
Automated segmentation of CT lung

lesions using Deep Learning

Master Thesis in Medical Technology
by

Heris Sivanesarajah

Department of Physics and Technology

University of Bergen

June 3, 2024

2

Scientific environment

This thesis was carried out at the Department of Physics and Technology at the Univer-
sity of Bergen, in collaboration with Mohn Medical Imaging and Visualization Centre
(MMIV) Department of Radiology, Haukeland University Hospital.

The data used in the current work are medical images generously shared as an on-
line data base. For methods development and evaluation, computational resources at
MMIV were utilized throughout the project. In addition a final model was uploaded
and pipelines implemented directly into a research picture archive system (PACS) at
the Department of Radiology, Haukeland University Hospital facilitating also analysis
of locally acquired lung CT images.

ii Scientific environment

Acknowledgements

I would like to express my gratitude towards my advisors, Frank Riemer and Renate
Grüner, who provided great support, guidance, and motivation throughout this thesis. I
wouldn’t have been able to complete my thesis without you.

I would also like to express my gratitude to the MMIV community, especially Hauke
Bartsch, for assisting me throughout the thesis, and also for the assistance in imple-
menting the deep learning model to the clinical workflow together with Zhanbolat
Satybladinov. I would also like to thank MMIV for the opportunity to participate at
MMIV’s annual MMIV Conference by granting me the opportunity to present a poster
(Figure I.1).

I would like to thank the Ultralytics team and especially the developers of YOLOv8
(You Only Look Once version 8), which was a key component in this thesis. Addi-
tionally, I would like to thank the Cancer Imaging Archive for providing me with the
LIDC-IDRI dataset, which was also a key component in this thesis.

I would like to thank my friends from Medisinsk Teknologi, my childhood friends,
and other great friends from the beautiful city of Bergen. Thank you for motivating,
supporting, and helping me throughout my studies; also, thanks for all the fun we have
had together. I would also like to thank everyone from room 534 during the course of
this thesis. I’m grateful for the company, the breaks, and the late nights we spent to-
gether.

Last but not least, I would like to express my gratitude towards my family: my mother,
Suviththa Sivanesarajah, and my father, Sivanesarajah Ramanathan, for always encour-
aging me to strive and making me thrive, and my brother, Ketis Sivanesarajah for al-
ways being there for me. I wouldn’t be here without any of you.

Heris Sivanesarajah
Bergen, June 2023

iv Acknowledgements

Abstract

Purpose: Lung cancer, both primary and secondary, has one of the highest cancer-
related mortality rates. This form of cancer can be detected using the high-resolution
medical imaging technique, Computed Tomography (CT). Sometimes, even for health
professionals, these lung lesions might be difficult to spot, thus providing segmenta-
tions, which may lead to late lesion detection and death. This is where deep learning
(DL) can provide great assistance and prevent unnecessary deaths. In this thesis, the
purpose was, therefore, to train and evaluate the DL algorithm You Only Look Once
(YOLO) for CT lung lesion segmentation (and detection) and establish a local clinical
workflow utilizing the algorithm.

Methods: This thesis was conducted by adapting the large online LIDC-IDRI dataset
containing CT images of lung cancer patients to fit the utilized DL approach. After the
images were pre-processed, models with various complexities were trained on datasets
both with and without lesion size restrictions. Finally, a trained model was uploaded to
the regional clinical research PACS, and the model was applied to local test data.

Results: Some of the trained models managed to detect and segment lung lesions to a
high degree. The models trained with size restrictions tended to perform better. Addi-
tionally, the model uploaded to the regional research PACS was tested on unlabeled CT
lung test images and was able to segment (and detect) what seemed to be tumors.

Conclusion: The trained model uploaded demonstrated the ability to detect and seg-
ment lung lesions, both on the online data and the test data, from the regional re-
search PACS system, suggesting further exploring and optimizing the model develop-
ing methodology for future work. Additionally, after optimizing the model one could
try to train the model to predict tumor development longitudinally.

vi Abstract

Contents

Page

Scientific environment i

Acknowledgements iii

Abstract v

Abbreviations xi

List of Figures xiv

List of Tables xv

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Hypothesis . 2
1.4 Contribution . 3

2 Theory 5
2.1 Computed tomography, CT . 5

2.1.1 CT basics . 6
2.1.2 Photon interactions . 7
2.1.3 Dose . 11
2.1.4 CT X-ray production . 13
2.1.5 CT components . 14
2.1.6 CT imaging . 19
2.1.7 Image modes . 24
2.1.8 Artifacts . 24

2.2 Primary lung cancer . 25
2.3 Secondary lung cancer . 26

viii CONTENTS

2.4 Artificial Intelligence . 27

2.5 Machine Learning . 27

2.5.1 Object detection . 28

2.5.2 Image segmentation . 28

2.6 Deep learning . 29

2.6.1 Convolutional neural network 30

2.6.2 Loss function . 33

2.6.3 Hyperparameters . 35

2.6.4 Optimization of parameters and hyperparameters 37

2.6.5 Back propagation . 38

2.6.6 Gradient Descent . 39

2.6.7 Data splitting . 42

2.6.8 Data augmentation . 43

2.7 Performance measure . 43

2.7.1 True Positive, False Positive and False Negative 44

2.7.2 DICE score . 44

2.7.3 Sensitivity . 45

2.7.4 Precision . 46

2.7.5 IoU . 46

2.7.6 Confusion matrix . 47

2.8 YOLO . 48

2.8.1 Image segmentation . 49

2.8.2 Data augmentation . 51

2.8.3 Loss function . 51

2.8.4 Hyperparameter tuning . 52

2.9 Recent advances . 54

2.10 Aim . 55

3 Methods 57
3.1 Data . 57

3.2 Data processing . 60

3.2.1 Data pre-processing . 61

3.2.2 Data post-processing . 72

3.3 YOLO . 74

3.3.1 Hyperparameter search . 74

3.4 Uploading to PACS . 76

CONTENTS ix

4 Results 79
4.1 YOLOv8 small model . 80

4.1.1 Results from all lesions . 80
4.1.2 Size-restricted . 84

4.2 YOLOv8 medium model . 88
4.2.1 Results from all lesions . 88
4.2.2 Size-restricted . 92

4.3 YOLOv8 large model . 95
4.3.1 Results for all lesions . 96
4.3.2 Size-restricted . 97

4.4 Comparison across models . 98
4.5 Clinical integration . 99

5 Discussion 107
5.1 All lesions . 108
5.2 Size-restricted . 109
5.3 Comparison across models . 110
5.4 Dataset . 112
5.5 Performance metrics . 113
5.6 Time restrictions and computational power 114
5.7 Clinical integration . 115

6 Conclusions and Future Work 117

I MMIV Conference 2023 poster 119

II GitHub repository 121

III Results with Hyperparameter tuner 123
1 All lesions small model . 123
2 All lesions medium model . 125
3 All lesions large model . 126

x CONTENTS

Abbreviations

1D One-Dimensional
2D Two-Dimensional
3D Three-Dimensional
AI Artificial intelligence
BCE Binary Cross Entropy
CNN Convolutional Neural Network
CT Computed Tomography
DNN Deep Neural Network
DICE Sørensen-Dice coefficient
DICOM Digital Imaging and Communication in Medicine
DL Deep learning
DNA Deoxyribonucleic acid
ECG Electrocardiogram
FN False Negative
FP False Positive
GT Ground truth
HU Hounsfield units
IoU Intersection over Union
LDCT Low dose CT
LIDC-IDRI The Lung Image Database Consortium and Image Database Resource

Initiative
Lr Learning rate
LUT Lookup table
ML Machine Learning
MSE Mean square error
NSCLC Non small cell lung cancer
PACS Picture archive and communications system
SCLC Small cell lung cancer
SGD Stochastic gradient descent

xii Abbreviations

SOP Service-Object Pair
std Standard deviation
TN True Negative
TP True Positive
UID Unique Identifier
VOI Values of Interest
YOLO You Only Look Once
YOLOv3 You Only Look Once version 3
YOLOv5 You Only Look Once version 5
YOLOv8 You Only Look Once version 8

List of Figures

2.1 Dominant photon interactions given MeV and the atomic number Z . . 7
2.2 Compton scattering . 9
2.3 Bremsstrahlung X-ray distribution . 14
2.4 X-ray tube with its components . 15
2.5 X-ray production with the X-ray tube 16
2.6 Illustration of a collimator from an overhead view 17
2.7 The collimator’s influence on the radiation beam 17
2.8 Removal of low-energy photons with filter 18
2.9 Attenuation profile and back projection 22
2.10 Artifacts . 25
2.11 Relationship between AI, ML and DL 27
2.12 Segmentation example . 29
2.13 Deep neural network illustration . 30
2.14 Activation functions . 32
2.15 Pooling layers . 33
2.16 Local and global maximums and minimums 35
2.17 Learning rate . 36
2.18 Computational graph . 39
2.19 Overfit versus Good fit . 43
2.20 DICE score illustration . 45
2.21 Confusion matrix . 47
2.22 YOLO architecture . 50
2.23 Hyperparameter tuner YAML file . 53
2.24 Hyperparameter tuner builtin loss curves 53

3.1 CT lung image in PNG format converted from DICOM format 59
3.2 Data conversion flowchart . 62
3.3 Image conversions . 64
3.4 Overlapping lesion outlines . 66

xiv LIST OF FIGURES

3.5 Flowchart of a discarded pre-processing approach 69
3.6 Simple image conversion . 70
3.7 Intensified pixel values 1. 70
3.8 Intensified pixel value 2. 71
3.9 Scenarios where metric score is equal to zero 73
3.10 Flowchart for implementing model to research system 76

4.1 All lesions: Loss curves for small model 81
4.2 All lesions: Predictions against Ground truths (small model) 83
4.3 All lesions: Confusion matrix (small model) 84
4.4 Size-restricted: Loss curves for small model 85
4.5 Size-restricted: Predictions against Ground truths (small model) 87
4.6 Size-restricted: Confusion matrix (small model) 88
4.7 All lesions: Loss curves for medium model 89
4.8 All lesions: Predictions against Ground truths (medium model) 91
4.9 All lesions: Confusion matrix (medium model) 92
4.10 Size-restricted: Loss curves for medium model 93
4.11 Size-restricted: Predictions against Ground truths (medium model) . . . 94
4.12 Size-restricted: Confusion matrix (medium model) 95
4.13 All lesions: Loss curves for large model 96
4.14 Size-restricted: Loss curves for large model 97
4.15 Image series of predictions on test data Nr. 1. 100
4.16 Image series of predictions on test data Nr. 2. 101
4.17 Image slice of wrongful prediction on test data 102
4.18 Prediction on test data with comparison. 103
4.19 Consecutive image series of prediction on test data with comparisons

Nr. 1. 104
4.20 Image series of prediction on test data with comparisons Nr. 2. 105

I.1 MMIV Conference 2023 poster . 120

III.1 Hyperparameter tuner: Performance (small model) 124
III.2 Hyperparameter tuner: Confusion matrix (small model) 124
III.3 Hyperparameter tuner: Performance (medium model) 125
III.4 Hyperparameter tuner: Confusion matrix (medium model) 126
III.5 Hyperparameter tuner: Performance (large model) 127

List of Tables

2.1 CT value ranges for various tissues and organs 23

3.1 Number of images left of LIDC-IDRI after initial filtering 59
3.2 Computational time for filtering out 2D lesions by physical area 67
3.3 Grid search hyperparameter space . 74

4.1 General hyperparameters utilized during training 80
4.2 Segmentation metric scores: All lesions (small model) 81
4.3 Segmentation metric scores: Size-restricted dataset (small model) . . . 85
4.4 Segmentation metric scores: All lesions (medium model) 89
4.5 Segmentation metric scores: Size-restricted dataset (medium model) . . 93
4.6 Segmentation metric scores: All lesions (large model) 97
4.7 Segmentation metric scores: Size-restricted dataset (large model) 98
4.8 Comparison of segmentation performance metric scores 98
4.9 Segmentation metric scores on test set 99

III.1 Hyperparameter tuner: Segmentation metric scores: (small model) . . . 123
III.2 Hyperparameter tuner: segmentation metric scores (medium model) . . 125
III.3 Hyperparameter tuner: Segmentation metric scores (large model) 126

xvi LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

Lung cancer is the type of cancer with one of the highest cancer related deaths world-
wide, with 1 796 144 deaths in 2020 according to GLOBOCAN. Lung cancer is also
one of the most prevalent with 2 206 771 estimated new cases in 2020 [1]. This in-
cludes both primary and secondary/metastatic lung cancer [2].

Computed Tomography (CT) is a high-resolution medical imaging technique, which
is used to detect lung cancers and is essential in the diagnosis and treatment of lung
cancer, both primary and secondary. A CT scan is much more effective and provides
more detailed information than a conventional X-ray scan [3] [4]. CTs were found to
make 90% of peripheral cancers visible for heavy smokers and detectable by radiolo-
gists [4].

Reading CT scans can be time consuming and challenging for health professionals,
and machine learning (ML) is a powerful tool which is more time efficient. ML tries to
learn computers to solve different kinds of tasks from data, and it has, in recent years,
been implemented in medical use. In medicine, ML and Deep learning (DL) (a subset
of ML based on multi layer neural network) are used in e.g. automated interpretation
of the electrocardiogram (ECG) and automated lung nodule detection [5].

Although the application of DL is increasing, there is still no consensus on the op-
timal approach of how DL can be used for lesion detection and segmentation. This
thesis will provide a comparison and evaluation of a not well documented DL approach
for CT lung lesion segmentation, which can provide important insights in the field of
CT lung lesion segmentation and DL.

2 Introduction

1.2 Objectives

The objective is to evaluate the feasibility of applying DL to perform lesion detection
and segmentation on CT images in 2D through:

1. Exploring the properties of a novel DL approach (You Only Look Once (YOLO)).

2. Adapt and evaluate the application of DL (YOLO) on CT lung images.

3. Implement an optimized DL approach on an online database with predefined man-
ually labeled lesions.

4. Establish a local, clinical workflow of integrated DL for CT lung lesions.

1.3 Hypothesis

In this thesis, the models are trained on Two-Dimensional (2D) images with lesions ex-
tracted from the LIDC-IDRI (Lung Image Database Consortium and Image Database
Resource Initiative) dataset. The different models are then trained with unique 2D le-
sion size restrictions. The first collection of trained models is trained with every 2D
lesion in the LIDC-IDRI dataset (without size restriction). Then the other collections
of trained models are trained with specific lesion size restrictions.

The hypothesis is that the models trained with size restrictions perform better than the
models trained without size restrictions because these models will be trained to iden-
tify specific 2D lesions rather than lesions of all sizes.

The most suitable trained model is then uploaded to the clinical workflow and can
be used to predict lesions for each 2D image (slice) in a scan from clinical patient ex-
aminations. Furthermore, if the uploaded model predicts the existence of a lesion, with
a segmentation, within a slice and the prediction is confirmed by radiologists, then the
prediction can be used to retrain the model. By retraining the model with a correct
prediction, a new hypothesis is that the model should get better and better for each cor-
rect prediction, and over time, the model might outperform even the best radiologist.
Hence, creating a better flow in the healthcare system by saving time and money and
quicker diagnosis, which can save patient lives.

1.4 Contribution 3

1.4 Contribution

The contribution of this thesis is an evaluation of a DL approach for detecting and seg-
menting CT lung lesions through the purposed pipeline, as well as comparing these
findings to existing 2D CT lung lesion detection and segmentation models. The thesis
provides insights about the feasibility of using an algorithm trained on a large public
heterogeneous dataset and on local clinical data. Additionally, a trained model is inte-
grated to the local clinical workflow, which will provide assistance to radiologists and
other health professionals by possibly detecting and segmenting additional lung lesions
or by diagnosing new cases of lung cancer.

This thesis also overcomes obstacles such as training a segmentation model on a large,
heterogeneous dataset. The dataset contains segmentations with vast differences over
the same region from four different radiologists and contains CT images with various
qualities. The thesis also involves converting the CT images from a DICOM (Digi-
tal Imaging and Communication in Medicine) file to a file format compatible with the
proposed algorithm. Additionally, the thesis provides a solution for calculating the rep-
resentative segmentation metric scores for the model, when some wrong predictions
occur.

4 Introduction

Chapter 2

Theory

This chapter consists of the theory necessary to understand the Method, Results Discus-
sion, and Conclusion chapters in this thesis. Firstly, the theory behind CT is explained,
which is important for generating the CT images used in this thesis and for understand-
ing the patient risks associated with a CT scan. Secondly, some background about both
primary and secondary lung cancers is provided. Thirdly, the theory behind AI, ML,
and DL are explained, with emphasis on DL. DL is responsible for being able to ac-
quire computerized assistance, to segment lung lesions not only in this thesis but also
in various research papers across different fields. Finally, some background about the
DL algorithm used in this thesis (YOLO), its functioning, architecture, loss functions,
etc. is explained.

2.1 Computed tomography, CT

From the patient entering the CT machine to exiting the CT machine, various processes
are happening in the complex machinery, eventually providing the user with a Three-
Dimensional (3D) CT image consisting of a series of slices (2D) of the patient. This
section will go through the theory needed to understand how the CT machine oper-
ates, with a detailed explanation of the X-ray production in the CT machine, photon
interactions with matter, which are key for reconstructing images, the components in a
CT machine, data acquisition, image reconstruction, and image display. Additionally,
two different modes of CT imaging are explained in more detail, with their key differ-
ences and preferred usage. To end this section, some common CT imaging artifacts are
mentioned.

6 Theory

2.1.1 CT basics
CT imaging is an imaging methodology that utilizes ionizing X-rays to generate cross-
sectional images. This is achieved by directing a quickly rotating narrow X-ray beam
through the patient. Then, the beam absorption (attenuation) information is acquired for
each angle of the rotation and collected in a sinogram. Finally, from the sinogram, im-
age reconstruction is done typically through filtered back projection; this is explained
in more detail in Section 2.1.6. The generated 2D images are typically stacked upon
one another to create a 3D image [6] [3] [7].

The visual components of a CT scanner are the gantry and a moving patient bed. The
major components hidden inside the gantry are the X-ray tube, the source of X-rays,
collimators, and the detector system, which collect information about the attenuated X-
ray beam [8]. Each component will be described in greater detail in Section 2.1.5. To
acquire the 2D images over a whole region, the bed moves slowly through the gantry,
where the CT system generates these images.

The ionizing X-rays are transmitted through the patient at typical CT X-ray energies.
The X-rays are created in the X-ray tube from accelerating electrons from rest with
a tube potential between 80 to 140 kV, translating to typical X-ray energies between
80 to 140 kilo electron-volt (keV) [8]. The corresponding X-rays stem from two mat-
ter and matter interactions: Bremsstrahlung radiation and Characteristic X-rays. These
X-rays tend to interact with matter, and these interactions are divided into three cate-
gories: Compton scattering, Photoelectric effect, and Coherent scattering. If an X-ray
does not interact with matter, it will just pass through. These interactions are described
in greater detail in Section 2.1.2.

The CT images created depend on the intensities of X-rays hitting the detectors com-
pared to the initial beam intensities, where the decrease in intensity results from the var-
ious photon interactions. The images are represented in various shades of grey; when
no X-rays pass through, the color of the region behind will be white, and if many/all
photons pass through, the region behind will be black [6].

Since CT uses ionizing X-rays, molecules get ionized, which is when an X-ray trans-
mits enough energy to an electron, allowing it to be emitted from the molecule, e.g.,
by the photoelectric effect or Compton scattering. Some of these ionized molecules
are called free radicals, which can cause harm to the body and pose a risk of cancer
development [3]. This can happen if those free radicals react with the DNA (Deoxyri-

2.1 Computed tomography, CT 7

bonucleic acid) itself, causing a mutation that can make a cell cancerous that the body
might be unable to detect and correct on its own, which then result in cancer [9] [10].
This scenario is very unlikely because the body usually detects and corrects these mu-
tations; it is estimated that 2 out of 10,000 CT scans (0.02%) result in the development
of cancer for children and young adults. The reasons why one has to undergo a CT scan
usually outweigh the risks associated with undergoing one [11].

2.1.2 Photon interactions
There are several ways a photon (an X-ray) can interact with matter; for low-energy
photons (≤ 140 keV in medical CT imaging context), these usually are the photoelec-
tric effect, Compton scattering, and coherent scattering. The interaction type heavily
depends on the energy of the initial photon and the atomic number, Z, of the atom the
photon interacts with, as illustrated in Figure 2.1 [12].

Figure 2.1: Different regions where the different types of photon interactions dominate. The figure is
acquired from [12] (FIG. 1.8).

For CT X-ray energies, 80 keV to 140 keV, Figure 2.1 shows that the common types
of photon interactions are the photoelectric effect and Compton scattering. The fig-
ure also shows that pair production (generation of particles with mass) is present for
high-energy photons. However, these photon energies are significantly higher than the
CT X-ray energies.

When dealing with energies and motions, two important conservation laws always re-
main true: the conservation of total energy, Etot , and the conservation of momentum, p,

8 Theory

for every direction. These laws are expressed in Equation 2.2 and Equation 2.3, respec-
tively. While Equation 2.1 provides the relationship between Etot , the kinetic energy,
KE, and potential energy, PE.

Etot = KE +PE (2.1)

Etot, i = Etot, f (2.2)

where i symbolize the initial state, and f symbolize the final state.

pd, i = pd, f (2.3)

where d symbolize a spatial direction, e.g. d = x in the x-direction and d = y in the
y-direction.

Compton scattering

Compton scattering is an elastic collision between a photon and a free electron, which
is either an electron that isn’t bound to an atom or a molecule or an electron that is
bound to an atom or a molecule where the binding energy, W , is negligible. In Comp-
ton scattering, this amounts to when the binding energy to the electron is negligible
compared to the incoming photon energy, Ep, i (Ep, i >>W). Since Compton scattering
is an elastic collision, the momentum and energy in the system have to be conserved.
The electron will be emitted with an angle φ , and a photon will be scattered with an an-
gle θ , shown in Figure 2.2, as a result of the conservation of momentum with direction,
d, expressed in Equation 2.3. When a second photon is not scattered, then the interac-
tion is essentially a photoelectric interaction [13], which is described in greater detail
in the following section.

The energy and the momentum for the initial and final photon are expressed in Equation
2.4 and Equation 2.5.

Ep,s =
hc
λs

(2.4)

where c is the speed of an electromagnetic photon, h is the Planck constant and λ

is the wavelength for a specific photon. The notion s symbolizes the photon state one
deals with.

ps =
h
λs

(2.5)

Assuming the binding energy is negligible, and no thermal (kinetic) energy loss, both
the energy and the momentum to the emitted electron can be expressed by Equation 2.6

2.1 Computed tomography, CT 9

and Equation 2.7.

E2 = (pc)2 +(m0c2)2 (2.6)

p =
m0v√
1− v2

c2

(2.7)

where m0 is the rest mass for the emitted electron and v is the speed of the emitted
electron.

Figure 2.2: Compton scattering: Elastic collision between a photon and a free electron. The figure was
inspired from [13].

The attenuation coefficient to Compton scattering, σ , when a photon is approaching a
single electron, where the corresponding atomic number is Z, is proportional to Z and is
shown in Expression 2.8. When the photon is traveling towards a cluster of atoms (e.g.,
tissue, metal sheet, etc.) with the atomic number Z, and density ρZ , the attenuation
coefficient can be modified to Expression 2.9 [12]. Since these attenuation coefficients
are expressed with proportionalities, these expressions can be considered as likelihoods
of occurrence.

σ ∝ Z (2.8)

σ ∝ pZZ (2.9)

However, the attenuation coefficient for a single electron interaction also decreases
steadily from low to high photon energies [12].

10 Theory

Photoelectric effect

The photoelectric effect refers to the emission of electrons from a material when ex-
posed to photons [14]. The electrons are bound to the material with a binding energy,
W . This binding energy can be expressed as a specific photon energy, with Equation
2.4 this can be written as Equation 2.10.

W =
hc
λ0

(2.10)

where λ0 is the specific wavelength for a photon to break the bond between a given
electron and its nucleus.

If the incident photon has greater energy than W , electrons emit from the material
with kinetic energy. The maximum kinetic energy, KEmax, to the emitted electrons is
expressed in Equation 2.11 [14].

KEmax =
hc
λ

−W (2.11)

The attenuation coefficient to the photoelectric effect, σ , when interacting with a sin-
gle atom with atomic number Z, is proportional to the expression given in Expression
2.12. From this expression, one can see that when Z is fixed, the probability of the pho-
toelectric occurring increases with lower photon energies, as also visualized in Figure
2.1.

σ ∝
Z3(hc
λ

)3 (2.12)

Given the CT detectors do not detect electrons and that the photoelectric effect is more
common for elements with a high atomic number, for CT X-ray ranges as shown in
Figure 2.1 and Expression 2.12, this property can be exploited with contrast agents to
highlight desired parts of the body. This can be achieved by using contrast agents with
specific Z values (higher or lower) compared to the surrounding anatomy [12]. The fact
that the photoelectric effect is more common for low-energy photons also provides the
opportunity to filter out such photons before entering the patient, which is explained in
greater detail in Section 2.1.5.

Coherent (Rayleigh) scattering

Rayleigh scattering occurs when the initial photon interacts with a bound orbital elec-
tron, and emits a photon with essentially the same energy as the initial photon. The

2.1 Computed tomography, CT 11

photon is emitted with an angle, θ , with respect to the initial photon path [12]. The pro-
portionality of the attenuation coefficient to Rayleigh scattering, for interacting with a
single atom with atomic number Z, σ , is given in Expression 2.13. For a photon trav-
eling through a cluster of atoms with the atomic number Z, corresponding to a density
ρZ , the proportionality can be expressed as shown in Expression 2.14.

σ ∝
Z2(hc
λ

)2 (2.13)

σ ∝ ρZ
Z(hc
λ

)2 (2.14)

In a CT scan, the importance of Rayleigh scattering is very little to non existent com-
pared to to the other photon interactions, as shown in Figure 2.1, only contributing to a
few percent or less [12].

The Rayleigh scattering described is one simple case of Rayleigh scattering [15].

2.1.3 Dose

When X-rays travel through the patient, during the CT scan, the X-rays impart some
(or all) of its energies to the surrounding tissue. This is known as the absorbed dose, D,
with the SI unit gray (Gy), and is defined as the mean energy imparted, dε , to matter
with mass dm, as shown in Equation 2.15 [12].

D =
dε

dm
(2.15)

Since the absorbed dose is a measure for the energy imparted to matter. The organ
dose, DT , which is the mean energy distributed, εT , over an specific organ or tissue, T ,
will follow the same logic as Equation 2.15, and is expressed in Equation 2.16 [12].

DT =
εT

mT
(2.16)

where mT is the mass of the organ/tissue.

In CT scans, the effective dose, E, is of keen interest because it provides informa-
tion about the whole irradiated area and not just one specific organ. E is defined as the
sum of organ doses, DT , with the corresponding radiation sensitivity, wT . By only ac-
counting for the dose imparted by X-rays, E can be expressed by the sum in Equation

12 Theory

2.17 [12].
E = ∑

T
wT DT (2.17)

In a lung CT scan, with X-ray energies at max 120 keV, a typical organ dose (lung)
value is 11.2 mSv and a typical effective dose is 3.8 mSv. The unit of dose given is in
milli-siverts (mSv), and for X-rays 1 Gy organ dose is equivalent to 1 Sv [8] [12].

Biological effects with CT X-rays

The X-ray energies imparted to the matter and tissue can be imparted through the pho-
toelectric effect and Compton scattering, which in return may result in the emission of
high-energy electrons. These high-energy electrons can cause biological damage indi-
rectly to tissue outside of the irradiated region. For X-rays in a typical CT scan, with
X-ray energies typically ≤ 140 keV, indirect damage is the most prelevant form of bi-
ological damage to tissue and will therefore be the only one discussed in this section
[12] [13].

In indirect reactions, through photon interactions, the incident X-rays may start chains
of chemical reactions that produce chemically toxic free radicals, such as the hydro-
gen radical, H, and the hydroxyl radical, OH. These free radicals may cause changes
in the cell’s DNA by breaking chemical bonds. In return, the changes to the DNA can
then be transferred to its daughter cells (identical copies) through mitosis or to the pa-
tient’s offspring through meiosis. In mitosis, one worst-case scenario is that the change
to the mother cell causes rapid uncontrolled cell growth, also known as cancer. In the
case of meiosis, one worst-case scenario is that the offspring inherently have an either
guaranteed or highly increased risk for developing cancer. These high energy electrons
may also start a chain of chemical reactions that leads to the powerful oxidizing agent
hydrogen peroxide, H2O2, but this chain is less common with CT X-rays [16] [13] [12].

The following chemical equations illustrate how the free radicals H and OH are cre-
ated from the interaction between X-rays and water inside the body. Where Equation
2.18 illustrates the production of a high-energy electron through either the photoelec-
tric effect or Compton scattering, and Equation 2.19 and Equation 2.20 show the final
chemical reactions creating OH and H respectively [13].

H2O+ energy => H2O++ e− (2.18)

2.1 Computed tomography, CT 13

The positive unstable water ion will slit into a positive hydrogen ion, H+, and the free
neutral hydroxide radical, OH, as shown in Equation 2.19.

H2O+ => H++OH (2.19)

For creating the hydrogen radical, H, the emitted electron has to fuse with another
water molecule, of which there is a huge abundance inside the patient. This fusing is
expressed through the following chemical equation:

H2O+ e− => H2O−

The negative unstable water ion obtained will split into a neutral hydrogen radical H
and a negatively charged hydroxide ion, as shown in Equation 2.20.

H2O− => H +OH− (2.20)

2.1.4 CT X-ray production

The X-rays used in a clinical CT scan are generated through two primary interactions
between matter and matter. Firstly, the main contributor, bremsstrahlung radiation,
occurs when one decelerates a high-energy particle. Secondly, characteristic X-rays
occur when one electron from an outer shell moves down to an empty "hole" in an
inner shell [12].

Bremsstrahlung radiation

In the context of clinical CT, bremsstrahlung radiation plays a major role in X-ray pro-
duction. Bremsstrahlung radiation occurs when a high-energy negative charged elec-
tron changes its trajectory due to the electrical attraction between itself and a positive
charged nuclei. When the nuclei attract the electron, it changes the electron’s trajectory
with an angle θ , causing the electron to decelerate and thus lose some of its kinetic en-
ergy. The kinetic energy lost is then emitted as an X-ray, as a result of the law of energy
conservation [12].

In CT, the bremsstrahlung radiation (X-rays) produced forms a continuous energy spec-
trum between zero and the tube potential in keV, as illustrated in Figure 2.3. An X-ray
energy at zero signifies no X-ray emission, and an X-ray energy at tube voltage in-
dicates that the electron has come to a full stop. The X-ray energies depends on the
distance between the high-energy electron and the nuclei, where when the electron col-

14 Theory

lides with the nuclei (full stop), the maximum X-ray energy is created [12].

Figure 2.3: The relative frequency of the number of X-rays produced through bremsstrahlung, with
specific energies. In the figure, the electrons are accelerated with a tube potential of 100 kV, which
amounts to electrons with maximum kinetic energy of 100 keV. The illustration was inspired by FIG. 5.1
in [12].

Figure 2.3 also illustrates the linear relationship between the number of photons pro-
duced through the relative normalized photon intensity with certain X-ray energies [12].

Characteristic X-rays

In clinical CT, characteristic X-rays occur when a high-energy electron hits and emits
an inner shell electron from an atom. Since there now is an empty "hole" in the inner
shell, an electron from an outer shell with more energy has to fill the "hole" and dispose
of the excess energy, which is disposed of through an emitted X-ray. Since the shell
electrons have discrete energy levels, dependent on the shell localization and the atomic
number, the emitted X-rays also have discrete energies, in contrast to bremsstrahlung
X-rays which have a continuous spectrum of energies [12].

2.1.5 CT components
When looking at a CT scanner, two major components are visible: the gantry and the
patient bed. However, the gantry consists of several major components, namely the

2.1 Computed tomography, CT 15

X-ray tube, the filters and collimators, and the detector system, which are the key com-
ponents for generating the CT images in a CT scan. In this section, these components
are described in greater detail.

X-ray tube

The X-ray tube is the component producing the X-rays traveling through the patient
during a CT scan. The X-ray tube consists of its housing, a cathode, an anode disk, a
rotor, and a stator, as illustrated in Figure 2.4. The housing cools the tube components
and provides electrical shielding. The rotor and the stator are components that cause
the anode to rotate, and the anode and cathode are the main components for creating
the X-rays [17].

Figure 2.4: X-ray tube with its components

The X-rays are generated by a cathode and an anode connected to an electrical circuit,
creating a potential gap. Additionally, the cathode is connected to a separate low-
voltage circuit. When the low-voltage circuit generates current through the cathode,
it heats up and emits electrons, the potential gap between the cathode and anode then
causes the electrons to accelerate towards the anode, causing collisions at the focal spots

16 Theory

(illustrated in Figure 2.5). After the collision between the electrons and the anode, the
electrons release their kinetic energies as bremsstrahlung radiation (and characteristic
X-rays), heading towards the patient located perpendicular underneath the focal spots,
as visualized in Figure 2.5 [17] [8] [6]. As described in Section 2.1.4, bremsstrahlung
radiation is the main contributor of X-rays in a CT scan.

Figure 2.5: X-ray production with electrons accelerating from the cathode to the anode.

Collimator

Before the X-rays reach the patient, there are several collimators that shape the X-ray
beam by filtering out X-rays. An example of an illustration of a collimator with an
overhead view is provided in Figure 2.6. These collimators serve three main purposes:
reducing the patient dose, reducing noise in the generated images, and determining
slice thickness of the images [8].

2.1 Computed tomography, CT 17

Figure 2.6: An illustration of how a collimator might look from an overhead view.

The first collimator is close to the anode and fixed, and it assists in shaping the initial
"fan" beam to the patient, as illustrated in Figure 2.7-a). Figure 2.7-b) illustrates the
case, when a collimator is not used before the X-rays enter the patient, here unnecessary
areas not close to the organ of interest are radiated and receive a dose, in addition given
the higher flux of X-rays the probability of Compton scattering increases which can
cause increased noise to the acquired images. There can be other adjustable collimators
before the X-rays enter the patient to adjust for patient size [8].

Figure 2.7: Figure a) illustrates how the radiation to the patient is limited with a collimator. The
collimator in the figure is the first fixed collimator close to the focal point. Figure b) illustrates how the
patient is unnecessarily radiated without the use of a collimator.

There are also collimators in front of the detector, these collimators serve two pur-
poses. First, to reduce noise in the images by removing scattered X-rays. Secondly,
by determining the image slice width. These slice widths are controlled by how small

18 Theory

an opening the collimators in front of the detector have, where a smaller opening will
create smaller slice widths [8].

Filters

In addition to collimators, filterers are used to determine what X-rays enter the patient,
namely the energies of these X-rays. The filter operates by removing low-energy X-
rays, through exploiting e.g. the photoelectric attenuation. The removal of these low-
energy X-rays is important because these X-rays do not go through the patient and thus
do not contribute to the generation of the image, and these X-rays only contribute to
unnecessary radiation to the patient [8] [12].

Figure 2.8: The bremsstrahlung X-ray energy distribution without a filter (black), which is equal to
Figure 2.3. The bremsstrahlung X-ray energy distribution with a filter (black), removing low-energy
photons. The illustration was inspired by FIG. 5.1 in [12].

Some filters may be monoatomic sheets with an atomic number, Z; these thin sheets
will have some thickness, which will introduce an atom density, ρZ , for the X-ray path.
Given the sheet thickness, the photoelectric attenuation coefficient (Expression 2.12),
can be modified to the expression shown in Expression 2.21 [12].

σ ∝ ρZ
Z3(hc
λ

)3 (2.21)

From Expression 2.21 it is clear that thicker filters increase the likelihood of X-rays

2.1 Computed tomography, CT 19

undergoing the photoelectric effect. As a result, filters may have different shapes with
different thicknesses distributed across their structure. One such filter is known as the
bow-tie filter, which is thin at the center and gradually widens towards its edge. This
kind of filter allows the distribution of X-rays to pass through the patient uniformly dur-
ing imaging. Additionally, the filter also reduces unnecessary radiation to the patient
[8].

In a CT machine the first filter is the inherent filter in the X-ray tube, which is a fixed un-
changeable filter. Additional adjustable filters are also present, and the usage of these
filters is dependent on the imaging purpose, the imaging location, and the patient’s
anatomy [8].

Detector system

Today, the preferred detector system utilizes scintillation crystals and photodiodes,
called scintillation detectors, where one detector contains one crystal and one pho-
todiode component [6].

When a crystal is struck by high-energy X-rays that passes through the patient without
being absorbed, the crystal will absorb the incident X-rays and emit photons with lower
energies in the visible light spectrum through fluorescence. The absorption coefficient
for these crystals increases with the atomic number and density. Thus, the crystals are
usually made from materials such as cadmium tungstate, CdWO4, bismuth germinate,
Bi4Ge3O12, and cesium iodine, CsI. The emitted visible light photons then hit the pho-
todiodes attached to the crystal, that transforms the visible light energies into electrical
signals. Then the electrical signals are transformed into digital signals, which are then
transferred to the computer to perform image reconstruction [6] [8].

2.1.6 CT imaging
The images created are dependent on the interaction of X-rays that pass through the
patient, but in order to create the whole CT image, there are a few more steps needed.
The steps can be divided into three segments: data acquisition, image reconstruction,
and image display [6].

Data acquisition

Data acquisition is the process of collecting and storing the attenuation (absorption)
data. In CT, this amounts to the process of collecting and storing raw data produced by

20 Theory

the gantry and its components described in Section 2.1.5 [6]. The main part of CT data
acquisition is described in Section 2.1.5, but the attenuation of X-rays inside the patient
was not described. Therefore, this section focuses on the patient-dependent part of the
data acquisition.

After the X-ray beam is focused and low-energy X-rays are filtered out, with the use
of collimators and filters (Section 2.1.5), the remaining X-rays enter the patient. The
entering X-ray beam contains X-rays of various energies, a polychromatic beam, even
after the filtering process as illustrated in Figure 2.8. The beam also has an intensity,
I0, which decreases throughout the patient to an intensity, I. Hence, some of the X-rays
have either perished or have changed direction and is described as attenuation, P, and
is expressed in Equation 2.22 [8].

P = ln
(

I0

I

)
= µ ·d (2.22)

Inside the patient, the X-rays remaining mainly interact with tissue through the pho-
toelectric effect and Compton scattering, as illustrated in Figure 2.1. When interacting
through the photoelectric effect, the X-rays "disappear". However, when an X-ray in-
teracts through Compton scattering, the incident X-ray is converted to an X-ray with
less energy, which might still hit a detector despite the presence of collimators in front
of the detector. Thus, the X-rays hitting the detectors might also be scattered photons,
although ideally, the detectors want to record X-rays that pass through the patient, ex-
cluding the scattered X-rays [12] [8].

As a result, P is dependent on some linear attenuation coefficient, µ , that provides
information about the attenuation between an X-ray and a single atom/molecule. This
µ is then dependent on both the single atom/molecule photoelectric effect attenuation
coefficient, σPE , and the single atom/molecule Compton scattering attenuation coeffi-
cient, σC, which provides the needed tissue information. Like the other photon interac-
tions, shown in Expression 2.21 and Expression 2.9, P increases with tissue thickness,
d, as shown in Equation 2.22 [8].

The correlation between the beam intensities I0 and I, X-ray energy, E, tissue/patient
thickness d, and attenuation µ is expressed in Equation 2.23.

2.1 Computed tomography, CT 21

I =
∫ Emax

0
I0(E) · e−

∫ d
0 µ(E)dsdE (2.23)

where µ(E) is the energy dependant attenuation.

Once the X-rays have struck the detector and intensity, I, is measured, the attenuation
coefficients µ(xi,yi) at coordinate (xi,yi) are computed, which provides tissue informa-
tion [8].

Image reconstruction

Image reconstruction is the process of using raw data to create an image. There are sev-
eral approaches ranging from algebraic reconstruction to statistical and ML approaches.
The conventional approach is filtered back projection, and its key concepts are de-
scribed in grater detail below [6].

The detectors detect how much of the initial X-ray beam, I0, has been attenuated for
each position, P, for a straight path through the patient. When every attenuation P for
every single X-ray path is plotted it is called an attenuation profile, as illustrated in Fig-
ure 2.9-b) [6] [7]. Now there is a One-Dimensional (1D) signal generated and stored.
To illustrate the concept of back projection, one can first imagine one beam without
rotation of the X-ray tube and detector. For reconstructing the image from the one
1D signal, the signal is sent back in the opposite direction; this is referred to as back
projection and is illustrated in Figure 2.9-c). The back projection is done by evenly dis-
tributing the attenuation values across the whole line segment, as illustrated in Figure
2.9-c) [7].

Given that the X-ray tube and detector have a circular motion and the need to col-
lect many 1D signals, a way to collect and store data is by the use of a sinogram. The
sinogram is a collection of the attenuation profiles for each beam for multiple beam an-
gles, where the beam angle is the angle of the beam with respect to a fixed reference
axis. The beam angle changes linearly with respect to the angle of rotation to the X-ray
system. Then, to reconstruct the 2D image, back projection is applied to the sinogram
data. Given that the back projection distributes the attenuation values evenly across the
line segment, these projections will construct artifacts called streak artifacts, which will
be visible in the 2D image and the 3D image if left untreated [6] [7].

A visualization of a streak artifact can be imagined by, repeating the whole process
illustrated in Figure 2.9 for multiple angles. In the end, the circular object would ap-

22 Theory

pear in the middle, however, not without some shade of gray in the region where the
original image was black.

Figure 2.9: Figure a) represents the object that is scanned. Figure b) shows how the beam from the
X-ray tube passes through the object and creates an attenuation profile. Figure c) illustrates how a
simple back projection works, without filtering. The illustrations are inspired by Figure 5.32 in [7]

To reduce these streak artifacts, a process known as filtering is applied before the back
projections. This is done by first transforming the data from the spatial domain to the
sinogram to the frequency domain, with a Fourier transformation. Then, applying a
frequency filter, e.g., the common high-pass filter, which works by amplifying high
frequencies of the sinogram, in a way that edges and fine detail are more showcased.
After filtering the data an inverse Fourier transformation is done to go from the fre-
quency domain back to the spatial domain. Now, the back projection is used on the
filtered sinogram, which will result in a clearer image with reduced streak artifacts [8]
[7].

Image display

To visualize CT images, the acquired linear attenuation coefficients, µT , are displayed
as CT values with the unit "Hounsfield unit (HU)" [6]. The conversion from µT to the
corresponding CT values is expressed through Equation 2.24. Table 2.1 displays some
ranges of CT values for various tissues and organs relative to the linear attenuation
coefficient to water, µwater [8].

CT value =
µT −µwater

µwater
·1000 HU (2.24)

2.1 Computed tomography, CT 23

Tissue CT value interval (HU)

Water [-4,4]

Air [-1005,-995]

Lungs [-950,-550]

Fat [-100,-80]

Spongious bone [50,≈300]

Compact bone [≈300,>1000]

Kidney [20,40]

Pancreas [30,50]

Blood [50,60]

Liver [50,70]

Table 2.1: CT value ranges for various tissues and organs relative to the linear attenuation coefficient
to water. The table was inspired by Figure 1.9 in [8]

For the CT value ranges shown in Table 2.1, the overall range of CT values span from
-1005 to >1000 HU (air to compact bone); in fact, medical scanners tend to provide CT
values between -1024 to 3071 HU [8].

Ideally, one wants one shade of gray corresponding to one CT value. However, hu-
mans can only differentiate between 40 to 80 shades of gray at maximum. This prob-
lem is dealt with by using the "human grayscale" to only the CT value range of in-
terest, called windowing. For example, by assigning the, e.g., 10 different shades
of distinguishable grays to the CT value range [-950 HU, -551 HU], from Table 2.1
(using -511 instead of -550 for convenience), for lung examinations. When apply-
ing windowing, the whole range of CT values will then be split into e.g. 10 separate
ranges, each representing one shade of gray. By using the same example as previ-
ously mentioned, the whole CT value range chosen, with HU units, will be split like
this { [−950,−911], [−910,−871], ..., [−590,−551]}. The shade of gray chosen to
represent each range is the center value for each of those 10 ranges; in the provided ex-
ample, this translates to {−931,−891, ...,−571}. In windowing, CT values acquired
with higher CT values than the highest CT value in the chosen range are displayed as
white and black if the CT values acquired are lower than the lowest value in the chosen
range. In the example provided, this translates to CT values with values > -551 HU and
< -950 HU, which are displayed as white and black respectively [6] [8].

The 2D images are stacked upon one another to create the final 3D image representing
the whole scan. For a scan, a vast range of CT values is stored, which allows the user to
manually adjust the field of view to various ranges during the examination of the scan

24 Theory

[3] [6] [7].

2.1.7 Image modes

There exist several modes in CT imaging, and picking the right mode is influenced
by what is available, where the imaging takes place, and what is the most optimal for
patients. Two common modes are Helical (Spiral) CT and Low Dose CT (LDCT),
where helical CT is the most common mode today, and LDCT is a safer alternative and
recommended for the high-risk population [18]. These modes are described in greater
detail in the following subsections.

Low Dose CT

LDCT gives a lower radiation dose, providing a safer alternative to the standardized
one [19]. Due to the lower dose, the images do not have the same high quality as the
standardized one, but this change is insignificant for the perception of lung nodules
[20]. The probability of getting false positives is increased with LDCT and is there-
fore recommended for the high-risk population because it is also shown to reduce the
mortality rate among these patients [11] [18] [21].

Helical CT

Helical CT, also known as spiral CT, is the most commonly used form of CT today.
Helical CT scanners work so that the X-ray source and the detectors move continuously
in a spiral motion along with the table. The advantages of helical scanning are increased
scan speed, which in return results in improved image quality, reduction of artifacts,
especially motion artifacts, and better 3D reconstruction [6].

2.1.8 Artifacts

Artifacts are a phenomenon when unwanted structures appear in the acquired CT im-
ages, disrupting the image qualities [8] [6]. Artifacts can appear for various reasons,
e.g. patient motion, metallic implants, beam hardening (as a result of polychromatic ra-
diation Section 2.1.6), partial volume effects, streak artifacts (Section 2.1.6), sampling
errors and if the patient exceeds the limit of measurement [8]. Figure 2.10 visualizes
how the mentioned artifacts negatively impact the image qualities.

2.2 Primary lung cancer 25

Figure 2.10: Illustration of the common CT artifacts: sampling errors (a), patient motion (b), beam
hardening (c), partial volume effects (d), metallic implants (e) or patient exceeding the field of mea-
surement (f), which all occur in CT imaging. The images are acquired from [8] (Figure 4.10).

However, even if the artifacts are unwanted, some patients might have permanent metal-
lic implants, thus making such artifacts inevitable. On the other hand, some of the
artifacts mentioned are intervenable such as reducing patient movement and reducing
sampling errors.

2.2 Primary lung cancer

Primary lung cancer are cancerous lung lesions (tumors) that originates in the lungs,
whereas cancer spreading to the lungs from another organ is referred to as secondary

26 Theory

lung cancer or lung metastasis [22] [23] [24].

Primary and secondary lung cancer have many shared symptoms. The symptoms
shown below are common in both cases [25]:

• Long lasting coughs.

• Frequent chest infections.

• Coughing up blood.

• Persistent Breathlessness.

• Persistent tiredness and lack of energy.

• Loss of appetite and/or unexplained weight loss.

Primary lung cancers are divided into two groups: non-small cell lung cancer and small
cell lung cancer. Whereas, non-small cell lung cancer again is divided into three main
types: squamous cell carcinoma, adenocarcinoma and large cell carcinoma [22] [23].

The small cell lung cancer (SCLC) is the less common one with between 15 to 20% of
all the primary lung cancers where non small cell lung cancer (NSCLS) account for the
rest [22] [23]. SCLC is highly metastatic, close to 70% have a metastatic disease when
diagnosed with SCLC [26]

Adenocardionma starts in the lining of the airways. Squamous cell carcinoma tends
to grow in the center of the lung. Large cell carcinoma are large in appearance and can
originate in any part of the lungs [23].

2.3 Secondary lung cancer

Secondary lung cancer (lung metastasis), are when cancerous lesions are found inside
the lungs, but the lesions originate from another part of the body [24]. Metastasis to the
lung is the second most common form for metastasis [27]. The identification of metas-
tasis is of great importance, because the patient will have a primary tumor site which
need to be identified if not already, to hinder metastasis other organs/structures.

Similar to primary lung cancer, secondary lung cancer also exhibits the symptoms listed
in Section 2.2.

2.4 Artificial Intelligence 27

The lesions spread when tumor cells circulate from the primary lesion through the
lymphatic system or through blood vessels [24]. The most common route of spread is
through blood vessels, and due to this type of spread the metastatic lesions have a ten-
dency to manifest itself at the rim of the peripheral part of the lungs and in the basal
part [27].

2.4 Artificial Intelligence

Artificial Intelligence (AI) is when a machine or a computer is able to simulate human
intelligence by making decisions from either a set of rules, previous information or ex-
perience [28]. The purpose of utilizing AI is to create AI applications which will be
good at specific tasks, such as: text generation (ChatGPT [29]), CT lung image seg-
mentation or making decisions with decision trees, etc..

There are different ways to create an AI applications. One alternative is to define a
set of rules, such that the application can make predictions without using training data.
Another alternative is to feed a model a dataset with information, such that a model
can learn to find patterns from previous data, ML. Figure 2.11 showcases how AI and
ML are related, and also introduce DL as a subset of ML, which is explained in greater
detail in section 2.6.

Figure 2.11: Illustration of how AI, ML and DL is related to each other. The figure is inspired from .

2.5 Machine Learning

ML is an AI-generating technique that focuses on creating computer algorithms that
build models which can learn from data over time [30]. By feeding the model with

28 Theory

more data, the model can better predict new unseen data. The ability to make good pre-
dictions on unseen data is called generalization and is the objective of an ML model
[31], and the generalization is task-dependent. An ML model must be tuned to specific
applications, e.g. object detection and/or image segmentation of CT lung lesions.

ML problems are often divided into three groups: supervised learning, unsupervised
learning, and reinforcement learning. Supervised learning models train on data with
labels, and the objective is to see patterns in input data and classify them with a la-
bel. The supervised model tries to generalize on labeled data and can make predictions
on unseen data. Unsupervised learning models train on unlabeled data and cluster the
outputs based on patterns, relationships, etc. [31]. Reinforcement learning models use
the concepts of reward and punishment to train. The model gets rewarded when doing
something correctly and a punishment when doing something false. By doing this, the
model is forced to learn by trial and error [32]. An example of an AI model based on
reinforcement learning is a model that optimizes travel paths in a maze. In the case of
lesion detection and segmentation in lungs, supervised learning is the preferred path,
every lung of every human has a slight deviation from one another, and by giving the
training model some labeled data, it can learn to detect abnormal lesions.

2.5.1 Object detection
One ML task is object detection, and is an important tool in identifying the existence of
specific objects in an specific region within an image. An object detection model is a
model that is able to identify the existence of an object in an image. This is usually done
by creating a bounding box around the area of interest [33]. Object detection is widely
used in medical imaging e.g. in lung lesion detection [34] [35]. In this project one of
the main goals is to segment lesions in the lungs for CT scans, and lesion detection is a
crucial step for performing segmentation. In this thesis the object detection is done by
YOLO as well as the segmentation.

2.5.2 Image segmentation
Image segmentation is a computer vision task, that classify each pixel in an image with
a label, which provides information on what the given image contains. Segmentation
is important when one want to know the exact region an object is located, without the
additional region object detection provides [36]. Figure 2.12 provides an example of a
segmented brain, where the cerebellum, brain stem and brain lobes are segmented and
highlighted with distinct colors.

2.6 Deep learning 29

Figure 2.12: A segmentation of the brain, where the cerebellum, brain stem and brain lobes are seg-
mented and highlighted with distinct colors. The image are acquired from [37].

Image segmentation is divided into semantic segmentation and instance segmentation.
Semantic segmentation classifies each pixel with a label, which is useful for identi-
fying the presence of an object in an image. However, semantic segmentation lacks
the ability to distinguish between multiple objects in an image, e.g. two separate le-
sions, which makes it challenging to know how many objects there exist in an image.
Instance segmentation builds upon semantic segmentation, by not only performing pix-
elwise classification, but additionally is able to distinguish between individual objects,
e.g. two separate lesions, and also provides an object count [36].

The type of image segmentation method to use is task-dependent. Semantic segmen-
tation is suitable if one want to know the presence of an object in an image. However,
if the number of objects is of significance semantic segmentation will not suffice. For
lung lesion segmentation tasks, the number of lesions present in a patient is of interest,
and one has to use instance segmentation [36].

2.6 Deep learning

DL is a subgroup of ML that uses multilayered neural networks to learn from data. DL
models are also referred to as deep neural networks (DNN) [31] [30]. The structure of
these models is inspired by neurons in human brains and other animal brains, where one
neuron in a hidden layer is analogous to a neuron in the human brain. The hidden lay-
ers provide the model with the ability to extract features without manual intervention.
There are many types of DL networks. One of them is convolutional neural networks,
which is the type of network used in this thesis [30] [38]. Figure 2.13 provides an

30 Theory

illustration of the structure of a deep neural network with its layers.

Figure 2.13: A visual illustration of the structure to a deep neural network with its layers. The figure
was inspired by [38].

2.6.1 Convolutional neural network
A convolutional neural network (CNN) is a type of DNN, and is most prevelant used
for image analysis. CNNs have made great success in medical analysis e.g. by object
detection and segmentation, and thus wildly used in the field [39]. The huge benefit of
CNN is its unique ability to identify relevant features and patterns [38] [30].

Some of the CNNs components are convolutional layers, activation functions, pool-
ing layers, fully connected layers, and loss functions. These features are all described
further below. One of the key benefits for using CNNs rather than other neural networks
is CNNs weight sharing ability, which helps the generalization and reduce overfitting
by reusing weights across layers [30] [38].

Convolutional layers

Convolution layers are the most important part of a CNN. The purpose of a convolution
layer is to extract features from the data (the feature map), this is done by different kinds
of kernels, also known as convolutional filters. A kernel is a matrix containing values,

2.6 Deep learning 31

in some kernels, the values are placed in a specific order to provide the model various
abilities, e.g. detect edges. Other kernels may contain random values in a random order,
which acts like weights to the model, the weights are then updated for each training era
(epoch), such that the model gains the ability to extract unique features [30].

Activation functions

Activation functions are a way to introduce non-linearity to the neural network. The
main purpose of an activation function is to either activate or deactivate a neuron, based
on its weights and biases, to allow for the network to learn complicated patterns. This
is done by applying an activation function after the layers with weights [30]. The ac-
tivation function for a neural network works as the action potential in animal brains, a
threshold has to be reached in order to fire a neuron (in the brain) and excite a neuron
(for a neural network) [31].

There are many different activation functions that are used today, but for an activa-
tion function to be good the activation function needs to be differentiable, and the
derivative should be a non-zero value for the "activated" part since this allows for back-
propagation [30]. Some activation functions used today are Sigmoid, ReLU and SiLU
which are given in Equation 2.25 - 2.27 respectively, and also illustrated in Figure 2.14-
a) - c) respectively. Additionally, Figure 2.14-d) provides a comparison between ReLU
and SiLU illustrating the similarities for larger values.

Sigmoid : Sigmoid(x) =
1

1+ e-x (2.25)

ReLU : ReLU(x) = max(0,x) (2.26)

SiLU : SiLU(x) = x ·Sigmoid(x) (2.27)

32 Theory

Figure 2.14: The activation functions: Sigmoid, ReLU, and SiLU are illustrated in plots a), b), and c),
respectively. Additionally, a comparison between ReLU and SiLU are provided in plot d).

When training a DL model, there are no definite answer for which activation function
to use, and in one DL model there might be more than one activation function present.
The SiLU function given in Equation 2.27 is an activation function used by the DL
algorithm YOLO [40], which is the algorithm utilized in this thesis. An advantage
of SiLU and Sigmoid purposes is that the functions are continuous and differentiable,
compared to ReLU, which is obviously discontinuous at origo. Thus making SiLU
applicable for back propagation (Section 2.6.5).

Pooling layers

The main task of pooling layers is to shrink a feature map and create a new smaller
feature map, by maintaining the majority of the dominant features [30]. Unlike convo-
lutional layers used for feature extraction, pooling layers are used for down-sampling
and reducing the feature map, by changing their dimension. The pooling operation is
similar to convolution mentioned in 2.6.1, involving a kernel size [30]. However, this
kernel is non-learnable, and acts like an invisible box placed over the feature map and
performs pooling operations.

There are several pooling operations, the most common ones are max pooling, min

2.6 Deep learning 33

pooling, average pooling and global average pooling. Max pooling extracts the max-
imum value within the kernel’s receptive field, while min pooling extracts the min-
imum value. Average pooling takes the average value within the kernel’s receptive
field. Global average pooling is independent of the kernel, and takes the average value
of the whole feature map [30]. Figure 2.15 illustrates various pooling operations with
their new feature maps.

Figure 2.15: Examples of different pooling layers. The figure was inspired from [30].

Fully connected layers

Fully connected layers are usually at the end of the CNNs. These layers are unique in
the sense that each neuron is connected to every neuron from the previous layer and
every neuron in the next layer. This is achieved by converting the feature maps from
the previous layer to a 1D vector. After applying the final fully connected layer, every
neuron is connected to n number of neurons, where n is the number of classes/labels
in the classification task [30]. In terms of lesion classification, n may be equal to two,
indicating lesion or no-lesion.

2.6.2 Loss function
The loss function is the function that provides information about the model’s perfor-
mance, and the loss value gets updated for each epoch during training. The loss function
measures the difference between the output of the model and the ground truth. Hence,
the goal for DL models is to minimize the value of this loss function by finding the most
optimal parameters for the model. There are different kinds of methods to minimize

34 Theory

the loss function by parameter optimization one of which is gradient descent, which is
described in greater detail in Section 2.6.6 [30].

An example of a simple loss function is the mean square error function (MSE), which
is given in Equation 2.28.

L =
1
N

N

∑
n=1

|YGround truth −Yprediction|2 (2.28)

where N is the number of samples in the dataset.

The lowest point in a function, defined on an unbounded interval, it is known that
the gradient (derivative) at that point is zero, which the gradient descent exploits. How-
ever, there are several other cases where the gradient is equal to the zero, namely: the
global and local maximas, local minimas and saddle points. These cases are the solu-
tions one wants to avoid when minimizing the loss function.

For an arbitrary function, the global maxima is where the function has its absolute
highest possible value, and vice versa for global minima. A local maxima is a point
where the gradient to the function is equal to zero, but the point is not the global max-
ima, and vice versa for local minima. A saddle point is a point where the gradient to the
function is zero, but the neighboring gradients to one side are positive, and the neigh-
boring gradients to the other side are negative. However, for a function only defined on
a specific interval (bounded), there might exist other global maximas and minimas at
the end points, which are further referred to as constrained maxima and minima. Fig-
ure 2.16 illustrates every case mentioned, where the graph to the left illustrates cases
when the gradient to f (x) is equal to zero, with point 1. - 5. illustrating the global max-
imum and minimum, a local maximum and minimum, and a saddle point, respectively,
and the stars marked on the graph to the right illustrate the global minimum and max-
imum to a function with a closed bounded interval, where the corresponding gradients
are non-zero.

2.6 Deep learning 35

Figure 2.16: The graph to the left illustrates examples where the gradient to f (x) is equal to zero
(the derivative). Point 1. - 5. illustrates the global maximum, global minimum, local maximum, local
minimum and the saddle point respectively. The stars marked on the graph to the right illustrates the
global minimum and maximum to a function a closed interval, where the corresponding gradient is
non-zero.

2.6.3 Hyperparameters

In DL, hyperparameters are parameters one has to specify before training the models,
some of these hyperparameters are the learning rate, epochs, dropout, and batch size,
which are described in greater detail in this section. Additionally, the hyperparame-
ters momentum and weight decay are described in Section 2.6.6. The hyperparameters
differ from the unspecified parameters, which are acquired throughout the training pro-
cess [31], and will thus henceforth, only be referred to as hyperparameters.

These hyperparameters have a vast range of which values they can possess, and can
as a result be difficult to pick the right hyperparameter values to obtain the absolute
lowest possible validation loss, global minimum (see point 2. in Figure 2.16), this is
because any change to the hyperparameter values will affect the general DL perfor-
mance [30]. Methods for optimizing these hyperparameters are mentioned in Section
2.6.4.

Learning rate

The learning rate (lr) is with how big of a leap the model parameters get updated. If the
lr is too small, the model might never reach its optimal parameters, θ . In contrast, if
the lr is set to high the model might diverge from the optimal solution [31]. Both cases
with a small lr and a large lr are showcased in Figure 2.17.

36 Theory

Figure 2.17: Effect on convergence for a small and a large learning rate. The figure was inspired by
[41].

The optimal lr is usually found by trial and error, because one has to try various lrs
to determine which one converges, and the convergence is also dependent on the other
hyperparameters [30].

Epochs

The hyperparameter epochs is the number of times one wants to scan the whole train-
ing set and update the model parameters during the training process [31]. Since the
optimal parameters are dependent on the combination of hyperparameters, it is impor-
tant to not have too many epochs, because one might skip the optimal solution and may
be computational and time expensive [30].

Its possible to apply early stopping, which will stop the training process when the
validation loss increases while the training loss decreases. However, there are several
issues with early stopping. Given the case of slow convergence as illustrated in Fig-
ure 2.17 the early stopping might not get applied, which when the number of epochs is
very large results in a long training time. An additional problem with early stopping, is
that the training process can stop in a local minima or saddle point (4. and 5. in Figure
2.16), resulting in not achieving the optimal parameters [31].

Dropout

Dropout is a technique used for generalization. It works by randomly inactivating neu-
rons for a whole epoch. The portion of how many neurons to inactivate is manually
chosen. By inactivating neurons, the model is forced to learn other different features
by the training data presented [30].

2.6 Deep learning 37

However, the use of dropout and how big of portion of neurons to inactivate is task-
dependent, and in some cases the use of dropout is not necessary for generalizing the
trained model.

Batch size

To train the model, one could train it with every data point in the training set simulta-
neously for each epoch. However, this would require a huge amount of computational
power/memory, which not all machines have.

To avoid this batch size is introduced, this picks out n samples (the batch size) from
the training set and updates the model parameters with these n samples. Since an epoch
is a scan of every data point in the training set, the parameters get updated k times (k
iterations), such that the whole dataset is used before starting a new epoch [42]. To
illustrate, one can use the example with n = 10 and the number of data points in the
training set equal to 1000. Then k would be 1000/10 = 100, which means that the pa-
rameters get updated 100 times before starting the next epoch.

However, the maximum batch size value is both model complexity-dependent and
computer-dependent. With a more complex model, more memory is used for process-
ing each data point, which means that the model probably has to have a smaller batch
size than for training a less complex model.

2.6.4 Optimization of parameters and hyperparameters

Finding the right parameters, and hyperparameters for optimizing the trained model, is
a difficult task in DL and can potentially be very time expensive. There are different
methods for optimizing both the hyperparameters and parameters.

The goal with optimization is to minimize the validation loss by finding the right pa-
rameters and hyperparameters. There is no guarantee that one finds the most optimal
parameters or hyperparameters, one might a sub-optimal solution (local minima or sad-
dle point), or one never even find parameters where the validation loss converges during
the training time [30].

Further in this section two optimizing strategies for optimizing hyperparameters are
described, in addition to a soft introduction to the optimizing strategy gradient descent,
which optimizes the parameters.

38 Theory

Hyperparameters

There are several ways to tackle the search for hyperparameters, in this section two ap-
proaches are described in grater detail.

Grid search is a technique where one defines which hyperparameters to test on and
values for each of them (the hyperparameter space). This approach can be very time
expensive given the complexity of the hyperparameter space. This approach also has
some limitations, given that one has to specify the values to test on for the different hy-
perparameters, one might get a sub-optimal set of parameters [43]. E.g., if one test on
these values [0.1,0.2,0.3,0.4] for the hyperparameter lr, the grid search might suggest
that the lr equal to 0.3 might be the best, but in reality the true optimal lr might be 0.25.

Random search is another algorithm that is used in DL to find parameters. Here, the hy-
perparameter space is also defined, but not the values of each hyperparameter, however,
one can usually define a range of values that limits the hyperparameter values. Addi-
tionally one can specify how many different combinations to test. These values are
generated randomly and the model compares the validation losses across every random
hyperparameter combination. Unlike grid search, this approach can provide random
specific values, e.g. 0.234823, that one never would think to provide in a grid search
[43]. However, like grid search, random search also has the limitation that the optimal
combination of hyperparameters might never be found.

Parameters

To find the optimal parameters, weights and biases, there exists several optimizing algo-
rithms. Some of the algorithms are based on the concepts back propagation and gradi-
ent descent, which are both described in the subsequent sections. These algorithms try
to minimize the loss function by updating the weights and biases for each iteration [30].

As always, one is never guaranteed to find the optimal set of parameters for the given
task. Here, one can also encounter the possibility of reaching a sub-optimal solution or
never arriving at the optimal solution.

2.6.5 Back propagation
Back propagation is a method to calculate the gradients to the loss function. The
method propagates backwards from the end of the network and calculates each gra-
dient by using the concept chain rule from calculus [30]. To visualize this progress a

2.6 Deep learning 39

computational graph is shown in Figure 2.18.

Figure 2.18: Illustration of how a specific gradient is calculated by following the red arrows in the
computational graph. Each variable have the following meaning: Input X, Weights Wi, Biases bi,
Activation function Z′, Hidden layer H′, Model output YM, Ground truth YT and Loss L.

In Figure 2.18 the variables provided have the following meanings: Input X, Weights
Wi, Biases bi, Activation function Z′, Hidden layer H′, Model output YM, Ground
truth YT and Loss L. The red arrows in the figure, illustrate the path taken to calculate
the loss function gradient with respect to W2, ∂L

∂W2 , by applying the chain rule, the
calculation of the gradient is expressed in Equation 2.29.

∂L
∂W2 =

∂L
∂YM

∂YM

∂W2 (2.29)

To acquire the other loss function gradients with respect to the corresponding variable,
one can apply the same logic as illustrated in Figure 2.18 and expressed in Equation
2.29.

For calculating the loss function gradients the dimensionalities are chosen to have
the same dimensionality as the corresponding variable. In Equation 2.30, this means
that the dimensionality of the calculated gradient has to have the same dimensionality
as W2. To acquire the desired dimensionality, one might have to transpose, perform
element-wise multiplication, or reorder the gradients.

2.6.6 Gradient Descent

Gradient descent is the process of minimizing the loss function based on the training
losses throughout the training process. The equation describing the gradient descent
algorithm is provided in Equation 2.30 [30].

θθθ i = θθθ i-1 − lr ·∇L(θθθ i-1) (2.30)

40 Theory

where θθθ i is the i-th parameter for the model (weight or bias), and L(θθθ i) is the loss
function for the i-th parameter.

The primary goal of gradient descent is to find the most optimal parameters where
the gradient of the loss function reaches zero, corresponding to the global minima of
the loss function. This involves updating each parameter during every iteration [30].
To illustrate how each parameter is updated, an example where the two parameters θ1

and θ2 are updated is provided by Equation 2.31 and Equation 2.32.

θ1 = θ0 − lr · ∂L(θ0)

∂θ0
(2.31)

θ2 = θ1 − lr · ∂L(θ1)

∂θ1
(2.32)

where the gradients in the equations are acquired by back propagation.

When applying general gradient descent to find optimal parameters, the global min-
ima is dependent on the hyperparameters chosen, such as lr and epoch, which constrain
the number and which of parameters examined.

An important factor one has to consider when using gradient descent is that local min-
imas (local maximas and saddles points) also have gradients equal to the zero vector
(∇L(θθθ) = 0). If the gradient of the loss function is zero, the parameters will not be up-
dated, as shown in Equation 2.30.

Another factor to consider is the loss minimized by the algorithm presented in Equation
2.30, is the training loss, which poses the possibility of the model overfitting. To avoid
this, one could implement early stopping, but this approach also can encounter some
issues (Section 2.6.3). Other approaches to avoid overfitting are to implement momen-
tum and weight decay, which are both described in the subsequent sections. These
implementations also give the model an opportunity to escape local minimas.

When the gradient descent optimizer is applied without separating the training data
into batches, the algorithm will calculate every new parameter, gradient, and loss, with
every data point in the dataset simultaneously, which, as mentioned in Section 2.6.3,
can be computationally expensive and might need more memory than the computer can
provide. When applying a batch size, n, the computational power needed is less mem-
ory expensive, one such gradient descent based algorithm is the stochastic gradient

2.6 Deep learning 41

descent (SGD), which is described in greater detail in the following section [30].

Momentum

Momentum is a hyperparameter utilized together with gradient descent, with the goal
of streamlining the convergence rate as well as escaping local minimas, which, in re-
turn, can enhance the model’s performance during training. This is done by adding a
momentum, m, with momentum weighting, λ , which tells the user how much momen-
tum shall influence the training process and is a hyperparameter [30]. The momentum
is expressed in Equation 2.33, and with substitution the momentum-implementation to
gradient descent is shown through Equation 2.34 [44].

mi = λmi-1 − lr ·∇L(θθθ i-1) (2.33)

θθθ i = θθθ i-1 +mi-1 (2.34)

The momentum is analogous to the velocity, whereas the momentum weighting is anal-
ogous to the inertia from classical physics [44]. Momentum can be explained by view-
ing the loss curve as a hill and the loss as a ball rolling down the hill [45]; when rolling
downwards, the ball gains momentum (speed). If there is a small hole (local minima)
in the ball’s path, instead of falling inside the hole and stopping, the ball will essentially
jump over (escape) and continue its path, displaying resilience for sudden changes (in-
ertia).

Weight decay

Weight decay is a method that prevents overfitting by enabling extra punishment for
large weights in the loss function, providing a new loss function shown in Equation
2.35 [46].

Lnew = Lold(θθθ)+
η

2
θθθ

2 (2.35)

where η is the weight decay weighting hyperparameter.

When utilizing weight decay and momentum together in gradient descent, the momen-
tum is now given by Equation 2.36, which in return provides a new equation describing
gradient descent, shown in Equation 2.37 [47]. By setting both λ and η to be zero,
Equation 2.37 and Equation 2.30 are equal, resulting in Equation 2.37 being a more
general description of gradient descent.

mi = λmi-1 − lr ·∇Lnew(θθθ i-1) (2.36)

42 Theory

θθθ i = θθθ i-1 +θmi-1 − lr(∇Lold(θθθ i-1)+ηθθθ i-1) (2.37)

Stochastic gradient descent

SGD operates like gradient descent, but by separating the training data into batches
with size n, which amounts to k number of batches, which will result in less memory
expensive training. Hence, some of the most important hyperparameters in SGD are
the lr, the number of epochs, and the batch size [30] [48]. Since SGD are gradient de-
scent based, the algorithm is also described by Equation 2.37.

When training the model, because the training data was split into k batches, every
parameter will be updated for k iterations for every epoch, which in return introduces
noise to the system. The noise introduced to the system can cause the convergence to
the optimal parameters to become unstable, however, the noise introduced can also help
the model to not converge to sub-optimal parameters [30] [48].

2.6.7 Data splitting

Data splitting is how the original dataset is split to one training and evaluation dataset.
These splits are dependent on the size of the original dataset and are split in a way that
the training set usually contains most data points; some common data splits are 50:50,
60:40, 70:30, 80:20, and 90:10 (training:evaluation). The evaluation set could be sepa-
rately split into validation and test set [49].

The main purpose of data splitting is to prevent overfitting [49]. Overfitting occurs
when the model has trained itself to fit the training data almost perfectly, ignoring the
deviations that occur in other sets. To identify overfitting, one can examine the perfor-
mance of the training set and compare it to those obtained by the validation set. An
example of overfitting vs a good fit (generalized) is illustrated in Figure 2.19.

2.7 Performance measure 43

Figure 2.19: Illustration of a overfitted model (left) and a good fit (generalized) model (right).

Since the models are trained on the training set, it is also common practice to use the
whole evaluation set as the validation set [49]. Even if this technically makes the model
selected somewhat biased to the validation set, this can be done when, e.g., dealing with
small datasets.

2.6.8 Data augmentation

Data augmentation is a method used to compensate for the lack of data. This method
modifies the original data; in the case of images, this can be done by resizing the im-
ages, tilting the images, and flipping the images, etc., and adding the modified versions
to the training data. In addition to compensating for data, data augmentation also pro-
vides the model additional flexibility, and can positively influence the generalization of
the model by preventing overfitting [30].

2.7 Performance measure

To evaluate a model, different performance measures can be used; for medical seg-
mentation, the evaluation metric Sørensen-DICE coefficient (DICE) is often used, and
other evaluation metrics such as intersection over union (IoU), Sensitivity, and Preci-
sion are also used [50]. To calculate these performance metrics the terms True Positive
(TP), False Positive (FP), and False Negative (FN) have to be and are introduced in the
subsequent section.

44 Theory

2.7.1 True Positive, False Positive and False Negative

TP, FN, FP, and True Negative (TN) are terms commonly used in binary classifica-
tion tasks, where the label is "True" if the label predicted matches the ground truth, or
"False" if the label predicted does not match the ground truth. To classify a detection
as TP some threshold, which is usually based on the model’s object detection ability,
one common threshold is the bounding box IoU [31] [30]. In segmentation tasks, how-
ever, the terms TP, FP, and TP refer to the labeling of each pixel and not the labeling of
the whole object for object detection.

These terms are important for calculating the performance measures; DICE, IoU, sen-
sitivity, and precision, as expressed in Equation 2.40, Equation 2.43, Equation 2.41 and
Equation 2.42 respectively [50].

When dealing with a binary segmentation task of small objects, e.g. lung lesions within
a CT lung image, the number of TN-pixels will be significantly larger than the number
of TP-pixels, FP-pixels, and FN-pixels and will therefore mathematically be the main
contributor if present in an equation. One such performance metric is the specificity
metric, which is expressed in Equation 2.38 [50]. From the equation, it is obvious that
for every small segmented object, the specificity is approximately one.

Speci f icity =
T N

T N +FP
(2.38)

2.7.2 DICE score

DICE compares the area of the predicted mask and the area of the ground truth mask,
which essentially measures the overlap. This metric is the most commonly used in med-
ical segmentations, as it provides a direct comparison between the two masks. How-
ever, DICE also provides information if the predicted mask falls outside the ground
truth mask providing FPs [50]. The DICE score can be calculated by using Equation
2.39, and a visual illustration of the calculation is displayed in Figure 2.20.

DICE =
2 · Intersection

Pedicted area+Ground truth
(2.39)

2.7 Performance measure 45

Figure 2.20: An illustration of how the DICE score is calculated

From Equation 2.39 one can see that the DICE score varies from zero to one, where one
means perfect overlap and zero means no overlap. In terms of TP, FP, and FP Equation
2.39 is expressed as Equation 2.40.

DICE =
2 ·T P

2 ·T P+FN +FP
(2.40)

2.7.3 Sensitivity
Sensitivity, also known as recall or true positive rate, measures the model’s ability to
correctly predict a mask compared to the ground truth, similar to DICE. In contrast
to DICE, sensitivity, however, provides more information on how the predicted mask
misses the ground truth mask by ignoring the FPs in its calculation. The formula is
given in Equation 2.41. Since FPs are not included in sensitivity, DICE and sensitivity
do not have a 100% correlation and are, in fact, reduced to 74% [50].

Sensitivity =
T P

T P+FN
(2.41)

In Equation 2.41, it is obvious that sensitivity can obtain values from zero and one,
where one means that the predicted mask covers the whole ground truth mask, and
zero means that either the predicted mask misses completely, or there is no predicted
mask in that particular image. However, in the case where sensitivity is equal to one,

46 Theory

due to Equation 2.41, one cannot be sure if the predicted mask covers the ground truth
mask exactly or if additional regions outside the ground truth mask are included in the
predicted mask [50]. This is why sensitivity has to be combined with metrics such as
DICE, precision, etc. or a combination of these.

2.7.4 Precision

Precision measures the model’s ability to correctly predict a mask on the ground truth,
similar to DICE. In contrast to DICE, precision, however, provides more information
on how the predicted mask is located on the ground truth mask by ignoring the FNs in
its calculation. The formula is given in Equation 2.42. Since FNs are not included in
precision, DICE and precision do not have a 100% correlation as the sensitivity [50].

Precision =
T P

T P+FP
(2.42)

Similar to DICE and sensitivity, the precision can be every value from zero to one.
When the precision value is zero, then the prediction is unreliable and overlaps 0%, and
when the precision value is one, the prediction mask overlaps 100%. However, when
precision is equal to one, due to Equation 2.42, one cannot be sure if the predicted
mask covers the ground truth mask fully or just segments of the ground truth [50].
This is why precision has to be reported together with other metrics such as DICE and
sensitivity.

2.7.5 IoU

Intersection over Union (IoU), like DICE, also measures the overlap between the pre-
dicted area and the ground truth area. DICE score is, however, more common in med-
ical segmentation tasks; in other segmentation tasks, IoU is also used. Additionally,
IoU is a term more familiar to non-medical individuals with a general knowledge of
statistics. The formula for calculating IoU is given in Equation 2.43.

IoU =
T P

T P+FP+FN
(2.43)

The DICE score and IoU are, in fact, 100% correlated, and the correlation is expressed
in Equation 2.44, which can be verified by substituting Equation 2.40 with DICE in
Equation 2.44 [50].

IoU =
DICE

2−DICE
(2.44)

2.7 Performance measure 47

Compared to the DICE score, the True Positives are less weighted in the calculation of
IoU, which means that the DICE≥IoU as shown in Equation 2.44. From Equation 2.44
it is also clear that IoU and DICE are equal at zero and one.

2.7.6 Confusion matrix
A confusion matrix (standard confusion matrix) is a matrix that provides information
on the model object detection performance. The confusion matrix sorts the model
predictions on the validation set against the ground truths in a comprehensible manner.
For binary classification tasks, e.g. lesion or no lesion, a confusion matrix will have a
dimension 2x2, as shown in Figure 2.21 [31].

Figure 2.21: The Figure illustrates an binary confusion matrix

As Figure 2.21 indicates, for every DL task, it is ideal to only have non-zero values in
the diagonal, from the top left corner to the bottom right corner, and zero elsewhere.

Normalized confusion matrix

A sub-type of the confusion matrix is the normalized confusion matrix, which is to
normalize the cell values to values between zero and one. However, there are two
sub-types of these normalized confusion matrices namely, the column-wise normalized
matrix and the row-wise normalized matrix [51].

Depending on the layout of the standard confusion matrix, these serve different pur-
poses. The layout used to describe the concepts follows the binary standard matrix
layout illustrated in Figure 2.21, where the predicted axis is analogously placed as the

48 Theory

y-axis and vice versa for the ground truth axis.

The concepts are described by calculating the new "TP values" (the other values FP,
TN, and FN, follow the same logic). For a column-normalized matrix, the sum of ev-
ery column is equal to one. Hence, the column-normalized TP-value will represent the
sensitivity metric following Equation 2.41. For a row-normalized matrix, the sum of
every row is equal to one, and therefore the row-normalized TP-value will represent the
precision metric following Equation 2.42 [51]. If the layout was flipped, where the pre-
dictions would represent the x-axis, the column-normalized TP-value would represent
precision and vice versa. An example of a column-normalized matrix, with the layout
presented in Figure 2.21, is displayed in Figure 4.3.

2.8 YOLO

YOLO is a popular object detection and image segmentation model developed by Ul-
tralytics. The model not only detects objects for a single image but can also perform
object detection in a video feed [52] [53].

In this thesis, the YOLO segmentation algorithm is utilized for developing an auto-
mated CT lung lesion model. The algorithm used in this these are the latest version of
YOLO namely, YOLO version 8 (YOLOv8) [52]. YOLO has previously been used in
a range of medical publications, where YOLO version 5 (YOLOv5) have been used in
"Study on Sperm-Cell Detection Using YOLOv5 Architecture with Labeled Dataset",
where the goal was to use object detection to identify normal sperm cells [54], and
YOLO version 3 (YOLOv3) has been used for lung nodule detection [34].

YOLOv8 allows the user to either train just an object detection model or an instance
segmentation model, which also provides information on object detection. The key dif-
ference between those models is that an object detection trained model only focuses on
locating the object, whereas the segmentation model also tries to segment the objects
within the bounding boxes, which can be more demanding.

In Section 2.8.1 the image segmentation model are described in grater detail, which
includes the information needed to train the models, the general architecture and how
object detection are incorporated within the segmentation model. Henceforth, YOLOv8
will mainly be referred to as YOLO.

2.8 YOLO 49

2.8.1 Image segmentation
In this project YOLO was incorporated perform instance segmentation of CT lung le-
sions. The CNN algorithms provided by YOLO primarily designed for image segmen-
tation, also has the capability to perform object detection. Hence, the algorithms de-
signed for instance segmentation also provides bounding boxes in its predictions. The
general architecture for the instance segmentation model is described in greater detail
in the subsequent section.

To train these segmentation models, the model requires information about the loca-
tion of the object. Since the primary objective for this specific model is to perform
instance segmentations, the algorithm requires detailed information about the objects
locations. The locations are presented as a detailed map of the objects edges, which is
referred to as an edgemap, where each edgemap corresponding to an object is presented
with the structure expressed in Expression 2.45.

{CLASS ID, x1, y1, x2, y2,} (2.45)

where CLASS ID translates to the label, e.g. lesion, and x1, y1,.. translates to the
2D image coordinates (x1,y1),... representing the edgemap corresponding to the object.

General architecture

The general architecture of the instance segmentation model provided by YOLO con-
sists of three main components, namely the backbone, the neck, and the head. An illus-
tration of the object detection architecture is provided in Figure 2.22, the segmentation
architecture is built upon the object detection architecture by adding the segmentation
features [55] [56].

The backbone is the feature extraction component, utilizes a CNN with weights and
biases. Based on the weights and biases, the features are extracted from the original
images, then the images are downsampled and passed on to the next layer of the CNN
[55] [56] [57].

After the features are extracted from the CNN, they are further processed by the neck.
The neck is the component that may enhance the features extracted by fine-tuning them,
and this fine-tuning process may executed by a feature pyramid network [56] [57].

Then, the final step of that particular iteration is to use the features extracted to pre-

50 Theory

dict a segmentation. This final step happens in the head, for the segmentation models
provided by YOLO, there are usually two "heads", one for object detection and one for
segmentation. The object detection head is responsible for predicting object type and
provide the corresponding bounding boxes, whereas the segmentation head is responsi-
ble for perform pixelwise semantic segmentation inside the bounding box provided by
the detection head [56] [57]. However, since the semantic segmentation is inside the
restricted bounding box, the segmentation acts like an instance segmentation.

After predicting, the loss is calculated according to Equation 2.46. Before updating the
weight and biases accordingly to the chosen optimizer, before undergoing the whole
process again.

Figure 2.22: The figure illustrates the architecture to the object detection network provided by YOLO.
The architecture is similar to the segmentation architecture, only without the added segmentation fea-
tures. The figure is acquired from [40]

Additionally, YOLO provides the opportunity to choose model complexity, also re-
ferred to as a model size. The key differences between the sizes are the number of
parameters, weights, and biases. The number of parameters chosen has a huge in-

2.8 YOLO 51

fluence on the performance of the model. Since the number of parameters chosen is
proportional to how many features to extract, the number of parameters influences the
training time and the quality of predictions made by the model [58].

Object detection

Since the segmentation algorithm predicts bounding boxes, in which the semantic pix-
elwise segmentation is performed, information about the models performance for ob-
ject detection are also extractable. The algorithm will in fact automatically provide a
normalized confusion matrix, which is key to understand the trained models ability to
perform object detection.

The normalized confusion matrix provided is a column-normalized matrix, with a simi-
lar layout illustrated in Figure 2.21, which again translates to the new TP value equaling
the object detection metric, sensitivity. The default threshold values to count a detection
as TP are a confidence score greater than 0.001 and an IoU greater than 0.7. However,
these thresholds can be changed if desired.

2.8.2 Data augmentation
In YOLO, there are several built-in data augmentation techniques that are automati-
cally executed when running the training protocol. Some of these data augmentations
are image angle/degree rotation, image translation, image scale, image shear, image
flip up-down, image flip left-right, and image cut mix. Not all of them are necessary
for every task, since these are task-dependent, and it is easy to disable the undesired
ones. To disable or activate the builtin augmentation types, this must be specified in the
training command [59].

Image scaling scales the image up and down. This augmentation may be useful in
the sense that if a small patient takes a CT scan, the lungs will be small, so by upscal-
ing the image, it may be easier to see the potential lesion. The image flip left-right flips
the image horizontally [59]. The main advantage here is introducing "new"/more data
to the training.

2.8.3 Loss function
The total loss function used in YOLO segmentation models consists of four compo-
nents: the segmentation loss, the bounding box loss, classification loss (CL), and dis-

52 Theory

tribution focal loss (DFL). The total loss is expressed in Equation 2.46, where segmen-
tation is denoted "seg" and bounding box is denoted "bbox".

Ltotal = λseg ·Lseg +λbbox ·Lbbox +λCL ·LCL +λDFL ·LDFL (2.46)

where λX is the corresponding weighting, by default λseg is equal to λbbox.

The segmentation loss quantifies how close the predicted mask is to the ground truth
mask, and this component utilizes Binary Cross Entropy (BCE) loss. The bounding
box loss calculates the error between the predicted bounding box and the ground truth
bounding box, and this component utilizes MSE. The CL measures the error of pre-
dicting the true label within the bounding box, and this component utilizes BCE. The
DFL addresses class imbalances within the dataset by weighting the objects which are
difficult to classify, and this component utilizes Cross Entropy [60] [61] [62].

2.8.4 Hyperparameter tuning
YOLO has a builtin hyperparameter tuning algorithm to optimize the hyperparameters.
The builtin hyperparameter tuner utilizes Ray Tune and focuses mainly on mutating
hyperparameters before starting the training process. These mutations are randomly
chosen from a given hyperparameter search space, which is a set of hyperparameters
with certain ranges [63] [64] [65] [66]. An example of a hyperparameter search space
is given in Expression 2.47.

space = lr0 : tune.uni f orm(10−5,0.1), lr f : tune.uni f orm(10−7,10−2) (2.47)

where space is the hyperparameter search space, lr0 and lr f are the initial and fi-
nal learning rate respectively, and tune.uni f orm(a,b) picks a random hyperparameter
value in the range a to b.

After picking the hyperparameter values, the model gets trained, and after training,
the tuning algorithm selects a new set of hyperparameters and then starts the training
process again. This cycle will continue for N iterations, which are predefined. After
each iteration, the tuning algorithm provides information on which combination of the
best-performing hyperparameters in a YAML format, an example is shown in Figure
2.23. After training each model, for each iteration, every training loss is continuously
plotted in graphs. However, the continuous validation loss graphs are not plotted, but
only the final validation losses are given, an example is shown in Figure 2.24 [63] [64].

2.8 YOLO 53

Figure 2.23: Example of the current best-performing hyperparameters during a hyperparameter tuning
process, iteration 8 of 20.

Figure 2.24: Example of training loss curves and the lack of validation loss curves after training a
model with YOLOv8’s builtin hyperparameter tuner. For each curve, the x-axis represents the number
of epochs, and the y-axis represents the corresponding loss.

54 Theory

2.9 Recent advances

Automated segmentation of CT lung lesions using DL approaches has been of interest
over the last decade, and there has been purposed several models, usually based on net-
works such as AlexNet, VGG, UNet, and GoogleNet [67], for dealing with this particu-
lar task, both for 2D slices and 3D volumes. Several studies about this topic have been
conducted by various research teams and published in multiple journals [68]. However,
these studies are not only restricted to lesion segmentation, but also malignancy score
given lesion, lesion identification (e.g. metastasis or primary tumor), etc. Multiple of
these studies, however, have specific requirements which needs to be satisfied for a le-
sion to be counted in the dataset, e.g. lesion diameter threshold and lesion verification
from multiple radiologists as done by Pezzano et al. [67].

Zhi et al. [68] compared multiple DL networks for CT lung lesion segmentation.
For 2D segmentations, the models compared in the article managed to achieve DICE
scores ranging between 0.680-0.950 (one study managed to achieve a DICE score equal
to 0.969. However, the training and evaluation were done on private datasets), and
between the models, the mean performance for sensitivity and precision ranged be-
tween 0.584-0.874 and between 0.820-0.869 respectively. Notably, these scores are
obtained after training and validating various datasets (including LIDC-IDRI), includ-
ing the number of images, image sizes, and loss functions.

YOLO has previously been utilized in studies for lung lesion detection. YOLO ver-
sion 3 (YOLOv3) has already been used in the LIDC-IDRI dataset by Liu et al. [34].
In this study, the objective was lung nodule detection, and the performance measure
used is the sensitivity. The models trained managed to achieve an averaged sensitivity
score of 87.3%. However, this study also had a specific requirement where CT scans
with slice thickness above 2.5 mm were excluded.

Another similar study, where YOLO is utilized and on the LIDC-IDRI dataset by Liy-
ing et al., is one where YOLOv5 was combined with an additional feature extraction
network and a feature extraction structure to train a model for detecting lung nodules.
The metric score for this study was also sensitivity, and the trained model achieved a
sensitivity score of 96.2% for nodule detection. However, not all CT images were used,
and the model was only trained on 1987 CT images [35].

Since the YOLO has already been used and documented to detect CT lung lesions,

2.10 Aim 55

using YOLO, especially YOLOv8 (released 2023), for CT lung lesion segmentation
is less documented. Limitations when comparing the generated models in this thesis
to other studies are the various requirements used, datasets, and loss functions used to
obtain the results mentioned in this section. However, the results from this thesis can
provide important information and insights about YOLO in the use of CT lung lesion
segmentation, and in the field of CT lung lesion segmentation in general.

2.10 Aim

This thesis aims to explore the feasibility of training a DL model to detect and segment
CT lung lesions in 2D, and to establish a local clinical workflow utilizing an integrated
DL model to segment CT lung lesions.

This is achieved by adapting the CT lung images presented in the predefined manu-
ally labeled LIDC-IDRI dataset to fit the YOLO criteria. YOLO is used because it
demonstrated promising results in terms of lesion detection and since YOLO’s instance
segmentation is directly based on its detection performance. After training the mod-
els, the results are evaluated based on the segmentation performance measures: DICE
score, IoU, sensitivity, and precision, and presented in Chapter 4, and the object detec-
tion performance measure: sensitivity.

Finally, a well-performing model will be uploaded to a clinical workflow, the regional
research PACS, providing proof of concept. The results obtained by testing the model
with test data from the PACS system will be presented in Chapter 4.

56 Theory

Chapter 3

Methods

The data used for training the models in this thesis is the online dataset LIDC-IDRI
[69], which consists of a collection of primary lung tumors and secondary lung tu-
mors/metastasis. This particular dataset has been used in several papers to train DL
networks for both lesion segmentation and lesion detection such as: the segmentation
models compared by Zhi et al., and the object detection models presented by Liu et al.
and Liying et al. Since YOLOv8 introduces instance segmentation and there are no (or
few) paper(s) that utilize YOLOv8 on the LIDC-IDRI dataset, YOLOv8 was chosen as
the DL model for this thesis.

In the current chapter, the data used in the current work are described alongside the
various pre-processing steps needed to handle the data. Additionally, the application
and adaption of DL are described in addition to the evaluation metrics applied. Finally,
the approach toward implementing a final pipeline for processing CT lung images in a
clinical research workflow is described.

The scripts used in the methodology, and used for providing the results in Chapter
4 are provided in the GitHub repository in Appendix II.

3.1 Data

The data used in this project is acquired from the online dataset LIDC-IDRI from the
Cancer Imaging Archive [69]. The whole dataset with 1012 patients was downloaded,
in the dataset, patients with malignant primary lung cancer, with malignant lung metas-
tasis, and patients with benign or non-malignant diseases are showcased. The dataset
contains both LDCT and standard-dose CT, with both nodules and non-nodules marked
by four radiologists.

58 Methods

A nodule is an abnormal mass that appears in a CT scan, which is considered to be
either a primary lung cancer tumor, metastatic tumor, a noncancerous process, or in-
determinate (analogous to 3D lesion in this thesis). These nodules will vary in shape,
size, density, and location in the lung. A non-nodule is also an abnormal mass which
does not satisfy the criteria to be a nodule, and these nodules are not cancerous [70].

In the dataset and XML files, the nodules and non-nodules (the labels) are divided
in three categories according to the longest possible straight line between two points in
the abnormal mass.

1. Nodule ≥ 3 mm

2. Nodule < 3 mm

3. Non-Nodule ≥ 3 mm

In the collection of 1012 patients from the dataset, the four radiologists identified a
total of 2669 nodules ≥ 3 mm and 4702 nodules < 3 mm and non-nodules ≥ 3 mm
combined. However, in order to be included in the list only one radiologist had to la-
bel the masses. Only 928 of the 2669 and 1012 of the 4702 were unanimously agreed
upon by the four radiologists to have the same label. There are several reasons for
these deviations; one reason is that two separate nodules might look like one single
for some radiologists or vice versa, and another reason is that some small irregularities
for a lesion with a length less than 3 millimeters, is either wrongfully labeled or not
identified by some radiologists [70]. In this thesis, every DICOM image (slice) with
either a nodule or non-nodule were converted from a 2D DICOM slice to a PNG image.

In the XML files to the CT scans, the non-nodules and small nodules (nodules < 3 mm)
only have the center of mass coordinate attached to the specific mass object, whereas
the other nodules have multiple coordinates, which represent the outline of the nodule,
attached to the specific nodule object. In a segmentation and an object detection task,
multiple coordinated are required for generating the segmentation mask and comput-
ing the bounding box. As a result every small nodule and non-nodule were discarded
after the DICOM to PNG conversion. However, given the geometry and orientation of
big nodules, one 2D image, which only contains one nodule coordinate of the big 3D
nodule (≥ 3 mm) was also discarded.

However, not only the images with one coordinate were removed, but nodules with
less or equal to four nodule coordinates were also removed. The removal of nodules

3.1 Data 59

with less or equal to three nodule coordinates was done because the python library
shapely [71] needed at least three coordinates to create a polygon with non-zero area,
which is an important part in the following pre-processing steps. In the XML file, how-
ever, for nodules with more than one nodule coordinate, the first nodule coordinate is
mentioned twice, for closing the polygon, which means for a nodule with two unique
nodule coordinates, the XML file will provide three coordinates. Mathematically, two
unique coordinates will only create a line that has no area. As a result, nodules with a
total of less or equal to three coordinates had to be removed.

During the removal of nodules with less or equal to three nodule coordinates, an er-
ror occurred in the custom-made script, which accidentally removed nodules with less
or equal to four nodule coordinates. However, as displayed in Table 3.1 only five im-
ages were lost, but the number of nodule slices lost is unknown. Regardless, the models
were trained with the remaining images which might impact the trained model to some
degree. Figure 3.1 displays one of the 7152 slices left, after the conversion from DI-
COM to PNG and after the removal of 2D nodule slices less or equal to four nodule
coordinates. Of the 7152 slices, 5721 were used in the training set, whereas the re-
maining images were split equally into a validation and test set (716 and 715 images
respectively).

n-coordinates: Number of images after removal of n-coordinates:

n=3 7157

n=4 7152

Table 3.1: Number of images left from the LIDC-IDRI dataset after the removal of n nodule coordinates.

Figure 3.1: A CT lung image in PNG format converted from DICOM format, which contains a slice of
a big nodule (nodule ≥ 3 mm).

60 Methods

The CT scans conducted on the patients and the image quality varied to a significant
degree, where CT scans were taken with several parameters that differed between the
scans, which in return caused the LIDC-IDRI dataset to be inhomogeneous. Addition-
ally, the existence of image artifacts is unknown, these have the capability to negatively
impact model performance. However, except patient exceeding the field of measure-
ment artifact, these were not observed after training the models, and if present they did
not effect the trained models to a significant degree (Chapter 4). For the images with
the exceeding field of measurement artifact, the lungs were present.

In the dataset there were a total of four different CT scanner manufactures, where the
manufactures also had several models, in which the majority of the scans were executed
by GE Medical Systems LightSpeed scanner models and Siemens Definition, Emotion,
and Sensation scanner models with 66% and 20% of the total scans respectively. The
range of tube peak potential were from 120 kV to 140 kV, where the majority of the
acquisitions taken with 120 kV and 140 kV, with 80% and 10% respectively. The most
dominant slice thickness were 1.25 mm and 2.5 mm, with 34% and 32% respectively,
the range of slice thickness however were from 0.6 mm to 4.0 mm. The tube current
varied from 40 mA to 627 mA, and the pixel spacing, the true physical spacing between
two pixels in a 2D image, ranged from 0.461 mm to 0.977 mm [70].

3.2 Data processing

The following section describes the pre-processing step and post-processing step, of
the data, executed in this thesis needed for running the models and acquiring the results
in Chapter 4, which provides the basis for the discussion in Chapter 5 and conclusion
in Chapter 6.

In Section 3.2.1, the pre-processing steps taken before training each DL model are
given in detail, along with the reasoning behind. First, how images of the YOLO-
incompatible DICOM format were converted to the YOLO-compatible PNG format.
Then, how to extract the lesion segmentation outlines from the XML file and convert
them to a YOLO-compatible txt formatted label file. Subsequently, how the challenge
of dealing with multiple segmentations, drawn by the various radiologists, over the
same region was managed. Lastly, how to size restrict the lesions areas in retrospect to
the whole image, while still including patient with various physical sizes.

In Section 3.2.2, the post-processing step taken after the training was completed, for

3.2 Data processing 61

acquiring the results in Chapter 4. This section addresses the fact, that YOLO by de-
fault does not provide the user with the evaluation metrics listed in Section 2.7. The
solution involves implementing a custom made script with necessary adjustments, to
ensure that the values of the evaluation metrics are correct when segmenting a lesion
correctly.

3.2.1 Data pre-processing

The conversion of images in DICOM format to images in PNG format were executed
two times. The pre-processing method which were ultimately used to train the models
is described first. The latter method will be described at the end of this section, and
also provides the reason for not further pursue using these converted images to train and
evaluate models. The major and most crucial difference between the two conversions is
the command used to convert the images from a DICOM format to a PNG format. The
whole pre-processing steps ultimately used are illustrated in the flowchart in Figure 3.2.

62 Methods

Figure 3.2: Data conversion: The flowchart illustrates the data conversion with the pre-processing
steps that were used to provide the results in this thesis.

3.2 Data processing 63

The used conversion of DICOM to PNG images

After getting poor results with the other conversion process, illustrated in Figure 3.5,
another attempt to convert the images was made. This conversion provided more suc-
cess than the first attempt and was used further for providing the results in this thesis
and uploaded to the clinical PACS (Picture archive and communications system) re-
search system.

The first pre-processing step was to convert the DICOM images to PNG images such
that they could be compatible with YOLO’s detection and segmentation algorithms.
This was done by locating every SOP Instance UID corresponding to every slice in the
dataset in the XML file. The Standard Operating Procedure (SOP) Instance Unique
Identifier (UID) is a unique identifier for each DICOM file that corresponds to a unique
image slice [72]. After locating the SOP Instance UIDs, the corresponding DICOM
images were converted to PNG images.

In this approach, four conversions were considered. These four alternatives were
+Wi, +Wn, +Wm and +Wh 1, the names indicate the types of conversions and are all
VOI (values of interest) LUT (Lookup table) transformations form the DICOM toolkit
DCMTK package dcm2pnm [73]. In Figure 3.3-a) - d) the +Wi, +Wn, +Wm, and +Wh
1 conversions are shown respectively.

64 Methods

Figure 3.3: The +Wi, +Wn, +Wm and +Wh 1 image conversions provided by [73].

The biggest contrast between the minimum and maximum pixel values in the generated
PNGs is clearly in Figure 3.3-a) and Figure 3.3-d), which provides a broader range of
pixel values the DL model can extract features from. The difference between the VOI
LUT transformations +Wh 1 and +Wi is that; +Wh 1 computes a new VOI window by
using a histogram algorithm and ignores 1% of the extreme pixel values (brightest and
darkest), in contrast to +Wi which only uses the first VOI window in the DICOM file
[73].

After reviewing these different converted PNG images, the alternative +Wh 1 was cho-
sen to be further used in this thesis. The decision was made because +Wh 1 computes a
new VOI window while excluding extreme pixel values, and +Wi does not provide the

3.2 Data processing 65

same compensation. Thus, if images have poor image qualities with extreme values,
due to e.g. such artifacts illustrated in Figure 2.10-a) and Figure 2.10-e), +Wh 1 could
have improved the image qualities, whereas +Wi would not. The exact command used
to convert the images from DICOM to PNG in the terminal is expressed in Expression
3.1.

dcm2pnm +on +Wh 1 ”$dcm f ile” ”$new f ilename” (3.1)

Converting XML file to txt

In the XML file, there is also information about the coordinates of the lesions inside
the lungs. These coordinates were generated after multiple radiologists had drawn an
outline for the tumor region. In addition to an outline, the coordinates associated with
a given lesion are also referred to as an edgemap. Given that multiple radiologists
had drawn these outlines, one lesion could have multiple segmentations/outlines with
slightly different coordinates. These outlines were later extracted and put in a txt file
corresponding to the input for the segmentation model (Expression 2.45).

Create overlapping maps

In the beginning, every outline drawn by the radiologists was kept. However, this pro-
vided poor performing models. One probable cause for this is that the models were
confused about where to predict, given several ground truths in the same region.

To eliminate this form of confusion, it was decided that only the overlapping regions
the different radiologists agreed upon were kept. This was done by creating a custom
made script. As a result, from every outline drawn by the radiologists, only one out-
line representing the overlapping region were kept, Figure 3.4 illustrates an example of
the different outlines drawn by radiologists in color, and the outline for the overlapping
polygons in black.

66 Methods

Figure 3.4: Illustration of outlines drawn by the radiologists to mark the tumors shown in color, and
the outlines of the overlapping regions shown in black.

From Figure 3.4, one can see that the overlapping outlines slightly overshoot, but since
these deviances are small, they were deemed insignificant. However, in order to create
these overlapping outlines, some lesions had to be excluded, namely, the lesions that
had less than four coordinates in the edgemap. The reason for removing these coordi-
nates is that shapely needed at least three coordinates to create a polygon, as mentioned
in Section 3.1.

Size restriction

The final step in the pre-processing process was to provide the option to size restrict
lesions in the datasets. This option provides the opportunity to train different models
with different and specific lesion area ranges, and could be used to compare the per-
formance for each model trained with specific areas to one another or to the models
trained on the whole dataset. Another property size restriction provides is filtering out
large lesions that a radiologist can easily recognize as a lesion and small lesions that
can be of less clinical relevance, which in return can improve the trained model by ig-
noring such cases.

The filtering process based on lesion sizes was attempted in two separate ways, each
with custom programmed scripts. The first approach was to upscale the pixels in a
way one got the actual physical areas of the lesions from each slice. This was done
by multiplying the dimensions to the DICOM image, which in the LIDC-IDRI dataset
was 512x512, and multiplying the pixel spacing in each direction, x and y, which are
acquired from the DICOM header to the image. The given approach provides the phys-

3.2 Data processing 67

ical description of each 2D lesion. However, this approach has one limitation and one
flaw. The limitation is that this custom made script was severally time expensive, in
the script each image had to be compared to every DICOM file until the right image
was found. Some examples of how time expensive the approach was are shown in Ta-
ble 3.2. The flaw is that, given that the images are in 2D and the pixel spacing for each
DICOM file is unique, images which seem to obtain lesions with identical areas, when
visually examined, might actually have different physical areas. A comprehensible ex-
ample is a CT lung scan from a child with lung cancer vs a CT lung scan from an adult
with lung cancer, given that the sizes of the tumors are relative equal in retrospect to
their bodies, the actual physical sizes will differ by a severe amount. As a result the
flaw will likely result in confusion for the model, because the model only knows how
the area of the lesion visually looks, rather than their actual physical area.

Area range [mm2] Conversion time [days] Acquired images

≤ 49 ≈ 5 164

49 ≤Area range≤ 300 ≈ 7 52

250 ≤Area range≤ 2000 ≈ 7 18

Table 3.2: Demonstration of how time expensive filtering out 2D lesions based on psychical area are
with the custom made script.

68 Methods

The second approach to filter out lesions to the desired sizes is by the relative area of
the 2D lesion from the image compared to the whole image itself. Even though this ap-
proach does not capture the actual physical size of the lesion, this method will provide
lesions that seems to have the same relative area according to the whole 2D images
rather than the physical, which will result in a less confused model. Also, in contrast to
the first described approach, this approach will only take a few minutes at most.

In this thesis, the latter approach was chosen due to both the time expensiveness and
the challenge of patient size and pixel spacing. The exact range chosen was lesions
with areas between 0.05% to 0.4% relative to the whole image. In this range, both the
largest and the smallest lesions were removed; the remaining dataset contained a suf-
ficient amount of images to train and evaluate the model, with a total of 1978 images.
Additionally, the difference in relative lesion areas in the remaining dataset is a factor
of approximately 10, which still allows the model to segment lesions of various sizes
and not just one fixed size. The large image reduction, from 7152 to 1978, also reduces
the model training time, allowing for a more thorough hyperparameter search. Of the
1978 images 1582 images was used in the training set, whereas the remaining images
was split equally into a validation and test set (198 images each).

3.2 Data processing 69

The discarded conversion of DICOM to PNG images

The discarded training and pre-processing steps are illustrated in the flowchart pre-
sented in Figure 3.5. Only by first following the steps provided in the provided
flowchart, and realizing that this approach would only provide poor results, the more
optimal suited approach presented in Figure 3.2 was discovered. The steps of trying
and failing to produce good results with this approach is described in greater detail in
this section.

Figure 3.5: Example of the flowchart with the conversion command "dcm2pnm +on2 "$dcmfile" "$new-
filename"".

A simple conversion from the DICOM image to an 16-bit PNG were executed with the
command "dcm2pnm +on2 "$dcmfile" "$newfilename"" in bash shell script which is
documented in [73]. These images had poor image quality and is shown in Figure 3.6.

70 Methods

Figure 3.6: Example of an simple converted image with the command "dcm2pnm +on2 "$dcmfile"
"$newfilename"".

To improve the image quality, a custom made script were implemented to intensify
different pixel values given a range, as illustrated in Figure 3.7 and Figure 3.8. The two
images both have Figure 3.6 as their origin.

Figure 3.7: Example of an image with intensified pixel values from an image of the same quality as
Figure 3.6.

3.2 Data processing 71

Figure 3.8: The same image as in Figure 3.7 but the intensified pixel values conversion have different
limits.

The next step were to train different object detection models with different hyperpa-
rameters, when only obtaining very poor results, the images were reviewed modified
and then trained on again from scratch. Regardless of how many iterations, the intensi-
fied pixel values were modified, every model would provide poor results. To do further
work on these images and upload them to the PACS research system, would be time ex-
pensive and would not provide any advancement in terms of research on clinical data.
As a result, the datasets with these images were abandoned.

Note that the dataset containing the types of images shown in Figure 3.6, Figure 3.7
and Figure 3.8 were not used in the segmentation model, and were only in object detec-
tion, due to the significant increase of image quality and results when converting with
"+Wh 1".

72 Methods

3.2.2 Data post-processing

This section provides the implementation and adjustments made, for being able to eval-
uate the trained model’s performances using one of medical segmentations most com-
mon evaluation metric, the DICE score, together with other evaluation metrics. The
possible consequences of the adjustments are examined in the discussion.

Implementation and adjustments

The evaluation metrics, DICE, IoU, precision and sensitivity, used to evaluate the seg-
mentation model is not calculated in YOLOv8 [52]. As a result, custom programmed
scripts were created to generate these metrics.

In this thesis, there may be several predicted masks for lesions and several ground
truth masks in one image. This causes some issues with the evaluation metric calcu-
lations. When the evaluation metric score is equivalent to zero, there are now four
possible cases, as shown in Figure 3.9, where each case are described in the follow-
ing list. In Figure 3.9, predicted masks are denoted "P" and the ground truth masks are
denoted "GT".

1. The model provides a predicted mask in a region the radiologist deemed healthy
(FP), as illustrated in Figure 3.9 number 1.

2. The model doesn’t provide a mask where the radiologist marked a region (FN),
as illustrated in Figure 3.9 number 2.

3. The predicted mask misses the GT mask by a small margin/nearly touching, as
illustrated in Figure 3.9 number 3.

4. The DICE score is calculated between one GT mask and not the corresponding
predicted mask. In Figure 3.9 number 4., P1 and G1 is the corresponding masks,
and the DICE score calculated between P1 and G2, and between P2 and G1 are
zero.

3.2 Data processing 73

Figure 3.9: The figures illustrates the four possible cases for obtaining metric score equal to zero. Note
"P" is the predicted mask and "GT" is the ground truth. 1: The model provides a predicted mask in a
region the radiologist deemed healthy (FP). 2: The model doesn’t provide a mask where the radiologist
marked a region (FN). 3: the predicted mask misses the GT mask by a small margin/nearly touching.
4: The metric score is calculated between one GT mask and not the corresponding predicted mask.

As a result the evaluation metric scores were calculated without these cases, because
the inclusion of these cases would not be representative for how well the model per-
formed for the cases which it actually detected a mask that overlapped with the GT, and
because by including point 4. will severely impact the performance in a poor manner.
Another fact to consider is that the GT masks are only masks which the radiologists
knows there exists lesions, which means that there is a possibility a lesion exists when
a mask is predicted where there is not a GT mask (case 1).

Another adjustment with the evaluation metric scores is rather than calculating the over-
lapping area directly, counting the number of common pixels were done (Section 2.7.1).
This is because a pixel has dimension 1x1, which translates to an pixel area of 1, thus
the number of common pixels will represent the intersection, illustrated in Figure 2.20.

74 Methods

3.3 YOLO

This section describes how the DL algorithm, YOLO, was utilized in this thesis. First,
the model size selection process is described. Then the hyperparameter search strate-
gies were executed, and are described in the subsequent section.

Only the models primarily designed for instance segmentation was utilized, because
these segmentation models also performs object detection. Additionally, after the train-
ing is done the model automatically provides a column normalized confusion matrix,
with the object detection sensitivity performance (Section 2.8.1).

The model sizes utilized in this thesis are the small YOLO segmentation model
(yolov8s-seg), the medium YOLO segmentation model (yolov8m-seg) and the large
YOLO segmentation model (yolov8l-seg). The difference between the models are the
complexities of their architecture, namely the parameters (weights and biases), where
the small model, medium model and the large model have 11.8 million, 27.3 million
and 46.0 million parameters respectively [58]. These sizes were chosen to visualize the
impact of model sizes, thus their complexities, between the to detect and segment CT
lung lesions.

3.3.1 Hyperparameter search
There kinds of hyperparameter searches executed. First, the grid search strategy with
a custom hyperparameter search was conducted. Secondly, the builtin hyperparameter
tuner algorithm, provided by YOLO, was utilized for the hyperparameter search 2.8.4.

The custom grid search was conducted by training various models with yolov8m-seg,
with a vast number of hyperparameter combinations. Some of the hyperparameters
used with the custom grid search algorithm, is presented in Table 3.3. The models were
mainly trained with the medium model, due to the training time required by the large
models. Additionally, the medium model is the model which is both second least and
most complex.

Hyperparameter Values Hyperparameter Values

lrs {0.0001, 0.001, 0.01 } dropouts {0, 0.2, 0.3}

scales {0, 0.1, 0.2} momentums {0.937, 0.947, 0.957 }

Table 3.3: The hyperparameter space used in the grid search, where lr0 and lrf are set to be equal and
are denoted as lrs

3.3 YOLO 75

The hyperparameter tuner utilized used the default hyperparameter search space when
searching for optimal hyperparameters. The reason for not executing the tuner with
custom hyperparameter spaces is due to an error when trying to create custom spaces,
which seems like an error multiple YOLO users encounter [74]. Hence, the hyperpa-
rameter tuner is only applied once for each model size. The builtin hyperparameter
tuner was utilized only for the dataset without size restriction, and the results acquired
are given in Appendix III. The default hyperparameter space can be acquired at Ultra-
lytics YOLOv8 documentation [63],

76 Methods

3.4 Uploading to PACS

The final part of this thesis was to establish a local clinical workflow of integrated
DL for CT lung lesions. Therefore, a well-performing model was uploaded onto the
regional PACS research system, which allows the model to detect and segment lesions
on regional data and can thus be used for further research within the regional PACS. The
implementation process follows the flowchart provided in Figure 3.10. Additionally,
the flowchart presents a method for further improving the uploaded model by retraining
it.

Figure 3.10: The flowchart illustrates the process for uploading the best performing model to PACS.

Due to patient confidentiality and other safety concerns, such as information about
other research projects and models, screenshots to illustrate the complete workflow
from a user perspective are not provided.

When running a prediction on local pilot test data, the model constructs a new im-

3.4 Uploading to PACS 77

age series and presents it to the user without corrupting the original image series. After
predicting on local test data, the performance was evaluated by visually inspecting the
predicted lesion. However, given that the pilot test data used for the initial testing did
not have ground truth masks, without healthcare professionals such as radiologists and
doctors, the results on the pilot test data provided in Section 4.5 can be misinterpreted.
Hence, in this thesis a lesion segmentation will be counted as successful based on the
lesion localization and whether or not the model provides segmentations in the same
region for at least two consecutively slices.

78 Methods

Chapter 4

Results

The online LIDC-IDRI dataset was successfully prepared, converted, and pre-processed,
and one dataset containing all lesions independent of size compromising 7152 images
(the whole dataset) and one size-restricted subset of the whole dataset containing 1978
images were created. The preparations, conversion, pre-processing, training, and val-
idating were completed, and the results acquired in this thesis were through an Alien-
ware Area-51 R4 computer with an NVIDIA GeForce GTX 1080 Ti 11GB GPU.

This chapter will present the results of the automated segmentation of CT lung le-
sions through the approach described in the previous sections. Firstly, the results for
segmentation will be presented with the DICE score, IoU, sensitivity, and precision for
the specific segmentation. The scores will be presented with three decimal points, with
their corresponding standard deviation (std). Secondly, the results for object detection
will be presented through the sensitivity in addition to the normalized confusion ma-
trix. Finally, the normalized training and validation loss curves will be provided.

For both the datasets with and without size restriction, different models with differ-
ent complexities (small, medium, large) were trained. To generate the following results
the parameters and hyperparameters, which generated the lowest total validation loss,
corresponding to each model, were used. There are multiple trained models with both
the size-restricted dataset and the dataset with all lesions. The size-restricted dataset
contains lesion areas relative to the whole image as explained in Section 3.2.1.

For the evaluation with the evaluation metrics scores, both the training set and vali-
dation set are displayed. If the specific metrics have approximately the same value for
the training and validation set, it indicates that for the creation of the training and val-
idation set, lesions of various shapes, areas, and locations were distributed somewhat

80 Results

equally. If the specific metrics values have vast differences, this can indicate that either
the training and validation set did not contain the same "types" of lesions or that the
model has overfitted to the training data.

Some of the common hyperparameters utilized to train the size-restricted models are
given in Table 4.1. These hyperparameters were acquired by a custom hyperparame-
ter grid search. All models were trained with 100 epochs. The models which trained
with another combination of hyperparameters, were both the large models and the small
trained model for every lesion size. For the models trained without size-restriction, the
only difference, from Table 4.1, is that the scale hyperparameter is set to 0.9. Addition-
ally, the large (most complex) models have batch sizes set to one.

Hyperparameter Value Hyperparameter Value

batch size 8 optimizer SGD

scale 0.6 dropout False

weight_decay 0.001 momentum 0.937

lr0 0.0001 lrf 0.0001

Table 4.1: Some of the hyperparameters utilized to train the majority of the models

4.1 YOLOv8 small model

This section provides the results acquired by training the small YOLO segmentation
model (yolov8s-seg), on the datasets with and without size restrictions. The small
segmentation model is the least complex model utilized in this thesis. The results in
this section are presented by first providing the results for the model trained without
size restrictions (all lesions) and then subsequently providing the results for the trained
with size restrictions.

4.1.1 Results from all lesions

The model’s training and validation loss curves during training are displayed in Figure
4.1. From the curves provided, the losses, on average, follow a similar steady decline
and seem to converge. The results provided in this section are acquired from the pa-
rameters (weights and biases) that generated the lowest total validation loss according
to Equation 2.46.

4.1 YOLOv8 small model 81

Figure 4.1: The training and validation loss curves for the small model trained on the dataset without
size restrictions. For each curve, the x-axis represents the number of epochs, and the y-axis represents
the corresponding loss.

Table 4.2 shows the performance metrics results obtained from the automated segmen-
tation with yolov8s-seg for all lesions. The results were obtained with the modifications
mentioned in Section 3.2.2. On the validation set, the model achieved a DICE score of
0.682 ± 0.228, an IoU of 0.556 ± 0.230, a precision of 0.829 ± 0.175, and a sensitiv-
ity of 0.653 ± 0.270, where the metric scores are approximately equal for the training
set, indicating that the trained model did not overfit, which is also illustrated by the loss
curves (Figure 4.1). The performance metrics for this trained model are compared to
the other models trained in this thesis in Table 4.8.

Training set Validation set

Evaluation metric: score ± std: score ± std

DICE 0.681 ± 0.234 0.682 ± 0.228

IoU 0.557 ± 0.235 0.556 ± 0.230

Precision 0.822 ± 0.169 0.829 ± 0.175

Sensitivity 0.650 ± 0.273 0.653 ± 0.270

Table 4.2: The segmentation performance measures with the related scores with standard deviation for
the small model with all lesions.

Figure 4.2 provides examples of predictions made by the model (bottom row) compared

82 Results

to their corresponding ground truths (top row). In these examples, the model was able
to correctly detect and segment three out of four lesions, with confidences between 0.4
and 0.9 (excluding the prediction where the confidence is not shown), demonstrating
an ability to detect and segment lesions correctly. However, in the second prediction,
the model predicts two extra cases that are not given as ground truths, indicating either
that the model provides extra cases of FPs or that the ground truths provided by the
radiologists from LIDC-IDRI are not complete, which is further discussed in Chapter
5.

4.1 YOLOv8 small model 83

Fi
gu

re
4.

2:
So

m
e

m
od

el
pr

ed
ic

tio
ns

(b
ot

to
m

ro
w

)a
ga

in
st

th
ei

r
co

rr
es

po
nd

in
g

gr
ou

nd
tr

ut
hs

(t
op

ro
w

)b
y

th
e

sm
al

lm
od

el
tr

ai
ne

d
w

ith
ou

t
si

ze
re

st
ri

ct
io

n.

Figure 4.3 illustrates the object detection performance with a normalized confusion
matrix on the validation set. The column-normalized matrix provides a sensitivity score
of 0.64, which indicates that over half of the CT lung lesions got detected. Compared
to the models provided by Liu et al. (0.873) and Liying et al. (0.962) this trained model

84 Results

underperformed, which is further discussed in Chapter 5.

Figure 4.3: The normalized confusion matrix displays how well the object detection performed for the
small model with all lesions

4.1.2 Size-restricted

The model’s training and validation loss curves during training are displayed in Figure
4.4. From the curves provided, the losses follow a similar steady decline on average.
The results provided in this section, are taken from the losses which generated the
lowest total validation loss according to Equation 2.46.

4.1 YOLOv8 small model 85

Figure 4.4: The training and validation loss curves for the small model trained on the size-restricted
dataset. For each curve, the x-axis represents the number of epochs, and the y-axis represents the
corresponding loss.

Table 4.3 provides the evaluation metric scores obtained from the automated segmenta-
tion task. On the validation set, the trained model managed to achieve a DICE score of
0.836 ± 0.117, an IoU of 0.731 ± 0.138, a precision of 0.864 ± 0.109, and a sensitivity
of 0.836 ± 0.153, where the metric scores are approximately the same for the training
set, indicating that the trained model did not overfit, which is also illustrated by the loss
curves (Figure 4.4). The performance metrics for this trained model are compared to
the other models trained in this thesis in Table 4.8.

Training set Validation set

Performance metric score ± std score ± std

DICE 0.844 ± 0.108 0.836 ± 0.117

IoU 0.742 ± 0.130 0.731 ± 0.138

Precision 0.858 ± 0.112 0.864 ± 0.109

Sensitivity 0.852 ± 0.133 0.836 ± 0.153

Table 4.3: The segmentation performance measures with the related scores with standard deviation for
the small model. For 2D lesions covering 0.05% to 0.4% of the whole image.

Figure 4.5 provides examples of predictions made by the model (bottom row) and with
the corresponding ground truths (top row). In these examples, the model was able to

86 Results

predict and segment four out of four lesions, with confidences ranging between 0.6 and
0.9, demonstrating a great ability to detect and segment CT lung lesions.

4.1 YOLOv8 small model 87

Fi
gu

re
4.

5:
So

m
e

m
od

el
pr

ed
ic

tio
ns

(b
ot

to
m

ro
w

)
ag

ai
ns

tt
he

ir
co

rr
es

po
nd

in
g

gr
ou

nd
tr

ut
hs

(t
op

ro
w

)
by

th
e

sm
al

lm
od

el
tr

ai
ne

d
w

ith
si

ze
re

st
ri

ct
io

n.
2D

le
si

on
s

co
ve

ri
ng

0.
05

%
to

0.
4%

of
th

e
w

ho
le

im
ag

e.

Figure 4.3 illustrates the object detection performance with a normalized confusion ma-
trix on the validation set. The column-normalized matrix provides a sensitivity score of
0.91, which, as hypothesized, outperformed the model trained without size restriction.

88 Results

Figure 4.6: The normalized confusion matrix for lesions covering 0.05% to 0.4% of the whole image.

4.2 YOLOv8 medium model

This section provides the results acquired after training models with the medium YOLO
segmentation model (yolov8m-seg), which is the second least complex model utilized
in this thesis. The results are presented by first providing the results acquired by train-
ing the model on the dataset without size restriction (all lesions) and then subsequently
providing the corresponding results to the model trained on the dataset with size re-
striction.

4.2.1 Results from all lesions

The training and validation loss curves for the model during training are displayed in
Figure 4.7. From the curves provided, the losses follow a similar steady decline on
average. The results provided in this section, are taken from the losses which generated
the lowest total validation loss according to Equation 2.46.

4.2 YOLOv8 medium model 89

Figure 4.7: The training and validation loss curves for the medium model trained on lesions of every
size. For each curve, the x-axis represents the number of epochs, and the y-axis represents the corre-
sponding loss.

Table 4.4 provides and compares the various segmentation evaluation metrics scores
between the training and validation set. On the validation set, the model achieves a
DICE score of 0.685 ± 0.237, an IoU of 0.563 ± 0.238, a precision score of 0.823 ±
0.188, and a sensitivity score of 0.665 ± 0.272, where the scores are approximately
equal to the training set, indicating that the trained model did not overfit, which is also
illustrated by the loss curves (Figure 4.7). The performance metrics for this trained
model are compared to the other models trained in this thesis in Table 4.8.

Training set Validation set

Performance metric score ± std score ± std

DICE 0.684 ± 0.233 0.685 ± 0.237

IoU 0.561 ± 0.235 0.563 ± 0.238

Precision 0.823 ± 0.167 0.823 ± 0.188

Sensitivity 0.655 ± 0.271 0.665 ± 0.272

Table 4.4: The segmentation performance measures with the related scores with standard deviation for
the medium model.

Figure 4.8 provides examples of predictions made by the model compared to ground
truths respectively. In these examples, the model was able to predict and segment two

90 Results

out of four lesions correctly, with confidences ranging from 0.3 to 0.8, compared to the
predictions made by the small model in Figure 4.2 the model seems to underperform.
However, these are just some of the many predictions made by the model.

4.2 YOLOv8 medium model 91

Fi
gu

re
4.

8:
So

m
e

m
od

el
pr

ed
ic

tio
ns

(b
ot

to
m

ro
w

)
ag

ai
ns

t
th

ei
r

co
rr

es
po

nd
in

g
gr

ou
nd

tr
ut

hs
(t

op
ro

w
)

by
th

e
m

ed
iu

m
m

od
el

tr
ai

ne
d

w
ith

ou
ts

iz
e

re
st

ri
ct

io
n.

Figure 4.9 illustrates the object detection performance with a normalized confusion
matrix, on the validation set. The column-normalized matrix indicates a sensitivity
score of 0.62. In comparison to the small trained model (all lesions), the medium
model seems to be slightly inferior to the small model, which might explain the lack of

92 Results

lesion detection (and segmentation) in Figure 4.8.

Figure 4.9: The normalized confusion matrix displays how well the object detection performed for the
medium model with all lesions

4.2.2 Size-restricted

The model’s training and validation loss curves during training are displayed in Figure
4.10. From the curves provided, the losses follow a similar steady decline on average.
The results provided in this section, are taken from the losses which generated the
lowest total validation loss according to Equation 2.46.

4.2 YOLOv8 medium model 93

Figure 4.10: The training and validation loss curves for the medium model trained on the size-restricted
dataset. For each curve, the x-axis represents the number of epochs, and the y-axis represents the
corresponding loss.

Table 4.3 compares the different segmentation evaluation metric scores, between the
training and validation set. For the validation set the trained model managed to achieve
a DICE score of 0.826 ± 0.132, an IoU of 0.720 ± 0.153, a precision score of 0.850 ±
0.120 and a sensitivity score of 0.835 ± 0.165, for the training set these metric scores
are approximately equal, indicating that the trained model did not overfit, which is also
illustrated by the loss curves (Figure 4.10). The performance metrics for this trained
model are compared to the other models trained in this thesis in Table 4.8.

Training set Validation set

Performance metric score ± std score ± std

DICE 0.844 ± 0.112 0.826 ± 0.132

IoU 0.743 ± 0.134 0.720 ± 0.153

Precision 0.858 ± 0.113 0.850 ± 0.120

Sensitivity 0.853 ± 0.138 0.835 ± 0.165

Table 4.5: The segmentation performance measures with the related scores with standard deviation for
the medium model. For 2D lesions covering 0.05% to 0.4% of the whole image.

Figure 4.11 provide examples of predictions made by the model (bottom row) with the
corresponding ground truths (top row), respectively. In these examples, the model was

94 Results

able to predict and segment four out of four lesions, with confidences ranging between
0.5 and 0.9, indicating a great ability for lesion segmentation and detection. However,
in the first prediction, the model detected and segmented two lesions with very close
(overlapping) proximity, which practically can be ignored.

Fi
gu

re
4.

11
:

So
m

e
m

od
el

pr
ed

ic
tio

ns
(b

ot
to

m
ro

w
)

ag
ai

ns
t

th
ei

r
co

rr
es

po
nd

in
g

gr
ou

nd
tr

ut
hs

(t
op

ro
w

)
by

th
e

m
ed

iu
m

m
od

el
tr

ai
ne

d
w

ith
si

ze
re

st
ri

ct
io

n.
2D

le
si

on
s

co
ve

ri
ng

0.
05

%
to

0.
4%

of
th

e
w

ho
le

im
ag

e.

4.3 YOLOv8 large model 95

Figure 4.12 illustrates the object detection performance with a normalized confusion
matrix on the validation set. The column-normalized matrix indicates a sensitivity
score of 0.91, which, as hypothesized, outperformed the model trained without size
restriction. The model also performed equally well as the small size-restricted model,
and the results are further discussed in Chapter 5.

Figure 4.12: The normalized confusion matrix for 2D lesions covering 0.05% to 0.4% of the whole
image.

4.3 YOLOv8 large model

This section provides the results acquired after training CT lung lesion segmentation
model with the large YOLO segmentation model (yolov8l-seg), which is the most com-
plex model utilized in this thesis. These models were both trained with every hyperpa-
rameter presented in Table 4.1, apart from the number of batch sizes being set to one.

The results are presented by first providing the results acquired after training the model
with every lesion size and subsequently by providing the results acquired after train-
ing the size-restricted lesions. However, after the models were trained, the automated
process for generating examples of predictions versus ground truths and generating the

96 Results

normalized confusion matrix failed.

4.3.1 Results for all lesions

The model’s training and validation loss curves during training are displayed in Figure
4.13. From the curves provided, the losses follow a similar steady decline on average.
The results provided in this section are taken from the losses that generated the lowest
total validation loss according to Equation 2.46.

Figure 4.13: The training and validation loss curves for the large model trained on lesions of every size.
For each curve, the x-axis represents the number of epochs, and the y-axis represents the corresponding
loss.

Table 4.6 shows the results obtained from the automated segmentation with yolov8m-
seg for all lesions. The results were obtained after implementing the modifications
mentioned in Section 3.2.2. On the validation set, the model managed to achieve a
DICE score of 0.664 ± 0.250, an IoU of 0.542 ± 0.246, a precision score of 0.816 ±
0.192, and a sensitivity score of 0.636 ± 0.282, where the scores are approximately
equal to the training set, indicating that the trained model did not overfit, which is also
illustrated by the loss curves (Figure 4.13). The performance metrics for this trained
model are compared to the other models trained in this thesis in Table 4.8.

4.3 YOLOv8 large model 97

Training set Validation set

Performance metric score ± std score ± std

DICE 0.674 ± 0.236 0.664 ± 0.250

IoU 0.550 ± 0.237 0.542 ± 0.246

Precision 0.826 ± 0.171 0.816 ± 0.192

Sensitivity 0.641 ± 0.273 0.636 ± 0.282

Table 4.6: The segmentation performance measures with the related scores with standard deviation for
the large model.

4.3.2 Size-restricted
The training and validation loss curves for the model during training are displayed in
Figure 4.14. From the curves provided, the losses follow a similar steady decline on
average. The results provided in this section, are taken from the losses which generated
the lowest total validation loss according to Equation 2.46.

Figure 4.14: The training and validation loss curves for the large model trained on the size-restricted
dataset. For each curve, the x-axis represents the number of epochs, and the y-axis represents the
corresponding loss.

Table 4.7 shows the results obtained from the automated segmentation with yolov8l-seg
for the size-restricted dataset. The results were obtained after implementing the modi-
fications mentioned in Section 3.2.2. On the validation set, the model achieves a DICE

98 Results

score of 0.840 ± 0.127, an IoU of 0.740 ± 0.142, a precision score of 0.877 ± 0.103,
and a sensitivity score of 0.833 ± 0.158, where the scores are approximately equal to
the training set, indicating that the model did not overfit, which is also illustrated by the
loss curves (Figure 4.14) The performance metrics for this trained model are compared
to the other models trained in this thesis in Table 4.8.

Training set Validation set

Performance metric score ± std score ± std

DICE 0.845 ± 0.114 0.840 ± 0.127

IoU 0.744 ± 0.135 0.740 ± 0.142

Precision 0.876 ± 0.110 0.877 ± 0.103

Sensitivity 0.836 ± 0.142 0.833 ± 0.158

Table 4.7: The segmentation performance measures with the related scores with standard deviation for
the large model. For 2D lesions covering 0.05% to 0.4% of the whole image.

4.4 Comparison across models

Each model, influenced by its unique hyperparameters, parameters, and size restriction,
demonstrated various performances accordingly. A comparison between the models’
segmentation performances together with their corresponding size restrictions is de-
picted in Table 4.8. The model with the highest DICE score, IoU, and Sensitivity score
was the large size-restricted trained model with the scores 0.840 ± 0.127, 0.740 ±
0.142, 0.877 ± 0.103 respectively. The model with the highest sensitivity score was
the small size-restricted model with a score of 0.836 ± 0.153. Given the small de-
viance in sensitivity score between the large and small size-restricted model, the large
model should be selected. However, since the deviances in the performances, in gen-
eral, are small between the small and large models, uploading the small (least complex)
model to the regional research PACS is sufficient for pilot testing.

Size restriction: DICE: IoU: Precision: Sensitivity:

S: All lesions 0.682 ± 0.228 0.556 ± 0.230 0.829 ± 0.175 0.653 ± 0.270

S: 0.05% to 0.4% 0.836 ± 0.117 0.731 ± 0.138 0.864 ± 0.109 0.836 ± 0.153

M: All lesions 0.685 ± 0.237 0.563 ± 0.238 0.823 ± 0.188 0.665 ± 0.272

M: 0.05% to 0.4% 0.826 ± 0.132 0.720 ± 0.153 0.850 ± 0.120 0.835 ± 0.165

L: All lesions 0.664 ± 0.250 0.542 ± 0.246 0.816 ± 0.192 0.636 ± 0.282

L: 0.05% to 0.4% 0.840 ± 0.127 0.740 ± 0.142 0.877 ± 0.103 0.833 ± 0.158

Table 4.8: Every validation score from every model trained with and without size restrictions (All
lesions, 0.05% to 0.4%), where yolov8s-seg = S, yolov8m-seg = M and yolov8l-seg = L.

4.5 Clinical integration 99

Since the large size-restricted model was the best performing model, and the small
size-restricted model was chosen to be uploaded to the regional research PACS, the
segmentation performances for both models on the test set are provided in Table 4.9.
Except for the DICE score, the models’ performance are as expected when compared
with Table 4.8. There is a slight difference between the performance in the validation
set versus the test set, where the test set underperforms, which might indicate that some
images in the test set are dissimilar to those in the other sets or that the models are
overfitted to both the training and validation set. However, given the deviations occur
on the second decimals, the models are not likely to be significantly overfitted.

Large Small

Performance metric score ± std score ± std

DICE 0.809 ± 0.166 0.811 ± 0.144

IoU 0.703 ± 0.179 0.702 ± 0.166

Precision 0.845 ± 0.168 0.824 ± 0.155

Sensitivity 0.803 ± 0.184 0.838 ± 0.162

Table 4.9: The segmentation metric scores on the test set for both the large and small size-restricted
trained models.

4.5 Clinical integration

The trained model chosen to be implemented in PACS was the small size-restricted
model due to its simplicity, performance for the given lesion size, and to demonstrate
proof of concept for a DL algorithm segmenting CT lung lesion in the clinical work-
flow. After uploading the trained model to PACS, with its adaptions, the model was
used to run predictions on local test data. The test data did not have already existing
segmentations. Hence, the performance metrics of the model’s performance on these
clinical images are not provided. However, the performance of the model in PACS
is expected to be similar to the performance on the LIDC-IDRI dataset, and how the
model performs on local data is however, beyond the scope of the current thesis.

Figure 4.15 and Figure 4.16 display an image series of predictions on one test patient
from the test data. Both image series provide predictions in consecutive order from the
top left image to the bottom right. These image series are both from the same test pa-
tient where the bottom right image in Figure 4.15 and the top left image in Figure 4.16
are consecutive slices. Due to an error, fine information about the structures outside
the lungs was lost in the generation of these predictions, the errors have since been cor-
rected (Figure 4.17 - 4.20). The model detects lesions in five distinct areas, whereas all

100 Results

five lesions are partly or fully segmented. The model also provides corresponding le-
sion confidence scores where the bottom left predicted lesion has the highest confidence
score with an average of 0.71, indicating a high probability for the region detected and
segmented being a lesion.

Figure 4.15: Image series of predictions on one patient from the test data, where the images are slices
in consecutive order from the top left to bottom right. The image series continues in Figure 4.16.

4.5 Clinical integration 101

Figure 4.16: Image series of predictions of one patient from the test data, where the images are slices
in consecutive order from left to right. The image series is a continuance of the image series displayed
in Figure 4.15.

Figure 4.17 - 4.20 displays predictions on test data with the predicted images to the left
and the original images to the right. In Figure 4.17 one of the segmentations provided
is clearly faulty, where the rightmost segmentation is outside the patient. Figure 4.18
provides a segmentation with a possible lesion, with a confidence score of 0.31. The
image series in Figure 4.19 and Figure 4.20 provides segmentations of a possible le-
sion, with the images in consecutive order from the top to the bottom, with an average
confidence score of 0.33. These results will be further discussed in Section 5.7.

102 Results

Fi
gu

re
4.

17
:

P
re

di
ct

io
n

of
im

ag
e

sl
ic

e
on

te
st

da
ta

,c
om

pa
re

d
to

th
e

or
ig

in
al

da
ta

.
O

ne
of

th
e

se
gm

en
ta

tio
ns

is
cl

ea
rl

y
w

ro
ng

w
ith

a
se

gm
en

ta
tio

n
ou

ts
id

e
th

e
pa

tie
nt

.

4.5 Clinical integration 103

Fi
gu

re
4.

18
:

P
re

di
ct

io
n

of
im

ag
e

sl
ic

e
on

te
st

da
ta

co
m

pa
re

d
to

th
e

or
ig

in
al

im
ag

e.

104 Results

Fi
gu

re
4.

19
:

Im
ag

e
se

ri
es

of
pr

ed
ic

tio
ns

on
te

st
da

ta
,f

ro
m

th
e

to
p

to
th

e
bo

tto
m

,c
om

pa
re

d
to

th
e

or
ig

in
al

im
ag

es
.

Th
e

im
ag

e
se

ri
es

co
nt

in
ue

s
in

Fi
gu

re
4.

20
.

4.5 Clinical integration 105

Fi
gu

re
4.

20
:

C
on

se
cu

tiv
e

im
ag

e
se

ri
es

of
pr

ed
ic

tio
ns

on
te

st
da

ta
,f

ro
m

th
e

to
p

to
th

e
bo

tto
m

,c
om

pa
re

d
to

th
e

or
ig

in
al

im
ag

es
.T

he
im

ag
e

se
ri

es
is

a
co

nt
in

ua
nc

e
of

th
e

im
ag

e
se

ri
es

di
sp

la
ye

d
in

Fi
gu

re
4.

19
.

106 Results

Chapter 5

Discussion

In this thesis, YOLO was successfully explored, adapted, and evaluated as a DL ap-
proach in terms of CT lung lesion segmentation and detection. This was done by
extracting CT lung images and the corresponding XML files from the online dataset
LIDC-IDRI, and then adapting the images and the corresponding data to match the
yolov8 segmentation requirements, mentioned in Section 2.8.1, and then training the
models with different hyperparameters, model sizes and lesion sizes, where the le-
sion is a 2D slice/part of a 3D lesion. The trained models demonstrated the ability to
segment lesions from the converted 2D images with different performances. The differ-
ent performance metrics used to evaluate the trained models are the DICE score, IoU,
precision score, and sensitivity score, which are all metrics used in medical image seg-
mentation tasks [50].

This thesis also successfully integrated the DL approach (YOLO) into a local clini-
cal workflow for segmenting and detecting CT lung lesions. To achieve this, the best-
performing trained model was uploaded and modified to fit the PACS structure. Further,
the DL approach was tested on test data from the regional research PACS without pre-
existing labels and segmentations, the DL approach was tested. The results on the test
data showed promising results, where the model was able to segment lesions in 2D
slice by slice consecutively.

In the following sections, the results obtained in Chapter 4 are examined, along with
sources of errors and limitations from the methodology which might have influenced
the results.

108 Discussion

5.1 All lesions

The average segmentation-oriented performances for the models trained with every le-
sion size were a DICE score of 0.667 (66.7%), an IoU score of 0.554 (55.4%), a preci-
sion score of 0.823 (82.3%), and a sensitivity score of 0.651 (65.1%) on the validation
set. Although the models perform to some degree with good average precision, indicat-
ing the model’s ability to not overshoot the predicted masks significantly, the models
also perform poorly compared to the 0.05% to 0.4% size-restricted lesions. The aver-
age sensitivity score for object detection-oriented tasks was 0.65 (65%), indicating that
the trained models could detect 65% of the lesions presented in the validation set.

Compared to the models Zhi et al. [68] (with DICE score, sensitivity, and precision
between 0.680-0.950, 0.584-0.874 and 0.820-0.869 respectively), the models trained
in this thesis (with all lesion sizes) performed at the lower end of the spectrum. How-
ever, when accounting for standard deviation, the metrics are both at the high end of
the spectra and far below the models compared by Zhi et al. There are several reasons
for these discrepancies. The models compared in the article are trained with various
datasets, various loss functions, and various image sizes and are trained with various
images. Another important reason for these discrepancies is that many of the models
are trained with special lesion requirements.

In contrast, the models trained with all lesions in this thesis only had one requirement:
the number of unique coordinates to the lesion outlines, which had to be more than
four coordinates, as mentioned in Section 3.2.1. With only that particular requirement,
the trained models probably segmented the small lesions poorly, which would have
affected the metrics poorly to a significant degree, as mentioned in Section 3.2.2. Ad-
ditionally, the larger lesions probably also were not fully segmented. These claims are
supported by examining the sensitivity and precision segmentation scores, especially
when comparing those models to the models trained on the size-restricted dataset.

However, by training on all lesions, the models in this thesis are more generalized
than the models compared by Zhi et al. and, thus, potentially more representative of
what is expected in a clinical workflow. The majority of the models presented by Zhi
et al. are more specified based on certain lesion requirements. In contrast, the models
trained with every lesion size in this thesis will perform to some degree for a broader
range of various lesions.

5.2 Size-restricted 109

Compared to the object detection sensitivity scores achieved by the other YOLO-
trained models, provided by Liu et al. (YOLOv3) [34] and Liying et al. (YOLOv5)
[35] which scored 0.873 (87.3%) and 0.962 (96.2%), respectively, the models trained
without size restriction in this thesis underperformed significantly. A reason for the un-
derperformance may stem from the fact that the other YOLO models trained on smaller
datasets with specific requirements. In contrast, the models presented in this thesis were
not.

By not constraining the datasets, the models in this thesis (all lesions) are trained on
data of various qualities, thus making them more applicable to CT image series with
slice thicknesses greater than 2.5 mm (Liu et al.) for lesion detection. Although the
majority of CT scans used to train the presented models had slice thicknesses ≤ 2.5
mm (over 66% of the images), they also trained on some scans with slice thicknesses
greater 2.5 mm, which the models presented by Liu et al. did not. This may make the
models in this thesis (all lesions) better at detecting lesions in such cases.

Similarly, if a random CT scan resembles the data used to train the model trained by
Liying et al., it may outperform the models presented in this thesis (all lesions). How-
ever, due to the diverse data, the models in this thesis are likelier to perform better in
lesion detection on a truly random CT scan.

Another reason for the underperformance is that the models presented by Liu et al.
and Liying et al. are primarily designed to perform object detection. Whereas, the
models presented in this thesis perform both segmentation and object detection. Since
total loss (Equation 2.46) also contained a segmentation loss component, which may
have affected the models’ object detection performances during training. As a result,
while the models presented by Liu et al. and Liying et al. might be better suited for lo-
cating and counting lung lesions, the models in this thesis (all lesions) can also provide
segmentations of the detected lesions.

5.2 Size-restricted

The average performances for the models trained with size restriction 0.05% to 0.4%,
relative lesion size compared to the whole image, were a DICE score of 0.834 (83.4%),
a precision score of 0.864 (86.4%) and a sensitivity score of 0.835 (83.5%). These per-
formance scores indicate that the models have a great ability to predict lesion masks
that overlap with the ground truth masks, a great ability to segment points within the

110 Discussion

ground truth without overshooting the predicted mask, and a great ability to segment
points within the ground truth mask without undershooting the predicted mask respec-
tively. The average sensitivity score for object detection was 0.91 (91%), which indi-
cated that the trained models were able to detect 91% of the lesions presented in the
validation set.

Compared to the models trained with all lesions, these size-restricted trained models
perform significantly better. Even compared to the models from the paper by Zhi et al.,
the size-restricted trained model performs to the same standard. The reason for these
similarities likely lies in the requirement for counting a lesion as a lesion in the models
compared by Zhi et al. These models are trained on datasets containing lesions with the
same character, making it easier for the model to extract important features than those
trained on all lesions, which had broad spectra of various lesions.

The size-restricted trained models perform in the middle range of the object sensitiv-
ity scores obtained by training the models presented by Liu et al. and Liying et al. The
difference in sensitivity compared to the models presented by Liu et al. only excluded
CT scans with slice thicknesses greater than 2.5 mm. This makes the models by Liu
et al. more suited for detecting lesions of various sizes, but the size-restricted-trained
models are more suited for detecting lesions with the same relative size as those in the
dataset.

The model presented by Liying et al. will likely perform better given a truly random
CT scan. However, as for the models in this thesis trained without size restrictions,
the size-restricted-trained models are trained for both segmentation and detection, thus
changing the nature of the loss function, which is likely one reason why the model pre-
sented by Liying et al. performs better. Since Liying et al.’s model only are able to
locate lesions, and the size-restricted models are able to perform both instance segmen-
tation and lesion detection, the models in this thesis (size-restricted) are more suitable
in terms of clinical use.

5.3 Comparison across models

When comparing the trained models, lesions of various sizes and locations were evenly
distributed in the training and validation sets, which is probably the main reason why
the trained models do not seem to overfit significantly to the training sets. This claim
is supported by the fact that when comparing the segmentation metrics for both the

5.3 Comparison across models 111

training and validation sets (Tables 4.2 - 4.7), the metrics on average do not differ by a
significant amount.

The comparison across models, with Table 4.8, suggests that the size-restricted models
were the most optimal for achieving the highest metric scores. However, these size-
restricted trained models will probably not identify the smallest lesions, which might
be a concern. Additionally, these models might not identify the larger lesions either.
The overall best-performing model of the size-restricted ones is the large, most com-
plex one. This suggests that the extra features extracted by the large model are relevant
for size-restricted CT lung lesion segmentations, which raises the question of whether
or not training a more complex YOLO model would have improved the results.

However, the size-restricted medium model seems to be the most overfitted, by ex-
amining Table 4.5, since the difference between the training and validation metrics are
significant for three out of four metrics. By examining the equations corresponding to
each performance metric, it seems like the medium size-restricted model tends not to
fully segment lesions in the validation set, but since the precision metric is approxi-
mately equal for the training and validation set, it also seems like the model is capable
of locating the lesions, but only has difficulty in segmenting the whole lesion to the
same degree as done in the training set. To better optimize the segmentation, by mak-
ing the training and validation scores more equal, the model could either have trained
longer or trained with more data.

Looking at the sensitivity scores in the validation set in Table 4.8, both larger models
have the lowest dataset corresponding sensitivities. By Equation 2.41, this corresponds
to a higher prelevance of FNs, which indicates that the segmentations conducted by
the models tend to segment less of the actual lesions compared to the smaller models.
However, the difference between the large model and the other models is negligible for
the size-restricted models.

Additionally, according to the metrics used in this thesis, the large model without size
restrictions is the least performing model, as shown in Table 4.8. In contrast to the
large model with size restriction, which holds the best-overall achieving scores, the
results suggest that a more complex model might not be best suited for training a gen-
eralized CT lung lesion segmentation model. For future work, this could be explored
by attempting to train a more complex YOLO model, which, if not disproved, might
strengthen the hypothesis.

112 Discussion

These results are as hypothesized: the models trained with the specific size restric-
tion performed better than the models trained on all lesions for each model size. This is
most likely due to the lower variation of lesion sizes in the size-restricted dataset, com-
pared to the dataset with all lesions, and the fact that small deviations in the predicted
masks for small lesions have a greater impact than predicted masks for larger lesions.

For further work, additional models could be trained with various size restrictions of
different sizes, possibly extending the hypothesis for multiple size restrictions. How-
ever, since a small deviation in the prediction of smaller lesions has a greater impact
than small deviations on larger lesions, models trained with tiny lesions will probably
not achieve high performance metrics scores, which also allows further research to de-
termine the smallest lesion detectable and segmentable, given a size restriction, with
YOLO as a DL algorithm.

5.4 Dataset

The LIDC-IDRI dataset was the dataset used to train the models. In the dataset, there
are four radiologists who identified and segmented the lesions used to train the models.
With these segmented images, the models learned which features were relevant and not
for detection and segmentation, which directly affected the performance of each model.

However, there are some considerations about the dataset. First, since the training
was conducted by 2D images. In the dataset, and CT scans in general, for each 2D
image/slice, other common objects, e.g., blood vessels, might visually appear as le-
sions in 2D. For the validation set during training and prediction with the test data from
the regional research PACS, these objects might be labeled as lesions. However, these
wrong predictions in the validation set do not interfere with the calculation of the per-
formance metrics due to the adjustments mentioned in Section 3.2.2, although these
wrong predictions should have had a negative impact on the calculated metrics. As for
the predictions with test data, these cases probably are easily recognized to be FPs by
radiologists and will not interfere in a significant way.

Additionally, the lesions marked by the radiologists in the XML files are only the le-
sions those individuals were able to locate. Thus, there might be additional lesions in
the CT scans that the radiologists missed, or the radiologists might have marked lesions
to have a smaller outline than they actually have. For the validation set during train-

5.5 Performance metrics 113

ing, missed lesions can result in correct predictions done by the model being labeled
as false. For the performance metrics, both missed lesions and wrongfully marked out-
lines can cause every performance metric used in this thesis to be equal to zero for
the predicted tumor, as illustrated in Figure 3.2.1. However, these predictions in the
validation set do not interfere with the calculation of the performance metrics due to
the adjustments mentioned in Section 3.2.2, although these predictions actually should
have had a positive impact on the calculated metrics.

Finally, the adjustment done in the methodology was to only keep the overlapping
region of the lesions segmented by multiple radiologists from the LIDC-IDRI dataset,
which also contained slight deviations as illustrated in Figure 3.4. These deviations
could also negatively impacted the performance of each model trained. Without this
adaption, the model would have been confused because multiple segmentations with
the same label would have existed in the same region. To illustrate the effect of this ad-
justment, the models could have been trained with multiple labels for the segmentation,
e.g., by labeling the regions according to the radiologist and one with the overlapping
region. However, this would be time-consuming and unnecessary because when train-
ing a model with only the overlapping region, the trained model will be less biased, but
when training with labels corresponding to each radiologist, these predictions become
biased towards the radiologist. With this reasoning, by training the model with only the
overlapping, the training becomes less time-consuming and less biased.

5.5 Performance metrics

The performance metrics are used to evaluate the models performance after training,
and these metrics are also used to compare the performance of the purposed models to
other models trained with the same goal, as done in Section 5.1 and Section 5.2.

Since these metrics directly affect the presentations of the various models, there are
some considerations to consider according to the calculations of these metrics. Firstly,
for small lesions, a small deviation in the predicted mask versus the ground truth mask
will impact the performance metrics used in this thesis to a more significantly negative
degree compared to the same scenario with larger lesions. This can be a reason why
the performance metric scores for the models trained on the whole dataset have lower
scores compared to the models trained on the size-restricted dataset.

When the performance metrics are equal to zero, the scores are further excluded for

114 Discussion

generating the average metric scores provided in Chapter 4. Although some of these
cases might be when the trained model predicts a lesion where there is none, as pre-
viously mentioned, the radiologists might also have either segmented the lesion with
false outlines or the radiologist might have missed some lesions the trained model is
able to identify and segment. The final case is when there are either multiple predicted
lesions and equally many ground truths or an uneven number between predicted lesions
and ground truths. Here, the case of determining which predicted mask corresponds to
the correct ground truths is a challenging task. To further optimize the calculations
one could count the frequency of every case mentioned and illustrated in Figure 3.2.1,
then investigate these cases to further determine the weighting of each case. However,
due to time limitations and uncertainty between radiologists, this option could not be
provided in this thesis.

5.6 Time restrictions and computational power

During the course of this thesis, due to time restrictions and computational power, some
model optimization, model modification, and application paths were not explored fur-
ther during this thesis. This section explains the individual effects of not exploring
these paths in greater detail.

It is not possible to determine if the hyperparameters used are the most optimal hy-
perparameters. One limitation of the thesis is that the results provided are just from
hyperparameter searches, with only a fraction of all possible hyperparameter values
and combinations. By conducting wider searches with more values and combinations,
the results provided in Chapter 4 might even be optimized further. However, one can
never explore every hyperparameter value and combination. Hence, the hyperparame-
ter searches conducted in this thesis are satisfactory, but in future work, exploring other
hyperparameter values and combinations may be considered to optimize the trained
model even better.

For the segmentation task, the models were only trained on images converted from
DICOM to PNG with the command "+Wh 1", and it is possible the trained models
might have performed better with another conversion method, either those purposed in
Section 3.2.1 or other conversions. This option was also not explored due to time re-
strictions, and since the used conversion provided satisfactory results, this option was
deemed unnecessary. However, this might be considered in future work.

5.7 Clinical integration 115

Evaluation metrics are not universal for particular tasks. Hence, the evaluation met-
rics used in Chapter 4 might be comparable for every medical professional and com-
puter scientist. By calculating additional performance metrics the results would have
become more comparable for people with different backgrounds. These calculations
would have required even more scripts and code and were deemed unnecessary since
the most conventional metrics in medical use were included. However, people with
general knowledge of statistics are familiar with IoU, and by including the IoU metric,
even though DICE and IoU are 100% correlated, the results provided in this thesis are
more easily comparable for people with various knowledge from various fields.

For the small lesions in the dataset with all lesion sizes, the training might have
benefited from enlarging the image sizes to a greater degree than done in this thesis
(640x640), e.g. 1012x1012. By enlarging the image, the small lesions would appear
bigger, and during the training, the models could have extracted some features. How-
ever, due to computational power and model complexity, the computer used to train
these models in this thesis could not train such models. An attempt to enlarge the im-
ages in this dataset was made through the scale hyperparameter, but since the scale
hyperparameter also shrinks some images by the same factor, which actually could
have had a negative impact on the performance.

The models were only trained on two different datasets, one with all lesions of ev-
ery size and one with the size restriction 0.05% to 0.4% lesion area compared to the
image size. An interesting and highly recommended aspect for future work is train-
ing the models on multiple size restrictions to specify each model. This will provide
insights about which size restrictions the YOLO algorithm performs best on, and in
clinical practice one could run every trained model, with every size restriction, simul-
taneously to optimize the predictions and segmentations of lesions.

5.7 Clinical integration

In the regional research PACS system, the small size-restricted trained DL model was
uploaded and tested. The model was chosen for its simplicity and overall good perfor-
mance. The main purpose of the integration was to establish a clinical workflow for
using DL/AI to detect and segment lung lesions.

The integration of the DL algorithm (YOLO) to the clinical workflow shows promising
results. The consecutive image series from Figure 4.15 and Figure 4.16 are predictions

116 Discussion

with segmentations of distinct areas. The bottom left segmented area in this series,
which also has a high confidence score, indicates a possibility of an actual 3D tumor
existing in the area.

However, not every prediction was equally successful, where some segmentations ob-
viously are faulty. Furthermore, some blood vessels and other normal regions are seg-
mented as lesions and obvious tumors do not get segmented. Predictions that are ob-
viously false are also displayed in this thesis, where in Figure 4.17, a region outside
the patient was segmented and identified to be a lesion. Another obviously faulty pre-
diction displayed in this thesis is shown in Figure 4.16, where the top left segmented
part of the bottom right image is also faulty, which is obvious when viewing the im-
age series from the start. Segmentations which do not seem faulty when only viewing
the image with the predicted lesion, but by closer inspection might seem like a blood
vessel or other normal healthy regions is the image series provided in Figure 4.19 and
Figure 4.20. The reason why this segmented lesion raises suspicion is the rapid dis-
placement from slide to slide, which indicates the lesion predicted actually is a blood
vessel. However, the segmentation could be inspected by a radiologist to confirm. The
wrongful predictions inside the lungs most likely stem from the fact the model was
trained on 2D images, and in a particular slice and certain angle, healthy objects, e.g.
blood vessels, might look like lesions to the model.

Although, every segmentation of the model is not guaranteed to be a lesion of inter-
est, in cases such as the image series in Figure 4.15 and 4.16, an interesting aspect
would have been to try to interpolate between the 2D lesion segmentations to create a
3D lesion volume, and also extract other features such as physical volume and lesion
diameter. The DL algorithm integrated has the potential to increase performance by
retraining on correct segmentations, which over time could lead to the detection and
segmentation of lesions of various sizes.

Chapter 6

Conclusions and Future Work

The evaluation of YOLO as a lung lesion segmentation and detection model in CT
imaging was successful and showed promising results. As expected, the model trained
on the dataset with size-restricted lesions performed better than the model trained on
the whole dataset. In comparison to other models trained for 2D lung lesion segmen-
tation, the results with the size restriction trained model, on average, exhibit similar
performance to those of Zhi et al., where the majority of the models are based on the
U-Net architecture. In terms of object detection, size-restricted trained models exhibit
better performance than the models presented by Liu et al., but inferior to the model
presented by Liying et al. However, since the models in this thesis are trained for both
lesion segmentation and detection, they are more suitable in terms of clinical usage.

The local clinical workflow integration also showed promising results, where the model
uploaded was able to successfully segment and detect several 2D lesion slices of a 3D
lesion consecutively, as displayed in Figure 4.15 and Figure 4.16. Hence, integrating
the pipeline into the regional research PACS was successful, which provides the op-
portunity to detect and segment lesions that healthcare professionals fail to notice. As
mentioned in Section 5.7, retraining the model with correct predictions has the capabil-
ity to improve the model’s ability over time, and it might be able to detect and segment
smaller and larger lesions over time.

To further improve the models and the results in Chapter 4, a larger hyperparameter
search can be conducted to further minimize the total validation loss which theoreti-
cally should provide a better segmentation and detection model. Another addition may
be to add weighting for the calculation of performance metrics relative to the lesion
size, since small deviations in smaller lesion predictions more negatively impact the
calculation of performance metrics compared to small deviations in bigger lesion pre-

118 Conclusions and Future Work

dictions.

Additionally, the models could be trained with various size restrictions, creating a set of
models that together can provide detection and segmentation for lesions of every size.
By adding weighting for the performance measures based on the predicted lesion sizes,
the models trained have the potential to achieve this.

Considering that the model demonstrates a certain ability to detect and segment lung
lesions from slices of a CT scan in consecutive order, further work could be to construct
3D segmentations from the already existing 2D segmentations, e.g. by interpolation.
Other additions worth exploring are to extract certain features from the segmented le-
sions such as: malignancy status, calcification, and whether or not the segmented lesion
is a primary tumor, secondary tumor, or another anomaly within the lungs. With these
features added, the model will be able to provide more detailed information and pos-
sibly be used to detect diseases other than lung cancer and segment other regions of
interest associated with that particular disease.

After successfully creating 3D segmentations, and considering that patients tend to
undergo follow-up examinations, one could potentially train a model to predict tumor
development using the 3D segmentations along with the corresponding longitudinal
data. This approach could ultimately lead to groundbreaking research in understanding
tumor development patterns and metastasis. In a clinical workflow, this would translate
to both preparation and prevention of potential metastasis, resulting in preventing casu-
alties. Additionally, this could provide estimations about treatment responses based on
factors such as patient anatomy, tumor localization, etc., which would help shape the
treatment plan to the patient and thus potentially save lives by eliminating ineffective
treatment plans.

Appendix I

MMIV Conference 2023 poster

The poster provided in Figure I.1 is the poster presented at the MMIV Conference,
displaying this thesis’s preliminary results.

120 MMIV Conference 2023 poster

Figure I.1: The poster presented at the 2023 MMIV Conference.

Appendix II

GitHub repository

The code used in this thesis to execute the methodology presented in Chapter 3, and
the code used to generate the following results are provided in the GitHub repository
accessible through the following url:

https://github.com/herissiv/lung-ai

https://github.com/herissiv/lung-ai

122 GitHub repository

Appendix III

Results with Hyperparameter tuner

This appendix provides the results obtained after utilizing YOLO’s builtin hyperparam-
eter tuner on the dataset without size restriction with the corresponding model complex-
ities provided in Chapter 4. For the small and medium model trained (after tuning), the
object detection sensitivity scores are provided through the column-normalized confu-
sion matrices (Figure III.2 and Figure III.4) indicating sensitivity scores of 0.68 and
0.69 respectively. The segmentation performance metrics are provided for all model
complexities (small, medium, and large) from Table III.1 - III.3. Examples of predic-
tions made by the models with their corresponding ground truths are given in Figure
III.1, Figure III.3, and Figure III.5.

1 All lesions small model

Training set Validation set

Performance metric score ± std score ± std

DICE 0.696 ± 0.226 0.673 ± 0.238

IoU 0.573 ± 0.232 0.548 ± 0.235

Precision 0.822 ± 0.174 0.791 ± 0.219

Sensitivity 0.665 ± 0.259 0.676 ± 0.253

Table III.1: The performance measures obtained by the builtin hyperparameter tuner, with the related
scores with standard deviation, from the small trained segmentation model.

124 Results with Hyperparameter tuner

Figure III.1: Predictions made by the hyperparameter tuner trained model (small model) in the bottom
row, with the corresponding ground truths at the top row.

Figure III.2: The normalized confusion matrix obtained by the builtin hyperparameter tuner from the
small trained model. From the confusion matrix, the object detection sensitivity score is 0.68.

2 All lesions medium model 125

2 All lesions medium model

Training set Validation set

Performance metric score ± std score ± std

DICE 0.714 ± 0.207 0.678 ± 0.233

IoU 0.591 ± 0.219 0.553 ± 0.230

Precision 0.827 ± 0.167 0.782 ± 0.227

Sensitivity 0.683 ± 0.242 0.690 ± 0.244

Table III.2: The performance measures obtained by the builtin hyperparameter tuner, with the related
scores with standard deviation from the medium trained segmentation model.

Figure III.3: Predictions made by the hyperparameter tuner trained model (medium model) in the
bottom row, with the corresponding ground truths at the top row.

126 Results with Hyperparameter tuner

Figure III.4: The normalized confusion matrix obtained by the builtin hyperparameter tuner from the
medium trained model. From the confusion matrix, the object detection sensitivity score is 0.69.

3 All lesions large model

Training set Validation set

Performance metric score ± std score ± std

DICE 0.687 ± 0.239 0.663 ± 0.253

IoU 0.566 ± 0.242 0.541 ± 0.226

Precision 0.820 ± 0.173 0.785 ± 0.226

Sensitivity 0.654 ± 0.271 0.670 ± 0.268

Table III.3: The performance measures obtained by the builtin hyperparameter tuner, with the related
scores with standard deviation, for the large segmentation model.

3 All lesions large model 127

Figure III.5: Predictions made by the hyperparameter tuner trained model (large model) in the bottom
row, with the corresponding ground truths at the top row.

128 Results with Hyperparameter tuner

Bibliography

[1] G. C. Observatory, “Estimated number of new cases in 2020, world, both sexes,
all ages (excl. nmsc).” [Online]. Available: https://gco.iarc.fr/today/home 1.1

[2] K. C. Thandra, A. Barsouk, K. Saginala, J. S. Aluru, and A. Barsouk,
“Epidemiology of lung cancer,” Contemporary oncology (Poznan, Poland), 2021.
[Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8063897/
1.1

[3] N. I. of Biomedical Imaging and Bioengineering, “Computed tomography (ct),”
2022. 1.1, 2.1.1, 2.1.6

[4] A. M. A. Gindi, T. A. Attiatalla, and M.-S. M. Mostafa, “A comparative study
for comparing two feature extraction methods and two classifiers in classification
of early-stage lung cancer diagnosis of chest x-ray images,” Journal of American
Science, 2014. 1.1

[5] R. C. Deo, “Machine learning in medicine,” Circulation, 2015. 1.1

[6] L. E. Romans, COMPUTED TOMOGRAPHY for TECHNOLOGISTS. Wolters
Kluwer, 2011. 2.1.1, 2.1.5, 2.1.5, 2.1.6, 2.1.6, 2.1.6, 2.1.6, 2.1.6, 2.1.7, 2.1.8

[7] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 4th ed. Global
Edition, 2018. 2.1.1, 2.1.6, 2.9, 2.1.6, 2.1.6

[8] W. A. Kalender, Computed Tomography, 3rd ed. Publicis, 2011. 2.1.1, 2.1.3,
2.1.5, 2.1.5, 2.1.5, 2.1.5, 2.1.5, 2.1.5, 2.1.5, 2.1.6, 2.1.6, 2.1.6, 2.1.6, 2.1.6, 2.1,
2.1.6, 2.1.8, 2.10

[9] R. M. Sainz, F. Lombo, and J. C. Mayo, “Radical decisions in cancer: redox
control of cell growth and death,” Cancers, 2012. 2.1.1

[10] L. Eldridge, “Free radicals: Definition, cause, and role in can-
cer,” October 2022. [Online]. Available: https://www.verywellhealth.com/
information-about-free-radicals-2249103 2.1.1

https://gco.iarc.fr/today/home
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8063897/
https://www.verywellhealth.com/information-about-free-radicals-2249103
https://www.verywellhealth.com/information-about-free-radicals-2249103

130 BIBLIOGRAPHY

[11] N. C. I. (NCI), “Computed tomography (ct) scans and cancer,” 2019.
[Online]. Available: https://www.cancer.gov/about-cancer/diagnosis-staging/
ct-scans-fact-sheet 2.1.1, 2.1.7

[12] Radiation Oncology Physics, ser. Non-serial Publications. Vienna: IN-
TERNATIONAL ATOMIC ENERGY AGENCY, 2005. [Online]. Available:
https://www.iaea.org/publications/7086/radiation-oncology-physics 2.1.2, 2.1,
2.1.2, 2.1.2, 2.1.2, 2.1.2, 2.1.2, 2.1.3, 2.1.3, 2.1.3, 2.1.3, 2.1.3, 2.1.4, 2.1.4, 2.3,
2.1.4, 2.1.4, 2.1.5, 2.8, 2.1.5, 2.1.6

[13] T. E. Johnson, Introduction to Health Physics, 5th ed. McGraw-Hill Education,
2017. 2.1.2, 2.2, 2.1.3

[14] J. C. Morrison, Modern Physics for Scientists and Engineers, 2nd ed. Academic
Press, 2015. 2.1.2, 2.1.2

[15] B. J. McParland, Nuclear Medicine Radiation Dosimetry. Springer, 2010. 2.1.2

[16] H. Lodish, A. Berk, C. A. Kaiser, M. Krieger, A. Bretscher, H. Ploegh, A. Amon,
and K. C. Martin, Molecular Cell Biology, 8th ed. w.h.freeman, 2016. 2.1.3

[17] S. Prabhu, D. K. Naveen, S. Bangera, and S. B. Bhat, “Production of x-rays using
x_ray tube,” Journal of Physics: Conference Series, 2020. 2.1.5, 2.1.5

[18] C. Rampinelli, D. Origgi, and M. Bellomi, “Low-dose ct: technique, reading
methods and image interpretation.” Cancer imaging : the official publication of
the International Cancer Imaging Society, 12(3), 2013. 2.1.7, 2.1.7

[19] N. C. I. (NCI), “Ldcy.” [Online]. Available: https://www.cancer.gov/publications/
dictionaries/cancer-terms/def/ldct 2.1.7

[20] S. Iranmakani, A. R. Jahanshahi, P. Mehnati, T. Mortezazadeh, and D. Khezer-
loo, “Image quality and pulmonary nodule detectability at low-dose computed
tomography (low kvp and mas): A phantom study.” Journal of medical signals
and sensors, 12(1), 64–68., 2021. 2.1.7

[21] A. Bonney, R. Malouf, C. Marchal, D. Manners, K. M. Fong, H. M. Marshall,
L. B. Irving, and R. Manser, “Impact of low-dose computed tomography (ldct)
screening on lung cancer-related mortality,” The Cochrane database of systematic
reviews, Issue 8. Art. No.: CD013829., 2022. 2.1.7

[22] N. N. H. Service), “Lung cancer.” [Online]. Available: https://www.nhs.uk/
conditions/lung-cancer/ 2.2, 2.2

https://www.cancer.gov/about-cancer/diagnosis-staging/ct-scans-fact-sheet
https://www.cancer.gov/about-cancer/diagnosis-staging/ct-scans-fact-sheet
https://www.iaea.org/publications/7086/radiation-oncology-physics
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/ldct
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/ldct
https://www.nhs.uk/conditions/lung-cancer/
https://www.nhs.uk/conditions/lung-cancer/

BIBLIOGRAPHY 131

[23] C. R. UK, “Types of lung cancer.” [Online]. Available: https://www.
cancerresearchuk.org/about-cancer/lung-cancer/stages-types-grades/types 2.2,
2.2

[24] A. Jamil and A. Kasi, “Lung metastasis,” StatPearls [Internet], January 2023. 2.2,
2.3

[25] N. H. S. (NHS), November 2022. [Online]. Available: https://www.nhs.uk/
conditions/lung-cancer/symptoms/ 2.2

[26] J. Ko, M. M. Winslow, and J. Sage, “Mechanisms of small cell lung cancer metas-
tasis.” EMBO molecular medicine, 2021. 2.2

[27] G. M. Stella, S. Kolling, S. Benvenuti, and C. Bortolotto, “Lung-seeking metas-
tases,” Cancers, 2019. 2.3

[28] X. Du-Harpur, F. M. Watt, N. M. Luscombe, and M. D. Lynch, “What is ai?
applications of artificial intelligence to dermatology.” The British journal of der-
matology, 2020. 2.4

[29] OpenAI, “ChatGPT: OpenAI’s Conversational AI Model,” OpenAI, Technical
Report, 2019. [Online]. Available: https://openai.com/chatgpt 2.4

[30] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma,
J. Santamaría, M. A. Fadhel, M. Al-Amidie, and L. Farhan, “Review of deep
learning: concepts, cnn architectures, challanges, applications, future directions,”
Journal of Big Data, 2021. 2.5, 2.6, 2.6.1, 2.6.1, 2.6.1, 2.6.1, 2.15, 2.6.1, 2.6.2,
2.6.3, 2.6.3, 2.6.3, 2.6.3, 2.6.4, 2.6.4, 2.6.5, 2.6.6, 2.6.6, 2.6.6, 2.6.6, 2.6.6, 2.6.8,
2.7.1

[31] Z.-H. Zhou, Machine Learning. Springer, 2012. 2.5, 2.6, 2.6.1, 2.6.3, 2.6.3,
2.6.3, 2.7.1, 2.7.6

[32] M. R. Bonyadi, R. Wang, and M. Ziaei, “Self-punishment and reward backfill for
deep q-learning,” IEEE Transactions on Neural Networks and Learning Systems,
2022. 2.5

[33] C. Bhagya and A. Shyna, “An overview of deep learning based object detection
techniques,” in 2019 1st International Conference on Innovations in Information
and Communication Technology (ICIICT). IEEE, 2019, pp. 1–6. 2.5.1

[34] C. Liu, S. C. Hu, C. Wang, K. Lafata, and F. F. Yin, “Automatic detection of
pulmonary nodules on ct images with yolov3: development and evaluation using

https://www.cancerresearchuk.org/about-cancer/lung-cancer/stages-types-grades/types
https://www.cancerresearchuk.org/about-cancer/lung-cancer/stages-types-grades/types
https://www.nhs.uk/conditions/lung-cancer/symptoms/
https://www.nhs.uk/conditions/lung-cancer/symptoms/
https://openai.com/chatgpt

132 BIBLIOGRAPHY

simulated and patient data.” Quantitative imaging in medicine and surgery, 2020.
2.5.1, 2.8, 2.9, 5.1

[35] L. Han, F. Li, H. Yu, K. Xia, Q. Xin, and X. Zou, “Birpn-yolovx: A weighted
bidirectional recursive feature pyramid algorithm for lung nodule detection.” J
Xray Sci Technol, 2023. 2.5.1, 2.9, 5.1

[36] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos,
“Image segmentation using deep learning: A survey,” IEEE, 2022. 2.5.2, 2.5.2

[37] Q. Health, “Brain map,” 2022. [Online]. Available: https://www.health.qld.gov.
au/abios/asp/brain 2.12

[38] M. M. K. Aarhus, “Machine learning in automated segmentation of small lesions
in magnetic resonance imaging for multiple sclerosis,” 2023. 2.6, 2.13, 2.6.1

[39] L. Lu, Y. Zheng, G. Carnerio, and L. Yang, Deep Learning and Convolutional
Neural Networks for Medical Image Computing. Springer, 2017. 2.6.1

[40] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “YOLOX: Exceeding yolo series in
2021,” arXiv preprint arXiv:2107.08430, 2021. 2.6.1, 2.22

[41] theletz stackoverflow, “small learning rate vs big learning rate,” 2020, only figure
inspiration. 2.17

[42] P. M. Radiuk, “Impact of training set batch size on the performance of convolu-
tional neural networks for diverse datasets,” Information Technology and Man-
agement Science, vol. 20, no. 1, pp. 20–24, 2017. 2.6.3

[43] P. Liashchynskyi and P. Liashchynskyi, “Grid search, random search, genetic al-
gorithm: A big comparison for nas,” 2019. 2.6.4

[44] G. Nakerst, J. Brennan, and M. Haque, “Gradient descent with momentum—to
accelerate or to super-accelerate?” arXiv preprint arXiv:2001.06472, 2020. 2.6.6,
2.6.6

[45] S. Ruder, “An overview of gradient descent optimization algorithms,” 2017. 2.6.6

[46] K. Nakamura and B.-W. Hong, “Adaptive weight decay for deep neural networks,”
2019. 2.6.6

[47] R. Wan, Z. Zhu, X. Zhang, and J. Sun, “Spherical motion dynamics: Learning
dynamics of neural network with normalization, weight decay, and sgd,” 2020.
2.6.6

https://www.health.qld.gov.au/abios/asp/brain
https://www.health.qld.gov.au/abios/asp/brain

BIBLIOGRAPHY 133

[48] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT Press,
2017. 2.6.6

[49] I. Muraina, “Ideal dataset splitting ratios in machine learning algorithms: general
concerns for data scientists and data analysts,” in 7th International Mardin Artuklu
Scientific Research Conference, 2022, pp. 496–504. 2.6.7, 2.6.7

[50] A. A. Taha and A. Hanbury, “Metrics for evaluating 3d medical image segmenta-
tion: analysis, selection, and tool,” BMC medical imaging, 2015. 2.7, 2.7.1, 2.7.2,
2.7.3, 2.7.3, 2.7.4, 2.7.4, 2.7.5, 5

[51] B. He, “A machine learning approach for data unification and its application in
asset performance management,” 2016. 2.7.6

[52] G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics YOLO,” Jan. 2023. [Online].
Available: https://github.com/ultralytics/ultralytics 2.8, 3.2.2

[53] Ultralytics, November 2023. [Online]. Available: https://docs.ultralytics.com/
#where-to-start 2.8

[54] D. M, B. J, L. J, K. O, and S. A, “Study on sperm-cell detection using yolov5
architecture with labaled dataset,” Genes (basel), 2023. 2.8

[55] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “Yolact: Real-time instance segmenta-
tion,” 2019. 2.8.1

[56] G. Jocher, “summary of yolov8-seg model structure,” 2024, gitHub issue.
[Online]. Available: https://github.com/ultralytics/ultralytics/issues/1710 2.8.1

[57] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature
pyramid networks for object detection,” 2017. 2.8.1

[58] Ultralytics, November 2023. [Online]. Available: https://docs.ultralytics.com/
tasks/segment/ 2.8.1, 3.3

[59] ——, November 2023. [Online]. Available: https://docs.ultralytics.com/usage/
cfg/ 2.8.2

[60] G. Jocher, “Are class and box losses calculated the same in yolov8 and yolov5?”
2023, gitHub issue. [Online]. Available: https://github.com/ultralytics/ultralytics/
issues/2789 2.8.3

https://github.com/ultralytics/ultralytics
https://docs.ultralytics.com/#where-to-start
https://docs.ultralytics.com/#where-to-start
https://github.com/ultralytics/ultralytics/issues/1710
https://docs.ultralytics.com/tasks/segment/
https://docs.ultralytics.com/tasks/segment/
https://docs.ultralytics.com/usage/cfg/
https://docs.ultralytics.com/usage/cfg/
https://github.com/ultralytics/ultralytics/issues/2789
https://github.com/ultralytics/ultralytics/issues/2789

134 BIBLIOGRAPHY

[61] ——, “What is the loss used for yolov8-seg? what is the formula?” 2023, gitHub
issue. [Online]. Available: https://github.com/ultralytics/ultralytics/issues/3882
2.8.3

[62] Ultralytics, “loss.py - ultralytics,” 2024, source code. [Online]. Available:
https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/loss.py 2.8.3

[63] G. J. (Ultralytics), “Efficient hyperparameter tuning with ray tune and yolov8,”
2024. [Online]. Available: https://docs.ultralytics.com/integrations/ray-tune/
2.8.4, 2.8.4, 3.3.1

[64] ——, “Ultralytics yolo hyperparameter tuning guide,” 2024. [Online]. Available:
https://docs.ultralytics.com/guides/hyperparameter-tuning/ 2.8.4, 2.8.4

[65] Ultralytics, “tuner.py - ultralytics,” 2024, source code. [Online]. Available:
https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/tuner.py 2.8.4

[66] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica, “Tune:
A research platform for distributed model selection and training,” arXiv preprint
arXiv:1807.05118, 2018. 2.8.4

[67] G. Pezzano, V. Ribas Ripoll, and P. Radeva, “Cole-cnn: Context-learning
convolutional neural network with adaptive loss function for lung nodule
segmentation,” Computer Methods and Programs in Biomedicine, vol. 198, p.
105792, 2021. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0169260720316254 2.9

[68] L. Zhi, W. Jiang, S. Zhang, and T. Zhou, “Deep neural network pulmonary
nodule segmentation methods for ct images: Literature review and experimental
comparisons,” Computers in Biology and Medicine, vol. 164, p. 107321,
2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0010482523007862 2.9, 5.1

[69] T. C. I. Archive, “Data from the lung image database consortium (lidc) and image
database resource initiative (idri): A completed reference database of lung nodules
on ct scans (lidc-idri).” 3, 3.1

[70] S. G. r. Armato, L. G., Bidaut, M. F. McNitt-Gray, C. R. Meyer, A. P. Reeves,
B. Zhao, D. R. Aberle, C. I. Henschke, E. A. Hoffman, E. A. Kazerooni,
H. MacMahon, E. J. Van Beeke, D. Yankelevitz, A. M. Biancardi, P. H. Bland,
M. S. Brown, R. M. Engelmann, G. E. Laderach, D. Max, and B. Y. Croft, “The
lung image database consortium (lidc) and image database resource initiative

https://github.com/ultralytics/ultralytics/issues/3882
https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/loss.py
https://docs.ultralytics.com/integrations/ray-tune/
https://docs.ultralytics.com/guides/hyperparameter-tuning/
https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/tuner.py
https://www.sciencedirect.com/science/article/pii/S0169260720316254
https://www.sciencedirect.com/science/article/pii/S0169260720316254
https://www.sciencedirect.com/science/article/pii/S0010482523007862
https://www.sciencedirect.com/science/article/pii/S0010482523007862

BIBLIOGRAPHY 135

(idri): a completed reference database of lung nodules on ct scans.” The Medi-
cal physics, 2011). 3.1, 3.1, 3.1

[71] S. Gillies et al., “Shapely: manipulation and analysis of geometric objects,”
toblerity.org, 2007–. [Online]. Available: https://github.com/Toblerity/Shapely
3.1

[72] T. M. I. T. A. (MITA), “Store (stow-rs),” NEMA. [Online]. Available:
https://www.dicomstandard.org/using/dicomweb/store-stow-rs 3.2.1

[73] T. O. D. team, “dcm2pnm: Convert dicom images to pgm/ppm, png, tiff or bmp.”
[Online]. Available: https://support.dcmtk.org/docs-snapshot/dcm2pnm.html
3.2.1, 3.3, 3.2.1, 3.2.1

[74] G. Jocher, “How to auto-finetune hyperparameters in yolov8?” 2024, gitHub
issue. [Online]. Available: https://github.com/ultralytics/ultralytics/issues/9007
3.3.1

https://github.com/Toblerity/Shapely
https://www.dicomstandard.org/using/dicomweb/store-stow-rs
https://support.dcmtk.org/docs-snapshot/dcm2pnm.html
https://github.com/ultralytics/ultralytics/issues/9007

	Scientific environment
	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Hypothesis
	Contribution

	Theory
	Computed tomography, CT
	CT basics
	Photon interactions
	Dose
	CT X-ray production
	CT components
	CT imaging
	Image modes
	Artifacts

	Primary lung cancer
	Secondary lung cancer
	Artificial Intelligence
	Machine Learning
	Object detection
	Image segmentation

	Deep learning
	Convolutional neural network
	Loss function
	Hyperparameters
	Optimization of parameters and hyperparameters
	Back propagation
	Gradient Descent
	Data splitting
	Data augmentation

	Performance measure
	True Positive, False Positive and False Negative
	DICE score
	Sensitivity
	Precision
	IoU
	Confusion matrix

	YOLO
	Image segmentation
	Data augmentation
	Loss function
	Hyperparameter tuning

	Recent advances
	Aim

	Methods
	Data
	Data processing
	Data pre-processing
	Data post-processing

	YOLO
	Hyperparameter search

	Uploading to PACS

	Results
	YOLOv8 small model
	Results from all lesions
	Size-restricted

	YOLOv8 medium model
	Results from all lesions
	Size-restricted

	YOLOv8 large model
	Results for all lesions
	Size-restricted

	Comparison across models
	Clinical integration

	Discussion
	All lesions
	Size-restricted
	Comparison across models
	Dataset
	Performance metrics
	Time restrictions and computational power
	Clinical integration

	Conclusions and Future Work
	MMIV Conference 2023 poster
	GitHub repository
	Results with Hyperparameter tuner
	All lesions small model
	All lesions medium model
	All lesions large model

