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Abstract

Ontop is a well-known framework designed to facilitate ontology-based data
access. It supports two major APIs: RDF4J API for query answering and
the SPARQL endpoint, and OWL API for editing ontology and mapping in
the Protégé plugin. Ontop internally supports reasoning with the OWL2 QL
ontology language using a Directed Acyclic Graph (DAG)-based algorithm,
but this reasoning capability is only available through the RDF4J API, but
not in OWL API, which limits its ability to handle complex inference tasks in
Protégé. To close this gap, in this paper, we propose an enhancement to Ontop
by properly implementing the OWLReasoner interface in the OWL API. This
is achieved by leveraging the internal DAG-based ontology representation. We
have validated our implementation through extensive testing and demonstrated
the improvements in the Protégé plugin user interface.
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Chapter 1

Introduction

In this chapter we define VKG / OBDA systems (section 1.1). We introduce
Ontop as such a system and detail the current limitation of the system (sec-
tion 1.2) before we address how we will tackle the limitation (section 1.3).
Lastly, an overview of the document and how it is organized is presented
(section 1.4).

1.1 VKG and OBDA

Traditionally, we see data integrated and managed through the use of relational
databases, where data is stored in tables that are linked together through
primary- and foreign key relations. Access to this data is provided by some
sort of relational database management system (RDBMS) - most of which
utilize the SQL language for querying and updating the database. Virtual
Knowledge Graph (VKG), also known in the literature as Ontology-Based
Data Access (OBDA) [1], is a paradigm for data integration and access that
takes a different approach. The paradigm enables the integration of distributed
and heterogeneous data sources into a unified graph structure. What this means
is that data, which can be stored in different locations and many different
formats, is treated as if it were all in one central place or structure. The data
can then be accessed through a higher-level representation of the domain.

The VKG paradigm allows us to perform reasoning on the information present
in the system. Query answering is the main reasoning task in a system utilizing
the VKG approach, which enables us to answer queries - i.e. retrieve informa-
tion - from the knowledge graph without modifying the data sources [1]. We
concern ourselves with a portion of query answering in this paper, which will
be explained further in section 1.2.
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We present some examples of systems [2] utilizing the VKG approach:
• Ontop [2]
• Mastro [3]
• Morph [4]
• Stardog1

Literature often refers to Ontology Based Data Access (OBDA). However -
in recent times - the term Virtual Knowledge Graph (VKG) has been adopted
more frequently. The two serve as synonyms to each other, each referring to
the same paradigm. Therefore, onward in this paper, emphasis will be put on
the term VKG as it is a more modern term. Keep in mind, that both terms may
be used interchangeably, but they will refer to the same concept.

1.2 Ontop

Ontop is known as a Virtual Knowledge Graph (VKG) system. It is a platform
that allows querying relational databases as virtual RDF2 graphs [5] using
SPARQL3 - a semantic query language. This is done by exposing the contents
of any arbitrary relational database as a knowledge graph. These graphs are
virtual, meaning the data exposed by the semantic query is never migrated to
another database. The data is kept in the respective relational data sources,
thereby the term virtual. In order to achieve this, the SPARQL queries are
rewritten over the knowledge graphs to SQL queries via mappings which map
the concepts in the ontology to the data sources. These SQL queries can then
be executed over the relational data sources [6].

The task of query answering, mentioned in section 1.1, can be split up into
two different stages in the Ontop workflow: an off-line stage and an online
stage [5]. The off-line stage handles ontology classification and processing of
the mappings which map the ontology to the data sources. When this stage is
complete we can initiate the online stage, which translates the SPARQL queries
into SQL queries that can retrieve data from the relational sources [5]. In this
paper, we concern ourselves with the former, off-line stage. More specifically,
we will focus on the ontology classification (see Fig. 1.1) phase as we attempt
to reimplement the reasoner which classifies ontologies in Ontop.

1https://www.stardog.com/
2https://www.w3.org/TR/rdf-primer/
3https://www.w3.org/TR/sparql11-query/

https://www.stardog.com/
https://www.w3.org/TR/rdf-primer/
https://www.w3.org/TR/sparql11-query/
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Figure 1.1: Ontop workflow [5]

Development and Use Cases The project was initiated by Diego Calvanese
and Mariano Rodriguez-Muro in 2009 in the KRDB research center for Know-
ledge and Data at the Free University of Bolzano [7]. Nowadays, the com-
munity is still in active development of the Ontop project, both from a research
perspective and a software development perspective - much of which has been
funded by various research projects over the years.

The development of Ontop has been funded by several large research projects4.
Optique is an example of such a past research project. Current research pro-
jects [7] include INODE5 (data management infrastructures), PACMEL (VKG
for process mining) and IDEE (data integration in the energy sector).

Ontop has been deployed in several significant use cases [1], e.g:

• Exploration geological data in the oil & gas industry by Equinor (formerly
Statoil).

• Open and enterprise data in the domain of smart city by IBM Ireland.
• Appliance sensor & event data, analytical data, and other miscellaneous

data used in machine diagnoses by the technology company Siemens.

Limitation of the OWLReasoner implementation There are two major
APIs used in the community: RDF4J and OWL API. RDF4J is mostly used for
SPARQL query answering, OWL API is more often used by OWL Reasoners
and in Protégé. The RDF4J implementation is complete. However, the OWL

4https://ontop-vkg.org/research/#researchers
5https://www.inode-project.eu/

https://ontop-vkg.org/research/#researchers
https://www.inode-project.eu/
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API implementation still needs to be implemented properly.

Currently, Ontop has an OWL API OWLReasoner compliant implementation6

in place inside the QuestOWL class. However, this is only a dummy implement-
ation where the reasoning methods are delegated to StructuralReasoner - a
simple reasoner provided by the OWL API. This simple reasoner does have
some capabilities, but it can not handle more complex reasoning tasks with
complex expressions. We present a simple representation of the QuestOWL

class and how it inherits functionality from the OWL API in Figure 1.2.

In the current implementation of the QuestOWL reasoner, simple reasoning
tasks can be performed. However, when using Ontop as a plugin for Protégé,
we can identify that for ontologies containing complex expressions and re-
lations, the asserted and inferred hierarchies are identical. Potential inferred
information and knowledge are lost during reasoning, something we will
attempt to tackle in this paper.

Figure 1.2: Simplified inheritance relation between QuestOWL and OWL API

Ontop already has another implementation in place which has complex reason-
ing capabilities for OWL 2 QL / DL-Lite [8]. The ClassifiedTBox class is
a DAG-based reasoner which exposes more complex reasoning tasks. How-
ever, this implementation is used internally and is not ready for use with the
OWL API yet. We can expose many reasoning features from this class into
QuestOWL. This will expose the reasoning capabilities through Ontop’s OWL
API interface for use with external tools. Protégé7 is an open-source ontology
editor and framework, and an example of such a tool. Ontop has a plugin
implementation for Protégé, which will be our focus area in this paper.

6https://github.com/ontop/ontop/issues/138
7https://protege.stanford.edu/

https://github.com/ontop/ontop/issues/138
https://protege.stanford.edu/
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1.3 Contribution

The research part of this paper focuses on addressing the limitations mentioned
in the previous section. The objective is to utilize the already implemented
internal DAG-based reasoner in Ontop and see to which extent this component
can support OWL API TBox reasoning. To address this limitation, we attempt
to implement the methods in the OWLReasoner interface of OWL API in
QuestOWL by utilizing the functionality of the internal reasoner already present
in the Ontop codebase. The reasoner ClassifiedTBox serves as a “wrapper”
over the DAG representations it creates of the ontology and allows us to interact
with it by use of various methods. We will utilize these methods of the DAG
reasoner, attempting to extract the correct information from the classified TBox,
which we then can return through the OWL API of the QuestOWL reasoner.

This implementation is not trivial. Some of the OWL API methods can be
simply delegated to the DAG in question. Other methods are more involved,
with various edge cases to support and more extensive processing of the method
arguments. We need to consider these edge cases in order to properly support
reasoning. Importantly, we must also test the implementation.

We must also properly handle the different levels of APIs in the Ontop base.
Since the DAG is an internal implementation, it uses internal types and classes
(internal API). We must handle conversion between the OWL API and the
internal API in order to interact with the DAGs in the ClassifiedTBox object.

We have implemented reasoning methods of the OWL API, focusing on getting
the correct inferred hierarchies to display in Protégé first. We have tested the
implementation by writing a multitude of various unit tests, testing small
pieces of functionality. In addition, the implementation was compiled into an
executable, which allowed us to further test the implementation inside Protégé.
The code is currently available at Github8, and it is scheduled to be included
in the next stable release of Ontop.

8https://github.com/ontop/ontop/tree/feature/owlreasoner-methods

https://github.com/ontop/ontop/tree/feature/owlreasoner-methods
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1.4 Organization of the Document
The paper is organized as follows.

• Chapter 1: Serves as an introductory. We cover the Virtual Knowledge
Graph paradigm and approach and present some examples of systems
using this approach. We present Ontop as such a system, give an overview
of the current limitation of its reasoning capabilities, and cover how we
will tackle the limitation.

• Chapter 2: A deep dive into the aspects needed to grasp the limitation.
We give the reader an understanding of how knowledge can be formal-
ized, represented, and used in a reasoning context, and present what is
needed to tackle the limitation.

• Chapter 3: The implementation is presented in detail. We cover how we
have tackled the limitation of Ontop, and present various examples and
figures.

• Chapter 4: We evaluate our implementation and test it, accompanied
with excepts of test cases.

• Chapter 5: The paper is summarized with a conclusion, and we discuss
what future work is possible.



Chapter 2

Background

This chapter provides an overview of the Ontop framework and the necessary
technologies to understand its functionality and objectives.

We explain ontologies (KBs), and how Description Logics (DLs) - specific-
ally DL-LiteR- underpin Ontop’s reasoning capabilities. We discuss the Web
Ontology Language (OWL), emphasizing OWL 2 QL, which Ontop uses for
reasoning (section 2.1).

We outline the Virtual Knowledge Graph (VKG) paradigm (section 2.2) and
elaborate on Ontop’s architecture (section 2.3), highlighting the role of the
OWL API, particularly the OWLReasoner interface (section 2.4). We describe
the implementation of a DAG-based reasoner in Ontop’s ClassifiedTBox
(section 2.5). This sets the stage for understanding the proposed enhancements
to Ontop.

2.1 Ontologies and Knowledge Bases

An ontology can be described as some way of formally representing know-
ledge of a given domain area. Concepts are modeled with their properties and
relations between them in a structured manner by some primitives. These are
typically classes (sets), attributes (properties), and relationships (relations
among classes). Ontologies are usually specified by some language that allows
implementation details and data structures to be abstracted away [9]. Thus,
they can be utilized as a high-level, conceptual view over data, where a user
would not need to familiarize themselves with how the data are structured - we
say ontologies lie at the semantic level (conceptual separated from data).
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Formally, an ontology O (or a Knowledge Base in DL) consists of two compon-
ents, a TBox T and an ABox A: These components represent intensional and
extensional knowledge respectively [10]. The conceptual schema (TBox) and
data schema (ABox) combined will model domain knowledge. In the case of a
VKG system such as Ontop, the ABox is (virtually) generated by mappings -
a component that maps data from its sources to the instances of classes and
properties in the ontology.

Below, in section 2.1.1, we recall the logic foundations for the ontology, and
in section 2.1.2 we describe the W3C1 standards of the ontology language.

2.1.1 Description Logics and DL-LiteR

Description Logics - or DLs - are a family of languages known as formal
knowledge representation languages [11]. Such languages provide a high-level
description of the world, which can be used to create intelligent applications.
“Intelligent” applications, in this context, mean that the explicit knowledge
present in the system can be utilized to find implicit consequences and new
knowledge.

Ontop is an example of such a system. Systems like these can be charac-
terized as knowledge-based or knowledge representation (KR) systems [11].
Description Logics describe a domain in terms of some notions to construct
an ontology, which in DL terms is referred to as a Knowledge Base (KB). As
briefly mentioned in the previous section, an ontology comprises two compon-
ents - a TBox and an ABox. The basic building blocks to construct these are
atomic concepts (unary predicates), atomic roles (binary predicates), and indi-
viduals (constants), serving as the main underpinning for modeling ontological
structures. DL ontologies also consist of a set of statements, called axioms,
assumed to be true [12]. These “facts” model the asserted knowledge about
the domain.

DLs are fragments of first-order logic (FOL) and come equipped with formal
semantics that allow us to construct a precise specification of a DL ontology.
These formal semantics allow us to logically deduct and infer additional
information [12] from the facts that are stated explicitly in an ontology (or a
DL KB).

DLs have a family of lightweight fragments. In this paper, we are focusing on

1https://www.w3.org/

https://www.w3.org/
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Construct Syntax Example
atomic concept A Student
role R attendsCourse
top concept ⊤ Thing
bottom concept ⊥ Nothing
inclusion ⊑ Student ⊑ Person
equivalence ≡ Bachelor ≡ Undergraduate
disjunction ⊔ Student ⊔ Teacher
conjunction ⊓ Person ⊓ Employee
negation ¬ ¬Employed
exists restrictor ∃ ∃attendsCourse.⊤

Table 2.1: Syntax and examples of commonly used constructors in DL-LiteR

the fragment DL-LiteR, which is a decidable fragment of FOL and serves as
the logical underpinning of the Virtual Knowledge Graph approach.

Terminology

We present the terminology and syntax [13] of DL-LiteR.

We use the following letters:
• A and B for atomic concepts.
• C and D for concept description.
• R and S for roles.
• a and b for individuals.

We highlight the following symbols:
• ⊤ for the universal concept (contains all concepts. All individuals as

instances)
• ⊥ for the bottom concept (contains no concepts. No individuals as

instances)
• ⊑ for concept inclusion (subsumption)
• ≡ for concept equivalence
• ⊔ for concept disjunction
• ⊓ for concept conjunction (union)
• ¬ for concept negation
• ∃ for existential restriction

We present some examples of how these constructors can be used in Table 2.1.
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Figure 2.1: Architecture of a KR system comprising a KB, based on DL [11]

Formalism of DL-LiteR

The formal semantics [14] of DL-LiteR are briefly presented in this section.

• Let NC, NR, and NI be countably infinite sets of concept names, role
names, and individuals, respectively.

• Let NR = NR ∪ {r− | r ∈ NR} be the set of (complex) roles.

• For R ∈ NR, R− denotes r− if R = r ∈ NR, and r if R = r−.

ABox An ABox is a finite set of assertions of the forms A(b) and r(b,c),
with A ∈ NC, r ∈ NR and b,c ∈ NI .

TBox A Tbox is a finite set of axioms, which in DL-LiteR are concept
inclusions of the form B1 ⊑ (¬)B2, with B1, B2 of the form A ∈ NC or ∃R with
R ∈ NR.

Role inclusion TBoxes may additionally contain role inclusions (DL−LiteR)
of the form R1 ⊑ (¬)R2 with R1, R2 ∈ NR.

Knowledge base A knowledge base (KB) consists of a TBox T and ABox A.
Recalling from section 2.1, an ontology is formalized as a KB.

KB = ⟨T,A⟩
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Interpretations The semantics of knowledge bases is defined in terms of
DL interpretations I = (∆I , ·I), where I is a model of a KB K = ⟨T,A⟩ if it
satisfies every axiom in T and assertion in A, and we call K consistent if it
admits some model. We use Ind(A) for the individuals occurring in A and let
IA be the interpretation with ∆I = Ind(A) such that (i) ∈ AI iff A(c) ∈ A and (ii)
(c,d) ∈ rI iff r(c,d) ∈ A.

DL-LiteR ensures that reasoning tasks can be performed efficiently. Ontop
supports ontologies and reasoning in the OWL 2 QL ontology language, which
is designed such that relational data may be queried through an ontology
without altering the data. The basic formalism of OWL 2 QL is supplied by
the DL-LiteR fragment of Description Logics [8]. Reasoning services can be
performed on both the TBox and the ABox, as presented in Figure 2.1 which
outlines the components of a KR system. This paper focuses on the reasoning
component. More specifically, we concern ourselves with TBox reasoning.

Considering a TBox T , the reasoning tasks [10] are:

• A concept C is satisfiable if there exist a model I of T such that CI is not
empty. We say that I is a model of C.

• A concept C is subsumed by a concept D if CI ⊑ DI for every model I
of T . We write that T |=C ⊑ D.

• Two concepts C and D are equivalent if CI = DI for every model I of T .
We write that T |=C ≡ D.

• Two concepts C and D are disjoint with respect to T if CI ⊓DI = /0 for
every model I of T .

We provide some examples of OWL 2 QL ontologies formalized with DL-LiteR

axioms (recall the constructors in Table 2.1):

Example 1 TBox Simple

C ≡ D

B ⊑ A

C ⊑ A

The example includes the classes A, B, C, and D. The axioms entail that C and
D are equivalent to each other and that B and C are subsumed by A.

Example 2 TBox Complex
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D ⊑ A

A ⊑ ∃r1.⊤
∃r1.⊤⊑ ∃r2.⊤
∃r2.⊤⊑ B

C ⊑ B

The example includes the classes A, B, C and D, and the object properties r1
and r2. The axioms all entail some relation of subsumption, however, they also
include some complex expressions with the existential restriction constructor.

2.1.2 Web Ontology Language

Web Ontology Language - often abbreviated by the acronym OWL - is a
semantic web language designed to define ontologies on the web, based on
Description Logic. OWL allows us to model and represent knowledge about
various domains of interest concisely and is used to create ontologies, verify the
consistency of such ontologies, as well as infer new knowledge from existing
knowledge. It is a language that was designed to be compatible with the World
Wide Web, thus it may also refer to online resources in addition to local domain
knowledge [15].

OWL is available in two versions. The first proposed version OWL 12 became a
W3C recommendation in the year 2004. It has since been superseded by OWL
23, an extension of the former OWL 1 with new functions and features [16].
This has been the current standard since it became a W3C recommendation in
2009 [17] - with the second edition published in 2012.

Web Ontology Language Description Logic First-Order Logic

individual individual constant
class concept unary predicate
property role binary predicate

Table 2.2: Comparison of terminology in OWL, DL, and FOL

An OWL Ontology describes a domain in terms of classes, properties and
individuals (see Table 2.2 for DL equivalent terms), and can include rich
descriptions of characteristics of those objects or Web resources [9]. As with

2https://www.w3.org/TR/owl-features/
3https://www.w3.org/TR/owl2-overview/

https://www.w3.org/TR/owl-features/
https://www.w3.org/TR/owl2-overview/
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DLs, OWL comes in different variants for different use cases. We refer to
these variants as “profiles”. These profiles sacrifice some expressive power for
the efficiency of reasoning. Less expressive means increased efficiency. We
summarize the profiles [17] of OWL 2:

• OWL 2 QL: For applications that use large volumes of instance data
(individuals). Query answering is the most important reasoning task.

• OWL 2 EL: For applications utilizing ontologies that contain large
numbers of properties and/or classes. Basic reasoning tasks can be
performed in polynomial time with respect to the ontology size.

• OWL 2 RL: For applications requiring scalable reasoning without sacri-
ficing too much expressive power.

In this paper, we will focus on the profile OWL 2 QL as this is the one Ontop
implements for its reasoning services. This profile of OWL is formalized in
the Description Logic language DL-LiteR.

2.2 VKG Framework

The VKG approach for data integration presents an alternative to the relational
model by combining the following three main ideas [1]:

• Data virtualization: Achieved by separating the end-user from the
data sources. The data still sits in its respective sources, however, it is
accessed through a higher-level representation of the domain.

• Knowledge: Domain knowledge enriches the data semantically, captur-
ing important aspects of the data otherwise possibly lost. This enables
one to perform inference on the enriched data, which can lead to new
knowledge being derived from the explicitly stated knowledge. The
OWL2 QL ontology profile [17], with the DL-Lite Description Logic [8]
as the formal background, is the most popular ontology language for
VKG.

• Graph structure: The data is structured in a graph form, where nodes
represent domain data concepts, and edges represent properties and rela-
tions of these concepts. A graph structure is flexible and quite efficient
for modeling entity relations. In addition, such a structure enables the
use of various graph algorithms for analysis and manipulation.
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Figure 2.2: VKG / OBDA framework [10]

Framework

A VKG system comprises multiple components, or layers, which enable the
ideas mentioned briefly earlier. These are needed for the system to function
and are presented in Figure 2.2. Since the Virtual Knowledge Graph paradigm
is a way of accessing data, the main functionality of such a system is query
answering. The flow of information starts from the user, who makes a query
(i.e. requests something from the system). The query is done on the ontology,
transformed through mappings, and data is retrieved. We summarize the layers
of a VKG system:

Conceptual layer (ontology) Represents the domain knowledge and schema
that describes the data at a high level. Provides a unified, abstract view of
the data. Often formalized as an RDF(S) or OWL ontology. We call this the
intensional knowledge - or a DL TBox. In this paper, we concern ourselves
with the conceptual layer (the ontology) of a VKG system.

Mapping layer Contains rules that map the high-level ontology terms to
the underlying data sources. Ensures that data from different sources can be
accessed and integrated consistently.

Data layer The actual storage where data resides, typically relational data-
bases. CSV files or other data formats are also supported. Provides the founda-
tional data that the VKG system queries and integrates.
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Query layer The interface through which users interact with the VKG sys-
tem, typically using a query language like SPARQL. Allows users to formulate
queries against the ontology, which are then rewritten and executed against the
data sources.

Formalism

A VKG system [10] is a triple

V KG = ⟨T,S,M⟩

where:

• T is a DL TBox. In the case of this paper, T is a DL-LiteR TBox (inten-
sional knowledge).

• S is a relational database representing the sources.

• M is a set of mapping assertions between S and T, each one of the form

φ (⃗x)⇝ ψ (⃗x)

where:

– φ (⃗x) is a query over S, returning tuples of values for x⃗.

– ψ (⃗x) is a query over T , whose free variables are from x⃗.

M is used to populate the elements of T with the data in S [10]. The source
query φ (⃗x), which retrieves values from S, is taken to generate triple patterns
that refer to concepts in T , by using ψ (⃗x).

2.3 Ontop

Ontop is an Open-Source software system for Virtual Knowledge Graphs
released under the Apache 2.04 license. More specifically, it is a platform
used to query relational databases as Virtual RDF Knowledge Graphs using
SPARQL. Platform, in this regard, refers to Ontop being available as a set of
software, with the ability to connect to external tools and processes. We divide
Ontop’s architecture into four layers [5], which we detail in the following.

4https://www.apache.org/licenses/LICENSE-2.0

https://www.apache.org/licenses/LICENSE-2.0
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Figure 2.3: Ontop architecture [5]

Inputs

The input layer for the VKG system is where we handle domain-specific data.
This data serves as input to the VKG system. The inputs are (i.) ontology, (ii.)
mappings, (iii.) data sources, and (iv.) queries. As a VKG system, Ontop sup-
ports the most important W3C recommendations5 for the Semantic Web and
linked data: OWL, R2RML, SPARQL, SWRL and SPARQL OWL 2 QL re-
gime [7]. Ontop also has major support for commercial and free databases [18].
Recalling the components of a VKG system in section 2.2, Ontop supports the
widely used standards in the following manner6:

i. Ontop fully supports OWL 2 QL and RDFS ontologies, while also being
extended to support the linear recursive fragment of SWRL (Semantic
Web Rule Language). OWL 2 QL is based on the DL−Lite family [18]
of lightweight description logics. This subset language guarantees query
rewriting - i.e. decideability.

ii. Ontop supports two mapping languages: its own native mapping lan-
guage and the RDB2RDF Mapping Language (R2RML) [18]. A tool is
included in Ontop for converting between these two mapping languages.

iii. Most standard relational database engines are supported in Ontop via the
Java Database Connectivity (JDBC) API7 - providing a universal way of
accessing data. This also enables Ontop to support federated databases,

5https://www.w3.org/TR/?status%5B0%5D=standard
6https://ontop-vkg.org/guide/#main-features
7https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/

https://www.w3.org/TR/?status%5B0%5D=standard
https://ontop-vkg.org/guide/#main-features
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/
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allowing for multiple types of data sources such as XML and CSV
files, or even live Web Services [5]. Ontop supports the following main
database systems8: PostgreSQL, MySQL, MariaDB (since 5.0.0), SQL
Server, Oracle, DB2, Snowflake (since 5.0.0), Databricks (since 5.0.0),
Google BigQuery (since 5.0.2), AWS Redshift (since 5.0.2), DuckDB
(since 5.0.2), and AWS DynamoDB (since 5.1.0).

iv. Ontop supports the majority of SPARQL 1.1 features9, including the
main SPARQL aggregation functions (since 4.0.0) and GeoSPARQL
functions (since 4.1.0).

Together, i., ii. & iii. form a Virtual Knowledge Graph, and iv. is used to query
and interact with the knowledge graph.

Ontop core

At the core of Ontop is the SPARQL engine Quest [18], which is in charge
of rewriting SPARQL to SQL. It handles query translation, optimization, and
execution as queries over the virtual RDF graph and ontology are transformed
into queries over the data sources.

V KGsparql ⇝ DBsql

API layer

APIs exposing standard Java interfaces to users of the system. System de-
velopers can use Ontop as a Java library [18]. Two widely-used Java APIs are
implemented by Ontop: (i.) OWL API and (ii.) RDF4J / Sesame.

i. OWL API is a reference implementation for creating, manipulating,
and serializing OWL ontologies. The OWLReasoner Java interface is
extended in Ontop to support SPARQL query answering. We will be
interacting directly with the OWL API in this paper, specifically through
the OWLReasoner interface.

ii. RDF4J (formerly Sesame) is a framework for processing RDF data. The
OpenRDF Sesame project was rebranded10 in May 2016 for the purpose

8https://ontop-vkg.org/guide/#main-features
9https://ontop-vkg.org/guide/compliance.html

10https://projects.eclipse.org/projects/technology.rdf4j

https://ontop-vkg.org/guide/#main-features
https://ontop-vkg.org/guide/compliance.html
https://projects.eclipse.org/projects/technology.rdf4j
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of migrating11 the library to the Eclipse foundation. Ontop implements
the Sesame Storage And Inference Layer (SAIL) API supporting infer-
encing and querying over relational databases [5], as well as the newer
RDF4J for internal handling of RDF data.

Application layer

Applications that allow end-users to execute SPARQL queries over databases.
Ontop can be used as (i.) a command-line interface (CLI), or (ii.) its function-
ality can be exposed via APIs to support external applications such as Protégé
or SPARQL Endpoint [18].

i. Ontop ships a shell script and a bat file. These expose the core function-
ality, along with several utilities, through the command-line interface
(CLI). Without a graphical interface, but allows for quick set-up. Easily
test execution, query or materialize12.

ii. Ontop’s API support allows it to be easily integrated. Through the OWL
API, Ontop implements a plugin [18] for Protégé13 - an open-source
ontology editor and framework. Along with a graphical user interface,
the functionality of Ontop is exposed for use in this external application.

SPARQL endpoint is another application facilitated by the use of such
interfaces. It is a deployable HTTP endpoint that allows for query answer-
ing. Available either through the CLI or as a Docker14 image. End-points
such as these are a popular and standard way for applications to exchange
data between them. Data is transmitted as payload through the HTTP
protocol and received in a standardized format. This enables Ontop to
be integrated into most existing applications smoothly.

Ontop implements the OWL API through its OWLReasoner Java interface. The
result of reasoning from query answering is exposed through this API so that
applications such as Protégé can interact with the result. This can be seen in
the transition from the Ontop core through its API to the application layer in
Figure 2.3.

In this paper, we concern ourselves with the plugin that comes with Ontop
for use with Protégé. This plugin provides Protégé with Ontop’s reasoning

11https://rdf4j.org/documentation/reference/migration/
12https://ontop-vkg.org/guide/cli.html
13https://protege.stanford.edu/
14https://hub.docker.com/r/ontop/ontop

https://rdf4j.org/documentation/reference/migration/
https://ontop-vkg.org/guide/cli.html
https://protege.stanford.edu/
https://hub.docker.com/r/ontop/ontop
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capabilities. As shown in Figure 2.4, Protégé includes a visualization of the
tree of the hierarchy of classes and properties. There are two trees, the asserted
one and the inferred one. The asserted one follows the structure of the input
ontology directly, and the inferred one uses the OWLReasoner to show a (po-
tentially richer) hierarchy.

Currently, ontop-protege-plugin uses the dummy OWL reasoner, which
means the asserted and the inferred ones are identical. We aim to improve the
situation by implementing the OWLReasoner used in the ontop-protege-plugin
properly.

Figure 2.4: Example class hierarchy in Protégé

2.4 OWL API

The OWL API is a Java API and reference implementation for creating, manip-
ulating, and serializing OWL Ontologies [19]. It is open source and available
under either the LGPL or Apache Licenses. The API includes the following
components15:

15https://owlapi.sourceforge.net/

https://owlapi.sourceforge.net/
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• Programming interface: Interface for OWL 2 and an efficient in-
memory reference implementation.

• Reasoner interface: Interfaces for working with and implementing
compliant external reasoners.

• Parsing & writing: Supports RDF/XML, OWL/XML, OWL Functional
Syntax, and TTL (Turtle).

• Parsing: Support KRSS and OBO Flat file format.

In this paper, we concern ourselves with the reasoner interface of the OWL
API. In particular, the OWLReasoner Java interface provides extensive detailed
documentation and functionality relating to the process of reasoning with OWL
ontologies [19]. The interface allows Ontop to support common reasoning tasks
such as consistency checking, computation of class or property hierarchies,
and axiom entailment.

As of the date of this thesis, version 4.3.1 and 5.1.0 are the current main
versions of the OWL API16. The main codebase of Ontop is targeting OWL
API 5, but the Protege plugin requires OWL API 4. Internally, Ontop is using
the shading17 strategy to make sure different modules use the right version of
Ontop.

OWLReasoner Interface

As mentioned briefly, the OWL API provides access to common reasoning
tasks such as checking an ontology’s consistency, computing class- or property
hierarchies, as well as axiom entailment. Implementation of the semantics of a
reasoner is not a trivial task. The OWL API makes this job less cumbersome
by separating reasoning functionality into manageable pieces. Reasoning func-
tionality is provided to us by the OWLReasoner Java interface [19]. We present
some of the reasoning methods provided by the OWL API OWLReasoner

interface:

• getSubClasses(ce, direct): Gets the set of named classes that are
the strict subclasses of the specified class expression ce with respect
to the reasoner axioms. The boolean value direct dictates whether all

16https://github.com/owlcs/owlapi/wiki
17Involves packaging the classes of one or more dependencies within a JAR file under a

different namespace to avoid conflicts with other dependencies.

https://github.com/owlcs/owlapi/wiki
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descendants or only the immediate descendants should be retrieved.
Returned as a NodeSet.

• getEquivalentClasses(ce): Gets the set of named classes that are
equivalent to the specified class expression ce with respect to the set of
reasoner axioms. Returned as a Node.

• getSubObjectProperties(pe, direct): Gets the set of simplified
object property expressions that are the strict (potentially direct) sub-
properties of the specified object property expression pe with respect
to the imports closure of the root ontology. The boolean value direct
dictates whether all descendants or only the immediate descendants
should be retrieved. Returned as a NodeSet.

• getObjectPropertyDomains(pe, direct): Gets the named classes
that are the direct or indirect domains of the property expression pe
with respect to the imports closure of the root ontology. Returned as a
NodeSet.

• getDisjointDataProperties(pe): Gets the data properties that are
disjoint with the specified data property expression pe. The data proper-
ties are returned as a NodeSet.

2.5 DAG for DL-LiteR Reasoning
The ClassifiedTBox implementation in QuestOWL is a DAG-based TBox
reasoner. It constructs optimized directed acyclic graph (DAG) representations
of an ontology, with relation to the ontology axioms. Graphs are a very natural
way of modeling real-world relations and concepts and therefore are a good
fit for knowledge-based reasoners. The following section covers Directed
Acyclic Graphs (DAG), as well as how the DAGs in ClassifiedTBox are
implemented.

A graph consists of a set of vertices, or nodes, and a set of edges. Pairs of
vertices are connected via edges. We can define a graph G as containing a set
of vertices V and edges E. The set of edges in set E is each a pair of vertices
(v1,v2), representing a connection between them [20].

G = (V,E)

A directed graph (digraph) is a graph where the edges E have a given direction
of traversal, usually indicated with an arrow. A cycle in a graph is a path in
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which only the first and last vertices are equal. We call a directed graph without
directed cycles a directed acyclic graph - or DAG.

EquivalencesDAG

ClassifiedTBox implements three DAGs for its reasoning capabilities. It
constructs a class DAG, an object properties DAG, and a data properties DAG
from a common EquivalencesDAG object. For each DAG, the vertices V of
the DAG are sets of equivalences, while the edges E form the minimal set
where transitive and reflexive closures coincide with the transitive and reflexive
closures of the ontology graph. The DAGs contain properties that map the
different equivalences. Equivalence objects act as nodes that store all nodes
which are deemed equivalent, with one acting as a representative for the other,
equivalent nodes. This helps to optimize the DAG, removing redundant nodes.

Breadth-First Search

Consider a graph G = (V,E) [10].

1. Start a list by choosing a vertex v ∈V

2. Add all the vertexes adjacent to v to the list and keep track of them.

3. Consider all the next vertexes on the list. Add each of the vertexes to the
list and keep track of all their adjacent vertexes.

4. When the last vertex with no new adjacent vertex is reached, terminate
the process.

Our implementation includes using the BFS algorithm, which will be covered
in more detail in section 3.2.3.



Chapter 3

Implementation of the
OWLReasoner Interface in Ontop

The purpose of this thesis was to properly implement the reasoning meth-
ods of OWLReasoner interface in the QuestOWL class by utilizing an already
implemented DAG-based TBox reasoner, replacing the dummy reasoner im-
plementation which was present.

Recall that ClassifiedTBox is a DAG-based TBox reasoner which is made
available to QuestOWL as a field variable. When QuestOWL is instantiated, the
TBox reasoner is saturated. It classifies the different classes & object- and data
properties, as well as generates Directed Acyclic Graph (DAG) representations
of classes and properties.

Currently, QuestOWL implements StructureReasoner which is a simple,
incomplete reasoner and has been the dummy reasoner implementation of
QuestOWL. It is part of the OWL API, and therefore a fitting temporary solu-
tion for Ontop to achieve OWL API compliance for its reasoning capabilities.

In this chapter, we go through in detail how the OWL API methods were
implemented in the QuestOWL Java class of the Ontop project. In particular,
what was done to replace StructuralReasoner, and how ClassifiedTBox

can be used to expose its capabilities to QuestOWL.

Before introducing the new implementation of QuestOWL (section 3.2), we
start by describing the structure of the codebase of Ontop (section 3.1).
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Figure 3.1: Ontop project structure

3.1 Codebase of Ontop

The Ontop codebase is hosted on the popular repository management site Git-
Hub1, and uses the version control system Git to handle collaborative software
development. Development of Ontop is carried out openly in GitHub, where
our implementation is developed under a separate branch2 of the project. As of
the date of this thesis, the most recent stable release of Ontop is version 5.1.2 -
released January 17, 20243.

The code of Ontop is organized as a multi-module Java Maven project. Each
module is in charge of some functionality to the system, each with its own
dependencies and pom file. This allows us to only test and build out the mod-
ules we need. The codebase is split into mainly two parts (modules) which
act as separate entry points for separate usages. These are ontop-cli and
ontop-protege, and are the two main ways of running Ontop. We concern
ourselves with the latter.

As we can see in Figure 3.1, the ontop-protege module also has its own

1https://github.com/ontop/ontop
2https://github.com/ontop/ontop/tree/feature/owlreasoner-methods
3https://github.com/ontop/ontop/releases

https://github.com/ontop/ontop
https://github.com/ontop/ontop/tree/feature/owlreasoner-methods
https://github.com/ontop/ontop/releases
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set of dependencies ontop-protege-dependencies. This effectively works
as a “black box”, where a shaded jar will merge the required dependencies
into one dependency, essentially creating one uber jar. This allows it to avoid
the consequences of having multiple dependencies of different versions in the
codebase. This is important since Protégé utilizes OWL API 4 while Ontop
uses OWL API 5.

Figure 3.2: Inheritance relation between QuestOWL and OWL API

3.2 QuestOWL

QuestOWL implements the OWL reasoner interface through OWLReasonerBase.
Figure 3.2 illustrates how QuestOWL inherits its methods and functionality
from the OWL API. Visible in the figure is also how QuestOWL includes
StructuralReasoner and ClassifiedTBox. Since Ontop already models
OWL 2 QL ontologies internally, it has its own API which is based on RDF4J
data structures. This API models most counterparts of OWL API objects. This
means that, in order to interact with the internal workings of Ontop, we must
convert values to and from the OWL API and the Ontop API, since the OWL
API is implemented on top of the Ontop API.

OWL API→ Ontop API→ RDF4J

To properly implement our reasoner, we must interact with the different APIs
and their data structures. To perform this, we utilized “factories”4 which were

4A design pattern that simplifies object creation.
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provided to us by the OWL API and RDF4J framework. These object factories
allowed us to easily create and instantiate the various objects we needed.

OWLDataFactory owlDataFactory = getOWLDataFactory ();

RDF rdfFactory = new RDF4J();

These factories were used plentifully in our implementation and thus will be
mentioned in the upcoming sections.

3.2.1 Ontop API and OWL API

We detail some of the OWL API objects and the Ontop API equivalent objects
in this section.

Class expression A class expression in the OWL API represents an OWL
2 QL specification class expression. The interface covers both named and
anonymous classes. It contains many helpful methods, a subset of which are
represented below. These can convert the expression to a class, or check if the
class expression is the built-in class owl:Thing or owl:Nothing. We utilize
these methods in our implementation.

public interface OWLClassExpression

extends OWLObject , OWLPropertyRange , SWRLPredicate {

ClassExpressionType getClassExpressionType ();

OWLClass asOWLClass ();

boolean isOWLThing ();

boolean isOWLNothing ();

...

}

Ontop models the OWL 2 QL class expression from extending from another
internal Description interface, which is an interface that represents partially
ordered classes. This interface contains methods for top (⊤) and bottom (⊥),
which extends to all types of expression objects.

public interface ClassExpression extends DescriptionBT {

// NO -OP

}

public interface DescriptionBT extends Description {

boolean isTop();

boolean isBottom ();

}
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Equivalences Important for optimizing the DAG, objects that model entities
that are equivalent to each other are implemented in both Ontop and OWL API.
The OWL API models this as a Node, which represents a set of entities. The
Node interface inherits from the Java Iterable type, enabling us to perform
various procedures on it. Ontop has a counterpart Equivalences object, also
inheriting from Iterable. The equivalent entities are in this implementation
represented by a representative and a set of members. Since the set of entities
are equivalent, and therefore refer to the same thing, we can instead choose
one entity that represents the whole set of entities (the representative).

public class Equivalences <T> implements Iterable <T> {

final private ImmutableSet <T> members;

private T representative;

private boolean isIndexed;

...

}

The Node interface is accompanied by the NodeSet interface, representing a
set of nodes. Ontop does not have a counterpart for a set of Equivalences. We
instead use Java APIs like ImmutableSet and Stream to process and handle
such sets.

public interface Node <E extends OWLObject > extends

Iterable <E> {

boolean isTopNode ();

boolean isBottomNode ();

Set <E> getEntities ();

...

}

public interface NodeSet <E extends OWLObject > extends

Iterable <Node <E>> {

boolean containsEntity(@Nonnull E e);

Set <Node <E>> getNodes ();

...

}

IRI International Resource Identifiers (IRIs) are used to uniquely identify
resources, such as classes, properties, and individuals in an ontology. Ontop
utilizes the RDF4J framework to handle these identifiers while the OWL API
utilizes its own implementation.
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3.2.2 Helper Methods

To facilitate readable and maintainable code, and to make development easier,
multiple helper methods were created. Helper methods are internal, private5,
methods which are further used again in other methods. Procedures that were
done repeatedly at multiple places in the code were extracted into their own
method and given a descriptive name. The majority of these methods are
conversion methods that convert object types to and from Ontop’s internal
types and the OWL API-provided types. Because the QuestOWL class inherits
from the OWL API OWLReasoner interface, every reasoning method of this
interface has its parameters and return types from this API. Since the task
was to utilize the ClassifiedTBox, which has its parameters and return types
from Ontop’s internal code, these conversion methods proved important to
implement. In addition, helper methods for handling Ontop’s Equivalences
object also proved useful. These include functions for retrieving equivalence
objects from the ClassifiedTBox DAGs, as well as the more complex task
of converting these equivalences back to OWL API.

Conversion of classes, data properties, and object properties

The main object types of the reasoning methods of the OWLReasoner interface
are those of OWLClass, OWLDataProperty, and OWLObjectPropertyExpression.
For each of these, Ontop has corresponding objects for internal use - we con-
cern ourselves with conversion methods to and from these objects first.

private OClass owlClassAsOClass(OWLClass owlClass) {

String iriString = owlClass.getIRI ().toString ();

IRI iri = rdfFactory.createIRI(iriString);

return classifiedTBox.classes ().get(iri);

}

private OWLClass oClassAsOWLClass(OClass oClass) {

String iriString = oClass.getIRI ().getIRIString ();

return owlDataFactory.

getOWLClass(IRI.create(iriString));

}

OWLClass represents a class in the OWL 2 specification - Ontop represents
this through OClass. Converting from OWLClass to OClass requires the fol-
lowing steps. First, we must retrieve a string representation of the IRI of the
class. This string can then be provided to the rdfFactory, an instance of the

5A method that can only be accessed and used within the class it is defined in, hiding it
from other classes.



3.2 QuestOWL 29

RDF4J framework (as mentioned at the start of section 3.2), to create an IRI

object. This IRI object is used to retrieve the OClass with that identifier from
classifiedTBox.classes().

The process of going from OClass to OWLClass is quite similar. The string
representation of the IRI of the class is retrieved, which again must be
used to construct an IRI object. However, since Ontop and the OWL API
concern themselves with IRI objects from two different APIs, we must
take caution to use the correct one. This IRI object can then be passed to
owlDataFactory.getOWLClass(IRI iri), provided by the OWL API, to
construct the corresponding OWLClass.

Figure 3.3: Converting an Ontop object property expression to its OWL API
counterpart in QuestOWL

We now present a more complex conversion method. When we convert an
object property expression, we must cover the case if the expression is an
inverse type of expression. An inverse object property expression is used to
refer to the inverse of a property, without actually naming the property. In
the OWL API, this is modeled by the OWLObjectInverseOf interface, which
extends from the OWLObjectPropertyExpression interface. A snippet of
the code used to convert an object property expression from the Ontop API to
the OWL API is provided in Figure 3.3. Here we can see how we first get the
object property, before checking if it is an inverse property and then retrieving
the correct expression.

Checking anonymous nodes

It proved important to create a method to check if all members of an equival-
ence set were anonymous nodes. This method was then further implemented
in the BFS implementation needed to handle direct relations (we cover this
implementation in detail in section 3.2.3). The isAllAnonymous method was
implemented with overloading6. Two constructors were developed:

return equivalences.getMembers ()

.stream ()

.noneMatch(x -> x instanceof OClass);

6Multiple constructors of the same name with different parameters.



30 Implementation of the OWLReasoner Interface in Ontop

return equivalences

.stream ()

.allMatch(this:: isAllAnonymous);

The method utilizes the Java Stream API and checks the members of the
equivalence set for any instance that is not an instance of OClass (Ontop’s
OWLClass counterpart).

Converting Ontop equivalences to OWL API

Recalling section 3.2.1, Equivalences is Ontop’s counterpart of the OWL API
Node interface and is much used internally in the DAG-based ClassifiedTBox
reasoner. We handle equivalence objects in many instances of the reasoning
methods that we implement, and therefore we must handle converting these to
the OWL API.

Figure 3.4: Converting an Ontop equivalences of data property expression to
Java Set

We present our helper method for converting an Equivalences object of type
DataPropertyExpression to a Java Set containing the expressions translated
to OWLDataProperty objects in Figure 3.4.

Handling direct sub of top concept

It became apparent to us that ClassifiedTBox implementation did not include
the top and bottom concepts in the DAGs it constructed. Seemingly stemming
from a conscious design decision, this led to some difficulties in covering these
cases in the appropriate reasoning methods. In particular, when handling the
case of retrieving the subclasses of the built-in owl:Thing, it was not feasible
to only retrieve the correct vertex of the DAG since no vertex of this built-in
class was included. We overcame this limitation by extending the implementa-
tion of the EquivalenceDAG object with a new method getDirectSubOfTop,
presented in Figure 3.5. This method filters out all vertices that an out-degree
larger than zero, leaving only vertices that are at the top of the DAG.
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Figure 3.5: Implementation in EquivalencesDAG retrieving the direct vertices
of the top of the DAG

3.2.3 Reasoning Methods

In the following, we will detail the implementation of the getSubClasses

method. This method is one of the most complex of the QuestOWL reasoner and
is the main method called by the Protégé plugin for displaying the inferred class
hierarchy. Other methods are less complex and more akin to just delegating. An
overview of the implementation of these other methods will also be provided,
however, less detailed.

public NodeSet <OWLClass > getSubClasses

(@Nonnull OWLClassExpression ce, boolean direct)

getSubClasses

This method gets all classes that subsume the input class expression, with
respect to the reasoner axioms. The method takes two arguments, a class
expression ce of type OWLClassExpression and a boolean value direct. The
boolean value determines whether only the direct or all descendants of the
class expression should be retrieved. Returned from the method is a NodeSet
containing the correct subclasses. It is important to keep in mind that NodeSet
is a collection of individual Nodes, each of which can contain multiple entities.
So, the returned value is a set of Nodes where each entity in the node represents
classes that are equivalent.
We consider the following cases:

1. The expression is part of the top concept (⊤ in DL).
2. The expression is part of the bottom concept (⊥ in DL).
3. The class entity is an anonymous class (without IRI).
4. The type of class expression. The expression can be either a class entity

or it can be a complex class expression. Complex expressions must be
handled differently from classes.

5. If the direct sub classes are to be retrieved. We must traverse the DAG
to find the closest named classes.
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Figure 3.6: Top and bottom concepts in the getSubClasses method of
QuestOWL

Expression type We first check the type of the class expression, which we do
by using the built-in .getClassExpressionType() method on the argument
ce. This method will return a string representation of the given expression type,
which we can then check using the ClassExpressionType enum7 object
provided by the OWL API. This can be either just a class, which is the simplest
form of a class expression or it can be some complex class expression8. In the
case of OWL 2 QL, the complex class expression can be an existential class
expression.

Top and bottom If it is the case that the class expression is of type Class,
we can continue with checking two edge cases. If the class IRI is either
owl:Thing or owl:Nothing, then they are built-in classes in OWL 2 and need
to be handled differently. Designed to represent the top and bottom concepts
from DL, owl:Thing represents the set of all individuals while owl:Nothing
represents the empty set. We present the code for checking these cases in
Figure 3.6. In the case of retrieving the subclasses of a class expression,
we can simply return an empty NodeSet if the class IRI is owl:Nothing,
since the bottom concept contains no individuals. However, if the class IRI is
owl:Thing, or if the IRI is neither of the two (i.e. not a built-in class), we can
proceed.

7A special type used to define a collection of constants.
8https://www.w3.org/TR/owl2-syntax/#Class_Expressions

https://www.w3.org/TR/owl2-syntax/#Class_Expressions


3.2 QuestOWL 33

Figure 3.7: Handling a complex class expression in QuestOWL

getSubClasses method

Anonymity Class expressions are always anonymous, so we do not have to
check these. However, classes can be either named (they have an IRI) or they
can be anonymous (without IRI). We easily perform this check with the OWL
API built in .isAnonymous() method on the class expression ce.

Complex expression If the expression is a complex expression, we must
check which type of complex expression we allow. In our case, we must
support existential restriction, which in the OWL API is represented by
OWLObjectSomeValuesFrom. This object consists of an object property ex-
pression and a class expression. We must further check the class expression -
the filler of the existential restriction. A filler value of anything other than a
class with IRI owl:Thing would be too complex, and is not in the scope of
this paper. However, if the filler value is a class with IRI owl:Thing we can
proceed (see Fig. 3.7).

Figure 3.8: Converting an OWLClass to Ontop Equivalences object from an
OWLClassExpression in QuestOWL
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Converting After we have identified which type of class expression the
argument is and verified that the expression can be supported, we continue
with converting the expression from the OWL API to Ontop’s internal API.
This is necessary in order to interact with the ClassifiedTBox implementa-
tion and retrieve the Equivalences for the given class expression. Recalling
section 3.2.2, we utilize our helper methods for much of this work. The equival-
ences are retrieved from the class DAG EquivalencesDAG<ClassExpression>

of the ClassifiedTBox, by using the converted class expression to find the
correct vertex of the graph. This gives us a corresponding equivalences object
Equivalences<ClassExpression>. We present in Figure 3.8 how we first
use the OWL API .asOWLClass() method to convert the class expression
to an OWLClass before we utilize our helper methods to eventually get an
Equivalences object.

Now that we have acquired the correct equivalences object, which contains
all classes that are equivalent to the input class expression, we can use this to
retrieve the corresponding sub-classes from the DAG. This is done by utilizing
methods that are already exposed by the DAG: getSub and getDirectSub,
which leads us to the next case we have to handle.

Figure 3.9: Handling direct (using BFS algorithm) vs indirect in QuestOWL

Direct Recall at the beginning of this section, the getSubClasses method
takes two arguments, a class expression ce of type OWLClassExpression and
a boolean value direct. The boolean value determines whether we should only
retrieve the direct relations or exhaustively travel until all relations have been
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retrieved. This notion of direct vs indirect is different in terms of the OWL API
compared to the DAG. Direct in the OWLAPI sense means we only consider
the sub-nodes that are connected to the given node via a (possibly empty) path
of only non-anonymous nodes. However, in the sense of the DAG, the direct
sub-nodes can refer to nodes which are anonymous, i.e. not named classes.
This proves no challenge if we want to find all sub-classes, as we can easily
utilize the getSub method of the DAG. However, this is not the case with
the getDirectSub method. We provide an example to further understand this
notion.

Figure 3.10: Resulting DAG from processing an ontology with complex class
expressions

Example 3 Handling direct

Expanding on the ontology in example 2 found in section 2.1.1, we provide
a visual of the resulting DAG of the ClassifiedTBox. As we can see in Fig-
ure 3.10, the nodes of the optimized DAG consist of both complex class expres-
sions (anonymous nodes) and classes (non-anonymous). The getSubClasses
method must traverse the DAG to find the subclasses of a given class expression
ce. Therefore, if we are tasked with finding the direct subclasses of some class
expression, it is not sufficient to travel only to the directly connected nodes of
a given start node. In this example we will cover both ways of traversing the
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DAG found in Fig. 3.10. We will find the subclasses of the top node of the DAG
- a node containing the class B. If we attempt the simple approach of traveling
out from each of the edges to the directly connected named nodes, we find that
we only get one node C as a result. We can see this in Fig. 3.11a, where the
red arrow indicates which node was visited. The two directly connected nodes
to node B are ∃r2.⊤ and C. From these two, only C is a named class. We are
interested in finding the closest direct (named) subclasses, and must therefore
employ a different strategy to achieve this.

(a) Direct named
subclasses in the DAG

(b) Direct named subclasses
skipping the anonymous nodes

in the DAG

Figure 3.11: Finding direct subclasses of B

To combat this, a Breadth-First Search (BFS) is implemented to traverse the
graph and find the closest direct nodes of named subclasses (BFS algorithm
covered in section 2.5). This algorithm is implemented in the code using a
queue and is presented in Figure 3.9. We initialize an empty result set and
initialize the queue with the direct sub-nodes of the given node, which is
the equivalence object. We use getDirectSub to initialize. When a node is
found that is not anonymous, it is added to the result set. If not, we recursively
proceed with adding its direct sub-nodes to the queue using getDirectSub.
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When the queue is empty, the algorithm terminates. The result of this algorithm
on node B of the DAG in Fig. 3.10 will give us two nodes, node A and node
C. As can be seen with the red arrows in Fig. 3.11b, the algorithm traverses
recursively through the nodes containing anonymous classes. It does this until
it either reaches the end of the DAG or until all named classes are found.

getEquivalentClasses

public Node <OWLClass > getEquivalentClasses(@Nonnull

OWLClassExpression ce)

This method gets the set of named classes that are equivalent to the specified
class expression with respect to the set of reasoner axioms. The classes are
returned as a single Node.

Figure 3.12: Retrieving equivalent classes with Java Stream in
getEquivalentClasses method

We consider the following cases:
1. The expression is part of the top concept (⊤ in DL).
2. The expression is part of the bottom concept (⊥ in DL).
3. The class entity is an anonymous class (without IRI).
4. The type of class expression.

We handle these cases the same as we did in the previous section (getSubClasses).
Presented in Figure 3.12, we show how we first retrieve the Equivalences

object, which we then iterate through by using the Java Stream API. We collect
the result in a Set and return this set as an OWLClassNode.

getObjectPropertyRanges

This method gets the named classes that are the direct or indirect ranges of this
property expression with respect to the import closure of the root ontology. The
classes are returned as a NodeSet. The method was implemented by following
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an algorithm declared in the documentation of the OWL API method. We
present the algorithm in pseudocode:

PE = PropertyExpression

let invPE = ObjectInverseOf(PE) owl:Thing

let OPE = ObjectSomeValuesFrom(invPE)

let N = getEquivalentClasses(OPE)

If direct is true:

then if N is not empty:

then the return value is N,

else the return value is

the result of getSuperClasses(OPE , true)

If direct is false:

then the result of getSuperClasses(OPE , false)

together with N if N is non -empty

The Ontop implementation is presented in Fig. 3.13. We simply follow the
procedure specified in the OWL API documentation.

Figure 3.13: Implementation of getObjectPropertyRanges
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Evaluation

This chapter serves to evaluate and test our implementation. We test the im-
plementation in two main ways. We compile our implementation and run it in
the Protégé application, testing if the hierarchies are as we expect (section 4.1)
before we perform unit tests on the reasoning methods, testing them in isolation
(section 4.2).

4.1 Protégé Test
We test if the reasoner implementation works as we expect by loading the
Ontop plugin into the Protégé ontology editor. Here we concern ourselves with
comparing the asserted and inferred hierarchies. We load a test ontology file
with some complex expressions into the ontology editor. The asserted hierarch-
ies will not pick up on these complex expressions - this is what our reasoner is
for. We initialize the Ontop reasoner and compare the two hierarchies.

To test Ontop in Protégé we first need to build and compile. This can be done
in two ways: (i.) compile the Ontop plugin and manually replace the .jar file
in Protégé’s file structure with our plugin, or (ii.) compile the Protégé software
and Ontop plugin together which will yield an executable we can directly run.
We utilize the provided Maven bash script (mvnw) to build and compile. We
specify which Maven profile to utilize in the following manner:

./mvnw -Passet -protege -plugin

./mvnw -Passet -protege

In our case it proved easier to compile Protégé and the Ontop plugin bundled
together, so we ended up mainly using the latter command. Protégé allows us
to easily construct ontologies with a graphical user interface. We present the
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Figure 4.1: Protégé asserted (see top) and inferred (see bottom) hierarchies
with our reasoner implementation
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asserted and inferred hierarchies of an ontology created for test purposes. This
ontology contains the following axioms:

• SubClassOf(D, A)
• SubClassOf(A, someR1)
• SubClassOf(someR1, someR2)
• SubClassOf(someR2, B)
• SubClassOf(C, B)
• SubClassOf(E, someR2)
• ObjectPropertyDomain(someR2, D)

where:
– someR1 = ObjectSomeValuesFrom(r1, OWLThing())
– someR2 = ObjectSomeValuesFrom(r2, OWLThing())

We select Ontop as the reasoner of choice in Protégé and initialize it. The
ontology and axioms are processed by QuestOWL, and we can inspect the
resulting hierarchy. Both the asserted hierarchy and the resulting hierarchy
are presented in Figure 4.1. As we expect, the two are not identical. Our
implementation has successfully inferred new knowledge from the already
asserted knowledge in the system.

4.2 Unit Testing

We test the reasoner implementation through unit testing, the basic idea is to
break down the complex system into small manageable, and testable units. We
have created 43 test cases in total, we illustrate some representative ones below.
Some selected interesting test cases are also provided in the appendix A.

In the test environment, we utilize the OWLFunctionalSyntaxFactory, provided
to us by the OWL API. This allows us to easily construct test cases. Con-
structing an ontology is done by using the Ontology constructor class in
the OWLFunctionalSyntaxFactory. Classes, properties, and axioms are also
defined by utilizing the object factory. We detail this here:

String prefix = "http :// www.example.org/";

OWLClass A =

Class(IRI.create(prefix + "A"));

OWLObjectProperty r1 =

ObjectProperty(IRI.create(prefix + "r1"));

OWLDataProperty d1 =

DataProperty(IRI.create(prefix + "hasAge"));
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These are some ways to create classes, object properties, and data properties
with the OWLFunctionalSyntaxFactory provided by the OWL API. Keep
this in mind as we detail a subset of test cases in the following sections.

Case 1a.

This case is to test basic reasoning of getSubclasses and the cardinality of
the NodeSet.

NodeSet <OWLClass > subClasses =

reasoner.getSubClasses(C, false);

assertTrue(subClasses.containsEntity(A));

assertTrue(subClasses.containsEntity(B));

assertEquals (1, subClasses.getNodes ().size());

Input The ontology contains the following three axioms:
• SubClassOf(A, C)
• SubClassOf(B, C)
• EquivalentClasses(A, B)

Expected getSubClasses(C, false) will return exactly one node, which
contains both A and B.

Case 1b.

This case is to test reasoning of a complex expression of getSubclasses.

NodeSet <OWLClass > subClasses =

reasoner.getSubClasses(B, false);

assertTrue(subClasses.containsEntity(A));

assertTrue(subClasses.containsEntity(C));

assertTrue(subClasses.containsEntity(D));

Input The ontology contains the following four axioms:
• SubClassOf(A, ObjectSomeValuesFrom(r1, OWLThing()))
• SubClassOf(ObjectSomeValuesFrom(r1, OWLThing()), B)
• SubClassOf(D, C)
• SubClassOf(C, B)

Expected getSubClasses(B, false) will return three nodes, A, C and D.
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Case 1c.

This case is to test reasoning of getSubclasses when the class expression is
the built-in owl:Thing, with direct argument set to true.

NodeSet <OWLClass > subClasses =

reasoner.getSubClasses(OWLThing (), true);

assertFalse(subClasses.containsEntity(Male));

assertFalse(subClasses.containsEntity(Female));

assertTrue(subClasses.containsEntity(Person));

Input The ontology contains the following two axioms:

• SubClassOf(Male, Person)
• SubClassOf(Female, Person)

Expected getSubClasses(OWLThing(), true) will return one node, Person.

Case 1d.

The following case replicates the ontology from example 2 mentioned earlier in
section 2.1.1. This case is to test more complex reasoning of getSubclasses
when direct is true. Test retrieving direct sub-classes from the DAG. Done by
utilizing BFS to search for the nearest named class.

NodeSet <OWLClass > subClasses =

reasoner.getSubClasses(B, true);

assertEquals (2, subClasses.getNodes ().size());

assertTrue(subClasses.containsEntity(A));

assertTrue(subClasses.containsEntity(C));

Input The ontology contains the following five axioms:

• SubClassOf(D, A)
• SubClassOf(A, someR1)
• SubClassOf(someR1, someR2)
• SubClassOf(someR2, B)
• SubClassOf(C, B)

where:
– someR1 = ObjectSomeValuesFrom(r1, OWLThing())
– someR2 = ObjectSomeValuesFrom(r2, OWLThing())
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Expected getSubClasses(B, true) will return two nodes, A and C.

Case 2a.

This case is to test reasoning of getEquivalentClasses with a complex
expression.

Node <OWLClass > equivalentClasses =

reasoner.getEquivalentClasses(someR1);

assertTrue(equivalentClasses.contains(A));

assertTrue(equivalentClasses.contains(B));

Input The ontology contains the following three axioms:

• EquivalentClasses(A, someR1)
• EquivalentClasses(B, someR2)
• EquivalentClasses(someR1, someR2)

where:
– someR1 = ObjectSomeValuesFrom(r1, OWLThing())
– someR2 = ObjectSomeValuesFrom(r2, OWLThing())

Expected getEquivalentClasses(someR1) will return two nodes, A and
B.

Case 3a.

This case is to test reasoning of getDisjointClasses.

NodeSet <OWLClass > disjointClasses =

reasoner.getDisjointClasses(A);

assertTrue(disjointClasses.containsEntity(B));

assertTrue(disjointClasses.containsEntity(C));

assertTrue(disjointClasses.containsEntity(G));

assertFalse(disjointClasses.containsEntity(D));

assertFalse(disjointClasses.containsEntity(E));

assertFalse(disjointClasses.containsEntity(F));

Input The ontology contains the following three axioms:

• DisjointClasses(A, B, C)
• DisjointClasses(D, E, F)
• DisjointClasses(A, G)
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Expected getDisjointClasses(A) will return three nodes, B, C and G.

Case 4a.

This case is to test simple reasoning of getObjectPropertyDomains.

NodeSet <OWLClass > domains =

reasoner.getObjectPropertyDomains(r1, false);

assertTrue(domains.containsEntity(A));

assertTrue(domains.containsEntity(B));

assertFalse(domains.containsEntity(C));

assertFalse(domains.containsEntity(D));

Input The ontology contains the following four axioms:

• ObjectPropertyDomain(r1, A)
• ObjectPropertyDomain(r1, B)
• ObjectPropertyRange(r1, C)
• ObjectPropertyRange(r1, D)

Expected getObjectPropertyDomains(r1, false) will return two nodes,
A and B.
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Chapter 5

Conclusion and Future Work

This chapter concludes the paper. We restate the research objective and lim-
itation, reiterating what has been done to address the limitation (section 5.1)
before we discuss what future work is possible (section 5.2).

5.1 Conclusion

We have proved that it is possible to use the functionality present in the
internal DAG-based reasoner implementation in Ontop. The ClassifiedTBox
of QuestOWL was utilized to provide complex TBox reasoning capabilities,
improving on the dummy reasoner implementation which was already present.
We developed methods for converting necessary objects between the OWL
API and Ontop’s internal API, such that they could be used to interact with
the internal DAG-based reasoner implementation in QuestOWL. With a focus
on reasoning methods important for displaying proper class- and property
hierarchies in Protégé, we implemented the TBox reasoning methods inside
QuestOWL and made them OWL API compliant. The implementation was
tested thoroughly through unit testing and application testing through Protégé
and its plugin interface. We proved our implementation to infer and display
a potentially richer hierarchy than the explicitly asserted one, proving our
research objective.

5.2 Future Work

More Testing

It could prove useful to further test the implementation to verify its integrity.
This should be done both with unit testing and testing in Protégé as a plugin.
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Other cases

There are some other methods that require not only the DAGs that were
exposed to us by the ClassifiedTBox. These methods require accessing both
the TBox and ABox, and cannot be simply delegated to the corresponding
DAGs. Since Ontop’s internal DAG implementation only concerns itself with
the TBox, we cannot implement any OWL API methods that require ABox
reasoning. Examples of such methods are getTypes and getInstances.

Caching

Minor performance benefits might be gained from implementing a caching
solution in the reasoner implementation. More specifically, this could be im-
plemented in the conversion layer between the OWL API and Ontop’s internal
API. The internal reasoning capabilities in QuestOWL are exposed through the
ClassifiedTBox which uses Ontop’s internal classes and types. QuestOWL
reasoner in Ontop is OWL API compliant - which means that the parameters
and return values of the Java methods must adhere to this API. The consequence
of this is that to utilize the internal implementation of the ClassifiedTBox,
argument and return types must be translated to and from these two API’s.
Currently, these translations are done on the fly as they are needed and sub-
sequently “thrown away” when the active reasoning task is finished. Depending
on the size of the ontology in question, there may be an influx of translations
between these two API’s.

It could prove useful to cache the results of such a conversion and save it to
some key-value store or map. This way, already translated values do not have
to go through the same process again. Instead, the value in question can just be
retrieved from the cache.

More research needs to be done to verify whether there is any performance to
be gained from this. In theory, performance gains should increase in tune with
ontology size. However, this must be tested in practice.
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Additional test cases

Case 5a.

This case is to test reasoning of getSubClasses when the class expression is
the built in owl:Thing, with direct argument set to false.

NodeSet <OWLClass > subClasses =

reasoner.getSubClasses(OWLThing (), false);

assertTrue(subClasses.containsEntity(Male));

assertTrue(subClasses.containsEntity(Female));

assertTrue(subClasses.containsEntity(Person));

Input The ontology contains the following two axioms:

• SubClassOf(Male, Person)
• SubClassOf(Female, Person)

Expected getSubClasses(OWLThing(), false) will return three nodes,
each containing one entity, Male, Female, and Person.

Case 5b.

This case is to test reasoning of getSubClasses with object property domain.
Direct is set to true.

NodeSet <OWLClass > subClasses =

reasoner.getSubClasses(B, true);

assertTrue(subClasses.containsEntity(A));

assertEquals (1, subClasses.getNodes ().size());
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Input The ontology contains the following two axioms:
• SubClassOf(A, ObjectSomeValuesFrom(r1, OWLThing()))
• ObjectPropertyDomain(r1, B)

Expected getSubClasses(B, true) will return one node, containing B.

Case 6a.

This case is to test reasoning of getDisjointObjectProperties.

NodeSet <OWLObjectPropertyExpression >

disjointProperties =

reasoner.getDisjointObjectProperties(r1);

assertTrue(disjointProperties.containsEntity(r2));

Input The ontology contains the following axiom:
• DisjointObjectProperties(r1, r2)

Expected getDisjointObjectProperties(r1) will return one node, con-
taining r2.

Case 7a.

This case is to test reasoning of getSubObjectProperties with the top
object property and direct set to true.

NodeSet <OWLObjectPropertyExpression > subProperties =

reasoner.getSubObjectProperties(

owlTopObjectProperty , true);

assertFalse(subProperties.containsEntity(r1));

assertTrue(subProperties.containsEntity(r2));

assertTrue(subProperties.containsEntity(r2.

getInverseProperty ()));

Input The ontology contains the following axiom:
• SubObjectPropertyOf(r1, r2)

Expected getDisjointObjectProperties(r1) will return two nodes, con-
taining r2 and r2−1.
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Case 7b.

This case is to test reasoning of getSubObjectProperties with the top
object property and direct set to false.

NodeSet <OWLObjectPropertyExpression > subProperties =

reasoner.getSubObjectProperties(

owlTopObjectProperty , false);

assertTrue(subProperties.containsEntity(r1));

assertTrue(subProperties.containsEntity(r1.

getInverseProperty ()));

assertTrue(subProperties.containsEntity(r2));

assertTrue(subProperties.containsEntity(r2.

getInverseProperty ()));

Input The ontology contains the following axiom:

• SubObjectPropertyOf(r1, r2)

Expected getDisjointObjectProperties(r1) will return four nodes,
containing r1, r1−1, r2 and r2−1.

Case 8a.

This case is to test reasoning of getSuperClasses with the bottom concept
and direct set to false.

NodeSet <OWLClass > superClasses =

reasoner.getSuperClasses(OWLNothing (), false);

assertTrue(superClasses.containsEntity(A));

assertTrue(superClasses.containsEntity(B));

Input The ontology contains the following axiom:

• SubClassOf(A, B)

Expected getSuperClasses(OWLNothing(), false) will return two nodes,
containing A and B.
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