saving parameter weights, which are used when creating a
prediction on the test data [27]. These weights are changed and fine-tuned throughout
training, and the more training data available, the more these weights can be tuned
to potentially improve the performance of the model. For a classification problem, a
ML algorithm will output the different classes that it has been trained on. A binary
classification problem is when the labels are either/or, i.e. true or false, yes or no, 0
or 1. An example of this is a ML algorithm which will predict whether a disorder is
present or not. A multilabel classification problem consists of multiple different labels,
and a prediction will result in one of these labels, e.g. predicting youth, adult, or elderly
from a set of brain MRI images. The real estate example is what is called a regression
problem, where the prediction can be any continuous number and not belonging to any
class. The example classification and regression problems are examples of supervised
learning, which is when a model is trained on a dataset where the labels are known.
Contrary to this is unsupervised learning, which is when the labels are not known and
the ML model is asked to create groups or clusters of the inputs.

2.2.1 Linear regression
The most simple form of ML is linear regression, and a model could look like this:

ŷ = w1 ∗ x1 + . . .+wn ∗ xn +b (2.13)

where ŷ is the prediction, x1 - xn are the features, w1 - wn are the corresponding weights
for each feature and b is the bias. The weights determine how much impact each fea-
ture has on the result, and the bias is the result when all the features are zero. The



16 Theory

performance of equation 2.13 as a ML model strongly depends on the correct choice
of weights and bias. For a prediction with multiple data points, equation 2.13 can be
rewritten as

ŷ = Xw+b (2.14)

where ŷ is the prediction vector, X is a two-dimensional matrix consisting of rows of
data points with features as columns and w is a one-dimensional vector containing the
weights of each feature.

In ML, the weights and biases will update themselves during training [27]. To do this,
a performance measure has to be used to check if the model is doing good or not. This
is usually done with a loss function, which calculates how much the model results are
missing its targets. The squared error is a common loss function for linear regression
and is as follows:

l(i)(w,b) =
1
2
(ŷ(i)− y(i))2 (2.15)

where ŷ(i) is the predicted value for data point i and y(i) is the true value for data point
i. The performance of a model is then the average of all the losses on a dataset with n
data points:

L(w,b) =
1
n

n

∑
i=1

l(i)(w,b) (2.16)

The model best fit for the training data is when w and b are chosen so that the loss
is minimized when predicting on the training data [27]. This is often done by using
stochastic gradient descent (SGD) or minibatch SGD, which is an optimization algo-
rithm that finds the direction in which the parameters need to be updated in order to
lower the loss function. Either SGD or a variant of it is used in most applications
nowadays.

2.2.2 Stochastic gradient descent
Minibatch SGD works by finding the gradient of the loss function, i.e. the derivative
of the loss function, to find which way to go to lower it [27]. Instead of taking the
derivative of the whole loss function, or taking the derivative of every individual loss
function for each data point, which can both take a lot of time, this algorithm takes
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the derivative of the loss function of a minibatch of samples at a time. The algorithm
takes a minibatch Bt for each iteration t and computes the gradient, i.e. the derivative,
of the average loss over the minibatch, before multiplying this average loss with the
learning rate η . This is then subtracted from the current parameter values and results
in an upgrade in parameters. The update looks like the following expression:

(w,b)← (w,b)− η

|B| ∑i∈Bt

∂(w,b)l
(i)(w,b) (2.17)

where |B| is the size of the minibatch, which is divided upon to normalize due to aver-
aging. When optimizing with SGD, there might be local minima and/or saddle points,
which might lead to the loss function not providing the desired parameter updates. This
can be controlled by e.g. trying different learning rates, or changing the learning rate
throughout training.

2.2.3 Machine learning in practice
A common misconception is that a ML algorithm and a ML model are the same thing,
i.e. that the words are interchangeable. However, the difference is that every ML model
has the structure of a ML algorithm. That means that a ML algorithm is the structure,
i.e. the layers and their order. An instance of a certain ML algorithm is called a model.
Therefore, a ML algorithm can not be trained but a ML model with the structure of a
ML algorithm can be trained. Another couple of words that are often mixed or misun-
derstood are parameters and hyperparameters. A parameter is something that is saved
within a model, e.g. a weight in a layer of a model. The parameters are what defines the
model, and is the difference between two models with the same algorithm structure. A
hyperparameter is the value that defines the ML algorithm, and is usually specified by
the person who created the algorithm. Examples of hyperparameters are the learning
rate and the layer size of a layer in the algorithm structure.

An important principle in ML is generalization, which means that the goal is not to
recognize previously seen examples but to learn from patterns to be recognized in new,
unseen data [27]. This means that models should not be overfit to the training data,
which is when the models’ parameters are fit too closely to the training data instead of
the underlying patterns in the data. To combat this phenomenon, there exist methods
called regularization methods. One of these methods is to increase the dataset size.
Smaller datasets are more likely to cause overfitting, and introducing more data to learn
from generally does not make a model perform worse. In addition, a bigger dataset
opens the possibility for more complex models. A very complex model will likely
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overfit on a small dataset, but can potentially find patterns better in a larger dataset.
When using small datasets, however, simpler models tend to outperform the overly
complex ones.

Another way to combat overfitting is the introduction of validation data [27]. The
validation data can be used as temporary test data so that the model can be validated
throughout or in-between training to test the generalization of the model. This is called
hold-out validation and is used in a process called model selection.

2.2.4 Model selection
Model selection is the process of selecting the best-performing model from a series of
differently trained ML models [27]. They could vary in many ways, e.g. complexity,
structure, hyperparameters, or level of preprocessing of the input. The choice of model
depends on the chosen performance measure, e.g. the highest accuracy score or the
lowest loss. In addition, the model selection procedure is not always done on the whole
dataset, but on a subset in order to speed up the selection process due to large datasets,
which is often the case in modern ML. However, the subset has to be representative
of the whole dataset in order for the model selection to be justified. When the model
selection is done, i.e. when the best hyperparameter combination has been chosen, a
new model with the same hyperparameters can be trained on the whole training dataset.

The whole basis for ML is that there is an underlying assumption called the Indepen-
dent and Identically Distributed (IID) assumption, which assumes that the training and
test datasets are drawn independently from identical distributions [27]. Without this
assumption, there would be no reason to believe that a model trained on training data
would perform on an unseen test dataset, because the training data would not be repre-
sentative of the test data. An example of where this could be a problem is if the training
data consisted of only males and the test data consisted of only females. Based on the
ML task, this could result in the IID assumption being invalid.

In addition to the IID, the dataset being used will have to be of a certain quality. The
quality of the output will always reflect the quality of the input. Therefore, it is impor-
tant to be aware of any outliers, errors, or loss in information in the dataset to address
this. Examples of this could be a dataset containing numbers with too few decimals, or
if the labelling of the dataset does not make sense.

Normal ML practice is to leave the test dataset completely unseen until used [27]. This
is to not add any subjective bias, as the test dataset should represent any possible data
point that can be used as input and shows the generalization of the model. Therefore,
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the test dataset should not be used or looked at before the model selection procedure
has found place. The only thing to be in control of considering the test dataset is that it
is actually a good representation of unseen data.

2.2.5 Weight decay
Back to the subject of regularization methods, weight decay is a method used to reduce
the change of overfitting [27]. To introduce weight decay, first recall back to the loss
function. The objective was to minimize the loss function when predicting on the
training data. However, consider a new objective, to minimize the prediction loss in
addition to a penalty term in the form of the size of the weight vector w, namely ||w||2.
The reason for using the square is for computational convenience, since the formula for
calculating what is called the `2 norm is given by

||w||2 =

√
n

∑
i=1

w2
i (2.18)

The new objective, with both the loss function and the penalty term, is to minimize the
following objective function J:

J = L(w,b)+
λ

2
||w||2 (2.19)

where λ is the regularization constant, which controls the trade-off between minimizing
the loss function and the penalty term. The `2 takes into account the large components
of the weight vector w. This will make w less likely to be overfit to the training data, but
instead make the weights more generalized. It will make the smaller weights bigger and
the bigger weights smaller, so that more of the features will be used when predicting.
This will also combat overfitting, because there is not just one single feature which will
lead to the prediction result. Since more of the features are used, the generalization
power of the model will be higher. Nevertheless, it’s also important to think about the
possibility that all the information that the ML model learns from lies within a small
amount of features, i.e. if the prediction result only relies on a few single features.
However, in fMRI image classification, where every voxel in an fMRI volume is a
feature, the probability for this exact thing to happen is very small.
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2.2.6 Classification
Classification in ML works similar to regression, but with a significant difference [27].
Instead of returning a single numerical value, a classification model returns a list con-
taining the probabilities for each class. When the model predicts a certain class, it
predicts the class with the highest of the probabilities in that list. This way, the model
structure can stay almost the same but predict a class instead of a number. However,
the numerical value that comes from the model is still important when calculating the
loss.

Consider a classification problem where the input is a 2x2 grayscale image, and there
are 2 classes to predict. The input image then consists of 4 numerical values x1, x2, x3

and x4. Every input value would have its corresponding weight, wnm, and each output
would have its own bias term, bn. Using a similar model to 2.14, a classification model
could look like this:

o1 = x1w11 + x2w12 + x3w13 + x4w14 +b1

o2 = x1w21 + x2w22 + x3w23 + x4w24 +b2
(2.20)

Written more formally, in a notation more suited for code, the model can be written as

o = Wx+b (2.21)

where W is a 2x4 matrix containing the weights and b is a 1-dimensional vector con-
taining the two biases. o is the output vector. This model can also be shown as a neural
network (NN) with an input layer of size 4 and an output layer of size 2, see figure 2.6.

Given that the outputs in o are probabilities, they should sum up to 1. Additionally, they
should not be negative. To account for this, a softmax function can be applied. The
softmax function takes the outputs o and converts them into a probability distribution
ŷ. The softmax function can be described as

ŷ = so f tmax(o) where ŷi =
exp(oi)

∑ j exp(o j)
(2.22)

This ensures that the output list of the probabilities sums up to 1 and that none of them
are negative, while still maintaining the relative difference between the probabilities.
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Figure 2.6: A simple classification model with 4 nodes as input and 2 nodes as output

2.2.7 Cross-entropy loss

For a classification task, the squared error is not usable. Maximum likelihood estima-
tion is a good alternative for a classification task [27]. The probability for each outcome
to be a certain class given the features are

P(Y | X) =
n

∏
i=1

P(y(i) | x(i)) (2.23)

where Y is the label vector and X is the feature matrix. Instead of maximizing equa-
tion 2.23, it is easier to minimize the negative log-likelihood, shown in the following
equation.

−log P(Y | X) =
n

∑
i=1
−log P(y(i) | x(i)) =

n

∑
i=1

l(y(i), ŷ(i)) (2.24)

where ŷ(i) is the model prediction, i.e. the class probability. Therefore, the loss function
when predicting over q classes is then
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l(y, ŷ) =−
q

∑
i=1

y j log ŷ j (2.25)

which is called the cross entropy loss. This loss function is one of the most commonly
used losses for classification problems. The reason for the name is that for each new
data point, the model might miss the correct label and be "surprised" at the result, by
a factor of −log P( j) for each event j, after having assigned a probability P( j) for
the event. The "expected surprisal" is then the same as the definition of entropy for a
distribution P:

H[P] = ∑
j
−P( j) log P( j) (2.26)

With P being a distribution of probabilities that the data is generated from, and Q being
a distribution of the observer’s subjective probabilities, the cross-entropy from P to Q
is given by

H(P,Q) = ∑
j
−P( j) log Q( j) (2.27)

which is the same as the expected surprisal of the observer. Thus, it can be said that the
cross-entropy loss is the same as minimizing the surprisal or maximizing the likelihood.

Weighted cross-entropy loss takes into account class imbalance in datasets. By provid-
ing class weights to the loss function, each weight will be multiplied to the loss function
to increase the loss for the less represented classes and decrease the loss for the more
represented classes, to punish the ML model for only predicting the most represented
class.

2.3 Deep Learning

DL is a sub-genre of ML and is mainly the use of many-layered NNs [27]. Image
recognition, AI and self-driving cars are examples that can utilize DL.

2.3.1 Neural Networks
A NN is a type of ML algorithm built up by neurons with weights between them [27].
They are in the form of layers (rows) of neurons beside each other, where every neu-
ron in a layer is connected to every neuron in the layer before and after, but not to the
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other neurons in the same layer. For this reason, NNs are also known as fully connected
layers. The neurons are connected by weights, just like the weights on the linear re-
gression model. In fact, the simple example model could be seen as a one-layered NN,
with all the inputs as one layer and the output prediction as the output layer.

Usually, NNs have more than just one input layer and one output layer [27]. In addition
to these two layers, they can have hidden layers in between. A simple 6-layered exam-
ple of a NN is shown on figure 2.7. The reason it is called 6-layered and not 7-layered
is because the input layer does not require any calculations.

Figure 2.7: An example of a simple fully connected neural network with 5 hidden layers.

Given a 2-layered NN, i.e. with one hidden layer, the outputs of each layer can be
written as

H = XW1 +b1

O = HW2 +b2
(2.28)

where H is the output of the hidden layer, X is the input, W are the weights, b are the
biases and O is the output from the last layer [27]. A characteristic of NNs is that they
have non-linear activation functions after each hidden layer. The activation function
will operate on every value that comes out of a hidden layer. A common activation
function is the rectified linear unit (ReLU) which is given by
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σ(x) = max(0,x) (2.29)

Adding this to equation 2.28 will change the NN to

H = σ(XW1 +b1)

O = HW2 +b2
(2.30)

2.3.2 Forward propagation
When iterating through a NN, the inputs go through every layer, being updated by
weights, biases, and activation functions before they become an output. This is what
is called forward propagation, and is the process of calculating a prediction [27]. It is
called forward because it orderly goes forward in the direction of the model structure,
from input to output. One pass through a network is called a forward pass.

Computational graph

A computational graph shows the steps in the forward propagation [27]. For the two-
layered network given in equation 2.30, a computational graph where the input size is
2, the hidden layer size is 4 and the output size is 2 could look like the one given in
figure 2.8.

2.3.3 Backpropagation
As stated previously, the weights in ML models update during training by looking at
which direction they need to be updated in order for the loss function to decrease, e.g.
by minibatch SGD. However, with NNs this becomes a problem as SGD only calculates
the gradient for a single variable. A NN is often many-layered, meaning that the total
loss function would contain a lot of functions-within-functions. To account for this,
gradient calculation for NNs are done using backwards propagation, or simply called
backpropagation. The gradients are then provided to an optimization algorithm, e.g.
minibatch SGD. It is called backpropagation because of how it moves in the opposite
direction of the forward propagation, i.e. from the output to the input.

Backpropagation calculates the gradients of the NN parameters in a backwards fashion
by using the chain rule, because of the nested characteristics of the functions in a NN.
This way, the parameters can be updated by an optimizer based on the gradient that one
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Figure 2.8: A computational graph of a simple example 2-layered NN, showing the dimensions of the
input weights and biases for each layer along with every calculation that is being done in between, such
as the gradient calculation and ReLU activation.
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gets when going backwards through the network. The chain rule is given by

d
dt

f (g(t)) = f ′(g(t))g′(t) (2.31)

or more simply written as

dy
dx

=
dy
du

du
dx

(2.32)

Given a two layered NN like the one in equation 2.30 with the following properties

zi = ∑
j

w(1)
i j x j +b(1)i

hi = σ(zi)

yk = ∑
i

w(2)
ki hi +b(2)k

L =
1
2 ∑

k
(ŷk− yk)

2

(2.33)

and a computational graph like the one given in figure 2.8, the vectorized forms would
look like this:

z = W(1)x+b(1)

h = σ(z)

ŷ = W(2)h+b(2)

L =
1
2
||ŷ−y||2

(2.34)

where σ is the activation function and y is the true value. The parameters to be updated
are W(1), W(2), b(1) and b(2). The gradient to be computed is therefore

∇(W,b) L(W,b) =
[

∂L
∂W(1) ,

∂L
∂b(1) ,

∂L
∂W(2) ,

∂L
∂b(2)

]
(2.35)

The backwards pass for this network would then look like this:
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∂L
∂ ŷ

= ŷ−y

∂L
∂W(2) =

∂L
∂ ŷ

∂ ŷ
∂W(2) =

∂L
∂ ŷ

h>

∂L
∂b(2) =

∂L
∂ ŷ

∂ ŷ
∂b(2) =

∂L
∂ ŷ

∂L
∂h

=
∂L
∂ ŷ

∂ ŷ
∂h

= W(2)>∂L
∂ ŷ

∂L
∂z

=
∂L
∂h

∂h
∂z

=
∂L
∂h
∗σ
′(z)

∂L
∂W(1) =

∂L
∂z

∂z
∂W(1) =

∂L
∂z

x>

∂L
∂b(1) =

∂L
∂z

∂z
∂b(1) =

∂L
∂z

which shows the chain rule in action. It can be seen, then, that the gradient to be given
to the optimizer is

∇(W,b) L(W,b) =
[

∂L
∂z

x>,
∂L
∂z

,
∂L
∂ ŷ

h>,
∂L
∂ ŷ

]
(2.36)

When training a NN, it alternates between forwards propagation and backpropagation
[27]. First, the parameter values are used in the forwards propagation to calculate the
loss function. Second, the backpropagation algorithm calculates the gradients for the
parameters. Lastly, the optimizer updates the parameter values in order to minimize
the loss function. This repeats itself until the network has trained on the whole training
dataset. In addition, it is common in DL to loop over the training dataset multiple times.
Each iteration over the training dataset is called an epoch. The number of epochs is
usually set high, to make sure that the models learns enough from the training dataset.
This is the reason it takes a lot of time to train a deep NN, because it calculates gradients
for each data point multiple times.
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2.3.4 Dropout
A regularization technique often used in DL is dropout [27]. Where applied, this
method drops out parts of the layer given a probability p, hence the name. In a NN,
this can cause some neurons in a layer to not contribute to the prediction. The dropout
is put after a layer, and can be used multiple times in a model. Dropout can help with
generalization because in the case of the predictions being very dependent on a single
neuron, the model is forced to make a prediction with the rest of them. Not one single
neuron is then used for the prediction. Thus, dropout can help combat overfitting.

In addition, the remaining neurons, i.e. the neurons that were not dropped out, are
normalized by the number of remaining neurons. Given that an activation in a neuron
is h, the activations in the remaining layers change by

h′ =
h

1− p
(2.37)

which is also called the debiasing of a layer, which will keep the expectancy of that
layer. Note that dropout is usually only used when training, not when testing. However,
it can be claimed that a model is more confident in its predictions if it keeps performing
the same after multiple uses of dropout.

2.3.5 Optimizers
As stated previously, the backpropagation algorithm is not what updated the parameters
in a NN, but is rather the algorithm that computes the gradients for the parameters, e.g.
the weights and biases. The gradients calculated from the backpropagation is fed to
what is called an optimizer, which is what updates the parameters [27]. The minibatch
SGD is an example of a common optimizer.

The goal of an optimizer is usually to minimize an objective, which is usually the loss
function [27]. In other words, since what the optimizer ever sees is the training data,
the goal becomes to minimize the training error. Therefore, the choice of optimizer
can completely change the outcome of a model, due to how well it can also reduce the
generalization error and not just the training error. It is also worth noting that when an
optimizer finds the best value for a gradient, it lowers the loss the most on training data.
This does not necessarily mean that this is the best value for generalization.

The optimizer goes through the objective function step-wise to find where the gradient
is lowest, preferably zero. The step length is the hyperparameter called the learning
rate, and can also change the outcome drastically.
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Some things to consider when choosing the optimizer is how they behave in different
situations [27]. In the case of local minima in the objective function, which is not
uncommon in the objective functions in DL, the optimizer might settle on these as
the gradient becomes close to zero instead of keeping the search up for the global
minimum. In addition, the learning rate will also affect the optimizer’s ability to get
stuck in the local minima. Given a large enough learning rate, the optimizer might skip
the local minimum altogether.

Other phenomena to keep in mind are saddle points, which is when the gradient can
be close to zero without it being neither a local nor a global minimum, and vanishing
gradients, which is when the gradient is close to zero for a lot of values, like in the tanh-
function. It looks like a plateau with a downhill at the end, and the optimizer will have
to take a lot of steps towards this downhill before the gradient gets any lower. However,
finding local minima, saddle points and vanishing gradients might have a positive effect
on the model as this might also contribute to combating overfitting. The global minima
give, in fact, the parameter values that minimizes the loss on the training data.

2.3.6 Convolutional Neural Networks
Convolutional neural networks (CNN) are designed specifically to learn from image
data [27] and are the most common form of DL. As the name states, they use convo-
lutions to learn patterns in images. This approach makes it desirable because it works
well and requires less computing power relative to conventional NNs on larger images.

Invariance

Convolutions use a principle called spacial invariance, which states that one piece of
spacial information in an image should still be same no matter where in the image it is,
i.e. it should not matter if the same thing in two different images containing the same
information are on different coordinates [27].

Convolutions

A convolution is defined as

( f ∗g)(x) =
∫

f (z)g(x− z)dz (2.38)

where f and g are two functions [27]. This is the overlap of the two functions as one
of them is moved across the other. In DL, where inputs usually are discretized, the
convolution will look like this:
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( f ∗g)(i) = ∑
a

f (a)g(i−a) (2.39)

However, in 2D space, the convolutions become more tricky. In practice, what a con-
volution does is that it contains one or more filters, also called kernels, that slide over
the input image. See figure 2.9 where the 3x3 input is on the left side of the operator
and the 2x2 filter is on the right side of the operator. The result of the convolution is
the 2x2 image on the far right side.

Figure 2.9: A step-wise example of a simple convolution with a 2x2 filter on a 3x3 input image. Modified
figure from A. Zhang et al. [27].

The values in the filter is what changes during training. In 3D space, the convolution
would be the same as in 2D, except that the input image and filter would have an extra
dimension. The filter then moves row-wise in two dimensions, like in 2D space, before
it takes a step in the third dimension and starts over again.

Padding and stride

In figure 2.9, the convolution has a stride of one and no padding, which means that the
filter moves one pixel at a time and only within the borders of the input image. If the
convolution had e.g. a symmetrical 0-padding of one or two, there would be added an
outline of pixels with the value 0 around the input image before the convolution, see
figure 2.10.
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Figure 2.10: An example of how padding works in convolutions, with the images having a symmetrical
0-padding of 0, 1 and 2 from left to right. Modified figure from A. Zhang et al. [27].

Stride is the step length of the filter when it slides over the input image [27]. Figure
2.11 shows an example of a convolution where there is a 0-padding of 1 and a stride of
2. By choosing the padding, stride and size of the filter, the output dimension after the
convolution can be controlled. Padding increases with output dimension, while stride
and filter size decreases with the output dimension.

Figure 2.11: An example of how stride works in convolutions, with a symmetrical 0-padding of 1 and a
stride of 2. Modified figure from A. Zhang et al. [27].
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2.3.7 Pooling

Pooling takes into account the fact that the output of the final layer in a CNN should
be sensitive to the entire input, i.e. that if the network were to look for something in
the image, the final layer should "know" this no matter where that thing is in the image
[27]. Like a convolutional filter, a pooling window slides over the input step-wise, but it
doesn’t contain any parameters. One often-used type of pooling is maximum pooling.
Max-pooling computes the maximum value within the pooling window and assigns that
value to the output. An example of a max-pooling operation can be seen on figure 2.12.

Figure 2.12: An example of how max-pooling works, with a 2x2 pooling window. Modified figure from
A. Zhang et al. [27].
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2.3.8 Channels
An input image can contain multiple channels [27]. The values in each pixel of the
input is just a number, and does not contain any information on e.g. the colour of that
pixel. Coloured images are therefore usually represented with 3 images, one for each of
the colours red, green, and blue. This makes the input image consist of 3 channels. A
channel can be seen as a dimension of the image. For example, each volume in an fMRI
time series can be used as a channel. In a convolution, the number of filters depends on
the number of input and output channels. With one output channel, each input channel
has its own filter. However, for each output channel, there is a set of filters, with each
set containing one filter for each input channel. Figure 2.13 shows how a convolution
works with both multiple input and output channels.

Figure 2.13: An example of how a convolution works when there are multiple input and output channels.
Note that for every output channel, there is a set of filters with one unique filter per input channel.
Modified figure from A. Zhang et al. [27].
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2.4 Metrics

To assess and evaluate the performance of different ML models, the following metrics
can be used. To define the metrics, different prediction outcomes are used. The true
positive (TP) is when an actual positive value is predicted positive, the true negative
(TN) is when an actual negative value is predicted negative, the false positive (FP) is
when an actual negative value is predicted positive and the false negative (FN) is when
an actual positive is predicted negative.

2.4.1 Accuracy
The accuracy score calculates the amount of correct predictions:

Accuracy =
T P+T N

T P+T N +FP+FN
(2.40)

2.4.2 Precision
The precision score is defined as

Precision =
T P

T P+FP
(2.41)

and is the number of correct positive predictions out of all the positive predictions. If
precision is 1 there are no FP meaning that every predicted positive is an actual positive.

2.4.3 Recall
The recall score, also called sensitivity, is defined as

Recall =
T P

T P+FN
(2.42)

Recall is the amount of correct positive predictions out of all the actual positives. It
is therefore also called the True Positive Rate (TPR) and weights the amount of FN.
If recall is 1 there are no FN meaning that every actual positive has been predicted
positive.
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2.4.4 Specificity
The specificity is defined as

Speci f icity =
T N

T N +FP
(2.43)

The specificity is the amount of correct negative predictions out of all the actual nega-
tives. It is therefore also called the True Negative Rate (TNR) and weights the amount
of FP.

2.4.5 F1-score
The F1-score is defined as

F1 = 2 ∗ precision ∗ recall
precision + recall

(2.44)

and is the harmonic mean of recall and precision.

2.4.6 Balanced Accuracy
The balanced accuracy score calculates the accuracy but takes into account the class
imbalance. It is defined as

Balanced accuracy =
sensitivity + speci f icity

2
(2.45)

but can also be thought of as the accuracy given weights to each class, i.e. if the
positive class is twice as big as the negative, a correct prediction of the positive class
will only count half as much towards the performance relative to a correct prediction of
the negative class.

2.4.7 Statistical t-test
A statistical two-sample t-test compares the distribution between two populations and
states if there is a statistically significant difference between the means of the popula-
tions [35]. The test assumes that the two distributions are normally distributed, have
similar variances, and that they are independent of each other. The formula for Welch’s
t-test is as follows:
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t =
X̄1− X̄2√

s2
1

n1
+

s2
2

n2

(2.46)

where X̄1 and X̄2 are the sample means of the two populations, s1 and s2 are their
respective sample standard deviations and n1 and n2 are their respective sample sizes.
A two-tailed test is to test whether the null-hypothesis, i.e. that the two populations
have equal means, is true.

2.5 Schizophrenia

SCZ is a complex mental disorder which affects about 1 in 300 people worldwide
[1]. Subjects with SCZ can experience psychosis in the form of hallucinations and
delusions. The disorder is heavily taxing not just for the subject but also for their family
and friends [2]. About 25% of subjects with SCZ experience one psychotic episode,
and about the same percentage of subjects are diagnosed with a chronic variant of
the disorder [5]. The remaining 50% have a combination of these, with at least one
remission throughout their life with the disorder periodically being dormant. Out of all
subjects with SCZ, approximately one third will be able to fully recover.

2.5.1 Symptoms and prevalence
The symptoms of SCZ are categorized into positive symptoms, negative symptoms
and cognitive symptoms [5]. Positive symptoms mean that subjects experience the
presence of perceptions that alter the way they experience reality and/or form their
beliefs about the world. One example of a positive symptom is hallucinations, which
can affect various senses such as auditory, olfactory, visual or tactile. The negative
symptoms mean a reduction or absence of normal mental functioning. This can include
loss or lack of emotion, attention, motivation, mild apathy, or antisocial behaviour.
The cognitive symptoms affect the cognitive abilities of the subject. Examples can be
problems with thinking and disorganized thinking.

2.5.2 Diagnostic criteria
According to ICD-11, to diagnose a subject with SCZ, two or more of the following
symptoms must be present for a one-month period (one of the symptoms have to be
from the first 4) [36]:

1) persistent delusions, e.g. grandiose delusions



2.5 Schizophrenia 37

2) persistent hallucinations, most commonly auditory

3) disorganized thinking, e.g. irrelevant speech and loose associations

4) experiences of influence, passivity or control, i.e. the experience that ones feelings,
impulses, actions, or thoughts are not generated by oneself, are being placed in ones
mind or withdrawn from ones mind by others, or that ones thoughts are being broadcast
to others

5) negative symptoms as described above

6) grossly disorganized behaviour that impedes goal-directed activity, e.g. behaviour
that appears bizarre or purposeless, unpredictable or inappropriate emotional responses
that interferes with the ability to organize behaviour

7) psychomotor disturbances such as catatonic restlessness or agitation, posturing,
waxy flexibility, negativism, mutism, or stupor

In addition, the symptoms can not be a manifestation of another medical condition and
can not be due to the effects of a substance or medication on the central nervous system,
including withdrawal effects.

2.5.3 Defining the disorder
Subjects with SCZ often do not have SCZ as their only diagnosis [37]. It is not rare
to have multiple coexisting psychopathologies and/or comorbid medical conditions in
addition to the main SCZ diagnosis. According to the U.S. Food and Drug Admin-
istration, comorbidity in SCZ has become the norm instead of the exception. This is
connected to the fact that multiple pharmacotherapeutic agents that work effectively
on SCZ can work on comorbid conditions as well, suggesting a biological overlap be-
tween the diagnoses. According to A.I. Green et al. [38] approximately 50% of subjects
with SCZ suffer from at least one or more comorbid medical or psychiatric conditions,
leading to a high mortality and morbidity rate.

The cause for SCZ is not completely understood, although it is thought to be a combi-
nation of genetic and environmental factors [39]. The biological effects can be found
in the brain, and some of the genes that increase the risk for both SCZ, bipolar disor-
der, autism, and other neurological disorders are shared. Environmental factors that are
thought to play a role in the onset of SCZ includes migration, cannabis abuse, old age
in parents, childhood trauma and perinatal hypoxia, i.e. the lack of oxygen to the fetus
during labour. It is difficult to define the exact onset of the disorder or predict the future
development. As a result, personalized treatment is rare and the selection of treatment
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often follows a "trial and error" regime where a subject self-report of symptoms decides
what medication is most appropriate [3]. Another contributing factor is the fact that the
subjectiveness of both the subject and the clinician can play a role in the classification
of the disorder. The subject might not be able to express their symptoms reliably, and
the clinician might not be able to correctly comprehend what the subject is trying to
express. Therefore, there is a need to move towards a more personalized approach [4].

There are discussions on whether there is need for a revision of the diagnostic criteria
of the disorder [37], with Tandon et al. [39] questioning if SCZ is a "fundamentally
flawed construct", claiming a lack of specificity in findings within SCZ research.

2.5.4 Sub-grouping of schizophrenia
SCZ is a genetically complex disorder and consists of a heterogeneous patient group.
The disorder varies from subject to subject, and medication work on some subjects but
not others [40]. Treatment of SCZ often follows a "trial and error" approach, where
one drug is tested first, followed by a second drug if the first one does not work, etc.
This keeps going until a potential working drug is found for the subject. However, this
can take a considerable amount of time for some subjects. Correct classification of the
mental disorder can aid in finding a working medication for the subject in question.

Subjects with SCZ have for a long time been separated into sub-groups [40]. Some ar-
gue that sub-grouping does not have clinical relevance since the patient group is so het-
erogeneous, while other practitioners may use sub-groups to categorize subjects based
upon their symptoms. However, it is important to keep in mind that the mental disorder
is complex and varies from subject to subject.

Paranoid Schizophrenia

"Paranoid schizophrenia, ICD-10 code F20.0, is dominated by relatively stable, often
paranoid delusions, usually accompanied by hallucinations, particularly of the auditory
variety, and perceptual disturbances. Disturbances of affect, volition and speech, and
catatonic symptoms, are either absent or relatively inconspicuous." [41]. The sub-type
is one of nine sub-types of SCZ in ICD-10. However, in the newer revision ICD-11,
this sub-type along with the eight others have been removed because of their instability
and invalidity [36]. Instead, the focus is more on the course of the disorder, i.e. if it
is first-episode, multi-episode or continuous, in addition to if it is in remission or not.
The sub-groups of SCZ used throughout this thesis are based on the sub-types from the
ICD-10 classification.
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2.5.5 Contribution from neuroimaging
Since the discovery of fMRI in the 90s, the method has been used to investigate brain
activity in subjects with SCZ [5]. Many studies have used task-based fMRI to study the
brain activity of patients where cognitive failure is a core feature. A recurring symptom
of subjects with SCZ is loss or deficits in working memory. In addition, subjects with
SCZ show alterations in executive functions such as planning and response inhibition,
i.e. the ability to stop spontaneous actions. Assessing these abilities can help with
diagnosis, but can also contribute to the understanding of the disorder in itself.

A 2023 study by K. Hugdahl et al. was performed while subjects experienced auditory
hallucinations inside the MR-scanner [42]. They found a significant increase in activity
in the ventromedial prefrontal cortex right before the reported start of the hallucination
and a decrease right before the end of it. They concluded that this area of the brain
could act as a switch when the subject experienced auditory hallucinations.

2.6 Previous contributions

2.6.1 COBRE dataset
The COBRE dataset [43–46] is an open and available dataset containing structural and
resting-state fMRI on subjects with SCZ and healthy controls. This dataset has been
used for binary classification on healthy controls and subjects with SCZ using DL. An
article by R. Yu et al. [6] from 2023 used sparsity-guided multiple functional connec-
tivity patterns, which takes into account the fact that the functional brain connectivity
during resting-state can give information on neuropsychiatric disorders. Their method
was to first create a sparse functional connectivity network, which shows the connec-
tivity between different regions of interest (ROI), and then use CNNs on these network
maps to learn patterns associated to SCZ. In addition, they included an analysis of re-
gions that are potential biomarkers for SCZ. Using their model they had an accuracy
score of 78.16%, a balanced accuracy score of 77.92% and an F1-score of 75.39%.
Several regions in the brain showed consistent importance in several studies, such as
the bilateral thalamus, right supplementary motor area, Lobule I- and II of vermis, right
middle temporal gyrus, bilateral middle occipital gyrus, right lingual gyrus, right pal-
lidum and left postcentral gyrus.
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An article by J. Zheng et al. [7] used transfer learning to modify the VGG16 net [47],
pretrained on the ImageNet dataset [48], to classify SCZ from the COBRE dataset
using 2D convolutions on images preprocessed by binarization, standardization, and
smoothing. They report an accuracy score of 87.85, a precision score of 87.11 and a
recall score of 89.63, their model performing better than other popular ML algorithms
and most of the state-of-the-art models on SCZ diagnosis. The accuracy score reported
is 2.31 higher than that of the unmodified VGG16 model, and they claim that a more
systematic and in-depth exploration is needed to progress on the subject.

2.6.2 Schizophrenia classification using structural MRI

By using the structural MRI images from scans, J. Oh et al. [8] in 2020 attempted to
classify subjects with SCZ from healthy controls from 5 different datasets, one of them
being the COBRE dataset. The methods consisted of preprocessing by normalizing be-
fore using 3D CNNs to classify. Similarly to R Yu et al. [6], the study by J. Oh et
al. included an analysis on brain regions with the highest significance on the classifi-
cation results. The article reports an accuracy score of 70.0 on a completely unseen,
independent dataset. The subjects included in the test dataset had, however, both lower
average disorder duration and lower average age, which could mean that the subjects
in the test dataset has not progressed as far in the disorder. They found that the right
temporal area and temporoparital areas informed their DL model about SCZ the most.
They investigated the impact of the regions on accuracy of the DL models by excluding
individual regions before prediction. The removal of the area roughly corresponding
to the right temporal region gave the highest drop in accuracy. This indicates that the
right temporal area changes the most during the development of the disorder.

One of the reasons behind the correct classification of SCZ subjects in DL models
are the potential progressive changes structurally in the brain of subjects with SCZ,
as studied by B. Oyabi et al. in 2011 [49]. This meta analysis included 27 studies
and focused on 23 different ROIs. Altogether, 928 subjects with SCZ and 867 control
subjects were studied over time, with the time between the initial and follow-up scans
ranging from 1-10 years. The study showed that, on average, the change in certain
ROIs in the brain either increased or decreased each year compared to healthy controls.
The significant changes were ranging from the highest decrease of -0.59% for whole
brain gray matter to the highest increase of +0.36% in the bilateral lateral ventricles, on
average annually, relative to healthy controls. In addition, the study showed a decrease
in the parietal white matter volume of -0.32%. They concluded that schizophrenic
brains may have progressive structural abnormalities over time.
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Another similar study from 2017 by S. Huhtaniska et al. [50] showed that the use of
antipsychotic drugs had a high correlation with the decrease of parietal lobe volume and
the increase of basal ganglia volume in subjects with SCZ. The results were analyzed on
thirty-one studies and no other regions of the brain had statistically significant changes.

2.6.3 Resting-state and task-based fMRI
T. Mwansisya et al. [51] performed a systematic review in 2017 about functional
changes in the brain in SCZ during resting-state and task-based fMRI. They included
nineteen studies of first episode SCZ subjects compared to healthy controls. Among
their findings, first episode SCZ subjects showed decreased signal or functional con-
nectivity in different regions of the prefrontal cortex during resting-state fMRI. When
combining the findings from the resting-state and task-based fMRI studies, the most
prominent results were found in the temporal and frontal lobes. Specifically, hypo-
activations were found in the dorsolateral prefrontal cortex, and abnormalities were
found in the left superior temporal gyrus and the orbital frontal cortex. This supports
their hypothesis that pathophysiological changes in the schizophrenic brain occurs in
the frontotemporal pathway.

T. Mwansisya et al. [51] also suggest that the dysfunctional abnormalities in the dor-
solateral prefrontal cortex and the orbital frontal cortex might correlate with functions
that are diminished in subjects with SCZ, such as working memory, cognitive flexibil-
ity and social cognition. The hypo-activity in the dorsolateral prefrontal cortex has also
been associated with the negative symptoms of SCZ. In addition, the superior temporal
gyrus has often been associated with auditory hallucinations, which is a key symp-
tom of SCZ. T. Mwansisya et al. suggest that the roots of SCZ are in the three areas
mentioned, because of the correlations between these regions with brain abnormalities
during fMRI scans, and that these regions plays a key role in the typical symptoms of
SCZ.

Others have been using DL on resting-state fMRI to identify subjects on the autism
spectrum amongst healthy controls. A.S. Heinsfeld et al. [52] did this in 2018 by col-
lecting the mean time series activations from different ROIs for each subject, followed
by calculating the functional connectivity between these regions. This resulted in a
correlation matrix, which was flattened and used as input to a ML model, consisting of
autoencoders and a fully connected NN. They reported an accuracy of 70%. M. Khosla
et al. [53] in 2019 used the same dataset as Heinsfeld et al. with multiple channels of
3D images as input, where each channel consisted of the correlation between different
ROIs. They used a 3D-CNN model to classify and reported an accuracy of approxi-
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mately 72%. They mentioned that the choice of ROI can impact the performance when
ML models are trained with functional connectivity.

A 2016 study on resting-state fMRI data from subjects with SCZ was done by J. Kim
et al. [9]. In the same way as Heinsfeld et al. [52], they used a correlation map
between each ROI from a template as input to the ML model and used a very similar
classification pipeline using a NN. They reported an accuracy of 85.8% on the COBRE
dataset, preprocessed using the SPM software using the same steps as reported later in
this study, in addition to being smoothed with an 8 mm kernel followed by a functional
connectivity extraction.

2.7 Thesis aim

The current classification of subjects with SCZ relies on a clinical assessment between
psychiatrist and subject and reported symptoms. The aim of this thesis is to reveal if ML
based on resting-state fMRI data (4D) can aid in sub-grouping with SCZ. Furthermore,
it investigates the feasibility of this approach to distinguish subjects with SCZ from
healthy controls. The following steps are proposed:

• To design, implement and run a deep learning (DL) pipeline that can handle 4D
data.

• To optimize the ML model through hyperparameter fine-tuning.

• To investigate the effect of preprocessed imaging data on the performance of the
ML model.

• To perform binary and multilabel classification of subjects with SCZ using DL
models.

• To investigate and assess the performance of the models on an online dataset
(N=148) and local datasets (N=316).
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Methods

3.1 The COBRE dataset

Preliminary training, validation, and testing has been done on the MRI scans from the
COBRE-dataset from the Center for Biomedical Research Excellence [43–46], avail-
able online under a non-commercial creative commons licence. The dataset was col-
lected and shared by the University of New Mexico and the scans were acquired on a
3T Siemens Trio scanner. The dataset contains anatomical T1-weighted images using
a multi-echo MPRAGE (MEMPR) sequence and resting-state fMRI scans for 148 sub-
jects in the age group 18 to 65, of which 75 were healthy controls. Before the original
investigators started with the scanning, all the subjects were screened for any history
of neurological disorders, mental retardation, head trauma, substance abuse or depen-
dence. Table 3.1 shows the parameters for the anatomical scans, and table 3.2 shows
the parameters for the resting state EPI-images.

TR [ms] TE [ms] Matrix size Voxel size [mm3] Flip angle [°] Slices
2530 1.64 256x256 1x1x1 7 176

Table 3.1: The imaging parameters for the anatomical images in the COBRE dataset.

TR [ms] TE [ms] Matrix size Voxel size [mm3] Flip angle [°] Slices Volumes
2000 29 64x64 3x3x4 75 32 150

Table 3.2: The imaging parameters for the resting-state functional images in the COBRE dataset.

The dataset contained diagnostic information about the subjects, where subjects were
diagnosed using the DSM-IV scale [54]. The distribution of the diagnoses in the patient
group in the COBRE dataset can be seen on table 3.3. In the current study, 10 out of
148 subjects were excluded. Two were disenrolled, and eight subjects belonged to
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under-represented or non-relevant sub-groups. The number of subjects in the under-
represented or non-relevant sub-groups were deemed too scarce to be used for ML.
Therefore, the following sub-groups were excluded: 290.3, 295.2, 296.2, 296.4 and
311.

DSM-IV
code Main diagnosis Frequency
290.3* Senile dementia with delirium 1
295.1 Disorganized type schizophrenia 3
295.2* Catatonic type schizophrenia 1
295.3 Paranoid type schizophrenia 41
295.6 Schizophrenic disorder, residual type 12
295.7 Schizoaffective disorder 7
295.9 Unspecified schizophrenia 6
296.2* Major depressive affective disorder single episode 1
296.4* Bipolar I disorder, most recent episode (or current) manic 1
311* Depressive disorder, not elsewhere classified 1

Table 3.3: The different diagnoses present in the COBRE dataset, along with their respective diagnosis
codes and frequency. * excluded.

In addition to the anatomical scan data and the functional resting-state scan data, the
COBRE dataset also contains the age, gender, and handedness of each subject at the
time of scanning.

Example images of a functional volume from the COBRE dataset are shown on figure
3.1 with the sagittal view on the left, the coronal view in the middle and the axial
view on the right. The images are from the first time point in the time series. The
corresponding T1-weighted anatomical images are shown on figure 3.2.

Figure 3.1: Example images of a raw functional volume from the COBRE dataset. Images cropped for
visualization.
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Figure 3.2: Example images of a raw anatomical T1-weighted volume from the COBRE dataset. Images
cropped for visualization.

3.2 The ERC2 datasets

The ERC2-I and ERC2-II datasets were acquired as part of a larger project funded by
two European Research Council Advanced Grants to Prof. Kenneth Hugdahl at the
University of Bergen. The datasets are used in accordance with the Regional Ethics
Committee (REK Vest #2016/800). All subjects in the ERC2 datasets were collected
using the same GE 750 3T MR scanner at Haukeland University Hospital using an 8-
channel head coil, apart from some subjects in the ERC2-I study who did not use this
head coil. The subjects in the patient group had been diagnosed using the ICD-10 scale
[41]. Similarly to the COBRE dataset, the ERC2 datasets contain information on the
age, gender, and handedness of each subject. The datasets also include the score on
the Positive and Negative Syndrome Scale (PANSS) for every patient. Before subjects
were included for MR imaging in the ERC2-I and ERC2-II studies, all subjects were
screened for any history of major head injuries, medical implanted devices, substance
abuse, neurological- and medical illnesses.

3.2.1 The ERC2-I dataset
The ERC2-I dataset contains anatomical and functional scans for 70 subjects with
mainly SCZ and 111 control subjects. The anatomical T1-weighted images were ac-
quired using an SPGRE-sequence with parameters given in table 3.4 and the resting-
state BOLD-fMRI images were acquired using EPI with parameters given in table 3.5.
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TR [ms] TE [ms] Matrix size Voxel size [mm3] Flip angle [°] Slices

7700 2.96 256x256 1.0165x1.0156x1 14 188

Table 3.4: The imaging parameters for the anatomical images in the ERC2-I dataset.

TR [ms] TE [ms] Matrix size Voxel size [mm3] Flip angle [°] Slices Volumes

2000 30 128x128 1.72x1.72x3 90 30 160

Table 3.5: The imaging parameters for the resting-state functional images in the ERC2-I dataset.

The distribution of the diagnoses in the patient group in the ERC2-I dataset can be seen
in table 3.6 and the age distribution of the subjects in the ERC2-I dataset is shown on
figure 3.3. Example images of a functional volume from the ERC2-I dataset are shown
on figure 3.4 with the sagittal view on the left, the coronal view in the middle and the
axial view on the right. The images are from the first time point in the time series. The
corresponding T1-weighted anatomical images are shown on figure 3.5.

ICD-10

code Main diagnosis Frequency

F12* Mental and behavioural disorders due to use of cannabinoids 2

F15* Mental and behavioural disorders due to use of other stimulants 5

F19* Mental and behavioural disorders due to multiple drug use 1

F20.0 Paranoid schizophrenia 28

F20.3 Undifferentiated schizophrenia 9

F20.4 Post-schizophrenic depression 1

F20.9 Schizophrenia, unspecified 1

F21 Schizotypal disorder 1

F22 Persistent delusional disorders 13

F23 Acute and transient psychotic disorders 13

F25 Schizoaffective disorders 4

F28 Other nonorganic psychotic disorders 1

F29 Unspecified nonorganic psychosis 6

F30.2* Mania with psychotic symptoms 1

F31.7* Bipolar affective disorder, currently in remission 1

F32.9* Depressive episode, unspecified 1

Table 3.6: The different diagnoses present in the ERC2-I dataset, along with their respective diagnosis
codes and frequency. * excluded.
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Figure 3.3: The age distribution of the subjects in the ERC2-I dataset.

Figure 3.4: Example images of a raw functional volume from the ERC2-I dataset. Images cropped for
visualization.

Figure 3.5: Example images of a raw anatomical T1-weighted volume from the ERC2-I dataset. Images
cropped for visualization.
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3.2.2 The ERC2-II dataset

The ERC2-II dataset contains anatomical and functional scans for 54 subjects with au-
ditory verbal hallucinations and 81 control subjects, where 54 of these control subjects
were age and gender matched with the patient group. To be included in the origi-
nal study, subjects had to experience auditory verbal hallucinations, therefore not all
subjects in the patient group had SCZ. The anatomical T1-weighted images were ac-
quired using a FSPGR-sequence with parameters given in table 3.7 and the resting-
state BOLD-fMRI images were acquired using EPI with the same parameters as for the
ERC2-I dataset, see figure 3.5. The distribution of the diagnoses in the patient group in
the ERC2-II dataset can be seen in table 3.8.

TR [ms] TE [ms] Matrix size Voxel size [mm3] Flip angle [°] slices
6800 2.98 256x256 1x1x1 12 188

Table 3.7: The imaging parameters for the anatomical images in the ERC2-II dataset.

ICD-10
code Main diagnosis Frequency
F06.0* Organic hallucinosis 1
F12.5* Mental and behavioural disorders due to use of cannabinoids 1
F19* Other psychoactive substance related disorders 4
F20.0 Paranoid schizophrenia 26
F20.3 Undifferentiated schizophrenia 5
F23.3 Other acute predominantly delusional psychotic disorders 1
F25 Schizoaffective disorder 4
F29 Unspecified nonorganic psychosis 3
F31* Bipolar disorder 1
F32.3* Severe depressive episode with psychotic symptoms 1
F60* Personality disorder 2
F61* Mixed and other personality disorders 1
F62.8* Other enduring personality changes 1
F90* Attention-deficit hyperactivity disorders 1

Table 3.8: The different diagnoses present in the ERC2-II dataset, along with their respective diagnosis
codes and frequency. * excluded.

Example images of a functional volume from the ERC2-II dataset are shown on figure
3.6 with the sagittal view on the left, the coronal view in the middle and the axial
view on the right. The images are from the first time point in the time series. The
corresponding T1-weighted anatomical images are shown on figure 3.7.
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Figure 3.6: Example images of a raw functional volume from the ERC2-II dataset. Images cropped for
visualization.

Figure 3.7: Example images of a raw anatomical T1-weighted volume from the ERC2-II dataset. Images
cropped for visualization.

3.2.3 ERC2 subject selection process
For the analyses in the current study, a selection process was performed for subjects that
would be included for ML. Since the ERC2-II dataset collection focused on subjects
with auditory hallucinations, there were several non-schizophrenic patients present in
the dataset, e.g. bipolar disorder, major depression and personality disorders. For both
the ERC2-I and the ERC2-II datasets, all healthy controls were included in the analysis
and patients with the ICD-10 codes F20-F29 as their main diagnosis were included.
Subjects with complications due to drugs, such as psychosis due to drug abuse, were
excluded from analysis. The selection process was conducted in close cooperation
with a psychiatrist to ensure that only subjects with relevant diagnoses for the planned
analysis were included.

3.3 Dataset comparison

A comparison between the datasets was performed to investigate dataset variation. The
differences in age, gender, and handedness distribution were investigated along with
the frequency of the different diagnoses present in the datasets. A statistical t-test was
performed to address the age differences between the datasets.
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3.4 Preprocessing

Functional data from all subjects were preprocessed using the SPM12 package (sta-
tistical parametric mapping, UCL, London, UK, https://www.fil.ion.ucl.ac.uk/spm/) in
MATLAB R2022b 2020a (the MathWorks, Inc., Massachusetts, United States). Pre-
processing is crucial before doing analysis on fMRI as the raw images can show effects
of head movement, physiological cycles and inhomogeneities in the magnetic field [11].
The preprocessing of fMRI volumes usually consists of correction of movement, trans-
formations into standard space, signal normalization and spatial smoothing [55]. Most
of these preprocessing steps rely on setting the correct parameters in order for the pre-
processing to achieve the wanted results. This is why the standard SPM12 preprocess-
ing pipeline is used in the current study. Smoothing is a preprocessing step where the
parameters can differ a lot between studies, and it has both advantages and disadvan-
tages. It can increase the signal-to-noise ratio (SNR) but can also remove important
information in the images. It is therefore important to choose appropriate smoothing
parameters when preprocessing fMRI images.

3.4.1 Realigning and unwarping
The realignment step translates and rotates all the 3D images in the time series to match
the first 3D image of that subject [56]. This is done using a least squares approach [57].
The goal of this process is to realign the images to account for movement. It outputs all
the rigid body transformations, namely the translation in the xyz-plane and rotation in
the roll-pitch-yaw-plane. It also creates a mean image based on the whole time-series
to use in co-registration.

The unwarping step corrects for susceptibility-by-movement interaction, which is the
fact that an EPI-image taken in one position is not identical to an image taken in another
position, which causes deformations in the image [57]. It uses estimations on how the
movement has effected the images to correct for these deformations.

3.4.2 Co-registration
The co-registration and normalization steps account for the differences in subject brain
sizes and shapes [56]. These steps ensure that the same voxels between subject volumes
are the same voxel in the brain, over the entire time series. This is done by first register-
ing the anatomical volume to a standard MNI template and then performing the same
transformations to each functional volume. The standard template is shown in figure
3.8. This procedure is done on every subject, so that every volume is the same shape
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and size as the template. The co-registration step only does the first part of this, which
is moving the anatomical image to a reference image of the functional images. Since
all the functional images are realigned, the mean of these images is a good reference.

Figure 3.8: The standard T1 MNI-template brain for use in the co-registration step in the preprocessing
pipeline. The brain is part of the SPM12 package.

3.4.3 Segmentation
The segmentation step is performed to best match the anatomical image to a template
[56]. The templates used for every subject are the default SPM segmentation templates,
and are shown in figure 3.9. The outputs from this step are the different segmentations
of the anatomical image, as well as the affine transformations done to the anatomical
image to match it to the template. Affine transformations are the combination of the
rigid body transformations, zooms, and shears.

The option to "Save Bias Corrected" was chosen to aid in automated processing of the
images [57]. It removes an artifact that can provide changes in the intensity of the
image.

3.4.4 Normalizing
The normalization step applies the transformations done to the anatomical image in the
last few steps to all the functional images in the time series [57], see subsection 3.4.2.

3.4.5 Smoothing
The smoothing step convolves the functional volumes with a 3D Gaussian kernel [57]
to remove or reduce noise and magnify the fMRI signal [56]. To assess the effect of
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Figure 3.9: The MNI segmentation template used in the preprossessing, where the rows correspond to
the gray matter, white matter, cerebrospinal fluid, soft tissue and bone structure of the brain, respec-
tively. Images cropped for visualization.
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smoothing, two different kernels of 4 mm and 8 mm were used. Thus, resulting in three
versions for each subject: non-smoothed volumes, volumes with a 4 mm smoothing
kernel and volumes with an 8 mm smoothing kernel.

3.5 Environment and setup

The ML for this study was conducted using different machines and versions of python
and the ML library PyTorch [58].

When using the COBRE dataset only, i.e. for algorithm engineering and tasks A-B, the
training and testing was performed on an NVIDIA GeForce RTX 3060 Laptop GPU
with a GPU memory of 6 GB and computer memory of 16 GB. Python version 3.11.5
and PyTorch version 2.1.0 were used. However, for hyperparameter tuning, python
version 3.9.18 and PyTorch 2.2.0 were used due to hyperparameter tuning library re-
quirements.

When using the ERC2-I and ERC2-II datasets, i.e. for tasks C-E, the training and
testing was performed on an Intel Xeon E5-2630 processor unit with 10 cores and
2.2 GHz base frequency and computer memory of 110 GB, through remote desktop.
Python version 3.9.2 and PyTorch version 2.2.2 were used. The different versions of
programming languages and libraries should not have had any effect on the ML results.

3.6 Algorithm Engineering

A variety of approaches were explored for creating algorithm structures for the study.
The first algorithms were created to classify between subjects with SCZ and control
subjects, and were trained and validated using the COBRE-dataset.

The first ML algorithm tested was a CNN inspired by the AlexNet algorithm [59],
using 3 convolutional layers going up and down in number of channels, each with a
ReLU activation function and a max-pooling layer following it. The vector was then
flattened and put into two fully connected layers before providing an output with a
probability for each of the two classes. The second algorithm was UNET-inspired [60].
It followed the same structure as the first half of the UNET algorithm, see figure 3.10.
The proposed algorithm would increase the number of channels between each max
pooling layer until the limit of the computer system was met. It would then squeeze
the input until it became a one dimensional array which was used as input to a series
of fully connected layers, resulting in a prediction. However, this solution required too
much memory due to the large input size of the data in the current study.
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Figure 3.10: The UNET algorithm structure by O. Ronneberger et al. Figure taken from [60].

The final solution was a network that gathered information in the fourth dimension,
carried that information into the third dimension, etc. until the inputs had been trans-
formed into a straight line in one dimension. This was then used as input to a series of
fully connected layers, which produced the classification probabilities. This way, the
GPU memory problem would be resolved by going down in the number of channels for
each convolution. A visualization of the algorithm structure can be seen on figure 3.11.

Figure 3.11: The structure of the proposed algorithm, showing the layers of a model created with this
algorithm.

The algorithm consisted of three units, each one virtually "removing" a dimension from
the input. The first unit had 150 3D images as input, convolved them first into 10 chan-
nels in one layer and then into 1 channel in the next layer, resulting in a single 3D
volume. Both of these layers had a ReLU activation function following them. In unit 2,
this volume was squeezed into slices, with one layer convolving them into a 1 channel
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2D image, followed by a ReLU activation function. Both of the first 2 units ends with
a dropout layer and a max-pooling layer with kernel size 2n where n is the current di-
mension. In the last unit, the single 2D slice was flattened into an array which was used
as input to the first fully connected layer with 16 output neurons, followed by a ReLU
activation function. The second fully connected layer had output neurons equalling the
number of classes. This algorithm structure, along with cross entropy loss as the loss
function and Adam [61] as the optimizer was the basis for all algorithm structures used
in this study. Adam is a popular, robust and effective optimization algorithm often used
in DL [27]. The name is derived from adaptive moment estimation and updates the
learning rate individually for each parameter. It also modifies the learning rate based
on the direction of the previous parameter update.

Before training the ML models, the dataset was randomly split so that the ratio between
the classes was the same, i.e. so that the ratio between subjects with SCZ and healthy
controls was the same in the training, validation, and test datasets. In addition, a fixed
seed was used to ensure that the same split was used for every new model created so
that the models could be compared to each other, i.e. so that the dataset split itself
would not benefit one model over the other. The training dataset size was set to 55%
of the total dataset size, the validation dataset was set to 25% and the test dataset was
set to 20%. The splits were chosen because it was beneficial to include most of the
low-represented classes in the training dataset, and have some representatives of each
class in the validation and test datasets. This split was used for all analyses throughout
the current study, along with the matched ratio between classes within the training,
validation and test datasets for both the binary and multilabel analyses.

3.7 Task A: Establishing ML pipeline using online data

This task consisted of preliminary algorithm creation and validation. The objective was
to learn about ML practices, algorithm engineering and image learning. The COBRE
dataset was used for training and validation. In addition, the first 10 volumes were
removed from each subject to correct for movement in the beginning of the recording.
This was, however, only performed in this section.

3.7.1 Binary
Binary classification was performed, meaning that a subject was predicted to either be a
subject with SCZ or a healthy control. The learning rate was set to 0.001 in agreement
with other studies [6, 8, 53]. Dropout rate was set to 0.4 by bootstrapping and batch
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size was set to 5 due to GPU memory limitations. Number of epochs was set to 100.
The three smoothing versions of the functional images were used as input to three
different models with the same structure. The analyses were first carried out using
the default cross entropy loss function from PyTorch, but were later ran through with
weights for each of the classes. These weights were calculated based on the number of
representatives in each class present in the training dataset. For the binary classification,
all subjects from the COBRE dataset with a SCZ diagnosis were used, i.e. the selection
process from section 3.1 was ignored due to the sub-groups not being relevant. This
was only the case for the binary classification.

3.7.2 Multilabel
The mutltilabel classification was carried out using the different sub-groups as classes,
i.e. the different sub-groups given in table 3.3 apart from the ones that were excluded.
The different classes were 295.3 - Paranoid type SCZ, 295.6 - Schizophrenic disorder
residual type, 295.7 - Schizoaffective disorder, 295.9 - Unspecified SCZ, along with
the healthy controls. Also here both unweighted and weighted cross loss entropy were
used as loss functions. All other hyperparameters were the same as for the binary
classification.

3.8 Task B: Sub-grouping using the online dataset

Several sub-groups of SCZ diagnoses were represented in the datasets. To have all
patients on the same diagnosis scale, the diagnosis of patients in the COBRE dataset
was translated into ICD-10. Table 3.9 shows the sub-grouping codes in DSM-IV and
ICD-10.

Diagnosis DSM-IV ICD-10
Disorganized schizophrenia 295.1 F20.1

Catatonic schizophrenia 295.2 F20.2
Paranoid schizophrenia 295.3 F20.0
Residual schizophrenia 295.6 F20.5
Schizoaffective disorder 295.7 F25.9

Unspecified schizophrenia 295.9 F20.9

Table 3.9: All sub-groups from the COBRE dataset used for classification, showing both the ICD-10
and DSM-IV diagnosis codes.

All analyses in task B were performed on the COBRE dataset only. Two patient groups
were defined based on the sub-groups present in the COBRE and ERC2-II datasets.
This was done to resolve the problem of few representatives in some sub-groups. The
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patient groups were created based on cooperation with a clinical psychiatrist. The
reason that the sub-groups from the ERC2-II dataset were used to define the two new
patient groups was to prepare for analysis on the ERC2-II dataset at a later time. Table
3.10 shows the two new groups of patients from the COBRE dataset, the main SCZ
and other SCZ groups, along with the healthy control (HC) group. The main SCZ
group consisted of subjects with SCZ with a diagnosis of F20.0-F20.9 and the other
SCZ group consisted of subjects on the SCZ spectrum such as schizoaffective disorder
F25.9.

New patient group Inclusions Number of subjects
HC Control 72

Main SCZ F20.0-F20.9 62
Other SCZ F25.9 7

Table 3.10: The groups to be classified from the COBRE dataset.

In addition to the changed grouping of the subjects, two hyperparameter tuning runs
were conducted on non-smoothed images to find the hyperparameters that provided the
lowest loss and/or highest accuracy. A weight decay of 0.025 was also added to the
Adam optimizer to attempt to increase performance and combat overfitting.

3.8.1 Hyperparameter tuning
Hyperparameter tuning, and thus model selection, was done by using Ray Tune [62].
Tune is a python library for hyperparameter tuning. Using this library, the Tune func-
tions are merged into the existing ML code, and it wraps the train function for Tune
to access it. A search space of hyperparameters was defined, as well as an objective
function. Two search spaces were used and are shown in tables 3.11 and 3.12. The ob-
jective function was to lower the loss function. Tune will loop over a search space by
creating all possible combinations of the hyperparameters, and test one model for each
combination. For the first run, the hyperparameter combinations ran through 20 epochs
before training stopped. This was to first rule out the hyperparameters that did not sig-
nificantly improve the outcome of the algorithm, before conducting a bigger tuning
run, where the hyperparameter combinations went through 200 epochs before training
stopped. Hyperparameter tuning was only conducted for the multilabel analysis.

Layer size 5, 10
Learning rate 0.01, 0.001
Dropout rate 0.3, 0.5, 0.7

Table 3.11: The hyperparameter values tuned in the first hyperparameter tuning run.
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Layer size 5
Learning rate 0.01, 0.001
Dropout rate 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8

Table 3.12: The hyperparameter values tuned in the second hyperparameter tuning run.

3.9 Task C: Sub-grouping using the ERC2-II dataset

This task consisted of training and classification on the preprocessed non-smoothed
functional scans from the ERC2-II dataset. The models trained in this task had the
structures of the two best performing models from the hyperparameter tuning in task
B. This was to investigate if the best performing hyperparameter combination on one
dataset would be reliable on another dataset, collected at a different scanner. The com-
putational graph for the models is shown in figure 3.12.

In the same way as in task B, this classification was conducted using the three clas-
sification groups HC, main SCZ and other SCZ. The diagnoses present in each of the
groups from the ERC2-II dataset are shown in table 3.13, along with the size of each
group. There was also conducted a binary analysis on control vs patient, using both the
main SCZ and the other SCZ group as the patient group.

Supergroup/New group Sub-group Nr. of subjects
HC Control 81

Main SCZ F20.0-F20.9 30
Other SCZ F23.3-F29 7

Table 3.13: The groups to be classified from the ERC2-II dataset.

3.10 Task D: Data merging

Task D consisted of classification on a combined dataset of the COBRE, ERC2-I
and ERC2-II datasets. The combined dataset was split into train, validation and test
datasets. The trained model had the same structure as the models used in task B and
C, see figure 3.12. There were two objectives in this task. The first was to use a com-
bined dataset to investigate how increasing the data size would affect the performance
of the models. The second objective was to check if the hyperparameter combination
from task B (using only the COBRE dataset) could be used on images from a combi-
nation of datasets that were collected at a different scanners and from different parts of
the world.
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Figure 3.12: The computational graph of the model structure used throughout the current study, after
hyperparameter tuning.
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3.11 Task E: Classification of unseen test data

To measure the generalization and reliability of the ML models, the final analyses as-
sessed the performance of the models on unseen data, performing both binary and mul-
tilabel classification. The test data from the two ERC2 datasets had not yet been seen
by any model, so these test datasets were representative of unseen data drawn from the
same distribution. The test datasets contained the same ratio between the different sub-
ject groups (HC, main SCZ and other SCZ) as the training datasets. For this section,
multiple different model structures were used for model selection before deciding on
two final models to use on test data, one for binary classification and one for multil-
abel classification. The models were trained, validated and tested on the ERC2-I and
ERC2-II datasets.



Chapter 4

Results

4.1 Dataset comparison

The comparison of age, gender, handedness and sub-group frequency in the COBRE,
ERC2-I and ERC2-II datasets can be seen in figures 4.1-4.4. The mean and standard
deviation of the ages in the datasets can be seen in table 4.1. A statistical two-sample
t-test was performed to address age differences between the datasets, based on section
2.4.7. The results from this can be seen in table 4.2.

Figure 4.1: The age distributions for the subjects in the COBRE, ERC2-II and ERC2-I datasets.
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Figure 4.2: The gender distribution for the subjects in the COBRE, ERC2-II and ERC2-I datasets.

Figure 4.3: The distribution of the handedness of the subjects in the COBRE, ERC2-II and ERC2-I
datasets.
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Figure 4.4: The frequency of the different sub-groups in the COBRE, ERC2-I and ERC2-II datasets.

Datasets COBRE ERC2-I ERC2-II

Mean 36.8 29.2 34.1

Standard deviation 12.9 10.1 10.6

Table 4.1: The age mean and standard deviation of the three datasets COBRE, ERC2-I and ERC2-II.

Datasets COBRE & ERC2-II COBRE & ERC2-I ERC2-II & ERC2-I

t-statistic -1.86 5.74 -3.93

P-value 0.0631 2.62e-08 0.000109

5% significance No Yes Yes

Table 4.2: Results from a two-sample statistical t-test on the ages of the three datasets COBRE, ERC2-I
and ERC2-II.

The subjects in the ERC2-I dataset are significantly younger than the subjects in the
COBRE and ERC2-II datasets (figure 4.1 and table 4.2). There is also an imbalance
in gender distribution between the datasets, with the majority of the subjects in the
COBRE and ERC2-I datasets being male. The ERC2-II dataset has an approximate
equal split between males and females. The handedness distribution of the subjects
between the three datasets are quite similar. The COBRE and ERC2-II datasets have
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an equal amount of subjects in the other SCZ group, while the ERC2-I dataset has
almost 5 times as many subjects in this group. The ERC2 datasets have approximately
the same amount of subjects in the main SCZ group, while the COBRE dataset has
close to twice as many subjects in this group. In every dataset, the HC group is bigger
than the patient groups.

4.2 Preprocessing

The results of the preprocessing on the same slice of the example functional COBRE
images (figure 3.1) are shown in figure 4.5. A non-smoothed functional image of a
random example subject from each of the COBRE, ERC2-I and ERC2-II datasets are
shown in figure 4.6. It took around 10 minutes to fully preprocess one subject.

Figure 4.5: Results of the different preprocessing steps, shown on the same slice. A) Raw image. B)
After realignment and unwarping. C) After normalization. D) After smoothing with 4 mm kernel. E)
After smoothing with 8 mm kernel. Images cropped for visualization. fMRI image from the COBRE
dataset.

Figure 4.6: An example non-smoothed functional image from each of the three datasets COBRE, ERC2-
I and ERC2-II. Images cropped for visualization.

4.2.1 Realigning and unwarping
The result from the realigning and unwarping steps from subsection 3.4.1 on the exam-
ple image from the COBRE dataset (figure 3.1) is shown on figure 4.7.
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Figure 4.7: The example functional image from the COBRE dataset after realignment and unwarping.
Images cropped for visualization.

4.2.2 Co-registration

The result from the co-registration step from subsection 3.4.2 on the example image
from the COBRE dataset (figure 3.2) is shown on figure 4.8.

Figure 4.8: The example anatomical image from the COBRE dataset after co-registration. Images
cropped for visualization.

4.2.3 Segmentation

The results from the segmentation step from subsection 3.4.3 on the example anatomi-
cal COBRE image (figure 3.2) are shown on figure 4.9.
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Figure 4.9: The segmentation after the segmentation step on the example anatomical COBRE image,
where the rows correspond to the gray matter, white matter, cerebrospinal fluid, soft tissue and bone
structure of the brain, respectively. Images cropped for visualization.
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4.2.4 Normalizing

The result from the normalizing step from subsection 3.4.4 on the example functional
COBRE image (figure 3.1) is shown on figure 4.10.

Figure 4.10: The example functional COBRE image after the normalization step of the preprocessing
pipeline. Images cropped for visualization.

4.2.5 Smoothing

The results from the smoothing step from subsection 3.4.5 on the example functional
COBRE image (figure 3.1) are shown on figures 4.11 and 4.12 for the 4 mm kernel and
8 mm kernel, respectively.

Figure 4.11: The example functional COBRE image after the smoothing step of the preprocessing
pipeline, smoothed with a 4 mm kernel. Images cropped for visualization.
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Figure 4.12: The example functional COBRE image after the smoothing step of the preprocessing
pipeline, smoothed with a 8 mm kernel. Images cropped for visualization.

4.3 Task A: Establishing ML pipeline using online data

4.3.1 Binary classification on COBRE
The results from the binary classification on the COBRE dataset, i.e. classification of
control or patient, are shown in tables 4.3 and 4.4 for the non-smoothed, 4 mm ker-
nel smoothed, and 8 mm kernel smoothed images for unweighted and weighted cross
entropy loss functions, respectively. The corresponding losses during training with
weighted cross entropy loss are given in figures 4.13-4.15 for the non-smoothed, 4 mm
kernel smoothed, and 8 mm kernel smoothed volumes, respectively. The accuracies
during training are given in figures 4.16-4.18, respectively. Every model was trained
for 100 epochs and the training time was 137±4 minutes.

As seen in table 4.3, the three models trained on the different volumes performed
similarly when using an unweighted loss function. The model trained on the vol-
umes smoothed with an 8 mm kernel achieved slightly higher balanced accuracy than
the other models, but had the lowest F1-score. However, the models trained with a
weighted loss function performed better, see table 4.4. The model trained on the non-
smoothed images performed the best, with an accuracy of 0.8 and a balanced accuracy
of 0.788.

The plots for the loss during training for the different models using a weighted loss
function, figures 4.13, 4.14 and 4.15, show that the validation loss was increasing before
training stopped. The plots for the accuracy during training, figures 4.16, 4.17 and 4.18,
show that the validation accuracy during training had reached its maximum and that the
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models were overfitting at the end of training.

Accuracy Balanced accuracy Recall Precision F1-score

Non-smoothed 0.579 0.589 0.400 0.667 0.565

4 mm smoothed 0.579 0.583 0.500 0.625 0.577

8 mm smoothed 0.579 0.594 0.300 0.750 0.541

Table 4.3: The binary classification validation results on the COBRE scans using the unweighted cross
entropy loss.

Accuracy Balanced accuracy Recall Precision F1-score

Non-smoothed 0.800 0.788 0.909 0.769 0.796

4 mm smoothed 0.650 0.662 0.545 0.750 0.647

8 mm smoothed 0.550 0.591 0.182 1.000 0.469

Table 4.4: The binary classification validation results on the COBRE scans using the weighted cross
entropy loss.

Figure 4.13: The training and validation loss on the binary classification on the non-smoothed images
from the COBRE dataset with weighted cross entropy loss.
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Figure 4.14: The training and validation loss on the binary classification on the 4 mm kernel smoothed
images from the COBRE dataset with weighted cross entropy loss.

Figure 4.15: The training and validation loss on the binary classification on the 8 mm kernel smoothed
images from the COBRE dataset with weighted cross entropy loss.
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Figure 4.16: The training and validation accuracies on the binary classification on the non-smoothed
images from the COBRE dataset with weighted cross entropy loss.

Figure 4.17: The training and validation accuracies on the binary classification on the 4 mm kernel
smoothed images from the COBRE dataset with weighted cross entropy loss.
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Figure 4.18: The training and validation accuracies on the binary classification on the 8 mm kernel
smoothed images from the COBRE dataset with weighted cross entropy loss.
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4.3.2 Multilabel classification on COBRE
The results of the multilabel classification on the COBRE dataset are shown in tables
4.5 and 4.6 for the non-smoothed, 4 mm kernel smoothed and 8 mm kernel smoothed
images for both the unweighted and weighted cross entropy loss functions, respectively.
Every model was trained for 100 epochs and the training time was 129±2 minutes.

Tables 4.5 and 4.6 show that the models trained on the non-smoothed images had the
highest score on every metric in the multilabel case with and without weights in the
loss function.

Accuracy Balanced accuracy Recall Precision F1-score

Non-smoothed 0.579 0.278 0.579 0.460 0.502

4 mm smoothed 0.474 0.200 0.474 0.224 0.305

8 mm smoothed 0.474 0.200 0.474 0.224 0.305

Table 4.5: The multilabel classification validation results on the COBRE scans using the unweighted
cross entropy loss.

Accuracy Balanced accuracy Recall Precision F1-score

Non-smoothed 0.737 0.456 0.737 0.674 0.690

4 mm smoothed 0.526 0.267 0.526 0.416 0.465

8 mm smoothed 0.526 0.233 0.526 0.553 0.406

Table 4.6: The binary classification validation results on the COBRE scans using the weighted cross
entropy loss.

4.4 Task B: Sub-grouping using the online dataset

The results from the first hyperparameter tuning run, as described in section 3.8.1, are
shown in table 4.7. The model with a layer size of 5, a learning rate of 0.001 and a
dropout rate of 0.3 achieved the highest accuracy, while the model with the same layer
size, a learning rate of 0.01 and a dropout rate of 0.5 achieved the lowest loss, after 20
epochs. The two best performing hyperparameter combinations from the second, big-
ger hyperparameter tuning run are shown in table 4.8, where the model with a dropout
rate of 0.2 achieved the highest accuracy and the model with a dropout rate of 0.4
achieved the lowest loss after 200 epochs. The total time for the hyperparameter tun-
ing was 17 hours and 44 minutes for the first run and 2 days, 12 hours and 19 minutes
for the second run.
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Layer size Learning rate Dropout rate Best val accuracy Best val loss

5 0.01 0.3 0.514 0.921

5 0.001 0.3 0.600 1.294

5 0.01 0.5 0.514 0.916

5 0.001 0.5 0.514 1.057

5 0.01 0.7 0.486 0.930

5 0.001 0.7 0.514 1.000

10 0.01 0.3 0.514 0.982

10 0.001 0.3 0.514 1.028

10 0.01 0.5 0.514 0.937

10 0.001 0.5 0.514 1.010

10 0.01 0.7 0.429 0.959

10 0.001 0.7 0.429 1.025

Table 4.7: The results from the first hyperparameter tuning run.

Dropout Best model val accuracy Best model val loss

0.2 0.657 0.961

0.4 0.571 0.808

Table 4.8: The results from the second hyperparameter tuning. Both models had layer size of 5 and a
learning rate of 0.01.

The results from the multilabel analysis on the COBRE-dataset using the two best
model structures from the hyperparameter tuning are shown in table 4.9. Note here
that the model with the highest balanced accuracy during training was chosen. The
corresponding balanced accuracy, accuracy, and loss during training are shown in fig-
ures 4.19-4.21 for the model with a dropout rate of 0.2 and 4.22-4.24 for the model
with a dropout rate of 0.4, respectively. The best performing model was chosen right
before epoch nr. 30 for the model with a dropout rate of 0.2 and right after epoch nr.
15 for the model with a dropout rate of 0.4. The loss plateaued around epoch nr. 40 for
both models.

Dropout Accuracy Balanced accuracy Recall Precision F1-score

0.2 0.600 0.574 0.600 0.659 0.616

0.4 0.571 0.533 0.571 0.600 0.535

Table 4.9: The classification results on validation data using the two best models from the hyperparam-
eter tuning.
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Figure 4.19: The balanced accuracy score on validation data during training for the model with a
dropout rate of 0.2. The chosen model from the training is shown in a blue, vertical line.

Figure 4.20: The accuracy score on validation data during training for the model with a dropout rate
of 0.2. The chosen model from the training is shown in a blue, vertical line.
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Figure 4.21: The loss on validation data during training for the model with a dropout rate of 0.2. The
chosen model from the training is shown in a blue, vertical line.

Figure 4.22: The balanced accuracy score on validation data during training for the model with a
dropout rate of 0.4. The chosen model from the training is shown in a blue, vertical line.
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Figure 4.23: The accuracy score on validation data during training for the model with a dropout rate
of 0.4. The chosen model from the training is shown in a blue, vertical line.

Figure 4.24: The loss on validation data during training for the model with a dropout rate of 0.4. The
chosen model from the training is shown in a blue, vertical line.
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4.5 Task C: Sub-grouping using the ERC2-II dataset

The results from the analysis on the ERC2-II dataset using the algorithm structures from
task B are shown in tables 4.10 and 4.11 for the binary and multilabel classification. For
the binary classification, the accuracy score, balanced accuracy score and loss during
training are shown in figures 4.25-4.27 for the model structure with a dropout rate of
0.2 and figures 4.28-4.30 for the model structure with a dropout rate of 0.4. For the
multilabel classification, the accuracy score, balanced accuracy score and loss during
training are shown in figures 4.31-4.33 for the model structure with a dropout rate of
0.2 and figures 4.34-4.36 for the model structure with a dropout rate of 0.4.

Tables 4.10 and 4.11 show that the models with a dropout rate of 0.4 are performing
equally or better than the models with a dropout rate of 0.2 when classifying on the val-
idation dataset of the ERC2-II dataset, for both the binary and multilabel classification.
The plots for the binary classification model with a dropout rate of 0.2 during training
show that the accuracy, balanced accuracy and loss follow a similar trend, showing that
the models performs approximately equal on training and validation data throughout
the whole training (figures 4.25-4.27). This suggests that the model is failing to learn
from the training dataset. The same can be said for the plots for the binary classification
model with a dropout rate of 0.4, shown on figures 4.28-4.30.

For the multilabel case, the plots with the accuracy, balanced accuracy and loss dur-
ing training for the model with a dropout rate of 0.2 show that the model attempts to
learn from the training data but hits a plateau at around epoch 30 (figures 4.31-4.33).
From this point onward, the model performs equally good on both validation and test
data. The same can be said for the model with a dropout rate of 0.4, shown on figures
4.34-4.36, where the model hits a plateau at around epoch 70.

Dropout Accuracy Balanced accuracy Recall Precision F1-score

0.2 0.667 0.500 0.667 0.444 0.533

0.4 0.700 0.550 0.700 0.793 0.605

Table 4.10: The binary classification results on the ERC2-II validation data using the two different
algorithm structures from task B.

Dropout Accuracy Balanced accuracy Recall Precision F1-score

0.2 0.700 0.375 0.700 0.726 0.603

0.4 0.700 0.400 0.700 0.736 0.646

Table 4.11: The multilabel classification results on the ERC2-II validation data using the two different
algorithm structures from task B.



4.5 Task C: Sub-grouping using the ERC2-II dataset 79

Figure 4.25: The balanced accuracy score on the ERC2-II validation data during binary training for
the model with a dropout rate of 0.2. The chosen model from the training is shown in a blue, vertical
line.

Figure 4.26: The accuracy score on the ERC2-II validation data during binary training for the model
with a dropout rate of 0.2. The chosen model from the training is shown in a blue, vertical line.



80 Results

Figure 4.27: The loss on the ERC2-II validation data during binary training for the model with a
dropout rate of 0.2. The chosen model from the training is shown in a blue, vertical line.

Figure 4.28: The balanced accuracy score on the ERC2-II validation data during binary training for
the model with a dropout rate of 0.4. The chosen model from the training is shown in a blue, vertical
line.
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Figure 4.29: The accuracy score on the ERC2-II validation data during binary training for the model
with a dropout rate of 0.4. The chosen model from the training is shown in a blue, vertical line.

Figure 4.30: The loss on the ERC2-II validation data during binary training for the model with a
dropout rate of 0.4. The chosen model from the training is shown in a blue, vertical line.
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Figure 4.31: The balanced accuracy score on the ERC2-II validation data during multilabel training
for the model with a dropout rate of 0.2. The chosen model from the training is shown in a blue, vertical
line.

Figure 4.32: The accuracy score on the ERC2-II validation data during multilabel training for the
model with a dropout rate of 0.2. The chosen model from the training is shown in a blue, vertical line.



4.5 Task C: Sub-grouping using the ERC2-II dataset 83

Figure 4.33: The loss on the ERC2-II validation data during multilabel training for the model with a
dropout rate of 0.2. The chosen model from the training is shown in a blue, vertical line.

Figure 4.34: The balanced accuracy score on the ERC2-II validation data during multilabel training
for the model with a dropout rate of 0.4. The chosen model from the training is shown in a blue, vertical
line.
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Figure 4.35: The accuracy score on the ERC2-II validation data during multilabel training for the
model with a dropout rate of 0.4. The chosen model from the training is shown in a blue, vertical line.

Figure 4.36: The loss on the ERC2-II validation data during multilabel training for the model with a
dropout rate of 0.4. The chosen model from the training is shown in a blue, vertical line.



4.6 Task D: Data merging 85

4.6 Task D: Data merging

The data merging task consisted of re-training the two model structures from task B
on the training data from the combined dataset of the COBRE, ERC2-I and ERC2-II
datasets, before validating on the validation dataset. The results are shown in tables
4.12 and 4.13 for the binary and multilabel classification, respectively.

Dropout Accuracy Balanced accuracy Recall Precision F1-score

0.2 0.596 0.500 0.596 0.356 0.446

0.4 0.596 0.500 0.596 0.356 0.446

Table 4.12: The binary classification results on the validation data of the combined dataset of COBRE,
ERC2-II and ERC2-I using the two different algorithm structures from task B.

Dropout Accuracy Balanced accuracy Recall Precision F1-score

0.2 0.596 0.333 0.596 0.356 0.446

0.4 0.596 0.333 0.596 0.356 0.446

Table 4.13: The multilabel classification results on the validation data of the combined dataset of
COBRE, ERC2-II and ERC2-I using the two different algorithm structures from task B.

Table 4.12 shows that both of the binary models perform equally with a balanced ac-
curacy of 0.5, suggesting that every prediction belonged to the same class. The results
from the multilabel classification in table 4.13 follow a similar trend, where both mod-
els perform equally with a balanced accuracy of 0.33, suggesting that every prediction
was the same and therefore that the model fails to distinguish between groups.

4.7 Task E: Classification of unseen test data

The binary and multilabel model selection analyses on the ERC2 datasets are shown
in tables 4.14 and 4.15, respectively. The training ran for 200 epochs for each model
structure and the training time was 27±2 hours. The models with a layer size of 10, a
learning rate of 0.0001 and a dropout rate of 0.4 performed best on validation data for
both the binary and multilabel analyses. These two models were used on unseen test
data and the results are shown in table 4.16. Both models perform substantially worse
on test data than on validation data.
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Layer size Learning rate Dropout rate Accuracy Balanced accuracy
5 0.001 0.2 0.662 0.632
5 0.001 0.4 0.649 0.668
10 0.001 0.2 0.743 0.727
10 0.001 0.4 0.730 0.740
10 0.0001 0.2 0.716 0.658
10 0.0001 0.4 0.784 0.743

Table 4.14: The binary classification results on the validation data of the ERC2 datasets.

Layer size Learning rate Dropout rate Accuracy Balanced accuracy
5 0.001 0.2 0.596 0.440
5 0.001 0.4 0.635 0.436
10 0.001 0.2 0.581 0.510
10 0.001 0.4 0.622 0.480
10 0.0001 0.2 0.662 0.449
10 0.0001 0.4 0.716 0.517

Table 4.15: The multilabel classification results on the validation data of the ERC2 datasets.

Analysis Accuracy Balanced accuracy Recall Precision F1-score
Binary 0.576 0.554 0.576 0.590 0.582

Multilabel 0.508 0.348 0.508 0.477 0.492

Table 4.16: The classification of unseen test data using the best models on validation data, both binary
and multilabel classification.
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Discussion

The problem addressed in this thesis is difficult and probably an ill-posed problem with
more variability than what would be ideal for sub-grouping in SCZ. Therefore, the
overall performance of the implemented ML models are dependent on several factors
discussed in the following sections.

5.1 Sub-groups - does it work?

The performance of the ML models that were developed in the current study heavily
relies on the level of detail in the patient grouping done in task B. The patient grouping
was performed because it was challenging for the ML models to classify all the dif-
ferent sub-groups from the ICD-10 and DSM-IV classification, considering how few
representatives there were in some of the sub-groups in the COBRE dataset. As previ-
ously described, the sub-grouping was performed from a clinical perspective in close
conversation with a psychiatrist to make sure that the new patient grouping was clin-
ically relevant. The idea was to group every patient with ICD-10 codes beginning in
F20, i.e. F20.0 to F20.9, as the main SCZ group and the other subjects on the SCZ
spectrum as the other SCZ group. The grouping of the patients was performed to create
groups with enough representatives to be used for ML.

Other ideas were to sub-group based on the severity of the disorder, given by the PANSS
score. This score is being used clinically, and is estimated using a questionnaire filled
by an expert in dialogue with the subject to score positive and negative symptoms in
psychotic disorders. Based upon the scores of various items of the PANSS, subjects
could be divided based on degree of hallucinatory behaviour (e.g. mild and severe)
or the scores from the entire scale could be used for a regression task. However, this
was not possible as PANSS scores were not present in the COBRE dataset. A future
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direction would be to include the PANSS score data in ML. Had the study started with
the ERC2 datasets, this would have been a viable direction that would also be clinically
relevant. However, it was important to establish the model on the online data as the
approach was implemented from scratch.

Results from this study may suggest that there are several limitations when classifying
sub-groups based on resting state fMRI alone. It should however be noted that the
sub-grouping from a clinical perspective also has limitations and is not necessarily a
reliable gold standard. This is a known issue addressed by the ICD. The sub-groups
have been phased out in the new ICD-11, partly because of the heterogeneous patient
group. Therefore, future work should be open to investigate other grouping criteria. An
example of a different grouping could be to use each of the larger groups of the ICD-10
classification, e.g. F20 as one group and F21 as another etc.

5.2 Effect of preprocessing

Preprocessing is crucial when analysing fMRI [11], in particular subject motion which
needs to be corrected for. The preprocessing steps made sure that all the scans were
aligned, which resulted in brain regions/voxels being in the same coordinate(s) from
subject to subject. The main difference between the scans are thus the activations rather
than the structural differences and/or subject movement, and could be preferable for the
ML models since the activations may contain information on the disorder.

The preprocessing steps performed in the current study are the baseline preprocessing
pipeline for fMRI images in the SPM package. This is to make sure that all subjects
were in the same reference space, the MNI space. The MNI template is widely used
and makes the current study more comparable to other studies. The different smoothing
kernels in the current study were used to address the fact that the choice of smoothing
kernel can heavily impact the results of the preprocessing [55] and hence the input to
the ML algorithm.

5.3 Datasets - are they comparable?

The basis for the whole study is the IID assumption, as explained in section 2.2.4. This
assumes that the COBRE dataset is expected to be drawn from the same distribution as
the ERC2 datasets, as they both consist of mainly subjects with SCZ with resting-state
fMRI data. However, the following paragraphs suggest some differences that challenge
the IID assumption.
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Figure 4.1 shows that the age distribution between the three datasets differ. Using two-
sample t-tests, it was found a significant difference in age between the datasets. This
shows that the COBRE and ERC2-II datasets have a similar age distribution, and that
the subjects from the ERC2-I dataset are significantly younger. This may impact the
results as younger brains are different from older brains (e.g. volume size and ventricle
size) and a ML model might learn from these characteristics instead of the resting state
BOLD signal, which may include critical information about the disorder. Furthermore,
figure 3.3 shows that the patient groups have similar age distributions, while the HC
group consists of younger participants. This could potentially influence the ML model
to learn that younger brain features are more likely to belong to a control subject.

In task C, when using the ERC2-II dataset only, the idea was to continue using the
hyperparameter combinations which performed best on the COBRE dataset. These
two algorithm structures had a layer size of 5, learning rate of 0.01 and a dropout rate
of 0.2 or 0.4. However, one issue was that the datasets were acquired using different
scanners. The COBRE dataset was acquired on a Siemens scanner, while the ERC2
datasets were acquired on a GE scanner. In addition, they were collected with different
aims and different protocols. While the COBRE dataset consists of mainly subjects
with SCZ, the ERC2-II dataset consists of subjects with auditory hallucinations, where
many of them are diagnosed with SCZ.

These differences could have an effect on the ML, mainly the difference in the scanner.
A study by R. Kushol et al. [63] found that using images acquired from different
scanners can impact ML. They investigated how training on MRI scans from different
scanners can impact classification on images from other scanners. The performance
of their models drops drastically when classification was performed on images from
a different scanner than the one used for training data. They used a trained model to
classify images from a different dataset and did not re-train like what was done in the
current study. The argument that a hyperparameter combination that performed well on
a dataset from one scanner did not perform well when used on a dataset from another
scanner, still makes sense due to the IID assumption not being completely valid.

The COBRE dataset contained no information on PANSS score or hallucinations,
which can make it hard to both determine if the dataset is representative of the ERC2
datasets and to determine how well the dataset is for hyperparameter tuning.

In addition, the resolution of the raw images differ between the datasets, with the im-
ages from the ERC2 datasets having 4 times as many pixels per slice compared to the
COBRE dataset. Although the spatial resolution after the preprocessing is the same
for all images no matter the original resolution, this might play a part in the ML. By
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looking at the example images from each of the datasets after preprocessing, figure
4.6 shows a difference in the images nonetheless. The two example images from the
ERC2 dataset are much more similar to each other than to the example image from the
COBRE dataset. Given more time, the effect of the different smoothing levels would
have been tested for the ERC2 datasets in the same way as it was done for the CO-
BRE dataset. The higher resolution in the raw images of the ERC2 datasets could have
led to another level of smoothing making the models perform better, i.e. the level of
smoothing based on the COBRE dataset is not necessarily the best choice for the higher
resolution ERC2 images.

5.4 Feature extraction vs raw data

Some previous studies on the same area have used feature extraction before applying
DL on MRI scans of subjects with SCZ [6], [7], [8], [9] or on subjects on the autism
spectre [52], [53]. They have achieved significant results, and this might be because
of the feature extraction that was performed. However, in this study, no feature extrac-
tion was performed on the fMRI images before DL was applied. This is because of
the complex structure of DL algorithms. In theory, they should be able to learn from
complex patterns in the data without any prior feature extraction, given enough data
[64]. A DL algorithm can, in a way, do the feature extraction itself on the data, as the
algorithm learns from the features that provide the most information. In addition, if
the DL algorithm finds these complex patterns, there is less subjective bias in the pre-
dictions because there is no choice between different feature extraction methods. This
choice in itself could contribute to overfitting. Furthermore, feature extraction could
also potentially remove crucial information from the data.

The sizes of the datasets used in this study are small in the context of DL. Popular
datasets used in DL are the ImageNet dataset [48], consisting of 3.2 million images, and
the RadImageNet [65], consisting of 1.35 million annotated medical images. Dataset
sizes like these are one of the reasons why DL has been so successful. The argument
that a DL algorithm can learn any complex pattern in a dataset is only valid if there
is enough data. The idea in the current study was that the high complexity of the four
dimensional data would compensate for the dataset size. However, the low number
of subjects could be one of the reasons why the methods used in this study, i.e. with
no feature extraction, do not outperform previous contributions in the area. However,
compared to other studies on resting-state fMRI or SCZ who have used only the CO-
BRE or the ERC2-II datasets [6, 7, 9, 42], the total dataset size in the current study is
larger. This could potentially increase the performance or generalization of the results,
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but from a DL perspective, the dataset sizes are not big enough to confidently confirm
or deny that the proposed methods in the current study are reliable.

5.5 Metrics

Most articles classifying with ML are using the accuracy score as their chosen per-
formance measure, even if the dataset is balanced or not. In this study, the balanced
accuracy score is used because of the very imbalanced dataset after the patient group-
ing. The thought was that using the balanced accuracy would make the performance
more trustworthy, and in addition increase the chance of choosing a model that pre-
dicted one of the two patient groups. This was preferable because of the tendency of
the model to predict that all subjects were HC. Furthermore, it allowed the use of all the
healthy controls that were not age and gender matched with a subject, which increased
the total data size. Even though the dataset was then imbalanced, it potentially created
a model that was more certain when predicting healthy controls. In addition, this made
it comparable to studies with a balanced dataset.

The inclusion of accuracy in all the results was to make it comparable to other studies,
as accuracy frequently is the chosen performance measure. In addition, the recall and
precision was used to investigate the case where the models predicted only one class.
The F1-score was used in the same way as the balanced accuracy score, as this mea-
sure also takes into account the class imbalance. For the binary classification, the recall
is the relative number of correct positive predictions amongst all the actual positives
and the precision score is the same as the relative number of correct positive predic-
tions amongst all positive predictions. For the multilabel classification, the recall and
precision becomes the weighted average of the recall and precision for every class, re-
spectively. This means that for every multilabel classification task, the recall was the
same as the accuracy score. The precision score weights the amount of FP but ignores
any FN, meaning that using precision in model selection in this case would result in a
model that ignores every time a positive is predicted wrong, e.g. every time a subject
with SCZ is predicted to be either a healthy control or a subject on the SCZ spectrum
apart from SCZ itself. This was important in the current study and cannot be ignored,
and precision was therefore used as a way of showing information rather than being
used for model selection.
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5.6 Algorithm engineering choices

The algorithm structure used in the current study was limited by available resources
of the computer environment, especially the GPU memory of the system. This limits
the batch size, the depth of the network and the layer sizes. Given better computing
power and memory, the algorithm could be deeper and more complex, potentially pro-
viding better results. The reason that the system was a limitation was due to the four
dimensional nature of the input data, which made the ML models calculate parame-
ters in one or two dimensions more than what have been done in previous studies on
the topic [6–9]. The exponential increase in number of parameter calculations for each
dimension in the input data might be one of the reasons that four dimensional data as
input has not been used much previously.

5.7 Task A: Establishing ML pipeline using online data

The reason behind using three different levels of preprocessing was to investigate
whether it had any effect on the ML algorithm. For the binary classification in task A,
i.e. when only using the COBRE dataset, models trained on the three image types per-
formed similarly with unweighted cross entropy loss, but differently with the weighted
cross entropy loss, see figures 4.3 and 4.4. The model trained on the non-smoothed
images achieved an accuracy of 80% and outperformed the other two models on ev-
ery metric except for precision. However, this was due to models trained on the 8 mm
smoothed images predicting the same class excessively, resulting in a high precision.

For the multilabel classification in task A, the model trained on the non-smoothed im-
ages outperformed the other two models on every given metric, both with and with-
out weights in the loss function. Based on these results, the analyses from that point
forward were performed with non-smoothed images exclusively, for both binary and
multilabel classification. A reason for this result could be that the models trained on
non-smoothed images had more information, since smoothing lowers the contrast in the
images. The non-smoothed images contains more information from the raw images,
with reduced effects of head movement, physiological cycles and inhomogeneities in
the magnetic field, which potentially can be seen in the raw images as described in
section 3.4 [11].

As seen in tables 4.3-4.6, the addition of weights to the cross entropy loss function
resulted in a significant increase in performance in all cases except for the binary clas-
sification on images smoothed with the 8 mm kernel. Due to these results, weighted
cross entropy loss became the standard loss function to be used for the rest of this study.
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A reason for this could be that the function punishes the majority class, in this case the
HC group, and rewards the loss when predicting the less represented classes, which for
task A was the sub-groups present in the COBRE dataset.

The Adam optimizer was chosen because it is computationally efficient, requires little
memory allocation and works well with a large amount of parameters [61]. The ad-
dition of the weight decay was to help reduce the chance of overfitting. The value of
0.025 was inspired by I. Loshchilov et al. [66] who attempted to find the optimal value
for weight decay for the SGD and Adam optimizers.

5.8 Task B: Sub-grouping using the online data

5.8.1 Hyperparameter tuning
The results from the first hyperparameter tuning run from table 4.7 show that using a
layer size of 5 gave the best results on both accuracy and loss. Therefore, the search
space for the second run only included a layer size of 5 but kept the two different
learning rates. This was because using a learning rate of 0.01 gave the lowest loss,
while using 0.001 gave the highest accuracy. In addition, the number of dropout rates
was increased to 7 to expand the search space for the bigger tuning run. The second
hyperparameter tuning run provided two different model structures, one performing
better on accuracy and one performing better on loss. Therefore, due to the difficulty
of choosing one of the model structures, both were carried on to the next section of the
current study.

The two models were re-trained to look at other metrics such as F1-score and balanced
accuracy score and to identify which classes were predicted wrongly, to determine
which of the two that was to be used on the combined dataset in the following section.
This was because the model with the highest balanced accuracy during training was
to be chosen instead of the one with the highest accuracy. However, the hypothesis
was that this would be easier with the combination of the COBRE- and the ERC2
datasets, since the smallest patient group (other SCZ) would be doubled in size after
the combination.

The highest accuracy and balanced accuracy from the multilabel classification on the
sub-groups in the COBRE dataset, i.e. from task A, were 0.737 and 0.456, respectively
(table 4.6). When comparing this to the best model from task B (from table 4.9), where
the accuracy and balanced accuracy were 0.600 and 0.574, the model from task B
achieved a higher balanced accuracy but a lower accuracy than the model from task A.
This could be because the previous model was better at predicting the classes with most
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representatives but worse at predicting the others, i.e. better at predicting control but
worse at predicting the two patient groups. However, since the balanced accuracy was
the chosen metric for the remainder of the study, the hyperparameter tuning along with
the patient grouping was a step in the right direction.

The hyperparameters used for tuning were chosen because it was thought that they
would affect the predictions the most, and because it was challenging to initially set
these hyperparameters to an optimal value. The learning rate is often the most important
hyperparameter to tune, and it makes more sense to scale the learning rate in the log-
domain than linearly [67]. Lower learning rates were not considered in task B due
to the substantial increase in training time. The layer size was tuned because it was
thought that a more complex network could potentially learn more from the training
data. The dropout rate was tuned because setting it too low could result in overfitting,
but setting it too high could result in the models not learning from the data.

Given enough time and computing power, the batch size would be tuned because it
heavily impacts the performance of a ML model [68]. The batch size could be set to
1 to enable online learning [27] or it could be set to a higher value than in the current
study to calculate the gradients for more data points at a time. Additionally, one could
add more layers to allow the network to learn more complex patterns from each data
point. However, it would not necessarily perform better than the models used in the
current study due to the higher chance of overfitting with a more complex algorithm
structure.

5.9 Task C: Sub-grouping using the ERC2-II dataset

The classification results from task C can be seen in table 4.11 for the multilabel clas-
sification and table 4.10 for the binary classification. The model with a dropout rate
of 0.4 slightly outperformed the model with a dropout rate of 0.2, although both mod-
els appear to have underperformed compared to the results from task B. The balanced
accuracy, accuracy, and loss during training (figures 4.25-4.36) all converge early and
show that the models do not perform well on the validation data. Unlike the plots for
loss in task B, i.e. on the COBRE dataset, these plots show that the training loss does
not go down. This could mean that the models do not learn from the training data, and
it is therefore an overreach to expect that the models would perform well on the val-
idation data. A possible reason for this is that the hyperparameter combinations that
performed well on the COBRE dataset were overfit to this type of data, as discussed in
section 5.3.
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5.10 Task D: Data merging

The results in table 4.12 show that both of the binary models achieve a balanced accu-
racy of 0.5 which is the same as the baseline prediction balanced accuracy for a binary
classification problem. The same can be said for the multilabel classification results
from table 4.13 where the balanced accuracy is 0.33. This was not as predicted and can
indicate that it was challenging for the models to learn from the dataset.

It was thought that the combination of the COBRE, ERC2-I and ERC2-II datasets
would perform better than on the ERC2-II dataset alone due to the substantial increase
in dataset size. In addition, the increase in dataset size would increase the generalizabil-
ity since the datasets were acquired on different scanners and from different parts of the
world. Furthermore, the combination of the datasets was suitable due to the similar age
and sub-group distributions present in the datasets, in addition to the similar functional
scanning parameters. However, judging by balanced accuracy, the models trained on
the combined dataset performed worse than the models trained on the ERC2-II dataset
alone, both in the binary and multilabel case. This could be due to the differences in
the datasets. It is possible that parameter changes that decrease the loss on scans from
the ERC2-II dataset could increase the loss on scans from the COBRE dataset and vice
versa, due to the differences described in section 5.3.

5.11 Task E: Classification of unseen test data

The classification in task E was conducted using different algorithm structures than in
previous tasks. This was due to the poor performance of the algorithms. Therefore, dif-
ferent layer sizes were tested because the model could potentially learn more complex
patterns, and various learning rates were tested because the parameter updates could
potentially be better, further decreasing the loss. The two dropout rates of 0.2 and 0.4
were included to investigate which dropout rate would increase the generalization the
most. This was possible due to the training being run on a fairly powerful remote desk-
top with more available memory than in tasks A and B.

The models performed worse on the test data than on the validation data. A reason for
this could be that the models were performing well on the validation data due to ran-
domness and not because it learned from the patterns in the dataset. It could also have
been because of the training, validation and test datasets not being big enough to repre-
sent the whole dataset by themselves, i.e. not big enough to give a representation of the
generalization of the model. Both of these issues could potentially have been resolved
with a bigger dataset size, but also with a different model structure that addresses the
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low dataset size. There could also be an underlying issue in the patient grouping, mean-
ing that there possibly were no patterns for the model to learn. However, the models
in this task performed better on validation data than the models from task C and D,
suggesting that the combination of the two ERC2 datasets was advantageous.

One reason for only using the ERC2 datasets and not the COBRE dataset in task E was
that the ERC2 images had higher resolution than the COBRE images. This does not
necessarily mean that the ERC2 images are better, but the difference in resolution might
have an effect on the learning of the ML model. Another reason was that the two ERC2
datasets were acquired on the same scanner. Using images from different scanners have
previously been shown to provide worse results than if all images were collected on the
same scanner [63], as described in section 5.3. By using only the ERC2 datasets, the
models trained in this section become GE-scanner specific ML models.



Chapter 6

Conclusions

The current study investigated the possibility of sub-grouping schizophrenia spectrum
disorders using deep learning on four dimensional resting-state fMRI volumes. The
main findings include that using deep learning on four dimensional data is feasible and
that a binary classification on four dimensional data could be reliable given enough
computing power and a complex algorithm structure. In addition, the results show that
the least amount of preprocessing gives the most information on classification with
the grouping performed on the subjects in this study. Furthermore, a hyperparameter
tuning was conducted to explore which hyperparameters would have a positive effect
on the ML algorithm structure. However, the findings show that the proposed methods
do not reliably classify sub-groups of SCZ based on resting-state fMRI volumes alone.
In addition, the current study shows that a hyperparameter combination that works well
on one dataset not necessarily will work well on another dataset, possibly due to the
scanner differences and/or resolution differences in the images.

The results show that increasing the dataset size improves the performance of the ML
algorithm, albeit with a different algorithm structure. This confirms the theory that
a larger dataset size positively influences the training of a ML model. In addition to
this, the models trained on the combined dataset also provides a better generalization
performance due to the datasets being acquired at scanners from different manufactur-
ers. Future development for this area of research could be to address the task from
a different perspective. One way could be to use PANSS scores to create a regression
model or to use medication information from the patients to assess how they affect their
brain structurally and/or functionally. To the knowledge of the author, deep learning
on four dimensional fMRI volumes had not been accomplished before, making this a
novel study. The work is therefore foundational for future exploration of this area of
research.
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Appendix A

Code

A GitHub repository containing code used in this study can be found on https:
//github.com/harestado/MasterThesis. The repository includes scripts for pre-
processing of images in MATLAB, along with scripts for training, validation, and test-
ing for all datasets in python.

https://github.com/harestado/MasterThesis
https://github.com/harestado/MasterThesis
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Appendix B

MMIV conference - Poster

The poster used at the 2023 MMIV conference is shown on figure B.1. The poster
contains information about the current study, such as a small introduction, summary of
proposed methods, and preliminary results.
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Figure B.1: The poster used for the MMIV conference, autumn 2023.
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