
University of Bergen
Department of Informatics

Solving Maximum Weighted

Matching problem using Graph

Neural Networks

Author: Nikita Zaicev

Supervisor: Fredrik Manne

June, 2024

Abstract

In this work we train a Graph Neural Network model to solve the Maximum Weighted

Matching problem on graphs using supervised learning. Unfortunately, the final results

were below the set expectations. The model seemed to be slightly worse than a standard

greedy algorithm, mainly because the greedy algorithm on average performed very well

compared to the optimal solution. However, the neural network did show potential at

solving the problem for more narrow graph datasets and graphs that were particularly

difficult for the greedy algorithm. The results do not imply that graph neural networks

in general cannot beat greedy algorithms, but rather suggest that different approaches or

further improvement are needed.

Acknowledgements

I want to thank Fredrik Manne, Kenneth Langedal and Johannes Langguth for helping

me with this work.

Nikita Zaicev

Saturday 1st June, 2024

Contents

1 Introduction 1

1.1 Goal . 1

1.2 Motivation . 2

1.3 Project structure . 3

1.3.1 Git . 4

1.3.2 Writing . 4

2 Background 5

2.1 Neural Networks and Machine Learning 5

2.2 Graphs . 9

2.3 Graph Neural Networks . 11

2.4 Implementation, training and hyperparameters 14

2.4.1 Implementation . 14

2.4.2 Training . 15

2.4.3 Hyperparameters . 16

2.5 Maximum Weighted Matching and Combinatorial Optimization 18

3 Research Methodology and Data 20

3.1 Challenges . 20

3.2 Main Idea . 21

3.3 Data . 23

3.4 Architecture . 24

3.4.1 Model pipeline . 26

3.4.2 Line Graph Approach . 26

3.4.3 Edge Classification Approach . 28

3.4.4 Data preprocessing . 29

3.5 Result Validation . 31

3.5.1 Sanity checks . 32

3.6 Expected Results . 32

i

3.6.1 Other observations . 32

3.6.2 Accuracy and total weight . 33

3.6.3 Time . 33

3.6.4 Remainder or model portion . 33

4 Results 34

4.1 Progress . 34

4.1.1 Experimenting environment . 34

4.1.2 Simple line graph model . 34

4.1.3 Model improvements and data augmentation 36

4.2 Edge prediction model . 39

4.2.1 Reduction . 44

4.2.2 Matching threshold . 45

4.3 Final results . 47

4.3.1 Weakness of the greedy algorithm 49

5 Conclusion 51

5.1 Future work . 52

Glossary 53

List of Acronyms and Abbreviations 54

Bibliography 55

A Code examples 59

ii

List of Figures

2.1 Simple neural network example . 7

2.2 Classification example . 8

2.3 The difference between a directed and an undirected graph 9

2.4 Original graph (left) and its line graph (right) 10

2.5 GNN example . 12

2.6 Message passing example . 13

2.7 GCN example . 14

3.1 Original graph . 28

3.2 Line graph . 28

3.3 Line graph convertion example . 28

4.1 MNIST trained model. Average performance on 100 MNIST graphs . . . 38

4.2 MNIST performance comparison . 40

4.3 MNIST trained model performance on cage10 graph 41

4.4 MNIST vs CUSTOM dataset training model performance on cage10 . . . 42

4.5 CUSTOM trained model performance on cage10 graph 42

4.6 MNIST vs CUSTOM dataset training model performance on MNIST graphs 43

4.7 Reduction example . 44

4.8 Model threshold test on cage8 graph . 46

4.9 Final model performance . 48

4.10 Good case for GNN . 49

4.11 Greedy disadvantaged graphs . 50

iii

List of Tables

3.1 Names and sizes of graphs used for testing 24

4.1 Performance improvement from increasing the depth of the mode 36

4.2 Performance improvement from increasing the width of the model 36

4.3 Aggregation function performance . 39

iv

Listings

2.1 Creating GCN with Pytorch . 14

2.2 Training GCN with Pytorch . 16

3.1 Pytorch GCN for the line graph . 25

3.2 Skip connection example . 25

3.3 Pytorch GCN for the edge classification 29

v

Chapter 1

Introduction

This chapter is an introduction that explains the goals and motivation for this work.

1.1 Goal

Classification is one of the most fundamental concepts in machine learning. It involves

categorizing data into distinct subclasses based on their features. For instance, consider

a dataset containing objects with an annotated feature indicating their color, and three

classes: apples, oranges. Using the color feature, we can classify the objects into two

distinct categories. Different variations of such classification problems occur across many

scientific fields and machine learning has been a potent tool for solve such problems. Ma-

chine learning includes a variety of statistical methods for solving classification problems.

One such method is neural networks.

A popular example of neural network application is recognition of handwritten digits

[11], where one can think of each pixel in an image as a feature that a neural network

can use to classify the digit on the image. Examples of classification problems that

can be solved using neural networks can be found across a variety of fields including:

feature based classification of Iris plants [25], image recognition for classification of cholera

and malaria pathogens [26] and credit card fraud detection [8]. For such classification

problems, input data often has an expected structure. Input features such as, for example,

image pixels are often expected to be of a certain size or are preprocessed accordingly. The

neural networks have, however, shown promising results when dealing with unstructured

1

data such as input of varying length in the form of text or video. Some well known

examples are: text generation for the popular chatbot “ChatGPT” [22], photorealistic

text-to-image synthesis [16] or self-driving cars [3]. Another example of unstructured

data is a graph. As an analogy, a picture can be represented as a grid graph where

each pixel is connected to the pixels it is surrounded by. Such a graph would have a set

number of neighbours and a set width and height. A simple graph, however, does not

have such limitations and each element can have a varying number of neighbours as well

as a variable width and height.

Combinatorial Optimization (CO) is a field of study that often deals with algorithmic

problems related to graphs and has been a growing, yet challenging research topic in

machine learning for the last few years. CO includes graph problems such as Maximal

Independent Set (MIS) and Maximum Weighted Matching (MWM), with MWM being

the main topic of this work. In simple terms, MWM problem requires one to match

together pairs of objects such that the total weight is maximized, given a list of all the

possible pairing combinations with weights assigned to them. As a simplified example, one

can view the problem in the context of task scheduling. For instance, consider a company

that wants to assign workers to a set of tasks and maximize the overall performance. Each

worker has different skills and is expected to perform better on some projects than others.

How well a person fits for a project can be expressed by some metric and workers can

only work on one project at a time. In other words, the company would want to match

employees to the projects such that the total performance of the workers is as high as

possible, resembling the MWM problem. Variations of such scheduling problems arise in

various fields, including processor scheduling [7] and donor compatibility matching [23].

Additionaly, MWM solvers are used in larger algorithms. To solve algorithmic problems

related to graphs, a specific subclass of neural networks has been designed called Graph

Neural Network (GNN)s. However, there are still problems that have not yet been solved

efficiently with GNNs.

The main goal for this project is to: “Find out whether a GNN can outperform

approximation algorithms such as greedy in solving MWM problem”.

1.2 Motivation

The previous section describes “what” this work is about. Now let’s briefly discuss “why”

do this in the first place. The idea is rather simple. There are two types of algorithms

2

in general: exact and approximate. Exact algorithms guarantee that the found solution

is optimal and correct, meaning that there cannot be a better solution, although several

equally good solutions might exist. Approximation algorithms are heuristic techniques

that do not aim for perfect optimalization, but rather focus on practical approaches

that give sufficient results for the required task. These algorithms do not guarantee the

optimal solution, but they provide a close approximation with a defined minimum level

of precision. Similarly, machine learning and neural networks also fall into the category

of heuristics.

The exact algorithms for MWM already exist, but the downside of such algorithms

is their speed. The fastest algorithm is due to Edmonds and runs in polynomial time

O(|V |2|E|) [29], where |V | denotes the number of nodes in a graph and |E| denotes the
number of edges. There are several approximation algorithms for MWM. One of the

most simple ones is a weight based greedy approximation algorithm that matches pairs

based on the their weights sorted in descending order. Such algorithm runs in time

O(|E|log(|E|)) with the main factor being the sorting time. The slower nature of exact

algorithms is the reason why approximation algorithms are used in some cases. The hope

is that a GNN model can potentially squeeze in between the approximation and exact

algorithms in terms of both time and accuracy.

In short, the motivation is: “There can be a machine learning based algorithm that

gives better results than existing approximation algorithms”

1.3 Project structure

The rest of this document has the following structure:

1. Background:

This Chapter briefly outlines the history, applications and impact of machine learn-

ing and goes through core concepts and ideas behind machine learning, neural net-

works and graph neural networks. Relevant information about CO and algorithms

is included here.

2. Methodology and Data:

This Chapter focuses on how the research was done and also explains core concepts

of Neural Networks and the general procedure of training a Neural Network. Then

3

the specifics of this case are discussed together with the main challenges. The

progress made step by step and the reasoning behind changes and choices made

along the way are shown. The chapter also analyzes the data used for training the

model and evaluating results, along with justification for the chosen data.

3. Results:

This Chapter focuses on temporary results produced during the research and ex-

plains how these results affected further decisions. Finally, the chapter is concluded

by analyzing the final results and comparing them with expectations.

4. Conclusion:

Here the conclusion for this project is drawn regarding whether the results gave any

meaningful insight and what future work can be done for improvements.

1.3.1 Git

The code used in this project can be accesssed at: https://github.com/nikitazaicev/

Master. The information about the used datasets is given in the Data analysis chapter

1.3.2 Writing

ChatGPT was used to improve wording and grammar for some small parts of the text in

this report.

4

https://github.com/nikitazaicev/Master
https://github.com/nikitazaicev/Master

Chapter 2

Background

This Chapter focuses on the history, applications and impact of machine learning and

goes through core concepts and ideas behind neural networks and graph neural networks.

Relevant information about CO, graphs, exact and approximation algorithms is also

included here.

2.1 Neural Networks and Machine Learning

Machine learning in computer science is a broad term for all the models and algorithms

that use statistical methods to learn patterns and make predictions. Some of the earliest

algorithms were invented in the 1940s [12], but the viability was limited by the lack of

data and computational power. One of the first works that began using GPUs to speed

up the training process were Raina et al. [20] in 2009. Both GPU and machine learning

technologies have been improving ever since. The use of neural networks has found a

place in almost every field.

Neural network is a statistical method in machine learning inspired by the way brains

work. The areas in which this method is applied include classification tasks that aim

to identify certain objects based on their features, such as Iris flower classification [25]

presented by Swain et al. A family of Iris flowers can be split into three categories based

on the features, such as the shapes of petals and sepals. Iris flower classification is a

good and simple example of a classification problem where the input is the lengths and

widths of petals and sepals, and the task of the neural network is to put every flower

5

in the correct category based on these input features. Other complex problems such

as image recognition of pathogens [26] have also been solved by using neural networks.

Besides recognition and classification, neural networks have also found applications in the

synthesis of data, such as text generation with ChatGPT [22] and image generation [16].

From around 2017, the Graph Neural Network (GNN) subclass of neural networks started

to gain more traction [9], [28], [15]. The GNNs are specialized for working with graph

data as the name suggests and are the main topic of this work, but before describing the

GNNs in more detail, let us revisit the basics of machine learning and neural networks.

Machine learning can be split into supervised, unsupervised and reinforcement learn-

ing.

In the case of supervised learning, the machine learning model is given training data

with the correct answers. The model can then learn from this by trial and error and then

apply gained knowledge to the unseen data.

Supervised learning requires a dataset with precomputed answers. It is common to

split the dataset into three parts: training, validation and test. Training is used to train

the model, while validation is used to evaluate several models trained on the same training

dataset, but with different parameters for models learning process. The test dataset is

the final data set used to evaluate the final model, since the model was chosen based on

the validation dataset and needs to be tested on unseen data to avoid bias. This approach

relies on feeding the model large amounts of data in order to cover as much variety in

data as possible. The training process can take days, but on the positive side, after the

model is done with training, the running time of making a prediction can be as low as

O(n) in the case of simple neural networks, although it depends on the architecture.

In the case of unsupervised learning, the model lacks the correct answers and has to

use other means to calculate the error and adjust weights. Autoencoders are an example

of such networks and rely on two separate neural networks, where one part attempts to

encode data and the other to decode it and give feedback based on how close the decoded

data is to the original.

Reinforcement learning is less relevant, since it is used in cases with no training data.

And in this work we have data in the form of graphs. Therefore, in this thesis, we are

using supervised learning, where a neural network is trained on a dataset of graphs with

optimal solutions found using an exact algorithm.

Neural networks are a subclass of machine learning algorithms that are inspired by

the human brain. They are, for the most part, made of different layers that consist of

6

“neurons”. Layers can be grouped into three types: an input layer that reads the given

data, one or more middle layers that process the data and an output layer that gives the

final answer. In a simple neural network, each neuron in a layer is usually connected to

all the neurons of the next layer, although it often depends on the architecture.

Figure 2.1: Simple neural network example
Source: https://www.superdatascience.com/blogs/convolutional-neural-networks-cnn-
step-4-full-connection

Figure 2.1 visualizes how a simple fully connected neural network might look. The

flattening refers to formatting the input features as a one-dimensional array to match

the input layer size. This type of neural network is called fully connected, since each

neuron is connected to every neuron in the next layer. The output layer represents the

final binary classification step, where the two neurons stand for each of the two total

categories this network is designed to identify.

Neuron connections have assigned weights. When the neural network model receives

input, it is passed through the layers and gets multiplied by the weights. Assume an

input neuron with value x1 is passed to a neuron in the next layer. The value of the

neuron in the next layer will then be w1(x1) + b1, where w1 is the weight between the

nodes and b1 is the bias term used to improve models flexibility. One might have noticed

that the formula for passing data from one neurn to the other is a simple linear function.

After the passing is done and the output layer is reached, the result in the output layer

is some altered numerical representation of the input that can, depending on the goal,

be interpreted as some prediction. For example, by applying a Softmax function on the

output of the model, the result of each neuron would be between 0 and 1, and could be

treated as the probabilities. This is a common way to do classification tasks.

7

Figure 2.2: Classification example

Figure 2.2 shows another example of a classification network. This network has multi-

ple hidden layers and an output layer with multiple classes from the set Y . To output the

probabilities of an item being in each of the classes, the values from the output neurons

are passed through the softmax function.

Neurons also require an activation function to introduce non-linearity into the model.

Without non-linearity, the multiplication of weights from each layer would result in a

function that can be represented as a single linear transformation, defeating the purpose

of having multiple layers in the architecture. A commonly used activation function is

ReLU max(0, x).

To teach the model, the weights of the neural network can be adjusted depending on

the accuracy of the predictions by methods called back-propagation and gradient descend.

Back-propagation calculates the impact of each weight on the total error using derivation.

The error is calculated using a loss function such as negative log likelihood

NLL = −
N∑
i=1

C∑
j=1

yij log(ŷij)

, where N is the number of items, C is the number of classes, yij is 0 or 1 depending on

whether class j is correct for item i and ŷij is the predicted class. Then, the gradient

descend method is used to adjust the weights and potentialy lower the error in the

next iteration. This process can be repeated multiple times, until the model can make

predictions well enough. The process is fittingly called training. An important thing

8

to keep in mind is that a trained model needs to be tested on unseen data since it can

memorize all the data it was trained on. Overfitting is a term describing a model that

learns the patterns of the training dataset near perfectly without being able to keep the

same performance when given unseen data. In machine learning, one is interested in

generalization, the model needs to find patterns that are common for all the relevant

data it can encounter.

One epoch is described as one iteration of training where the model has gone through

all the training data once. The number of epochs or how long the model must be trained

depends heavily on the parameters and how complex the patterns are. Training can be

stopped after a set number of epochs, if the information loss is nearing zero or when the

loss plateaued indicating that the model cannot improve.

2.2 Graphs

The following gives a short introduction to what a graph is and the graph terminology

used in this work.

A graph G is a pair (V,E), where V is a set of vertices and E is a set of edges

between the vertices E ⊆ {(v, u)|v, u ∈ V } [17]. Two vertices with an edge between them

are adjacent or connected. In an undirected graph an edge implies that the connection

is bidirectional, meaning (v, u) and (u, v) are equivalent. Figure 2.3 demonstrates the

difference between an undirected graph (right) and a directed graph (right).

Figure 2.3: The difference between a directed and an undirected graph
Source: https://byjus.com/maths/graph-theory/

9

For graphs with weighted edges, let W () be a weight function on the edges such that

W (e) → Q+

In this work we convert graphs to their line graph representation. The line graph is

a complement of the original graph that turns each edge to a vertex and connects the

vertices if they shared a vertex in the original graph. A simple example of a graph and

its line graph can be seen in figure 2.4.

Figure 2.4: Original graph (left) and its line graph (right)

Note that the line graph willl always have the number of nodes equal to the number

of edges in the original graph while, the number of edges in the line graph can vary and

can be higher than the number of the original nodes.

In general, for graphs we use following notations:

nodes/vertices : v ∈ V,

edges : ev,w ∈ E|v, w ∈ V

neighbourhoods : N(v) ⊆ {w, (v, w) ∈ E}.

10

2.3 Graph Neural Networks

Graph Neural Network (GNN) is a relatively young subclass of neural networks designed

specifically for solving graph related problems, and has been a growing topic of research in

the last couple of years. GNNs in general can be used for three purposes: graph prediction,

node prediction and edge prediction. Graph prediction can be used to find graphs with

desired properties, for example, to determine if a graph has cycles in it. Similarly, node

and edge prediction is applicable to classification problems, such as identifying nodes and

edges that are part of a cycle.

The application of graph prediction can be seen in bioinformatics. Ramachandran

et al. have used graph convolutional network to predict how different proteins interact

with each other [21]. Node-level prediction has found application in traffic forecasting

[31]. Edge or link prediction models can be seen in the context of social networks with

applications such as friends recommendation [1]. Another popular field for GNN research

is Combinatorial Optimization (CO), which leads us to the well known problems such as

the Maximum Weighted Matching (MWM) and Maximal Independent Set (MIS).

Brusca et al. [4] showed a self-training GNN for MIS.

Schuetz et al. made an unsupervised GNN [24] for solving MIS and Angelini and

Ricci-Tersenghi [2] compared its performance to greedy algorithms and reported some

problems with GNNs performance.

The reason MIS solving is mentioned is because the problem is to some degree re-

lated to MWM, as algorithmic problems often are. There are concrete examples in the

Methodology and Data chapter. MIS is also more often a subject for research, while

research on MWM is not that common. There are, however, some examples such as Wu

and Li trying to solve MWM using deep reinforcement learning [30]. In this work they

reported that their model outperforms state-of-the-art algorithms.

GNNs are based on the same concepts as simple neural networks, but with some

modifications to better suit graph, node and edge recognition problems. A simple GNN

can use a fully connected layer on each node and edge, as well as on the whole graph at

once to generate a new numericatal representation for each element called embedding. In

the following figure 2.5 one can see a simple overview of how the graph’s information is

passed from one layer to another, where V denotes nodes, E edges, U graph-level features

and update function is a neural network layer.

11

Figure 2.5: GNN example
Source: https://distill.pub/2021/gnn-intro/

For a simple node classification example, assume a graph with some nodes, where

each node has two numerical features f1 and f2. Assume a GNN that uses a simple fully

connected network, where the input layer has two neurons, the middle layer has five and

the output layer has two. For each node, the input layer reads the two features. Values

of these features are then multiplied by the weights between each input neuron and each

neuron in the next layer. One can express it as a matrix multiplication:

(
f1 f2

)
×

(
w11 w12 w13 w14 w15

w21 w22 w23 w24 w25

)
=
(
n1 n2 n3 n4 n5

)

Where the f1, f2 are node features and w11 to w15 are the five weights between the

f1 input neuron and all the neurons in the next layers.

The information is then similarly passed from the middle layer to the output layer.

The initial values of the node features have now been changed by the weights between

the neurons, resulting in two output features. The GNN has now produced an embedding

for each node. Yet, the embeddings by themselves are not enough. In this example, the

GNN does not utilize the structure of the graph and the embedding of each node is not

affected by its neighbours.

If one wants to classify the nodes based on the node features only, then it can be done

by using a standard neural network. However, for graphs, one is interested not only in

the isolated node features, but in the nodes’ relation to their neighbours. Additionally,

graphs are not guaranteed to have any features for nodes and edges.

12

What if one wants to use edges for classification of the nodes? In that case GNN

can use a pooling method. Pooling uses an aggregation function such as summation to

sum together all the edge embeddings that a node has, and produce a new embedding.

Alternatively, one can use neighbouring nodes for the same purpose, which leads to the

specific type of GNNs.

Graph Convolution Network (GCN) is one of the subclasses of GNNs with some

resemblance to the Convolutional Neural Network (CNN)s used in image recognition.

GCN uses message passing to make use of the graphs’ structure. For nodes, message

passing gathers neighbouring node embeddings, aggregates the embeddings and then

passes them through the network. The following figure 2.6 shows how features from the

neighbouring nodes are aggregated and passed to the next layer.

Figure 2.6: Message passing example
Source: https://distill.pub/2021/gnn-intro/

Adding more layers increases the depth of the neighbourhood used. Meaning if a

model has two layers, when passing through the second layer the embeddings of the

neighbours are already an aggregation of its neighbours. This allows the GNNs to utilize

graph structure in a way that other neural networks cannot.

13

Figure 2.7: GCN example
Source: https://www.datacamp.com/tutorial/comprehensive-introduction-graph-
neural-networks-gnns-tutorial

Figure 2.7 shows how two graph convolution layers affect a single node A.

2.4 Implementation, training and hyperparameters

We have now gone through how GNNs work from a high level view. However, it remains

to create a GNN as well as to train it. In this work we use Pytorch Geometric (PyG)

library [19] that provides both the impementation for the various GNN architectures and

the tools to train the models.

2.4.1 Implementation

The code snippet below 2.1 demonstrates how to create a simple GCN by inheriting the

base class torch.nn.Module.

Listing 2.1: Creating GCN with Pytorch
1 import torch
2 import torch.nn.functional as F
3 from torch_geometric.nn import GCNConv , Linear
4
5 class MyGCN(torch.nn.Module):
6 def __init__(self):

14

7 super ().__init__ ()
8 self.conv1 = GCNConv(1, 64) # 1 feature per each node
9 self.conv2 = GCNConv (64, 64)
10 self.lin = Linear (64, 2) # 2 classes
11
12 def forward(self , graph):
13 x, edge_index , edge_weight = graph.x, graph.edge_index ,

↪→ graph.edge_weight
14
15 x = self.conv1(x, edge_index , edge_weight)
16 x = F.relu(x)
17
18 x = self.conv2(x, edge_index , edge_weight)
19 x = F.relu(x)
20
21 x = self.lin(x)
22 return F.log_softmax(x, dim =1)

A module in Pytorch can be a part of a larger network or a whole network in this

case. One can add layers to the network by assigning other modules within the initializer

function. Here, we add three layers. The first layer, self.conv1 = GCNConv(1, 64) is

the input layer with one input neuron and 64 output neurons. This layer will require all

nodes to have exactly one feature. To connect the conv1 layer to the second one, conv2,

they must have a matching number of output and input neurons (64 in this example)

respectively. The output module self.lin = Linear(64, 2), is a simple fully connected

layer that maps output neurons from the conv2 to the two neurons representing the

two possible predictions. For example, whether a node should or should not be in the

solution. In the forward function, one has to define the order in which the information

will flow through the network. First, one has to read the input from the graph. The

x represents the array of node features. In this case, the array is of size one. The

edge index and edge weight represent the edges and their weights respectively. The

torch.nn.functional library provides the tool for mathematical operations and is used

to apply the F.relu activation function to the neurons as well as F.log softmax to the

output. The relu = max(0, x) activation function serves the purpose of adding non-

linearity to the network, enabling it to form complex patterns. The F.log softmax

function maps the output values into the desired range for measuring the error. Which

function is used depends on how the error is calculated.

2.4.2 Training

To train the model described above, the following procedure can be done, demonstrated

in the next listing 2.2.

15

Listing 2.2: Training GCN with Pytorch
1 import torch
2 import torch.nn.functional as F
3 from torch_geometric.loader import DataLoader
4
5 device = torch.device(’cuda’ if torch.cuda.is_available () else ’cpu’)
6 loader = DataLoader(dataset , shuffle=True)
7 optimizer = torch.optim.Adam(list(model.parameters ()), lr =0.0005)
8
9 for epoch in range (100):
10 for graph in loader:
11 optimizer.zero_grad ()
12
13 graph = graph.to(device)
14 out = model(graph).to(device)
15
16 loss = F.nll_loss(out , graph.y)
17 loss.backward ()
18
19 optimizer.step()

First, the DataLoader and optimizer are initialized. The DataLoader is responsible

for managing and preproccessing the data. In this case, it only shuffles the dataset items

randomly. The optimizer is used to preform the gradient descent on the models weights.

Adam [1] is a commonly used optimizer that has several parameters such as learning rate

(lr) that affect the training process and how the weights are updated. These parameters

in the context of the model are called the model’s hyperparameters. With dataloader and

optimizer ready, the main training loop starts. For each epoch or iteration, we retrieve the

next batch of data from the dataloader. Before updating weights, optimizer.zero grad()

is called to make sure that the optimizer’s gradients are reset. Then we pass the graph

to the GPU device if possible to speed up the calculations. The graph is then passed

through the model with the output mapped using log softmax within the model’s forward

function. The log softmax mapping produces the logarithmic probabilities required by

the nll loss function to compute the error or information loss made from the model’s

output in regard to the correct answers contained in graph.y. The error is then propagated

backward by calling loss.backward(), determining the impact each weight made and then

optimizer.step() updates the weights based on the current hyperparameters.

2.4.3 Hyperparameters

The term “hyperparameter” refers to the parameters used to adjust the training process

and the architecture of the network, while “parameters” refer to the weights between

neurons. In this work we test several hyperparameters that can be further split into

categories.

The training and Adam optimizer related hyperparameters include:

16

� Epochs - the number of training iterations. The longer a model is trained the less

errors it should make, given the sufficient complexity of the model.

� Learning rate - by how much the weights of the model should be adjusted after

each iteration. Small steps have a risk of a model getting stuck in a place where the

changes do not improve the results, while a significantly different configuration of

weights that gives better results might exist. Small steps also might require to train

the model for longer to reach the desired level of performance. Too large learning

rates have a risk of overstepping the better weight configurations.

� Mini-Batching size - how many graphs are passed through the network before next

weight adjustment. Passing data in batches can help to smooth the learning curve

and reduce the risk of overfitting.

� Class weights - how much should the model focus on a given class. Class weights

can help with data imbalance where one class occurs more often than others. For

example if 99% of objects belong to one class, but the model needs to focus on

finding the other 1%. In our case the classes for the edges are:

– 0 = is NOT in the solution.

– 1 = is in the solution.

� Weight decay - used to keep GNN weight values relatively small and decrease

chances of the overfitting.

The architecture related hyperparameters affect the capability of the network to learn

complex patterns.

� Network width - neurons in the layers.

� Network depth - amount of layers. In case of GCNs, the depth of the network also

defines the radius of the aggregated node neighbourhood.

The aggregation of neighbours is the key feature of the GNNs and there are multiple

functions that can be used. GNN specific hyperparameters:

� Aggregation function - the features of the neighbouring nodes can be aggregated by

using different methods, including summation, maximum, minimum, multiplication

and division.

Additionally one can experiment with adding extra features to the nodes during pre-

processing or augmenting data. Examples of such features for the weighted graph are:

17

� Degree - how many neighbours a node has

� Sum of the weights.

Such features can help the model to find new patterns.

The hyperparameter search helps to fit the model specifically for the desired task. In

our case the model needs to learn how to solve Maximum Weighted Matching (MWM)

on graphs.

2.5 Maximum Weighted Matching and Combinato-

rial Optimization

Combinatorial Optimization (CO) is a field of study that covers problems that require

finding a subset or a combination of some set of elements that fulfills certain require-

ments. An example of such a problem would be Maximum Weighted Matching MWM

and Maximum Independent Set MIS.

The MWM problem asks to find a subset of edges in a weighted graph, such that the

sum of weights is maximized, and each vertex appears only in one edge of that subset.

More formally, given an undirected graph G with a set of vertices V and a set of weighted

edges E, maximize total weight for set S ⊆ E, such that none of the edges in S share

vertices. In this work, the edges that are selected to be in the solution set will sometimes

be referred to as “picked” and the ones that are not in the set “dropped”.

The MWM problem is relatively simple compared to many others. It belongs to the

field of CO and there are optimal algorithms for it that run in O(|V |2|E|) time, such as

the blossom algorithm [6]. Blossom algorithm is based on the blossom method for finding

augmenting paths and the primal-dual method for finding a matching of maximum weight,

both due to Jack Edmonds [6].

Optimal algorithms, however, can still be rather slow when working with large

datasets, and in some cases an approximation algorithm may be more suitable as a

solution if the exact answer is not critically important for the MWM problem. The most

simple example is a greedy algorithm that sorts all the edges by their weight and selects

them in descending order. This is neither the only nor the best approximation algorithm,

but rather a fast and simple one.

18

Algorithm 1 Greedy algorithm for Maximum Weighted Matching

G(V,E)
S = ∅
sortedE = descendingSort(E)
while sortedE ̸= ∅ do

e = first element in sortedE
if e not adjacent to any edge in S then

add e to S
remove e from sortedE

end if
end while

The running time of the Greedy algorithm is bound by the sorting, since the While

loop iterates through the edges once and runs in O(|E|). The fastest sorting runs in

O(|E|log(|E|)).

To put MWM in context, real world applications of matching algorithms can be found

in scheduling problems such as transportation cost minimization [10], but are also often

used as a part of larger algorithms.

Another problem that will be slightly touched is the Maximal Independent Set (MIS).

MIS asks to find a subset of nodes such that no two nodes have an edge between them, and

the total number of nodes is as large as possible. There is a similar problem Maximum

Weighted Independent Set (MWIS) which asks us to find an independent set in graph

with weighted nodes that gives the largest total weight sum. MWIS is partially relevant

as we use line graph transformation that essentially turns the original MWM problem

into MWIS.

19

Chapter 3

Research Methodology and Data

This chapter focuses on demonstrating and explaining how the model was designed and

trained. An overview of the design and architecture is given. Relevant training hyperpa-

rameters are discussed. Datasets are presented and analysed. Challenges are explained

together with changes and adjustments that were made during the process. Finally, goals

and criteria for the expected results are defined.

To reiterate, the current problem is to find out if a Graph Neural Network (GNN)

based method can compete at solving the MaximumWeighted Matching (MWM) problem

compared to other approximation methods such as the greedy algorithm.

3.1 Challenges

It is common to think of a neural network as a black box that takes in data as input and

outputs some predictions. In our case, the data is a graph consisting of vertices connected

by weighted edges and the expected answer should be pairs of adjacent vertices that are

matched together or, equivalently, a list of the corresponding edges.

As mentioned, the idea behind supervised learning is to give the correct answers to

a model, so it can, by trial and error, learn from it. These answers are not included in

the initial datasets, so the optimal solutions need to be calculated. To find the optimal

solution, the Blossom algorithm implemented by Rantwijk in Python was used [27]. This

does, however, point out an important weakness of the supervised approach. Obviously,

a model needs to be able to handle graphs of different sizes, and it is the large ones

20

that are most interesting. Finding an optimal solution for algorithmic problems for the

large graphs can be time-consuming. At the same time, a model needs as much data

as possible to learn, leading to multiple large graphs consuming too much time during

training. This poses a question of whether it is possible for the model to learn from small

and medium-sized graphs that are not as time-consuming and apply the learned patterns

to solve larger graphs.

Another important aspect that must be taken into consideration is that it is unlikely

for the model to fully follow the restrictions of the problem. As an example, the model

might decide to match the same node to two neighbors at the same time, which should

not be allowed.

3.2 Main Idea

To summarize, given a weighted undirected graph, the GNN must predict a valid subset

of non-adjacent edges that maximize the total weight. The GNN must teke a graph as

an input. The size of the input layer will be equal to the amount of features nodes have.

Initially, nodes do not have any features and, in that case, all nodes can be assigned a

single feature with value = 1. Later, however, we experiment with adding additional

precomputed features. The output layer will be of size two, representing the two possible

outcomes for whether each edge should be in the matching or not.

To check that a solution is valid, instead of picking all the edges with a probability

higher than 50%, the edges can be sorted by their probabilities and greedily picked in that

order as long as they don’t break the validity of the solution. It might sound illogical to

use a greedy algorithm on the models’ output to beat the normal greedy algorithm with

weights, but the fact that edges are now sorted not by their weight, but a score decided

by the GNN does make a difference, since it can take multiple features in consideration

when assigning probabilities. Some of these features come naturally from the structure

of the graph, and some we can manually add during preprocessing. This approach does

imply that the expected running time on the GNN will be higher than that of a greedy

algorithm due to the fact that the sorting of edges still remains, but on top of that, the

graph must be processed by the model.

Neural Networks have several hyperparameters and methods that can be tuned to

make a model better suited for the task. With unlimited resources and time, one could

21

search for the best combination of the hyperparameters by trying as many combinations

as possible and training a separate model for each combination. Then choose the one

with the best performance. However, this is a time-consuming procedure, therefore, in

the current work, the exploration of hyperparameters has been narrowed down to the ones

that seemed most important and indicated a positive impact during early experiments.

For training, Adam optimizer was used [13]. The optimizer is used to adjust the weights

of the network during training. Adam optimizer has several hyperparameters that can

be useful to achieve better results and is one of the commonly used optimizers.

During the experiments the following hyperparameters were tested:

� Epochs - the number of training iterations

� Learning rate - by how much the weights of the model should be adjusted after

each iteration

� Network depth - amount of layers

� Network width - neurons in the layers

� Class weights - how much should the model focus on a given class. Classes being:

– 0 = is NOT in the solution.

– 1 = is in the solution.

� Weight decay - used to keep GNN weight values relatively small and decrease

chances of the overfitting.

� Additionally other methods were tried such as augmenting data (adding extra fea-

tures to the nodes during preproccessing):

– Degree - how many neighbours a node has

– Weight relative to the sum of neighbours.

– Weight difference from the sum of the neighbours.

– Sum of the weights.

– 1st largest weight, 2nd largest weight.

� Aggregation function - for the features of the neighbouring nodes

Experimenting with the hyperparameters allows one to find the configuration for the

model that balances it between overgeneralizing its prediction and memorizing the train-

ing dataset without being able to make accurate predictions based on the unseen data.

Low learning rates make the training process more time-consuming, while large learning

rates make weight adjustments that can overstep weight values that potentially could

22

have improved performance. The depth and the width of the network are responsible

for the level of complexity the model can learn. However, one does not need an overly

complex model, since it both slows the model down and makes it susceptible to memo-

rizing the dataset. Class weights can help with the distribution of data. If nodes in a

graph have multiple neighbours, a good portion of the edges will not be in the solution.

The model might be affected by the dominant number of edges that are not part of the

solution to the point where it is not focusing enough on finding the ones that are in

the solution. Adding extra features might help the model to find new patterns. The

aggregation function is the only parameter specific to the GNN and is responsible for the

gathering of information about the neighboring nodes.

3.3 Data

The model should be capable of solving any graph relevant to the MWM problem. For a

graph to be relevant for the task, it is only required to be undirected and have weighted

edges. Although one can also use unweighted graphs with all edge weights set to one.

For training and experimenting with the GNN, the MNIST dataset was used [5]. The

dataset consists of 70000 relatively small graphs with 70 nodes and 564 edges on average.

Graphs also include features for the edges representing distances between nodes. These

features are used as the weights for the problem. Although the graphs in this dataset are

relatively small, they have some fitting qualities, such as nodes having multiple neighbors,

creating more possible ways to match the nodes. The small size also makes it less time-

consuming to train the models and try different approaches, as well as to show whether

a GNN trained on smaller graphs can transfer its knowledge to larger graphs.

Training and testing the model only on MNIST graphs does not cover all the various

graphs that can occur. Therefore, the model had to be tested on other graphs that have

different structures and weight distributions. Models trained exclusively on the MNIST

dataset did not perform as well on other graphs as one might have expected. Therefore,

another dataset was made to cover a larger variety of graphs. The dataset was a collection

of random graphs from SuiteSparse database that ranged between 100 and 10000 nodes.

As described in more detail in the 3.4.4 Data preprocessing section, some of the graphs

did not have edge weights. In these cases, random weights were generated. The graphs

were collected by using the following filter in Python that downloads a list of the graphs

that fit the set criteria:

,

23

1 import ssgetpy as ss
2 dataset = ss.search(
3 limit = 10000 ,
4 kind=’Weighted ’,
5 rowbounds = (50 ,10000) ,
6 colbounds = (50 ,10000) ,
7 nzbounds = (10 ,1000000))

Including truly large graphs in training caused problems with insufficient memory and

too long training time, but the final model was still tested on the larger graphs than ones

used in training. The graphs were taken from different datasets described in table 3.1.

Table 3.1: Names and sizes of graphs used for testing

Graph Nodes Edges

G22 2 000 40 000
Cage9 3 500 38 000

California 5 000 20 000
G55 5 000 25 000

Cage10 11 000 140 000
as-22july06 22 000 96 000
dictionary28 39 000 178 000

Small handcrafted graphs as well as modified versions of the existing graphs, demon-

strated in the 4.3.1 Weakness of the greedy algorithm, were used to test if GNN can at

least beat the cases specifically made to put greedy approach in a disadvantage.

3.4 Architecture

During the experiments, the architecture of the GNN model itself had mostly minor

changes, but two rather different graph preprocessing steps were used. In both cases we

use GCN layers (GCNConv) [14]. The GCNConv layer fits well for the purpose of this

task due to it’s message passing utilizing the edge weights that are the crucial part for

solving MWM. The input layer has the same size as the number of node features. Then

the graph convolutional layers are added, the depth and width of the middle layers vary

depending on the temporary training results. For the output layer, a logarithmic softmax

function is applied to obtain the log-probabilities required to calculate the negative log

likelihood loss. These probabilities can then be translated into normal probabilities.

The next code snippet 3.1 shows an example of the Python implementation for the line

graph GCN. GCNConv implements a single layer of the network. The input layer is the

24

size of the number of vertex features (5 in this example). The input layer connects to 640

neuron wide GCNConv layers. The last layer outputs predictions for each vertex through

Linear layer with one neuron for each possible outcome. The first neuron represents

the probability of the edge NOT being in the matching and the second represents the

opposite. The “forward” method is used to define how the data flows from one layer to

another. The “relu” function f(x) = max(0, x) is a commonly used activation function

for neural networks. The purpose of the activation function is to add non-linearity to the

mode.

Listing 3.1: Pytorch GCN for the line graph
1 class MyGCN(torch.nn.Module):
2 def __init__(self):
3 super ().__init__ ()
4 self.conv1 = GCNConv(5, 640) # 5 features per each node ,

↪→ initialy 1
5 self.conv2 = GCNConv (640, 640)
6 self.lin = Linear (640, 2) # 2 classes
7
8 def forward(self , graph):
9 x, edge_index , edge_weight = graph.x, graph.edge_index ,

↪→ graph.edge_weight
10
11 x = self.conv1(x, edge_index , edge_weight)
12 x = F.relu(x)
13
14 x = self.conv2(x, edge_index , edge_weight)
15 x = F.relu(x)
16
17 x = self.lin(x)
18 return F.log_softmax(x, dim =1)

We have also experimented with adding skip connections to the architecture. Skip

connections are used to let information from one layer jump over some layers to reach

the deeper ones. This method helps to emphasize the importance of earlier layers as

their impact tends to vanish in deeper networks. Additionally, skip connections help the

network to learn the identity function f(x) = x, which can be helpful in cases where

complex patterns are not needed. The listing 3.2 shows how one can implement skip

connection between first layer self.conv1 and the output layer self.lin

Listing 3.2: Skip connection example
1 def forward(self , data):
2 x, edge_index = data.x, data.edge_index
3
4 x = self.conv1(x, edge_index)
5 identity = F.relu(x)
6
7 x = self.conv2(identity , edge_index)
8 x = F.relu(x)
9
10 x = self.conv3(x, edge_index)
11 x = F.relu(x)
12
13 x = torch.cat((x,identity) ,1)

25

14 x = self.lin(x)
15
16 return F.log_softmax(x, dim =1)

Now, let us go through the process of a graph being matched using the GNN.

3.4.1 Model pipeline

As mentioned earlier, one cannot fully trust the model to satisfy the restrictions of the

problem. What is meant by the restrictions of the problem is the fact that every node

can only be matched once. This is controlled by sorting the probabilities of the model’s

outputs in descending order and adding matches to the final solution one by one, skipping

matches that already have matched nodes. Another potential problem can arise at the

end when some of the nodes that can be matched were not matched at all by the model.

There is a chance of that happening, since only matches with a high enough probability are

used. As a starting point, the probability threshold is 50% and above. Two precautions

are taken to ensure nothing is left to waste. First, after the model is done, the potential

remainder of the graph is fed to the model again. For a model, this would essentially be

a new graph, and it may happen that the model manages to match the remainder given

the new context. This process can be repeated several times and the break condition is

if 0 matches were made in the last iteration. At that point, if anything is left, which

hopefully is a small fraction of the initial graph, it can be solved using standard greedy

or any other approximation algorithm, for that matter.

Passing the graph, and its consecutive remainders multiple times through the model

can also be helpful to deal with the cases where one of the matches that was chosen may

strongly affect how the rest of the solution will look like. This leads to the main weakness

of the supervised approach. The optimal solution can be completely different if even one

edge is picked or not picked by a mistake. This problem can be mitigated by picking one

match at a time, updating the features and passing the graph through the model again,

but it would be too time-consuming.

3.4.2 Line Graph Approach

The line graph approach was the first attempt at using a simple GNN, which later turned

out to be overly time-consuming for larger graphs to be worth further experiments. It

26

Algorithm 2 Model Pipeline

inputGraph
S = ∅
g = preproccess(inputGraph)
while g.hasUnmatchNodes do

edgeProbabilities = model.makePrediction(g)
matches = greedyPickByProb(edgeProbabilities)
g = g.remove(matches)
S.add(matches)
if matches == ∅ then

matches = greedyPickByWeight(g.edgeWeights)
g = g.remove(matches)
S.add(matches)

end if
end while
return S

did, however, give some useful insight as well as shown to be a proof of concept. The 2.2

Graphs section gives the description and an example of a line graph.

Convertion to a line graph makes the architecture of the GNN model simpler. Instead

of needing to ask a model to make predictions about whether each connected pair of nodes

should be matched together, the line graph model can now output the probability of a

node being in the matching directly, since the node now represents two connected nodes

from the original graph. This also transforms the problem itself. From the perspective

of the model, it is now trying to solve MWIS. GNNs for MIS have been studied before.

Nouranizadeh et. al. demonstrated a pooling method for solving MWIS [18] so it would

be reasonable to expect the model to be able to perform relatively well.

Unfortunately, large graphs can explode in size when converted to line graphs and

are too time-consuming in such cases. Consider a graph from figure 3.3 with a node 0 in

the center connected to three other nodes. The size of such a graph would be four nodes

and three edges. In a line graph, that would result in a clique of three nodes with every

node being connected all the other nodes. But if the node 0 had 10 neighbors instead,

the line graph will result in a clique of 10 nodes and 1/2∗ 10∗ (10− 1) = 45 edges. While

the number of nodes in a line graph will always be equal to the number of edges in the

original graph, the number of edges can be significantly larger. Since the running time of

solving MWM depends on the number of edges, there is a reason to try other approaches.

27

Figure 3.1: Original graph Figure 3.2: Line graph

Figure 3.3: Line graph convertion example

3.4.3 Edge Classification Approach

Another way of approaching this problem is to work directly on the original graphs

instead of transforming them into line graphs. However, the model itself only returns

some numerical representation of the nodes in the graph. To get the predictions for the

edges one can add a classifier module to the existing GNN. The purpose of this module

is to predict if a pair of two nodes will be in the matching based on their embedding.

The first part of the model produces embedding for each node and then, for each edge,

embeddings of both nodes are put together and passed to the classifier. Finally, the model

outputs probabilities of all the edges being in the matching. This approach eliminates the

need for the line graph conversion which often leads to larger graphs and slower running

time.

The next code snippet 3.3 shows an example of the Python implementation for the

edge classifier network using Pytorch libraries. The MyGCNEdge class is responsible

for embedding the vertices of the graph. The input layer is the size of the number

of the vertex features (5 in this example). The input layer connects to 640 neuron wide

GCNConv layers and outputs feature array of size 80 for each vertex through Linear layer.

Then EdgeClassifier class can be used to create the edge embeddings using embedEdges

method that concatenates 80 features from two endpoints of an edge together using

torch.cat(). Each edge is then passed through an input layer with 80 + 80 total features

and further through fully connected Linear layers. The output layer is of size two with

28

the logsoftmax function at the end to get the values required for the loss calculation,

same as it is in the line graph model.

Listing 3.3: Pytorch GCN for the edge classification
1
2 class MyGCNEdge(torch.nn.Module):
3 def __init__(self):
4 super ().__init__ ()
5 self.conv1 = GCNConv(5, 640)
6 self.conv2 = GCNConv (640, 640)
7 self.embed = Linear (640, 80) # 80 output features per node
8
9 def forward(self , data):
10 x, edge_index , edge_weight = data.x, data.edge_index ,

↪→ data.edge_weight
11
12 x = self.conv1(x, edge_index , edge_weight)
13 identity = F.relu(x)
14
15 x = self.conv2(x, edge_index , edge_weight)
16 x = F.relu(x)
17
18 x = self.embed(x)
19 return x
20
21 class EdgeClassifier(torch.nn.Module):
22 def __init__(self):
23 super ().__init__ ()
24 self.lin1 = Linear (160, 320) # 80 * 2 features since input is

↪→ 2 nodes.
25 self.lin2 = Linear (320, 2)
26
27 def embedEdges(self , nodeEmbed , graph):
28 x_src , x_dst = nodeEmbed[graph.edge_index [0]],

↪→ nodeEmbed[graph.edge_index [1]]
29 edgeEmbed = torch.cat([x_src , x_dst], dim=-1)
30 return edgeEmbed
31
32 def forward(self , edgeEmbed):
33 x = self.lin1(edgeEmbed)
34 x = F.relu(x)
35
36 x = self.lin2(x)
37 return F.log_softmax(x, dim =1)

3.4.4 Data preprocessing

Not all graphs found in the database are fit for the training as is, and the ones that

fit perfectly are few. Machine learning models often require some preprocessing of data

before they can be used. Conversion to the line graph is one example of such a prepro-

cessing. One might also need to augment the initial data to improve model performance.

Finally, machine learning models can be vulnerable to large numerical variations in the

data, such as variation of the edge weights.

For MWM, the edge weight is the key feature that is required for the graphs to be

viable. To ensure we have enough graphs to train on, and the graphs cover a variety

29

of structures, different data source might be used. Some of the encountered graphs

might lack weights and will have to receive randomly generated weights. We assign the

random weights using even distribution in the range between 0 and 1. All the graphs

with preexisting weights are also adjusted to be in the same range by shifting the weights

to a positive range if any negative weights were detected and then dividing by the largest

weight in the dataset. The weights could have been in any range, but the important thing

is to have consistent weights for all the graphs.

Another viable preprocessing step is node feature augmentation. One can use the

edge weight to precompute potentialy helpfull information such as weight sum of all the

edges of each node. This requires different approaches for line graph and edge prediction

approaches, since in a line graph, the vertex represents an edge from the original graph.

One node feature does remain in common: the degree of the nodes or how many

neighbours each node has. Although the degrees have to be calculated separately for the

original and the line graph, since degree of the line graph nodes represents the number

of adjacent edges of an edge in the original graph.

Line graph’s node features:

1. Weight relative to the sum of neighbours. For each vertex v:

Wrel = v.weight÷ (
∑

n∈N(v)

n.weight)

2. Weight difference from the sum of the neighbours. For each vertex v:

Wdiff = v.weight− (
∑

n∈N(v)

n.weight)

3. Sum of the neighbouring node weights For each vertex v:

Wsum = (
∑

n∈N(v)

n.weight)

The motivation for adding these features is based on the idea that precalculating

the relations between the edges and the neighbouring edges might allow the GCN to find

patterns easier. For example, in the line graph, if a node n has weight W (n) = 10 and the

sum of neighbouring nodes is Wsum < 10, then Wrel > 1 and any combination of two

30

neighbouring nodes has total weight < 10 and therefore node n, that represents the edge

in the original graph, should be in the solution. This is a simple case that the GNN might

find without additional features, but it serves as an example. It might be unintuitive how

these features can be helpful, but one of the GNN’s functions is to find difficult patterns,

and it is worth testing such features even if their effect is not apparent. The weight of

the edges is also the only input feature available in this task, so the additional features

are dependent on it.

For the original graph’s node features, some adjustments are made since nodes do not

have any weights assigned to them, unlike the line graph:

1. Sum of the weights of all the outgoing edges. For each vertex v:

Wsum = (
∑

j∈N(v)

ev,j.weight)

2. Wsum relative to the Wsum of neighbours. For each vertex v:

Wrel = Wsum÷ (
∑

n∈N(v)

n.Wsum)

3. Wsum difference from the Wsum of the neighbours. For each vertex v:

Wdiff = Wsum− (
∑

n∈N(v)

n.Wsum)

3.5 Result Validation

Before looking at the results, it is important to decide how to evaluate the results properly

and what is important for the problem at hand:

1. Time - how long an algorithm took to produce an answer. For the GNN model, this

includes model specific preprocessing such as adding additional features as well as

finishing the potential remainder of the graph with a greedy algorithm.

2. Correctness - is the answer correct? In the case of MWM the total weight acquired

would be the measurement of the quality of the solution. It is unlikely that the GNN

model can find an optimal solution for more complex problems, so it is reasonable

to look at how close the GNN comes to the optimal solution.

31

3. Remainder - a portion of the final solutions’ weight that came directly from the

models’ predictions. Due to the way the program is set up, if the model does not

match the whole graph, the rest of the graph will need to be finished somehow. This

is done by running a normal greedy algorithm at the end if anything is left. Because

of that, there can be cases where the model does nothing and by default achieves

100% result compared to what a normal greedy algorithm would. Therefore, the

portion of the weights obtained directly by the model needs to be evaluated as well.

3.5.1 Sanity checks

It might happen that during the project something goes wrong with the mode. Therefore,

it is common to perform sanity checks to see if a model’s inputs and outputs still make

sense.

The following “sanity checks” were done:

1. To ensure the model and data are functioning correctly, we trained a model on a

small dataset for a long time and tested it on the same data. The model should be

able to memorize the provided graphs and solve the problem near perfect then.

2. Comparisons to random matchings were done. Before the training, the model has

random weights and essentially will behave as if it is picking edges at random, but

after some training the model is expected to start improving and perform better

than a random matching would.

3. The model was tested on small handcrafted graphs that were made specifically to

put the greedy algorithm at a disadvantage. If the GNN model manages to solve

such cases that indicates that the model is learning some of the patterns.

3.6 Expected Results

3.6.1 Other observations

One important observation was made during the analysis of the data that is worth men-

tioning. The difference between the optimal solution and the greedy is, in most cases,

32

rather small. For the MNIST dataset and the majority of the graphs used from the Suite

Sparse Matrix Collection, the greedy algorithm manages to reach 90+% of the optimal

weight. Assigning random evenly distributed values to the edge weights also gives the

same results. For the GNN this means that it will be rather difficult to beat the greedy

algorithm since it gets fairly close to the optimal.

3.6.2 Accuracy and total weight

There exists limited amount of research specifically for for solving MWM using GNN.

However, problems like MIS that are relatively similar to the MWM on the line graph

can indicate that one could obtain similar results for this case as well. As discussed

in the 2.3 Graph Neural Networks section, there are studies that show that GNNs are

capable of solving CO problems and beating greedy algorithms, while others indicate

that improvements are still needed for it to be worth using. Therefore, it is hard to

forecast any results based on previous work. It is worth noting that the greedy algorithm

is relatively simple. It is conceivable that a GNN model should be able to recognize more

complex patterns that can be used to achieve better results. It is not expected for the

model to be able to find an optimal solution since any Neural Network is a heuristic. The

margin by which GNN can surpass the greedy solution is expected to be rather small,

since from the data analysis it was observed that for the majority of graphs, the greedy

algorithm performs rather well with above 90% of the optimal possible weight.

3.6.3 Time

The GNN model is a heuristic solver and gives an approximate answer. Therefore, a

model should be noticeably faster than the exact algorithm, otherwise it would not be

worth it. The time a model takes to solve one instance of a problem should be closer to

that of a greedy algorithm and probably slightly longer due to preprocessing required,

such as augmenting data with additional features. Naturally, time will also depend on

the depth and the width of the network.

3.6.4 Remainder or model portion

Ideally, the model should be able to handle the full graph on its own, but as long as the

model manages to improve the final result, it would still be a useful tool.

33

Chapter 4

Results

This chapter goes through the full process of making, training and testing the GNN step

by step, from first iterations of the simple model to more fine tuned models and other

methods that were tested. Reasoning and explanations for the choices and changes made

during the process are also given along the way. Finally, best results that were achieved

are presented.

4.1 Progress

4.1.1 Experimenting environment

The experiments have been done on a computer equiped with 11th Gen Intel(R)

Core(TM) i7-11700K 3.60GHz 8-core CPU, 16 GB RAM and NVIDIA RTX 3080Ti

graphics card. All the code for the GNN model was written in Python using Pytorch

Geometric (PyG) library [19].

4.1.2 Simple line graph model

The first step was to try the simplest line graph model with most of the hyperparameters

set to default and train it on a smaller scale using a small subset of 1000 graphs from

the MNIST dataset, training it for 100 iterations and then evaluating its performance

on 100 graphs from the evaluation dataset. The performance is evaluated based on the

34

total weight of the edges in the solution set compared to the greedy algorithm and the

optimal if the results are close enough. Before using a large dataset that may take some

time to process, it is worth confirming that the model works as intended. One also does

not want to add complexity to the model without any reason. An unnecessary large and

complex model affects the running time and has a higher chance of overfitting.

The first model had two layers with 64 neurons each. Remember that in a line graph

every node represents an edge in the original graph. The first problem encountered was

due to the majority of line graph nodes not being included in the matching. The model

learned to set all nodes to be dropped and still get a rather high accuracy score, since

the accuracy is measured by correctly classifying the nodes and not the total weight the

classification produces. This was resolved by adding class weights as a parameter for

the Adam optimizer during training. Class weights tell the model how important each

class is, where the two possible classes stand for belonging to the solution and not. After

testing the class weight distribution by increments of 0.1, the most effective result was

achieved by assigning the nodes that are in the matching a value of 0.9 and the ones

that are not 0.1. The problem seemed to be resolved, and the model’s output was no

longer one-sided. The model resulted on average with 55% of optimal weight possible

when the tested on 100 graphs from the validation dateset. This was an expected result

considering the small size of the current training dataset, but it at least showed that the

model is gaining some knowledge compared to an untrained model, as well as a solution

that randomly picks edges, where both resulted in 50-51% of the optimal solution.

The next step was to experiment with the learning rate parameter for the optimizer.

The learning rate is used to decide by how much the models’ weights are adjusted after

each iteration. The high learning rates resulted in an unstable training with information

loss jumping too much, which indicated that the model made overly large adjustments

after each training iteration. The low learning rates did not give enough progress and

made the training process too slow. The default value of 0.001 worked well as a middle

ground, leaving the best result so far unchanged at 55%.

A model that barely outperforms a random solution is not very useful. Poor per-

formance at this point was expected since the goal was to test if the model worked as

expected and given a very limited training dataset. However, before adding more data

and prolonging training, we can experiment with some of the parameters of the network

to see if they make any impact.

35

4.1.3 Model improvements and data augmentation

At this stage, the model seemed to slowly improve and learn. Even with the current limit

on training data, we can test other techniques and parameters and observe if they have

any positive impact. Each parameter or method was tested separately.

It would make sense to start with the depth and width of the network, since those

parameters shape the whole network. Starting with 64 neurons wide layers and trying to

add up to six layers, it showed that more than three layers did not have any significant

effect on the performance and unexpectedly adding more layers even had a negative

impact. Table 4.1 shows the performance progression from increasing the depth of the

network.

Depth Width Performance compared to optimum

1 64 52.3%
2 64 55.4%
3 64 56.1%
4 64 54.4%
5 64 54.6%
6 64 53.9%

Table 4.1: Performance improvement from increasing the depth of the mode

With three layers being the most promising depth so far, the next step was to increase

the number of neurons in the layers. Increasing width did help to some degree, but the

impact got smaller as the width increased. It also impacted the running time, so it

was decided to have the model with three layers and 640 nodes in each layer (except

input/output layers). Results were, however, still rather low at 58%. Table 4.2 shows the

performance progression from increasing the width of the network.

Depth Width Performance compared to optimum

3 64 56.1%
3 120 55.8%
3 240 57.2%
3 360 56.8%
3 480 57.5%
3 640 58.0%

Table 4.2: Performance improvement from increasing the width of the model

Depth and width of the network affect the network’s ability to capture more complex

patterns, so it is expected that these parameters will play a larger role given larger and

more diverse training datasets.

36

The Adam optimizer allows for the use of weight decay hyperparameter, which can

help to keep weight values relatively small and decrease chances of the model memorizing

the answers, also called overfitting. The default version of the Adam does not use weight

decay, however, setting it to the commonly used values such as 0.1, 0.01 and 0.001 affected

the results negatively, even during later training attempts with larger dataset.

Adding skip connections to the architecture creates an alternative way for information

to flow through the network. Skip connections help the model to retain information

from previous layers. No significant effect was noticed with only tenths of a percent

improvement in performance, possibly due to the network having too few layers. Still, it

was decided to keep the skip connections since they did not have any negavite effect and

could be helpful later when we increase the size of the dataset or attempt to train the

model on the more complex graphs.

Augmenting node features was another technique that was tested. The four features

in the 4.1 figure stand for:

� Degree - neighbour count

� Relative difference - weight relative to the sum of neighbours. For each vertex v:

v.weight÷ (
∑

n∈N(v)

n.weight)

� Sum - sum of the neighbouring node weights. For each vertex v:

(
∑

n∈N(v)

n.weight)

� Weight difference - difference between the nodes weight and the sum of the neigh-

bours weigths. For each vertex v:

v.weight− (
∑

n∈N(v)

n.weight)

Each node feature was added and tested separately on the initial model with two, 64

neuron layers, to see if they have any benefits by themselves. Then they were added one

by one to see the cumulative effect. As a result, all the features were included in the

preprocessing since they can, for the most part, be calculated simultaneously. All the

features have shown to have a significant positive effect both on their own, and together.

37

Resulting in a final performance of 92% compared to greedy and 87% compared to the

optimal solution:

Figure 4.1: MNIST trained model. Average performance on 100 MNIST graphs

The figure 4.1 shows each feature’s impact on performance. The default white column

demonstrates the model’s performance without any additional features. The green colored

columns visualize the positive effect of adding a feature, while the last column represents

the final result when all the features are added simultaneously. We can observe that every

feature has a positive effect on the performance and gives the largest improvement so far

compared to the other experiments.

With the features added to the nodes, we proceed to experiment with the aggregation

functions for the message passing. In the table 4.3 one can see how the performance

changes depending on the aggregation function used.

With fine-tuning of the models’ hyperparameters and architecture, and augmenting

node features having the most effect on the performance, results were moving closer to

being reasonable. At this point, a full training set can be used to see more realistic results.

The results were relatively promising, but further testing showed that, unfortunately,

38

Aggregation function Performance compared to greedy

add 92.0%
sum 89.5%
mean 90.2%
min 87.0%
max 94.4%

Table 4.3: Aggregation function performance

line graph transformation on large and dense enough graphs turned out to grow out of

proportions and take too much time to process. Therefore, another architecture was

considered.

4.2 Edge prediction model

Instead of converting edges into nodes, a model can give predictions on the edges directly.

With this approach, there is less preprocessing needed and without line graph convertion

the input does not grow in size, but the model now needs to have a layer for the edge

prediction part of the model. The purpose of this layer is to classify the edges based

on the embeddings produced by the initial model, this is described in more detail in the

Architecture section. A simple linear layer with 320 neurons was chosen as a starting

point for the edge prediction.

After training both the edge classification model and the line graph model on the

55000 MNIST graphs with the best hyperparameters discovered in previous section, the

following results compared to the greedy algorithm were recorded: 101% for edge classi-

fication and 103% for line graph model.

The figure 4.2 depicts how MNIST trained line graph and edge prediction model’s

compare in terms of performance on unseen MNIST graphs. The orange section of the

bar represents the portion of the total weight that stemmed from the greedy algorithm

solving the unsolved remains of the graphs.

39

Figure 4.2: MNIST performance comparison

Edge classification showed a slightly worse results on average than the line graph.

In theory, this can be due to the line graph containing more structural information

in it compared to the original one. Regardless of the slightly worse result, the edge

classification approach was still favorable due to the large time consumption of the line

graph conversion. Overall, the results themselves are rather promising. Both models

manage to beat the greedy algorithm even when the greedy result is close to the optimal.

However, running time was still a problem. Due to the small size of MNIST graphs,

finding an optimal solution using the Blossom algorithm takes less time than using our

GNN model, because of the overhead computations needed for the neural network during

the prediction phase, but the model should be able to catch up time-wise when given

larger graphs. There is still the question of whether training on small graphs can help

with larger graphs. The next step is to test the current model on a different graph -

Cage10 from SuiteSparse. Cage10 is a graph with 11000 nodes and 100 000 edges. The

results can be seen in figure 4.3:

40

Figure 4.3: MNIST trained model performance on cage10 graph

As seen in figure 4.3 the GNN model manages to beat the optimal solver in terms of

time, but it is noticeably worse in terms of total weight. Poor performance can be caused

by the current training dataset. One of the main interests of the study was to see if the

GNN could be used on graphs larger than the ones it was trained on. It could be that

the model fails to learn what is needed for larger graphs. Another reason could be that

MNIST graphs have similar structures without enough variety to cover other graph types.

One, of course, cannot include all the possible graphs in the training set, but the more

data and variety the model gets during training the better. Therefore, another dataset

was tested for training. A custom dataset consisting of randomly picked graphs from the

SuiteSparse database. This custom dataset consists of 1000+ graphs with varying sizes

and structures, between 100 and 10000 nodes.

Training the same model on the new dataset showed that the model struggled to

learn the patterns. The flat information loss during training indicated that the model

experienced difficulties learning the more diverse collection of graphs. Adding two more

layers to the classifier module helped with the stagnating learning curve, but the number

of epochs had to be increased up to 500, due to the learning curve slowing down signifi-

cantly in comparison to the previous dataset. Further adding more layers or neurons did

not give any noticeable difference in performance. Figure 4.4 compares the performance

of the new model trained using a custom dataset against the same model trained on

41

MNIST graphs only. Figure 4.5 shows the performance and the running time in seconds

for GNN, greedy and blossom’s algorithms.

Figure 4.4: MNIST vs CUSTOM dataset training model performance on cage10

Figure 4.5: CUSTOM trained model performance on cage10 graph

42

The custom-trained model does perform better than the MNIST-trained model on

cage-10 graph. However, it is not necessarily the model’s accuracy itself that is the

reason for improvement. The edge prediction model seems to be rather indecisive on

which nodes to match and half of the graph at the end is left unmatched, as opposed

to the MNIST-trained model matching almost the whole graph. The large remainder

is not necessarily a problem in itself, since one can use the model to only match the

most important nodes with the highest probabilities and leave the rest to the greedy

algorithm to achieve better results. However, the custom-trained model does not leave a

large remainder in every case as figure 4.6 demonstrates.

Figure 4.6: MNIST vs CUSTOM dataset training model performance on MNIST graphs

Although the custom-trained model leaves no remainder for MNIST graphs, it per-

formes noticeably worse than the model trained on exclusively MNIST graphs. The

custom dataset had fewer but larger graphs than the ones in the MNIST dataset. Per-

formance on MNIST graphs could be improved by adding a subset of MNIST graphs to

the custom dataset, but that might not help with graphs from other datasets.

The current results indicate that our model might fit better for use on a narrow family

of graphs that belong to a common dataset. Although, there are two more modifications

that might improve the current model:

43

� Cases that leave large remainders lead to the idea of adjusting the matching thresh-

old to focus the model on only searching for the most important edges.

� A common practice in algorithms is to add reduction rules to reduce the size of the

graph without affecting the result, one can add a reduction preprocessing step to

assist the model.

4.2.1 Reduction

Reduction rules in algorithms are used to cut down the graph’s size by removing the parts

that are either guaranteed to be in the solution or the opposite. In the case of MWM, it

is the edges that must be included in the solution regardless. Ideally, the neural network

should be able to pick up such edges by itself, but it is still worth to test if there is any

positive effect as well as to check if the model manages to grasp such rules by itself. The

reduction rule itself is rather simple. If an edge that connects two nodes has larger weight

than the sum of weights of the largest outgoing edges from each node, there is no reason

not to pick it, since it is impossible to get a larger weight by matching these two nodes

with other neighbours. Figure 4.7 serves as an example, where it is clear that node one

should be matched with node five, if not, one has to match both one and five to other

nodes. Second-best matchings for both node one and five have weight = 3, giving a total

weight of only six.

Figure 4.7: Reduction example

A couple of graphs from the custom dataset were used to test if the reduction helps

and whether the model could identify reducible edges on its own. Some graphs had zero

reducible edges, but in other cases such edges accounted for up to 5% of the total number

44

of edges. The model, however, did not seem to identify those edges in the graphs that

contained them, and adding reduction as a preprocessing step did improve the results by

between 2% and 3%. Since the reduction is based on the heaviest edges of the nodes, it

is reasonable to add these node features to the model to potentialy help the model with

finding the pattern for reduction.

The new model was trained with two additional node features: largest edge weight

and second-largest edge weight for each node. Adding such features could in theory have

helped the model to find reducible nodes, but after training the new model with the new

node features, the results did not improve. The reducible edges were still left unidentified

by the model.

4.2.2 Matching threshold

Adjusting the threshold for picking the edges is another way to use the model. The model

was initially set to consider all the edges that have a larger than 50% chance of being

in the solution. This matching threshold can be adjusted to, for example, only pick the

edges with 90% probability of being in the solution. This can help to focus the model on

the edges that have a large impact on the total result, but might be otherwise ignored by

a greedy algorithm. Additionally, it can be worth testing the removal of edges with low

probabilities to see if the model can find edges that, if picked, inhibit the overall result.

45

Figure 4.8: Model threshold test on cage8 graph

Figure 4.8 shows how different thresholds affect the performance of the model. The

x-axis labels represent the thresholds for picking and dropping the edge respectively. For

example, in the second column labeled “50%/10%”, 50% refers to the lowest prediction

certainty required for an edge to be in the solution and 10% refers to the edges with

prediction certainty of being in the solution lower than 10% to be removed from the

graph comepletely. The remainder is solved by the greedy algorithm.

The higher matching threshold does seem to improve the performance, but not enough

to beat the greedy algorithm and most likely the increase is caused by the larger remainder

being solved by th greedy algorithm due to fewer edges being above the threshold. Adding

the drop threshold did not seem to work that well either. The model seems to assign

very low scores to a lot of edges, which results in worse performance and no remainder

for greedy algorithm to compensate. The reason for that is probably the weight class

hyperparameter used during training, which makes the model prioritize less correctly

finding nodes that should be ignored. The better approach could be to train the model

specifically to find high value edges.

46

4.3 Final results

The final best model was tested on increasingly larger graphs from different sources. The

final parameters of the model were:

1. Learning rate = 0.001

2. Epochs = 500

3. Mini-batch size = 1

4. Node embedding network depth and width = 3 layers, 640 neurons each

5. Edge classifier network depth and width = 3 layers, 320 neurons each

6. Class weights = 0.1 and 0.9 for dropped and picked edges respectively

7. Weight decay = 0

8. Match threshold = 70%

9. Added pre computed node features

� Degree - how many neighbours a node has.

� Sums of the weights.

� Weights sum relative to the neighbours.

� Weights sum difference compared to the neighbours.

10. Agreggation function = Max

47

Figure 4.9: Final model performance

Figure 4.9 shows the performance of our final edge prediction model on the selection

of increasingly larger graphs from different datasets. The blue colored columns stand for

the models’ performance on the graphs compared to the greedy algorithm. The green

columns show the performance gained from solving the remainder of the graph with

the greedy algorithm after the model could not find more edges. The orange column

demonstrates the running time compared to the Blossom algorithm’s running time.

Let’s summarize the end results based on the main criteria.

� Performance: The total weight of the model’s output seems to be rather stable

at around 90% of what a greedy algorithm produces, regardless of the size of the

graph and the remainder. It seems to be rather challenging for the model to beat

the greedy approach when, in most cases, it makes up at least 85% of the total

weight possible.

48

� Running time: An exception in the sense that the time is shown in comparison to

the time it takes to find the optimal solution. The reason for that is the fact that

the model is always slower than the greedy algorithm. As expected, the benefit of

using the GNN can be seen as the size of the graphs increases. Smaller graphs take

more time for the model to solve due to the overhead computations needed, but as

the graphs grow the running time can get as small as 3% of the Blossom algorithm.

� Remainder: In some cases, the reason for the total weight being close to the greedy

is the fact that the remainder makes up a large part of the graph, but it is not

a consistent trend, and neither does it depend on the size of the graph. There

are cases with equally good results where the remainder is below 10% of the total

graph. The fact that some graphs leave such a big remainder indicates that the

training dataset is not good enough and the model is not trained well enough to

handle such graphs.

4.3.1 Weakness of the greedy algorithm

On average, a greedy algorithm seems to show good results, but it is not hard to make a

graph that abuses the greedy approach and results in poor performance.

Figure 4.10: Good case for GNN

Figure 4.10 shows a simple case where the greedy algorithm results in total weight = 5.

While our GNN manages to get the optimal weight = 8. Graphs that we found on

SuiteSparse and graphs with random weights result in the greedy algorithm achieving

at least 85% of the optimal result in the vast majority cases. Finding graphs that put

greedy algorithm in disadvantage showed to be challenging, therefore, we modified the

graphs used for testing using the principle showed in figure 4.10.

49

Figure 4.11: Greedy disadvantaged graphs

Figure 4.11 presents a performance comparison among the MNIST-trained model,

custom-trained model, greedy algorithm, and Blossom algorithm when applied to graphs

intentionally designed to challenge the greedy algorithm. For some of these modified

graphs, our models outperform the greedy algorithm, a contrast to the results observed

with the original graphs. However, for graphs from cage and G datasets, the performance

is either worse than greedy or better than greedy, but significantly worse compared to the

optimal solution. This suggests that our GNN models may be more effective for certain

types of graphs rather than universally applicable across all graph categories.

50

Chapter 5

Conclusion

The model trained on graphs collected from multiple datasets showed some level of “un-

derstanding” of the task at hand and in special cases managed to beat the greedy algo-

rithm. The best results achieved by the approach presented in this work showed that

GNNs are capable of beating the greedy algorithm, but on average the performance was

neither good nor consistent enough. The model on average achieved 90% of what the

greedy algorithm did, except for the rare cases where the greedy algorithm was further

away from the optimal result. One of the reasons why our GNN could not beat the greedy

algorithm was due to the performance of the greedy algorithm being in most cases more

than 90% of the optimal result.

Applying models to the graphs intentionally made to challenge the greedy algorithm

resulted in better performance, where the models outperform the greedy algorithm in

some cases, yet fail at other subsets of graphs. Varying performance on different sets of

graphs might be due to the lack of variety within the datasets used for training and the

insufficient complexity of the model. Since the input graph can be virtually of any shape

and form, it might be hard to cover all the possible cases. The use of our GNN model

might be better suited for the families of graphs that on average give worse results for

greedy algorithm. However, such graphs were hard to find.

The models trained to specifically handle MNIST dataset graphs managed to out-

perform the greedy algorithm by 3% with the line graph implementation and 1% with

the edge prediction, while the optimal result was on average only 6% better than greedy.

However, the graphs were so small that the Blossom algorithm was in fact faster, although

the GNN’s running time confidently outperforms Blossom algorithm as the graphs’ sizes

51

grow. The experiments on MNIST graphs strengthen the theory that a better use for

such a model could be in cases where all the graphs belong to some subclass of graphs

which narrows down the variety.

5.1 Future work

The fact that our GNN model developed in this work underperformed does not necessarily

mean that the GNNs are in general unfit for MWM problem. There are several potential

improvements that can be made.Various architectures and methods can be tested along-

side larger datasets. Increasing the number of layers and neurons can enhance a model’s

ability to recognize complex patterns, albeit at the expense of longer training and pre-

diction times. However, for this specific architecture, adding more layers had little to no

impact.

Another problem might be rooted in the supervised approach. Training a model based

on the optimal solution has its pitfalls. The optimal solution can be completely different if

even one edge is classified incorrectly. A semi-supervised or an unsupervised approaches

are good potential candidates where precomputing the optimal solution would not be

needed.

52

Glossary

Artificial Intelligence Artificial Intelligence is a field of study regarding intelligence

simulated by computers. Where intelligence is meant in context of human intelli-

gence.

Git Git and GitHub is a Version Control System (VCS) for tracking changes in computer

files and coordinating work on those files among multiple people.

Machine Learning Machine Learning studies algorithms that learn general patterns

and make predictions based on some form of input. It is one form of Artificial

Intelligence.

Neural Network Neural Network is one of many technologies used inMachine Learning.

53

List of Acronyms and Abbreviations

CNN Convolutional Neural Network.

CO Combinatorial Optimization.

GCN Graph Convolution Network.

GNN Graph Neural Network.

MIS Maximal Independent Set.

MWIS Maximum Weighted Independent Set.

MWM Maximum Weighted Matching.

PyG Pytorch Geometric.

VCS Version Control System.

54

Bibliography

[1] Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social Net-

works, 25(3):211–230, 2003. ISSN 0378-8733. doi: https://doi.org/10.1016/S0378-

8733(03)00009-1.

URL: https://www.sciencedirect.com/science/article/pii/S0378873303000091.

[2] Maria Chiara Angelini and Federico Ricci-Tersenghi. Modern graph neural networks

do worse than classical greedy algorithms in solving combinatorial optimization prob-

lems like maximum independent set. Nature Machine Intelligence, 5(1):29–31, De-

cember 2022. ISSN 2522-5839. doi: 10.1038/s42256-022-00589-y.

URL: http://dx.doi.org/10.1038/s42256-022-00589-y.

[3] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat

Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai

Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. End to end learning for self-driving

cars, 2016.

[4] Lorenzo Brusca, Lars C. P. M. Quaedvlieg, Stratis Skoulakis, Grigorios G Chrysos,

and Volkan Cevher. Maximum independent set: Self-training through dynamic pro-

gramming, 2023.

[5] Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent,

Yoshua Bengio, and Xavier Bresson. Benchmarking graph neural networks, 2022.

[6] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:

449–467, 1965. doi: 10.4153/CJM-1965-045-4.

[7] M. Fujii, T. Kasami, and K. Ninomiya. Optimal sequencing of two equivalent

processors. SIAM Journal on Applied Mathematics, 17(4):784–789, 1969. doi:

https://doi.org/10.1137/0117070.

URL: https://doi.org/10.1137/0117070.

55

https://www.sciencedirect.com/science/article/pii/S0378873303000091
http://dx.doi.org/10.1038/s42256-022-00589-y
https://doi.org/10.1137/0117070

[8] Ghosh and Reilly. Credit card fraud detection with a neural-network. In 1994 Pro-

ceedings of the Twenty-Seventh Hawaii International Conference on System Sciences,

volume 3, pages 621–630, 1994. doi: 10.1109/HICSS.1994.323314.

[9] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learn-

ing on large graphs, 2018.

[10] Frank L. Hitchcock. The distribution of a product from several sources to numerous

localities. Journal of Mathematics and Physics, 20(1-4):224–230, 1941. doi: https:

//doi.org/10.1002/sapm1941201224.

URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/sapm1941201224.

[11] Kh Tohidul Islam, Ghulam Mujtaba, Ram Gopal Raj, and Henry Friday Nweke.

Handwritten digits recognition with artificial neural network. In 2017 International

Conference on Engineering Technology and Technopreneurship (ICE2T), pages 1–4,

2017. doi: 10.1109/ICE2T.2017.8215993.

[12] Ron Karjian. Weighted maximum matching in general graphs, 2023.

URL: https://www.techtarget.com/whatis/A-Timeline-of-Machine-Learning-History.

[13] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,

2017.

[14] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convo-

lutional networks. CoRR, abs/1609.02907, 2016.

URL: http://arxiv.org/abs/1609.02907.

[15] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convo-

lutional networks, 2017.

[16] Wentong Liao, Kai Hu, Michael Ying Yang, and Bodo Rosenhahn. Text to image

generation with semantic-spatial aware gan. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition (CVPR), pages 18187–18196,

June 2022.

[17] NIST. undirected graph definition. https://xlinux.nist.gov/dads/HTML/

undirectedGraph.html, 2007. [Online; accessed 04-May-2024].

[18] Amirhossein Nouranizadeh, Mohammadjavad Matinkia, Mohammad Rahmati, and

Reza Safabakhsh. Maximum entropy weighted independent set pooling for graph

neural networks. CoRR, abs/2107.01410, 2021.

URL: https://arxiv.org/abs/2107.01410.

56

https://onlinelibrary.wiley.com/doi/abs/10.1002/sapm1941201224
https://www.techtarget.com/whatis/A-Timeline-of-Machine-Learning-History
http://arxiv.org/abs/1609.02907
https://xlinux.nist.gov/dads/HTML/undirectedGraph.html
https://xlinux.nist.gov/dads/HTML/undirectedGraph.html
https://arxiv.org/abs/2107.01410

[19] PyG Team. Pyg documentation. https://pytorch-geometric.readthedocs.io/

en/latest/, 2024. [Online; accessed 17-April-2024].

[20] Rajat Raina, Anand Madhavan, and Andrew Ng. Large-scale deep unsupervised

learning using graphics processors. volume 382, page 110, 06 2009. doi: 10.1145/

1553374.1553486.

[21] Arvind Ramachandran, Nicholas Frosst, and Geoffrey E Hinton. Protein interface

prediction using graph convolutional networks. In Advances in Neural Information

Processing Systems, pages 11128–11137. 2019.

[22] Partha Pratim Ray. Chatgpt: A comprehensive review on background, applications,

key challenges, bias, ethics, limitations and future scope. Internet of Things and

Cyber-Physical Systems, 3:121–154, 2023. ISSN 2667-3452. doi: https://doi.org/

10.1016/j.iotcps.2023.04.003.

URL: https://www.sciencedirect.com/science/article/pii/S266734522300024X.

[23] Alvin E. Roth, Tayfun Sönmez, and M. Utku Ünver. Pairwise kidney exchange.

Journal of Economic Theory, 125(2):151–188, 2005. ISSN 0022-0531. doi: https:

//doi.org/10.1016/j.jet.2005.04.004.

URL: https://www.sciencedirect.com/science/article/pii/S0022053105001055.

[24] Martin J. A. Schuetz, J. Kyle Brubaker, and Helmut G. Katzgraber. Combinatorial

optimization with physics-inspired graph neural networks. Nature Machine Intelli-

gence, 4(4):367–377, April 2022. ISSN 2522-5839. doi: 10.1038/s42256-022-00468-6.

URL: http://dx.doi.org/10.1038/s42256-022-00468-6.

[25] Madhusmita Swain, Sanjit Kumar Dash, Sweta Dash, and Ayeskanta Mohapatra.

An approach for iris plant classification using neural network. International Journal

on Soft Computing, 3(1):79, 2012.

[26] Boukaye Boubacar Traore, Bernard Kamsu-Foguem, and Fana Tangara. Deep con-

volution neural network for image recognition. Ecological Informatics, 48:257–268,

2018. ISSN 1574-9541. doi: https://doi.org/10.1016/j.ecoinf.2018.10.002.

URL: https://www.sciencedirect.com/science/article/pii/S1574954118302140.

[27] Joris van Rantwijk. Weighted maximum matching in general graphs, 2008.

URL: https://github.com/ageneau/blossom/blob/master/python/mwmatching.py.

[28] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò,

and Yoshua Bengio. Graph attention networks, 2018.

57

https://pytorch-geometric.readthedocs.io/en/latest/
https://pytorch-geometric.readthedocs.io/en/latest/
https://www.sciencedirect.com/science/article/pii/S266734522300024X
https://www.sciencedirect.com/science/article/pii/S0022053105001055
http://dx.doi.org/10.1038/s42256-022-00468-6
https://www.sciencedirect.com/science/article/pii/S1574954118302140
https://github.com/ageneau/blossom/blob/master/python/mwmatching.py

[29] Wikipedia contributors. Maximum weight matching — Wikipedia,

the free encyclopedia. https://en.wikipedia.org/w/index.php?title=

Maximum weight matching&oldid=1169853595, 2023. [Online; accessed 17-

April-2024].

[30] Bohao Wu and Lingli Li. Solving maximum weighted matching on large graphs with

deep reinforcement learning. Information Sciences, 614:400–415, 2022. ISSN 0020-

0255. doi: https://doi.org/10.1016/j.ins.2022.10.021.

URL: https://www.sciencedirect.com/science/article/pii/S0020025522011410.

[31] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional

networks: A deep learning framework for traffic forecasting. In Proceedings of the

Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-

2018. International Joint Conferences on Artificial Intelligence Organization, July

2018. doi: 10.24963/ijcai.2018/505.

URL: http://dx.doi.org/10.24963/ijcai.2018/505.

58

https://en.wikipedia.org/w/index.php?title=Maximum_weight_matching&oldid=1169853595
https://en.wikipedia.org/w/index.php?title=Maximum_weight_matching&oldid=1169853595
https://www.sciencedirect.com/science/article/pii/S0020025522011410
http://dx.doi.org/10.24963/ijcai.2018/505

Appendix A

Code examples

Simple GCN in Python example:

1 class MyGCN(torch.nn.Module):
2 def __init__(self):
3 super ().__init__ ()
4 self.conv1 = GCNConv(5, 640) # 5 features per each node ,

↪→ initialy 1
5 self.conv2 = GCNConv (640, 640)
6 self.lin = Linear (640, 2) # 2 classes
7
8 def forward(self , data):
9 x, edge_index , edge_weight = data.x, data.edge_index ,

↪→ data.edge_weight
10
11 x = self.conv1(x, edge_index , edge_weight)
12 identity = F.relu(x)
13
14 x = self.conv2(x, edge_index , edge_weight)
15 x = F.relu(x)
16
17 return F.log_softmax(x, dim =1)

Edge classification example in Python

1
2 class MyGCNEdge(torch.nn.Module):
3 def __init__(self):
4 super ().__init__ ()
5 self.conv1 = GCNConv(7, 640)
6 self.conv2 = GCNConv (640, 640)
7 self.encode = Linear (640, 80) # 80 output features per node
8
9 def forward(self , data):
10 x, edge_index , edge_weight = data.x, data.edge_index ,

↪→ data.edge_weight
11
12 x = self.conv1(x, edge_index , edge_weight)
13 identity = F.relu(x)
14
15 x = self.conv2(x, edge_index , edge_weight)
16 x = F.relu(x)
17
18 x = self.encode(x)
19 return x
20

59

21 class EdgeClassifier(torch.nn.Module):
22 def __init__(self):
23 super ().__init__ ()
24 self.lin1 = Linear (160, 320) # 80 * 2 features since input is

↪→ 2 nodes.
25 self.lin2 = Linear (320, 2)
26
27 def encodeEdges(self , nodeEncode , graph):
28 x_src , x_dst = nodeEncode[graph.edge_index [0]],

↪→ nodeEncode[graph.edge_index [1]]
29 edgeEncode = torch.cat([x_src , x_dst], dim=-1)
30 return edgeEncode
31
32 def forward(self , edgeEncode):
33 x = self.lin1(edgeEncode)
34 x = F.relu(x)
35
36 x = self.lin2(x)
37 return F.log_softmax(x, dim =1)

60

	Introduction
	Goal
	Motivation
	Project structure
	git
	Writing

	Background
	Neural Networks and Machine Learning
	Graphs
	Graph Neural Networks
	Implementation, training and hyperparameters
	Implementation
	Training
	Hyperparameters

	Maximum Weighted Matching and Combinatorial Optimization

	Research Methodology and Data
	Challenges
	Main Idea
	Data
	Architecture
	Model pipeline
	Line Graph Approach
	Edge Classification Approach
	Data preprocessing

	Result Validation
	Sanity checks

	Expected Results
	Other observations
	Accuracy and total weight
	Time
	Remainder or model portion

	Results
	Progress
	Experimenting environment
	Simple line graph model
	Model improvements and data augmentation

	Edge prediction model
	Reduction
	Matching threshold

	Final results
	Weakness of the greedy algorithm

	Conclusion
	Future work

	Glossary
	List of Acronyms and Abbreviations
	Bibliography
	Code examples

