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Abstract

Since many biological and chemical processes strongly depend on pH, its precise de-

tection is essential for a wide range of applications. Due to their distinct luminescence

characteristics, carbon quantum dots, or CDs, have become attractive options for pH

detection. In this thesis, fluorescence lifetime measurements of surface-functionalized

CDs are investigated concerning their capability for pH monitoring. A detailed anal-

ysis is conducted of the theoretical understanding of the excitation lifetimes of these

functional groups in response to variations of the surrounding medium’s pH. The ef-

fects of protonation and deprotonation of the functional groups is the focus of these

investigations. The pH-dependence of excitation lifetimes of functional groups, such

as m-phenylenediamine, phloroglucinol, and disperse blue 1 attached to CDs, is mod-

eled by utilising concepts from time-dependent density functional theory (TD-DFT)

and macroscopic Quantum Electrodynamics. A mathematical relation between pH,

pKa, and excitation lifetimes has been derived and applied to organic dye molecules

functionalising a carbon dot. The obtained results manifest the intuition that the pKa

determines the sensitive pH range and the pH sensitivity is proportional to the ratio

of the fluorescence lifetimes of the protonated and deprotonated states. This model

sheds light on the fundamental processes underpinning CDs’ pH-dependent fluores-

cence and offers important insights into how they behave in different pH ranges. The

theoretical framework developed within this thesis provides a comprehensive method

for estimating and comprehending optical behaviour of pH sensitive materials.
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Chapter 1

Introduction

In many scientific and industrial domains, pH is a crucial component. pH is a nu-

meric scale used to specify the acidity or basicity of an aqueous solution, with values

below seven indicating acidity, above seven indicating alkalinity, and seven represent-

ing neutral. Even a small pH variation can strongly affect the system’s properties and

dynamics. For example in aquaculture, more especially in fish farming, water qual-

ity monitoring becomes essential. It’s important to make sure live fish aren’t exposed

to potentially hazardous environmental conditions like oil spills or algal blooms when

moving them around in wellboats [1]. To prevent the wellboat from pumping polluted

or inferior water, close monitoring of the water’s conditions is necessary [2].

In addition, ocean acidification, lowering pH levels, modifies the carbonate chem-

istry of marine habitats dramatically [3]. The marine microbiome, which is essential

to ocean ecosystems, is greatly affected by this process. To comprehend and counter-

act these changes, it is crucial to use cutting-edge technologies to investigate how pH

variations affect the microbiome.

The necessity for sophisticated pH sensor technologies is highlighted by the un-

derstanding and measurement of pH in a variety of applications [4]. Conventional pH

electrodes have disadvantages: (i) since their properties alter over time, they must be

calibrated often. (ii) Additionally, they must have their electrolyte levels regularly re-

plenished to offset consumption. (iii) Furthermore, these electrodes frequently exhibit

subpar performance in highly salinized conditions, which can be a major disadvan-

tage in fields like marine research or those that work with brackish or saltwater. As a

result, there is a need for improved and trustworthy pH measurement solutions that
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Figure 1.1: The overall system in the above image shows a laserbeam as incoming light (blue) hitting

carbon dots in a solution. The carbon dots are emitting now light (here: green) of a lower wavelength

can get beyond these obstacles [4, 5].

To overcome these drawbacks, novel pH metrology techniques such as optodes,

spectrophotometric systems and ion-sensitive field-effect transistors (ISFETs) have be-

en developed [6]. However, these technologies also have disadvantages such as in-

creased expenses and power requirements, sensitivity to light and pressure, and the

requirement for specialised materials to guarantee long-term stability. Furthermore,

one outstanding problem with these advanced methods is the precise regulation of

temperature and ionic strength during seawater analysis, which has a substantial im-

pact on sensor performance [6], as it uses fluorescence intensity as measuring property.

Due to their high long-term stability, low cost, and low power consumption, optical

chemical sensors have drawn more attention. The optical properties of the pH-sensing

material are affected by changes in the pH of the surrounding liquid due to the inter-

action between the hydrogen ions (H+) concentration in the solution and the material

itself, which, for instance, can be detected by fluorescence spectroscopy. Challenges,

that need to be solved for such sensors are fluctuations of the probe light intensity,

background luminescence noise, leaching of the indicator from the immobilising liq-

uid, and photobleaching from sunshine or probe light [7]. To compensate for fluctu-

ations and noises of the probe light, a new measuring method has gained attention

that measures the a material’s fluorescence lifetime instead of intensity. Fluorescence

lifetime refers to processes in which a molecule’s electron is excited to a higher en-

ergy state by an external source of incoming light. Upon returning to the molecule’s

ground state via internal processes, the excess energy is released in the form of a pho-

ton, resulting in the emission of fluorescing light, as illustrated in Figure 1.1. Here
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we can see incoming blue light from a laser to a sample with carbon dots dissolved

in a solution, that are emitting green fluorescent light. The time duration to reach the

ground state is known as fluorescence lifetime [8]. This characteristic is inherent in the

material and is not impacted by the problems with fluorescence intensity measure-

ments, which makes it a strong basis for sensors that have calibration stability over an

extended period of time [9].

Experimental studies have demonstrated that the dye molecule acridine exhibits

a notable shift in fluorescence lifetime in response to pH variations [7]. The change

in nanoseconds per pH unit is 2.0ns/pH. Such findings underscore the potential of

leveraging fluorescence lifetime for pH sensing [7]. However, the application of this

technique in marine environments is limited due to the inhibitory effect of chloride

ions on the fluorescence of acridine, highlighting the need for alternative materials or

approaches in such settings. Therefore a new type of material as gained significant

interest as a potentially more suitable material: Carbon dots (CDs), are small sized,

”spherical” particles that consist of an organic precursor attached to a carbon struc-

ture surface. These small, sometimes luminous materials are affordable and easily

available, making them ideal for use in various fields such as biomedical [10], catalytic

[11] and electronic applications [12]. Their biocompatibility and low toxicity further

enhance their appeal. For some types of CDs a quick and sensitive fluorescence re-

sponse could be observed. In addition, CDs can be easily dispersed in water. These

features make CDs an attractive option for the creation of cutting-edge optical sensors.

Especially, their sensitivity to environmental changes like pH, which seems to affect

their optical characteristics and fluorescence behavior and might be attributed to their

small size and large functionalized surface area [13] make them interesting for further

investigation. Surface functionalization [14] or quantum confinement processes [14]

are thought to cause the fluorescence of carbon dots (CDs). In general, surface func-

tionalisation is the process of adding certain chemical groups to the surface of CDs in

order to modify their light emission and increase fluorescence through chemical inter-

actions. Quantum confinement effects occur due to the small size of the CDs, which

limits the electron mobility, changes their energy levels and consequently the emitted

wavelength.

This thesis is part of a project between the SFI Smart Ocean center for research-
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based innovation and the University of Bergen. SFI Smart Ocean is a centre for research-

based innovation, working to develop underwater wireless communication along the

coast of Norway, combining science and industry, hosted by the Department of Physics

and Technology at the University of Bergen. One of the projects of SFI Smart Ocean is

to provide a fluorescence lifetime sensitive pH sensor. W. Szapoczka, a PhD student

at SFI Smart Ocean, is working on developing a compact, stable, and affordable op-

tical pH sensor for use in seawater by synthesizing an indicator with pH-dependent

fluorescence properties and optimizing its response with different spectral filtering

and membrane choices. Building on her observations, my work introduces a the-

oretical framework aimed at elucidating the pH-dependent fluorescence lifetime of

various dye molecules that functionalize the surface of carbon dots before the syn-

thesis. A theoretical model has been developed to investigate the fluorescence life-

time behaviour of the surface functional groups attached to a carbon dot and sur-

rounded by a liquid. To achieve this, quantumchemical calculations have been com-

bined with macroscopic Quantum Electrodynamics (mQED) to investigate the decay

dynamics of the molecules upon pH variation. This approach has been applied to

the same dye molecules as investigated in the work of W. Szapoczka et al., namely

m-phenylenediamine (mPD), phloroglucinol, and the disperse-blue1 dye [4, 15].

1.1 Existing Work

To develop a theoretical model for computing the fluorescence lifetime of molecules, a

thorough evaluation of previous studies has been carried out. The methodology in this

work is influenced by three key studies on molecular excited state and fluorescence

lifetime calculations. The chosen methodologies for the model in this work can be

justified by the workflow of the three studies. In this work, we not only investigate

the excitation lifetime but also develope a theory to investigate the pH dependency of

carbon dots dissolved in solution as a whole.

Z.C. Wong et al.[16] investigated the photophysical properties, including fluores-

cence lifetimes, of syn-bimane fluorophores using time-dependent density functional

theory (TD-DFT) with a set of six different hybrid-exchange correlation functionals,

including B3LYP and PBE0. They started by optimising the geometry of the ground
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state with density functional theory (DFT). Next, electronic transition energies in var-

ious solvent conditions with TD-DFT where obtained. Vibrationally resolved absorp-

tion and emission peaks where then calculated to obtain the mean value of the inverse

cube of the fluorescence wave number. The fluorescence lifetime is then obtained via

the radiative transition rates by calculating the Einstein-coefficient of the electronic

transition at the excited state equilibrium geometry.

J. Preiss et al. [17] predicted fluorescence lifetimes of different molecules incorpo-

rating solvent effects. They developed a theoretical model that combines the nuclear-

ensemble approach within the conductor-like screening model (COSMO), taking into

account vibrational and solvent effects. The fluorescence spectra have been calculated

form the geometries obtained by the nuclear ensemble method using TD-DFT and then

broadened to include vibrational effects. The radiative component of the fluorescence

lifetime was calculated using the emission spectra by integrating over the spectrum

to determine the average lifetime of the excited state before it returns to the ground

state. The Strickler-Berg equation was used as a framework to relate the emission and

absorption properties of the fluorescence lifetime. The radiative lifetime calculations

where combined with experimentally measured fluorescence quantum yields to esti-

mate the total fluorescence lifetimes.

Using Quantumchemical calculations, R.C.E. Sia et al. [18] investigated the fluo-

rescence /radiative emission lifetime of BODIPY dyes. The ground state was com-

puted with DFT and with TD-DFT the excited states where obtained. Solvent effects

where incorporated using the Polarizable Continuum Model (PCM). The radiative life-

time was obtained using Einsteins’ A-coefficient derived from the transition energies

and the electronic transition dipole moments obtained with TD-DFT and the radia-

tive lifetime is the inverse of the coefficient, considering both the direct transition and

the effects of vibronic coupling, which modify the transition energies and probabili-

ties due to molecular vibrations. The vibronic effects where accounted for using the

Franck-Condon and Herzberg-Teller approaches to simulate the absorption and emis-

sion spectra and then calculate their impact on the radiative rates.

The suggested workflow of our model is organised as follows, taking inspiration

from these studies: After molecular geometry optimisation using DFT calculations,

transition energies and dipole moments will be evaluated using TD-DFT. The radiative
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lifetime is then obtained via the inverse of Einsteins’ A-coefficient, as can be seen in

Section 2.2. To include solvent effects as well as the effect of the carbon dot on the sur-

face functional group, the Einstein coefficient was extended / corrected by including

scattering effects of the solvent and the carbon dot, see Section 2.5 and 2.7.3. The pH

sensitivity of the carbon dot as a whole has been derived via Henderson-Hasselbalchs

equilibrium equation of protonated and deprotonated forms of the molecules in Sec-

tion 2.7.2.

1.2 The Overall Project

Figure 1.2: A Two-Layer Carbon Dot System: This illustra-

tion features a carbon dot, where the grey sphere symbolizes

the carbon core, with m-phenylenediamine dye molecules at-

tached to its surface. The carbon dot is encapsulated within a

liquid environment, isolating the surface molecules in a simu-

lated vacuum.

Creating a theoretical model that

can predict the pH-sensitive flu-

orescence lifetime of carbon dots

in solution is the main goal of

this thesis. One of the most

important parameters in pho-

toluminescence is the fluores-

cence lifetime, which is the aver-

age amount of time a molecule

spends in its excited state before

emitting a photon to return to

the ground state, see Section 2.1.

Understanding it and projecting

its lifetime are crucial for ap-

plications in materials research,

sensing, and imaging [4].

To achieve this, the focus is

set on a specific system: carbon

dots with surface-functionalized dye molecular groups. These carbon dots can be vi-

sualized as being encapsulated within a ”bubble” of solution [19] creating a thin vac-

uum layer between the surface functional groups and the solution membrane, as can

be seen in Figure 1.2.
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The complete experimental setup, represented in Figure 1.1, can be understood

as follows: The incoming laser light excites the dye-centre of the functional groups,

causing the dye molecules to enter a higher state and emit a photon as they relax back

into the ground state. This photon emission is observed as fluorescence, emitting light

of a lower wavelength than the absorbed light. The surrounding solution’s pH affects

the structure of the dye molecules, leading to a change internal relaxation dynamics,

see Section 2.2. This effect is directly observable through the fluorescence lifetime.

For this model, we use Density Functional Theory (DFT) and Time-Dependent DFT

(TDDFT) as tool to predict the transition energies between excited states of a molecule

in vacuum. These computational techniques are the main instruments for simulating

the behaviour of the dye molecules in the absence of surrounding medium.

Figure 1.3: A schematic representation of the overall workflow to develop the theoretical model for

simulating pH sensitive fluorescence lifetime of dye molecules. We have three variables to consider: the

Carbon dot itself, its precursor and the surrounding solvent. The solvent as well as the carbon dot can

be modeled using tools from macroscopic Quantum Electrodynamic (mQED), whereas the properties of

the precursor molecules are investigated by quantumchemical calculations with time dependent den-

sity functional theory (TD-DFT). The final result is obtained by including pH dependence via physical

chemistry.

Figure 1.3 presents an overview of the modelling procedure. Three different vari-

ables have to be modeled in order to derive a pH sensitive fluorescence description of

carbon dots in a solution, starting by applying methods from macroscopic Quantum

Electrodynamics (mQED) to the solvent (blue) as well as the carbon dot (grey). The

precursor (green) is modeled using time dependent density functional theory (TD-
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DFT) and in the end all three variables are combined together to the final equation (or-

ange), after including pH-dependent properties from physical chemistry. By coupling

the molecular system to the quantised electromagnetic fields, the relaxation dynam-

ics can be derived, leading the Einstein coefficient, Γ f s, by considering the quantum

vacuum. Whereas, in the presence of absorbing materials, the local optical mode den-

sity enters this equation describing the excitation dynamics of the molecule when it is

coupled to the environment. This method allows us to separate the functional group

from the remaining carbon dot and the solvent, leading the medium-assisted transi-

tion rates, Γma, as a correction to the Einstein coefficient. In addition, the emitted light

has to propagate through the solvent. To take its transmission at the interface between

the solvent and the carbon dot into account, we use the well-established local-field cor-

rections. The precursors free-space transition rate is obtained with DFT and TD-DFT

by calculating the transition frequencies ωnm and the transition dipole moments dnm

of the molecules in different protonation states in free-space. Finally, in Section 2.7.2,

the pH sensitivity is included via principals form physical chemistry, the Henderson-

Hasselbalchs relationship between pH and a molecules protonation state



Chapter 2

Theoretical Foundations

The theoretical knowledge needed to navigate the computational approaches described

in Chapter 3 is laid out in this chapter. We start with a simple description and calcu-

lation of the fluorescence lifetime in Section 2.1. Afterwards, the internal dynamics of

an atom are derived in Section 2.2 to obtain an expression for transition rate in free-

space, Γ f s. In this context, ”internal dynamics” refers to the complex motions and

interactions of electrons inside an atom that have a major impact on the energy states

of the atom and, as a result, its fluorescence. This chapter not only covers the system’s

vacuum environment but also includes scattering effects in presence of a medium,

which are essentially the interactions and changes caused by the surrounding solu-

tion surrounding the carbon dot. These effects are calculated independently using the

approximations described in Section 2.5, where a local-field correction is introduced.

Additionally, a number of variables that affect the system are examined, such as the

pH of the surrounding solution and the inherent characteristics of the Carbon Dot in

Section 2.7.3. After that, we explore the theoretical foundations covered in Sections

2.8.1, Section 2.8.2, and Section 2.9 that are essential to comprehending the computa-

tional modelling process. This comprehensive method provides a deep understanding

of the conceptual and practical elements necessary for the modeling process.

2.1 Fluorescence

We examine the theoretical foundations required to broaden our comprehension of the

fluorescence process in this chapter. Under UV light, fluorescence—a process in which
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objects absorb light at one wavelength and emit it at another—often takes the form of

bright, glowing colours. This phenomenon is caused by absorbed photons exciting

the substance’s electrons, which then release energy as visible light when they return

to their ground state. The goal of this thesis is to simulate the fluorescence lifetime

of carbon dots with different surface molecules, and understanding this mechanism

is essential to achieving that goal. The development of a novel pH sensor, which

holds promise for the improvement of sensing technology, could be improved with

my model.

2.1.1 Luminescence

When light energizes the electrons of an atom or molecule, they emit a radiant glow as

they return to their lower energy states. This emission of light is known as the lumi-

nescence effect. The luminescence process can be divided into two subcategories: flu-

orescence and phosphorescence, depending on the origin of the involved electron spin

states.

Figure 2.1: A Jablonski diagram representing the non radia-

tive vs the fluorescence decay.

Fluorescence is observed when

an electron in an atom transition

from an excited singlet state,

where it is energetically unsta-

ble, back to its ground state,

which is energetically more fa-

vorable. This process involves

the emission of a photon, as

the electron releases the excess

energy accumulated during its

excitation [20]. The phospho-

rescence mechanism can be ob-

served when light gets emitted

from a triplet excited state of electrons with same spin orientation. As the spin has

the same orientation, transitions into the ground state are forbidden, following the

Pauli exclusion principle. Transitions back to the ground state are not likely [20]. The

whole process can be shown in a so called Jablonski diagram, see for instance figure
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2.1. The Jablonski diagram is a graphical representation used in spectroscopy to il-

lustrate the electronic energy levels of molecules and the transitions between them.

It shows a molecule’s absorption and excitation to higher electronic states and subse-

quently emit energy as they return to lower states. This aids in visualizing phenomena

such as fluorescence and phosphorescence.

2.1.2 Fluorescence

The fluorescence process follows the permissive principles of quantum mechanics,

making it considerably more probable than phosphorescence. This transition unfolds

swiftly as an electron emits a photon, occurring at a rate typically around 108 emis-

sions per second and with a fluorescence lifetime of approximately 10 nanoseconds

(×10−8 seconds)[20].

The photon emits during the emission phase, but its energy is lower than that of

the light that was absorbed. The Stokes shift, which is caused by this process, enables

the light to shift towards a longer wavelength and is frequently apparent as a unique

colour during emission. Because of internal conversion mechanisms that release some

energy as heat prior to the photon’s emission, the energy difference between an elec-

tron’s excited state and ground state is smaller than the energy of the absorbed photon.

This results in the Stokes shift, [20], as indicated in figure 2.2.

Figure 2.2: An emission/ absorption spectra including the Stokes shift during a fluorescence process.

A fluorescence emission spectrum, as shown in 2.2, represents a plot of the fluores-

cence intensity vs. the wavelength. The fluorescence intensity, reflecting the number
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of emitted photons and their energy, contributes to the overall brightness and vivid-

ness of the observed fluorescence. This characteristic is crucial in sensitivity detection,

as it serves as a quantitative measure of the amount of fluorophore (fluorescent com-

pounds that emit light upon excitation during the fluorescence process) present in a

sample [20, 4].

Fluorescence Lifetime and Quantum Yields

The most important characteristics of fluorophores, which are fluorescent compounds

that emit light upon excitation during the fluorescence process, are their quantum

yield and fluorescence lifetime. The quantum yield quantifies the efficiency of the flu-

orescence process by describing the ratio of emitted photons to the number absorbed.

In essence, it serves as a measure of how effectively a fluorophore converts absorbed

energy into emitted light. A higher quantum yield corresponds to a brighter emission,

making it a crucial parameter for assessing the efficiency of fluorescence in practical

applications [20]. This characterisic can be used in solar-cell applications.

Additionally, the fluorescence lifetime of a fluorophore is a key parameter that de-

termines the average duration a molecule remains in its excited state before returning

to the ground state [20]. This timespan is a fundamental aspect of the fluorescence

process and contributes to the overall temporal characteristics of fluorescence signals.

Understanding the fluorescence lifetime is essential for applications, where precise

timing and temporal resolution are critical, such as in fluorescence microscopy and

time-resolved spectroscopy. Together, the quantum yield and fluorescence lifetime

provide comprehensive insights into the performance and behavior of fluorophores,

making them essential considerations in the design and optimization of fluorescence-

based assays and imaging techniques [4].

2.2 Internal dynamics of an atom

We start deriving the general expression for the transition rate in free-space, Γ f s. An

insight of an atom’s internal dynamics is necessary in order to properly understand the

fluorescence process in greater detail. These dynamics, which include the electronic

and vibrational motions of the atom, are essential for comprehending and predicting
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a wide range of physical and chemical properties. These properties include the char-

acteristics of materials, nuclear dynamics, energy transfer processes, and the under-

standings gained from molecular dynamics simulations. This thorough comprehen-

sion provides insight on the complex behaviours of atoms and molecules, especially

with regard to their interactions with light and energy, which is essential to the study

of fluorescence.

As the goal of the thesis is to simulate and predict the fluorescence lifetime of Car-

bon Dots, it is crucial to evaluate the internal dynamics of atoms in their ground as

well as in their excited state. Casimir-Polder forces, which arise from quantum fluctu-

ations of the electromagnetic field in the vacuum, interact with excited states of atoms,

[21]. These interactions change an atom’s energy levels, which in turn affects how it

acts in proximity to surfaces or other particles, even at a distance. An atom primarily

experiences a non-resonant ground state potential after releasing a photon and going

back to its ground state. Solving the coupled dynamics between the atom and the

electromagnetic field is necessary for the analysis of these occurrences. This is accom-

plished by figuring out how the dipole and field operators behave over time inside the

Heisenberg image, which shows how the atom is affected by Casimir-Polder interac-

tions. This method shows the complex relationship of quantum mechanical forces and

highlights the important significance of Casimir-Polder interactions, especially when

affecting the properties of atoms and molecules at surfaces or in nanostructured ma-

terials. The internal state dynamics of a particle in the presence of dielectric bodies

must be collected in order to determine the influence of the surrounding carbon and

aqueous medium on the transition rate. The system [22] is thus divided into three

components: the molecule-field coupling ĤMF, the electromagnetic fields ĤF, and the

molecular system ĤM.

Ĥ = ĤM + ĤF + ĤMF . (2.1)

This equation shows the model’s limit of validity, which is that it can only be applied

to separable systems—in our case, that is, systems in which the dye centre, which is in

charge of pH sensitivity, is isolated from the host material. One way to quantify this

separability is to find the overlap between the corresponding wave functions.

The internal dynamics can be described by the time-dependent atomic density ma-

trix in the Schrödinger picture, expanded by the completeness relation in terms of
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internal-energy eigenstates

σ̂ = ∑
m,n

σmn |m⟩ ⟨n| . (2.2)

The time-dependent density matrix elements,

σmn(t) = σmn = ⟨m| σ̂ |n⟩ , (2.3)

represent the probabilities of an atom being in the representative initial state |n⟩, the

other matrix elements characterise the coherence of the internal atomic quantum state.

|n⟩ is indicating a higher state. To study the internal dynamics within the Heisenberg

frame, the time-dependent atomic flip operator is introduced

|m⟩ ⟨n| = Âmn = Âmn(t), (2.4)

describing the transition from n to m, Thus, its expectation value reads

⟨Âmn(t)⟩ = tr[σ̂Âmn] = ∑
k,l

σ̂kl(t) ⟨l| Âmn |k⟩ = σnm(t), (2.5)

where we used the orthogonality ⟨l| Âmn |k⟩ = Alkδlmδnk, leading to the commutation

relation

[Âmn, Âkl] = |m⟩ ⟨n| |k⟩ ⟨l| − |k⟩ ⟨l| |m⟩ ⟨n| = δnk Âml − δlm Âkn. (2.6)

With the flip operator [2.4], the molecular Hamiltonian can be written in eigenbases

ĤM = ∑
n

En Ânn. (2.7)

Consequently, the molecule-field coupling in dipole approximation reads

ĤMF = −d̂ · Ê(rA) = ∑
m,n

Âmndmn · Ê(rA), (2.8)

with the electric field

Ê(r) =
∫ ∞

0
Ê(r, ω) dω + H.c. =

∫ ∞

0
dω ∑

λ=e,m

∫
d3r′Gλ(r, r′, ω) f̂λ(r′, ω) + H.c.. (2.9)

Using the fundamental solution to Helmholtz equation, [21],[
∇×∇×−ω2

c2 ε(r, ω)

]
G(r, r′, ω) = iµ0ωδ(r − r′) , (2.10)
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it is possible to separate the Green’s function into an electric and magnetic part, Ge

and Gm

Ge(r, r′, ω) = i
ω2

c2

√
h̄

πε0
Im ε(r′, ω)G(r, r′, ω) (2.11)

Gm(r, r′, ω) = i
ω

c

√
h̄

πµ0

Im µ(r′, ω)

|µ(r′, ω)|2 [∇× G(r, r′, ω)]T. (2.12)

A complete derivation is shown in Section 2.5. The electromagnetic field is described

by the field Hamiltonian [23]

ĤF = ∑
λ=e,m

∫
d3r

∞∫
0

dω f̂ †
λ(r, ω) · f̂λ(r, ω) , (2.13)

with the field’s ladder operators f̂λ and f̂ †
λ. These operators help generating the

Heisenberg equation for fundamental fields, using the commutation relations

˙̂fλ(r, ω) =
1
ih̄
[ f̂λ(r, ω), ĤF] + [ f̂λ(r, ω), ĤAF]

=− iω f̂λ(r, ω) +
i
h̄ ∑

m,n
Gλ(rA, r, ω)Tdmn Âmn,

(2.14)

where the solution of the inhomogenous differential equation is

f̂λ(r, ω, t) = exp[−iω(t − t′)] f̂λ(r, ω)

+
i
h̄ ∑

m,n

∫ t

0
dt′ exp[−iω(t − t′)]GT∗

λ [rA(t′), r, ω]dmn Âmn(t′).
(2.15)

The time dependent electric field operator can be derived by inserting Equation (2.15)

in the expression (2.9)

Ê(r, ω, t) = exp (−iω(t − t0))Ê(r)

+
iµ
π ∑

m,n
ω2

∫ t

0
dt′ exp (−iω(t − t′))

× Im G[rA(t′), r, ω]dmn Âmn(t′).

(2.16)

The first term describes the free field in absence of an atom, the second term is the

source term created by an atom. We have successfully expanded the formula for the

electric field to include both cases: with and without time-dependent atom coupling.

It is important to mention that the source field depends on the position and state of

the atom at all times. An explicit evaluation requires the neglection of the CP forces,
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therefore the relation rA(t) = rA(t′) ≡ rA is used to neglect atomic motions.

We continue evaluating the expression for the source field term of the electric field

expression by assuming weak field coupling and using the Markhov approximation.

This means that a system does not have a memory and all effects from previous influ-

ences on the field are neglected.

The spectral distribution of the source field, represented by ω2 ImG(rA, rA, ω), is ex-

pected not to exhibit sharp peaks around the atom’s transition frequency, under the

premise that there is a weak coupling between the atom and the field. Therefore, it can

be assumed that the oscillations with a certain frequency ω̃mn ̸= ωmn are dominating

the dynamics. To evaluate the frequencies ω̃mn, we neglect the slow non-oscillatory

dynamics during a certain time interval t0 ≤ t′ ≤ t, yielding

∫ t

0
dt′ exp

(
−iω(t − t′)

)
Âmn(t′) ≃ Âmn(t)

∫ t

0
dt′ exp (−i(ω − ω̃mn))(t − t′). (2.17)

A precise calculation of this integral, as detailed in Ref. [21], results in a reformulated

expression for the electric field

Ê(r, ω, t) = exp (−iω(t − t0))Ê(r, ω)

+ iµ0 ∑
m,n

[
δ(ω − ω̃nm)−

i
π

P
ω − ω̃nm

]
ω2Im G(r, rA, ω) · dmn Âmn(t),

(2.18)

where the symbol P represents the Cauchy principal value, a method for evaluating

integrals that would otherwise be undefined due to a singularity at the point of inte-

gration. The field now solely relies on the flip operators’ values at time t, effectively

erasing any memory of the atom’s internal dynamic states from previous moments.

This leads to the practical application of the Markov approximation.

The next step is to solve the Heisenberg equation of motion for the atom. This is

achieved through the rearrangement of the equation of motion

˙̂Amn(t) =iωmnÂmn(t) (2.19)

+
i
h̄ ∑

k

∫ ∞

0
dω

[
Âmkdnk − Âkndkm · Ê(rA, ω)

+Ê(rA, ω) ·
(
dnkÂmk − dkmÂkn

)]
. (2.20)
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Combining Equation (2.2) and Equation (2.19) and using the orthogonality of the

eigenstates Âmn(t)Âkl(t) = δnk Âml(t), we can find closed equation of motion for the

atomic flip operators

〈 ˙̂Amn(t)
〉
= iωmn⟨Âmn(t)⟩

+ ∑
k,l

[
dkmCnl⟨Âkl(t)⟩+ dnkC∗

ml⟨Âlk(t)⟩

− dnkCkl⟨Âml(t)⟩ − dkmC∗
mkl⟨Âln(t)⟩], (2.21)

with the coefficients

Cmn = Cmn(rA)

=
µ0

h̄
Θ(ω̃nm)ω̃

2
nmImG(r, rA, ω̃nm) · dmn

− iµ0

πh̄
P
∫ ∞

0

dω

ω − ω̃nm
ω2ImG(r, rA, ω) · dmn. (2.22)

We want to decouple this set of linear differential equations by assuming that the

atom is free of any quasi degenerate transitions, meaning transitions where no two

states belong to the same manifold. In addition, we assume that the free atom is un-

polarised in each of its energy eigenstates, so it is not interacting with any field and

has no preferred orientation/ direction or net separation of charges with other atoms

dnn = 0, and the states of a degenerate manifold are not connected by electric-dipole

transitions, so dnn′ = 0, meaning that transitions between energy eigenstates within

degenerate manifolds can not be induced by an electronic dipole interaction. These

assumptions help to decouple the fast-oscillating off-diagonal flip operator effectively

from the non-oscillationg diagonal ones as well as from each other. Thus, the diago-

nalised coupling matrix reads for the off-diagonal elements (m ̸= n)

〈 ˙̂Amn(t)
〉
=

[
iωmn − ∑

k
(dnk · Ckn + dkm · C∗

km)

] 〈
Âmn(t)

〉
, (2.23)

and the non-oscillating diagonalised elements, by considering the atomic selection

rules

〈 ˙̂Amn(t)
〉
= −∑

k
(dnk · Ckn + dkn · C∗

kn)
〈

Ânn(t)
〉
+ ∑

k
(dkn · Cnk + dnk · C∗

nk)
〈

Âkk(t)
〉
.

(2.24)

Separating the coupling terms into their real and imaginary parts
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∑
k

dnk · Ckn =
1
2 ∑

k<n
Γnk + i ∑

k
δωnk =

1
2

Γn + iδωn, (2.25)

∑
k

dkn · C∗
nk =

1
2 ∑

k<n
Γnk − i ∑

k
δωnk =

1
2

Γn − iδωn, (2.26)

the spectral detuning and transition rates can be found

δωn = ∑
k

δωnk, (2.27)

and

Γn = ∑
k<n

Γnk, (2.28)

respectively, with

δωnk = δωnk(rA) = − µ0

πh̄
P
∫ ∞

0

dω

ω − ω̃nk
ω2dnk · ImG(1)(rA, rA, ω) · dkn, (2.29)

Γnk = Γnk(rA) =
2µ0

h̄
ω̃2

nkdnk · ImG(1)(rA, rA, ω̃nk) · dkn. (2.30)

The frequency ω̃mn is defined as

ω̃mn = ωmn + δωm − δωn, (2.31)

meaning the spectral shifts need to be considered by estimating the transition rate.

However, in common experimental situations the shift’s impact is neglectable, ω̃nm ∼=
ωnm. Thus, and the equations of motions for the flip operators take the form

〈 ˙̂Ann(t)
〉
= −Γn

〈
Ânn(t)

〉
+ ∑

k>n
Γkn

〈
Âkk(t)

〉
, (2.32)

〈 ˙̂Amn(t)
〉
= [iω̃mn −

1
2
(Γm + Γn)]

〈
Âmn(t)

〉
for m ̸= n, (2.33)

leading to the time dependence of the atomic density matrix elements

ṗn(t) = −Γn pn(t) + ∑
k>n

Γkn pk(t), (2.34)

σmn(t) = exp
(
−iω̃mn −

1
2
(Γm + Γn)

)
(t − t0)σmn for m ̸= n. (2.35)
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The dynamics are also known as a spontaneous decay, describing the emission of

real photons. Due to the spontaneous decay pn, the population of a given states |n⟩,

is reduced to lower lying states to gain the population transfer from higher states.

Equation (2.28) defines the total decay rate by summing up over all transition rates to

lower lying states. From this, we can define the lifetime of an excited state by taking

the inverse of the total decay rate, τn = 1
Γn

. By dividing the Green’s function into its

bulk and scattering part

G(r, r′, ω) = G(0)(r, r′, ω) + G(S)(r, r′, ω), (2.36)

the natural linewidth is obtainable by inserting the bulk Green’s function G0(r, r′, ω)

into Equation (2.29), leading to the well known Einstein coefficient, Ref. [21]

Γn =
1

3πε0h̄c3 ∑
k<n

ω3
nk|dnk|2. (2.37)

As above-mentioned, the lifetime of a transition process from the highest to the lowest

energy state can be expressed as the inverse of the transition rate, leading to

τn =
1

Γn
=

3πε0h̄c3

∑k<n ω3
nk|dnk|2

. (2.38)

Using this expression the fluorescence lifetime of any atom/ molecule can be calcu-

lated in vacuum by inserting the transition frequency as well as the transition dipole

moment.

To this end, the scattering part of the Green’s function considers the solvent effects.

A local-field correction incorporating the solvent’s and the carbon dot’s impact will

be derived in Chapter 2.5. We aim to delve deeper into the frequency shift described

in Equation (2.27). By applying the relationship given in (2.2), we understand that

the shift noted in Equation (2.27) results from a transition between states. This is de-

pendent on the atomic frequency, the dipole matrix element and the electromagnetic

Green’s tensor, including the surrounding’s impact.

2.3 The spectrum of the hydrogen atom

This section aims to provide some understanding of how to compute the transition

dipole moments of an atom. Since hydrogen is the only atom that can be solved ana-
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lytically, it is used to demonstrate how to derive dipole moments. Analytical computa-

tions for the hydrogen atom can yield the transition dipole moments. The general for-

mula for the hydrogens dipole operator has been derived and implemented in python

afterwards. This method shows how transition dipole moments can be theoretically

calculated by hand with respect to the selection rules. The hydrogen atoms has been

chosen as it can be found an analytically solution for it. Using the general formula for

the dipoloperator [24]

dnlmn′l′m′ = −e2
∫

Ψ∗
nlmrΨ′

n′l′m′r2 sin ϑdrdϑdφ, (2.39)

with e as the elementary charge. We will study its general properties by considering

the hydrogen atom, whose wavefunction separates into a radial and an angular part

Ψnlm(r, ϑ, φ) = Rnl(r)Ym
l (ϑ, φ). (2.40)

Thus the integral (2.39) separates and we will evaluate each part separately.

The Angular Part

The normalized angular part, the so called spherical harmonics [24] is given as

Ym
l (ϑ, φ) = ε

√
(2l + 1)(l − |m|)!

4π(l + |m|)! eimφPm
l (cos ϑ). (2.41)

with

ε =

 (−1)m m ≥ 0

1 m < 0
(2.42)

Pm
l is the associated Legendre function [24], defined by

Pm
l (x) =

(
1 − x2

) |m|
2
( d

dx

)|m|
Pl(x). (2.43)

Pl(x) is the lth Legendre polynomial, defined by the Rodriguez formula [24], which

can be written as
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Pl(x) ≡ 1
2l l!

( d
dx

)l
(x2 − 1)l. (2.44)

Using these relations and introducing spherical coordinates, we write the angular part

of Equation 2.39 as

f =

2π∫
0

dφ

π∫
0

dϑ sin ϑ (Ym
l (ϑ, φ))⋆


sin ϑ cos φ

sin ϑ sin φ

cos ϑ

Ym′
l′ (ϑ, φ). (2.45)

This integral can be separated into its three spatial components, fx, fy, fz

fx = − εε′(2l′ + 1)
16

√
(l′ − m′)!2

(l′ + m′)!2



√
(2l′+3)(l′−m′+2)!√
(l′+m′+2)!(2l′+2)

(i)

−
√

(2l′−1)√
(l′+m′)!(2l′−1)

(ii)

−
√

(2l′+3)(l′−m′+2)!(l′−m′+3)(l′−m′+4)√
(l′+m′)!(2l′+3)

(iii)
√

(2l′−1)(l′−m′+1)(l′−m′+2)√
(l′+m′−2)!(2l′−1)

(iv)

(2.46)

where (i)m′ = m − 1, l′ = l − 1; (ii)m′ = m − 1, l′ = l + 1; (iii)m′ = m + 1, l′ =

l − 1; (iv)m′ = m + 1, l′ = l + 1. For the y-component we obtain

fy = −εε′



√
(2l′+3)(l′−m′+2)!(2l′+1)(l′−m′)!

16(l′+m′+2)!(l′+m′)!
i

2l′+2 (i)√
(2l′−1)(l′−m′)!(2l′+1)(l′−m′)!

16(l′+m′)!(l′+m′)!
−i

2l′−1 (ii)√
(2l′+3)(l′−m′+2)!(2l′+1)(l′−m′)!

16(l′+m′)!(l′+m′)!
−i(l′−m′+3)(l′−m′+4)

2l′+3 (iii)√
(2l′−1)(l′−m′)!(2l′+1)(l′−m′)!

16(l′+m′−2)!(l′+m′)!
i(l′−m′+1)(l′−m′+2)

2l′−1 (iv)

(2.47)

where (i)m = m′ + 1, l = l′ + 1; (ii)m = m′ + 1, l = l′ − 1; (iii)m = m′ − 1, l =

l′ + 1; (iv)m = m′ − 1, l = l′ − 1.

The z component result for the case m = m′, l = l′ + 1 is

fz = εε′

√
(2l′ + 3)(l′ + 1 − m′)!(2l′ + 1)(l′ − m′)!

16π2(l′ + 1 + m′)!(l′ + m′)!
π

√
(l′ + 2)2 − m′2

4(l′ + 2)2 (2.48)
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And for m = m′, l = l′ − 1:

fz = εε′

√
(2l′ − 1)(l′ − 1 − m′)!(2l′ + 1)(l′ − m′)!

16π2(l′ − 1 + m′)!(l′ + m′)!
π

√
(l′ − 1 + m′)2

4l′2
(2.49)

The selection rules for the dipole operator in hydrogen show that transitions between

energy levels are only allowed if the change in the angular momentum quantum num-

ber by one ∆l = l − l′ = ±1 and the change in the magnetic quantum number

∆m = m − m′ = 0,±1. These rules are critical for understanding the spectroscopic

properties of hydrogen, as they govern the allowed transitions that can be induced by

electromagnetic radiation.

The Radial Part

The radial part Rnl(r) reads

Rnl(r) =

√(
2

na0

)3 (n − l − 1)!
2n(n + l)!

e−r/(na0)

(
2r

na0

)l
L2l+1

n−l−1

(
2r

na0

)
= fnle

−r/(na0)

(
2r

na0

)l
L2l+1

n−l−1

(
2r

na0

)
, (2.50)

with the prefactor

fnl =

√(
2

na0

)3 (n − l − 1)!
2n(n + l)!

. (2.51)

Therefore, the integral over the radial part of the dipole operator can be evaluated as

follows

R =

∞∫
0

r3Rnl(r)Rn′l′(r)dr (2.52)

= fnl fn′l′

(
2

na0

)l ( 2
n′a0

)l′ (na0

2

)4+l+l′ ∫ ∞

0
dx e−bxx3+l+l′L2l+1

n−l−1 (x) L2l′+1
n′−l′−1 (µx)

(2.53)
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with b =
n( 1

n+
1
n′ )

2 and µ = n
n′ . By using the 3-point rules for lowering and highering

the upper index the integral (2.52) can be transformed to the form [25], as can be seen

in the appendix A.2.

Hence, the radial part can be integrated analytically and yields for the case l′ =

l + 1

R =
∫

L2l+4
µn′−l−1(x)L2l+4

n′−l−2(µx)− 3
∫

L2l+4
µn′−l−2(x)L2l+4

n′−l−2(µx)

+ 3
∫

L2l+4
µn′−l−3(x)L2l+4

n′−l−2(µx)−
∫

L2l+4
µn′−l−4(x)L2l+4

n′−l−2(µx)

−
∫

L2l+4
µn′−l−1(x)L2l+4

n′−l−3(µx) + 3
∫

L2l+4
µn′−l−2(x)L2l+4

n′−l−3(µx)

− 3
∫

L2l+4
µn′−l−3(x)L2l+4

n′−l−3(µx) +
∫

L2l+4
µn′−l−4(x)L2l+4

n′−l−3(µx) (2.54)

and for the case l′ = l − 1

R =
∫

L2l+2
µn′−l−1(x)L2l+2

n′−l (µx)− 3
∫

L2l+2
µn′−l−1(x)L2l+2

n′−l−1(µx)

+ 3
∫

L2l+2
µn′−l−1(x)L2l+2

n′−l−2(µx)−
∫

L2l+2
µn′−l−1(x)L2l+2

n′−l−3(µx)

−
∫

L2l+2
µn′−l−2(x)L2l+2

n′−l (µx) + 3
∫

L2l+2
µn′−l−2(x)L2l+2

n′−l−1(µx)

− 3
∫

L2l+2
µn′−l−2(x)L2l+2

n′−l−2(µx) +
∫

L2l+2
µn′−l−2(x)L2l+2

n′−l−3(µx). (2.55)

Combined Dipole Operator

The complete expression for the dipole operator of the hydrogen atom can be finally

evaluated by multiplying the expression for the radial part and the angular part

d = ( fx êx + fyêy + fzêz) · R, (2.56)

with respect to the allowed combinations of quantum numbers n, n′, l, l′, m, m′. The

calculation has been implemented in python, the code can be found in appendix A.3.

2.4 The Emission Spectrum of Hydrogen

After the angular and radial component formulas are obtained in section 2.3, they

are multiplied together to find the hydrogen dipole moments for different transitions,

Equation (2.56). The resulting transition rates Γnm and transition frequencies ωnm for
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Figure 2.3: The emission spectrum of hydrogen, the arrows indicate the Lymann-series (yellow),

Balmer-series (red), Paschen-series (blue), Bracket-series (green) and Pfund-series (orange). Transitions

that are not allowed are indicated by the grey-white arrows that are crossed.

the first five transitions are listed in Table 2.1, and the resulting emergent emission

spectrum is shown in Figure 2.3. One can see that the estimated excitation lifetimes

are very short, meaning an excitation will almost instantaneously relax into the ground

state, which is in agreement with the sharp spectroscopic lines of the hydrogen spec-

trum, [26].

As an example to show how the lifetime can be calculated via the single transition

rates, we have a look at the Lymann-Series, using Equation (2.28) and (2.38). The

Lymann series describes direct transitions into the ground state, thus n = 1 and m =

2, 3, 4 . . . ,as indicated by the first transition (yellow arrow from n = 4 to n = 1) in

Figure 2.4.

As the decay from the fourth state into the ground state can occur via different

processes, the resulting total transition rate can be obtained according to Fig. 2.4 by

Γtot,41 = Γ41 + Γ43Γ31 + Γ42Γ21 + Γ43Γ32Γ21, (2.57)

leading to a total transition rate of Γtot,41 = 1.655× 1063s−1 and the resulting excitation

lifetime is τtot,41 = 1/Γtot,41 = 6.042 × 10−64s. In contrast, the excitation lifetime for
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Series n m Transition frequency ωnm in (Hz) Transition rate Γnm in (s−1)

Lyman

1 2 1.5503 × 1016 9.2308 × 1022

1 3 1.8374 × 1016 2.9207 × 1022

1 4 1.9379 × 1016 1.2558 × 1022

Balmer

2 3 2.8709 × 1015 6.1251 × 1020

2 4 3.8758 × 1015 3.5613 × 1020

2 5 4.3408 × 1015 2.0415 × 1020

Paschen

3 4 1.0048 × 1015 2.9271 × 1019

3 5 1.4699 × 1015 2.2879 × 1019

3 6 1.7226 × 1015 1.5636 × 1019

Brackett
4 5 4.6509 × 1014 3.2585 × 1018

4 6 7.1773 × 1014 3.0397 × 1018

Pfund 5 6 2.5264 × 1014 5.8337 × 1017

Table 2.1: Transition frequencies and lifetimes for the hydrogen atom in vacuum, calculated with

the derived formula for the dipole operator of hydrogen. In the final state, denoted as m, the orbital

quantum number l takes the value l = 1, and the magnetic quantum number m is m = 1. Conversely,

in the initial state, denoted as n, l = 0 and m = 0.

the direct transition Γ41 is τ41 = 1/Γ41 = 7.96 × 10−23s.

It can be observed from Table 2.1 that the transition rates and frequencies for each

series of the emission spectrum are in the same order of magnitude, and both decrease

with the number of the excited state. Notably, the excitation lifetime calculated for the

total decay process (τtot,41 = 2.63 × 10−28s) is significantly different from the excita-

tion lifetime obtained from the direct decay from 4 → 1 (τ41 = 7.96 × 10−23s). This

difference underscores that decay via several excited states is shorter than direct decay,

indicating that the number of decay channels influences the lifetime of the excitation

duration.

As previously explained in Section 2.2, and indicated in Equation 2.29, spectral

shifts need to be accounted for to estimate accurate transition rates. This highlights

the importance of including total decay over several excited states in the analytical

calculations of the process.
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Figure 2.4: The total decay rate of the Lyman series Γ41 via all possible combinations of single decays

shown with yellow arrows pointing along the different states.

2.5 Calculating scattering effects in presence of a field

In this section we’ll discuss the tools to calculate scattering effects on the precursor

molecules occurring due to the presence of the carbon core, the molecules are bonded

to. The behaviour of the electromagnetic field in presence of an external field can be

described by the vector Helmholtz Equation (2.10), where ε(r, ω) is the electric permit-

tivity and j(r, ω) is the current density. This inhomogenity can formally be solved via

a convolution

E(r, ω) = iµ0ω
∫

d3r′G(r, r′, ω) · j(r′, ω). (2.58)

of the inhomogenity with the fundamental solution G(r, r′), obeying

∇×∇× G(r, r′, ω)− ω2

c2 ε(r, ω)G(r, r′, ω) = δ(r − r′) . (2.59)

Analytic solutions for the Green’s functions are known for certain geometries [21]. For

systems beyond these cases, approximation methods exist, such as the Born-series ex-

pansion, which will be introduced in the following. As previously stated in Equation

(2.36), we can decompose the function into an analytically known part (representing

the vacuum, bulk, or layered material) and an unknown part (representing the scatter-

ing Green’s function), denoted as G(0)(r, r′, ω) and G(S)(rA, rA, ω), respectively. The

analytically known part satisfies

∇×∇× G(0)(r, r′, ω)− ω2

c2 ε(r, ω)G(0)(r, r′, ω) = δ(r − r′). (2.60)
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To obtain a solution for the scattering Green’s function, we take the difference between

Equations (2.59) and (2.60) to solve the inhomogeneous Helmholtz equation

∇×∇× G(S)(r, r′, ω)− ω2

c2 ε(r, ω)G(S)(r, r′, ω)

=
ω2

c2 δε(r, ω)
[
G(0)(r, r′, ω) + G(S)(r, r′, ω)

]
. (2.61)

The perturbation of the permittivity is written as δε(r, ω) ≡ ε(r, ω) − ε0(r, ω),

where ε is representing the mediums permittivity and ε0 the vacuum permittivity. A

general and formal solution to the scattering part can be found with

G(S)(r, r′, ω) =
∫

d3rG(0)(r, s, ω)
ω2

c2 δε(s, ω)[G(0)(s, r′, ω) + G(S)(s, r′, ω)]. (2.62)

2.6 Carbon Nanodots

Carbon dots (CDs) are versatile materials with a wide range of sources, a small particle

size, and cost-effectiveness, [27]. They possess a high fluorescence yield, making them

attractive for industrial applications like pH sensors, [28]. Another type of fluorescent

nanomaterials, known as carbon quantum dots (CQDs), is also gaining prominence

for various purposes, including sensing and therapy, [29]. In contrast to traditional

quantum dots, CQDs offer advantages like safe composition, adjustable fluorescence,

and stability. While their affordability and ease of production are strengths, addressing

challenges such as purification and low quantum yields is necessary for their success

in fields like bioimaging and nanomedicine, [29].

2.6.1 What are Carbon Nanodots

Carbon Quantumdots are small (< 10nm) sized, spherical particles that can consist

of an organic precursor attached to a carbon structure surface. The structure can be

classified as a core-shell structure: We have a core with sp2 and sp3 hybridized carbon

atoms as well as a shell consistent of functional groups that are attached to the core

[30].

The main constituent element of CDs is carbon. We can classify CDs into several ”sub
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Figure 2.5: Different types of carbon dots: graphene quantum dots, carbon nanodots, carbonized

polymer dots. Adapted from [31].

groups”, depending on their surface states and core structure, such as graphene quan-

tum dots, carbon nano dots and carbonized polymer dots, represented in Figure 2.5.

Due to the hybridization and synergy effects between the core and the surface

chemical groups, different luminescence characteristics can be observed in CDs, such

as the fluorescence emission mechanism. These factors include:

• Quantum conjugation effects: The extent of π-conjugation within carbon dots

can affect their electronic structure, leading to changes in their absorption and

emission properties. Enhanced conjugation can result in a narrowing of the band

gap, thus affecting the fluorescence emission.

• Surface states: The specific atoms or functional groups present on the surface

of carbon dots can introduce localized energy states, which play a critical role

in determining the fluorescence characteristics. Surface states can trap excitation

energy, leading to varied emission wavelengths.

• Cross-link enhanced emission effects: The formation of cross-links within or

between carbon dots can lead to enhanced fluorescence emission. This is at-

tributed to the restriction of non-radiative relaxation processes, facilitating more

efficient radiative decay.

• Molecular states: The presence of specific molecular states within carbon dots,

arising from heteroatoms or defects, can influence their fluorescence emission.



2.6 Carbon Nanodots 29

These states can act as emission centers, contributing to the diversity of emission

wavelengths observed.

• Environmental effects: The local environment around carbon dots, including

solvent polarity, pH, and ionic strength, can significantly influence their fluores-

cence emission. Environmental factors can affect the electronic states of carbon

dots, leading to shifts in fluorescence wavelength and intensity.

2.6.2 Luminescence Mechanism in Carbon Dots

To gain a deeper understanding of the luminescence mechanism of Carbon Dots it

is essential to have a look at their structure property relations. CDs show to have

a very high fluorescence yield. A CDs fluorescence characteristics is caused due to

the sp2/sp3 hybridization of the carbon core as well as synergy effects between the

core and the surface functional groups [30]. Fluorescence behavior can be categorized

into two distinct types: one where the fluorescence emission varies with the excita-

tion wavelength, and another where the emission remains consistent regardless of the

excitation wavelength. Factors influencing those phenomena are the size and surface

defects of the CDs as well as different carbon structures.

Quantum Conjugation Effects

Carbon Quantum Dots are sp2 − sp3 hybridized. The hybridization of carbon atoms

within carbon dots influences their entire structure, properties, and behavior. These

attributes render carbon dots adaptable and precious for a range of applications, such

as bioimaging, sensing, and optoelectronics. The integration of sp2 and sp3 hybridized

carbon atoms in carbon dots enhances their distinct optical and electronic traits, un-

derscoring their significance in both research and technological advancements [32, 30].

In sp2 hybridization, one s orbital and two p orbitals from the same atom combine to

form three new hybrid orbitals, as demonstrated in Figure 2.6. These hybrid orbitals

are in the same plane and are directed towards the corners of an equilateral triangle,

with bond angles of approximately 120 degrees. This type of hybridization is often

seen in carbon atoms that are part of double bonds or are involved in trigonal planar

structures, like graphene.
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Figure 2.6: Example of electron distribution in a carbon atom during its ground, excited and hy-

bridized state. Adapted from [33].

In sp3 hybridization, one s orbital and three p orbitals from the same atom com-

bine to form four new hybrid orbitals. These hybrid orbitals are directed towards

the corners of a tetrahedron, maximizing the angles between them at approximately

109.5 degrees. This type of hybridization is commonly observed in carbon atoms that

form single bonds in molecules like methane or in tetrahedral structures. The func-

tional groups attached to the carbon surface can show such behaviour, depending on

their molecular strucutre. The quantum conjugation effect occurs when small sp2 do-

main sizes lead to discrete electron energy levels near the Fermi level, altering from

quasi-continuous levels. As sp2 domain size grows, the band gap decreases, causing

a redshift in the photoluminescence emission spectra. This effect significantly impacts

the fluorescence properties of quantum dot materials [32].

Surface Funtional Groups

An area of research worthy of exploration involves the attachment of surface func-

tional groups to carbon dots. These surface functional groups exert a notable influence

on the geometric and electronic structure of carbon dots, consequently affecting their

fluorescence characteristics. Remarkably, various functional groups can yield distinct

surface emission states, offering a means to finely tailor the emission spectrum of car-

bon dots [34]. For instance, it has been demonstrated that electron-donating amino

groups not only induce a redshift but also maintain a substantial oscillating strength

in fundamental radiative transitions [34]. Additionally, the introduction of amino
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groups onto the surface of carbon dots leads to a diminishing LUMO (lowest unoccu-

pied molecular orbital)-HOMO (highest occupied molecular orbital) energy band gap

[35]. When examining the impact of diverse surface functional groups on the photo-

luminescent properties of carbon dots, it becomes evident that alterations in surface

chemistry exert a profound influence, not only on their size and solubility but also on

their optical characteristics [36].

Environmental Effects

The investigation of environmental factors, such as pH, pressure, and temperature,

emerges as a critical avenue of study, as these variables are known to exert unique and

substantive effects on the properties of carbon dots.

As an illustrative example, a study has demonstrated that stable red-emissive carbon

dots in a solution exhibit heightened fluorescence in response to external pressure.

This phenomenon arises from the increased proximity of the molecules, effectively im-

peding interparticle oscillations. Consequently, a pronounced intra-molecular charge

transfer mechanism is triggered, ultimately amplifying the emission intensity [37].

Furthermore, researchers have explored the pressure-induced color change in carbon

dots employing piezochromatic carbon dots with two-photon fluorescence capabili-

ties. The investigation has unveiled that, under high pressure conditions, the initially

sp2-hybridized domains undergo a transformation into sp3-hybridized domains [38].

Two-photon fluorescence is a nonlinear optical phenomenon in which a fluorophore

(like carbon dots) absorbs two photons of lower energy simultaneously, causing it to

emit a photon of higher energy (shorter wavelength). This process occurs only at high

photon densities, typically generated by intense laser beams [39]. Another important

emission-tuning environmental factor is the pH value, which is the main research in-

terest of this thesis and discussed intensely in the next sub-chapter.

2.7 Understanding pH

As, in this thesis, the change of the fluorescence lifetime of CDs in a solution is mod-

eled, the pH value is an important factor to be discussed. The surrounding solution

can have a different pH value that can impact the structure and therefore the fluores-
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cence lifetime of the CDs. The pH value, representing the ”potential” or ”power” of

hydrogen, serves as a scale to express the acidity or basicity of a solution in aqueous

environments. The concentration of hydrogen ions (H+) is pivotal in determining the

acidity (high H+ activity) or basicity/alkalinity (low activity) of a substance.

The reactivity of a solution increases with its acidity or basicity, influencing bio-

logical reactions and guiding chemical reactions. Following Johannes N. Brønsted’s

definition, a base possesses a non-committal pair of electrons, capable of accepting a

proton (H+), while an acid donates a proton. Acidic substrates release H+ ions [40].

2.7.1 pH Calculation

The properties of acids and bases are governed by ions. To establish the equation

for calculating the pH value, we examine the relationship between hydroxide ions

(OH– ) and oxonium ions (H+) in solutions. Using the dissociation of water as an

example, where two water molecules yield one hydroxide ion and one oxonium ion in

equilibrium [40]

2H2O ⇌ H3O+ + OH−. (2.63)

For any reaction at equilibrium, an equilibrium constant (Keq) exists

Keq =
[H3O+][OH−]

[H2O]
= 1.8 × 10−16 , (2.64)

where [...] denotes the concentration. This constant involves the ion product of water

(Kw)

Kw = [H3O+][OH−] = 10−14 . (2.65)

As the dissociation of water produces equal concentrations (in squared brackets []) of

hydroxide and oxonium ions

[H3O+] = 10−7 . (2.66)

[OH−] = 10−7 . (2.67)

Figure 2.7 illustrates the inverse relationship between pH and pOH values, both total-

ing to 10−14 due to the ion product of water [40]. A concentration of 10−7 denotes a

neutral solution (pure water). Higher concentrations (e.g., 10−3) define acidity, while

lower concentrations (e.g., 10−10) define basicity. The pH value is conveniently defined
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as

pH = − log10[H3O+] = − log10[H
+]. (2.68)

Figure 2.7: The inverse dependence of pH and pOH values, both adding up to a concentration of

10−14 M due to the ion product of water (see Equation (2.65)). The gradient from red to withe refers to

the pH value, whereas the gradient from blue to white represents the pOH value.

2.7.2 Henderson-Hasselbalch Equation

In this discussion, we consider the pH-dependent behavior of dye molecules within

carbon dots (CDs), which hinges on the equilibrium between their protonated (HD)

and deprotonated (D) forms. This equilibrium can be represented as

HD −−⇀↽−− H+ + D , (2.69)

where the acid dissociation constant, Ka, is traditionally expressed in logarithmic form

as pKa = − log10 Ka. The Henderson–Hasselbalch equation connects this equilibrium

with the pH

pH = pKa + log10
[D]

[HD]
. (2.70)

The Henderson-Hasselbalch equation is particularly useful for examining buffer

systems, which are designed to maintain a stable pH under various conditions. These

systems typically involve a high concentration of a weak acid and its conjugate base. In

the context of dye molecules in CDs, the dissociation of weak acids in buffer solutions

can be described by a similar equilibrium constant:

Ka =
[H+][D]

[HD]
. (2.71)

The associated pKa value is calculated using the negative logarithm.

Applying the Henderson-Hasselbalch equation to this system, we can derive the

relationship between the pH and the proportions of the protonated and deprotonated

forms of the dye molecules [40].
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2.7.3 The pH value as emission tuning factor of Carbon Dots

Carbon dots exhibit remarkable sensitivity to variations in pH levels, primarily at-

tributed to ionization or deprotonation processes affecting their molecular and elec-

tronic structures. Consequently, alterations in their surrounding environment can re-

sult in observable changes in emission characteristics, manifesting as shifts in wave-

length or variations in light intensity. These pH-induced modifications can also im-

pact the spatial arrangement of fluorophores, which function as donor-acceptor pairs

[41]. The fluctuations in pH can trigger several key phenomena within carbon dots,

including shifts in energy levels, the protonation and deprotonation of surface func-

tional groups, aggregation tendencies, proton transfer events, and the operation of

protective shell mechanisms. These intricate responses collectively contribute to the

pH-dependent behavior of carbon dots and their utility in a wide range of applica-

tions [41, 4].

Protonation and deprotonation

The primary cause of the pH sensitivity shown in the carbon dots’ (CDs) fluorescence

response is the balance between the dye molecules’ embedded protonated (HD) and

deprotonated (D) forms. Depending on the specific system being studied, D may

be neutral or charged during this pH-dependent partitioning. In particular, when

phloroglucinol is deprotonated, its acidic hydroxyl groups have a charge of -1, and

when it is protonated, it has a charge of neutrality. Similar to this, mPD has a charge of

1 when protonated and is neutral when deprotonated with basic amine groups. This

pattern is likewise followed by the dye dispersion blue1, which has a charge of 1 when

protonated and is neutral when deprotonated.

The volume fraction of deprotonated molecules [ fD(pH)] to the total number of

dye molecules active on the surface of a CD, and the fraction of active protonated

molecules [ fHD(pH = 1 − fD], are important parameters in determining the fluores-

cence behavior. The fluorescence transition rate is essentially a linear combination of

the transition rates of these protonated and deprotonated molecules.

Γ(pH) = fD(pH) ΓD + [1 − fD(pH)] ΓHD . (2.72)
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Figure 2.8: The protonation/ deprotonation process of the precursor molecules m-phenylenediamine

(pKa = 4.98), phloroglucinol (pKa = 8) and disperse-blue1 dye (pKa = 5) at a concentration of 1

mol/Liter in a pH range from 1 to 14.

Moreover, the pH of the surrounding medium and the pKa values of the functional

groups control the proton exchange dynamics in such a chemical system. Deprotona-

tion results in a steady electron count that now encounters less nuclear charge binding,

which increases polarizability. The hybrid quantum-classical model explains this by

proposing that anions are more polarizable than cations, and particularly more po-

larizable than their neutral counterparts. Using Equation (2.70) we can write the dye

fractions as

fD =
1

1 + 10pKa−pH , (2.73)

fHD =
1

1 + 10pH−pKa
, (2.74)

giving the pH-dependent transition rate of the carbon dot

Γ(pH) =
ΓHD + ΓD 10pH−pKa

1 + 10pH−pKa
, (2.75)

which can be linearised with a Taylor series expansion if pKa lies close to the pH (pH ≈
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pKa) region of interest, as

τ(pH) =
2

ΓHD + ΓD
+

ln 10 (ΓHD − ΓD)

(ΓHD + ΓD)
2 (pH − pKa) . (2.76)

Thus, the sensitivity to pH changes, shown by how much the fluorescence lifetime

changes with pH dτ
dpH , can be increased if we make the difference between the transi-

tion rates of the protonated and deprotonated species larger (ΓHD − ΓD). At the same

time, we should try to keep these transition rates low when added together (ΓHD +ΓD).

This means we can achieve greater pH-sensitivity to pH if the overall fluorescence

lifetime is longer, as long as there’s a clear difference in the lifetimes of each kind of

molecule that can fluoresce.

An exemplary case is the synthesis of S-C-dots, which are crafted to exhibit pH-

sensitive behavior, as opposed to conventional carbon dots. The photoluminescence

(PL) intensity of S-C-dots progressively increases across a pH range from 2 to 12, with

a pronounced linear relationship evident from pH 3 to 9. This signifies a reversible pH-

responsive PL intensity. The increase in PL intensity as the pH moves from acidic (3)

towards alkaline (9) conditions is due to the augmented presence of carboxyl groups

on the S-C-dot surface, which serve as effective fluorophores. Upon reaching a pH

above 9, the concentration of these carboxyl groups nears saturation, leading to a ta-

pering in the rate of PL intensity growth as the pH approaches 12, Ref. [42]. The pH

dependency of carbon dots’ fluorescence is influenced by proton transfer reactions in-

volving surface functional groups. At lower pH, these groups gain protons, altering

the carbon dots’ electronic structure and potentially shifting fluorescence emission to

longer wavelengths or increasing intensity. Conversely, at higher pH, proton loss can

lead to shifts in emission towards shorter wavelengths or reduced intensity, making

carbon dots responsive pH indicators [4].

Impact of Carbon dot and Solvent

The dye center of the functional group is best envisioned as a small particle restricted

to an area close to the carbon dot surface. To estimate the environmental impact on the

excitation dynamics of the functional group, a three-layer system may be employed.

The core of the internal dynamics calculation, see Sec. 2.2, is the separation of the

particle and the environment. By considering large carbon dots, we assume the pH
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Figure 2.9: Three-layer Carbon Dot System: This Figure shows a carbon dot with m-

phenylenediamine dye molecules attached to its surface. The black sphere represents the carbon core,

which can be determined using εC. The surface molecules are isolated in a simulated vacuum as the

carbon dot is enclosed in a liquid environment with a dielectric constant of varepsilonW . Density Func-

tional Theory (DFT) is used to analyse the system analytically in order to take into consideration the

surface molecules in a vacuum. We further modify this model to incorporate scattering effects from the

surrounding liquid as well as the carbon core.

sensitivity to be determined by the functional groups. Thus, the dye center is repre-

sented by the molecular Hamiltonian HM and the core of the carbon dot together with

the surrounding solvent by the field, HF. Due to Pauli blocking (Ref. [19]), there will

be a vacuum layer between the carbon dot’s core and the solvent, in which the func-

tional group will be located. Hence, we approximate the surrounding’s impact with a

three layer system composed of carbon-vacuum-water to determine the state mixing

caused by the carbon dot, as illustrated in Figure 2.9.

The electronic transition energies of the isolated surface functional groups can be

predicted by using Density Functional Theory (DFT), see Section 2.8.1. We are able

to evaluate the effect these interfaces have on the electrical transitions using to this

methodology. For larger carbon dots, the deflection of an electromagnetic wave, such

as a laser, can be predicted by using the Fresnel reflection at a flat interface between
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water and carbon, which yields the scattering Green function [23],

G(1)
pl (r, r′, ω) =

i
8π2

∫ d2k∥

k⊥1
eik∥·(r−r′)+ik⊥1 (z+z′)

×
[
rse1

s+e1
s− + rpe1

p+e1
p−

]
, (2.77)

with the Fresnel reflection coefficients rs and rp

rs =
k⊥1 − k⊥2
k⊥1 + k⊥2

, rp =
ε2k⊥1 − ε1k⊥2
ε2k⊥1 + ε1k⊥2

, (2.78)

with the wave vector parallel to the plane k∥ ⊥ ez and its component towards z di-

rection k⊥j =
√

ε jω2/c2 − k∥2. In a limit where wave properties of light are disre-

garded (non-retarded limit), the Equation for flat surface scattering can be simplified

by considering only its imaginary component and establishing new reflection coeffi-

cients that ignore wave properties, based on the electrical characteristics of water and

carbon.

Im G(1)
pl (r, r, ω) =

c2

32πω2z3 Im [R(ω)]


1 0 0

0 1 0

0 0 2

 , (2.79)

with the multi-scattering reflection coefficient

R(ω) =
rW(ω)rC(ω)e−iωl/c

1 − rW(ω)rC(ω)e−iωl/c , (2.80)

the thickness of the surrounding vacuum layer l, the non-retarded reflection coefficient

ri(ω) =
εi(ω)− 1
εi(ω) + 1

, (2.81)

for the vacuum-water and vacuum-carbon interface with the dielectric function for

water and carbon, εW and εC, respectively.

Incorporating the effect of an adjacent liquid, Onsager’s real cavity model is ap-

plied for local field correction [43, 19]. This model posits that a particle within a

medium with a specific permittivity at frequency ω is encased in a spherical void and

modifies the reflection coefficient further [19]

R⋆(ω) = R(ω)

(
3εW(ω)

1 + 2εW(ω)

)2

. (2.82)

To deduce the transmission rate changes for molecules that either accept or release

protons near the carbon dot, one combines the vacuum transmission rate (2.37) with
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the medium-altered transmission rates (2.29), by summing the free space rate and the

medium-assisted rate, leading to

ΓHD/D = ΓHD/D
fs + ΓHD/D

ma , (2.83)

with

ΓHD/D
fs =

ω3
HD/D |dHD/D|2

3h̄πε0c3 , (2.84)

ΓHD/D
ma =

1
2πh̄ε0l3

HD/D
Im

[(
3εW(ωHD/D)

1 + 2εW(ωHD/D)

)2

× rW(ωHD/D)rC(ωHD/D)e−iωHD/DlHD/D/c

1 − rW(ωHD/D)rC(ωHD/D)e−iωHD/DlHD/D/c

]

×
([

dx
HD/D

]2
+

[
dy

HD/D

]2
+ 2

[
dz

HD/D
]2
)

, (2.85)

where we located the centre of the transition in the centre of the dye molecule z =

lHD/D/2.

2.8 Quantumchemical calculations

This chapter delves deeper into the topic of quantum chemical calculations, building

on a theoretical and foundational understanding of the physical properties of carbon

dots, such as their sensitivity to pH and a detailed investigation of the fluorescence

lifetime mechanism we intend to replicate. These calculations, which are essential

for figuring out all the frequencies of excited states and transition dipole moments

in various dye molecules, will be performed using the NWChem programme. This

section provides the basic theory for a more computational approach by connecting

theoretical concepts to practical modelling and analysis applications.

2.8.1 Density Functional Theory (DFT)

Density functional theory (DFT) is used to calculate the electronic structure of atoms,

molecules and materials. By defining the system in terms of the ground state electron

density instead of the wave function, density functional theory provides an effective

method for calculating the electronic density and energy of a system. First, we want
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to take a deeper look at more conventional wave-function based techniques, like the

Hartree-Fock (HF) method, [44]. The HF (Hartree-Fock) method approximates the

N-body wavefunction using a single Slater determinant composed of N spin-orbitals.

The Slater determinant is a mathematical construct designed to ensure the antisymme-

try of the wavefunction, necessary for fermionic particles like electrons. It adheres to

the Pauli exclusion principle by automatically changing sign upon the exchange of any

two electrons. This property reflects the fundamental behavior of electrons where no

two electrons in an atom can have the same set of quantum numbers. It derives a set

of equations for atomic orbitals using the variational principle, leading to the Hartree-

Fock wavefunctions and energies. However, the HF method does not account for

electron correlation-the interactions among electron movements that the mean-field

approximation overlooks. This oversight affects the accuracy of predictions regard-

ing the electronic structure and properties of molecules, as electron correlation plays

a crucial role in the chemical behavior of complex systems. It is now primarily used

as a starting point for more advanced post-HF approaches, like coupled cluster or

configuration interaction methods (Ref. [44]), which recover the missing correlation

and approximate the exact wavefunction. ”Coupled” refers to the way these methods

account for the interaction between different electron configurations, while ”configu-

ration interaction” means systematically combining various electronic configurations

(different ways electrons can be distributed among the molecular orbitals) to achieve

a more accurate approximation of the molecule’s wavefunction, thereby capturing the

effects of electron correlation [44]. DFT aims to tackle both the inaccuracies of HF

and the computational complexity of post-HF methods by substituting the many-body

electronic wavefunction with the electronic density as the fundamental quantity.

The mathematical fundament of DFT lies in the Hohenberg-Kohn theorems, which

provide the basis for connecting the electron density to the ground state properties of

a system.

– Hohenberg-Kohn’s First Theorem states that the ground state electron-density

uniquely determines the external potential within which the electrons are con-

fined.

– Hohenberg-Kohn’s Second Theorem states that the total energy of a system can
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be expressed as a functional of the electron density. The functional takes the form

E[n], where E is the total energy and n(r) is the electron density.

– To practically solve the DFT equations, the Kohn-Sham scheme introduces a set

of auxiliary non-interacting electrons that reproduce the same electron density

as the true interacting system. Kohn-Sham equations are a set of self-consistent

equations that determine the wavefunctions and energies of these auxiliary elec-

trons.

– The final ingredient in DFT is the exchange-correlation functional, which ac-

counts for the effects of electron-electron interactions beyond the classical electron-

electron repulsion. This functional is typically approximated using various schemes,

such as local density approximation (LDA) or generalized gradient approxima-

tion (GGA), which will be explained later on.

To derive the Hohenberg-Kohn Theorems, we first have a look at the stationary

Schrödinger equation.

The stationary Schrödinger equation describes the behaviour of electrons in a system

with a given potential. It is solved by a collection of wave functions ψn and their

corresponding energies En, forming an infinite set, to describe a molecular system

Ĥψn = Enψn, (2.86)

with the Hamiltonian

Ĥ = T̂c + T̂e + V̂ee + V̂cc + V̂ec, (2.87)

where T̂c describes the kinetic energy of the cores and T̂e of the electrons. The interac-

tion potential separates into the interaction between electrons V̂ee, the cores V̂cc and be-

tween cores and electrons V̂ec. A challenge with this equation is, that a 3n-dimensional

space is used to describe the wavefunctions. Hence, as the size of the system increases,

the complexity of the problem escalates, leading to a proportional growth in compu-

tational time.
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Instead of dealing with the individual wave functions, DFT focuses on the electron

density n(r), which provides the probability density for finding an electron at a partic-

ular position r. With this approach, it is possible to reduce the problem to a 3 dimen-

sional one, so the complexity decreases.

We start with minimizing a system’s energy to find the ground-state energy

Ĥψ0 = E0ψ0, (2.88)

by minimizing the expectation value

E0 = min
n

⟨ψn| Ĥ |ψn⟩ . (2.89)

In DFT, we minimize the expectation value in sense of an integral over all space using

VCC since ion charts are positive and interact favorably with n(r) and since n(r) is

continuous through space we have to integrate over all space

E = min
n

{∫
VCC(r)n(r) d3r + F[n(r)]

}
. (2.90)

The combination of the kinetic and potential energies required to characterise the sys-

tem is contained in some universal functional F[n(r] of the density, as demonstrated by

Hohenberg and Kohn. The function that has the lowest energy-output is the one that

uses the exact density of the system [45]. The expression for this functional is unknown

and therefore the challenge remains to minimize the energy of the system. Therefore

Hohenberg and Kohn started separating the energy functional into a known part and

an unknown exchange-correlation part (XC), including all correlations and exchange

interactions between electrons and the nuclei as well as all quantum mechanical prop-

erties

E[{ψi}] = Eknown[{ψi}] + EXC[{ψi}]. (2.91)

We move from the many-body Schrödinger equation to a many single-electron

Kohn-Sham equations

Ĥψ(r1, ..., rN) = Eψ(r1, ..., rN) ⇒ ĤKS φ(r1)φ(r2)...φ(rN) = Eφ(r1)φ(r2)...φ(rN).

(2.92)
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To improve the accuracy of DFT, the Kohn-Sham equations are introduced as they

allow to calculate the ground state properties of a system in a computational feasi-

ble manner, simplifying the many-electron problem by mapping it onto a set of non-

interacting electrons [46]. The theory’s derivation will be covered in detail in the ap-

pendix, beginning with the Hohenberg-Kohn theorems’ proof.

Kohn-Sham equations

The Kohn-Sham equations are going to help us to replace the complex interacting

many-body system with a different auxiliary system that is easier to solve. We switch

to many-single electron equations from the many-body Schrödinger equation. The

approach assumes that the ground-state energy of the originally interacting system

determined by the electron density n0(r) corresponds to the new chosen system. All

the complex interacting many-body terms are described using the exchange correla-

tion functional EXC[{ψi}] of the density

E[{ψi}] = Eknown[{ψi}] + EXC[{ψi}]. (2.93)

As mentioned above, the system is described by many single electrons

ĤKSϕ(r) = Eϕ(r). (2.94)

We can decouple the dynamics of ions and electrons using the Born-Oppenheimer’s

approximation, which assumes that ions are fixed in space, because they are heavier

than electrons and therefore move slower, creating an external potential Vex that is

influencing the electrons. The system may now be explained as follows, where the

locations of the electrons and ions are defined by {ri}, {Ri}

ĤBO({ri}, {Rj}) = T̂ee + V̂ee + V̂ei + V̂ii

=
n

∑
i=1

∇2
i

2me
+ ∑

i<j

e2

|ri − rj|
+

n

∑
i=1

Vext(ri, {Rj}).
(2.95)

The kinetic energy of the ions Tii and the ion-ion potential Vii separate du to Born-

Oppenheimers approximation. Both kinetic and potential energy of the electron-electron

interaction are independent of the type of the system, thus, we only need to have a

closer look to the external potential Vext(ri, {Ri}). This term is inherently a function
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of three dimensions, contrasting with the wave function, which depends on 3n vari-

ables. So, we have already achieved a reduction of the problem to only 3 dimensions.

Considering the Hohenberg-Kohn theorems, we leverage the ground-state electron-

density n0(r) to construct a Hamiltonian. This Hamiltonian enables us to derive the

wave function in a 3n-dimensional space and determine the energy of our system.

With this fundamental knowledge in hand, we can then access and examine the differ-

ent properties of the system or material under investigation. From Hohenburg-Kohns

second theorem, we know that there is a ground-state energy that minimizes the en-

ergy of the overall functional being the true ground-state electron-density. The chal-

lenge remains to find a solution to this functional. Kohn-Sham uses the approach to

expand the energy functional in the form

E[n] = Tsp[n] + UH[n] + Vext[n] + VXC[n], (2.96)

where Tsp[n] is the kinetic energy, UH[n] the electron-electron interaction, also known

as Hartree term, the ion-electon interaction is described with Vext[n] and the exchange

correlation energy with VXC[n]. Details can be found in chapter 7 in [47].

Exchange and Correlation functional

The contributions of exchange and correlation to the total energy are captured by the

exchange and correlation functional, which is a complete function of the electron den-

sity. Two main exchange-correlation functionals are commonly used in modern DFT

calculations.

The initial functional is the Local Density Approximation (LDA). As an integral

across space of a function dependent only on the local density at that specific place,

this exchange-correlation functional is effectively a zeroth-order momentum. LDA

addresses exchange and correlation through two distinct terms: the exchange term

and the correlation term. For the exchange term, which constitutes an exact equation

for a homogeneous non-interacting electron gas, an analytical solution is available. In

the case of homogeneous systems, the exchange energy can be expressed as

EHom
XC (n(r)) = −3q2

4

(
3
π

) 1
3

n(r)
4
3 , (2.97)

which translates into the LDA exchange energy
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ELDA
XC [n(r)] = −3q2

4

(
3
π

) 1
3 ∫

d3rn(r)
4
3 . (2.98)

The assumption is that the exchange part of the exchange-correlation potential is an

integral over the entire space of the local density at that specific point. This is valid

for a uniform gas with no gradients, suggesting that gradients and density fluctuations

are ignored, especially in systems where spatial fluctuations in the electron density are

important. This exchange-correlation approach works well as long as the density does

not change greatly in space. Even for the homogeneous gas, Monte Carlo simulations

may produce numerical values for this correlation that can be used in DFT calcula-

tions, even though there is no analytical solution for the correlational part. Random

sampling is used in these simulations to simulate complex system behaviour. LDA

has limitations in terms of energies, even though it can properly predict geometries.

This is because discrepancies can arise when exchange-correlation effects are not fully

captured, particularly in systems with large correlation effects. Efforts are made to en-

hance functionality by introducing dependence on the local density gradient, leading

to the Generalized Gradient Approximation (GGA).

GGA incorporates both the density and its gradient in its considerations. Together

with a term that takes into account the density gradient, the exchange and correlation

functional is expressed as an integral over space of a function that is dependent on the

local density. Beyond the local density, this gradient term provides additional infor-

mation by capturing spatial fluctuations in the electron density. This can be written

as

EGGA
XC [n(r)] =

∫
d3rEGGA

XC [n(r),∇n(r)]. (2.99)

Gradient corrections, denoted as ∇n(r), account for variations in density, making

these functionals more accurate than LDA, particularly in scenarios involving larger

variations in electron density, such as defects [45]. Various parameterizations exist,

with the PBE (Perdew, Burke, Ernzerhof) [48] being the most popular, alongside others

like BLYP (Becke’s exchange + Lee Yang and Parr) or B3LYP [49] (a hybrid of 30 percent

exact exchange and GGA). While using B3LYP in DFT calculations improves accuracy,

it is important to note the higher computational cost associated with incorporating the

exact exchange of HF theory. In this thesis, we use the B3LYP functional during the
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Figure 2.10: A visual depiction of the iterative process involved in solving the Kohn–Sham equations

is presented schematically. Typically, this process requires the simultaneous iteration of two loops—one

for each spin. The potential for each spin is determined as a functional outcome of the combined density

of both spins. Adapted from [47].

DFT calculations

EXC = ELDA
XC + a0(EHF

x − EDFA
x ) + axEBecke

x + acEc, (2.100)

where EDFA
x denotes and LDA or GGA functional, and the coefficient a0, ax, ac are em-

pirically adjusted to fit atomic and molecular data.

Summary

Figure 2.10 summarizes the DFT simulation.

We first make an initial guess on the electron density and then calculate the effec-

tive potential using Equation (2.96)

Ve f f (r) = UH[n(r)] + Vext(r) + VXC[n(r)]. (2.101)
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Upon incorporation into the Kohn-Sham equation (see Equation (2.95)) and subse-

quent solution, the resulting electron density is obtained. This density serves as the

foundation for determining various properties, including electron energies, forces, and

stresses. If the derived electron density does not align with the initial guess, the itera-

tive process continues until convergence is achieved.

2.8.2 Time-dependent density functional theory (TD-DFT)

The ground state, or lowest energy state, of a molecule is the main task that is modelled

using DFT. DFT is essentially an effective technique for ground-state modelling, but

for a more thorough understanding of a molecule’s behavior—especially when taking

excited states into account—a variety of approaches may be used.

It is crucial to model both the excited and ground states of a molecule’s energy in

order to simulate the fluorescence process. We are examining the time evolution of a

photon as it relaxes from the excited state back to the ground state using fluorescence

lifetime. As a result, we must also apply time-dependent DFT (TDDFT), in addition

to DFT. Under certain condition it is possible to establish a one to one correspondence

between time-dependent densities n(r, t) and time-independent one-body potentials

Vext(r, t) for a given initial state. Instead of the Hohenburg-Kohn theorem we can use

its time dependent analog, the Runge-Gross theorem.

Runge-Gross theorem

The goal of the Runge-Gross theorem is to demonstrate the basic principle that vari-

ations in a quantum system’s external potential have a distinct and particular impact

on the electron density’s temporal evolution and, in turn, on observable variables such

as the time-dependent current density. The core of the TDDFT theoretical framework

is this theorem. We examine a system of N non-relativistic electrons that interact with

one another through the Coloumb repulsion within a time-varying external poten-

tial. Two potentials V(x) and V′(x) affect two densities from a shared initial state

ψ0 = ψ(t = 0), n(x) and n′(x) can vary. The potentials always differ by more than a

purely time-dependent function

∇Vext(x) = V(x)− V′(x) ̸= c(t). (2.102)
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The difference in the potential allows a one-to one mapping between the densities and

the potentials and a density functional theory can be constructed.

Kohn-Sham equations for TDDFT

The Hohenberg-Kohn theorems’ methodology and that of Kohn-Sham equations are

similar in the setting of TDDFT. A hypothetical assembly of non-interacting electrons

that satisfies the time-dependent Kohn-Sham equations is used to describe the system

i
∂ϕj(r, t)

∂t
=

(
−∇2

2
+ Vs[n](r, t)

)
ϕj(r, t), (2.103)

with density

n(r) =
N

∑
j=1

|ϕj(r)|2. (2.104)

Equation (2.101) illustrates our newly developed exchange-correlation potential, which

follows the traditional Hartree potential structure. This formulation is modified for a

time-varying density

Vs(r) = Vext(r) + UH(r) + VXC(r). (2.105)

So, the exact exchange correlation potential can be written as

VXC[n; ψ(0), ϕ(0)](r, t) = Vs[n; ϕ(0)](r, t)− UH[n](r, t)− Vext[n; ψ(0)](r, t). (2.106)

The entire temporal development of the density, n(r), the initial interacting wavefunc-

tion, Ψ(0), and the initial Kohn-Sham wavefunction, Φ(0), is closely linked to the

exchange-correlation potential.This functional is strongly entangled; it is more com-

plex than in the ground-state case. The adiabatic approximation, which assumes that

the exchange-correlation potential depends simultaneously on the current density im-

mediately, is a key assumption that is frequently used in TDDFT in practice. This sim-

plification makes the time-dependent Kohn-Sham equations easier to solve. Detailed

computations and other references to this approximation are available in reference

[45], chapter 22.
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2.8.3 Choice of Basis set and Functional for Quantumchemical cal-

culations

For both DFT and TDDFT calculations, the semi-empirical Hybrid functional B3LYP

has been chosen. B3LYP is known for its good balance between accuracy and compu-

tational cost for a wide range of applications and molecule types and it can be applied

to a vast array of molecular systems. There is a vast literature of benchmark studies

(e.g. [50]) and applications of B3LYP making it easier to justify its use and compare

results.

Our three precursor molecules range from relatively simple to more complex or-

ganic structures, therefore B3LYP is well-suited for dealing with such a range [51]. All

three molecules are organic and B3LYP has been extensively benchmarked for organic

molecules and is known to provide reliable geometries and energies for such systems

[51, 50, 52]. In general, B3LYP is a popular choice for the study of electronic properties,

and excited states in TD-DFT as it is known that it gives a good account of the elec-

tronic distribution. The choice of B3LYP is guided by its proven efficacy for organic

compounds the type of calculations being performed and the nature of the molecules.

For all calculations, the def2-TZVP basis set [53] has been used. It is a basis set

developed as a second generation of default basis set for the TURBOMOLE program

(therefore def2) and TZV denotes valence triple zeta and P denotes polarized P type

basis sets are recommended for the DFT calculations (ref). The TZVP means that it

provides a high level of accuracy in describing electron distribution by including three

sets of basis functions for each valence shell and the polarization function is essential

for an accurate description of molecular geometry, electronic states and properties.

def2-TZVP is an efficient basis set that can be used for a wide variety of molecules and

it has a good balance between computational cost and accuracy [53]

For our molecules the basis set is a good choice because for geometry optimiza-

tion, def2-TZVP can include electron delocalisation through the polarization functions

which is important as the molecules we observe all have a system of delocalized π-

electrons / aromatic rings and functional groups attached to the aromatic ring which

can influence how electrons are distributed around the aromatic ring and also influ-

ence if the molecule is electron donating or electron accepting (deprotonated/proto-

nated). In terms of TD-DFT for calculating transition energies and dipole moments for
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the dye molecules def2-TZVP can accuratley describe the electronic states involved

in transitions due to the triple-zeta component which has a high orbital detail. The

P function can model asymmetric electron distributions and polarization effects accu-

rately [53]. The choice of functional and basis set was made due to its balance between

computational cost and accuracy.

2.8.4 NWChem

The software platform used in this thesis to perform Density Functional Theory (DFT)

computations is NWChem [54]. NWChem is well-known for its adaptable computa-

tional chemistry capabilities and is compatible with a wide range of computing sys-

tems. Both excited and ground states can be studied using NWChem due to its seam-

less transition from quantum to classical approaches. Additionally, it provides versa-

tility by supporting both plane waves and Gaussian basis functions. Since NWChem

also supports relativistic effects and features, it is a solid choice for a variety of re-

search applications.

This thesis utilizes the software to conduct geometry optimizations for the protonated

and deprotonated dye molecules m-phenylenediamine, phloroglucinol and disperse-

blue1 dye. Additionally, TD-DFT calculations with NWChem are employed to com-

pute transition frequencies and transition dipole moments for single excited states.

Transition Dipole Moment Calculations with NWChem

To calculate the transition dipole moments of different precursor molecules using

NWChem, the following steps have been performed:

Geometry Optimization

The molecular geometry of each molecule was initially created using Avogadro2 (Ref.

[55]). The structure data was then exported and saved as an XYZ file, which was later

loaded into the NWChem input file for further processing. Following the NWChem

documentation, the molecular geometry was optimized using the def2-SVP library

and DFT with the B3LYP functional

1 echo #Display information or print messages during execution

2 start h2o #Specify the name of the job or calculation
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3 title "h2o geometry optimization" #Provide a title or description

for the job

4 geometry #Define the molecular geometry of the system

5 load wasser_geometry.xyz #Load molecular coordinates from the

file

6 end #End of the geometry block

7 basis #Specify the basis set for the calculation

8 * library def2 -SVP #Apply the "def2 -SVP" basis set to all

atoms

9 end #End of the basis block

10 dft #Specify details of the DFT calculation

11 xc b3lyp #Set the exchange -correlation functional to B3LYP

12 end #End of the DFT block

13 DRIVER #Specify details about the driver module

14 XYZ #Optimization in cartesian coordinates

15 MAXITER 200 #Set the maximum number of optimization

iterations to 200

16 END #End of the DRIVER block

17 task dft optimize #Specify the type of calculation

The output is a newly optimized geometry XYZ file for further calculations.

TDDFT Calculations

The optimized geometry file obtained previously is used for TDDFT calculations in

NWChem. The input file for this calculation is:

1 echo #Display information or print messages during the execution.

2 start h2o #Specify the name of the job or calculation

3 title "h2o TDDFT excited states" #Provide a title or description

for the job

4 geometry #Define the molecular geometry of the system

5 load h2o -geo -opt.xyz #Load molecular coordinates from the

file "h2o -geo -opt.xyz."

6 end #End of the geometry block

7 basis #Specify the basis set for the calculation

8 * library def2 -SVP #Apply the "def2 -SVP" basis set to all

atoms

9 end #End of the basis block

10 dft #Specify details of the DFT calculation

11 xc b3lyp #Set the exchange -correlation functional to B3LYP

12 end #End of the DFT block

13 tddft #Specify details of the TDDFT calculation

14 nroots 50 #Set the number of roots (excited states) to 50

15 end #End of the TDDFT block

16 task tddft energy #Specify the type of calculation
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2.9 Precursor Molecules

The Carbon dots we are interested to investigate in this thesis are synthesized ac-

cording to [4]. Calculations were performed on three distinct precursor molecules:

m-phenylenediamine (mPD)(figure 2.11), phloroglucinol (figure 2.12), and disperse-

blue1 dye (figure 2.13), each in both its deprotonated and protonated forms.

m-phenylenediamine

The chemical molecule known as m-Phenylenediamine, or mPD for short, is also

known as 1,3-diaminobenzene, an illustrated in its protonated and deprotonated state

in figure 2.11. Its molecular formula is C6H8N2. The benzene ring in this molecule has

two amine groups ( – NH2) linked to it at the meta locations. These amino groups are

important because of their ability to donate electrons, which greatly raises the electron

density surrounding the benzene ring. The highest energy orbital that has electrons

under normal circumstances is referred to as the ”highest occupied molecular orbital”

(HOMO) in the context of molecular orbital theory. Conversely, the lowest energy or-

bital that is open to the possibility of accepting electrons is known as the LUMO (Low-

est Unoccupied Molecular Orbital). Because it affects how a molecule interacts with

light and other molecules, the energy difference between the LUMO and HOMO is im-

portant because it affects a molecule’s chemical reactivity and characteristics. Because

the molecule returns to its ground state more quickly, such a drop may lead to shorter

excitation durations. Furthermore, the configuration of the amine groups promotes

hydrogen bonding, which affects its chemical reactivity and physical characteristics.

Phloroglucinol

Phloroglucinol is a molecule with the chemical formula C6H6O3. It is based on a

benzene ring that has three symmetrically linked hydroxyl groups. This symmetri-

cal arrangement increases the electron density around the benzene ring. Because they

donate electrons, the hydroxyl groups contribute in the increase in electron density.
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(a) Deprotonated m-phenylenediamine with a

total charge of 0.

(b) Protonated m-phenylenediamine with a

charge of +1, one H atom was added.

Figure 2.11: Comparison of deprotonated and protonated m-phenylenediamine.

(a) Deprotonated phloroglucinol with a total

charge of -1, one H atom was removed.

(b) Protonated phloroglucinol with a charge of

0

Figure 2.12: Comparison of deprotonated and protonated phloroglucinol.

Disperse-blue 1 dye

A nitro group ( – NO2) and an ethylamino group ( – NH(C2H5)) are added to one ben-

zene ring in Disperse Blue 1, illustrated in figure 2.13, also known chemically as 4-

(ethylamino)-4’-nitroazobenzene. The nitro group acts as an electron acceptor and

the ethylamino group as an electron donor in this structure, which represents a tradi-

tional push-pull situation. The main component in regulating this interaction is the

azo group (N=N) connecting the two benzene rings. The molecule’s electronic energy

levels are significantly influenced by the differential donation and withdrawal of elec-

trons, which affects the dye’s colour and light absorption capabilities. Disperse Blue 1

is a useful chemical in textile applications because of the way substituents interact to

define its optical and dyeing properties. The electron structure is more related to the
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benzene ring, the more double bonds we have connected to it the smaller the bandgap

is, the more accessible excitation we have.

(a) Deprotonated disperse-blue1 with a total

charge of 0.

(b) Protonated disperse-blue 1 with a charge

of +1, one H atom was added.

Figure 2.13: Comparison of deprotonated and protonated disperse-blue1.

Approach

We’ll investigate the excitation lifetimes of the precursor molecules in a protonated

and deprotonated state under varying pH in presence of a carbon surface and sur-

rounded by water with our model. In the work of W. Szapoczka [4], five different

carbon dots have been synthesized and their fluorescence lifetime has been investi-

gated under varying pH. The results are shown in figure 2.14.

CD01 and CD02 are synthesized using 0.3 g of disperse blue 1 dye and 0.7 g of

phloroglucinol, while CD03 consists of 0.3 g of disperse blue 1 dye, 0.4 g of citric

acid, and 0.1 g of ammonium fluoride. CD04 is synthesized solely with 1 g of mPD,

whereas CD05 is prepared with a combination of 1 g of mPD and 1 g of phloroglucinol

[4]. Notably, only CD04 is composed of a single type of dye molecule, mPD, while

the other carbon dots are synthesized using mixtures of different precursor molecules.

It should be emphasized that this thesis focuses solely on observing the fluorescence

lifetime of the pure dye molecules without mixing.
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Figure 2.14: The time-resolved fluorescence decay of the five CDs (0.02mgṁL−1) dissolved in

100mM Carmody buffer solution adjusted to pH 5 − 9. CD04 is the only sample using only m-

phenylenediamine as a surface functional group, the calculated fluorescence lifetime is illustrated as

a function of pH in subfigure (f). The standard error of the slope is 0.0116.
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2.10 The Overall Model

The model introduced in this thesis is based on fundamentals of macroscopic Quan-

tum Electrodynamics. To calculate the fluorescence lifetime in free-space the transition

rate between single excited states is calculated in Section 2.2. An important assump-

tion has been made by evaluating this, the quasi-degenerate states of the atom have

been neglected. Quasi-degeneracy means that two ore more energy levels of a system

are close in value but not equal. This can result in similar properties and behaviours

for states that are quasi-degenerate. In a perfect degenerate system two or more states

have exactly the same energy and small perturbations can mix these states, whereas

in a quasi-degenerate system they are slightly different but can still interact strongly

with each other when perturbed. This is important in physical contexts such as molec-

ular vibrations, electronic states, solid state phyics and quantumchemical calculations.

If two states are quasi-degenerate, it is possible for transitions to occur between them

more readily due to resonance effects.

This could affect the rates of radiative transitions. In this model to simplify the

calculations we introduced non quasi-degeneracy. We might miss significant coupling

between states that could affect their transition probabilities as well as this may lead

to incorrect predicitons of energy levels and thus transition energies.

Another fact to take into account is that we might miss resonance effects where the

transition rate can be greatly enhanced, which can have an impact on the absorption

and emission spectra of the atom. With density functionals theory (DFT) and time-

dependend DFT, introduced in Section 2.8.1 and 2.8.2 the transition frequencies and

transition dipole moments can be calculated for each precursor molecule in vacuum.

As we want to observe the pH sensitive fluorescence lifetime of the molecules, the

protonated and deprotonated forms of each molecule have been calculated.

To correct the free-space transition rates with respect to impacts of the carbon dot

and solvent on the surface functional groups, more approximations have been intro-

duced in Section 2.6.2. A three layer model has been introduced, considering the sur-

face functional group is a point particle attached in a distance z to a planar carbon

surface, surrounded by a vacuum bubble in water. A local-field correction has been

made with Onsagers’ theory to model the CD in a solution and a vacuum layer around

the entire CD and the thickness of the layer was included and calculated with the
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COSMO solvation model (Ref. [56]) in NWChem. The model considers the carbon dot

to be very small. In addition we assume, that the surface functional group is isolated

from the carbon surface to simplify the model. With these approximations, we can

introduce Γma to deduce the transition rate and include effects from carbon and water

and calculate a total transition rate.

The pH response of the carbon dot an the transition rate is modeled as a linear com-

bination of the fraction of deprotonated and protonated molecules at certain pH, us-

ing Henderson-Hasselbalchs’ Equation (2.7.3) between protonated and deprotonated

molecules. We assume the rates to be linear, as the volume fractions are small.

The transition dipole moments (d) and transition frequencies (ω) between excited

states are calculated using TD-DFT. However, a limitation of TD-DFT is to take cou-

pling with vibrational states into account. For a thorough understanding of the ex-

citation and fluorescence lifetime processes, vibrational relaxations are essential, as

explained in Section 2.1 and illustrated in Figure 2.1. Due to this omission, TD-DFT

is only able to predict transitions from the first excited state to the ground state, not

accounting for energy loss during vibrational relaxation.
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Chapter 3

pH-dependent Excitation Lifetimes of

Functional Groups

In this chapter, the model is applied to determine the excitation lifetimes of the surface

functional groups under pH sensitivity. The results are analysed an discussed at the

end of each section.

3.1 Data handling for Fluorescence Lifetime calculation

After performing DFT and TDDFT calculations for each protonated / deptrotonated

precursor molecule, the output Data can be used to calculate the lifetime between the

different states within the molecule.

NWChem generated output files include a lot of information, but for the fluorescence

lifetime calculation, we are only interested in data such as the transition dipole mo-

ment dnm and the transition frequency ωnm. The data can be extracted from the output

file with the python code B.3. The file with the sorted data can be used to calculate

the fluorescence lifetime using Equation (2.38). The equation has been accordingly

implemented in the code B.4. The line width Γ as well as the imaginary part of the

Greens function are implemented in a separate python code and calculated according

to Equation (2.37).
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3.2 Analysis of the Dye Molecules

The computational results obtained with NWChem are presented in this chapter to-

gether with theoretical results calculated for the transition rates of protonated and

deprotonated dye molecules in free-space (fs) and medium-assisted (ma) space. In

addition, we investigate the fluorescence lifetime of the first singlet excitation consid-

ering the molecules’ sensitivity to pH.

3.2.1 Results of the Quantumchemical Calculations

All DFT and TD-DFT calculations were performed using NWChem software [54] with

the def2-TZVP basis set and the B3LYP functional, targeting the first five singlet ex-

cited states relative to the ground state. Results, including transition frequencies (ω0n′)

and absolute values of transition dipole moments (|d0n′ |), are detailed in Table 3.1 and

visualized in Figure 3.1 for disperse-blue 1. This visualization aids in comparing pro-

tonated and deprotonated states for each molecule, with protonated results shown in

purple and deprotonated in green. For m-phenylenediamine (Figure 3.1 a), transi-

tion frequencies increase with the energy gap between excited states. Notably, depro-

tonated states generally show lower frequencies than their protonated counterparts.

The dipole moments do not follow a clear trend, exhibiting variations across different

transitions and protonation states.

Phloroglucinol shows a similar trend in increasing transition frequencies (Figure

3.1 b). Protonated states again exhibit higher frequencies, reflecting changes in elec-

tronic structures due to protonation, which influences electron density and energy

levels.

For disperse-blue 1 (Figure 3.1 c), both protonated and deprotonated forms show

increased frequencies with higher excited states, a pattern expected from larger en-

ergy separations from the ground state. The transition dipole moments, however, do

not display a consistent pattern, suggesting complex interactions within the electronic

states.

These observations highlight the impact of protonation on molecular electronic

structure, significantly altering transition frequencies and affecting the transition dipole

moments. The dipole moment variety throughout states and molecules highlights the
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intricate dynamics at work, which are impacted by orbital interactions and molecular

symmetry. These details frequently highlight TD-DFT’s problems, particularly when

it comes to accurately modelling electronic transitions in complicated molecular sys-

tems.

(a) Protonated and deprotonated m-phenylenediamine

(b) Protonated and deprotonated phloroglu-

cinol

(c) Protonated and deprotonated disperse-

blue 1

Figure 3.1: Bar plots of the transition energies in eV and the absolute value of the

transition dipole moment |d0n′ | for (a) m-phenylenediamine, (b) phloroglucinol, and

(c) disperse-blue 1. The data was obtained with TD-DFT calculations performed with

NWChem.
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Table 3.1: Calculated transition frequencies ω and absolute value of transition dipole

moments |d| for mPD, phloroglucinol and disperse-blue 1 in their protonated and

deprotonated states.

Molecule n′ ω0n′ in (eV) |d|0n′ in (D) Type
m

-P
he

ny
le

ne
di

am
in

e
1 4.416 0.65251

deprotonated

2 5.0473 0.01175

3 5.1784 0.13248

4 5.3685 0.26094

5 5.6393 0.07140

1 4.1791 0.04085

protonated

2 4.2900 0.75491

3 5.3910 1.06484

4 5.7031 0.06621

5 5.7491 0.11304

ph
lo

ro
gl

uc
in

ol

1 3.8324 0.000036

deprotonated

2 4.0417 0.00004123

3 4.4930 0.04734

4 4.7727 0.00089

5 4.9132 0.00098

1 5.1221 0.000036

protonated

2 5.7793 0.00004123

3 5.9586 0.04734

4 5.9591 0.00089

5 5.9591 0.00098

di
sp

er
se

-b
lu

e1

1 2.1527 2.37268

deprotonated

2 2.6107 0.01354

3 3.2875 0.18941

4 3.4232 0

5 3.4902 0.00001

1 2.1360 2.02205

protonated

2 2.6493 0.13549

3 3.0264 0.00127

4 3.4079 0.41043

5 3.6808 0.85421
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3.2.2 Resulting Transition Rates and Excitation Lifetimes

Using Equations (2.84) and (2.85), we determined the transition rates for each molecule

in both protonated and deprotonated states, in free-space (fs) and medium-assisted

space (ma). The cavity volumes, obtained via the COSMO solvation model (Ref.[56])

in NWChem, allowed us to approximate the vacuum layer thickness around each

molecule by assuming a spherical shape and calculating the diameter as l = 3
√

6V/π.

The computed transition rates and excitation lifetimes are detailed in Tables 3.3 and

Molecule Cavity volume V (Å3
) Cavity diameter l (Å)

de
pr

. mPD 92.672 5.61

phloroglucinol 94.771 5.66

disperse-blue1 175.831 6.95

pr
ot

.

mPD 90.611 5.57

phloroglucinol 91.894 5.60

disperse-blue1 175.230 6.94

Table 3.2: Molecular occupation volume V of in water dissolved protonated and deprotonated pre-

cursor molecules (m-phenylenediamine, phloroglucinol, and disperse-blue 1) and the corresponding

spherical cavity diameters l.

3.4. For m-phenylenediamine, rates in free-space are generally lower compared to

medium-assisted space, with protonated states displaying higher rates than depro-

tonated states across both environments. Notably, the rate for the transition from

S2 7→ S0 in the protonated state reached 1.110 × 107s−1, significantly higher than in

the deprotonated state.

Phloroglucinol and disperse-blue 1 exhibited similar behaviors, with medium-assisted

transition rates consistently exceeding those in free-space. Interestingly, phlorogluci-

nol showed zero transition rates for the second and third excited state transitions in

its deprotonated form, suggesting possible forbidden transitions or inaccessible states

under the study conditions.
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Table 3.3: Calculated free-space (fs) and medium assisted (ma) transition rates for the first five excited

states for m-phenylenediamine, phloroglucinol, and disperse-blue 1 using Equations 2.84 and 2.85.

Molecule n′ Γ f s in s−1 Γma in s−1 Type

m
-p

he
ny

le
ne

di
am

in
e

1 1.032 × 107 9.238 × 1011

deprotonated

2 4.378 × 103 1.014 × 109

3 6.010 × 105 7.609 × 1010

4 2.598 × 106 6.924 × 1011

5 2.255 × 105 3.120 × 1010

1 3.003 × 104 6.132 × 109

protonated

2 1.110 × 107 1.090 × 1012

3 4.381 × 107 5.980 × 1012

4 2.005 × 105 5.768 × 1010

5 5.988 × 105 1.733 × 1011

ph
lo

ro
gl

uc
in

ol

1 1.253 × 105 1.5123 × 1010

deprotonated

2 0.0 0.0

3 9.200 × 106 8.132 × 1011

4 7.379 × 106 6.560 × 1011

5 0.0 0.0

1 4.308 × 10−2 5.291 × 103

protonated

2 8.092 × 10−2 1.192 × 104

3 1.169 × 105 3.683 × 1010

4 4.134 × 101 1.302 × 107

5 5.012 × 101 1.579 × 107

di
sp

er
se

-b
lu

e
1

1 1.253 × 105 4.160 × 1012

deprotonated

2 8.045 × 102 2.818 × 108

3 3.143 × 105 2.980 × 1010

4 0.0 0.0

5 1.048 × 10−3 8.544 × 101

1 9.826 × 106 3.028 × 1012

protonated

2 8.418 × 104 1.415 × 1010

3 1.103 × 101 3.110 × 106

4 1.644 × 106 1.422 × 1011

5 8.973 × 106 6.430 × 1011
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Molecule Γtot,D in (s−1) τD in (s) Γtot,HD in (s−1) τHDin (s)

m-phenylenediamine 9.238 × 1020 0.00108 6.132 × 1018 0.1631

phloroglucinol 1.512 × 1019 0.0661 5.291 × 1012 1.890 × 106

disperse-blue 1 4.160 × 1021 0.00024 3.028 × 1021 0.0033

Table 3.4: The resulting transition rates and excitation lifetimes for the three dye-molecules in their

protonated (HD) and deprotonated (D) states calculated with Equation (2.83).

The observed variability in transition rates and the non-monotonic behavior of

these rates across different states suggest complex interactions within the molecules’

electronic structures. Protonation significantly alters these structures, affecting transi-

tion dynamics by shifting energy levels and altering electron densities.

For disperse-blue 1, the medium-assisted rates were notably higher than free-space

rates, with the protonated form showing greater rates across transitions. This aligns

with the expected influence of environmental interactions on transition dynamics.

Table 3.4 presents the corrected transition states and corresponding lifetimes for

the first excited state, calculated using Equation (2.83). Lifetimes varied significantly,

with phloroglucinol exhibiting the longest lifetimes due to its lower transition rates,

particularly in its protonated form, which displayed lifetimes on the order of 106 ns.

The analysis confirms that environmental factors and protonation have effects on

the electronic properties and transition dynamics of these molecules. The absence of

consistent trends in transition rates and dipole moments underscores the complexity

of molecular interactions and the impact of molecular symmetry and spatial over-

lap. Future work should continue to explore these dynamics, potentially incorporat-

ing more advanced computational methods or experimental validations to deepen our

understanding of these phenomena.

3.2.3 pH Sensitivity of the Functional Groups

We are going to take into consideration the pH sensitivity of the protonated and de-

protonated functional groups after calculating their transition rates in both free-space

and medium. Table 3.5 displays the equilibrium pKa constants for the first protonation

(or first deprotonation, in the case of phloroglucinol).
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Molecule pKa

m-phenylenediamine 4.96 (Ref.[57, 58])

phloroglucinol 8.9 (Ref.[59])

disperse blue 1 (tethered) 5 (Ref.[60])

Table 3.5: Equilibrium constant pKa (first acid constants) for the investigated molecules.

Using the equilibrium constants we can now finally consider the pH sensitivity of

each molecule using Equation (2.76). Using this Equation and comparing it with the

experimentally obtained data in reference [4] for CD04, as this is based on only one

dye molecule, mPD, and shows linear behaviour.
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τ D

 pKa =8.9 pKa =4.96

phlo oglucinol
m-phenylenediamine
dispe se blue 1
phlo oglucinol, fs
m-phenylenediamine, fs
dispe se blue 1, fs

Figure 3.2: Change of excitation lifetimes at different pH rescaled to the deprotonated lifetime τD for

m-phenylenediamine (red line), phloroglucinol (green line) and disperse blue 1 (blue line). The dashed-

dotted lines illustrate the corresponding sensors without the impact of the carbon dots, adapted from

[61].

By altering the pH of the surrounding solvent, Figure 3.2 shows how the excita-

tion lifetimes of the functionalized carbon dots—functionalized with dye molecules

such as m-phenylenediamine, phloroglucinol, and disperse-blue 1—change in rela-

tion to the excitation lifetimes of the deprotonated molecules by varying pH. Given

that ΓD and ΓHD differ most (Table 3.4), phloroglucinol exhibits sensitivity over the

widest pH range. The calculated rates for protonated phloroglucinol come from a
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nearly non-existent transition dipole moment, suggesting the observation of a prohib-

ited transition. Lifetimes are seen to increase when pH decreases, which is consis-

tent with the experimental finding (Ref. [4]). According to Szapoczka (2023), fluo-

rescence distinct from experimental observations, the effects of the functional groups

m-phenylenediamine and phloroglucinol are overestimated, while disperse-blue 1 has

a negligible pH dependency. This mismatch is explained by the electronic transition

that was chosen from the TDDFT simulation. The electronic excitation under con-

sideration, S1 7→ S0, decays quickly and enters the ground state directly, whereas

luminscence is not a direct process, see section 2.1.

3.3 Summary

This section summarizes the uncertainties, presents an overview of the model used,

and discusses potential sources of error. The TD-DFT calculations for each protonat-

ed/deprotonated form of the three surface-functional groups show a increasing trend

with higher energy level gap for the transition frequencies ω0n′ , which is expected as

the higher the excited state the larger the energy gap to the ground state. The proto-

nated form for each molecule yielded higher transition frequencies than the deproto-

nated form, as the additional proton alters the electronic structure, leading to a shift in

energy levels. The transition dipole moments, d0n′ calculated with NWCHem do not

show a trend, suggesting complex interactions within the molecules electronic states,

that could not be captured.

Finally, the model to calculate the free-space as well as medium-assisted transition

rates could be applied by inserting the transition frequencies and transition dipole

moments obtained previously. It can be seen that the transitions for medium-assisted

processes are much faster than for the free-space, indicating a faster excitation life-

time. For the deprotonated form of phloroglucinol and dipserse-blue 1 for some states

a zero rate was obtained. This could mean that transitions for these states are not al-

lowed or unlikely. This could be due to the choice of basis set and functional used

for the TD-DFT calculations, which could affect the rates and predictions of energy

levels, as mentioned in 2.8.3. In addition, TD-DFT calculations calculate excited states

referring to the ground state, therefore it is not possible to calculate the total decay,
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as illustrated for hydrogen atom, see Section 2.3, and required for luminescence (see

Section 2.1). After having applied Equation (2.83), the direct decay for the transition

S1 7→ S0, Γ01 as well as the excitation lifetime τ for this process was calculated for each

protonated/deprotonated molecule. The rates as well as the resulting excitation life-

time are very fast, as expected, as we are not looking at the whole fluorescence lifetime

process.

In the work of Szapoczka et al.[4], the transition rates for the carbon dot CD04, us-

ing m-phenylenediamine as a precursor, was at ΓD = 0.353ns−1 and ΓHD = 0.328ns−1

whereas the with the model calculated rates are at ΓD = 9.238 × 1020s−1 and ΓHD =

6.132 × 1018s−1, see Table 3.4. This significant difference can be explained by having

a look at the approximation we made, see section 2.10 for a summary. First of all, the

negligence of quasi-degeneracy can affect the rates of radiative transitions and leave

out couplings between the states. The predictions for energy levels and transition fre-

quencies could be affected by the choice of basis set and functional for the TD-DFT

calculations.

The impact of pH changes on the excitation lifetimes of carbon dots functionalized

with the specific dye molecules (m-phenylenediamine, phloroglucinol, and disperse-

blue 1) showed, that phloroglucinol is particularly sensitive across a broad pH range

due to notable differences in its decay rates when protonated and deprotonated, as

shown in figure 3.2. The increase in lifetimes with decreasing pH aligns with experi-

mental findings. However, the effects of m-phenylenediamine and phloroglucinol on

fluorescence are reported to be overestimated, while disperse-blue 1 shows minimal

pH sensitivity, a discrepancy attributed to the electronic transitions selected in TDDFT

simulations. These transitions decay rapidly directly to the ground state.
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Conclusion

Fluorescence lifetime-based pH sensors have received a lot of interest in recent years

due to their high long-term stability, low cost, and low power consumption. In many

scientific and industrial domains, pH measurement is essential because even small

changes in pH can have a big impact on chemical, biological, and physical processes.

Accurate pH monitoring is crucial in fields including fish farming, aquaculture, cli-

mate studies, and medicine. In order to do this, Szapoczka et al. suggested using

carbon dots (CDs), which are renowned for their outstanding photostability, strong

fluorescence, and tunable size, to create a unique pH sensor. With a carbon core func-

tionalized by a dye molecule, these small, spherical particles have intriguing proper-

ties for pH-sensitive applications.

To study the pH-dependent FL properties of CDs, W. Szapoczka et al. synthesised

CDs with a variety of surface-functional groups, including as m-phenylenediamine

(mPD), phloroglucinol, and disperse-blue 1. However, these CDs’ early FL reactions

to pH changes were low, suggesting that they weren’t appropriate for sensitive pH

sensing.

This thesis presents a theoretical model, with an emphasis on carbon dots espe-

cially, that describes the pH-dependence of excitation lifetimes in dissolved particles.

Equations (2.72) to (2.75) outline our model, which offers a solid foundation for un-

derstanding the excitation lifetimes of isolated carbon dots at low-volume fractions.

Most importantly, this theoretical framework makes it possible to interpolate the exci-

tation lifetime across a range of pH values by using data from completely protonated

and deprotonated species that can be obtained theoretically or practically at different
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areas of the pH scale. Trends in experimental behaviours are explained by taking into

consideration the protonation and deprotonation states of functional groups on the

carbon dots, while also qualitatively addressing dependencies on the material charac-

teristics. The applicability of the model to arbitrary solvent media can be enhanced by

introducing mole fractions in mixed multi-component liquids.

Applying well-established local-field correction models allows us to further sim-

plify our model by minimising the computational cost by concentrating just on the

functionalizing dye molecules. This separation relies on the idea that the dye molecule

can be thought of as existing independently of the aqueous environment and the car-

bon core. However, for small quantum dots (less than 10 nm in diameter), where

electron confinement within the carbon lattice becomes important, this assumption

might not be true. If the complete quantum dot is taken into account using TD-DFT,

our model (2.75) nevertheless characterises such systems.

To fully replicate the experimental results for such systems, a thorough computa-

tion including the entire range of transitions between excited states and the phonon

coupling permitting singlet-triplet transitions would be necessary.

Furthermore, the observed photophysical properties are significantly influenced

by the chemical structure of the carbon dot, which includes both the carbon core and

the functional groups. Further improvements of the model could determine the dielec-

tric function of the carbon core using an atomic-level description, or it might take into

account the distribution of carbon phases to provide a more thorough description of

the carbon core. Additionally, taking into account the functional groups’ higher proto-

nation and deprotonation states might provide a more thorough and comprehensive

description of the pH dependence.

In addition to providing a theoretical framework for understanding the behaviour

of carbon dots under different pH levels, this thesis sets the way for additional ex-

perimental validation and theoretical improvement with the goal of improving the

performance and utility of carbon dot-based sensors in a variety of scientific and tech-

nological areas.



Appendix A

Detailed calculations spectrum of

hydrogen atom

The detailed calculations for the angular and radial part of the hydrogen dipoleopera-

tor.

A.1 Angular part

fx =
∫ 2π

0
dφ

∫ π

0
dϑ sin2 ϑ cos φ (Ym

l (ϑ, φ))⋆ Ym′
l′ (ϑ, φ) (A.1)

= ε2

√
(2l + 1)(l − m)!(2l′ + 1)(l′ − m′)!

16π2(l + m)!(l′ + m′)!

∫ 2π

0
dφ

∫ π

0
dϑ sin2 ϑ cos φ

× exp(iφ(m − m′))Pm
l (cos ϑ)Pm′

l′ (cos ϑ) (A.2)

= ε2

√
(2l + 1)(l − m)!(2l′ + 1)(l′ − m′)!

16π2(l + m)!(l′ + m′)!
π
∫ π

0
dϑ sin2 ϑPm

l (cos ϑ)Pm′
l′ (cos ϑ) (A.3)

= −ε2

√
(2l + 1)(l − m)!(2l′ + 1)(l′ − m′)!

16π2(l + m)!(l′ + m′)!
π
∫ 1

−1
dx

√
1 − x2Pm

l (x)Pm′
l′ (x) (A.4)

= −ε2

√
(2l + 1)(l − m)!(2l′ + 1)(l′ − m′)!

16π2(l + m)!(l′ + m′)!
π

×


− 1

2l+1 [δm,m′+1δl,l′+1 − δm,m′+1δl,l′−1] if m = m + 1,[
(l−m+1)(l−m+2)

2l+1 δm,m′+1δl,l′+1

− (l+m−1)(l+m)
2l+1 δm,m′−1δl,l′−1

]
if m = m − 1.

(A.5)
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fy =
∫ 2π

0
dφ

∫ π

0
dϑ sin2 ϑ sin φ (Ym

l (ϑ, φ))⋆ Ym′
l′ (ϑ, φ) (A.6)

= ε2

√
(2l + 1)(l − m)!(2l′ + 1)(l′ − m′)!

16π2(l + m)!(l′ + m′)!

∫ 2π

0
dφ

∫ π

0
dϑ sin2 ϑ sin φ exp(iφ(m − m′))

× Pm
l (cos ϑ)Pm′

l′ (cos ϑ) (A.7)

= ε2

√
(2l + 1)(l − m)!(2l′ + 1)(l′ − m′)!

16π2(l + m)!(l′ + m′)!
πi

∫ 1

−1
dx

√
1 − x2Pm

l (x)Pm′
l′ (x) (A.8)

= −ε2

√
(2l + 1)(l − m)!(2l′ + 1)(l′ − m′)!

16π2(l + m)!(l′ + m′)!
πi

×


1

2l+1 [δm,m′+1δl,l′+1 − δm,m′+1δl,l′−1] if m = m′ + 1,[
(l−m+1)(l−m+2)

2l+1 δm,m′+1δl,l′+1

− (l+m−1)(l+m)
2l+1 δm,m′−1δl,l′−1

]
if m = m′ − 1.

(A.9)

fz =
∫ 2π

0
dφ

∫ π

0
dϑ sin ϑ cos ϑ (Ym

l (ϑ, φ))⋆ Ym′
l′ (ϑ, φ) (A.10)

= ε2

√
(2l + 1)(l − m)!(2l′ + 1)(l′ − m′)!

16π2(l + m)!(l′ + m′)!

∫ 2π

0
dφ

∫ π

0
dϑ sin2 ϑ exp(iφ(m − m′))

× Pm
l (cos ϑ)Pm′

l′ (cos ϑ) (A.11)

= ε2

√
(2l + 1)(l − m)!(2l′ + 1)(l′ − m′)!

16π2(l + m)!(l′ + m′)!

∫ 1

−1
dx xPm

l (x)Pm′
l′ (x) (A.12)

= ε2

√
(2l + 1)(l − m)!(2l′ + 1)(l′ − m′)!

16π2(l + m)!(l′ + m′)!
πδm,m′

[√
(l + 1)2 − m2

4(l + 1)2 δl,l′+1

+

√
(l + m)2

4(l + 1)2 δl,l′−1

]
. (A.13)
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A.2 Radial part

R =
∫ ∞

0
r3Rnl(r)Rn′l′(r) dr (A.14)

= fnl fn′l′

∫ ∞

0
r3e−r/(na0)

(
2r

na0

)l
L2l+1

n−l−1

(
2r

na0

)
e−r/(n′a0)

(
2r

n′a0

)l′

L2l′+1
n′−l′−1

(
2r

n′a0

)
dr

(A.15)

= fnl fn′l′
2l+l′

nln′l′al+l′
0

∫ ∞

0
r3+l+l′e

− n+n′
nn′a0

r
L2l+1

n−l−1

(
2r

na0

)
L2l′+1

n′−l′−1

(
2r

n′a0

)
dr (A.16)

= fnl fn′l′
n4+l′a4

0

16n′l′

∫ ∞

0
x3+l+l′e−

n+n′
2n′ xL2l+1

n−l−1(x)L2l′+1
n′−l′−1

( n
n′ x

)
dx (A.17)

substituted with x = 2r/(na) to

fnl fn′l′

(
2

na

)l ( 2
n′a

)l′ (na
2

)4+l+l′ ∫ ∞

0
dx e−bxx3+l+l′L2l+1

n−l−1 (x) L2l′+1
n′−l′−1 (µx) (A.18)

R =



fnl fn′,l+1
( 2

na
)l ( 2

n′a

)l+1 (na
2

)2l+5 ×∫ ∞
0 dx e−bxx2l+4L2l+1

n−l−1(x)L2l+3
n′−l−2(µx) if l′ = l + 1,

fnl fn′,l−1
( 2

na
)l ( 2

n′a

)l−1 (na
2

)2l+3 ×∫ ∞
0 dx e−bxx2l+2L2l+1

n−l−1(x)L2l−1
n′−l (µx) if l′ = l − 1.

(A.19)

The 3-point Rule

L(α)
n (x) = L(α+1)

n (x)− L(α+1)
n−1 (x) , (A.20)

xL(α+1)
n−1 (x) = (n + α)L(α)

n−1(x)− nL(α)
n (x) . (A.21)

∫ ∞

0
e−bxxαLα

n(λx)Lα
m(µx) dx =

Γ(m + n + α + 1)
m!n!

(b − λ)n (b − µ)m

bm+n+α+1

× 2F1

[
−m,−n;−m − n − α;

b(b − λ − µ)

(b − λ)(b − µ)

]
.

(A.22)



74 A. Detailed calculations spectrum of hydrogen atom

A.3 Calculation of the Hydrogen Dipole Operator with

Python

The analytical calculations in section ... have been tested and compared with a numer-

ical calculation in python. The code for the analytical calculation is as follows

Analytical Codes for Angular part x,y,z-component

1 def angular_x_plain(m, l, m_prime , l_prime):

2 if m_prime == m + 1 and l_prime == l + 1:

3 f_x = np.pi * (-1 / (2 * l + 1) * (2 * sp.factorial(l + m

+ 2)) / ((2 * l + 3) * sp.factorial(l - m)))

4 elif m_prime == m - 1 and l_prime == l - 1:

5 f_x = np.pi * 1 / (2 * l + 1) * (l + m - 1) * (l + m) *

(2 * sp.factorial(l + m - 2)) / ((2 * l - 1) * sp.

factorial(l - m))

6 elif m_prime == m + 1 and l_prime == l - 1:

7 f_x = np.pi * (1 / (2 * l + 1)) * 2 * sp.factorial(l + m)

/ ((2 * l - 1) * sp.factorial(l - m - 2))

8 elif m_prime == m - 1 and l_prime == l + 1:

9 f_x = np.pi * (1 / (2 * l + 1)) * (l + m - 1) * (l + m) *

2 * sp.factorial(l + m - 2) / ((2 * l - 1) * sp.

factorial(l - m))

10 else:

11 f_x = 0

12 return f_x

1 def angular_y_plain(m, l, m_prime , l_prime):

2 if m_prime == m + 1 and l_prime == l + 1:

3 f_y = 1j*np.pi * (-1 / (2 * l + 1) * (2 * sp.factorial(l

+ m + 2)) / ((2 * l + 3) * sp.factorial(l - m)))

4 elif m_prime == m - 1 and l_prime == l - 1:

5 f_y = 1j*np.pi * 1 / (2 * l + 1) * (l + m - 1) * (l + m)

* (2 * sp.factorial(l + m - 2)) / ((2 * l - 1) * sp.

factorial(l - m))



A.3 Calculation of the Hydrogen Dipole Operator with Python 75

6 elif m_prime == m + 1 and l_prime == l - 1:

7 f_y = 1j*np.pi * (1 / (2 * l + 1)) * 2 * sp.factorial(l +

m) / ((2 * l - 1) * sp.factorial(l - m - 2))

8 elif m_prime == m - 1 and l_prime == l + 1:

9 f_y = 1j*np.pi * (1 / (2 * l + 1)) * (l + m - 1) * (l + m

) * 2 * sp.factorial(l + m - 2) / ((2 * l - 1) * sp.

factorial(l - m))

10 else:

11 f_y = 0

12 return f_y

1 def ang_ana_z(m, l, m_prime , l_prime):

2 if m == m_prime and l == l_prime +1:

3 f_z = np.sqrt(( l_prime +2)**2-( m_prime)**2/(4*( l_prime +2)

**2))*np.pi

4 elif m == m_prime and l == l_prime -1:

5 f_z = np.sqrt(( l_prime+m_prime -1) **2/(4*( l_prime)**2))*np

.pi

6 else:

7 f_z = 0

8 return f_z

Numerical Codes for Angular part x,y,z-component

Defining first the Laguerre integral with

1 def integral_num(b ,n, m, alpha ,lam ,mu):

2 return gauss_laguerre_integration(alpha , b, n, m, lam , mu)

an analytical calculation in python can be done with the final code

1 def radial_ana(n, l, n_prime , l_prime):

2 b = n * (1 / n + 1 / n_prime) / 2

3 lambda_val = 1

4 mu = n / n_prime

5 print(n, l, n_prime , l_prime , b, mu)

6 A= a**4* n_prime **4/16
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7 if l_prime == l+1:

8 alpha = 2*l+4

9 hilf = integral(b, mu*n_prime -l-1, n_prime -l-2, alpha ,

lambda_val , mu)

10 print(f"first integral l+1, hilf: {hilf}")

11 hilf += -3*integral(b, mu*n_prime -l-2, n_prime -l-2, alpha

, lambda_val , mu)

12 print(f"2nd integral l+1, hilf: {hilf}")

13 hilf += 3* integral(b, mu*n_prime -l-3, n_prime -l-2, alpha ,

lambda_val , mu)

14 print(f"3rd integral l+1, hilf: {hilf}")

15 hilf += -integral(b, mu*n_prime -l-4, n_prime -l-2, alpha ,

lambda_val , mu)

16 print(f"4th integral l+1, hilf: {hilf}")

17 hilf += -integral(b, mu*n_prime -l-1, n_prime -l-3, alpha ,

lambda_val , mu)

18 print(f"5th integral l+1, hilf: {hilf}")

19 hilf += 3* integral(b, mu*n_prime -l-2, n_prime -l-3, alpha ,

lambda_val , mu)

20 print(f"6th integral l+1, hilf: {hilf}")

21 hilf += -3*integral(b, mu*n_prime -l-3, n_prime -l-3, alpha

, lambda_val , mu)

22 print(f"7th integral l+1, hilf: {hilf}")

23 hilf += integral(b, mu*n_prime -l-4, n_prime -l-3, alpha ,

lambda_val , mu)

24 print(f"8th integral l+1, hilf: {hilf}")

25 return hilf*A*mu **(5+l)

26 elif l_prime == l-1:

27 alpha = 2*l+2

28 hilf = integral(b, mu*n_prime -l-1, n_prime -l, alpha ,

lambda_val , mu)

29 print(f"first integral l-1, hilf: {hilf}")

30 hilf += -3*integral(b, mu*n_prime -l-1, n_prime -l-1, alpha

, lambda_val , mu)
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31 print(f"second integral l-1, hilf: {hilf}")

32 hilf += 3* integral(b, mu*n_prime -l-1, n_prime -l-2, alpha ,

lambda_val , mu)

33 print(f"third integral l-1, hilf: {hilf}")

34 hilf += -integral(b, mu*n_prime -l-1, n_prime -l-3, alpha ,

lambda_val , mu)

35 print(f"4th integral l-1, hilf: {hilf}")

36 hilf += -integral(b, mu*n_prime -l-2, n_prime -l, alpha ,

lambda_val , mu)

37 print(f"5th integral l-1, hilf: {hilf}")

38 hilf += 3* integral(b, mu*n_prime -l-2, n_prime -l-1, alpha ,

lambda_val , mu)

39 print(f"6th integral l-1, hilf: {hilf}")

40 # hilf += -integral(b, mu*n_prime -l-2, n_prime -l, alpha ,

lambda_val , mu)

41 #print(f"7th integral l-1, hilf: {hilf }")

42 hilf += -3*integral(b, mu*n_prime -l-2, n_prime -l-2, alpha

, lambda_val , mu)

43 print(f"8th integral l-1, hilf: {hilf}")

44 hilf += integral(b, mu*n_prime -l-2, n_prime -l-3, alpha ,

lambda_val , mu)

45 print(f"9th integral l-1, hilf: {hilf}")

46 return A*mu**(3+l)*hilf

47 else:

48 return np.nan

Dipole Operator Code

The angular part and radial part are combined with respect to the selection rules and

the final calculation can be obtained with this code:

1 def dipole_hydrogen(n, m, l, n_prime , m_prime , l_prime):

2 if isquantum(n, l, m) and isquantum(n_prime , l_prime , m_prime

) and selectionrule2(m, l, m_prime , l_prime) and n_prime

!= n:
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3 f_x = angular_x_plain(m, l, m_prime , l_prime)*Vorfaktor(m,

l, m_prime , l_prime)

4 f_y = angular_y_plain(m, l, m_prime , l_prime)*Vorfaktor(m,

l, m_prime , l_prime)

5 f_z = angular_z_plain(m, l, m_prime , l_prime)*Vorfaktor(m,

l, m_prime , l_prime)

6 return np.array([f_x , f_y , f_z])*radial_ana(n, l, n_prime ,

l_prime)*Vorfaktor(m, l, m_prime , l_prime)*f_nl(n, l)*

f_nl(n_prime , l_prime)*(-sc.elementary_charge)

7 else:

8 return np.array([0, 0, 0])

A.3.1 The Hohenberg-Kohn Theorems

The Hohenberg-Kohn theorems formualte density functional theory as exact theory of

many-body systems. The Hamiltonian can be written as

Ĥ = − h̄
2me

∑
i
∇2

i + ∑
i

Vext(ri) +
1
2 ∑

i ̸=j

e2

|ri − rj|
(A.23)

Proof Theorem I

The first theorem, as discussed earlier, establishes a fundamental principle: in any

many-body quantum system, the particle density of the ground state uniquely deter-

mines all properties of the system. If two different external potentials result in the

same ground state particle density, these potentials are essentially equivalent when it

comes to describing the system’s properties. This proof is significant because it en-

hances the practical utility and conceptual foundation of electronic structure calcula-

tions. It simplifies computations by allowing to focus on the particle density, a more

manageable quantity, and facilitates the application of density functional theory. The

theorem assures that when two potentials lead to the same electron density, they are

interchangeable in terms of predicting and understanding the behavior of electrons in

complex systems.

We suppose we have two external potentials V(1)
ext and V(2)

ext differing by a constant and
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leading to the same ground state density n(r). Each potential has a Hamiltonian, Ĥ(1)

and Ĥ(2), with different ground state wavefunctions ψ(1) and ψ(2). The wavefunctions

are assumed to have the same groundstate energy n0(r). Since the potentials lead

to different Hamiltonians and wavefunctions, the expectation value of the energy of

potential V(1)
ext is less than for V(2)

ext :

E(1) = ⟨ψ(1)| Ĥ(1) |ψ(1)⟩ < ⟨ψ(2)| Ĥ(1) |ψ(2)⟩ (A.24)

The strict inequality is claimed to follow if the ground state is non-degenerate.

Non-degenerate means there is a unique ground state for a given system. We can

rewrite the equation and express it as

⟨ψ(2)| Ĥ(1) |ψ(2)⟩ = ⟨ψ(2)| Ĥ(2) |ψ(2)⟩+ ⟨ψ(2)| Ĥ(1) − Ĥ(2) |ψ(2)⟩

= E(2) +
∫

d3r[V(1)
ext (r)− V(2)

ext (r)]n0(r)
(A.25)

and the expectation value can be written as

E(1) < E(2) +
∫

d3r[V(1)
ext (r)− V(2)

ext (r)]n0(r) (A.26)

The same rule is valid for the opposite case if we consider the Hamiltonian Ĥ(2):

E(2) < E(1) +
∫

d3r[V(2)
ext (r)− V(1)

ext (r)]n0(r) (A.27)

After expressing both expectation values for each potential V(1)
ext and V(2)

ext , we can

add together equations A.3.1 and A.3.1 and derive

E(1) + E(2) < E(1) + E(2) (A.28)

this shows a contradictory inequality and it arises from the assumption that there

are two different external potentials differing by more than a constant that give rise

to the same non-degenerate ground state charge density. This is not possible, and it

implies that the density uniquely determines the external potential up to a constant,

leading to the conclusion that, in principle, the wave function of any state is deter-

mined by solving the Schrödinger equation with the Hamiltonian that is uniquely

determined by the ground state density.
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Proof Theorem II

As mentioned above, the second theorem states that the total energy of a system can

be expressed as a functional of the electron density. The functional takes the form

E[n], where E is the total energy and n is the electron density. All properties are now

determined uniquely as functionals of n(r)

EHK[n] = T[n] + Eint[n] +
∫

d3rVext(r)n(r) + EI I ≡ FHK[n] +
∫

d3rVext(r)n(r) + EI I

(A.29)

EI I is the interaction energy of the nuclei, FHK[n] includes the internal energies of

the interacting electron system:

FHK[n] = T[n] + Eint[n] (A.30)

To get to our proof we consider a system with ground state density n(1)r influenced

by an external potential V(1)
ext . The functional has now to be equal to the expectation

value of the ground state hamiltonian Ĥ(1) with wave function ψ(1)

E(1) = EHK[n(1)] = ⟨ψ(1)| |Ĥ(1)| |ψ(1)⟩ (A.31)

As soon as we consider a different density n(2)r that is corresponding to a different

wave function ψ(2) , it immediately can be seen that the energy of this state is larger

than the one of the ground state

E(1) = ⟨ψ(1)| |Ĥ(1)| |ψ(1)⟩ < ⟨ψ(2)| |Ĥ(1)| |ψ(2)⟩ = E(2) (A.32)

In summary, the second theorem of density functional theory establishes a pro-

found connection between the total energy of a quantum system and its electron den-

sity. The total energy, expressed as the functional E[n], encapsulates all system prop-

erties uniquely in terms of the electron density n(r). The Hohenberg–Kohn functional,

denoted as FHK[n], plays a crucial role in this formulation, encompassing kinetic, in-

teraction, and external potential energies. The proof involves considering a system

with a ground state density n(1)(r) influenced by an external potential V(1)
ext (r). The

energy of this state, E(1), is determined by the expectation value of the ground state

Hamiltonian Ĥ(1) with wave function ψ(1). The comparison with a different density
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n(2)(r) and corresponding wave function ψ(2) reveals that the energy of the ground

state (E(1)) is lower than that of any other state (E(2)). This foundational result under-

scores the power of density functional theory in uniquely determining ground state

properties, paving the way for a deeper understanding of quantum systems.

Proof Runge-Gross Theorem

We aim to demonstrate that the time evolution of the electron density is exclusively de-

termined by the disparity in external potentials. The time-dependent current density

j(r, t) is connected to the electron density through the continuity equation:

∂∆j(x)
∂t

∣∣∣∣
t=0

= −i⟨ψ0|[ĵ(r),△Ĥ(t0)]|ψ0⟩ = −n0(r)∇△Vext(r, 0)

In this context, ∆j(x) signifies the difference in current densities, Ψ0 is the initial

state, ĵ(r) represents the current operator, ∆Ĥ(t0) indicates the difference in Hamil-

tonians at time t0, n0(r) is the initial density, and ∇∆vext(r, 0) is the gradient of the

difference in external potentials. If △Vext(r, t) takes a value such that ∂n(r,t)
∂t ̸= 0 for

any r and t, then there is a direct connection between changes in the external potential

and the resulting time evolution of the electron density. This implies that adjustments

in the external potential uniquely dictate the behavior of the electron density over

time.

We expand this concept by extending the one-to-one mapping between external po-

tential and current densities to electron densities. The continuity equation (∆n′(r) =

−∇ · ∆j(r)) links the time derivative of the density difference (∆n′(r)) with the diver-

gence of the current density difference (∆j(r)). This equation illustrates that the rate

of change of the density difference over time is connected to the divergence of the cur-

rent density difference. Despite the presence of divergence terms, the theorem affirms

that the density difference is uniquely determined by differences in external potentials.

This conclusion holds for any physically realistic density, ensuring a robust foundation

for the theorem. A comprehensive derivation of this theorem is available in reference

[45] chapter 22.
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Appendix B

Geometry files of Precursors

This chapter provides the geometry.xyz files of all the precursor molecules generated

with the software Avogadro2 as well as the optimized geometry files after performing

DFT calculations.

B.1 m-PD

In this section the geometry files for mPD are provided.

B.1.1 Avogadro2 generated .xyz files

For the protonated mPD:

1 17

2 m-phenylenediamine

3 C 1.20090 -0.29590 -0.00210

4 C -0.00000 -0.99130 -0.00160

5 C -1.20090 -0.29590 0.00010

6 C -1.19730 1.09380 0.00120

7 C 0.00000 1.78300 0.00020

8 C 1.19740 1.09380 -0.00100

9 N -2.41180 -0.99190 0.00020

10 N 2.41180 -0.99190 0.00200

11 H -0.00000 -2.07130 -0.00280

12 H -2.13160 1.63560 0.00260

13 H 0.00000 2.86300 0.00040

14 H 2.13160 1.63560 -0.00180

15 H -2.41370 -1.96190 -0.00090

16 H -3.25090 -0.50530 0.00140

17 H 2.41370 -1.96190 0.00520

18 H 3.25090 -0.50530 0.00160

19 H 2.40736 -1.00383 -0.89794
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Listing B.1: mPD protonated geometry.xyz file generated with Avogadro2.

Optimized protonated mPD geometry file:

1 17

2 geometry

3 C -0.21637158 -1.12454695 -0.06817174

4 C -0.97668493 0.04155905 -0.08540044

5 C -0.30906841 1.28810578 -0.01884152

6 C 1.11027577 1.27428916 0.06210446

7 C 1.82299603 0.08519428 0.07599205

8 C 1.16863705 -1.15751405 0.01045550

9 N -0.99590750 2.45928039 -0.03152871

10 N -0.94932472 -2.42230257 -0.13955808

11 H -2.06817181 0.00771961 -0.14901333

12 H 1.64646726 2.22531650 0.11448349

13 H 2.91326768 0.11281516 0.13890191

14 H 1.73312271 -2.09325654 0.02190559

15 H -2.00474967 2.48461784 -0.08943593

16 H -0.51034334 3.34515606 0.01587411

17 H -1.60053855 -2.54183325 0.65186572

18 H -0.29289228 -3.21511374 -0.11856237

19 H -1.50343589 -2.50548070 -1.00604350

Listing B.2: mPD optimized protonated geometry.xyz file generated with Avogadro2.

Deprotonated mPD geometry:

1 16

2 m-phenylenediamine

3 C 1.20090 -0.29590 -0.00210

4 C -0.00000 -0.99130 -0.00160

5 C -1.20090 -0.29590 0.00010

6 C -1.19730 1.09380 0.00120

7 C 0.00000 1.78300 0.00020

8 C 1.19740 1.09380 -0.00100

9 N -2.41180 -0.99190 0.00020

10 N 2.41180 -0.99190 0.00200

11 H -0.00000 -2.07130 -0.00280

12 H -2.13160 1.63560 0.00260

13 H 0.00000 2.86300 0.00040

14 H 2.13160 1.63560 -0.00180

15 H -2.41370 -1.96190 -0.00090

16 H -3.25090 -0.50530 0.00140

17 H 2.41370 -1.96190 0.00520

18 H 3.25090 -0.50530 0.00160

Listing B.3: mPD deprotonated geometry.xyz file generated with Avogadro2.

optimized:

1 16

2 geometry

3 C -0.29902895 -1.22416492 -0.05963257
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4 C -0.98787171 0.00016485 0.00016598

5 C -0.29888923 1.22427342 0.05995898

6 C 1.11139964 1.21677692 0.05915376

7 C 1.79160505 -0.00003892 0.00021317

8 C 1.11119550 -1.21684646 -0.05890775

9 N -1.00041241 2.42172560 0.17197486

10 N -1.00095079 -2.42137953 -0.17121949

11 H -2.08317618 -0.00005093 0.00003031

12 H 1.66186773 2.16030050 0.11057522

13 H 2.88590155 -0.00017646 0.00060055

14 H 1.66159143 -2.16044573 -0.11005924

15 H -1.95441096 2.41025943 -0.17161622

16 H -0.49650334 3.25339308 -0.11524979

17 H -1.95419502 -2.41034854 0.17433720

18 H -0.49644641 -3.25337356 0.11385288

Listing B.4: mPD optimized protonated geometry.xyz file generated with NWChem.

B.1.2 Phloroglucinol

protonated:

1 16

2 phloroglucinol

3 C -1.38610 -0.03930 0.02050

4 O -2.74420 -0.07770 0.04840

5 C -0.72710 1.18080 0.00710

6 C 0.65880 1.22010 -0.02140

7 O 1.30450 2.41580 -0.03490

8 C 1.38580 0.03930 -0.03570

9 C 0.72680 -1.18090 -0.02190

10 O 1.43920 -2.33800 -0.03630

11 C -0.65900 -1.22010 0.01110

12 H -3.15540 -0.08870 -0.82680

13 H -1.29330 2.10050 0.01860

14 H 1.50960 2.76200 0.84440

15 H 2.46510 0.06980 -0.05790

16 H 1.66360 -2.67280 0.84270

17 H -1.17220 -2.17030 0.02180

18 H -3.32367 -0.08383 0.97241

Listing B.5: Phloroglucinol protonated geometry.xyz file generated with Avogadro2.

Optimized:

1 16

2 geometry

3 C 0.06747757 1.34383322 -0.00385148

4 O 0.12666894 2.83073314 -0.11753488

5 C 1.29268540 0.71522436 0.04189274

6 C 1.24875406 -0.69346762 0.14959353

7 O 2.42827227 -1.32161554 0.19547235

8 C 0.01293662 -1.35816313 0.20252091
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9 C -1.19683504 -0.64558144 0.15030206

10 O -2.40011293 -1.22859420 0.19694795

11 C -1.18514997 0.76206382 0.04286857

12 H -0.25365535 3.18535957 -0.94930595

13 H 2.24488299 1.24389509 -0.00045019

14 H 2.32227255 -2.28150054 0.26870064

15 H -0.00895047 -2.44923932 0.28583656

16 H -2.32985250 -2.19170581 0.27042973

17 H -2.12565820 1.31391223 0.00258337

18 H -0.24479024 3.30765410 0.65500809

Listing B.6: Phloroglucinol optimized protonated geometry.xyz file generated with
NWChem.

deprotonated:

1 14

2 phloroglucinol

3 C -1.38610 -0.03930 0.02050

4 O -2.74420 -0.07770 0.04840

5 C -0.72710 1.18080 0.00710

6 C 0.65880 1.22010 -0.02140

7 O 1.30450 2.41580 -0.03490

8 C 1.38580 0.03930 -0.03570

9 C 0.72680 -1.18090 -0.02190

10 O 1.43920 -2.33800 -0.03630

11 C -0.65900 -1.22010 0.01110

12 H -3.15540 -0.08870 -0.82680

13 H -1.29330 2.10050 0.01860

14 H 1.50960 2.76200 0.84440

15 H 2.46510 0.06980 -0.05790

16 H -1.17220 -2.17030 0.02180

Listing B.7: Phloroglucinol deprotonated geometry.xyz file generated with
Avogadro2.

optimized:

1 14

2 geometry

3 C 1.22296721 -0.13827696 0.73208407

4 O 2.33425739 -0.26390355 1.49793450

5 C 0.00000000 0.00000000 1.43439060

6 C -1.22296721 0.13827696 0.73208407

7 O -2.33425739 0.26390355 1.49793450

8 C -1.23817385 0.13913224 -0.65050593

9 C 0.00000000 0.00000000 -1.40467046

10 O 0.00000000 0.00000000 -2.65293030

11 C 1.23817385 -0.13913224 -0.65050593

12 H 3.10919893 -0.35151563 0.92634784

13 H 0.00000000 0.00000000 2.52563182

14 H -3.10919893 0.35151563 0.92634784

15 H -2.16239917 0.24107109 -1.22551226

16 H 2.16239917 -0.24107109 -1.22551226
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Listing B.8: Phloroglucinoloptimized deprotonated geometry.xyz file generated with
NWChem.

B.1.3 Disperse-blue1

protonated:

1 33

2 disperse blue 1

3 C 3.67020 -0.68760 -0.23330

4 C 3.67020 0.68750 -0.23360

5 C -3.67030 -0.68760 -0.23250

6 C -3.67020 0.68750 -0.23370

7 H 1.66600 -3.27650 -0.25120

8 H 3.31450 -3.26410 0.07270

9 H 3.31470 3.26400 0.07280

10 H 1.66600 3.27660 -0.25020

11 H -3.31440 -3.26410 0.07240

12 H -1.66590 -3.27640 -0.25140

13 H -1.66600 3.27660 -0.25070

14 H -3.31470 3.26400 0.07240

15 C 2.47600 -1.39740 -0.08800

16 C 2.47600 1.39740 -0.08840

17 C -2.47590 -1.39740 -0.08830

18 C -2.47600 1.39740 -0.08870

19 O -0.00000 -2.62650 0.46040

20 O -0.00000 2.62640 0.46050

21 C 0.00000 -1.43530 0.21070

22 C -0.00000 1.43530 0.21040

23 C 1.27050 -0.70570 0.05770

24 C 1.27050 0.70570 0.05760

25 C -1.27040 -0.70570 0.05750

26 C -1.27050 0.70570 0.05730

27 N 2.48650 -2.78530 -0.08890

28 N 2.48660 2.78530 -0.08860

29 N -2.48650 -2.78530 -0.08920

30 N -2.48660 2.78530 -0.08900

31 H 4.60070 -1.22310 -0.35080

32 H 4.60120 1.22310 -0.34660

33 H -4.60140 -1.22310 -0.34530

34 H -4.60130 1.22310 -0.34650

35 H -2.34283 -3.03914 0.89827

Listing B.9: Disperseblue1 dye protonated geometry.xyz file generated with
Avogadro2.

Optimized:

1 33

2 geometry

3 C -0.74100059 -3.69875933 -0.07678730
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4 C 0.61817804 -3.71879167 -0.10035071

5 C -0.60788569 3.71760666 0.01950471

6 C 0.77289205 3.71275763 -0.00392584

7 H -3.35909006 -1.67575776 -0.00400636

8 H -3.27022454 -3.43192830 -0.02943289

9 H 3.18298062 -3.53621019 -0.14177187

10 H 3.28414834 -1.75607610 -0.11833883

11 H -3.17818758 3.01949440 -0.76821624

12 H -2.98595697 1.09186193 0.02605507

13 H 3.35670052 1.65065059 -0.07519772

14 H 3.33839397 3.42789527 -0.05183977

15 C -1.47119445 -2.46260409 -0.04729547

16 C 1.40503689 -2.50982129 -0.09704523

17 C -1.33359967 2.52012339 0.01608837

18 C 1.51137577 2.49713729 -0.03254777

19 O -2.69483178 0.06011252 0.00763947

20 O 2.75038250 -0.05121024 -0.08661624

21 C -1.38388451 0.01989591 -0.01560181

22 C 1.49708995 -0.02562452 -0.06517194

23 C -0.72156599 -1.23264928 -0.04356951

24 C 0.72595347 -1.26731968 -0.06863952

25 C -0.64497255 1.28625259 -0.01175688

26 C 0.77965532 1.25909784 -0.03634980

27 N -2.81029735 -2.52929574 -0.02491211

28 N 2.74473562 -2.62465257 -0.12079111

29 N -2.78700894 2.52914625 0.04115704

30 N 2.85622258 2.53895050 -0.05511012

31 H -1.30225538 -4.63685874 -0.07999909

32 H 1.14257230 -4.67847317 -0.12229497

33 H -1.14508482 4.67008745 0.04098604

34 H 1.31959398 4.65932511 -0.00087317

35 H -3.14992813 2.99819782 0.87591274

Listing B.10: Disperseblue1 dye optimized protonated geometry.xyz file generated
with NWChem.

Deprotonated:

1 32

2 disperse blue 1

3 C 3.67020 -0.68760 -0.23330

4 C 3.67020 0.68750 -0.23360

5 C -3.67030 -0.68760 -0.23250

6 C -3.67020 0.68750 -0.23370

7 H 1.66600 -3.27650 -0.25120

8 H 3.31450 -3.26410 0.07270

9 H 3.31470 3.26400 0.07280

10 H 1.66600 3.27660 -0.25020

11 H -3.31440 -3.26410 0.07240

12 H -1.66590 -3.27640 -0.25140

13 H -1.66600 3.27660 -0.25070

14 H -3.31470 3.26400 0.07240

15 C 2.47600 -1.39740 -0.08800

16 C 2.47600 1.39740 -0.08840

17 C -2.47590 -1.39740 -0.08830
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18 C -2.47600 1.39740 -0.08870

19 O -0.00000 -2.62650 0.46040

20 O -0.00000 2.62640 0.46050

21 C 0.00000 -1.43530 0.21070

22 C -0.00000 1.43530 0.21040

23 C 1.27050 -0.70570 0.05770

24 C 1.27050 0.70570 0.05760

25 C -1.27040 -0.70570 0.05750

26 C -1.27050 0.70570 0.05730

27 N 2.48650 -2.78530 -0.08890

28 N 2.48660 2.78530 -0.08860

29 N -2.48650 -2.78530 -0.08920

30 N -2.48660 2.78530 -0.08900

31 H 4.60070 -1.22310 -0.35080

32 H 4.60120 1.22310 -0.34660

33 H -4.60140 -1.22310 -0.34530

34 H -4.60130 1.22310 -0.34650

Listing B.11: Disperseblue1 dye deprotonated geometry.xyz file generated with
Avogadro2.

Optimized

1 33

2 geometry

3 C -0.72608927 -3.70283323 -0.22615785

4 C 0.63653307 -3.72839245 -0.20920210

5 C -0.63344021 3.68907733 -0.18936875

6 C 0.74721712 3.69290885 -0.24498747

7 H -3.27970365 -1.60456490 0.05400333

8 H -3.29366298 -3.38018180 -0.07227913

9 H 3.19673020 -3.56912494 -0.00022165

10 H 3.29951867 -1.79214204 0.12940255

11 H -3.21441040 3.35678966 -0.21554255

12 H -3.13673120 1.60039363 -0.23074542

13 H 3.34036924 1.67067246 0.05778821

14 H 3.31338788 3.44782895 -0.10515166

15 C -1.44998212 -2.47255080 -0.08974916

16 C 1.42173351 -2.53291226 -0.05565095

17 C -1.31643947 2.48752899 0.00024151

18 C 1.49666933 2.49437939 -0.09051034

19 O -2.68364976 0.03015030 0.03103269

20 O 2.75870821 -0.05544738 0.11301362

21 C -1.41270857 -0.01473668 0.04981515

22 C 1.50361480 -0.04399812 0.06343197

23 C -0.70298242 -1.25934920 0.00017244

24 C 0.74031359 -1.28606824 0.01518871

25 C -0.63784451 1.25504156 0.05463037

26 C 0.77869887 1.24577015 0.02443651

27 N -2.79823125 -2.49707451 -0.06034928

28 N 2.76491582 -2.65330179 -0.00395475

29 N -2.77761357 2.51206921 0.17264275

30 N 2.84105283 2.55251225 -0.07967365

31 H -1.28934437 -4.63291509 -0.34046597

32 H 1.16047747 -4.68285459 -0.31222346
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33 H -1.17899392 4.63456361 -0.27233303

34 H 1.28027110 4.63648444 -0.38297714

35 H -3.04944113 2.42483770 1.16464566

Listing B.12: Disperseblue1 dye optimized deprotonated geometry.xyz file generated
with NWChem.

B.2 NWChem input files

B.2.1 Input files mPD

1 echo

2 start mPD

3 title "mPD protonated geometry optimization"

4 charge 1

5 geometry

6 load mPD -pro.xyz

7 end

8 basis

9 * library def2 -SVP

10 end

11 dft

12 xc b3lyp

13 end

14 DRIVER

15 XYZ

16 MAXITER 200

17 END

18 task dft optimize

Listing B.13: mPD Protonated Geometry Optimization in NWChem

1 echo

2 start mPD

3 title "mPD TDDFT excited states"

4 charge 1

5 geometry

6 load mPD -pro -opt.xyz

7 end

8 basis

9 * library def2 -SVP

10 end

11 dft

12 xc b3lyp

13 mult 2

14 end

15 tddft

16 nroots 5

17 end

18 task tddft energy
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Listing B.14: mPD Protonated excited state calculation in NWChem

1 echo

2 start mPD

3 title "mPD deprotonated geometry optimization"

4 geometry

5 load mPD -geometry -de.xyz

6 end

7 basis

8 * library def2 -SVP

9 end

10 dft

11 xc b3lyp

12 end

13 DRIVER

14 XYZ

15 MAXITER 200

16 END

17 task dft optimize

Listing B.15: mPD Protonated excited state calculation in NWChem

1 echo

2 start mPD

3 title "mPD TDDFT excited states"

4 geometry

5 load mPD -de -geo -opt.xyz

6 end

7 basis

8 * library def2 -SVP

9 end

10 dft

11 xc b3lyp

12 grid nodisk

13 noprint "final vectors analysis"

14 end

15 tddft

16 nroots 5

17 end

18 task tddft energy

Listing B.16: mPD deprotonated excited state calculation in NWChem

B.2.2 Phloroglucinol

1 echo

2 start phloroglucinol

3 title "phloroglucinol protonated geometry optimization"

4 geometry

5 load phlor -pro.xyz

6 end
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7 basis

8 * library def2 -SVP

9 end

10 dft

11 xc b3lyp

12 mult 2

13 end

14 DRIVER

15 XYZ

16 MAXITER 200

17 END

18 task dft optimize

Listing B.17: Phloroglucinol Protonated geometry optimization in NWChem

1 echo

2 start phloroglucinol

3 title "phloroglucinol TDDFT excited states"

4 charge 1

5 geometry

6 load phlor -pro -geo -opt.xyz

7 end

8 basis

9 * library def2 -SVP

10 end

11 dft

12 xc b3lyp

13 end

14 tddft

15 nroots 5

16 end

17 task tddft energy

Listing B.18: Phloroglucinol protonated tddft excited states in NWChem

1 echo

2 start phloroglucinol

3 title "phloroglucinol protonated geometry optimization"

4
5 geometry

6 load phlor -de -geo.xyz

7 end

8 basis

9 * library def2 -SVP

10 end

11 dft

12 xc b3lyp

13 mult 2

14 end

15 DRIVER

16 XYZ

17 MAXITER 200

18 END

19 task dft optimize
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Listing B.19: Phloroglucinol deprotonated geometry optimization with DFT in
NWChem

1 echo

2 start phloroglucinol

3 title "phloroglucinol TDDFT excited states"

4
5 charge -1

6 geometry

7 load phlor -de -geo -opt.xyz

8 end

9 basis

10 * library def2 -SVP

11 end

12 dft

13 xc b3lyp

14 end

15 tddft

16 nroots 5

17 end

18 task tddft energy

Listing B.20: Phloroglucinol deprotonated tddft excited states in NWChem

B.2.3 Disperse-blue1

1 echo

2 start disperseblue1dye

3 title "disperseblue1dye protonated geometry optimization"

4
5 charge 1

6
7 geometry

8 load disperse -pro.xyz

9 end

10
11 basis

12 * library def2 -SVP

13 end

14
15 dft

16 xc b3lyp

17 grid nodisk

18 noprint "final vectors analysis"

19 end

20
21
22 DRIVER

23 XYZ

24 MAXITER 200

25 END
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26
27 task dft optimize

Listing B.21: Disperse Blue1 protonated geometry optimization with DFT in
NWChem

1 echo

2 start disperseblue1dye

3 title "disperseblue1dye protonated geometry optimization"

4
5 charge 1

6
7 geometry

8 load disperse -pro.xyz

9 end

10
11 basis

12 * library def2 -SVP

13 end

14
15 dft

16 xc b3lyp

17 grid nodisk

18 noprint "final vectors analysis"

19 end

20
21
22 DRIVER

23 XYZ

24 MAXITER 200

25 END

26
27 task dft optimize

Listing B.22: Disperse Blue1 protonated excited states with TDDFT in NWChem

1 echo

2 start disperseblue1dye

3 title "disperseblue1dye deprotonated geometry optimization"

4
5 geometry

6 symmetry c1

7 load "disperseBlue1.xyz"

8 end

9
10 basis

11 * library "def2 -SVP"

12 end

13
14 dft

15 xc b3lyp

16 grid nodisk

17 noprint "final vectors analysis"

18 end

19
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20 task dft optimize

Listing B.23: Disperse Blue1 deprotonated geometry optimization with DFT in
NWChem

1 echo

2 start disperseblue1

3 title "disperseblue1 deprotonated TDDFT excited states"

4
5 charge -1

6
7 geometry

8 symmetry c1

9 load disperse -de -geo -opt.xyz

10 end

11
12 basis

13 * library def2 -SVP

14 end

15
16 dft

17 xc b3lyp

18 end

19
20 tddft

21 nroots 5

22 end

23
24 task tddft energy

Listing B.24: Disperse Blue1 deprotonated tddft excited states in NWChem

B.3 Python Code NWChem output sorting

The following code was generated to extract only necessary information from the

NWChem output file data in order to calculate the fluorescence lifetime later on

1 import numpy as np

2 input_file_path = " "

3

4 input_file = input_file_path

5 output_file = " "

6

7 INDEX_MULTIPLICITY = 2

8 INDEX_ROOT_NUMBER = 1

9
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10 # Open input and output files

11 with open(input_file , ’r’) as f_input:

12 # Process each line in the input file

13 data = []

14 root_line = ’’

15 entry = []

16 for line in f_input:

17 line = line.strip()

18

19 if line.startswith(’Root’):

20 if entry:

21 data.append(entry)

22 entry = []

23 # Exclude keywords in the root line

24 words = line.split ()

25 multiplicity_name = words[INDEX_MULTIPLICITY]

26 if multiplicity_name == ’singlet ’:

27 multiplicity = 1

28 elif multiplicity_name == ’triplet ’:

29 multiplicity = 3

30 else:

31 multiplicity = 0

32 entry = [int(words[INDEX_ROOT_NUMBER ]), # root number

33 multiplicity ,

34 #int(words [3]. replace(’a’, ’1’).replace(’b’,

’2’)),

35 float(words [4]),

36 float(words [6])]

37

38 elif ’Transition Moments ’ in line:

39

40 # Append the transition line to the entry , excluding

the keywords

41 if ’Spin forbidden ’ in line:
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42 entry += [0, 0, 0, 0, 0, 0, 0, 0, 0]

43 else:

44 words = line.split ()

45 entry += [float(words [3]),

46 float(words [5]),

47 float(words [7])]

48

49

50 # Append the last entry to the data list

51 if entry:

52 data.append(entry)

53

54 header_list = [’Root’,

55 ’Multiplicity ’,

56 # ’Spin Orbital Symmetry ’

57 ’TDM in a.u.’,

58 ’TDM in eV’,

59 ’X’,

60 ’Y’,

61 ’Z’,

62 ’XX’,

63 ’XY’,

64 ’XZ’,

65 ’YY’,

66 ’YZ’,

67 ’ZZ’

68 ]

69 header = ’\t’.join(header_list)

70

71 data_array = np.array(data)

72

73 np.savetxt(output_file , data_array , fmt=’%.15g’, delimiter=’\t’,

header= header)
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B.4 Python Code Fluorescence Lifetime Calculation with

NWChem data output

Using the .txt file generated with the code above the fluorescence lifetime can be eval-

uated

1 import scipy.constants as sc

2 import numpy as np

3 import ownlibs as ol

4 #import matplotlib.pyplot as plt

5

6

7 def calculate_function(omega , d):

8 d_debeye = d * 1 #convert d to debeye

9

10

11 lambda_value = 1 / ((sc.mu_0 * omega **3 * d_debeye ** 2) / (3

* sc.pi * sc.speed_of_light * sc.hbar))

12 result_seconds = 1 / lambda_value # Convert from 1/s to

seconds (s)

13 result_seconds *= 2.418884326505e-17 # Convert atomic units

of time to seconds

14 return result_seconds

15

16 # Read input values from file

17 input_filename = "/Users/denisedilshener/Documents/MasterThesis/

NWCHEM/aug -ccpVDZ basis set/phlor -de -final -pVDZ.txt"# input

file path

18 output_filename = "/Users/denisedilshener/Documents/MasterThesis/

NWCHEM/aug -ccpVDZ basis set/phlor -de -FL -pVDZ.txt"# Output file

name

19

20 data = np.loadtxt(input_filename)

21 # store values in array for plot

22
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23 n_values = []

24 results = []

25

26 # calculate by inserting data from each line in a loop

27 with open(output_filename , "w") as output_file:

28 total_sum = 0 # Initialize the sum

29

30 for line in data:

31 values = line

32 n = values [0]

33 omega = values [2] # transition frequency value in a.u.

34 a = values [4] # X value transition moment

35 b = values [5] # Y value transition moment

36 c = values [6] # Z value from transition moment

37 d = np.array([a, b, c])

38 G_im = ol.Im_G_freespace(omega)

39 result = ol.linienbreite(omega , d, G_im)

40 output_file.write(f"Result ={ result }\n")

41

42 total_sum += result # Add the result to the total_sum

43

44

45 n_values.append(n)

46 results.append(result)
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