
University of Bergen
Department of Informatics

Multitask variational autoencoders

Author: Edvards Zakovskis

Supervisors: Nello Blaser, Kristian Gundersen

June, 2024

Abstract

Variational autoencoders (VAEs) are widely used for generative modeling and repre-

sentation learning tasks. This thesis presents two novel approaches aimed at enhancing

the performance of VAEs through the integration of semi-conditional variational autoen-

coders (SCVAEs). The integration of SCVAEs and VAEs is motivated by the potential

for improvement in the effectiveness of capturing the underlying data distribution and

the improvement in generating high-quality samples.

The first method extends the traditional VAEs by incorporating a second conditioned

decoder, thereby enabling the model to multi-task and learn better latent representations.

The second method utilizes a unified decoder for both tasks by employing sophisticated

training strategies. These approaches are implemented and evaluated on Gaussian VAEs

and VQ-VAEs.

Extensive experimentation is conducted across diverse image datasets, including

MNIST, CIFAR10, and CelebA. The results show that, in certain cases, the proposed

methods yield superior performance compared to standard VAE architectures. By bridg-

ing the gap between SCVAEs and VAEs, this work gives new insights on how to improve

the methods further and opens up new avenues for future research in the field of generative

modeling.

Acknowledgements

First, I would like to express my deepest gratitude to my supervisors, Nello Blaser and

Kristian Gundersen, for their unwavering support and helping to stay on track throughout

the master’s project. During this project, their mentorship has really helped to shape the

work and improve the quality of this thesis. I am especially thankful for their generosity

in sharing their time and insights during our meetings. The discussions we’ve had have

provided invaluable clarity and direction to my work.

I am also grateful to my friends and family for their unwavering support, even during

my time abroad. Their encouragement and understanding not only helped me to navigate

the challenges of academic life but also played a crucial role in preventing homesickness.

Special thanks to my fiancée for her endless patience and unwavering support through-

out this journey.

Edvards Zakovskis

Saturday 1st June, 2024

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objective . 3

1.3 Thesis Outline . 4

2 Background 5

2.1 VAEs . 5

2.1.1 The reparameterization trick . 7

2.1.2 Gaussian VAEs . 8

2.2 Vector Quantized VAEs . 11

2.2.1 Discrete Latent Variables . 12

2.2.2 Learning . 13

2.3 Semi-Conditioned VAEs . 16

2.4 Multitask Learning . 17

2.5 Additional concepts . 17

2.5.1 PixelCNN . 17

2.5.2 Random number generation using Power law distribution 19

2.5.3 SoftAdapt: Adaptive loss weighting 19

3 Methods 21

3.1 Conditioning information . 21

3.2 Multidecoder method . 22

3.2.1 Conditioning strategy . 23

3.2.2 Application to Gaussian VAEs . 23

3.2.3 Application to VQ-VAEs . 25

3.3 Single decoder method . 27

3.3.1 Conditioning strategy . 28

3.3.2 Application to Gaussian VAEs . 29

3.3.3 Application to VQ-VAEs . 29

i

3.4 Experimental setup . 32

3.4.1 Datasets . 32

3.4.2 Network architecture and hyperparameters 32

3.4.3 Training . 33

4 Results 34

4.1 Results of Multidecoder method . 34

4.1.1 Results on Gaussian VAEs . 35

4.1.2 Results on VQ-VAEs . 36

4.2 Results of Single decoder method . 39

4.2.1 Results on Gaussian VAEs . 39

4.2.2 Results on VQ-VAEs . 41

4.3 Cross-validation results . 42

5 Discussion 46

5.1 Analysis of Multidecoder method . 46

5.1.1 Findings on Gaussian VAEs . 47

5.1.2 Findings on VQ-VAEs . 47

5.2 Analysis of Single decoder method . 48

5.2.1 Findings on Gaussian VAEs . 48

5.2.2 Findings on VQ-VAEs . 49

5.3 Comparative Analysis . 49

5.4 Limitations . 50

5.5 Future Work . 51

6 Conclusion 52

Bibliography 54

ii

List of Figures

2.1 Illustration diagram of the reparameterization trick 8

2.2 Architecture of Gaussian VAEs. 11

2.3 Architecture of VQ-VAEs. 15

2.4 Conditional generation in autoregressive models 18

3.1 The illustration of the process of obtaining the conditioning information

m from the input image x and the mask. 22

3.2 Multidecoder method applied to Gaussian VAEs. 25

3.3 Multidecoder method applied to VQ-VAEs. 27

3.4 Single decoder method applied to Gaussian VAEs. 29

3.5 Single decoder method applied to VQ-VAEs. 30

3.6 Table of pixel sampling types for conditioning. 31

4.1 Validation loss during training of a Gaussian VAE. 36

4.2 Trained neural network with Multidecoder method applied to a Gaussian

VAE. 36

4.3 Validation loss comparison during training of a Gaussian VAE. 38

4.4 Trained neural network with Multidecoder method applied to a VQ-VAE. 38

4.5 Validation loss during training with Single decoder method applied on

Gaussian VAE. 40

4.6 Reconstruction loss comparison with different exponent values. 40

4.7 Validation loss comparison during training of a VQ-VAE. 41

4.8 Reconstruction loss comparison with different exponent values. 42

iii

Chapter 1

Introduction

This chapter provides an overview of the research topic and the underlying motivation

for research in this thesis. In the first section, I will talk about the motivation behind

the research. In the second section, I will talk about the objective of the thesis and the

research questions that I will attempt to answer. Finally, I will provide a brief outline

for the rest of the thesis.

1.1 Motivation

Over the past 10 years, Variational Autoencoders (VAEs) have become valuable assets

in the field of deep learning and generative modeling. At the most basic level, they are

used as tools for data generation and compression by learning the underlying patterns

and structures present in a given dataset. VAEs have shown their versatility and have

found applications in multiple domains, including image generation, anomaly detection,

natural language processing, and speech synthesis [9, 10, 18, 13]. However, VAEs, given

a limited set of data and compute power, have limitations and challenges, which are

described below.

One of the key challenges traditional VAEs face is that they tend to produce blurry,

over-smoothed samples. This is due to the fact that the VAE objective is to maximize the

evidence lower bound (ELBO) which is a trade-off between the reconstruction accuracy

and the KL divergence between the approximate posterior and the prior. Also, the

prior distribution is often chosen to be a simple distribution such as a standard normal

1

distribution, which can limit the expressiveness of the latent space and the generative

capabilities of the model [10].

An additional challenge for traditional VAEs is the phenomenon known as posterior

collapse. Posterior collapse occurs when the latent variables become uninformative, lead-

ing to the model ignoring them and relying solely on the decoder to reconstruct the input

data. As a result, the model representations become less interpretable and the generative

capabilities of the model are compromised [10].

More recently Vector Quantized Variational Autoencoders (VQ-VAEs) have been in-

troduced to address VAE’s limitations. There are two key differences between VQ-VAEs

and VAEs. One is that the latent space of VQ-VAEs is discrete, which is achieved by

Vector Quantization (VQ). The other is that the prior distribution is learned instead of

being assumed to be static. This allows the model to capture the underlying structure

of the data more effectively, which allows VQ-VAEs to capture fine-grained details in the

data, whilst maintaining the interpretability of latent representations and generational

properties of VAEs. The prior distribution is learned by training a separate model called

PixelCNN, which is trained to model the prior distribution of the latent space and thus

achieve the ELBO objective with two models instead of one. VQ-VAEs have been shown

to produce samples with higher fidelity and have been since used in a variety of appli-

cations such as high-resolution image generation, text-to-image generation and speech

synthesis [18, 14, 13].

The VQ-VAE architecture solves the problem of capturing fine-grained details in the

data, whilst maintaining the interpretability of latent representations and generational

properties of VAEs. Although VQ-VAEs are more effective in capturing fine-grained

details in the data, it is still challenging to capture all the sources of variation in the

data in a single model. This is especially true when the data has multiple sources of

variation, such as in the case of images, where the data can have multiple types of

objects, backgrounds, and lighting conditions [10, 18, 14]. One potential approach to

address this issue could involve employing multitask learning, where the model is trained

to tackle numerous tasks simultaneously.

Semi-conditional Variational Autoencoders (SC-VAEs) are a type of VAE in which

the decoder distribution is conditioned on a specific subset of the input data. While

SC-VAEs sacrifice the ability to efficiently generate samples solely from the latent space,

they retain the capability to generate samples based on the provided subset of input data.

This additional information is then used to reconstruct the input data, which has been

2

shown to be useful in the context of reconstructing very sparse data and uncertainty

quantification and looks to be a promising approach to be explored in the context of

multitask learning [5].

Multitask learning is a paradigm that aims to improve model generalization and per-

formance by simultaneously learning multiple related tasks. The concept of combining

VAEs with multitask learning has undergone some experimental exploration in the re-

search community, although it has not been thoroughly investigated [12]. Multitask

Variational Autoencoders (MT-VAEs) extend the VAE model to take advantage of the

extra information or tasks that are available in the data. This approach holds the promise

of improving the reconstruction accuracy and generalization capabilities of VAEs, as well

as enhancing their interpretability [3].

The research in this thesis aims to investigate the effectiveness and potential of in-

tegrating semi-conditional and standard VAEs within a single model through multitask

learning. The investigation will explore the potential of this approach in the context of

both standard VAEs and VQ-VAEs. Specifically, the research will introduce two methods

for combining semi-conditional and non-conditioned VAEs namely Multidecoder method

and Single decoder method.

In the Multidecoder method, the semi-conditional and non-conditioned VAEs are

combined with two decoders, where one decoder is conditioned, and the other is not. In

Single decoder method, the semi-conditional and non-conditioned VAEs are combined

with a single decoder, which can be conditioned or non-conditioned by masking the input

data.

The main goal of this research is to investigate the potential of these methods to

improve the reconstruction accuracy and generalization capabilities of VAEs and VQ-

VAEs and by performing a thorough analysis and experimentation, the aim is to shed

light on the advantages and limitations of these methods.

1.2 Objective

In this thesis, I aim to investigate and explore the integration of SCVAEs that can be

combined with standard non-conditioned VAEs through multitask learning. My objective

is to determine whether my proposed methods: Multidecoder method and Single decoder

3

method which leverage multitask learning can enhance the performance of VAEs com-

pared to traditional ones, and if so, under what conditions. Additionally, I will explore

the applicability of these methods to VQ-VAEs.

More specifically, I will attempt to answer the following questions:

• How can the Multidecoder method and the Single decoder method be implemented

and integrated with Gaussian VAEs?

• Can the combination of semi-conditional and non-conditional VAEs be used to

improve the reconstruction accuracy and generalization capabilities of VAEs on

non-conditioned tasks?

• Could the same approaches be applied to VQ-VAEs?

• What are the limitations of these methods?

1.3 Thesis Outline

The outline for the rest of the thesis is as follows:

• Chapter 2: Background - This chapter provides the necessary background in-

formation to understand the research presented in this thesis.

• Chapter 3: Methods - This chapter describes the proposed methods for combin-

ing semi-conditional and standard non-conditional VAEs.

• Chapter 4: Results - This chapter presents the results of the experiments that

were conducted to evaluate the proposed methods.

• Chapter 5: Discussion - This chapter discusses the results of the experiments

and provides an analysis of the findings. Furthermore, it refers to the objectives

and research questions of the thesis and provides an overview of the limitations and

future work.

• Chapter 6: Conclusion - This chapter summarizes the research presented in this

thesis and provides suggestions for future work.

4

Chapter 2

Background

In this chapter, I am going to introduce the concepts that are necessary to understand

the research presented in this thesis. The chapter is divided into five sections. The first

section provides an overview of Variational Autoencoders (VAEs) and their applications.

The second section introduces Vector Quantized VAEs (VQ-VAEs). The third section

introduces the concept of semi-conditioned VAEs. The fourth section introduces the

concept of multitask learning. The chapter concludes with a section that delves into

additional concepts that are necessary to understand the research presented in this thesis.

2.1 VAEs

Variational Autoencoders (VAEs), first introduced in 2013 by Kingma and Welling [9],

have become a prominent class of generative models in the field of machine learning. At

their core, VAEs consist of an encoder network with parameters ϕ that maps data points

x into a latent space z and a decoder network with parameters θ that generates data x̂

from latent representations [10].

The key innovation that makes VAEs work is the introduction of a probabilistic in-

terpretation of the latent space. More specifically, VAEs assume that the latent space z

is a random variable that follows a certain prior distribution p(z), which is typically a

Gaussian distribution and that the mapping from the latent space to the data space is

also probabilistic [9].

5

The optimization target for VAEs is the evidence lower bound (ELBO), which is

Lθ,ϕ(x) = Eqϕ(z|x)[log pθ(x, z)− log qϕ(z|x)],

where qϕ(z|x) is the encoder distribution, pθ(x, z) is the decoder distribution.

The ELBO can be also written as a sum of two terms,

Lθ,ϕ(x) = −DKL(qϕ(z|x)||p(z)) + Eqϕ(z|x)[log pθ(x|z)],

where:

• DKL(qϕ(z|x)||p(z)) is the Kullback-Leibler divergence between the encoder distri-

bution qϕ(z|x) and the prior distribution p(z)

• Eqϕ(z|x)[log pθ(x|z)] is the reconstruction term

The Kullback-Leibler divergence term encourages the encoder (posterior) distribution

to align with the prior distribution, acting as a regularization term. This alignment is

crucial for an effective utilization of the latent space. On the other hand, the reconstruc-

tion term encourages the decoder to reconstruct the input data as accurately as possible,

which encourages the decoder to accurately capture the data distribution. Whilst the

expression of the ELBO might appear different from the original formulation, it remains

equivalent, merely using different terms to express the same notion [10].

Sampling from qϕ(z|x) involves drawing samples denoted as z(l) ∼ qϕ(z|x), enabling
the Monte Carlo estimation—a method for numerical approximation using random sam-

pling—of the following objective function:

Lθ,ϕ(x) = −DKL(qϕ(z|x)||p(z)) +
1

L

L∑
l=1

log pθ(x|z(l)),

where L represents the number of samples drawn, as described in [10].

The individual data point ELBO and its gradients are in general intractable to com-

pute. However, unbiased estimates of the ELBO and its gradients can be obtained using

the reparameterization trick, which is described in the next section [10].

6

2.1.1 The reparameterization trick

The reparameterization trick is one of the crucial components of VAEs. It is used

to make the ELBO differentiable with respect to the parameters of the encoder ϕ and

decoder θ through a change of variables [10].

Change of variables

The notion is based on the fact that it is possible to express the random variable

z ∼ qϕ(z|x) as a differentiable function of a random variable ϵ and the parameters ϕ

such that z = gϕ(ϵ, x), where ϵ is a random variable that is independent of ϕ and x and

ϵ ∼ p(ϵ). Given this change of variables, the expectation with respect to qϕ(z|x) can be

rewritten as an expectation with respect to p(ϵ)

Eqϕ(z|x)[f(z)] = Ep(ϵ)[f(gϕ(ϵ, x))],

where f is an arbitrary function [10]. As a result, the gradients of the expectation and

gradient operators become commutative, and there can be formed a Monte Carlo estimate

of the gradients

∇ϕEqϕ(z|x)[f(z)] = ∇ϕEp(ϵ)[f(gϕ(ϵ, x))]

= Ep(ϵ)[∇ϕf(gϕ(ϵ, x))]

≃ 1

L

L∑
l=1

∇ϕf(gϕ(ϵ
(l), x))

where ϵ(l) ∼ p(ϵ) and L is the number of samples [10]. This is the reparameterization

trick, which is further explained and illustrated in the figure 2.1.

Gradients of the ELBO

When applying the reparameterization trick to the ELBO it becomes differentiable

with respect to both ϕ and θ, and it is possible to form a Monte Carlo estimate of the

gradients

∇ϕ,θLθ,ϕ(x) = ∇ϕ,θEqϕ(z|x)[log pθ(x, z)− log qϕ(z|x)]

= Ep(ϵ)[∇ϕ,θ[log pθ(x, gϕ(ϵ, x))− log qϕ(gϕ(ϵ, x)|x)]]

7

≃ 1

L

L∑
l=1

∇ϕ,θ[log pθ(x, gϕ(ϵ
(l), x))− log qϕ(gϕ(ϵ

(l), x)|x)]

where ϵ(l) ∼ p(ϵ) and L is the number of samples. This is the key to training VAEs

using stochastic gradient descent. The resulting Monte Carlo gradient estimate is used

to update the parameters of the encoder and decoder networks [10].

Original Form Reparametrized Form

f

z

xϕ

f

z

xϕ ϵ

∇zf

∇ϕf

: Deterministic node

: Random node

: Calculation of f

: Differentiation of f

Figure 2.1: Illustration diagram of the reparameterization trick. The input of a func-
tion f is x. The parameters θ affect the objective of the function f through a random
variable z. In the original form, we can not compute the gradients ∇ϕf , because direct
backpropagation is not possible through a random variable. In the reparameterized form,
the randomness is separated from the parameters ϕ, which enables the gradients to be
computed. This is done by reparameterizing the random variable z as a deterministic
function and differentiable function of ϕ, x and a new random variable ϵ [10]

.
Credit: Adapted from Kingma and Welling[10]

2.1.2 Gaussian VAEs

Although Gaussian VAEs are just a special case of VAEs, they are the most common

type of VAEs. Gaussian VAEs assume that the prior distribution p(z) is a centered

Gaussian distribution p(z) = N (0, I). They also assume that the decoder distribution

pθ(x|z) is a Gaussian distribution whose distribution parameters are computed from z by

8

the decoder network. The decoder distribution is given by

pθ(x|z) = N (fθ(z), I)

where fθ(z) represents the mean of the Gaussian distribution, and I denotes the identity

matrix, ensuring a constant standard deviation. Whilst there is a lot of freedom in the

form qϕ(z|x) can take, Gaussian VAEs assume that qϕ(z|x) is also a Gaussian distribution

with an approximately diagonal covariance matrix:

qϕ(z|x) = N (µϕ(x), σϕ(x))

where µϕ(x) and σϕ(x) are the mean and standard deviation of the Gaussian distribution,

which are computed by the encoder network.

To sample z from qϕ(z|x), we can use the reparameterization trick described in the

previous section

z = µϕ(x) + σϕ(x)⊙ ϵ,

where ϵ ∼ N (0, I) is a random variable sampled from a standard Gaussian distribution

and ⊙ denotes element-wise multiplication.

When applying these assumptions to the ELBO, we get the following expression:

Lθ,ϕ(x) = −DKL(qϕ(z|x)||p(z)) +
1

L

L∑
l=1

log pθ(x|z(l))

= −DKL(N (µϕ(x), σϕ(x))||N (0, I)) +
1

L

L∑
l=1

logN (x|fθ(z(l)), I)

where fθ(z
(l)) = fθ(µϕ(x) + σϕ(x)⊙ ϵ(l)) and ϵ(l) ∼ N (0, I).

However, the loss function to be minimized for VAEs usually used in practice is

quite different from the ELBO negative. The function that is used in practice consists of

Mean Squared Error (MSE) reconstruction loss, KL divergence regularization loss and a

constant β that controls the importance of the regularization term

L =
1

D

D∑
i=1

||xi − x̂||2 + β
1

2

Z∑
i=1

(
− log σ2

ϕ(x)i − 1 + µ2
ϕ(x)i + σ2

ϕ(x)i

)
,

where x̂ = fθ(µϕ(xi)+σϕ(xi)⊙ϵ(i)) and ϵ(i) ∼ N (0, I), D is the dimension of the input data

and the Z is the dimension of the latent space [10, 8]. The second term in the function

9

is derived from simplifying the KL divergence term in the ELBO, which is shown in

the equation 2.1. The first term in the function is the MSE reconstruction loss because

maximizing the Gaussian likelihood is approximately equivalent to minimizing the MSE

reconstruction loss. This is shown in the equation 2.2.

DKL(qϕ(z|x)∥pθ(z)) =
w
qϕ(z|x)

[
log qϕ(z|x)− log pθ(z)

]
dz

=
w
qϕ(z|x)

[
−1

2
log(2πσ2

ϕ(x))−
(z − µϕ(x))

2

2σ2
ϕ(x)

−
(
−1

2
log 2π − z2

2

)]
=

1

2

w
qϕ(z|x)

[
− log σ2

ϕ(x)−
(z − µϕ(x))

2

σ2
ϕ(x)

+ z2
]

=
1

2

(
− log σ2

ϕ(x)− 1 + µ2
ϕ(x) + σ2

ϕ(x)

)
(2.1)

argmax
θ

logN (x|fθ(z), I) = argmax
θ

log

[
1

σ
√
2π

exp

(
− 1

2σ2
(x− fθ(z))

2

)]
= argmax

θ

[
log

1

σ
√
2π

− 1

2σ2
(x− fθ(z))

2

]
= argmax

θ
−1

2
(x− fθ(z))

2

(2.2)

In the figure below 2.2 there is a visualization of the architecture of Gaussian VAEs.

10

x Encoder Decoder x̂

ϕ

ϵ

θ

σ

µ

z

⊙
MSE

DKL

Reparam. trick

L

Figure 2.2: Architecture of Gaussian VAEs. The input x is passed through the encoder
with parameters ϕ producing the mean µ and the standard deviation σ of the Gaussian
distribution. The random variable ϵ is sampled from a standard Gaussian distribution
and is used to sample z = µ+ σ ⊙ ϵ. The sampled z is then passed through the decoder
with parameters θ producing the output x̂. The loss function to be minimized is the sum
of the MSE reconstruction loss and the KL divergence regularization loss.

Credit: Adapted from Kingma and Welling [10]

2.2 Vector Quantized VAEs

Vector Quantized VAEs (VQ-VAEs) are a variant of VAEs that were introduced in

2017 by Aäron van den Oord et al. [18]. The VQ-VAEs have shown various improve-

ments over the standard VAEs, such as higher quality of the generated samples, better

disentanglement of the latent space, and better generalization to unseen data. [18].

VQ-VAEs have found extensive application across various domains, showcasing their

versatility and effectiveness. One very notable application is in the realm of image gen-

eration, where models like DALL-E have leveraged the notion of a discrete latent space

introduced by VQ-VAEs to generate high-quality and diverse images from textual de-

scriptions [13]. DALL-E, introduced by OpenAI, utilizes VQ-VAEs to map textual input

to discrete latent codes, which are then decoded into coherent images that align with

the given descriptions. This capability enables the generation of novel and high-quality

images based on textual prompts, demonstrating the power of VQ-VAEs in creative AI

applications. Additionally, VQ-VAEs have been applied in speech synthesis, music gen-

eration, and text-to-image synthesis tasks, further highlighting their broad utility and

effectiveness in various creative and generative tasks [14, 4, 6, 13].

11

The VQ-VAEs fundamentally differ in two key ways from VAEs. Firstly, the latent

representation is discrete instead of continuous. Secondly, the prior distribution is learned

rather than being fixed. The posterior and prior distributions are categorical and the

samples taken from these distributions are the indices of the embeddings in the embedding

space. These matched indices are then used to look up the embeddings in the embedding

space and then used as input to the decoder [18].

The VQ-VAE learning process consists of two stages. In the first stage, the encoder

and the decoder are trained. In the second stage a prior over these discrete latent variables

is trained [18].

2.2.1 Discrete Latent Variables

VQ-VAEs focus on discrete latent variables, which is a more natural fit for many types

of data. Language and speech naturally is a stream of discrete units, such as words or

phonemes. Images can be often well described by language, which can make the discrete

representations well-suited for images as well. Moreover, discrete representations work

very well with complex reasoning, and decision-making [18].

VQ-VAEs define a latent embedding space e ∈ RK×D, where K is the number of

embeddings and D is the dimension of each latent embedding vector. The model takes

an input x, which is passed through the encoder producing output ze(x), as shown in

figure 2.3. The discrete latent variables z are then calculated by nearest neighbor lookup

in the embedding space

z = argmin
k

||ze(x)− ek||2,

where ek is the k-th embedding vector in the embedding space. The decoder then takes

the discrete latent variables z and produces the output x̂. One can see this forward

propagation as a regular autoencoder with a quantization step in the middle [18].

The posterior categorical distribution qϕ(z|x) is defined as follows:

q(z = k|x) =

1 if k = argmink ||ze(x)− ek||2

0 otherwise
, (2.3)

where ze(x) is the output of the encoder network and ek is the k-th vector in the em-

bedding table. The discrete latent variable z is then used to look up the corresponding

embedding vector ek in the embedding space, which is then used as input to the decoder

network. The decoder network then produces the output x̂ [18]. The decoder distribution

pθ(x|z) is assumed to be a Gaussian distribution.

12

2.2.2 Learning

As mentioned earlier, the VQ-VAEs introduce learning the prior distribution sepa-

rately from the posterior distribution. The prior distribution is defined as a categorical

distribution pω(z), where z is a discrete latent variable [18].

Since the proposed posterior distribution qϕ(z|x) is deterministic by applying it to the

ELBO objective, we get the following expression:

Lθ,ϕ,ω(x) = −DKL(qϕ(z = k|x)||pω(z)) + Eqϕ(z=k|x)[log pθ(x|z = k)],

= −Eqϕ(z=k|x)[log
qϕ(z = k|x)

pω(z)
] + Eqϕ(z=k|x)[log pθ(x|z = k)],

= − log
1

pω(z)
+ log pθ(x|z = k),

= log pω(z) + log pθ(x|z = k),

(2.4)

The VQVAE learning process is then divided into two stages, where in the first stage

the first term is ignored, and the second term is maximized. In the second stage, the

prior distribution is trained. In the next 2 subsections, I will describe both stages in more

detail.

First stage

In the first stage, the log-likelihood of the posterior distribution is maximized, which

means the encoder and the decoder are trained with the prior distribution being arbitrary.

The training objective in the first stage is reduced to

Lθ,ϕ(x) = log pθ(x|z = k),

where k is the index of the nearest embedding vector in the embedding space, which

is defined in equation 2.3. We can look at the first stage as training a regular autoen-

coder with a quantization step in the middle, which inherently makes the latent space

distribution categorical [18].

However, the expression k = argmink ||ze(x)− ek||2 is not differentiable with respect

to the parameters of the network. To make the training process differentiable, the au-

thors of the VQ-VAEs propose to use the straight-through estimator, which is a way

13

of estimating the gradients of the non-differentiable function, and copy the gradients of

zq(x) to ze(x) [18]. The straight-through estimator only works if the difference between

ze(x) and ek is small, which can be achieved by adding extra loss terms to the training

objective. [21]

This is where the VQ objective comes in. The VQ objective uses the second term of

equation 2.5 to encourage the encoder to produce representations that are close to the

embedding vectors in the embedding space, which is called the commitment loss [18].

However, since the embedding space can be arbitrarily large the embedding vectors

can be arbitrarily far from the encoder output. To prevent this, the authors of the VQ-

VAEs propose to add another term to the training objective, which is called codebook

loss. The codebook loss encourages the embedding vectors to be close to the encoder

output. The codebook loss has β as a hyperparameter, which controls the importance of

the codebook loss [18].

Thus, the resulting training objective becomes

L = log pθ(x|z = k)−
(
||sg(ze(x))− ek||2 + β||zq(x)− sg(ek)||2

)
, (2.5)

where sg is the stop gradient operation, which is defined as an identity function, but with

the gradients of the output set to zero.

The loss function to be minimized for VQ-VAEs usually used in practice is the sum

of the VQ objective and the MSE reconstruction loss. The first term in the function is the

MSE reconstruction loss because maximizing the Gaussian likelihood is approximately

equivalent to minimizing the MSE reconstruction loss. This is shown in the equation 2.2.

Thus, the resulting training objective to be minimized becomes

L =
1

D

D∑
i=1

||xi − x̂i||2 +
1

Z

Z∑
i=1

(
||sg(ze(x))i − eki ||2 + β||zq(x)i − sg(eki)||2

)
,

where x̂ = fθ(zq(x)), where function fθ is the decoder network, D is the dimension of

the input data, Z is the number of latent space vectors and ki is the index of the nearest

embedding vector in the embedding space for the i-th latent space vector, which is defined

in equation 2.3 [18].

In the figure below 2.3 there is a visualization of the architecture of VQ-VAEs.

14

15

ze(x) zq(x)

e1
e2 e3

ek

3
Encoder Decoder

e3

e1
e2

ϕ θ

x x̂

e

MSE

L

1
2

||sg(ze(x)) − e||2+
β||ze(x) − sg(e)||2

z

∇zqL

Figure 2.3: Architecture of VQ-VAEs. The input x is passed through the encoder con-
volutional neural network producing the output ze(x). For each output vector in ze(x),
the nearest embedding vector in the embedding table e is found. The indices of the
nearest embedding vectors are then used as the discrete latent variables z. The discrete
latent variables z are then used to look up and retrieve the corresponding embedding
vectors. The retrieved embedding vectors are then used as input to the decoder convolu-
tional neural network producing the output x̂. During the backward pass the gradients
of the gradients of zq(x) are copied to ze(x) using the straight-through estimator, which
is illustrated with a red arrow. Upper Left: The visualization of the embedding space
during training. The encoder output vector is shown as a dark green dot and the nearest
embedding vector is shown as a dark purple dot. The commitment and codebook loss
encourage both the encoder output vector and the nearest embedding vector to be close
to each other [18].

Credit: Adapted from Aäron van den Oord et al. [18].

Second stage

The second stage objective is to train the prior distribution pω(z) over the discrete la-

tent variables. The latent variables z are sampled from the posterior distribution qϕ(z|x),
which is defined in equation 2.3. The prior distribution is categorical and can be made

autoregressive by depending on other latent variables z [18].

The prior distribution pω(z) is then trained to match the distribution of the latent

variables z sampled from the posterior distribution qϕ(z|x). To achieve this the authors

of the VQ-VAEs use an autoregressive model to model the prior distribution. The au-

toregressive model authors used is a Gated PixelCNN, which is a variant of PixelCNN,

which is described in subsection 2.5.1 [18].

2.3 Semi-Conditioned VAEs

Semi-conditional VAEs were first introduced in 2020 [5]. Semi-conditional VAEs (SC-

VAEs) are a variant of VAEs that were first designed for the reconstruction of non-linear

dynamic processes based on sparse observations. The semi-conditional VAEs extend

the standard VAEs framework by adding an additional input m to the decoder network

pθ(x|z,m), which is used to condition the decoder on the additional information. The

additional information m can be any type of information that is available at the time

of the reconstruction and can be used to improve the reconstruction of the data. In the

original paper, the authors used the SCVAEs to reconstruct fluid flow data. The addi-

tional information m was the sparse measurements of the flow data. The method was

showcased on two different datasets, velocity data from simulations of 2D flow around a

cylinder, and bottom currents [5].

Natural applications for the SCVAEs are related to domains where there are often

sparse measurements, such as environmental data. However, the SCVAEs can also be

used, for instance, in computer vision to generate new images based on sparse pixel

representations [5]. The semi-conditional property of the SCVAEs could also be applied

to the VQ-VAEs, which has not been explored yet in the literature. Also, the potential of

combining non-conditioned and semi-conditioned VAEs through multitask learning has

not been explored yet, which is the main motivation for this thesis.

16

2.4 Multitask Learning

Multitask learning is a machine learning paradigm where multiple tasks are learned at

the same time, which has the aim of leveraging the shared information between the tasks

to improve the performance of the individual tasks. Unlike traditional single-task learn-

ing, where each task is learned independently, multitask learning allows taking advantage

of task relationships and learning a shared representation that is useful for all tasks [3].

The notion of using multitask learning comes from the observation that the tasks are

often related and depend on the same underlying features. This can be beneficial in

scenarios where the data is limited, which is often the case for medical data [1].

For example, let’s consider medical image analysis, where the objective is to develop a

system for identifying and classifying different types of abnormalities in medical images.

Traditionally this could be done by training a separate model for each type of abnormality.

However, this approach is suboptimal due to limited data and the shared features that

could be used to identify and classify multiple types of abnormalities [3]. In this scenario,

multitask learning emerges as a promising approach. Instead of training separate models

for each type of abnormality, a single model is trained to perform all tasks simultaneously.

This model could encompass tasks such as image reconstruction and classification of

different conditions.

Multitask learning proves particularly effective when the tasks show interrelatedness

and data availability is limited and the potential to enhance model performance under-

scores its significance in machine learning. Moreover, its application has an unexplored

potential in the context of VAEs and VQ-VAEs, which is the main motivation for this

thesis.

2.5 Additional concepts

2.5.1 PixelCNN

The PixelCNNs are a prominent autoregressive architecture used in the field of pixel-

level prediction. These models operate on images at the level of each individual pixel,

learning to generate images or predict missing pixels one at a time. Deep autoregressive

17

Figure 2.4: Conditional generation in autoregressive models. The model generates the
pixels of the image one at a time, conditioning the previous pixels. The model is autore-
gressive because the distribution of each pixel is conditioned on the previous pixels.

Credit: Adapted from the original PixelCNN paper [17].

models have been shown to be very effective at modeling the full distribution and gen-

erating relatively low-resolution images. Generating high-resolution images with merely

autoregressive models is challenging because the size of the network increases rapidly

with the size of the image [17, 16].

Autoregressive models treat an image as a sequence of pixels and the goal is to model

the conditional distribution of each pixel given the previous pixels. Image x is represented

as a one-dimensional sequence of pixels x = (x1, x2, . . . , xN), where xi is the i-th pixel

in the image and N is the number of pixels in the image. The estimate of the joint

distribution of the pixels over an image x is given by the product of the conditional

distributions of each pixel given the previous pixels

p(x) =
N∏
i=1

p(xi|x1, x2, . . . , xi−1),

where p(xi|x1, x2, . . . , xi−1) is the conditional distribution of the i-th pixel given the pre-

vious pixels. The generational process of the image is then done by sampling each pixel

sequentially from the conditional distribution of the pixel given the previous pixels, which

is shown in the figure 2.4 [17].

The PixelCNN in the original architecture is a stack of fifteen fully convolutional

network layers with masked convolutions. The masked convolutions are used to ensure

that the model can only access the previous pixels, which is crucial for the model to

be autoregressive. The model is trained to minimize the negative log-likelihood of the

training data. The PixelCNNs have been shown to be very effective at capturing the

18

distribution of the data. Most current state-of-the-art models use the PixelCNNs as a

building block for example PixelCNN++ and PixelSNAIL [17, 15, 2].

Application in VQ-VAEs

The PixelCNNs are used in the VQ-VAEs to model the prior distribution pω(z) over

the discrete latent variables. The prior distribution is trained to match the distribution

of the latent variables z sampled from the posterior distribution qϕ(z|x). The PixelCNN

in combination with the VQ-VAEs has been shown to be exceptional at capturing the

distribution of the latent variables and generating high-resolution samples [18].

2.5.2 Random number generation using Power law distribution

Power law distribution in probability theory and statistics is a distribution in which

one variable is proportional to the power of the other, i.e., p(x) ∝ xα, where x is the

random variable and α is the exponent parameter, where α determines the shape of the

distribution. The power law distribution is a heavy-tailed distribution, which means

that the probability of the large values is higher than in the normal distribution. The

power law distribution is used in various fields, such as physics, biology, economics, and

computer science [20].

One example of the power law distribution could be the function f(x) = axα−1 for

0 ≤ x ≤ 1, a > 0. One advantage to this distribution is that this distribution has a finite

range and is easy to scale to any range. This fact will be used when power law distribution

is used to sample the number of pixels to be conditioned on in the semi-conditional VAEs.

2.5.3 SoftAdapt: Adaptive loss weighting

SoftAdapt is a novel approach to address the challenge of dynamically adjusting

weights for multipart loss functions in deep learning. In machine learning, multipart

loss functions are common, wherein the loss function is composed of a sum of loss terms.

Traditionally, the loss terms of multipart loss function are weighted equally, or their

weights are determined through heuristic methods. Whilst this approach can work well

in practice, it is not optimal because the importance of the loss terms can vary during

the training process and the optimal weights can be hard to determine [7].

19

The approach of the SoftAdapt algorithm which was published in 2020 is to mathe-

matically determine the optimal weights of the loss terms given a short loss history. By

evaluating the rate of change for each loss term, it tries to dynamically learn the optimal

weights for the loss terms and adapt them during the training process [7]. The SoftAdapt

algorithm since its publication has been shown to be effective in various machine learning

applications, such as generative models, model compression and physics-informed neural

networks.

In this thesis, the SoftAdapt algorithm will be utilized to dynamically adjust the

weights of the loss terms. This approach holds promise as it offers a method to obtain

optimal weights for the loss terms and is especially useful in the proposed Multidecoder

method as it has multiple loss terms that need to be weighted optimally.

20

Chapter 3

Methods

This chapter will detail the methods employed in this thesis to integrate SCVAEs and

non-conditioned VAEs using multitask learning, focusing specifically on image data. For

clarity, the chapter will be divided into four sections.

The initial section will describe the various conditioning strategies that were employed

in this thesis. Following this, the subsequent section will delve into the methodology of

combining SCVAEs with non-conditioned VAEs utilizing dual decoders - one conditioned

and the other unconditioned. This method will be referred to as Multidecoder method.

Subsequently, another method of merging SCVAEs with non-conditioned VAEs will be

presented in the subsequent section. This approach involves utilizing a single decoder

for both tasks by employing novel training strategies, which will be referred to as Single

decoder method. It is important to note that both methods will be applied to both

Gaussian VAEs and VQ-VAEs.

The final section outlines the experimental setup that was used to evaluate the pro-

posed methods, whilst also providing a brief overview of the datasets, network architec-

ture, and hyperparameters used in the experiments.

3.1 Conditioning information

In this thesis, I will obtain the conditioning information m from the input image x by

sampling some pixels from the input image x. In this process, the first step is to obtain

a mask which will be used to sample the pixels from the input image x. The mask will

21

Original

Mask

m

Figure 3.1: The illustration of the process of obtaining the conditioning information m
from the input image x and the mask. The process to obtain the conditioning information
m consists of two steps: the first step is to obtain the masked image from the input image
x and the mask, and the second step is to add the mask to the masked image to obtain the
conditioning information m. The conditioning information m is then used to condition
the decoder.

be a binary matrix of the same size as the input image x, where a value of 1 represents

the sampled pixels and a value of 0 represents the pixels that are not sampled. The

decision of how many pixels to sample and which pixels to sample will be described in

the following sections for each method.

After the mask is obtained, the mask is applied to the input image x to obtain

the masked image, which is then used to obtain the conditioning information m by

concatenating the mask with the masked image, which can be seen in Figure 3.1.

In both proposed methods, the conditioning information m will be incorporated into

the decoder by first flattening it and then concatenating it with the input of the de-

coder and then using a fully connected layer before passing it through the transposed

convolutional layers of the decoder.

3.2 Multidecoder method

In the first method, the VAE framework is expanded with a second decoder pξ(x|z,m),

which is conditioned on an additional property m of the input data. This approach

involves utilizing two decoders within the VAE framework: one for reconstructing the

input data solely based on a trained neural network with Multidecoder method latent

variable z, and the other for reconstructing the input data based on both the latent

variable z and the additional conditioning information m, see Figures 3.2 and 3.3.

22

3.2.1 Conditioning strategy

In this method, the conditioning information m is acquired by sampling a constant

number of pixels from the input data. To sample the pixels from the input image x, I

will use a pixel sampling operation, which will be described in the following section.

Pixel Sampling operation

I will explore two-pixel sampling types for this method, which can be seen in Figure 3.6

and are described as follows:

1. Exact Sampling: In this sampling type, the conditioning information m is sam-

pled from the input image x by sampling the same sparse pixels from the input

image x. In this work, the pixels that will be sampled from the input image will be

a sparse grid of pixels.

2. Uniform Random Sampling: In this sampling type, the conditioning informa-

tion m is sampled from the input image x by sampling the exact number of pixels

from the input image x uniformly at random.

The sampling process will be done every time the input image x is passed through the

model. This means that in the case of the Uniform Random Sampling, the conditioning

information m will be different for each time the image is passed through the model. This

is done to ensure that the model learns to generalize and handle various cases.

3.2.2 Application to Gaussian VAEs

In Gaussian VAEs, the integration of a second conditioned decoder pξ(x|z,m) follows

a similar approach as outlined in the general method description. However, some specific

adjustments and considerations need to be taken into account when applying this method

to Gaussian VAEs.

The integration of the second conditioned decoder pξ(x|z,m) into the Gaussian VAEs

framework involves flattening and concatenating the latent variable z and the conditioning

information m and passing it through a fully connected layer before passing it through

23

the transposed convolutional layers of the second decoder. Although a new latent variable

could have been sampled for the second decoder, the same latent variable z is used instead

of sampling a new one. This is done to ensure that the latent variable z is the same for

both decoders and ensures that it is easier to compare the reconstructions of the input

data. The architecture of the Gaussian VAE framework with the second conditioned

decoder is illustrated in Figure 3.2

Although the training strategy could have been to train decoders by alternating be-

tween them, in this thesis, I will explore the training strategy where both decoders are

trained simultaneously.

In Gaussian VAEs, the loss objective consists of two components: the reconstruction

loss and the KL divergence term. However, with the inclusion of the second conditioned

decoder, the loss objective is extended to include the reconstruction loss of the second

conditioned decoder. The overall loss objective to be minimized becomes

L = W1
1

D

D∑
i=1

||xi−x̂1i ||2+W2
1

D

D∑
i=1

||xi−x̂2i ||2+β
1

2

Z∑
i=1

(
− log σ2

ϕ(x)i−1+µ2
ϕ(x)i+σ2

ϕ(x)i

)
,

where D is the number of pixels in the input image, xi is the i-th pixel of the input

image, x̂1 is the output of the first decoder, x̂2 is the output of the second decoder, β is

the KL divergence weight, Z is the dimension of the latent space, µϕ(x) and σϕ(x) are the

mean and the standard deviation of the Gaussian distribution produced by the encoder,

respectively. The resulting loss has also extra weight parameters W1 and W2 to balance

and control the importance of reconstruction loss, which will be hyperparameters of the

model.

During the training process, the encoder is trained to produce an accurate mean and

standard deviation of the Gaussian distribution, and the decoders are trained to produce

accurate reconstructions of the input data.As a result of the integration of the second

conditioned decoder, the model has the ability to reconstruct the input data based just

on the latent variable z and as well as the conditioning information m.

24

x Encoder

Decoder1

x̂2

ϕ

ϵ

θ

σ

µ

z

⊙

MSE

DKL

Reparam. trick

L

Decoder2

x̂1

MSE

Sampling

ξ

m

Figure 3.2: Multidecoder method applied to Gaussian VAEs. The Gaussian VAEs frame-
work is extended by adding a second conditioned decoder pξ(x|z,m). The input x is
passed through the encoder with parameters ϕ producing the mean µ and the standard
deviation σ of the Gaussian distribution. The random variable ϵ is sampled from a stan-
dard Gaussian distribution and is used to sample z = µ + σ ⊙ ϵ. The sampled z is then
used as input to both decoders. As a result, the loss function consists of three compo-
nents: the MSE reconstruction loss of the first decoder, the MSE reconstruction loss of
the second decoder and the KL divergence regularization loss.

3.2.3 Application to VQ-VAEs

The approach of integrating the second conditioned decoder pξ(x|z,m) into the VQ-

VAEs framework is similar to the approach used for Gaussian VAEs. However, some

differences need to be taken into account when applying this method to VQ-VAEs.

One of the main differences is that the VQ-VAEs framework uses a discrete latent

space and the Vector Quantization which is described in section 2.2. This means that the

latent variable z is a discrete variable that represents the indexes of the embedding table

vectors. This means that first the corresponding embedding table vectors zq(x) must

be computed for the latent variable z before flattening and concatenating it with the

conditioning information m and then using a fully connected layer before the transposed

convolutional layers of the second decoder. The architecture of the VQ-VAEs framework

with the second conditioned decoder is illustrated in Figure 3.3.

25

The training strategy is the same as in Gaussian VAEs, where both decoders are

trained simultaneously. This means that the loss objective must be extended to include

the reconstruction loss of the second conditioned decoder. In VQ-VAEs, the loss objective

consists of three components: the MSE reconstruction loss, the commitment loss and the

codebook loss. However, with the inclusion of the second conditioned decoder, the loss

objective is extended to include the reconstruction loss of the second conditioned decoder.

The overall loss objective to be minimized becomes

L = W1
1

D

D∑
i=1

||xi−x̂1i ||2+W2
1

D

D∑
i=1

||xi−x̂2i ||2+
1

Z

Z∑
i=1

(
||sg(ze(x)i)−eki||2+β||zq(x)i−sg(eki)||2

)
,

where D is the number of pixels in the input image, xi is the i-th pixel of the input

image, x̂1 is the output of the first decoder, x̂2 is the output of the second decoder, Z

is the number of latent space vectors, ze(x) is the output of the encoder, zq(x) is the

mapping output after Vector Quantization, ek is the k-th embedding table vector, β is

the commitment loss weight, sg is the stop gradient operation, which was previously

defined in the background section 2.2.

After the first stage of the training, the model has the ability to reconstruct the input

data based just on the latent variable z and as well as the conditioning information m.

To generate the latent variable z, one must train a separate autoregressive model, which

will be used to generate the latent variable z.

26

ze(x) zq(x)

e1
e2 e3

ek

3
Encoder

Decoder1ϕ

θ

x

x̂

e

MSE

L

1
2

||sg(ze(x)) − e||2+
β||ze(x) − sg(e)||2

z

∇zqL

Decoder2 MSE

x̂

Sampling m

ξ

Figure 3.3: Multidecoder method applied to VQ-VAEs. The VQ-VAEs framework is
extended by adding a second conditioned decoder. Instead of using a fully connected
layer to merge the latent variable z and the conditioning informationm, the corresponding
embedding table vectors zq(x) must be computed for the latent variable z before merging
it with the conditioning information m. As a result of adding the second conditioned
decoder, the loss function requires the addition of the MSE reconstruction loss of the
second decoder.

3.3 Single decoder method

In the Single decoder method, the idea is to employ a single decoder within the VAE

architecture that is capable of reconstructing the input data under variable condition-

ing. Variable conditioning means that the conditioning information m can be a variable

amount of information or just an empty mask. This method differs from the Multide-

coder method in that it uses a single decoder for both tasks and dynamically adjusts its

behavior based on the amount of information present in the variable m.

This method utilizes a single decoder that dynamically adjusts its behavior based on

the amount of information present in the variable m. When the conditioning information

27

is available, the decoder incorporates it into the reconstruction process and takes advan-

tage of it to get the best reconstruction. Otherwise, it operates solely based on the latent

variable z.

To achieve this, in this method, I will use different conditioning strategies, which will

be described in the following subsection.

3.3.1 Conditioning strategy

Similar to the previous method, the conditioning information m is acquired by sam-

pling pixels from the input image x. However, in this method, the process of sampling

the conditioning information m is different in that the conditioning information m is

sampled by selecting a variable number of pixels from the input image x. This is done

to ensure that the decoder of the model learns to handle various cases where there is

variable conditioning information.

To achieve this, I will implement a two-step sampling process:

1. Sampling the number of pixels: In this step, the number of pixels to be sampled

from the input image x is sampled from a power law distribution. The power law

distribution is scaled to the size of the input image x and is used to sample the

number of pixels to be sampled from the input image x.

2. Sampling the pixels: In this step, the conditioning information m is sampled

from the input image x by sampling the number of pixels sampled in the previous

step from the input image: uniformly at random or from a Gaussian distribution.

Both of these sampling types can be seen in Figure 3.6.

The sampling two-step process will be done every time the input image x is passed

through the model. This means that the conditioning information m will be different for

each time the image is passed through the model. This is done to ensure that the model

learns to generalize and handle various cases.

During training, the number of pixels to be sampled from the input image x varies

every time the input image x is passed through the model and is sampled from a power

law distribution. The power law distribution is chosen because it can have a finite range

and scalability, which makes it suitable for sampling the number of pixels from the input

image. The exponent of the power law distribution will be chosen to be high so that

the decoder can learn to handle also the cases where the conditioning information is not

available. The exponent will be a hyperparameter of the model.

28

3.3.2 Application to Gaussian VAEs

In Gaussian VAEs, applying the second method involves modifying the decoder to

be capable of reconstructing the input data under variable conditioning. The modified

decoder pξ(x|z,m) is capable of reconstructing the input data based on the latent variable

z and the conditioning information m or just the latent variable z if the conditioning

information is not available and is just an empty mask filled with zeros.

This is achieved by using a fully connected layer to merge the latent variable z and

the conditioning information m before passing it through the transposed convolutional

layers. The architecture of the Gaussian VAEs framework with a single decoder capable

of variable conditioning is illustrated in Figure 3.4.

x Encoder Decoder x̂

ϕ

ϵ

θ

σ

µ

z

⊙
MSE

DKL

Reparam. trick

L

m1.Count sampling
2.Pixel sampling

Figure 3.4: Single decoder method applied to Gaussian VAEs. The Gaussian VAEs
framework is modified by allowing the decoder to be conditioned on a variable amount of
information and to dynamically adjust its behavior based on the amount of information
present in the variable m. The input x is passed through the encoder with parameters ϕ
producing the mean µ and the standard deviation σ of the Gaussian distribution. The
random variable ϵ is sampled from a standard Gaussian distribution and is used to sample
z = µ + σ ⊙ ϵ. The sampled z is then used as input to the decoder as well as the extra
conditioning information m. With this approach, there is no need for a second decoder,
as the single decoder is capable of reconstructing the data based on the latent variable z
and the conditioning information m or just the latent variable z.

3.3.3 Application to VQ-VAEs

In VQVAEs, the same as in Gaussian VAEs, the second method involves modifying

the decoder to be capable of receiving variable conditioning information. Unlike Gaussian

29

VAEs, the VQ-VAEs use Vector Quantization to discretize the continuous latent space,

which is described in section 2.2. Since the latent variable z is just a representation of

the indexes of the embedding table vectors, the latent variable z must be first mapped

to the corresponding embedding table vectors resulting in zq(x) representation. Then

the same process as in Gaussian VAEs is applied where the latent variable zq(x) and

the conditioning information m are merged using a fully connected layer before passing

it through the transposed convolutional layers of the decoder. The architecture of the

VQ-VAEs framework with a single decoder capable of variable conditioning is illustrated

in Figure 3.5.

ze(x) zq(x)

e1
e2 e3

ek

3
Encoder Decoder

ϕ θ

x x̂

e

MSE

L

1
2

||sg(ze(x)) − e||2+
β||ze(x) − sg(e)||2

z

∇zqL

m

1.Count sampling
2.Pixel sampling

Figure 3.5: Single decoder methodapplied to VQ-VAEs. The VQ-VAEs framework is
modified by allowing the decoder to be conditioned on a variable amount of information
and to dynamically adjust its behavior based on the amount of information present in
the variable m. The input x is passed through the encoder producing the output ze(x).
The output ze(x) is then used as input to the autoregressive model to generate the latent
variable z. The latent variable z is then used as input to the decoder as well as the extra
conditioning information m. With this approach, there is no need for a second decoder,
as the single decoder is capable of reconstructing the data based on the latent variable z
and the conditioning information m or just the latent variable z.

30

31

O
ri
gi
na
l

Exact
M
as
k

R
es
ul
t

Uniform

Gaussian

Figure 3.6: Table of pixel sampling types for conditioning. The table has 3 rows each
representing a different sampling type. The first row represents the Exact Sampling
type, the second row represents the uniform random sampling type and the third row
represents the Gaussian sampling type where the pixels are more likely to be sampled
from the center of the image. The first column represents the original image, the second
column represents the mask and the third column represents the result of the sampling
operation.

3.4 Experimental setup

In this section, I will describe the experimental setup that was used to evaluate the

proposed methods. The full code for experiments was implemented in Python using

Pytorch library and is available on GitHub1.

3.4.1 Datasets

The proposed methods were evaluated on the MNIST, CIFAR-10 and CelebA datasets.

The MNIST dataset consists of 60,000 images of the size 28x28 pixels with 10 classes.

The CIFAR-10 dataset consists of 60,000 colored images of the size 32x32 pixels with 10

classes. The CelebA dataset consists of 202,599 images of celebrities with 10,177 identities

and 40 binary attributes. In these experiments, the CelebA dataset images were resized

to 64x64 pixels to reduce the computational complexity. The datasets will be split into

training, validation and test sets, where the training set will be used to train the models

and the validation set will be used to evaluate.

3.4.2 Network architecture and hyperparameters

The encoder and the decoder of the models will be convolutional neural networks.

The number of layers and the number of filters in each layer will be hyperparameters

of the model. Both the encoder and the decoder will have a similar architecture of

convolutional layers followed by batch normalization layers and LeakyReLU activation

functions. However, the encoder and the decoder for the Gaussian VAEs will be more

shallow compared to the VQ-VAEs, because the Gaussian VAEs suffer from the posterior

collapse if the neural network is too deep.

For Gaussian VAEs experiments were conducted in 2 configurations:

• Config. 1: latent space dimension of 16, with hidden dimensions of 32, 64, 128, 256

• Config. 2: latent space dimension of 64, with hidden dimensions of 32, 64, 128, 256

For VQ-VAEs experiments were conducted in 3 configurations:

1https://github.com/EdvardsZ/MastersThesis

32

https://github.com/EdvardsZ/MastersThesis

• Config. 1: 128 embeddings and 16 the embedding dimension, hidden dimensions

for both encoder and decoder were set to 32 and 64 and 0 residual layers.

• Config. 2: 128 embeddings and 32 the embedding dimension, hidden dimensions

for both encoder and decoder were set to 128 and 256 and 2 residual layers.

• Config. 3: 256 embeddings and 64 the embedding dimension, hidden dimensions

for both encoder and decoder were set to 128 and 256 and 4 residual layers.

3.4.3 Training

The models were trained using the AdamW optimizer with a learning rate of 10−3

and a batch size of 128 for 100 epochs. The best models were selected based on the

cross-validation results. The models were trained on a single GPU.

33

Chapter 4

Results

This chapter presents the findings of the experiments conducted in this master’s thesis.

The chapter is divided into two sections. The first section presents the results of Multi-

decoder method, and the second section presents the results of Single decoder method,

where both methods will be evaluated in the context of both Gaussian VAEs and VQ-

VAEs. In the final section, I will present the cross-validation results of both methods on

all datasets and configurations in this thesis.

4.1 Results of Multidecoder method

In this section, I will present the results of applying Multidecoder method on both

Gaussian VAEs and VQ-VAEs, with a comparative analysis of the baseline models with-

out the method applied. The primary performance metrics that we will focus on are the

reconstruction loss and the KL divergence loss of the latent space in the case of Gaussian

VAEs and the VQ objective loss in the case of VQ-VAEs.

The results presented in this section are based on the experiments conducted on the

CelebA dataset with Config. 2 for Gaussian VAEs and Config. 3 for VQ-VAEs. The

results on other configurations showed similar results with minor differences and can be

found in the last section of this chapter 4.3. The experiments will be compared and

analyzed with respect to both Exact Sampling and Uniform Sampling and tested with

the SoftAdapt loss balancing technique and without it.

34

4.1.1 Results on Gaussian VAEs

The experiments unveiled the effectiveness of Multidecoder method on Gaussian VAEs

in fulfilling its core task of training two decoders with a shared encoder. Upon analysis, it

became evident that the implementation of Multidecoder method successfully reduced the

reconstruction loss for both the conditioned and non-conditioned decoders. However, it

was observed that the KL divergence loss of the latent space increased with the application

of Multidecoder method, which can be seen in figure 4.1 and table 4.1.

Remarkably, as expected, the conditioned decoder consistently produced higher-

quality reconstructions compared to its non-conditioned counterpart, as evidenced by

the figure 4.2. Further comparison between the Exact Sampling and Uniform Sampling

methods revealed minimal differences in the results, as shown in table 4.1.

Moreover, the experiments explored the impact of employing the SoftAdapt loss bal-

ancing technique. Surprisingly, in this case, the results showed negligible differences

between its application and the absence of it. However, the utilization of SoftAdapt

appeared to stabilize the training process by reducing fluctuations in the losses.

Additionally, experiments involving deeper neural networks unveiled a higher like-

lihood of training instability in the form of posterior collapse - a common challenge

encountered in Gaussian VAEs [19]. Consequently, a more sophisticated configuration of

a Gaussian VAE was deemed unsuitable for the experiments.

Method Parameters
Reconstruction loss
(Non-Conditioned) KL loss

Baseline - 0.0097 +- 4.2e-03 63.0518 +- 2.4e+01
Multi Decoder Exact sampling 0.0091 +- 1.5e-03 ↓ 75.4975 +- 4.2e+00 ↑
Multi Decoder Exact sampling, SoftAdapt 0.0088 +- 4.1e-03 ↓ 79.4443 +- 1.5e+02 ↑
Multi Decoder Uniform sampling 0.0089 +- 6.4e-04 ↓ 77.7421 +- 3.2e+01 ↑
Multi Decoder Uniform sampling, SoftAdapt 0.0087 +- 1.9e-02 ↓ 80.9779 +- 3.8e+02 ↑

Table 4.1: Cross-validation results of Multidecoder method applied to a Gaussian
VAE(Config. 2) on the CelebA dataset.

35

0 20 40 60 80 100

Epoch

60

70

80

90

100

K
L
L
os
s

KL Loss

Gaussian VAE, Multi Decoder, Exact sampling, SoftAdapt

Gaussian VAE

0 20 40 60 80 100

Epoch

0.009

0.010

0.011

0.012

0.013

0.014

R
ec
on

st
ru
ct
io
n
L
os
s

Reconstruction Loss

Gaussian VAE, Multi Decoder, Exact sampling, SoftAdapt

Gaussian VAE

Figure 4.1: Average validation losses during training with and without Multidecoder
method applied on Gaussian VAE(Config. 2). The results are shown for the non-
conditioned decoder - Decoder1, and Exact Sampling. The dataset used is CelebA. Left:
KL divergence loss of the latent space comparison. Right: Reconstruction loss compari-
son of the Decoder1 - non-conditioned decoder.

Encoder

Decoder1
ϕ

ϵ

θ

σ

µ

z

⊙

Reparam. trick

Decoder2

Sampling

ξ

m

Figure 4.2: Outputs of a trained Gaussian VAE with Multidecoder method Exact Sam-
pling applied to a Gaussian VAE(Config. 1) on CelebA dataset. The image from the con-
ditioned decoder is reconstructed with higher quality compared to the non-conditioned
decoder because the conditioned decoder Decoder2 uses conditioning information m to
improve the quality of the reconstruction.

4.1.2 Results on VQ-VAEs

Overall, upon examining the results on VQ-VAEs, it was observed that when applying

Multidecoder method with default weight settings, the reconstruction loss was reduced for

36

both the conditioned and non-conditioned decoders, which means an overall improvement

in the quality of the reconstruction, which was observed for both sampling methods.

However, the VQ objective loss increased when SoftAdapt was not used, which can be

seen in Table 4.2.

Furthermore, incorporating SoftAdapt, which uses adaptive weight balancing, resulted

in notable improvements, see section 2.5.3. More specifically, both the reconstruction loss

and the VQ objective loss decreased when SoftAdapt was utilized, as compared to the

baseline configuration. This shows that the model’s performance was enhanced with

the application of our method and SoftAdapt technique, leading to an overall better-

performing model, which can be seen in table 4.2 and figure 4.3.

When SoftAdapt was incorporated into the training, the training stability was im-

proved, with fewer fluctuations in the loss. The results showed that the model was able

to learn the optimal weights for the loss functions, which resulted in a more stable training

process, which can be seen in figure 4.3.

The conditioned decoder was able to reconstruct the image with a higher quality

compared to the non-conditioned decoder, however, the difference observed was not as

significant as with Gaussian VAEs, which can also be seen in figure 4.4.

Method Parameters
Reconstruction loss
(Non-Conditioned) VQ loss

Baseline - 0.0022 +- 7.4e-08 0.0029 +- 4.1e-07
Multi Decoder Exact sampling 0.0017 +- 6.9e-09 ↓ 0.0039 +- 9.8e-07 ↑
Multi Decoder Exact sampling, SoftAdapt 0.0013 +- 2.4e-09 ↓ 0.0016 +- 6.8e-08 ↓
Multi Decoder Uniform sampling 0.0018 +- 1.3e-07 ↓ 0.0036 +- 3.5e-07 ↑
Multi Decoder Uniform sampling, SoftAdapt 0.0017 +- 6.6e-08 ↓ 0.0021 +- 3.1e-07 ↓

Table 4.2: Cross-validation results of Multidecoder method applied to a VQ-VAE(Config.
Nr. 3) on the CelebA dataset.

37

0 20 40 60 80 100

Epoch

0.002

0.003

0.004

0.005

0.006

V
Q

ob
je
ct
iv
e
L
os
s

VQ Loss

VQ-VAE, Multi Decoder, Exact sampling, SoftAdapt

VQ-VAE

20 40 60 80 100

Epoch

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

R
ec
on

st
ru
ct
io
n
L
os
s

Reconstruction Loss

VQ-VAE, Multi Decoder, Exact sampling, SoftAdapt

VQ-VAE

Figure 4.3: Average validation losses during training with and without Multidecoder
method applied on VQ-VAE (Config. 3) and CelebA dataset. The results of Multide-
coder method in the plot shown for the non-conditioned decoder - Decoder1, and Exact
Sampling is used with SoftAdapt enabled. Left: VQ objective loss comparison. Right:
Reconstruction loss comparison.

ze(x) zq(x)

e1
e2 e3

ek

Encoder

ϕ

θ

e

∇zqL

Sampling m

ξ

Decoder2

Decoder1

Figure 4.4: Outputs of a trained VQ-VAE with Multidecoder method and Exact Sam-
pling applied to a VQ-VAE (Config. 3). The image from the conditioned decoder is
reconstructed with higher quality compared to the non-conditioned decoder because the
conditioned decoder Decoder2 uses the extra conditioning information m and tries to
improve the quality of the reconstruction.

38

4.2 Results of Single decoder method

In this section, I will present the results of Single decoder method on both Gaussian

VAEs and VQ-VAEs, which will be compared against baseline models without the method

applied. Although in the training process of Single decoder method, the reconstruction

loss that is minimized uses the conditioning information, the primary performance metrics

that we will focus on and evaluate are the reconstruction loss in a non-conditioned setting

and the KL divergence loss of the latent space in the case of Gaussian VAEs and the VQ

objective loss in the case of VQ-VAEs.

The results presented in this section are based on the experiments conducted on the

CelebA dataset with Config. 2 for Gaussian VAEs and Config. 3 for VQ-VAEs, however,

the rest of the configurations showed similar results with minor differences and can be

found in the last section of this chapter 4.3. The analysis will be done with respect to both

Uniform Sampling and Gaussian Sampling and tested with the Power law distribution

with different exponent values.

4.2.1 Results on Gaussian VAEs

The results indicated that Single decoder method yielded promising outcomes with

Gaussian VAEs. Upon examining the results, it was observed and noted that the applica-

tion of this method led to a substantial reduction in the KL divergence loss of the latent

space. However, when no conditioning information was provided, there was an increase

in the reconstruction loss compared to the baseline model. These findings can be seen in

table 4.3 and figure 4.5. This held for both Uniform and Gaussian sampling methods.

In addition to this, experiments with a range of different exponent values for the

power-law distribution were conducted. The findings showed that the higher the exponent

value the more the model was able to reduce the reconstruction loss of the scenario, where

no conditioning information is given. However, the KL divergence loss of the latent space

increased with higher exponent values. This can be seen in figure 4.6, however, one should

note that the results are not averaged over multiple runs, so this can vary between runs.

39

Method Parameters
Reconstruction loss

(Masked) KL loss
Baseline - 0.0097 +- 4.2e-03 63.0518 +- 2.4e+01

Single Decoder Gaussian sampling, Exponent=40 0.0113 +- 1.4e-02 ↑ 54.7483 +- 7.3e+01 ↓
Single Decoder Gaussian sampling, Exponent=60 0.0113 +- 2.6e-03 ↑ 54.6946 +- 4.4e+01 ↓
Single Decoder Uniform sampling, Exponent=40 0.0115 +- 7.5e-03 ↑ 50.8085 +- 2.3e+01 ↓
Single Decoder Uniform sampling, Exponent=60 0.0115 +- 8.3e-03 ↑ 50.9635 +- 4.3e+01 ↓

Table 4.3: Cross-validation results of Single decoder method applied to a Gaussian
VAE(Config. 2) on the CelebA dataset.

0 20 40 60 80 100

Epoch

54

56

58

60

62

64

66

K
L
L
os
s

KL Loss

Gaussian VAE, Single Decoder, Gaussian sampling, Exponent=60, Masked

Gaussian VAE

0 20 40 60 80 100

Epoch

0.010

0.011

0.012

0.013

0.014

0.015

0.016

R
ec
on

st
ru
ct
io
n
L
os
s

Reconstruction Loss

Gaussian VAE, Single Decoder, Gaussian sampling, Exponent=60, Masked

Gaussian VAE

Figure 4.5: Average validation losses during training with and without Single decoder
method applied on Gaussian VAE Configuration 2. Left: KL loss comparison. Right:
Reconstruction loss comparison of when conditioning information is masked out.

0 10 20 30 40 50 60 70

Exponential Value

0.01976

0.01977

0.01978

0.01979

0.01980

0.01981

0.01982

R
ec
on

st
ru
ct
io
n
L
os
s

Reconstruction Loss(Masked) vs Exponential Value

Gaussian sampling

Figure 4.6: Reconstruction loss comparison with different exponent values for the power-
law distribution. The results are shown for Gaussian VAE Config. 2 on the CIFAR10
dataset. Note the visualization presented should be interpreted with appropriate caution,
considering that the results are not averaged over multiple runs, so the results can vary
between runs.

40

4.2.2 Results on VQ-VAEs

Upon examining the results on VQ-VAEs, the findings indicated that Single decoder

method worked very well with VQ-VAEs. The results showed it can be used to substan-

tially reduce the VQ objective loss and at the same time to improve the quality of the

reconstruction in the scenario where no conditioning information is given.

This showed to be the case in many experiments with both Uniform and Gaussian

sampling, with a high enough exponent value for the power-law distribution. However, the

results showed that this method worked slightly better with Gaussian sampling compared

to Uniform sampling, which can be seen in table 4.4.

Same as with Gaussian VAEs, when comparing different exponential values it showed

the higher the exponential value the more the model was able to reduce the reconstruction

loss of the scenario where no conditioning information is given. This can be seen in figure

4.8, however, the results that are presented in the figure should be taken with caution,

as they are not averaged over multiple runs, so the results can vary between runs.

Method Parameters
Reconstruction loss

(Masked) VQ loss
Baseline - 0.0022 +- 7.4e-08 0.0029 +- 4.1e-07

Single Decoder Gaussian sampling, Exponent=40 0.0017 +- 7.9e-08 ↓ 0.0009 +- 1.7e-07 ↓
Single Decoder Gaussian sampling, Exponent=60 0.0020 +- 2.2e-07 ↓ 0.0009 +- 1.2e-07 ↓
Single Decoder Uniform sampling, Exponent=40 0.0025 +- 1.7e-07 ↑ 0.0013 +- 1.6e-07 ↓
Single Decoder Uniform sampling, Exponent=60 0.0026 +- 3.8e-07 ↑ 0.0012 +- 1.5e-07 ↓

Table 4.4: Cross-validation results of Single decoder method applied to a VQ-VAE(Config.
Nr. 3) on the CelebA dataset.

0 20 40 60 80 100

Epoch

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

V
Q

ob
je
ct
iv
e
L
os
s

VQ Loss

VQ-VAE, Single Decoder, Gaussian sampling, Exponent=60, Masked

VQ-VAE

0 20 40 60 80 100

Epoch

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

R
ec
on

st
ru
ct
io
n
L
os
s

Reconstruction Loss

VQ-VAE, Single Decoder, Gaussian sampling, Exponent=60, Masked

VQ-VAE

Figure 4.7: Average validation losses during training with and without Single decoder
method applied on VQ-VAE Configuration 3. Left: VQ objective loss comparison. Re-
construction loss comparison of when conditioning information is masked out.

41

0 10 20 30 40 50 60 70

Exponential Value

0.0055

0.0060

0.0065

0.0070

0.0075

R
ec
on

st
ru
ct
io
n
L
os
s

Reconstruction Loss(Masked) vs Exponential Value

Gaussian sampling

Figure 4.8: Reconstruction loss comparison with different exponent values for the power-
law distribution. The results are shown for VQ-VAE Config. 3 on the CIFAR10 dataset.
Note the visualization presented should be interpreted with appropriate caution, consid-
ering that the results are not averaged over multiple runs, so the results can vary between
runs.

4.3 Cross-validation results

This section presents the cross-validation results of both methods on all datasets and

configurations in this thesis. The cross-validation was conducted with 5 folds, where the

data was split into 80% training and 20% validation. The final cross-validation results

are presented in tables 4.5, 4.6, and 4.7.

42

Config. Method Parameters
Reconstruction loss

(Non-Conditioned/Masked) VQ/KL loss
V
Q
-V

A
E

1

- - 0.0034 +- 2.7e-08 0.0030 +- 1.7e-06

Multi Decoder

Exact sampling 0.0035 +- 2.6e-08 0.0048 +- 4.3e-07
Exact sampling, SoftAdapt 0.0028 +- 1.5e-07 0.0045 +- 5.9e-07

Uniform sampling 0.0039 +- 5.5e-07 0.0054 +- 1.1e-06
Uniform sampling, SoftAdapt 0.0397 +- 5.4e-03 0.0032 +- 2.6e-06

Single Decoder

Gaussian sampling, Exponent=40 0.0025 +- 1.1e-07 0.0024 +- 1.2e-06
Gaussian sampling, Exponent=60 0.0026 +- 7.1e-08 0.0031 +- 1.0e-06
Uniform sampling, Exponent=40 0.0025 +- 5.6e-08 0.0024 +- 7.9e-07
Uniform sampling, Exponent=60 0.0024 +- 5.4e-09 0.0021 +- 1.3e-07

2

- - 0.0022 +- 4.2e-08 0.0048 +- 8.3e-07

Multi Decoder

Exact sampling 0.0017 +- 3.2e-08 0.0054 +- 2.3e-06
Exact sampling, SoftAdapt 0.0017 +- 1.0e-08 0.0027 +- 1.9e-09

Uniform sampling 0.0018 +- 4.7e-09 0.0046 +- 1.3e-06
Uniform sampling, SoftAdapt 0.0018 +- 1.6e-08 0.0026 +- 1.2e-07

Single Decoder

Gaussian sampling, Exponent=40 0.0023 +- 3.9e-07 0.0015 +- 7.3e-08
Gaussian sampling, Exponent=60 0.0020 +- 9.2e-08 0.0013 +- 7.6e-08
Uniform sampling, Exponent=40 0.0022 +- 1.2e-07 0.0018 +- 1.1e-08
Uniform sampling, Exponent=60 0.0023 +- 2.1e-07 0.0015 +- 9.0e-08

3

- - 0.0022 +- 7.4e-08 0.0029 +- 4.1e-07

Multi Decoder

Exact sampling 0.0017 +- 6.9e-09 0.0039 +- 9.8e-07
Exact sampling, SoftAdapt 0.0013 +- 2.4e-09 0.0016 +- 6.8e-08

Uniform sampling 0.0018 +- 1.3e-07 0.0036 +- 3.5e-07
Uniform sampling, SoftAdapt 0.0017 +- 6.6e-08 0.0021 +- 3.1e-07

Single Decoder

Gaussian sampling, Exponent=40 0.0017 +- 7.9e-08 0.0009 +- 1.7e-07
Gaussian sampling, Exponent=60 0.0020 +- 2.2e-07 0.0009 +- 1.2e-07
Uniform sampling, Exponent=40 0.0025 +- 1.7e-07 0.0013 +- 1.6e-07
Uniform sampling, Exponent=60 0.0026 +- 3.8e-07 0.0012 +- 1.5e-07

G
a
u
ss
ia
n
V
A
E

1

- - 0.0165 +- 4.0e-03 33.6535 +- 7.4e+00

Multi Decoder

Exact sampling 0.0165 +- 4.0e-03 36.4337 +- 1.8e+01
Exact sampling, SoftAdapt 0.0162 +- 1.9e-03 46.6674 +- 1.1e+01

Uniform sampling 0.0165 +- 3.3e-03 36.1199 +- 4.2e+00
Uniform sampling, SoftAdapt 0.0163 +- 5.0e-03 47.3050 +- 1.5e+01

Single Decoder

Gaussian sampling, Exponent=40 0.0190 +- 2.7e-02 29.9027 +- 1.2e+01
Gaussian sampling, Exponent=60 0.0190 +- 1.9e-02 29.7124 +- 1.1e+01
Uniform sampling, Exponent=40 0.0183 +- 9.1e-03 27.4575 +- 7.5e+00
Uniform sampling, Exponent=60 0.0184 +- 1.8e-03 27.1724 +- 4.2e+00

2

- - 0.0097 +- 4.2e-03 63.0518 +- 2.4e+01

Multi Decoder

Exact sampling 0.0091 +- 1.5e-03 75.4975 +- 4.2e+00
Exact sampling, SoftAdapt 0.0088 +- 4.1e-03 79.4443 +- 1.5e+02

Uniform sampling 0.0089 +- 6.4e-04 77.7421 +- 3.2e+01
Uniform sampling, SoftAdapt 0.0087 +- 1.9e-02 80.9779 +- 3.8e+02

Single Decoder

Gaussian sampling, Exponent=40 0.0113 +- 1.4e-02 54.7483 +- 7.3e+01
Gaussian sampling, Exponent=60 0.0113 +- 2.6e-03 54.6946 +- 4.4e+01
Uniform sampling, Exponent=40 0.0115 +- 7.5e-03 50.8085 +- 2.3e+01
Uniform sampling, Exponent=60 0.0115 +- 8.3e-03 50.9635 +- 4.3e+01

Table 4.5: Cross-validation results of Multidecoder method and Single decoder method
on the CelebA dataset.

43

44

Config. Method Parameters
Reconstruction loss

(Non-Conditioned/Masked) VQ/KL loss

V
Q
-V

A
E

1

- - 0.0076 +- 1.1e-07 0.0029 +- 4.2e-07

Multi Decoder

Exact sampling 0.0071 +- 1.2e-07 0.0034 +- 5.4e-07
Exact sampling, SoftAdapt 0.0067 +- 2.0e-07 0.0090 +- 1.7e-06

Uniform sampling 0.0076 +- 6.6e-08 0.0082 +- 7.1e-07
Uniform sampling, SoftAdapt 0.0129 +- 1.2e-04 0.0070 +- 7.0e-06

Single Decoder

Gaussian sampling, Exponent=40 0.0068 +- 2.0e-06 0.0033 +- 1.9e-06
Gaussian sampling, Exponent=60 0.0071 +- 3.5e-06 0.0037 +- 7.4e-07
Uniform sampling, Exponent=40 0.0060 +- 1.3e-07 0.0041 +- 2.1e-06
Uniform sampling, Exponent=60 0.0072 +- 3.0e-06 0.0036 +- 3.6e-07

2

- - 0.0061 +- 5.7e-07 0.0108 +- 2.2e-06

Multi Decoder

Exact sampling 0.0076 +- 4.1e-07 0.0071 +- 8.7e-07
Exact sampling, SoftAdapt 0.0300 +- 5.2e-04 0.0038 +- 2.1e-05

Uniform sampling 0.0068 +- 8.1e-07 0.0103 +- 8.5e-06
Uniform sampling, SoftAdapt 0.0278 +- 4.3e-04 0.0016 +- 4.6e-06

Single Decoder

Gaussian sampling, Exponent=40 0.0068 +- 5.3e-07 0.0053 +- 3.6e-06
Gaussian sampling, Exponent=60 0.0057 +- 1.4e-07 0.0024 +- 1.4e-06
Uniform sampling, Exponent=40 0.0067 +- 1.3e-06 0.0047 +- 3.4e-06
Uniform sampling, Exponent=60 0.0059 +- 1.8e-07 0.0032 +- 2.1e-06

3

- - 0.0089 +- 2.2e-06 0.0074 +- 6.6e-06

Multi Decoder

Exact sampling 0.0064 +- 6.5e-07 0.0088 +- 3.1e-06
Exact sampling, SoftAdapt 0.0292 +- 7.4e-04 0.0031 +- 9.7e-06

Uniform sampling 0.0063 +- 6.1e-08 0.0099 +- 4.0e-07
Uniform sampling, SoftAdapt 0.0277 +- 4.5e-04 0.0026 +- 6.8e-06

Single Decoder

Gaussian sampling, Exponent=40 0.0062 +- 3.0e-07 0.0028 +- 2.5e-06
Gaussian sampling, Exponent=60 0.0060 +- 5.7e-07 0.0026 +- 2.5e-06
Uniform sampling, Exponent=40 0.0060 +- 1.9e-07 0.0026 +- 2.0e-06
Uniform sampling, Exponent=60 0.0069 +- 3.7e-07 0.0043 +- 2.3e-06

G
a
u
ss
ia
n
V
A
E

1

- - 0.0190 +- 1.5e-03 18.4332 +- 3.8e+00

Multi Decoder

Exact sampling 0.0182 +- 4.9e-03 23.0405 +- 3.2e+00
Exact sampling, SoftAdapt 0.0177 +- 6.1e-03 27.8838 +- 9.9e+00

Uniform sampling 0.0183 +- 1.3e-03 22.2719 +- 8.0e+00
Uniform sampling, SoftAdapt 0.0179 +- 1.8e-03 27.4772 +- 4.7e+00

Single Decoder

Gaussian sampling, Exponent=40 0.0211 +- 8.1e-03 15.2318 +- 5.0e+00
Gaussian sampling, Exponent=60 0.0210 +- 6.2e-03 15.3598 +- 7.3e+00
Uniform sampling, Exponent=40 0.0215 +- 1.1e-02 14.6198 +- 5.1e+00
Uniform sampling, Exponent=60 0.0214 +- 1.5e-02 14.6970 +- 1.9e+00

2

- - 0.0170 +- 4.7e-03 21.8503 +- 7.7e+00

Multi Decoder

Exact sampling 0.0142 +- 3.3e-03 33.1663 +- 1.1e+01
Exact sampling, SoftAdapt 0.0137 +- 7.5e-04 35.2046 +- 3.5e+01

Uniform sampling 0.0141 +- 2.6e-03 32.5511 +- 2.0e+01
Uniform sampling, SoftAdapt 0.0136 +- 2.9e-02 35.1460 +- 2.5e+02

Single Decoder

Gaussian sampling, Exponent=40 0.0198 +- 7.7e-03 17.3050 +- 9.6e+00
Gaussian sampling, Exponent=60 0.0198 +- 3.7e-03 17.4079 +- 4.3e+00
Uniform sampling, Exponent=40 0.0198 +- 1.2e-02 16.9222 +- 1.9e+00
Uniform sampling, Exponent=60 0.0198 +- 3.9e-03 16.8778 +- 4.0e+00

Table 4.6: Cross-validation results of Multidecoder method and Single decoder method
on the CIFAR10 dataset.

45

Config. Method Parameters
Reconstruction loss

(Non-Conditioned/Masked) VQ/KL loss

V
Q
-V

A
E

1

- - 0.0028 +- 8.8e-09 0.0101 +- 4.7e-07

Multi Decoder

Exact sampling 0.0025 +- 6.5e-09 0.0082 +- 1.9e-07
Exact sampling, SoftAdapt 0.0123 +- 3.9e-04 0.0035 +- 2.3e-06

Uniform sampling 0.0023 +- 2.4e-09 0.0076 +- 2.8e-07
Uniform sampling, SoftAdapt 0.0024 +- 3.6e-08 0.0042 +- 2.4e-07

Single Decoder

Gaussian sampling, Exponent=40 0.0025 +- 5.6e-08 0.0028 +- 2.0e-07
Gaussian sampling, Exponent=60 0.0026 +- 6.0e-08 0.0029 +- 1.3e-07
Uniform sampling, Exponent=40 0.0025 +- 5.2e-08 0.0030 +- 4.2e-07
Uniform sampling, Exponent=60 0.0026 +- 6.2e-08 0.0024 +- 2.4e-08

2

- - 0.0017 +- 1.6e-09 0.0022 +- 2.0e-08

Multi Decoder

Exact sampling 0.0014 +- 2.8e-09 0.0028 +- 3.3e-08
Exact sampling, SoftAdapt 0.0155 +- 7.9e-04 0.0013 +- 3.6e-07

Uniform sampling 0.0015 +- 2.7e-09 0.0030 +- 2.5e-08
Uniform sampling, SoftAdapt 0.0422 +- 1.1e-03 0.0009 +- 3.2e-07

Single Decoder

Gaussian sampling, Exponent=40 0.0028 +- 1.3e-07 0.0014 +- 3.5e-07
Gaussian sampling, Exponent=60 0.0028 +- 1.9e-07 0.0013 +- 2.6e-07
Uniform sampling, Exponent=40 0.0025 +- 1.0e-07 0.0017 +- 5.6e-08
Uniform sampling, Exponent=60 0.0031 +- 2.3e-07 0.0012 +- 4.3e-07

3

- - 0.0019 +- 1.3e-08 0.0024 +- 4.3e-08

Multi Decoder

Exact sampling 0.0017 +- 8.4e-09 0.0028 +- 1.2e-07
Exact sampling, SoftAdapt 0.0173 +- 6.9e-04 0.0011 +- 2.2e-07

Uniform sampling 0.0017 +- 2.4e-08 0.0024 +- 1.2e-07
Uniform sampling, SoftAdapt 0.0178 +- 6.5e-04 0.0009 +- 2.8e-07

Single Decoder

Gaussian sampling, Exponent=40 0.0034 +- 6.8e-08 0.0008 +- 2.4e-07
Gaussian sampling, Exponent=60 0.0033 +- 4.8e-08 0.0005 +- 1.1e-07
Uniform sampling, Exponent=40 0.0035 +- 6.3e-08 0.0007 +- 1.8e-08
Uniform sampling, Exponent=60 0.0034 +- 7.5e-09 0.0007 +- 4.0e-08

G
a
u
ss
ia
n
V
A
E

1

- - 0.0178 +- 1.2e-03 12.9533 +- 3.5e+00

Multi Decoder

Exact sampling 0.0145 +- 2.3e-03 17.3971 +- 9.5e+00
Exact sampling, SoftAdapt 0.0168 +- 1.3e-03 14.5518 +- 1.1e+01

Uniform sampling 0.0134 +- 5.4e-03 18.3315 +- 2.0e+01
Uniform sampling, SoftAdapt 0.0158 +- 3.3e-03 15.3202 +- 3.1e+00

Single Decoder

Gaussian sampling, Exponent=40 0.0241 +- 3.6e-02 9.8522 +- 5.3e+00
Gaussian sampling, Exponent=60 0.0240 +- 3.3e-02 9.6976 +- 2.2e+00
Uniform sampling, Exponent=40 0.0204 +- 2.4e-02 11.5982 +- 1.9e+00
Uniform sampling, Exponent=60 0.0204 +- 4.2e-02 11.5618 +- 2.4e+00

2

- - 0.0181 +- 8.7e-03 12.6536 +- 7.4e+00

Multi Decoder

Exact sampling 0.0148 +- 8.5e-03 17.2068 +- 5.9e+00
Exact sampling, SoftAdapt 0.0167 +- 1.1e-02 14.7237 +- 2.9e+00

Uniform sampling 0.0136 +- 8.8e-03 18.3894 +- 1.8e+01
Uniform sampling, SoftAdapt 0.0158 +- 2.3e-03 15.2931 +- 3.7e+00

Single Decoder

Gaussian sampling, Exponent=40 0.0245 +- 6.7e-02 9.8226 +- 7.9e-01
Gaussian sampling, Exponent=60 0.0244 +- 4.5e-02 9.7985 +- 3.1e+00
Uniform sampling, Exponent=40 0.0206 +- 5.1e-02 11.5080 +- 3.4e+00
Uniform sampling, Exponent=60 0.0206 +- 2.3e-02 11.6502 +- 4.2e+00

Table 4.7: Cross-validation results of Multidecoder method and Single decoder method
on the MNIST dataset.

Chapter 5

Discussion

In this chapter, the results in the preceding chapter are analyzed, interpreted and

discussed in the context of the objective and research questions. This chapter is divided

into five sections. The first section discusses the results of Multidecoder method, and

the second section discusses the results of Single decoder method. The third section

provides a comparative analysis of the two methods, and the final two sections discuss

the limitations of the research and potential future work.

5.1 Analysis of Multidecoder method

The results of Multidecoder method show that it is overall a viable method for com-

bining semi-conditional and non-conditional VAEs. The resulting model has multitask

capabilities, which allow it to improve the quality of the reconstruction and the gener-

alization capabilities of the VAE. It was shown that the method can be applied to both

VQ-VAE and Gaussian VAEs.

One of the disadvantages of this method is that it requires a second decoder, which

increases the complexity of the model and the computational cost. However, the results

show that in some cases, the increase in complexity is justified by the improvement in

the quality of the reconstruction.

46

5.1.1 Findings on Gaussian VAEs

The results on Gaussian VAEs showed that a standard Gaussian VAE can be combined

with a semi-conditional VAE by using Multidecoder method. This method improved the

reconstruction quality of the non-conditioned decoder and added a second decoder that

allows the model to reconstruct or generate images given some pixels. However, the

results showed that this meant a slight increase in the KL divergence loss of the latent

space. This is expected since the model has to learn two decoders instead of one, and it

means it puts less emphasis on the KL divergence loss of the latent space. Consequently,

the model has a trade-off between the KL divergence loss of the latent space and the

reconstruction loss of both decoders.

It could be observed that the conditioned decoder was able to reconstruct the images

with noticeably higher quality than the non-conditioned decoder. This is expected since

the conditioned decoder has more direct information about image pixels, which makes it

easier to reconstruct.

When comparing Exact and Uniform sampling, I did not see any significant difference

in the results. This is something that could be further investigated in future work. One

possible explanation for this could be that the model is not able to fully take advantage

of both sampling methods because it has already a trade-off between the KL divergence

loss of the latent space and the reconstruction loss of both decoders.

5.1.2 Findings on VQ-VAEs

One of the research questions investigated was whether the application of Multide-

coder method would lead to improvements over traditional methods. When the Multi-

decoder method was applied to VQ-VAEs, notable improvements were observed in both

the quality of the reconstruction and the VQ objective loss, confirming the research ques-

tion. Consequently, the model gained multitask properties, enabling it to reconstruct and

generate images from partial inputs while also enhancing overall reconstruction quality.

This enhancement can be attributed to the shared encoder architecture, allowing for more

effective learning of the latent space. In contrast to Gaussian VAEs, VQ-VAEs do not

impose specific constraints on the latent space distribution beyond its discretization, this

allows for more room for improvement and flexibility in the model.

47

It was observed that the conditioned decoder was able to reconstruct the image with a

higher quality compared to the non-conditioned decoder, however, the difference observed

was not as significant as with Gaussian VAEs. The reasoning behind this could be that the

VQ-VAEs already have a high-quality reconstruction, which makes it harder to improve

the quality of the reconstruction.

Furthermore, Multidecoder method was evaluated using both Exact Sampling and

Uniform Sampling methods. Interestingly, while the results were similar, Gaussian Sam-

pling demonstrated slightly superior performance. This may be attributed to the fact

that Gaussian Sampling tends to sample the center pixels of the image more frequently,

which is more informative for the network.

5.2 Analysis of Single decoder method

Single decoder method involves using the same decoder to unify both the conditioned

and non-conditioned tasks, which is done by using variable conditioning - a technique

that allows conditioning of the decoder on a variable amount of information or just an

empty mask. The rationale behind this is that the model decoder can learn to do both

tasks and can detect if and where the mask is empty.

One of the advantages of this method is that it does not require a second decoder,

which reduces the complexity of the model and the computational cost, which can be a

problem for large-scale high-resolution models.

5.2.1 Findings on Gaussian VAEs

Upon analysis, it has become clear that when Single decoder method is applied to

Gaussian VAEs, the decoder of the model can reconstruct images given some pixels as

conditioned information or with no information at all. This method improved substan-

tially the KL divergence loss of the latent space, which means that it is possible to

generate more accurate samples from the latent space.

However, one of the drawbacks of this method is that it reduced the quality of the

reconstruction in the non-conditioned case. The cause for this could be that the decoder

and the encoder are not deep enough to learn to do both tasks at the same time. In my

48

experiments, when using a deeper encoder and decoder, it resulted in posterior collapse,

which is a common problem in Gaussian VAEs.

It could also be observed that Uniform Sampling showed better results than Gaussian

Sampling. The cause for this could be traced back to the fact that for Gaussian Sampling,

there’s a high chance to sample the same pixel multiple times, which can make the model

overfit to the same pixels.

5.2.2 Findings on VQ-VAEs

When applying Single decoder method to VQ-VAEs, the results showed that the model

had significantly reduced the VQ objective loss, which means that the model is more

accurate a can be used more effectively for image generation. One possible explanation

for the improvement in the VQ objective loss is that the conditioning of the decoder gives

the encoder more direct and accurate gradients to learn from and this can be beneficial

in the early stages of training when the embeddings are very sparse and the gradients are

very noisy.

The experiments showed that the reconstruction quality in the case of no conditioning

could also be improved if the exponent value of the Power Law distribution was set to a

higher value. This is because the higher the exponent value of the Power Law distribution,

the fewer pixels on average are sampled, which means that the model more often has to

reconstruct the image from scratch.

It was discovered that the Gaussian Sampling showed slightly better results than

Uniform Sampling. The reason behind this could be that the Gaussian Sampling more

often samples the center pixels of the image, which are more informative for the network.

5.3 Comparative Analysis

In the context of comparing the two methods, one must first and foremost consider

the complexity of the model. The Multidecoder method requires a second decoder, which

increases the complexity of the model and the computational cost. This can be a problem

for high-resolution and large-scale models, as it could mean that the model is too slow to

train or too computationally expensive to use. On the other hand, Single decoder method

49

does not require a second decoder, which does not introduce a lot of extra complexity to

the model. This makes it more suitable for real-world applications.

In both approaches applied to Gaussian VAEs with deeper encoder and decoder net-

works, the training instability in the form of the posterior collapse was observed, which

means that latent variables have become uninformative, leading the model to ignore

them [11]. This is a common problem in Gaussian VAEs and can be hard to avoid. How-

ever, this is something that is not a problem by design in VQ-VAEs, which makes them

more stable and easier to train.

In both of the methods and implementations, it was decided to use a fully connected

layer to use the conditioned information as input to the decoder. This was done to keep

the model simple and avoid introducing too much complexity to the models. However,

it could have been done differently, for example, by using convolutional layers to use the

conditioned information as input to the decoder.

Both methods brought improvements to the quality of the reconstruction and the

generalization capabilities when applied to VQ-VAEs. Thus, partially confirming the re-

search question regarding the potential improvement in generalization capabilities. How-

ever, the Single decoder method showed better results in terms of the VQ objective loss,

while Multidecoder method showed better results in terms of the reconstruction quality.

This could be explained by the fact that Multidecoder method has two decoders, which

can make it better at the core task of the VQ-VAE, which is to reconstruct the image.

5.4 Limitations

One of the limitations of this research lies in the fact in the scope of experimenta-

tion. While the conducted experiments shed light on the capabilities and limitations

of the methods, a broader range of hyperparameters, datasets and models could have

been explored. This broader exploration could have provided a deeper understanding of

the methods and their capabilities and limitations. Additionally, the experiments were

conducted on relatively small-resolution images, which could have affected the results.

Furthermore, the comparative analysis of different sampling methods could have been

more extensive. Expanding the range of experiments in this regard could have provided

a better insight into the differences between the sampling methods and how they affect

the results of the model.

50

Moreover, it’s important to acknowledge the constraints posed by the computational

resources. With access to more computational resources, it would have been possible to

conduct more experiments with higher precision, potentially utilizing more complex mod-

els and utilizing more folds in cross-validation. Additionally, the increased computational

capacity would have facilitated the exploration across a wider array of hyperparameters

in the same time frame, enabling a more comprehensive investigation of the methods.

5.5 Future Work

One possible future direction for this research could be to investigate the possibility

of employing a training schedule where the model is initially trained with Multidecoder

method and then later switched to a regular VQ-VAE or Gaussian VAE. This could

potentially improve the results of the model for unconditional generation tasks.

As previously mentioned for both methods and implementations in this thesis it was

decided to use a fully connected layer to employ the conditioned information as input to

the decoder. A possible future direction could be to use convolutional layers to use the

conditioned information as input to the decoder.

This research explored the possibilities of combining semi-conditional and non-

conditional VAEs. However, this could also be for other generational models, such as

GANs or diffusion models. Another possible application of this method could be to

DALL-E architecture, which is a text-to-image generation model based on VQ-VAEs.

51

Chapter 6

Conclusion

In this master’s thesis, I have proposed 2 methods for combining SCVAEs with a stan-

dard VAE, which from the initial insights seemed to be promising methods for improving

the standard VAE. Both of the methods were implemented and seamlessly integrated

with both Gaussian VAEs and VQ-VAEs. The implementation of the methods proved

to be successful. The methods were evaluated on the MNIST, CIFAR-10, and CelebA

datasets. Both approaches yielded notable outcomes, showcasing significant enhance-

ments over standard VAE performance in specific scenarios.

The first method, Multidecoder method, demonstrated improvement in reconstruction

loss for both Gaussian VAEs and VQ-VAEs. However, the overall generalization capabil-

ities were enhanced mainly for VQ-VAEs. On the other hand, the second method, Single

decoder method, showed improvement in KL loss for Gaussian VAEs and VQ objective

loss for VQ-VAEs, but it resulted in a deterioration of reconstruction loss for Gaussian

VAEs and a slight improvement for VQ-VAEs. Thus, the research question regarding the

potential improvement of generalization capabilities was partially confirmed, as overall

improvement was observed only for VQ-VAEs.

Despite the promising results of Multidecoder method, its requirement for two de-

coders poses computational challenges, as observed during experimentation. Conversely,

Single decoder method, while showing potential in terms of KL loss and VQ objective

loss, showed inferior performance compared to Multidecoder method in reconstruction

loss.

Looking ahead, future investigations could explore the application of these methods

in text-to-image generation, potentially by modifying architectures such as DALL-E. Ad-

ditionally, exploring the potential of training a model with a training schedule where

52

the model is first trained with Multidecoder method or Single decoder method and then

followed by standard VAE training could potentially improve results, particularly in im-

proving non-conditioned reconstruction.

Overall the work presented in this thesis shows that the proposed methods hold

promise for improving the performance of VAEs in terms of generalization capabilities

and reconstruction accuracy, with a notable improvement when integrated with VQ-

VAEs. This suggests potential avenues for further research in the field of generative

modeling, particularly in enhancing these methods and exploring their application to

other generative models.

53

Bibliography

[1] Jinbo Bi, Tao Xiong, Shipeng Yu, Murat Dundar, and R. Bharat Rao. An im-

proved multi-task learning approach with applications in medical diagnosis. In Wal-

ter Daelemans, Bart Goethals, and Katharina Morik, editors, Machine Learning

and Knowledge Discovery in Databases, pages 117–132, Berlin, Heidelberg, 2008.

Springer Berlin Heidelberg. ISBN 978-3-540-87479-9.

[2] Xi Chen, Nikhil Mishra, Mostafa Rohaninejad, and Pieter Abbeel. Pixelsnail: An

improved autoregressive generative model, 2017.

[3] Michael Crawshaw. Multi-task learning with deep neural networks: A survey. CoRR,

abs/2009.09796, 2020.

URL: https://arxiv.org/abs/2009.09796.

[4] Shuvayanti Das, Jennifer Williams, and Catherine Lai. Analysis of voice conversion

and code-switching synthesis using vq-vae, 2022.

[5] Kristian Gundersen, Anna Oleynik, Nello Blaser, and Guttorm Alendal. Semi-

conditional variational auto-encoder for flow reconstruction and uncertainty quan-

tification from limited observations. Physics of Fluids, 33(1), January 2021. ISSN

1089-7666. doi: 10.1063/5.0025779.

URL: http://dx.doi.org/10.1063/5.0025779.

[6] Sangjun Han, Hyeongrae Ihm, and Woohyung Lim. Symbolic music loop generation

with vq-vae, 2021.

[7] A. Ali Heydari, Craig A. Thompson, and Asif Mehmood. Softadapt: Techniques for

adaptive loss weighting of neural networks with multi-part loss functions, 2019.

[8] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew

Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning basic vi-

sual concepts with a constrained variational framework. In International Conference

54

https://arxiv.org/abs/2009.09796
http://dx.doi.org/10.1063/5.0025779

on Learning Representations, 2017.

URL: https://openreview.net/forum?id=Sy2fzU9gl.

[9] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013.

[10] Diederik P. Kingma and Max Welling. An introduction to variational autoencoders.

Foundations and Trends® in Machine Learning, 12(4):307–392, 2019. ISSN 1935-

8245. doi: 10.1561/2200000056.

URL: http://dx.doi.org/10.1561/2200000056.

[11] James Lucas, George Tucker, Roger Grosse, and Mohammad Norouzi. Don’t blame

the elbo! a linear vae perspective on posterior collapse, 2019.

[12] Weizhu Qian, Bowei Chen, and Franck Gechter. Multi-task variational information

bottleneck. CoRR, abs/2007.00339, 2020.

URL: https://arxiv.org/abs/2007.00339.

[13] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Rad-

ford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation. CoRR,

abs/2102.12092, 2021.

URL: https://arxiv.org/abs/2102.12092.

[14] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity

images with vq-vae-2, 2019.

[15] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P. Kingma. Pixelcnn++:

Improving the pixelcnn with discretized logistic mixture likelihood and other modi-

fications, 2017.

[16] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent

neural networks, 2016.

[17] Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves,

and Koray Kavukcuoglu. Conditional image generation with pixelcnn decoders, 2016.

[18] Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete rep-

resentation learning. CoRR, abs/1711.00937, 2017.

URL: http://arxiv.org/abs/1711.00937.

[19] Yixin Wang, David M. Blei, and John P. Cunningham. Posterior collapse and latent

variable non-identifiability, 2023.

55

https://openreview.net/forum?id=Sy2fzU9gl
http://dx.doi.org/10.1561/2200000056
https://arxiv.org/abs/2007.00339
https://arxiv.org/abs/2102.12092
http://arxiv.org/abs/1711.00937

[20] Y. Watanabe, H. Shirai, and Y. Kamide. Geomagnetic disturbances as probabilistic

nonlinear processes. In Huaning Wang and Ronglan Xu, editors, Solar-terrestrial

Magnetic Activity and Space Environment, volume 14 of COSPAR Colloquia Series,

pages 281–286. Pergamon, 2002. doi: https://doi.org/10.1016/S0964-2749(02)80170-

6.

URL: https://www.sciencedirect.com/science/article/pii/S0964274902801706.

[21] Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack

Xin. Understanding straight-through estimator in training activation quantized neu-

ral nets, 2019.

56

https://www.sciencedirect.com/science/article/pii/S0964274902801706

	Introduction
	Motivation
	Objective
	Thesis Outline

	Background
	VAEs
	The reparameterization trick
	Gaussian VAEs

	Vector Quantized VAEs
	Discrete Latent Variables
	Learning

	Semi-Conditioned VAEs
	Multitask Learning
	Additional concepts
	PixelCNN
	Random number generation using Power law distribution
	SoftAdapt: Adaptive loss weighting

	Methods
	Conditioning information
	Multidecoder method
	Conditioning strategy
	Application to Gaussian VAEs
	Application to VQ-VAEs

	Single decoder method
	Conditioning strategy
	Application to Gaussian VAEs
	Application to VQ-VAEs

	Experimental setup
	Datasets
	Network architecture and hyperparameters
	Training

	Results
	Results of Multidecoder method
	Results on Gaussian VAEs
	Results on VQ-VAEs

	Results of Single decoder method
	Results on Gaussian VAEs
	Results on VQ-VAEs

	Cross-validation results

	Discussion
	Analysis of Multidecoder method
	Findings on Gaussian VAEs
	Findings on VQ-VAEs

	Analysis of Single decoder method
	Findings on Gaussian VAEs
	Findings on VQ-VAEs

	Comparative Analysis
	Limitations
	Future Work

	Conclusion
	Bibliography

