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Abstract 
The kidney, a vital organ responsible for waste excretion and hormone regulation, is frequently 

afflicted by non-neoplastic diseases affecting components like glomeruli and tubules. Chronic 

kidney disease (CKD), often progressing to end-stage kidney disease (ESKD), presents a 

substantial global health challenge. With nearly 100 million Europeans affected by CKD and 

projections indicating it may become a leading cause by 2040, there is an urgent need for 

advanced diagnostics, particularly in the under-researched area of non-neoplastic kidney 

diseases.  

 

Digital pathology (DP) has transformed biomedical research and pathology diagnostics through 

the utilization of Whole Slide Images (WSIs) for precise tissue analysis. Image registration, a 

key application in DP, enables the alignment of histological sections, facilitating accurate 

comparisons and comprehensive tissue analysis. This thesis endeavours to integrate image 

registration tool into a future pipeline designed to automate the alignment and ordering of non-

neoplastic kidney biopsy sections.  

 

The thesis begins with a literature review to find image registration tools. Then the image 

registration tools found; HistokatFusion (commercial) and TIAToolbox (open source) were 

evaluated for a potential integration into a future pipeline aimed at automating the alignment 

and ordering of non-neoplastic kidney biopsy sections from Haukeland University Hospital, 

bergen. Through the application of Intersection Over Union (IOU) and Dice Score (DSC) 

metrics, the effectiveness of these tools is assessed, leading to the selection of TIAToolbox for 

further analysis due to its open-source nature.  

 

Parameters such as grid spacing and sampling percentages were evaluated for non-rigid 

registration using TIAToolbox for alignment quality and computational efficiency. Grid 

spacing 200 and sampling percentage 1.0 show promising results and were used for further 

investigation into diverse cases which showed successful registration. The thesis also addresses 

specific challenges encountered in three difficult cases, highlighting the need for continued 

refinement of the pre-processing pipeline to accommodate complex or damaged tissue sections.  

 

Areas for improvement include automating the pre-processing pipeline, evaluating additional 

registration tools, and exploring methods beyond pixel-based metrics like IOU and DSC. 
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Further testing on a broader range of WSIs is necessary to comprehensively assess the 

pipeline’s registration success. Future research should address these limitations and integrate 

the pipeline into a larger framework for the automatic alignment and ordering of biopsy 

sections, enhancing efficiency for nephropathologists. Overall, this study provides valuable 

insights into image registration for non-neoplastic kidney biopsy analysis. 
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1 Introduction 
The kidney is a highly intricate organ with vital functions, such as waste excretion, water and 

salt regulation, acid balance maintenance, and hormone secretion1. Non-neoplastic kidney 

diseases can be classified based on their impact on different kidney components, consisting of 

glomeruli, tubules, interstitium, and blood vessels1. Renal diseases, with their increasing 

prevalence and significant impact on global health, necessitate efficient and accurate diagnostic 

methods. Chronic kidney disease (CKD) and its progression to end-stage kidney disease 

(ESKD) affect millions of people worldwide, often going undetected, due to the kidney’s 

substantial functional reserve, until severe damage has occurred1-3. Within European context, 

CKD affects nearly 100 million Europeans, with 300 million being at risk4, and is set to become 

the fifth- leading global cause of death by 2040 and the second leading cause of death before 

the end of the century in some countries with long life expectancy 5. This reality underscores 

the need for advanced diagnostic approaches, particularly in the realm of non-neoplastic kidney 

disease, a relatively under-researched area.  

 

The integration of digital pathology (DP) represents a transformative advancement in 

biomedical research and pathology diagnostics because of the possibility to implement AI 

tools. Utilizing Whole Slide Images (WSI), DP allows for the precise and flexible analysis of 

tissue samples, transforming traditional microscopy6, 7. A key application within this domain 

is image registration, which involves aligning histology sections using different staining or 

preparation methods7. This technique enables pathologists to overlay or match images from 

various depths of specimen, ensuring accurate comparisons and comprehensive analysis of 

tissue structures and cellular features7. Consequently, pathologists gain integrated insights into 

patient pathology, improving the understanding of normal structures and pathological lesions. 

 

Building on recent advancements, this project aims to integrate both commercial and open-

source image registration tools into a future pipeline for automating the alignment and ordering 

of kidney biopsy sections. By leveraging AI techniques such as image registration, this 

computational image analysis and preprocessing tool seeks to enhance the speed and accuracy 

of diagnostics in nephropathology, addressing a critical gap in current methodologies. The 

thesis focuses primarily on image registration in the context of non-neoplastic kidney biopsy 

sections. The central scientific inquiry revolves around evaluating the performance of these 

tools in this specific domain. Image registration using non-neoplastic kidney biopsy sections is 
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currently under-researched, highlighting the need for further investigation. The key question 

driving this research is: How effectively do image registration tools operate when applied to 

non-neoplastic kidney biopsy WSIs, and what insights can their evaluation provide for 

enhancing the quality of image registration for integration into a future larger pipeline? 

 

 

1.1 Background 
 

1.1.1 Kidney Structures and Diseases 
 
Renal histology focuses on the microscopic anatomy of the kidney, essential for diagnosing 

kidney diseases 1. Each human kidney contains about 1.2 million nephrons 8, which are the 

functional units of the kidney that perform crucial functions in maintaining the body’s internal 

environment 1. This specific functional element is encompassed in a kidney biopsy1. A nephron 

consists of the glomerulus, which consists of the glomerular tuft and Bowmans’s capsule, the 

renal tubule, which consists of proximal convoluted tubule, the loop of Henle, the distal 

convoluted tubule, and afferent and efferent arteriole9. CKD is a long-term condition 

characterized by a gradual loss of nephrons and kidney function over time 9. It can occur due 

to changes or damage in various kidney structures, including glomeruli, tubules, or blood 

vessels.  

 
 
1.1.1.1 Glomerulus  

 
The renal corpuscle (Figure 1) is a crucial component of the nephron  responsible for the initial 

filtration of blood to form urine10. It consists of two main structures, the glomerular tuft and 

the Bowman’s capsule10. The glomerulus is the site of blood filtration, where waste products 

and excess substances are removed from the blood to form the initial filtrate10. The Bowman’s 

capsule surrounds the glomerular tuft, and it collects the filtrate from the glomerulus and begins 

the process of urine formation10.  
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Figure 1 Glomerulus. A sketched and a scanned histology slide representing the glomerular tuft and Bowman’s Capsule. The 
figure shows the Mesangial matrix, Glomerular Basement Membrane, and the Bowman’s Capsule. Histology image from: 
Renal biopsy laboratorium, Department of Pathology, Haukeland University Hospital, Bergen. This graphic was adapted with 
permission from: Bülow, R. D, et al. (2019)11 

 

1.1.1.2 Renal Tubule  
 

The renal tubules (Figure 2) are long, slender tubes that are originated from Bowmans’s capsule 

and are involved in the reabsorption and secretion of substances to fine-tune the composition 

of urine12. It consists of three main structures, the proximal convoluted tubule (PCT), the Loop 

of Henle, and the distal convoluted tubule (DCT)12. The PCT is the first segment of renal 

tubule, where most of the reabsorption of water, glucose, amino acids, and other essential 

substances occurs12. The Loop of Henle is a U-shaped segment of the renal tubule that plays a 

crucial role in concentrating urine and maintaining water and electrolyte balance12. The DCT 

follows the loop of Henle and is involved in the further fine-tuning of urine composition 

through absorption and secretion processes12. In addition, the interstitium is the supportive 

tissue between the glomeruli, tubules, and blood vessels, providing structural support to the 

kidney12.  

 

 



 11 

Følsomhet Intern (gul) 

 
Figure 2 Renal tubules. A sketched and a scanned histology image representing the Renal tubules. Figure shows the Tubular 
Basement Membrane, Interstitium, and the Peritubular Capillary. Histology slide from: Renal biopsy laboratorium, 
Department of Pathology, Haukeland University Hospital, Bergen. This graphic was adapted with permission from: Bülow, 
R. D, et al. (2019)11 

 
 
 

1.1.1.3 Vasculature 
 

The kidney benefits from a rich blood supply to sustain its essential functions 13. The renal 

artery (Figure 3) delivers oxygenated blood to the kidney, where it undergoes filtration within 

the glomeruli 13. Subsequently, the filtered blood returns to circulation via the renal vein 13. 

Moreover, arterioles play a crucial role in regulating glomerular pressure, thereby contributing 

significantly to renal function 14. Arterioles are small blood vessels branching out form arteries 

and extending into the capillary beds of the kidneys15. Within the kidney, arterioles are 

classified into two primary types: afferent arterioles, supplying blood to the glomeruli, and 

efferent arterioles, responsible for carrying blood away from the glomeruli15. 

 

 
Figure 3 Arterial Vessels. A sketched and a scanned histology image representing the Arterial Vessels. Figure shows the 
Intima with membrana elastics interna, media with membrane elastics externa, and adventia. Histology image from: Renal 
biopsy laboratorium, Department of Pathology, Haukeland University Hospital, Bergen. This graphic was adapted with 
permission from: Bülow, R. D, et al. (2019)11 
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1.1.1.4 Kidney Diseases 
 

Kidney diseases encompass three primary categories: neoplastic (including cancers), non-

neoplastic, and transplant pathology. This project focuses on utilizing WSI from non-neoplastic 

kidney diseases. Non-neoplastic kidney diseases are grouped based on compartments of origin: 

glomerular diseases, tubulointerstitial diseases, and diseases affecting kidney blood vessels. 

Understanding the interconnectedness between compartments is important. Issues in one 

compartment can impact others, underscoring the importance of accurate diagnosis to prevent 

complications and ensure effective treatment. Kidney diseases can in addition be categorized 

as primary or secondary diseases with primary diseases originating within the kidney and 

secondary forms arising from systemic conditions. The distinction between primary and 

secondary forms of kidney disease is important to the clinician as it has implications for 

prognosis and treatment. 

 

 
1.1.2 Nephropathology  
 

1.1.2.1 Diagnosing 

Diagnosing kidney disease involves a combination of clinical evaluation, blood, and urine tests, 

and sometimes imaging or biopsy.9  Blood tests assess the levels of creatinine and urea to 

estimate the glomerular filtration rate (GFR), which indicates how well the kidneys are filtering 

waste.9 Urine tests can detect albumin, signalling possible damage of filtration units. Imaging 

like ultrasounds can reveal the size and structure of the kidneys, while a biopsy provides a 

direct look at kidney tissue health.9  These methods together allow clinicians to diagnose the 

presence, type and stage of kidney disease, as well as to guide treatment decisions.9  

 

1.1.2.2 Biopsies and Biopsy Evaluation  

Kidney biopsies stand as an important diagnostic procedure, offering insights at microscopic 

level of kidney tissues. This process involves the retrieval of a minute tissue specimen from 

the kidney, which is then examined under a microscope. Histopathological evaluation of the 

biopsy can reveal distinct abnormalities, such as scarring, inflammation, or specific deposits, 

crucial for diagnosing various renal diseases9. This detailed tissue analysis not only provides 

accurate disease identification but also informs prognosis and guides therapeutic strategies, 

making it an essential component in the management of patients with serious kidney disease.9  
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1.1.2.3 Pathology Workflow 

The processing of kidney biopsies for histopathological analysis is a detailed and labour – 

intensive procedure. An overview of the pathology laboratory workflow producing these 

sections is presented in figure 4.  It begins with a radiologist or nephrologist extracting a small 

tissue sample using a biopsy needle. This sample is immediately preserved in fixatives such as 

formalin to maintain structural integrity. The tissue is then dehydrated, cleared, and embedded 

in paraffin wax for thin sectioning. Thin sections of 3µM are cut using a microtome and placed 

onto glass slides with adhesive. These sections undergo staining, such as Haematoxylin and 

Eosin (H&E), Periodic acid-Schiff (PAS), Masson’s Trichrome, immunohistochemistry, 

among others. The final step involves securing the stained tissue with a coverslip for 

microscopic examination. Subsequently, the glass slides are scanned and converted to WSIs. 

Each step is crucial for rendering a correct diagnosis, highlighting the importance of 

maintaining high quality throughout the entire process.  When the kidney biopsy is received by 

the biomedical laboratory scientists, it is divided into two parts. The larger portion undergoes 

paraffin embedding, sectioning, and staining to visualize tissue structures and cellular 

morphology, or immunohistochemistry to detect specific proteins or antigens within the kidney 

tissue sections, such as immune complexes in glomeruli. The smaller portion is processed for 

electron microscopy. The tissue is embedded in EPON which allows for cutting very thin 

sections for electron microscopic investigation providing high-resolution imaging of cellular 

structures and detailed information about kidney cell morphology (Figure 5). The data used for 

this project are from paraffin-embedded slides. 
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Figure 4 Pathology workflow for kidney biopsy analysis by light microscopy. A) Nephrologist or radiologist takes kidney 
biopsy. B) Biopsy needle cores received by nephropathology lab. C) Tissue placed in cassettes, immersed in formalin. D) 
Biopsy undergoes embedding, forming paraffin block. E) Thin 3 µM sections cut using microtome. F) Sections stretched and 
attached to glass slides using hot water bath. G) Glass slides stained using various techniques. H) Stained slides scanned. I) 
WSI generated. Image source: Renal biopsy laboratory, Dept. of Pathology, Haukeland Univ. Hospital, Bergen. 

 
Figure 5 Kidney Biopsy work-up including electron microscopy. The kidney biopsy process involves several key steps: 1) 
Initial biopsy acquisition: A nephrologist retrieves the kidney biopsy specimen, which is then delivered to the nephropathology 
laboratory. 2) Biopsy division: The specimen is divided into two parts. 3) The larger portion undergoes paraffin embedding 
and sectioning, which includes: 3a) Histological stains to visualize tissue structures and cellular morphology, and 3b) 
Immunohistochemistry, enabling the detection of specific proteins or antigens within the kidney tissue sections, such as 
immune complexes in glomeruli. 4) The smaller biopsy part is embedded into EPON: 4a) First the EPON block is utilized for 
semithin sectioning, highlighting tissue structures, and aiding in identifying areas of renal abnormalities suitable for electron 
microscopic investigation. 4b) Second, the EPON block is trimmed, and ultrathin sections are cut for electron microscopy, 
providing high-resolution imaging of kidney structures and detailed information about kidney cell morphology. These 
processes are essential for accurate diagnosis and are conducted at the Renal biopsy laboratory, Dept. of Pathology, Haukeland 
University Hospital, Bergen. (Sabine Leh, MD, PhD.)  
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1.1.3 Nephropathology in the Digital Era 
 
Over the past decade, the perception and application of virtual microscopy have undergone 

significant changes. Initially considered an emerging technology with limited applications in 

primary diagnostics, its use was mainly confined to educational settings, largely due to 

traditional pathologists’ preference for conventional light microscopy16. However, with the 

advent of scanned WSIs (seen Figure 4 H-I), the field of pathology has experienced a 

remarkable transformation with the emergence of digital pathology. This innovation enables 

the effective utilization of slide and image archives that were previously underexploited, 

presenting opportunities for research and diagnostic precision.  

 

Digital pathology offers several advantages. Firstly, it enhances workflows by eliminating 

bottlenecks, such as dispatching cases to pathologists or archiving slides, allowing labs to 

handle larger caseloads efficiently while reducing turnaround times17. Secondly, it standardizes 

staff training through digital resources, ensuring consistent, high-quality education for 

pathologists17. Collaboration is greatly facilitated through telepathology, as digitized samples 

eliminate the need for physical slides, allowing for seamless remote consultation and 

education17. The digital format also enables deeper insights through high-quality viewing and 

AI-assisted analysis using computational image analysis and software, revealing patterns and 

markers that might be missed with traditional methods17. Overall, the digitization of pathology 

not only streamlines existing processes but also paves the way for innovative technologies like 

AI to further enhance patient care and research17. This also applies for nephropathology, as 

kidney structures are considered complex. The use of digital pathology, along with AI-assisted 

analysis, will save time and make diagnoses for nephropathologists more efficient.  

 
 
1.1.3.1 Digital Pathology 

DP is rapidly transforming clinical pathology practice and laboratory settings, serving as a 

cornerstone for modernized medical workflows16, 18-20. The utilization of scanned histological 

slides integrates digital workflow and imaging solutions, facilitating the acquisition, 

management, interpretation, and scrutiny of digital formats for specific content16. The 

availability of digital slides enables a range of functions including remote primary diagnostics, 

teleconsultation, workload management, collaborative efforts, centralized clinical trial 

assessments, image analysis, virtual education, and pioneering research endeavors19. Through 
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the utilization of WSI technology, computer vision and artificial intelligence (AI) communities 

have expanded computational pathology capabilities19.   

 

Europe was at the forefront of developing digital pathology (DP), with several institutions 

pioneering its adoption. Kalmar County Hospital in Sweden was the first in Europe to adopt 

digital pathology, starting in 2006 to improve ergonomics by reducing microscope usage21. 

Since 2008, Kalmar and Linköping University Hospital have scanned over 500,000 glass slides 

for routine operations21. In 2014, the pathology department in Førde, Norway, demonstrated 

that digital pathology could address increased workload, case complexity, financial constraints, 

and staffing shortages efficiently and reliably22. Bergen, also in Norway, began using digital 

pathology for nephropathology in 2012 (Sabine Leh, MD, PhD). In 2015, the University 

Medical Centre in Utrecht, The Netherlands, implemented a fully digital workflow for primary 

diagnostics within six months, creating a complete digital archive23. That same year, 

Cannizzaro Hospital in Catania, Italy, transitioned to a fully digital pathology workflow using 

WSI24. In 2016, Granada University Hospitals in Spain adopted full digital pathology for 

primary diagnosis, digitizing all histopathology slides at ×40 magnification using the Philips 

IntelliSite Pathology Solution25.  

 

In the USA and Canada, digital pathology research predates widespread implementation, which 

awaited FDA approval of commercial WSI platforms16, 26. Nonetheless, the adoption of digital 

pathology has been substantial, with practices transitioning beyond traditional image archiving 

to comprehensive digital solutions16. 

 

Advances in computing power, network speeds, and storage affordability have further 

propelled the efficiency and flexibility of managing digital slide images, promoting digital 

pathology applications in telepathology, clinical trials, education, and research18. The benefits 

of digital pathology, including time-efficient review processes and advanced image analysis 

tools, promise a more objective and consistent diagnostic framework, reshaping the future of 

pathology16, 18. 
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1.1.3.2 Digital Nephropathology 

Digital pathology has emerged as a transformative tool in nephropathology, leveraging 

advancements in technology to enhance diagnostic processes and improve patient care. The 

widespread adoption of scanners and the integration of WSIs alongside traditional glass slides 

have made nephropathological diagnostics more efficient27. With the digitization of renal 

biopsy slides, pathologists and nephropathologists can remotely access and analyze images, 

facilitating real-time consultations and expediting diagnostic decision-making28.  Moreover, 

digital pathology platforms enable standardized acquisition and storage of WSIs, creating a 

valuable resource for educational purposes28. Trainees and practicing pathologists benefit from 

access to a comprehensive digital archive of annotated cases, facilitating learning and 

proficiency assessment. Additionally, digital nephropathology enable advanced image analysis 

and quantitative assessment of renal biopsy specimens28. Machine learning algorithms can be 

trained to recognize histological patterns and quantify various renal pathologies, including 

glomerular lesions, tubulointerstitial fibrosis, and vascular changes18, 29. By automating these 

tasks, digital pathology reduces the burden of manual image interpretation and enhances the 

reproducibility of diagnostic assessments. Furthermore, the integration of AI into digital 

pathology workflows holds promise for improving prognostic stratification and treatment 

decision-making in nephropathology28.  

 

1.1.3.3 Challenges in Digital Pathology 

The transition to digital pathology presents multifaceted challenges for healthcare institutions, 

both technically and organizationally30. This transition, while, promising, requires a bespoke 

approach as the digital infrastructure and strategy that may suit one institution could be 

inadequate for another 30. Critical decisions regarding the extent of digitization, such as whether 

to adopt a fully digital framework or to convert only specific segments of slide collections is 

important. These decisions not only dictate the technological needs, including the type and 

volume of scanners required based on expected slide throughput and desired processing speeds, 

but also define the overarching digital workflow30. In addition to hardware considerations, the 

shift towards digital pathology extends into significant IT resource requirements, particularly 

in terms of data storage and computational power. An institution generating 1,600 biopsy slides 

daily, with each slide approximately 2 GB in size, must anticipate the need for more than 1 

petabyte of storage capacity each year to manage this data effectively30. The need for high 

storage systems and expertise represents a significant financial investment31.  
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1.1.4 Image Analysis 
 

1.1.4.1 Computational Image Analysis 

 
The fusion of advanced scanning technology and the growing availability of extensive digital 

image datasets has created collaboration between pathologists and technology specialists such 

as data scientists, computational engineers, and imaging physicists16. The aim here is the 

extraction and quantification of data from digital images, either standalone or combined with 

other biological or omics data, to unveil insights not accessible through traditional methods. 

AI and Machine Learning (ML) excel in dissecting complex datasets to identify underlying 

patterns and features within histopathological images that are beyond the scope of traditional 

visual inspection (eyeballing)16. Deep learning (DL), a subset of ML characterized by multi-

layered neural networks, further enhances this capability, enabling in-depth examination of 

WSIs for tasks such as detection, segmentation, and classification with great precision16. In 

nephrology and nephropathology, AI -powered tools promise to enhance the understanding of 

kidney disease heterogeneity and outcomes, offering significant enhancements over existing 

classification systems16.  

 

1.1.4.2 Image Recognition in Digital Pathology 

 
Image recognition in digital pathology is the process of automatically identifying and 

classifying features in digital images. In digital nephropathology, this technique is applied in 

various scenarios, illustrated by examples in the following section. To classify glomerular 

lesions a  three-step workflow might be used (Figure 6A)32. Firstly, glomeruli are detected in 

biopsy images using a trained HALO AI (Indica Labs) classifier model32. Secondly, the 

detected glomeruli images are centred within a 1024 x 1024 pixel-sized patch, a non-

glomerulus background pixels are discarded32. Thirdly, pre-processed glomeruli are classified 

using three approaches: multiple binary classifiers in a one-vs-rest setting, a single multiclass 

classifier, and a spatially guided multiclass classifier32. These classifiers are trained using a 

five-fold cross-validation setting32. The output is a set of classified glomeruli instances and 

corresponding attention heatmaps32. The study compares the three classification approaches 

using classification accuracy and area under the curve (AUC) metrics, and evaluates neural 

attention visualizations (heatmaps) against nephropathologists’ annotations using intersection 

over union (IOU) metrics32. Another application involves training a deep learning model to 
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quantify fibrosis in non-neoplastic kidney biopsies (Figure 6B)33.  This process begins with 

tissue sections stained with Haematoxylin and Eosin (H&E). After destaining, these sections 

are stained with Sirius Red33. Conventional image analysis is then used to create masks of the 

Sirius Red-stained fibrosis areas33. These masks train a deep learing algorithm to measure 

fibrosis in the corresponding H&E-stained sldies33. The model’s performance is validated using 

F-statistics33. A further application is the automatic detection of glomeruli with subsequent 

automatic measurement of glomerular size described in a study in male obese 

BTBR ob/ob mice34. Glomeruli were automatically detected and segmented from WSIs using 

the HistoCloud tool35. 

 

 
Figure 6 Image Recognition in Digital Nephropathology. This figure demonstrates applications of image recognition with 
examples. (A) The three-step workflow for glomerulus classification involves: (1) detecting glomeruli in biopsy images using 
a trained HALO AI (Indica Labs) classifier model; (2) centering detected glomeruli images within a 1024 x 1024 pixel-sized 
patch and discarding non-glomerulus background pixels; (3) classifying pre-processed glomeruli using three different 
approaches: multiple binary classifiers in a one-vs-rest setting, a single multiclass classifier, and a spatially guided multiclass 
classifier, all trained using a five-fold cross-validation setting32. This figure is with permission from: Besusparis, J., Morkunas, 
M., & Laurinavicius, A. (2023). A Spatially Guided Machine-Learning Method to Classify and Quantify Glomerular Patterns 
of Injury in Histology Images. J Imaging, 9(10). doi:10.3390/jimaging9100220 (B) Fibrosis segmentation was performed as a 
proof of concept to detect fibrosis in H&E stains (predicted mask). For comparison, the true mask generated on Sirius red 
stains is also shown33. This graphic is with permission from: Mola N, Hodneland E, Weishaupt H, Leh S, editors. Training a 
deep learning model for quantification of fibrosis in non-neoplastic kidney biopsies - a feasibility study. 34th European 
Congress of Pathology; 2022; Switzerland, Congress Center Basel. (C) The figure depicts glomerular segmentation using 
image recognition techniques. (Weishaupt H, (2024). Glomerular Segmentation.)  

 
 
 
1.1.4.3 Image Registration in Digital Pathology  

 
There are many situations in the evaluation of WSIs in which the individual sections need to 

be aligned with each other to enable the pathologist to view multiple WSIs simultaneously. 

The term for image alignment is image registration. Image registration involves aligning two 
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or more images, which can be from the same or different sources: one designated as the fixed 

or reference image and the other as the moving image36. The moving image undergoes spatial 

transformation to align it with the fixed image. This process is frequently a preliminary step in 

various medical image analysis procedures. Image registration in digital pathology serves three 

functions: enabling cross-slide image analysis, facilitating multimodal image fusion, and 

supporting the three-dimensional reconstruction of tissues from serial histological sections36. 

These functionalities collectively enhance the integration and interpretation of histological 

information, offering a more holistic understanding of tissue architecture and pathology, thus 

significantly contributing to advancements in medical diagnostics and research 

methodologies36. 

 

There are two main methods for automatic image registration: intensity -based registration and 

feature-based registration36. In intensity-based registration, the method focuses on the 

brightness or colour of the pixels in the images36. It tries to adjust the moving image so that its 

pixels match up as closely as possible with the fixed image by measuring how similar the two 

images are and adjusting until they align well. On the other hand, feature-based registration 

looks for specific parts of the images, like edges or corners, and uses these as landmarks36. The 

process finds these landmarks in both images and then lines them up by figuring out the best 

way to fit them together. The choice between the two methods depends on the nature of the 

images36.  The registration techniques discussed above primarily involve linear methods, where 

the moving image is moved through basic transformations like flipping, rotating, or shifting to 

align with the fixed image. However, due to deformation occurring during histological 

processing, non-linear registration methods are also necessary for alignment. Currently, non-

linear methods for histology images are under research. One proposed non-linear registration 

method is by TIAToolbox, which utilizes a B-spline transform. This deformable registration 

method employs B-spline curves to define a continuous deformation field. Enabling precise 

mapping of each pixel in the moving image to its corresponding pixel in the fixed image37.  

 

1.2 Problem 
Conducting image registration in histology images presents two primary challenges. Firstly, 

WSI are vast, often exceeding 10 gigabytes of uncompressed storage size per image. Some 

images even surpass 80 gigabytes in memory size. Addressing the challenge of processing such 

large-scale data and complex computations requires the utilization of high-performance 
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computing systems. Alternatively, a pre-processing step involving downscaling and reducing 

the number of pixels can be employed. However, this approach risks altering the original data 

obtained in the laboratory. To prevent alteration of the original laboratory data, one can develop 

a pipeline and test it using downscaled images before applying it to full-scale images with the 

aid of high-performance computing systems. Secondly, challenges arise from the susceptibility 

of kidney tissue to deformation throughout histological processing, leading to changes in tissue 

dimensions. These alterations can introduce inaccuracies when aligning images from different 

sections. To address this issue, non-linear compensation methods are employed to resolve the 

registration problem.  

 

Moreover, direct registration of kidney biopsy sections using raw data from is not feasible with 

existing image registration tools. Prior to registration, raw images typically have to undergo a 

series of pre-processing steps, which deal e.g. with the segmentation of tissue, the selection of 

reference and target sections for alignment, dealing with stain variation, etc. These include 

managing variations in the number of sections in histology images (Figure 7), accounting for 

the presence of control tissue, and accommodating differences in tissue staining and thickness. 

These steps are essential to ensure accurate and reliable image registration. Therefore, 

achieving accurate image registration in kidney histopathology requires consideration of tissue 

characteristics, staining methods, and computational resources. By addressing these 

challenges, we can ensure the precision and utility of registered images for diagnostic and 

research purposes. 

 

 
Figure 7 Scanned Whole Slide Images. The whole slide images depict biopsy sections that are not perfectly ordered or 
oriented. Red arrows indicate the direction in which the sections are pointing. Histology images from Renal research lab, 
Haukeland University Hospital, Sabine Leh. 
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1.3 Related Works 
 
Lotz et al.'s study compares consecutive and restained sections, highlighting the importance of 

deformable registration methods in histopathology38. While consecutive sections allow cost-

effective region-level annotations, restained sections offer superior nucleus-level alignment for 

biomarker analysis38. This research, closely aligned with commercial HistokatFusion tool, 

provides valuable insights for optimizing image registration in diagnostic and research 

contexts38. Additionally, limitations are discussed, including the reliance on landmarks as the 

measure of accuracy and the need for comprehensive evaluation metrics38. The study 

acknowledges challenges in assessing smoothness of deformation and discrepancies between 

datasets due to various factors38. 

 

Awan et al., in collaboration with Lotz, investigate registering multiple sections within a tissue 

block, crucial for cross-slide image analysis36. Their focus on non-rigid registration methods, 

particularly using Deep Feature Based Registration a rigid registration method as a primary 

approach, achieves precise alignment with minimal errors38. The development of a 

visualization tool enhances workflow efficiency38. This research, associated with the open-

source tool TIAToolbox, offers valuable insights into optimizing registration processes for 

histopathological analysis38. 

 

1.4 Open Questions? 
Despite considerable advances in histopathological image registration, there is still a 

substantial lack of research regarding the use of such technology in the field of 

nephropathology. Firstly, can these tools be directly applied to raw data obtained from 

histology laboratories? Secondly, how well do current non-rigid methods work, and how do 

they impact tissue interpretability after registration? Additionally, how do the resolution and 

quality of histology images impact the accuracy of image registration? Moreover, what role do 

variations in staining techniques play in influencing the performance of image registration 

algorithms?  Lastly, what is the performance of already available open-source and commercial 

image registration tools when applied to kidney images, and how easily can they be adopted 

for such an application? 
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2 Aim and Objectives 
The current project is part of an endeavour to develop a future pipeline to automatically align 

randomly positioned biopsy sections into an ordered sequence (Figure 8). The pipeline will 

consist of two main components: 1) image registration and 2) consecutive section ordering 

based on when the section was cut using microtome. This thesis will primarily focus on the 

first component, namely the image registration phase. The project will unfold in two distinct 

stages, each corresponding to a specific objective. The first objective will involve identifying 

suitable image registration tools, whether commercial or open source through literature review. 

The second objective involves implementing and evaluating these tools, which will lay the 

foundation for future efforts to integrate them into a fully functional pipeline, facilitating the 

larger organizational process. 

 
Figure 8 Software tool designed to align and order kidney biopsy sections. This figure depicts the objective of the extended 
pipeline. It involves extracting sections from kidney biopsy whole slide images and arranging them in a coherent sequence. 

 
Creating a tool capable of automatically arrange randomly positioned biopsy sections into an 

ordered sequence offers several advantages. Firstly, it enables nephropathologists to gain a 

better understanding of pathological lesions based on kidney structures, such as glomeruli 

(Figure 9). Additionally, this approach streamlines the diagnostic process, as pathologists can 

efficiently review all sections aligned side by side in the correct order, eliminating the need to 

open new slides for each section. 

 
Figure 9 Comprehensive visualization of kidney structures. The figure illustrates how the result produced by the software 
tool might look like. The image showcases how easily one specific glomerulus can be tracked through all sections. In addition, 
serial images (or views) of the glomerulus can be depicted side by side, allowing for in-depth analysis and examination of 
renal morphology. 
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3 Part I - Literature Review 
 

3.1 Materials and Methods 
 

In this literature review, a search strategy was implemented to identify relevant image 

registration tools that can be integrated into the pipeline. Electronic databases, PubMed and 

IEEE Xplore, were systematically searched using predetermined keywords and search filters. 

For PubMed, the search phrase was: “(image registration) AND (digital pathology) AND 

(Whole Slide Images)” (Table 1). Studies were included based on predefined criteria, including 

publication in academic conferences, relevance to the research topic, availability in the English 

language, and publication within the past 5 years, and included articles from 2019 to 2024. 

Exclusion criteria encompassed non-peer-reviewed sources, lack of direct relevance to the 

research topic, and non-English language publications.  

 
Table 1 Summary of PubMed Search Criteria and Results.  

 

For IEEE Xplore, the search phrase was: (“All Metadata”: image registration) AND (“All 

Metadata”: digital pathology) (Table 2). Studies were included based on predefined criteria, 

including publication in academic conferences, relevance to the research topic, availability in 

the English language, and included period from 2015 - 2024. Exclusion criteria encompassed 

non-peer-reviewed sources, lack of direct relevance to the research topic, and non-English 

language publications. Strengths of the review methodology included the comprehensive 

search strategy and rigorous selection criteria, while limitations encompassed potential 

publication bias and language restrictions. 

Criteria Details 

Search Database PubMed 

Search Terms  (image registration) AND (digital pathology) 

AND (Whole Slide Images) 

Filters Applied Publication Date: Last 5 years 

Date of Search 11.09.2023 

Number of Results 26 

Selection Criteria English Language 

Total Articles Selected for Review 10 

Selected For Detailed Review 2 



 25 

Følsomhet Intern (gul) 

Table 2 Summary of IEEE Xplore Search Criteria and Results. 

 

Following a literature review, five articles were chosen for further analysis, identifying six 

image registration tools (Table 3). A Google search was conducted to assess the user-

friendliness, past successful utilization, and predominant dataset usage (e.g., radiology data or 

histology images) for each tool. 

 

 

 

 

 

3.2 Results 
 
After conducting a thorough review of relevant literature and considering various factors, 

including user-friendliness, past successful applications, and predominant dataset (e.g., 

radiology data or histological images), it was decided to utilize two tools: HistokatFusion and 

TIAToolBox. HistokatFusion, being a commercial tool, was noted for its intuitive interface and 

widespread adoption among researchers, thereby facilitating user- friendliness and successful 

utilization in previous studies. On the other hand, TIAToolBox, as an open-source tool, was 

found to have a user-friendly manual. Additionally, its code was accessible and easily 

adaptable. Both tools were employed for the analysis of histological images, aligning well with 

the requirements of the study.  

 

Criteria Details 

Search Database IEEE Xplore 

Search Terms  (“All Metadata”: image registration) AND (“All 

Metadata”: digital pathology) 

Filters Applied 2015- 2024 

Date of Search 11.20.2023 

Number of Results 57 

Selection Criteria English Language 

Total Articles Selected for Review 4 

Selected For Detailed Review 3 
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Table 3 Selected Literature for Detailed Review from Literature Review. 

Article Title  Authors/Year Findings Commercial/Open-
Source 

 

‘Comparison of consecutive and 

restained sections for image 

registration in histopathology’38 

 

 

Lotz, J., et al. (2023) 

 

HistokatFusion 

 

Commercial 

‘SimpleElastix: A User-

Friendly, Multi-lingual Library 

for Medical Image 

Registration’39 

 

Marstal, K., et al. 

(2016) 

SimpleElastix Open-Source 

‘elastix: a toolbox for intensity-

based medical image 

registration’40 

 

Klein, S., et al. 

(2010) 

Elastix Open-Source 

‘ANHIR: Automatic Non-rigid 

Histological Image Registration 

Challenge’41 

 

Borovec, J., et al. 

(2020) 

ANTs (Advanced 

Normalization Tools) 

Open-Source 

‘ANHIR: Automatic Non-rigid 

Histological Image Registration 

Challenge’41 

 

Borovec, J., et al. 

(2020) 

NiftyReg Open-Source 

‘Deep feature based cross-slide 

registration’36 

Awan, R., et al. 

(2023) 

TIAToolBox Open-Source 
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4 Part II   
This section outlines the practical application of the commercial and open-source image 

registration tools HistokatFusion and TIAToolbox. 

 

4.1 Materials and Methods 
The system configuration utilized for this study consisted of a 14-inch MacBook Pro (2023) 

powered by an Apple M2 Pro chip, equipped with 16GB of RAM, and running macOS Sonoma 

14.0.  

 

A summary overview of the workflow is depicted in figure 10. The pre-processing phase 

involved down-sampling and segmentation of the raw images into individual sections. 

Registration was conducted using both the commercial tool HistokatFusion and the open-

source tool TIAToolBox. With HistokatFusion, the fixed and moving images were uploaded 

to the server and registered. In contrast, TIAToolBox36 employed a structured framework 

designed to enhance registration accuracy. This framework encompasses three primary stages: 

initial pre-processing, establishing rigid alignment via the Direct Feature-Based Registration 

(DFBR) approach, and subsequent nonlinear registration using B-Spline transform, all 

facilitated by TIAToolBox. 

The registration success and comparison will be assessed using the intersection over union and 

dice score metrices. 

The code for accomplishing the tasks described in this section was developed partially with the 

help of ChatGPT42.  
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Figure 10 Workflow Summary. This figure presents an overview of the thesis’s whole workflow, encompassing the 
preprocessing of Whole Slide Images (WSIs), image registration, and evaluation methods. Initially, WSIs undergo down 
sampling before tissue segmentation and division into individual sections for subsequent processing. These downscaled images 
are then uploaded to the HistokatFusion server for registration. For the open-source tool, TIAToolbox, the images undergo 
rigid registration utilizing deep feature-based registration (DFBR), followed by non-rigid registration using B-spline transform. 
The resultant registration outcomes are then compared and evaluated using Intersection over Union (IOU) and Dice Score 
(DSC) metrics. 

 

 

 

 

Image
s 
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4.1.1 Image Pre- Processing 
 
All WSIs used in this project were obtained from the Renal Biopsy Laboratory, Department of 

Pathology, Haukeland University Hospital, Bergen. The image pre-processing procedure is 

divided into three main phases: pre-processing of raw images, extraction of tissue section 

images, and pre-processing of tissue section images. 

 

4.1.1.1 Pre-processing of Raw Images 

In the initial phase, the raw data underwent a down-sampling process, reducing its size by a 

factor of 16 - 18 for all except WSI_6 (Table 4 and Figure 12A). Figure 11 shows an example 

of the downscaling process for WSI_6. The image was downscaled by 40% and then by an 

additional 10x. The 40% downscaling was chosen because the system configuration could only 

process a 40% downscaled image for WSI1_6. WSI1_6 images are used to compare the two 

image registration tools.  

 

 
Figure 11 Visualization of images at different resolutions. Full resolution, 40% downscaled, and 40% downscaled with an 
additional 10x downscaling. The WSIs depict vasculature structure at three different resolutions.   

 

4.1.1.2 Extraction of Tissue Section Images 

Subsequently, segmentation was performed using code sourced from TIAToolbox (Figure 

12B). However, modifications were made to this code to accommodate certain sections 

requiring an additional connected component for segmentation. Consequently, the sections 

were separated into individual connected components or segments (Figure 12C). The number 

and selection of connected components required for detection were manually determined for 

each WSI. Subsequently, bounding boxes were computed for each segment (Figure 12D) and 

the respective coordinates were then applied in the original image (Figure 12E) to extract 

individual segments as separate images in TIFF format (Figure 12F). 
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Figure 12 Pre-Processing of Raw Data. All raw data were downscaled by a factor of 16 except WSI_6 from case no.1 
presented in illustration above, which was downscaled by 40% (A). This downscaled image was tissue segmented. (B). The 
segmented white pixel sections were all divided into separate connected components indicated as blue, green, and red (C). 
Bounding boxes were placed around the connected components (D). The bounding boxes were then applied to the original 
downscaled image (E) to crop out the sections into individual TIFF images (F). 

 

4.1.1.3 Pre-processing of Tissue Section Images 

In the second phase of the process, the selection of the fixed image was conducted based on 

various criteria, including structural integrity, image quality, and suitability for all sections 

within the WSI (Figure 12A). Structural integrity implies that images were chosen to display 

similar anatomical structure across all sections of the WSI, as shown in figure 13. Image quality 

of each section was also assessed, considering potential contaminations such as dust and debris, 

staining artifacts, tissue folding or wrinkling, air bubbles, glass imperfections, and other 

factors.  

 
Figure 13 Example of Structural Integrity. Fixed images in WSI_DC1 chosen to be the section with the most structural 
integrity, as the section appears like section 2. In section 1, the smaller broken part is shifted.  

 

Prior to registration with TIAToolbox, images underwent preprocessing, during which some 

images were downscaled by a factor of 2 to 3, depending on their size. The selection of the 

moving image was randomized among the sections not chosen as the fixed image (Figure 14A). 

Segmentation of both the fixed and moving images was performed using code modified from 

TIAToolbox (Figure 14B). To ensure uniform dimensions and facilitate accurate alignment 

image padding was conducted to the fixed and moving images as well as their corresponding 
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masks (Figure 14C-D). Furthermore, the masks underwent thorough validation to ensure 

complete binary representation (Figure 14D). 

 
Figure 14 Pre-Processing for Registration. Moving and fixed images were again downscaled by a factor of 3 (A). 
Segmentation of both the fixed and moving images was conducted using code modified from TIAToolbox (B). Added image 
padding to the fixed and moving images, as well as their corresponding binary masks (C-D).  

 

 
Table 4 Downscaling factor for each registered WSIs. 

 

Case no. WSI  Downscaling Factor 

Case 1 WSI1_6 40% 

WSI1_11 18x 

WSI1_12 18x 

Case 2 WSI2_1 16x 

Case 3 WSI3_1 18x 

Case 4 WSI4_1 16x 

Case 5 WSI5_1 18x 

Case 6 WSI6_1 17x 

Case 7 WSI7_1 17x 

Case 8 WSI8_1 17x 

Case 9 WSI9_1 17x 

Case 10 WSI10_1 17x 

Case 11 WSI11_1 17x 
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4.1.2 Rigid and Non-Rigid Registration  
 
The TIAToolbox image registration algorithm comprises a two-step registration process 

involving rigid and non-rigid registration. Initially, the fixed and moving images undergo a 

pre-alignment process known as rigid or linear registration. Rigid registration primarily entails 

rotating, flipping, or shifting the moving image to align with the fixed image (Figure 15A). 

However, since histological sections may undergo deformations during processing, rigid 

registration alone is insufficient. Hence, a non-rigid or non-linear alternative become 

necessary. This non-rigid approach allows the moving image to deform itself to better match 

the fixed image, accommodating the deformations encountered during histological processing 

(Figure 15B).  

 

 
Figure 15 Rigid and Non-Rigid Transformation. (A) Rigid Registration enables images to rotate, flip, or shift the moving 
image to align with the fixed image. (B) Non-rigid registration allows the moving image to deform itself to better match the 
fixed image. 

 
 
4.1.2.1 Rigid Registration (Deep Feature Based Registration) 
 

The pre-processing stage lays the groundwork for image registration results by initially 

generating a tissue mask for each image pair and standardizing the image dimensions of fixed 

and moving images. Following this, the Deep Feature Based Registration (DFBR) method was 

utilized to achieve an initial alignment. DFBR employs data-driven descriptors to estimate the 

global transformation 36, enabling linear alignment through flipping and rotating the sections. 

This process utilizes both the fixed and moving images, along with their respective masks, to 

obtain a rigid transformation result (Figure 16).   
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Figure 16 Rigid-Transformation using DFBR. For rigid transformation, both fixed and moving images were segmented to 
obtain binary masks. Fixed image is indicated in pink and registered image is indicated in green. The grey area is the overlap 
between fixed and registered images. The green borders indicate additional padding added to the moving image after 
registration to make the dimensions the same. 

 
 
 

4.1.2.2 Non – Rigid Registration using B- Spline Transform 
 
After rigid transformation, the fixed and rigid-registered images, along with their 

corresponding masks, are utilized as input for obtaining a non-rigid transformation result 

(Figure 17). Non-rigid registration is achieved using B-Spline Transform, which is one of the 

default algorithms for non-rigid registration available in TIAToolbox and is a deformable 

registration method employing B-spline curves37. To ensure precise alignment, two parameters, 

the grid spacing and the sampling percentage, were carefully adjusted. The default settings 

typically include a grid spacing of 50 and a sampling percentage of 0.2.  
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Figure 17 Non-Rigid Transformation using B-Spline Transform. For non- rigid transformation, fixed and the moving rigid-
registered images are segmented into binary masks and registered. The grey area represents the overlap between the fixed and 
registered images. In the non-rigid transformation results, the green borders indicate additional padding added to the moving 
image after registration to ensure the dimensions match. For the moving rigid-registered image, this padding is black. 

 

The grid spacing is defined as the distance between gridlines. Coordinates of crossing gridlines 

hitting the tissue section are control points (Figure 18). These control points serve as references 

for aligning two images. The sampling percentage value denotes the proportion of the detected 

section utilized for image registration. To determine the optimal grid spacing and sampling 

percentage values for non-neoplastic kidney biopsy WSI, various parameter values were tested 

on WSI_12 from case no-1 to evaluate their effects on alignment results.  

 
Figure 18 Grid- Space with control points. This image illustrates grid overlaid on a section, where the spacing between each 
gridline represents the grid spacing. Each intersection between grid lines acts as a control point. 
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4.1.2.3 Visualization of Registration Results 
 
The registration output was visualized consistently across all registered sections. For 

HistokatFusion (Figure 19A), an overlay of the fixed image in green and the moving image in 

purple was presented, allowing the transformation to be observed through the shapes of the 

resultant image. For TIAToolbox (Figure 19B), the visualization included the fixed image in 

pink and the registered image in green. The grey area indicates the overlap between the fixed 

and registered images. The green borders highlight the extra padding added to the moving 

image post-registration to ensure dimension matching.  

 
Figure 19. Visualization of Registration Output. (A) The registration output for HistokatFusion shows an overlay of the 
fixed image (green) and the moving image (purple), allowing the transformation to be observed through the shapes of the 
resultant image.43 (B) The registration output for TIAToolbox displays the fixed image (pink) and the registered image (green). 
The grey area indicates the overlap between the fixed and registered images. Additionally, green borders denote the extra 
padding added to the moving image after registration to ensure the dimensions matched.44 

 
 

4.1.3 Intersection Over Union (IOU) and Dice Score (DSC) 
 

To compare the open-source tool TIAToolbox and the commercial tool HistokatFusion, a 

statistical analysis is conducted using Intersection over Union (IOU) (Equation 4.2.4.1) and 

Dice Score (DSC) (Equation 4.2.4.2) to obtain objective metrics. The statistical analysis 

involves utilizing fixed and registered binary masks. Subsequently, the coordinates of white 

pixels in the masks are determined. From these pixel coordinates, the intersection and union 

are computed, enabling the computation of IOU and DSC values (Figure 20).  

 

4.2.4.1.									𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛	𝑂𝑣𝑒𝑟	𝑈𝑛𝑖𝑜𝑛	(𝐼𝑂𝑈) = !"#$	&'	&(#")$*
!"#$	&'	+,-&,

= |!∩0|
|!∪0|

= 2&+,3#4	56-3#	*-7#)8	(&(#")$*)
2&+,3#4	56-3#	*-7#)8	(+,-&,)

  

 



 36 

Følsomhet Intern (gul) 

4.2.4.2										𝐷𝑖𝑐𝑒	𝑆𝑐𝑜𝑟𝑒	(𝐷𝑆𝐶) = ;	×	=(#")$*
>&3$)	!"#$

= ;|!∩0|
|!|?|0|

= ;	×	2&+,3#4	56-3#	*-7#)8	(&(#")$*)
2&+,3#4	56-3#	*-7#)8	(@-7#4)	?	2&+,3#4	56-3#	*-7#)8	(&(#")$*)

	   

 

 
Figure 20 Intersection Over Union (IOU) and Dice Score (DSC). The method used to calculate IOU and DSC involves 
using binary fixed and registered masks to determine the coordinates of the white pixels. These coordinates are then used to 
compute the IOU and DSC metrics based on the displayed equations for IOU and DSC formulas. (Refer in figure text.) 

 

4.1.4 Image Pre- Processing for Broken Sections 
 

The pipeline was also tested on challenging cases. When dealing with a challenging WSI, it 

might exhibit issues such as a broken section, as illustrated in figure 21. To address issues such 

as broken sections, during pre-processing, individual components are again automatically 

identified as part of the tissue segmentation procedure. Subsequently, where applicable, if a 

single section consisted of multiple components (either due to broken tissue or multiple tissue 

cylinders), these were manually combined by labelling them as belonging to the same section. 

Following this, a bounding box is then computed for each set of merged components and the 

coordinates are utilized to crop the respective regions from the raw image. The individual 

images that have been separated are subsequently employed for additional image registration 

utilizing TIAToolbox. 
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Figure 21. Pre-Processing of raw data for difficult cases. A) The raw data undergoes down-sampling by a factor of 16. B) 
Subsequently, the downscaled image undergoes tissue segmentation. C) The segmented sections are then separated into distinct 
connected components. D) Certain components are then merged to form new combined components. E) Bounding box 
coordinates are applied to surround the combined connected components. F) The bounding boxes computed for these merged 
components are then utilized to crop the respective regions from the raw image. G) Individual TIFF files for each section are 
extracted from the original image. 
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4.2 Results 
 

4.2.1 Comparison Between HistokatFusion and TIAToolBox 
 
Given the limited memory resources available in the utilized computing environment/setting, 

to be able to utilize TIAToolbox, both the fixed and moving images underwent downscaling 

from 40% to an additional down-sampling by a factor of 10 to facilitate the registration process. 

HistokatFusion was capable of registering images at a higher resolution; however, to enable a 

comparison with TIAToolbox, images with the same resolution were used.  

 

Based on visual examination, the image registration outcomes achieved with HistokatFusion 

appears promising (Figure 22). However, upon closer inspection at the microscopic level, 

imperfections are evident in the lower parts of the sections, indicating incomplete alignment. 

This discrepancy is illustrated in figure 22, where arrow demonstrate the imperfect alignment 

in zoomed-in view.  
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Figure 22 Registration results obtained with HistokatFusion. The registration appears successful across most areas, except 
for a specific region highlighted in the zoomed-in view, where discrepancies between the fixed and registered images are 
visible. In the illustration, green represents the fixed image, while purple indicates the registered image.43  

 
 

Registration using TIAToolbox was also conducted, starting with a rigid transformation 

followed by a non-rigid transformation. The registration appeared successful based on visual 

inspection; however, achieving precise registration at a microscopic level was hindered due to 

the downscaling of images. Nonetheless, at a less magnified scale, the results were satisfactory 

(Figure 23).  
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Figure 23 Registration using TIAToolbox. The fixed and moving images undergo segmentation and registration using both 
rigid and non-rigid transformations. Fixed image is indicated in pink and registered image is indicated in green. The grey area 
is the overlap between fixed and registered images. Additionally, green borders denote the extra padding added to the moving 
image after registration to ensure the dimensions matched.44 

 

 
Intersection over Union (IOU) and Dice Score (DSC) metrics were employed to evaluate the 

registration results of a single WSI (WSI1_6), which underwent a 40% down sampling and an 

additional 10x scaling (Table 5). HistokatFusion (Figure 22) achieved an IOU of 0.94  and a 

DSC of 0.97, while TIAToolbox (Figure 23) showed an IOU of 0.88 and a DSC of 0.93. 

Although HistokatFusion, a commercial tool, demonstrated higher IOU and DSC metrics, 

TIAToolbox, being an open-source tool, was selected for further testing. This decision was 

influenced by its potential for (1) further refinement through parameter optimization to enhance 

performance and (2) easier integration into larger pipelines due to its open-source nature. 

Consequently, TIAToolbox was employed for registration testing across diverse and 

challenging cases.     
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Table 5 Intersection Over Union (IOU), Dice Score (DSC), and downscaling factor.  

Tool/Software WSI Downscaling Factor Intersection over 

Union (IOU) 

Dice Score 

(DSC) 

HistokatFusion WSI_6 40% ≈ 0.96 ≈ 0.98 

HistokatFusion  40%, additional 10x ≈ 0.94 ≈ 0.97 

TIAToolBox  40%, additional 10x ≈ 0.88 ≈ 0.93 

 

 

 

4.2.2 Testing of Various Grid Space and Sampling Percent Values 
 

Based on the high IOU and DSC values observed in the initial testing on a single image 

(WSI1_6) integrating TIAToolbox into a broader pipeline for automated alignment and 

ordering appears feasible. However, further testing on a variety of sections is needed, as the 

pipeline might not yield the same level of registration on other WSIs beyond the one used for 

initial testing. For instance, discrepancies in registration may arise due to inherent differences 

among WSIs, which stem from variations introduced during histological processing, such as 

differing amounts of cylinders per section, broken sections, stain variations, etc. Consequently, 

the pipeline was applied to different whole slide images to ascertain if any modifications to the 

code are necessary. 

 

Towards this end, the project started with an evaluation of the parameter values used during 

registration. Specifically, for the grid spacing and sampling percentage parameters, 

TIAToolbox utilizes default values of 50 mm and 0.2, but it is unclear whether these values 

would provide the best results for the kidney biopsy sections presented here. Accordingly, to 

evaluate the impact of these parameters, an experiment was conducted on WSI1_12, repeating 

the registration multiple times systematically testing different combinations of grid spacing and 

sampling percentage values. Factors considered when evaluating the choice of these parameter 

values included achieving the best alignment based on the IOU and DSC, as well as 

computational time (Table 6).  
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Table 6 Test of Grid Space and Sampling percent values for best alignment results. 

Case no. WSI Grid Space Sampling Percent IOU DSC Computational 
Time 

Case 1  WSI1_12 200 0.1  ≈ 0.93 ≈ 0.97 ≈ 4.23s 
0.2 ≈ 0.94 ≈ 0.97 ≈ 6.93s 
0.3 ≈ 0.95 ≈ 0.97 ≈ 8.17s 
0.4 ≈ 0.95 ≈ 0.98 ≈ 10.2s 
0.5 ≈ 0.95 ≈ 0.98 ≈ 11.0s 
0.6 ≈ 0.96 ≈ 0.98 ≈ 13.7s 
0.7 ≈ 0.95 ≈ 0.98 ≈ 15.5s 
0.8 ≈ 0.95 ≈ 0.98 ≈ 17.5s 
0.9 ≈ 0.96 ≈ 0.98 ≈ 20.8s 
1.0 ≈ 0.96 ≈ 0.98 ≈ 21.1s 

100 0.1  ≈ 0.91 ≈ 0.96 ≈ 6.36s 
0.2 ≈ 0.95 ≈ 0.97 ≈ 8.90s 
0.3 ≈ 0.94 ≈ 0.97 ≈ 12.9s 
0.4 ≈ 0.95 ≈ 0.98 ≈ 16.4s 
0.5 ≈ 0.95 ≈ 0.98 ≈ 17.3s 
0.6 ≈ 0.96 ≈ 0.98 ≈ 17.6s 
0.7 ≈ 0.96 ≈ 0.98 ≈ 16.6s 
0.8 ≈ 0.95 ≈ 0.98 ≈ 18.8s 
0.9 ≈ 0.96 ≈ 0.98 ≈ 20.1s 
1.0 ≈ 0.96 ≈ 0.98 ≈ 23.2s 

50 0.1  ≈ 0.88 ≈ 0.94 ≈ 11.2s 
0.2 ≈ 0.94 ≈ 0.97 ≈ 17.6s 
0.3 ≈ 0.95 ≈ 0.97 ≈ 18.7s 
0.4 ≈ 0.95 ≈ 0.97 ≈ 20.0s 
0.5 ≈ 0.95 ≈ 0.98 ≈ 22.4s 
0.6 ≈ 0.95 ≈ 0.98 ≈ 23.8s 
0.7 ≈ 0.95 ≈ 0.98 ≈ 27.7s 
0.8 ≈ 0.95 ≈ 0.98 ≈ 24.8s 
0.9 ≈ 0.95 ≈ 0.98 ≈ 37.2s 
1.0 ≈ 0.96 ≈ 0.98 ≈ 39.4s 

20 0.1  ≈ 0.93 ≈ 0.96 ≈ 48.6s 
0.2 ≈ 0.92 ≈ 0.96 ≈ 77.7s 
0.3 ≈ 0.93 ≈ 0.97 ≈ 75.2 s 
0.4 ≈ 0.93 ≈ 0.96 ≈ 89.0s 
0.5 ≈ 0.86 ≈ 0.93 ≈ 92.8s 
0.6 ≈ 0.86 ≈ 0.93 ≈100s 
0.7 ≈ 0.86 ≈ 0.92 ≈ 91.6s 
0.8 ≈ 0.79 ≈ 0.88 ≈128s 
0.9 ≈ 0.75 ≈ 0.86 ≈141s 
1.0 ≈ 0.75 ≈ 0.86 ≈137s 
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The visual representations in figure 24 depict a comparative analysis of alignment outcomes 

across various grid spacings, namely 200, 100, 50, and 20, each paired with different sampling 

percentages. The findings indicate that grid spacings of 200, 100, and 50, when complemented 

by higher sampling percentages, yield better IOU and DSC results compared to a grid spacing 

of 20. In figure 25, a graphical depiction of computational time plotted against sampling 

percentage across various grid space values is presented. Notably, the visualization illustrates 

that higher grid spacings coupled with lower sampling percentages result in reduced 

computational time. Specifically, grid space 200 demonstrates the shortest computational time, 

albeit with marginal differences observed between grid spacings 200, 100, and 50. Conversely, 

grid spacing 20 exhibits a significantly larger disparity in computational time compared to the 

other parameters values. After considering computational efficiency and alignment quality, a 

grid spacing of 200 mm and a sampling percentage of 1.0 appeared to offer the best registration 

among the tested parameter choices coupled to a reasonable computational time frame. 

Consequently, these parameters were adopted for any downstream analyses on the remaining 

sections. 

 

 
Figure 24 Grid Space and Sampling Percent for IOU and DSC. 1a-d) Scatterplots illustrating IOU values plotted against 
sampling percentages for different grid spaces: 200 (a, blue), 100 (b, red), 50 (c, green), 20 (d, purple) on the left side. 2a-d) 
Scatterplots illustrating DSC values plotted against sampling percentages for different grid spaces: 200 (a, blue), 100 (b, red), 
50 (c, green), 20 (d, purple) on the right side.  
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Figure 25 Computational Time vs. Sampling Percent and Grid Space. The line diagram displays the computational time 
required for each registration run across varying sampling percentages for different grid spaces (200 in blue, 100 in red, 50 in 
green, and 20 in purple). 

 

 

The IOU/DSC for grid spacing 200 and sampling percentage 1.0 is approximately 0.93/0.97, 

while for grid spacing 20 and sampling percentage 1.0, it is approximately 0.75/0.86. Figure 

26 visualizes the contrast in registration quality between these scenarios. For grid spacing 20 

(Figure 26B), the intersection area tends to get smaller, and noise appears in the white 

intersection area of the mask, resulting in poorer registration outcomes. One explanation for 

this outcome may be that the increase in control points as grid spacing decreases poses 

challenges for the algorithm in accurately detecting relevant points crucial for precise 

registration. As the number of control points increases, the likelihood of noise, which refers to 

random fluctuations in the data that may not represent the true underlying patterns45, also 

increases.  
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Figure 26 Visualization of the mask registration results for two scenarios. The figure presents registration results for grid 
spacings of 200 (A) and 20 (B), respectively, both with a sampling percent of 1.0. The images depict the overlay of the masks 
of the fixed and registered images, where blue pixels represent the region of the overlay unique to the fixed image, the red 
pixels represent the region of the overlayed mask unique to the registered image, and the white pixels indicate the intersection 
of the fixed and registered masks. This color – coding highlights the overlap and discrepancies between the two masks, 
providing a visual representation of the registration accuracy.   

 
 

 

4.2.3 Application of TIAToolbox on Diverse Sections 
 

The pipeline underwent testing using a diverse set of 12 WSIs, each exhibiting unique 

characteristics. This set was specifically chosen to test the adaptability of the pipeline and to 

investigate whether and which types of adjustments are necessary to approach general 

applicability. The adjustments made to the pipeline included employing different pre-

processing techniques to handle the specific features and variation present in each WSI. This 

section details the registration results, categorized by WSIs with individual sections, sections 

with several cylinders, and sections that exhibit distinct structural differences, highlighting the 

effectiveness and limitations of the pipeline.  

 
4.2.3.1 WSIs with One Biopsy Cylinder 
 
The registration results for WSIs with individual sections demonstrate that the pipeline can be 

adapted to work on WSIs with various types of structural appearances and possible challenges. 

WSI1_11 (Figure 27) underwent successful registration with a satisfactory outcome, achieving 
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an IOU/DSC of 0.93/0.96. WSI1_12 (Figure 28) exhibited good registration results, with an 

IOU/DSC of 0.95/0.98. Both WSI8_1 (Figure 29) and WSI4_1 (Figure 30) showed successful 

registration, with IOU/DSC results of 0.91/0.95 and 0.69/0.82, respectively. Adjustments to 

the pipeline were made to accommodate variations in structural characteristics, such as gaps 

within sections, which may have influenced the registration outcome. Nevertheless, visual 

inspection suggests that the registration is satisfactory. 

 

 
Figure 27 Image registration results for WSI1_11. On the left-hand side, the WSI includes selected fixed and moving 
images. Images are registered through both rigid transformations using DFBR (middle) and non-rigid transformations using 
B-spline transform (right side). The green section indicates the fixed image, and the pink section shows the registered image. 
Additionally, green borders denote the extra padding added to the moving image after registration to ensure the dimensions 
matched.44 

 

 
Figure 28 Image registration results for WSI1_12. On the left-hand side, the WSI includes selected fixed and moving 
images. Images are registered through both rigid transformations using DFBR (middle) and non-rigid transformations using 
B-spline transform (right side). The green section indicates the fixed image, and the pink section shows the registered image. 
Additionally, green borders denote the extra padding added to the moving image after registration to ensure the dimensions 
matched.44 
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Figure 29 Image registration results for WSI8_1. On the left-hand side, the WSI includes selected fixed and moving images. 
Images are registered through both rigid transformations using DFBR (middle) and non-rigid transformations using B-spline 
transform (right side). The green section indicates the fixed image, and the pink section shows the registered image. 
Additionally, green borders denote the extra padding added to the moving image after registration to ensure the dimensions 
matched.44 

 

 

 
Figure 30 Image registration results for WSI4_1. On the left-hand side, the WSI includes selected fixed and moving images. 
Images are registered through both rigid transformations using DFBR (middle) and non-rigid transformations using B-spline 
transform (right side). The green section indicates the fixed image, and the pink section shows the registered image. 
Additionally, green borders denote the extra padding added to the moving image after registration to ensure the dimensions 
matched.44 
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4.2.3.2 Sections with Several Biopsy Cylinders 
 

The registration results for WSIs containing biopsy cylinders were evaluated to test the 

pipeline’s ability to handle diverse types of WSIs. Adjustments such as manually combining 

components, were made to the pre-processing pipeline to accommodate the unique 

characteristics of each WSI, ensuring accurate alignment and registration. For WSI2_1 (Figure 

31), the pre-processing pipeline was adapted to identify six connected components, pairing 

them in sets of two for subsequent procedures. The registration process remained consistent, 

yielding IOU/DSC approximately 0.86/0.92. WSI6_1 (Figure 32) comprises three sections, 

each containing three compartments. During preprocessing, the three compartments within 

each section were combined and utilized for further registration, resulting in an IOU/DSC of  

0.97/0.98. WSI10_1 (Figure 33) consists of two sections, each containing several 

compartments. However, parts of the cylinder on the right may not have been included in the 

fixed and moving images. During the detection of connected components, not all minor 

connected components were detected, so a decision was made to include only three 

compartments for each section in the further processing steps. The registration results yielded 

IOU/DSC of 0.90/0.95. WSI11_1 (Figure 34) comprised three sections, each featuring multiple 

compartments. The algorithm successfully detected entire sections by combining merely three 

connected components for both fixed and moving images. Following the standard registration 

procedure, the achieved results displayed an IOU/DSC of 0.68/0.81. 

 

 
Figure 31 Image registration results for WSI2_1.  On the left-hand side, the WSI includes selected fixed and moving images. 
Images are registered through both rigid transformations using DFBR (middle) and non-rigid transformations using B-spline 
transform (right side). The green section indicates the fixed image, and the pink section shows the registered image. 
Additionally, green borders denote the extra padding added to the moving image after registration to ensure the dimensions 
matched.44 
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Figure 32 Image registration results for WSI6_1.  On the left-hand side, the WSI includes selected fixed and moving images. 
Images are registered through both rigid transformations using DFBR (middle) and non-rigid transformations using B-spline 
transform (right side). The green section indicates the fixed image, and the pink section shows the registered image. 
Additionally, green borders denote the extra padding added to the moving image after registration to ensure the dimensions 
matched.44 

 
 

 
Figure 33 Image registration results for WSI10_1. On the left-hand side, the WSI includes selected fixed and moving 
images. Images are registered through both rigid transformations using DFBR (middle) and non-rigid transformations using 
B-spline transform (right side). The green section indicates the fixed image, and the pink section shows the registered image. 
Additionally, green borders denote the extra padding added to the moving image after registration to ensure the dimensions 
matched.44 
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Figure 34 Image registration results for WSI11_1. On the left-hand side, the WSI includes selected fixed and moving 
images. Images are registered through both rigid transformations using DFBR (middle) and non-rigid transformations using 
B-spline transform (right side). The green section indicates the fixed image, and the pink section shows the registered image. 
Additionally, green borders denote the extra padding added to the moving image after registration to ensure the dimensions 
matched.44 

 
 
 
 
4.2.3.3 Sections with More Complex Arrangements of Biopsy Cylinders   
 

The registration results for WSIs with more complex arrangements of biopsy cylinders were 

evaluated to assess the pipeline’s adaptability to intricate structures. Adjustments were made 

to the pre-processing pipeline, such as combining multiple components within each section, to 

handle the complexity and ensure accurate registration. For WSI3_1 (Figure 35), the pipeline 

combined four components from each section to form fixed and moving images, achieving an 

IOU/DSC of 0.95/0.97. WSI5_1 (Figure 36) involved combining four compartments within 

each section during preprocessing, resulting in an IOU/DSC of 0.89/0.94. WSI7_1 (Figure 37) 

comprised three sections, each with six compartments, which were combined for further 

registration, yielding an IOU/DSC of 0.94/0.97. For WSI9_1 (Figure 38) four compartments 

from each section were combined into a single compartment during preprocessing, leading to 

registration results of IOU/DSC 0.92/0.96. These results demonstrate the pipeline’s capacity to 

manage and accurately register more complex biopsy cylinder arrangements. 
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Figure 35 Image registration results for WSI3_1. On the left-hand side, the WSI includes selected fixed and moving images. 
Images are registered through both rigid transformations using DFBR (middle) and non-rigid transformations using B-spline 
transform (right side). The green section indicates the fixed image, and the pink section shows the registered image. 
Additionally, green borders denote the extra padding added to the moving image after registration to ensure the dimensions 
matched.44 

 
 
 

 
Figure 36 Image registration results for WSI5_1. On the left-hand side, the WSI includes selected fixed and moving images. 
Images are registered through both rigid transformations using DFBR (middle) and non-rigid transformations using B-spline 
transform (right side). The green section indicates the fixed image, and the pink section shows the registered image. 
Additionally, green borders denote the extra padding added to the moving image after registration to ensure the dimensions 
matched.44 
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Figure 37 Image registration results for WSI7_1. On the left-hand side, the WSI includes selected fixed and moving images. 
Images are registered through both rigid transformations using DFBR (middle) and non-rigid transformations using B-spline 
transform (right side). The green section indicates the fixed image, and the pink section shows the registered image. 
Additionally, green borders denote the extra padding added to the moving image after registration to ensure the dimensions 
matched.44 

 

 

 
Figure 38 Image registration results for WSI9_1. On the left-hand side, the WSI includes selected fixed and moving images. 
Images are registered through both rigid transformations using DFBR (middle) and non-rigid transformations using B-spline 
transform (right side). The green section indicates the fixed image, and the pink section shows the registered image. 
Additionally, green borders denote the extra padding added to the moving image after registration to ensure the dimensions 
matched.44 

 
 
 
 
4.2.3.4 Summary of Alignment Results for Diverse Cases 
 
The evaluation of image registration performance was conducted on a variety of WSIs, each 

with unique structural characteristics. The results of these evaluations provide insight into the 

adaptability of the registration pipeline across different scenarios. Table 7 presents the 

alignment results in terms of IOU and DSC for each of the WSIs. The quality of the registration 

is assessed based on the complexity of the individual sections. Most WSIs demonstrated 
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favourable registration outcomes, with high IOU and DSC values. WSI4_1 and WSI11_1 

achieved IOU/DSC values of 0.69/0.82 and 0.68/0.81, respectively. Although these values are 

slightly lower, they are still considered acceptable based on their structural complexity or 

damage. For instance, WSI4_1 have gaps in the tissue section, this is illustrated in figure 39. 

This indicates that while the majority of the WSIs showed satisfactory alignment performance, 

certain cases presented more challenging scenarios, yet still yielded reasonably satisfactory 

results.  

 

 
 

Figure 39 Non-rigids registration results of WSI4_1, illustrating gaps in the tissue section. On the left-hand side, non-
rigid transformations using B-spline transform is presented. The green section indicates the fixed image, and the pink section 
shows the registered image. Additionally, green borders denote the extra padding added to the moving image after registration 
to ensure the dimensions matched.44 The gaps in the tissue section (fixed and registered images) are illustrated in zoom-in 
view to the right.  
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Table 7 Alignment results for diverse cases. 

 

 

 

4.2.4 Application of TIAToolbox on Difficult Case 
 

The pipeline underwent testing on three challenging cases: Difficult Case 1 (DC1), Difficult 

Case 2 (DC2), and Difficult Case 3 (DC3).  

 
4.2.4.1 Error Encountered 
 

While executing the image registration process using the DFBRegister model in TIAToolbox44, 

a ValueError occurred in certain sections. All error presented in this section of the thesis refer 

to this ValueError. This error occurred while attempting to determine the optimal 

transformation for pre-alignment in difficult cases. Specifically, the issue arose during the 

estimation of the transform using tissue regions. The error message indicated a shape mismatch, 

although this had been addressed during the initial pre-processing steps, suggesting the 

presence of other underlying issues. Additionally, an error was encountered wherein the 

algorithm failed to identify the best transformation for pre-alignment. The error suggested to 

Case no. WSI  Downscaling Factor IOU DSC 

Case 1 WSI1_6 40% ≈ 0.96 ≈ 0.98 

WSI1_11 18x ≈ 0.93 ≈ 0.96 

WSI1_12 18x ≈ 0.95 ≈ 0.98 

Case 2 WSI2_1 16x ≈ 0.86 ≈ 0.92 

Case 3 WSI3_1 18x ≈ 0.95 ≈ 0.97 

Case 4 WSI4_1 16x ≈ 0.69 ≈ 0.82 

Case 5 WSI5_1 18x ≈ 0.89 ≈ 0.94 

Case 6 WSI6_1 17x ≈ 0.97 ≈ 0.98 

Case 7 WSI7_1 17x ≈ 0.94 ≈ 0.97 

Case 8 WSI8_1 17x ≈ 0.91 ≈ 0.95 

Case 9 WSI9_1 17x ≈ 0.92 ≈ 0.96 

Case 10 WSI10_1 17x ≈ 0.90 ≈ 0.95 

Case 11 WSI11_1 17x ≈ 0.68 ≈ 0.81 
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try changing the values for ‘dice_overlap’, which is the dice ratio used for the selection of the 

best transformation matrix44, and the ‘rotation step’, which is the increment in the rotation 

angles44.  

 

4.2.4.2 Difficult Case 1 (DC1) 
 

In WSI_DC1 (Figure 38), unique challenges arose during registration testing. Two attempts 

were made to register Section 3 (fixed image) with both Section 2 and Section 1. The first 

attempt, using Section 2 as the moving image, yielded promising results with an IOU of 

approximately 0.72 and a DSC of around 0.84 (Figure 40 B). However, the registration 

algorithm failed in the second attempt with Section 1 as the moving image (Figure 40 A). As a 

workaround, the sections were divided into two parts for registration. The larger section 

achieved an IOU of about 0.88 and a DSC of around 0.94, indicating satisfactory registration. 

The smaller section was initially registered with the fixed image as a whole, but this attempt 

failed. Subsequently, the smaller section was registered with the corresponding smaller moving 

image, resulting in good performance with an IOU of approximately 0.84 and a DSC of about 

0.91. These results suggest that the TIAToolbox registration algorithm requires similar 

positioning of sections for successful registration. 
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Figure 40 Registration attempts using DC1. In WSI_DC1, the fixed image (Section 3) was registered with both Section 1 
and Section 2. A) Registration with Section 1 was unsuccessful, leading to its division into two parts for registration - smaller 
and larger components. The blue arrow and image border indicate the registration results for the larger sections, while the red 
arrow and image border indicate the registration of the smaller sections. B) The green arrows and image border represent 
registration with Section 2, demonstrating successful rigid and non-rigid transformations. 

 
 
 

4.2.4.3 Difficult Case 2 (DC2) 
 

In WSI_DC2, one of the two sections was damaged (Figure 41). The intact section served as 

the fixed image, while the damaged section was used as the moving image. However, the 

TIAToolbox registration algorithm encountered errors and failed to register these images. As 

an alternative approach, the sections were divided into three parts and registered individually. 

The registration attempt for the upper part was unsuccessful. In contrast, the registration for 

the second part, which was the largest component, was successful, resulting in an IOU of 

approximately 0.68 and a DSC of about 0.81. It's important to note that these metrics may not 

accurately reflect alignment due to the broken nature of the moving image, resulting in data 

loss. The lower part, representing the damaged section of the moving image, was also subjected 

to registration attempts. However, this process encountered errors as the algorithm failed to 

function properly. 
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Figure 41 Registration attempts using DC2. In WSI_DC2, both the fixed and moving images were divided into three parts 
for alignment due to initial registration failure. The first part (green arrows and image borders) encountered error, while the 
second part (red arrows and image borders), comprising the largest components, achieved successful registration. However, 
the last part (blue arrows and image borders) also encountered error. 

 
 
4.2.4.4 Difficult Case 3 (DC3) 
 
In WSI_DC3 (Figure 42), the sections comprised two components: one small and one large. 

The small components aligned well using the TIAToolbox algorithm, achieving an IOU of 

approximately 0.93 and a DSC of around 0.96. However, aligning the larger components posed 

challenges. The fixed image was selected as the normal-looking section, while the moving 

image represented a section that had become folded during histological processing. 
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Figure 42 Registration attempts using DC3. In WSI_DC3, the sections were divided into two parts, comprising small and 
large components. While the small components (red arrows and image borders) achieved successful registration, the large 
components (green arrows and image borders) did not achieve successful registration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 59 

Følsomhet Intern (gul) 

5 Discussion 
 
The primary objective of this project was to investigate image registration tools for potential 

integration into a future pipeline designed to automate the alignment and ordering of non-

neoplastic kidney biopsy sections. This study focused on evaluating the performance of image 

registration tools using non-neoplastic kidney biopsy WSIs obtained from the Renal Biopsy 

Laboratorium, Dept. of Pathology, Haukeland University Hospital, Bergen. By employing IOU 

and DSC metrics, the goal was to assess the effectiveness of HistokatFusion43 (commercial) 

and TIAToolbox44 (open source) image registration tools in this specific domain and to gain 

insights that could enhance the quality of image registration within a larger future pipeline.  

 

In digital pathology, two widely discussed challenges in image registration are the large-scale 

nature of WSIs and the need for registration methods capable of handling deformations during 

histological processing. To address the former challenge, the approach involved downscaling 

images, reducing their resolution to make computational processing more manageable while 

retaining essential features for accurate registration. However, if the system configuration 

includes sufficient computational resources, downscaling may not be necessary for both the 

pre-processing and the registration process in both HistokatFusion and TIAToolbox. The latter 

challenge is typically tackled through the application of non-rigid transformations. 

TIAToolbox uses non-rigid transformation using B-spline transform44 and HistokatFusion uses 

a dense non-linear approach41, 46 which can adjust for deformations that occur during the 

preparation of histological samples.  

 

 

5.1 Comparison with Existing Literature 
 

Several studies provide valuable insights into the optimization of image registration in 

histopathology. Lotz et al.’s study emphasizes the importance of deformable registration 

methods by comparing consecutive and restained sections38. Lotz et al. also discuss limitations 

such as the reliance on landmarks for accuracy measurement and the need for comprehensive 

evaluation metrics. This thesis work utilized two tools employing non-rigid transformations. 

TIAToolbox uses B-spline transform44, while HistokatFusion employs a dense non-linear 
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approach41, 46. However, this study relied on binary mask pixel-based evaluation rather than 

landmark-based evaluation, which represents a limitation.  

 

Awan et al., focus on the registration of multiple sections within a tissue block, which is crucial 

for cross-slide image analysis36. Their research primarily employs DFBR, a rigid registration 

method, achieving precise alignment with minimal errors. This thesis uses the pre-alignment 

DFBR method by TIAToolbox, which is an advantage because it allows for better non-rigid 

registration.  

 

No literature was found on the registration of sections from non-neoplastic kidney biopsy 

WSIs, which highlights the novelty of this study. Borovec et al.41 mention using human kidney 

sections for registration with various tools, but certain pre-processing issues and challenges 

were not addressed. 

 
 

5.2 Evaluating Methodology 
 
 

5.2.1 Part I – Literature Review 
 
To find image registration tools, a literature review was conducted. The literature review 

undertaken for this study was conducted aiming to encompass a wide range of relevant 

publications in the field of image registration applied to histological images. However, it is 

acknowledged that despite the thoroughness of the review process, there may be publications 

that were inadvertently missed. This could be attributed to the limitations of the search phrases 

used or the possibility of papers employing image registration techniques on histological 

images without explicitly mentioning terms such as "digital pathology" or "whole slide 

images." Therefore, while efforts were made to capture a broad spectrum of literature, there 

remains the potential for overlooked studies that may offer valuable insights into the topic at 

hand. 

 

5.2.2 Image Pre-Processing 
 

The pre-processing pipeline initially employed down-sampling of images to reduce 

computational complexity while preserving essential features required for accurate registration. 



 61 

Følsomhet Intern (gul) 

However, down-sampling may result in some loss of information, especially at the microscopic 

level. Nevertheless, the primary objective of this study was to evaluate the efficacy of image 

registration using TIAToolbox, with the intention of integrating it into a larger pipeline in the 

future. Given the importance of preserving microscopic details in the larger pipeline, down-

sampling will not be included to avoid any potential loss of information.   

 

During the pre-processing steps, manual input was necessary, such as specifying the number 

of connected components and manually combining separated components. Since the pipeline 

relies on connected components instead of manually cropping sections, there is a possibility 

that parts of the section might be mistakenly omitted. Additionally, adjustments were made to 

ensure uniform size and to address challenges such as the presence of small components within 

sections. 

 

The current pre-processing pipeline remain partially automated due to manual inputs required. 

To automatically specify the number of connected components in histology images, several 

strategies can be considered. One approach involves testing numerous WSIs to establish a 

threshold size for detecting connected components. However, this method has a limitation 

which is that artifacts may sometimes exceed the size of broken sections, leading to potential 

misidentification by the algorithm. Another approach is instructing the algorithm to identify 

specific components that occur multiple times in a single WSI. A limitation to approach may 

be that certain WSIs may only contain one single section. However, in cases where artifacts 

are larger than the sections the algorithm could be trained to recognize specific morphological 

structures that are similar to a section as artifacts usually have a distinct shape. To overcome 

these challenges, one method that may work would be to integrate both strategies into the 

pipeline.  

 

To automatically combine broken sections, or sections with several cylinders, one approach 

would be to detect instances where masks of sections appear repeatedly and pair different 

masks of sections when they occur multiple times within the image. For WSIs containing a 

single section, a size threshold could be applied to identify and combine the sections. 

Additionally, as mentioned earlier, the algorithm could be trained to recognize certain 

morphological structures to further refine the exclusion of artifacts. However, a challenge 

inherent to these approaches is the diversity among WSIs, which necessitates a large training 

dataset to enable the algorithm to accurately identify a wide range of patterns.   
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5.2.3 Rigid and Non – Rigid Registration  
 

TIAToolbox employs the DFBR method for initial alignment, integrating fixed and moving 

images to achieve rigid transformation. Subsequently, non-rigid registration is performed using 

the B-Spline Transform algorithm, with adjustments to grid spacing and sampling percentage 

giving precise alignment. To further enhance non-rigid registration, several parameters could 

have been test, such as the dice overlap and the rotation step44.  

 

The advantage of the TIAToolbox algorithm is that it includes pre-processing steps that 

greyscale the images and as an output plots one image into green-channel and other in blue + 

red channel. The greyscaling may ensure that variations in stains may not affect the registration 

to a larger extent, however this is unsure as some images may lead to variations in the grey 

color. A limitation of this study is that stain variations have not been tested, and therefore a 

reference to support this understanding of the algorithm could not be included. 

 

5.2.4 Intersection Over Union (IOU) and Dice Score (DSC) 
 
To objectively compare the performance of the open-source TIAToolbox with the commercial 

HistokatFusion tool, a statistical analysis was conducted using IOU and DSC. These metrics 

provide a quantifiable means to evaluate the accuracy of image registration. The analysis began 

with the generation of fixed and registered binary masks for both tools. By determining the 

coordinates of the white pixels in these masks, the intersection and union of the pixel 

coordinates were calculated. These calculations enabled the precise computation of IOU and 

DSC values. 

  

While the use of IOU and DSC as evaluation metrics ensures a rigorous and unbiased 

comparison, a limitation is that these metrics are based on binary masks rather than anatomical 

landmarks. This reliance on masks means the evaluation may not fully capture the accuracy of 

the registration at a detailed structural level. In figure 41, representing the difficult case 2 

registration of the larger sections, it is observed that the non-rigid transformation output 

appears to drag the moving image to fit the fixed image, indicating inaccurate structural 

alignment. However, this discrepancy is not fully captured by the mask of the registered image. 

For a more comprehensive assessment, incorporating landmark-based evaluation methods 
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could provide additional insights into the precise alignment of corresponding anatomical 

features between images. In image registration, landmarks are points that are located in the 

same areas across two or more images47. One landmark-based evaluation method presented by 

Lotz, et al.52 could involve evaluating the average and median of the median relative target 

registration error over all image pairs46, 48.  

 
 
 

5.3 Discussing Results 
 

5.3.1 Comparison Between HistokatFusion and TIAToolBox 
 
Two image registration tools evaluated in this study were HistokatFusion and TIAToolbox. 

The registration of WSI_6, down sampled by 40% and scaled additionally by 10x, was 

evaluated using IOU and DSC metrics. HistokatFusion achieved higher scores compared to 

TIAToolbox. Despite showing a slightly lower performance, TIAToolbox was chosen for 

further testing due to its open-source nature and potential for optimization and integration into 

larger pipeline. A limitation of this comparison is that only a single WSI (WSI_6) was used for 

evaluation, which may not provide a comprehensive assessment of the tools’ performance 

across different types if WSIs and could lead to biased results.  

 

5.3.2 Testing of Various Grid Space and Sampling Percent Values 
 
Testing various grid spacings and sampling percentages revealed that higher grid spacings 

(200, 100, and 50) paired with higher sampling percentages yielded better IOU and DSC results 

compared to a grid spacing of 20. Additionally, higher grid spacings with lower sampling 

percentages resulted in reduced computational time. Among the tested parameter values, the 

best registration was obtained with a grid spacing of 200 and a sampling percentage of 1.0, 

providing a balance between alignment quality and computational efficiency.  

 

An observation was made regarding poorer registration results with the lowest grid spacing (20 

mm) despite a high sampling percentage. This suggests that an excessive number of control 

points can introduce noise, making it difficult for the algorithm to focus on the most important 

features. For instance, if the grid spacing decreases, the number of control points increases, 

causing the algorithm to struggle with aligning features at a microscopic level. The presence 
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of cells in one image but not in the other can further disrupt the alignment process, creating 

noise and potentially reducing the size of the moving image, as shown in figure 26B. Therefore, 

choosing the correct parameters is essential.  

 

As mentioned, a grid spacing of 20 may be considered the lower boundary for good registration 

results. However, the upper boundary has not been identified, as grid spacings from 200 to 50 

yielded nearly equivalent registration. Higher grid spacings should be tested to determine if 

they also provide good results. Additionally, computational time decreases as grid spacing 

increases, suggesting that higher grid spacings might be more suitable for higher-resolution 

images. A limitation of the conducted experiment is that only a single WSI was evaluated, so 

the identified lower and upper boundaries may not be generalizable to a wide range of WSIs. 

 

 

5.3.3 Application of TIAToolbox on Diverse Sections 
 
The evaluation of the pipeline across different WSIs, each with unique structural 

characteristics, underscores its adaptability. Most WSIs demonstrated satisfactory alignment 

performance, exceptions such as WSI4_1 and WSI11_1, which had lower IOU values, still 

yielded reasonably acceptable results. These outcomes highlight the pipeline’s general efficacy 

while also pointing to specific cases that may require additional adjustments or refinements. 

Overall, these results indicate that while the pipeline performs effectively across various 

scenarios, continuous optimization and testing are important for handling the full spectrum of 

WSI variations encountered in practice.  

 
 

5.3.4 Application of TIAToolbox on Difficult Cases 
 
The evaluation of the pipeline on three challenging cases – Difficult Case 1 (DC1), Difficult 

Case 2 (DC2), and Difficult Case 3 (DC3) – highlights the algorithm’s capabilities and 

limitations.  
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5.3.4.1 Error Encountered 
 

To address the ValueError encountered during image registration process using DFBRegister 

model in TIAToolbox44, several steps can be taken. First, ensure that pre-processing steps are 

accurately applied to the images. Then, adjust the ‘dice_overlap’ and ‘rotation_step’ values as 

suggested by the error message. If these attempts fail, consider preprocessing the images to 

ensure compatibility with TIAToolbox’s registration process, or explore alternative registration 

methods. 

 
5.3.4.2 Difficult Case 1 
 
In DC1, using Section 3 as the fixed image, the registration with Section 2 yielded promising 

results, suggesting initial success. However, the algorithm failed when Section 1 was used as 

the moving image, necessitating a workaround. By dividing the sections into smaller parts, 

satisfactory registration was achieved with the larger part and the smaller part. These results 

indicate that the TIAToolbox algorithm is sensitive to the relative positioning of sections and 

may require pre-processing adjustments to enhance registration accuracy. 

 
 
5.3.4.3 Difficult Case 2 
 
In DC2, the broken nature of one section posed significant challenges. The intact section served 

as the fixed image, but the algorithm failed to register the damaged section effectively. 

Dividing the sections into smaller parts partially mitigated this issue. While the upper part could 

not be registered, the second part (the largest component) was able to be registered, however 

non-rigid registration output seemed to show that that moving image got dragged to fit the fixed 

image (Figure 41). This outcome highlights the inherent difficulty in registering damaged 

sections and underscores the importance of intact, well-preserved samples for reliable 

alignment. The failure to register the lower part further emphasizes the limitations when 

dealing with significant tissue damage.  

 

5.3.4.4 Difficult Case 3 
 
In DC3, the smaller components aligned well, demonstrating the algorithm’s effectiveness with 

less complex structures. However, challenges arose with the larger components, particularly 

due to folding during histological processing. This indicates that while TIAToolbox performs 



 66 

Følsomhet Intern (gul) 

well with simpler, undamaged sections, more complex deformations like folding may present 

limitations for the registration algorithm. One potential approach to address this issue could be 

to substract the folded part from the fixed mask and use the new mask to register the lower part 

of the folded biopsy. For full automation, it would be advantageous to develop an algorithm 

capable of automatically detecting folds and artifacts that disrupt the registration process. 

 

5.3.4.5 Alignment Challenges 
 
The results from the challenging cases highlight key points about the pipeline’s performance. 

Firstly, successful registration often depends on the relative positioning of sections, 

necessitating pre-processing steps such as realignment or splitting sections to enhance 

outcomes. Secondly, the algorithm struggles with broken sections, emphasizing the importance 

of for additional pre-processing to handle damaged tissues. Thirdly, complex deformations, 

such as folding or tearing during histological processing, present challenges; while smaller, 

simpler sections align well, larger or more damaged sections may require better techniques. 

Lastly, the variability in registration success across different WSIs suggest that further testing 

with a broader range of sections is necessary to identify specific scenarios where the pipeline 

excels and where it requires further refinement. The points underscore the robustness and 

flexibility of the pipeline while also highlighting areas for improvement in handling complex 

and damaged sections.  

 
 

5.4 Areas for Improvement 
 
To enhance the quality of the pre-processing and image registration pipeline, several areas for 

improvement have been identified. Firstly, a wider range of image registration tools beyond 

HistokatFusion and TIAToolbox must be evaluated to identify the most effective solutions. 

Additionally, various evaluation methods should be employed for a more comprehensive 

assessment, rather than relying solely on mask pixel-based methods such as IOU and DCS 

metrices. Secondly, during the evaluation process, multiple WSIs must be tested since WSIs 

can vary significantly from one another. Thirdly, once an effective tool, such as TIAToolbox, 

is identified, the pipeline should be tested on a broader range of WSIs to validate its 

performance across diverse samples. Additionally, several WSIs should be used when 

evaluating suitable grid spacing and sampling percentage values for TIAToolbox’s non-rigid 

algorithm to ensure robust performance.  
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The pre-processing pipeline requires refinement to enable full automation. Initially, it should 

identify the optimal fixed image based on structural integrity across the sections of a whole 

slide image (WSI). Furthermore, the pipeline should automatically determine the number of 

connected components to include and which ones to combine. Additionally, to improve 

accuracy, the pipeline should possess the capability to detect artifacts such as folds and exclude 

them before initiating the registration process. 

 

5.5 Further Research 
 
Further research should be the development of methods to conduct image registration 

effectively, especially in challenging cases, and extend testing across diverse WSIs. Moreover, 

there is a need to advance the automatic preprocessing tool using the existing preprocessing 

pipeline. Additionally, it is imperative to design a pipeline for ordering non-neoplastic biopsy 

sections based on their cutting sequence during histological processing using a microtome. 

Integrating the preprocessing and image registration pipeline into this comprehensive 

framework will streamline the creation of a software tool capable of automatically aligning and 

ordering non-neoplastic kidney biopsy sections, thereby enhancing the efficiency of non-

neoplastic kidney biopsy evaluation for nephropathologists. 

 

5.6 Conclusion 
 

In conclusion, this study evaluated a pre-processing pipeline for non-neoplastic kidney biopsy 

WSIs from Haukeland University Hospital, Bergen, along with the TIAToolbox image 

registration tool. The primary goal was to integrate these tools into a future pipeline for 

automating the alignment and ordering of biopsy sections. IOU and SDC metric were used to 

assess the effectiveness of both TIAToolbox and the commercial tool HistokatFusion.  

 

Addressing challenges in digital pathology, the study found downscaling images can manage 

computational complexity, but sufficient resources may negate the need for downscaling. Non-

rigid transformations were essential for handling histological deformations. TIAToolbox, 

despite slightly lower performance metrics than HistokatFusion, was chosen for its open-source 

potential and adaptability. 
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The evaluation showed that higher grid spacings and sampling percentages yielded better 

results. Most WSIs demonstrated satisfactory alignment, but challenging cases highlighted 

areas for improvement, such as handling damaged sections and complex deformations.  

Further research and areas for improvement should focus on testing a wider range of WSIs, 

enhancing the automated pre-processing pipeline, and using alternative evaluation methods 

beyond IOU and DSC metric. These steps will improve the accuracy and efficiency of non-neo 

plastic kidney biopsy evaluations, benefiting nephropathologists and researchers.  
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