
University of Bergen
Department of Informatics

Diverting Networks with Odd Paths

Author: Steinar Simonnes

Supervisor: P̊al Grøn̊as Drange

June, 2024

Abstract

The problem of Shortest Odd Path is to find a path from one vertex to another in a graph,

where the number of edges in the path is odd. Although the problem might seem like a mere

curiosity, its utility lies in being applicable to many more useful problems that are easier if we

know how to solve Shortest Odd Path.

One of these problems is Network Diversion: given a graph, two vertices, and a marked

edge, compute the cheapest set of edges to delete from the graph such that all paths from one

vertex to another must pass through the marked edge. Many of its variants are NP-complete,

but its complexity on planar graphs remains an open problem.

We implement an efficient algorithm based on [Der85] to solve Shortest Odd Path on undi-

rected graphs, and use that to implement the first-ever efficient algorithm for Network Di-

version on planar graphs.

Contents

1 Introduction 1

2 Preliminaries 3

2.1 Graphs . 3

2.2 Graph problems . 5

2.3 Planarity . 7

2.3.1 Planar embeddings . 7

2.3.2 Duality . 8

3 Shortest Odd Walk 11

3.1 Intuition . 11

3.2 Pseudocode . 12

3.3 Analysis . 12

4 Shortest Odd Path 16

4.1 Reduction to Shortest Alternating Path . 16

4.2 The idea for our Shortest Alternating Path algorithm 19

4.3 Pseudocode . 23

4.3.1 Initialization . 23

4.3.2 The control loop . 24

4.3.3 Backtracking a blossom edge . 26

4.3.4 Computing blossoms . 27

4.3.5 Setting the base of blossoms and pseudonodes 29

4.4 Improvements on Derigs’ algorithm . 30

4.5 Analysis . 31

4.5.1 Other variants . 32

4.5.2 Benchmarking different data structures for the Basis 32

4.5.3 Running times on Delaunay graphs . 33

5 Network Diversion 35

5.1 Introduction to Network Diversion . 35

5.2 Intuition . 37

i

5.2.1 Detour paths . 37

5.2.2 From a dual path to a real diversion . 38

5.2.3 The algorithm . 39

5.3 Pseudocode . 41

5.4 Analysis . 42

6 The Codebase 45

6.1 Functionality . 45

6.2 Data structures . 46

6.3 Testing . 47

6.4 Benchmarking . 47

7 Conclusion 49

Bibliography 50

A The full, uninterrupted pseudocode for Shortest Odd Path 52

ii

Chapter 1

Introduction

One of the most well-known, well-studied, and well-understood algorithmic problems is to find

the Shortest Path in a graph. The problem is simple: given a graph and two vertices, find

the shortest sequence of edges to go from one vertex to the other. Yet, the applications are

almost limitless: finding the fastest route home, finding the cheapest airline tickets to Kuala

Lumpur, solving a Rubik’s Cube in the fewest moves, determining the best-case running time

of an algorithm, or moving an enemy in a video game.

This thesis, however, is about a curious little variant called Shortest Odd Path. Here, we

consider only paths consisting of an odd number of edges. If you were to step through the graph

and start walking with your right foot, then an odd path is one where you would also end up on

your right foot. The applications of this variant are not remotely as obvious. It rarely, if ever,

matters whether a path has an odd or even length in any of the examples mentioned above,

and it is difficult to come up with example problems where it does matter.

The reason we care is that many more useful problems are easier to solve if we already have

an algorithm to solve Shortest Odd Path. Consider for example Shortest Detour Path:

find the shortest path from one vertex to another, with the additional requierement that we

are also given a ’detour’ edge that must be included in the path. Imagine doing a road trip

through Norway, but for the complete road trip experience you also really want to drive through

Norway’s longest tunnel, preferably without using the same roads more than once. Coming up

with an algorithm for this is not as simple as it sounds, but we will show that it is much easier

if we know how to solve Shortest Odd Path.

An even more directly useful problem to solve is Network Diversion: given two vertices and

a marked edge in a graph, find the cheapest set of edges to delete from the graph such that

all paths from one vertex to another must pass through the marked edge. This one has more

immediate practical applications: imagine you are a military commander in a war, you know

1

that the enemy wants to move their troops and supplies, and you are very prepared to ambush

them if they cross a certain bridge. Now what is the fastest or cheapest way to destroy bridges

to funnel the enemy through the ambush?

Solving Network Diversion efficiently is no simple task, and many of its variants have been

proven to be NP-complete. Whether there exists an algorithm to solve Network Diversion

in polynomial time in undirected planar graphs is for now an open problem, but it turns out

the answer is yes: it is possible if we already have an efficient algorithm to solve Shortest

Odd Path. This is the topic of our thesis. We develop and implement an efficient algorithm to

solve Shortest Odd Path, and then use that to implement the first-ever efficient algorithm

for Network Diversion on planar graphs.

Overview of the contents

We start this thesis with some preliminaries, mainly around graph theory, in Chapter 2. Then

we warm up our problem-solving skills in Chapter 3, where we solve a much easier variant of

Shortest Odd Path, called Shortest Odd Walk. In Chapter 4 we reach the star of the

thesis: our algorithm for Shortest Odd Path. With this star leading the way, we can head

to Chapter 5 to solve Network Diversion for planar graphs.

Most of the algorithms discussed here have also been implemented and tested in practice

[Sim24b], and Chapter 6 presents the codebase. In addition, the source code for this thesis

itself can be found at [Sim24a].

The curious reader may explore the chapters and source code in any order they wish, though

we would like to suggest a chronological order if nothing else.

2

Chapter 2

Preliminaries

2.1 Graphs

In the study of algorithms, we often use graphs as an abstract structure to represent the fun-

damental algorithmic problem without distractions. For example, maybe we want to find the

fastest route to walk to the study hall, or perhaps we want the cheapest combination of flights

to take you to Kuala Lumpur. Both questions are really the same problem. If we remove all

the details that are unnecessary to solve it, like the names of the airports and whether we are

walking or flying, then we end up with a graph. This section defines various concepts related

to graphs, and Section 2.2 will formalize the underlying problem of both of these examples as

well as some other graph problems. Later, Section 2.3 defines the concept of planar graphs.

Definition 2.1.1 (Graph). A graph G := (V,E, from, to) is given by

• V , a collection of vertices

• E, a collection of edges

• from : E → V , a mapping from each edge to its source vertex

• to : E → V , a mapping from each edge to its target vertex

For convenience, we also define the function reverse : E → E. For an edge e ∈ E,

reverse(e) is the edge going in the opposite direction, where from(e) = to(reverse(e)) and

to(e) = from(reverse(e)).

This definition of a graph is a little unusual. A more common definition is to instead define

G := (V,E), where the edges are a subset of the cartesian product of the vertices: E ⊆ V ×V .

A problem with this definition is that we cannot consider graphs with parallel edges, which is

something we will need to be able to do later in the thesis.

3

If we are working with multiple graphs at once, say two graphs G and H, then writing just

V is ambiguous. In such cases, we instead denote V (G) and V (H) as G’s and H’s vertices,

respectively. The same goes for E(G) and E(H) for their edges.

Definition 2.1.2 (Weighted graph). A weighted graph G := (V,E, from, to,weight) is a graph,

where weight : E → R is the weight of each edge.

If a graph is not weighted, we often treat it as if all edges have unit weight, a weight of 1.

Algorithms intended for weighted graphs will therefore often work on unweighted graphs as

well. Although weights in the general case can be negative, all the algorithms presented in

this thesis are designed for graphs of non-negative weights, and the reader may assume that

weight : E → R≥0 unless otherwise stated.

Definition 2.1.3 (Directed and undirected graphs). Let G be a graph. G is said to be an

undirected graph if each edge has an opposite: ∀e ∈ E ∃e′ ∈ E : reverse(e) = e′. If G is not

undirected, we say that G is a directed graph.

Most of the algorithms presented in this thesis are designed for undirected graphs. The reader

may assume that all graphs in the thesis are undirected unless otherwise stated.

Definition 2.1.4 (Neighbourhood). Let G be a graph, and let u ∈ V be a vertex in the graph.

The neighbourhood of u, denoted as N(u), is defined as the vertices in G that are reachable

from u by using just a single edge: N(u) := {to(e) | e ∈ E, from(e) = u}.

In code, it is usually more useful to consider neighborhoods in terms of edges. We will therefore

denote G[u] as the edges in G that start in u: G[u] := {e | e ∈ E, from(e) = u}. We also denote

deg(u) := |N(u)| as the size of u’s neighborhood, often referred to as the degree of u.

Definition 2.1.5 (Simple graph). Let G be a graph. G is said to be a simple graph if for each

pair of vertices u, v ∈ V , there exists at most one edge e such that from(e) = u and to(e) = v.

If two or more edges have the same endpoints, we say the edges are parallel to each other, and

that the graph has parallel edges and is thus not simple.

Definition 2.1.6 (Walk). A walk P := [e1, e2, ..., ek] in a graph G, for ei ∈ E, is a sequence of

edges where each edge ends where the next one starts: ∀i ∈ {1, 2, .., k−1} : to(ei) = from(ei+1).

If s := from(e1) and t := to(ek), we say that P is an s-t-walk in G.

Another way to denote a walk is to use a sequence of vertices in the order they are visited:

[u1, u2, ..., un], for ui ∈ V . This works as long as the graph is simple, if there are multiple edges

from ui to ui+1, then the walk is ambiguous.

4

Definition 2.1.7 (Path). A path P := [e1, e2, ..., ek] in a graph G is a walk with the extra

requirement that each vertex is used at most once: ∀i, j ∈ {1, 2, .., k} : j ̸= i+ 1 → to(ei) ̸=
from(ej). If s := from(e1) and t := to(ek), we say that P is path from s to t, or an s-t-path in

G.

Note that in some literature, a walk is referred to as a path, and a path is referred to as a simple

path. In this thesis, when we refer to paths they are always simple, meaning that they never

repeat any vertices. If any vertices are repeated, we will refer to it as a walk.

Definition 2.1.8 (Cycle). A cycle in a graph is a walk that starts and ends in the same vertex.

If it does not repeat any vertices except in the last vertex, then we call it a simple cycle.

Definition 2.1.9 (The cost of a walk). Let P := [e1, e2, ..., ek] be a walk in a weighted graph

G. The cost of P is defined as the sum of the weights of its edges:
∑k

i=1weight(ei). In a

collection of walks, we say that the shortest walk is the cheapest one, the one with the lowest

cost. Likewise for the longest and most expensive walk.

Note that in some literature, shortest may instead mean fewest edges, and the term length could

refer to both the number of edges and the cost. For that ambiguous reason, we will from now

on avoid the word length, and shortest will always mean cheapest. If a graph is unweighted, we

pretend that all the edges have a unit weight of 1, and in that case, the cost is the same as the

number of edges.

Definition 2.1.10 (Cut). Let G = (V,E, from, to) be a connected and undirected graph. A

cut C ⊆ E of G is a subset of edges such that (V,E \ C, from, to) is a disconnected graph of

exactly two components. If two vertices s, t ∈ V end up in separate components after the cut,

we denote C as an s-t-cut in G. See Figure 2.1 for an example of an s-t-cut.

s

t

(a) A connected graph with an s-t-cut marked
in red

s

t

(b) The disconnected graph of exactly two com-
ponents, after deleting all the edges in the cut

Figure 2.1: A graph before and after an s-t-cut of edges has been deleted

2.2 Graph problems

Now that we know what a graph is, we are ready to formalize the underlying problem of the

examples we started the chapter with. Both problems can be represented by the quest to find

5

the shortest path from one vertex to another in an abstract graph. From a computational

perspective, it does not matter whether the edges are roads or flights, or whether the vertices

are crossroads or airports. Vertices and edges can represent whatever we want them to. We call

the problem Shortest Path, and it is defined as:

Shortest Path

Input: a graph G, two vertices s, t ∈ V

Output: an s-t-path in G of minimum cost

This thesis will focus on a curious variant of the Shortest Path problem, called Shortest Odd

Path:

Shortest Odd Path

Input: a graph G, two vertices s, t ∈ V

Output: an s-t-path in G of minimum cost, that uses an odd number of edges

We will also present an algorithm in Chapter 3 for the less restrictive variation called Shortest

Odd Walk:

Shortest Odd Walk

Input: a graph G, two vertices s, t ∈ V

Output: an s-t-walk in G of minimum cost, that uses an odd number of edges.

Dijkstra’s Algorithm

Both our algorithms for Shortest Odd Path and Shortest Odd Walk borrow ideas from

the famous Dijkstra’s Algorithm. The algorithm solves Shortest Path on graphs with non-

negative weights and handles both directed and undirected graphs. We show it here for reference.

Code Listing 2.1: Dijkstra’s Algorithm for Shortest Path
1 fn dijkstras_shortest_path(graph , s, t) {
2 for u in V(graph) {
3 dist[u] = ∞;
4 done[u] = false;
5 }
6 dist[s] = 0;
7 queue = priority_queue ((0, s));
8
9 while queue is not empty {

10 (dist_u , u) = queue.pop();
11 if not done[u] {
12 done[u] = true;
13 for edge in graph[u] {
14 dist_v = dist_u + weight(edge);
15 if dist_v < dist[v] {
16 dist[v] = dist_v;
17 queue.push((dist_v , v));
18 }
19 }
20 }

6

21 if done[t] {
22 break;
23 }
24 }
25
26 return dist[t];
27 }

2.3 Planarity

A fascinating and important class of graphs that we will focus on in Chapter 5 are planar graphs.

We will give the most important definitions and facts about planar graphs here, and refer the

curious reader to [Nis88] if they wish to read more.

2.3.1 Planar embeddings

Definition 2.3.1 (Embedding). Let G be a graph. An embedding of G is a drawing of G on

the plane R2, with points representing vertices and curves representing edges between their

endpoints’ respective points, such that none of the edges intersect each other except in their

endpoints.

Definition 2.3.2 (Planar graph). We say that a graph G is a planar graph if there exists a

planar embedding of G. A planar graph along with a specific planar embedding is called a plane

graph.

Many real-life graphs, especially those based on physical structures, are either planar or almost

so. Two edges crossing often entails an inefficiency or extra cost: like having to build a bridge

over a road instead of joining the two roads in a crossroad. Many algorithmic problems are

much easier to solve in planar graphs, and they are common enough in practical use that the

restriction is not too restrictive to be useful.

Definition 2.3.3 (Straight-line embedding). Let G be a graph. A straight-line embedding of

G is a planar embedding of G where each edge can be drawn as a line segment between its

endpoint vertices and still not cross any other edge. In a straight-line embedding, we can

forgo the mappings of the edges altogether and consider the mapping of vertices only. Such

embeddings always exist: if G is planar then there is a straight-line embedding of G.

See Figure 2.2b, Figure 2.2c and Figure 2.2d for an example of a planar graph. Figure 2.2b and

Figure 2.2d also show planar embeddings of the graph. Figure 2.2a shows a graph that is not

planar, since no planar embeddings of the graph exist. Note that in all these examples we have

7

(a) Not planar (b) Planar

(c) Planar, it is the
same graph as in Fig-
ure 2.2b

(d) Planar, with colored
faces.

Figure 2.2: Examples of planar and non-planar graphs

drawn all the edges as straight line segments, but that is not necessary: as long as a curve does

not cross any other curves it can be as curved as we want.

It is generally complicated to determine if a given graph is planar in practice, and to compute

an appropriate embedding if it is. In all the algorithms of this thesis that take planar graph as

input, we will assume that we are given embeddings of the graphs as well. Furthermore, since

all planar graphs also have a straight-line embedding, we will assume that the given embeddings

are straight-line embeddings. Our theoretical results hold for planar graphs in general, but in

practice, these assumptions make implementing the algorithms less tedious.

2.3.2 Duality

The next topic is easy to visualize and understand, but challenging to formalize. Imagine loading

a drawing of a planar graph like the one in Figure 2.2b into an image editing program, and

using the fill tool to cover each region in a different color, like in Figure 2.2d. Each such region

is called a face of the graph, including the region ’outside’ the graph called the outer face. Two

faces are adjacent if they are separated by just a single edge: if we were to delete the edge our

fill tool would give both the same color. We will now formalize this concept.

Definition 2.3.4 (Face). Let G be a plane graph. A face of G is a region in the embedding

bounded by a cycle that contains no other vertices or edges. Equivalently, we can define faces

as the connected components that remain in R2 after we delete all vertices and edges from our

embedding.

Note that different embeddings of the same planar graph may yield different faces. When we

refer to a face in a graph, it is always in relation to a certain embedding of the graph.

Definition 2.3.5 (Duality of planar graphs). Let G be a plane graph. The dual graph of G,

denoted as G⋆, is the graph where

• The vertices represent faces of G

8

• There is an edge between two faces if they are adjacent in G.

Each edge in e ∈ E(G) will always have a face on either side, possibly the same face, and

thus have a corresponding edge e⋆ ∈ E(G⋆) in the dual graph. We can therefore define two

convenience functions left, right : E(G) → V (G⋆) to get the left and right faces of an edge, re-

spectively. If G is weighted, we usually set the weights of E(G⋆) according to their counterparts:

weight(e⋆) := weight(e). See Figure 2.3a for an example of a dual graph.

Note that the dual graph is also planar, and the dual of the dual is the original graph1. We

could then for example let e be an edge in the dual graph, and then refer to its real counterpart

as e⋆. It would not be wrong, but it could possibly lead to confusion. Furthermore, we do not

need that fact for any of the results in this thesis. We will therefore give variable names like G,

u, and e for the graphs, vertices, and edges that we are ”working on”, and use variable names

like G⋆, u⋆ and e⋆ for their dual equivalents only in intermediary computations before arriving

at results for our original graph.

Fact 2.3.1 (Cycle–cut duality). Let G := (V,E, from, to) be a connected planar graph, and

let C⋆ be a simple cycle in G⋆. Then C⋆ will always correspond to a minimal cut in G. If

we define C := {e | e⋆ ∈ E(G⋆)} as the edges in E(G) that correspond to edges in C⋆, then

(V,E \ C, from, to) is a disconnected graph of exactly two components. If the cycle C⋆ is not

simple, then we still end up with a disconnected graph, but we may have more than just two

components.

See Figure 2.3 for an example. In Figure 2.3b we have found a simple cycle in the dual graph,

and if we delete the corresponding edges in the original graph we end up with the disconnected

graph in Figure 2.3c.

(a) A planar graph with its dual
colored in green

(b) A simple cycle in the dual,
colored in blue

(c) Deleting the edges that
cross the dual’s cycle cuts the
graph in two

Figure 2.3: A simple cycle in a dual graph always corresponds to a cut in the original graph.

Theorem 2.3.1 (The relation between the number of vertices, edges and faces). Let G :=

(V,E, from, to) be a connected planar graph, where n := |V |,m := |E|, and f is the number

of faces in any embedding of G.

Claim: n+ f −m = 2.

1Strictly speaking, there is an embedding of G⋆ such that G⋆⋆ ∼= G.

9

Proof. Let H ⊑ G be any non-empty connected subgraph that does not have any cycles, and

let nH := |V (H)|. Since it does not have any cycles, we have that:

• The outside face must be the only face: fH := 1.

• Each edge must connect a ’new’ vertex to the rest of the graph, except the first edge which

connects two new vertices. Therefore the number of edges is one less than the number of

vertices: mH := nH − 1.

We now have that nH + fH − mH = nH + 1 − (nH − 1) = 2, so the equality holds for this

subgraph.

Now we can iteratively add either an edge alone or both a vertex and an edge to H until we

have G. If we add just an edge, we increase both mH and fH by 1 and the equality still holds.

If we add a new vertex with a new edge, we increase both nH and mh by 1 and the equality

still holds.

Therefore, the equality n+ f −m = 2 holds for any connected planar graph G.

Corollary 2.3.1. The number of faces is fixed. A graph may have different faces depending

on the embedding, but the number of faces is always the same.

Corollary 2.3.2. Since all faces (except possibly the outer face) are bounded by at least three

edges, and all edges touch at most two faces, we can show that if n ≥ 3, then m ≤ 3n− 6.

10

Chapter 3

Shortest Odd Walk

Before we start on the main topic of this thesis, we want to discuss a closely related problem:

Shortest Odd Walk

Input: A weighted graph G, two vertices s, t ∈ V

Output: the shortest s-t-walk in G that uses an odd number of edges

The difference is simple: a walk may use the same vertices multiple times, whereas a path can

not. A näıve attempt at solving Shortest Odd Path will often accidentally use the same

vertices multiple times, which would make it a walk rather than a path. Therefore, we want to

present an algorithm to solve Shortest Odd Walk first, and explain why it does not solve

Shortest Odd Path.

3.1 Intuition

Our algorithm will take inspiration from Dijkstra’s algorithm for Shortest Path, and assume

that all the edges have non-negative weights. As seen in Section 2.2, in Dijkstra’s algorithm we

have an array to keep the tentative best distance to each vertex. In this algorithm we will keep

two such arrays. The first is for the best distance using an odd walk, and the second is for the

best distance using an even walk. Each vertex can be scanned at most twice: once when we

have found the definitive best odd walk and want to find potential improvements to the even

walks of its neighbors, and analogously when we find the best even walk.

11

3.2 Pseudocode

Here is the pseudocode of the algorithm. To see the code implemented in Rust, see the GitHub

repository [Sim24b].

Code Listing 3.1: Shortest Odd Walk
1 def shortest_odd_walk(graph , s, t) {
2 for u in 0..n {
3 even_dist[u] = ∞
4 odd_dist[u] = ∞
5 even_done[u] = false;
6 odd_done[u] = false;
7 }
8 even_dist[s] = 0
9

10 queue = priority_queue ([(0, true , s)]);
11 while queue is not empty {
12 (dist_u , even , u) = queue.pop()
13 if even {
14 if even_done[u] continue;
15 even_done[u] = true;
16
17 for edge in graph[u] {
18 v = to(edge);
19 dist_v = dist_u + weight(edge);
20 if dist_v < odd_dist[v] {
21 odd_dist[v] = dist_v;
22 queue.push((dist_v , false , v));
23 }
24 }
25 }
26 else {
27 if odd_done[u] continue;
28 odd_done[u] = true;
29
30 for edge in graph[u] {
31 v = to(edge);
32 dist_v = dist_u + weight(edge);
33 if dist_v < even_dist[v] {
34 even_dist[v] = dist_v;
35 queue.push((dist_v , true , v));
36 }
37 }
38 }
39 if odd_dist[t] < ∞ {
40 return odd_dist[y];
41 }
42 }
43 return None;
44 }

In the pseudocode, we show how to find the best odd walk from the source vertex to the target

vertex. If we instead want to find the best odd or even walks to all vertices, we can simply

remove the if-clause around the target, and return the arrays instead.

3.3 Analysis

Consider Figure 3.1. There are no odd paths from s to t, but we have an infinite amount of odd

walks by utilizing the cycles [a, b, c] or [a, c, b] an odd number of times to offset the parity. Our

12

s a

b c

t

Figure 3.1: No odd s-t-path exist, yet we still have many odd s-t-walks.

algorithm would perhaps first find an odd walk to a, then an even walk to b, then an odd walk

to c, then an even walk to a, and lastly an odd walk to t. This is one of the two odd s-t-walks of

minimum cost. However, a is visited twice in the walk, once for each parity, and the resulting

walk is not a path. Therefore, this algorithm cannot be used to solve Shortest Odd Path.

The main limitation of the algorithm is that the edges in the input graph must have either

non-negative weights or no weights at all. Otherwise, we cannot guarantee that even_dist[u]

and odd_dist[u] have their final, correct values when we scan a vertex u. Note that unlike

most other algorithms shown in this thesis, this algorithm does not require the input graph to

be undirected, it may also be directed.

Theorem 3.3.1. Let (G, s, t) be an instance of Shortest Odd Walk, let n := |V | and let

m := |E|.
Claim: the algorithm runs in time at most O(m · logm), or O(m · log n) if the graph is simple.

Proof. Because of our odd_done and even_done arrays, we can guarantee that each vertex is

scanned at most twice, once for each parity. For each scan, we loop through each of the neighbors

in linear time and consider putting them in the queue. The total cost of the scans is therefore

at most O(m). A vertex may be put into the queue many times before it is scanned, in the

worst case once for each of its neighbors. That means that we put vertices in the queue at most

O(m) times, for a total cost of O(m), and removing all of them takes a total of O(m · logm).

The algorithm runs in time at most O(m) +O(m · logm) = O(m · logm), which shows the first

part of the claim.

If the graph is simple we may simplify the complexity further: O(m · logm) ⊆ (m · log n2) =

O(m · 2 · log n) = O(m · log n), which shows the second part of the claim.

To test how well the algorithm scales, we generate 200 Delaunay graphs of sizes 1000, 2000,

3000, and so on until 200k. We explain how these graphs are generated in Section 6.4. For each

graph, we have estimated a source and target with the maximum shortest path between them,

and run our Shortest Odd Walk algorithm. We take the median running time of 10 runs and

plot the results below. We have also tried to find constants to convert the O(m·log n) theoretical
complexity into a comparable function and plotted it next to the real practical results.

13

As we can see, the algorithm easily solves Shortest Odd Walk on graphs of 200k+ vertices

in less than 100ms. There is only a slight upward curve as the inputs grow, which is what we

expect from a linearthmic theoretical running time.

We also benchmark the algorithm on seven graphs from real-life scenarios, as seen in the table

below. Four of the synthetic Delaunay graphs are added for comparison. Each graph is run 20

times, and we take the average running times and show them in the table below. See Section 6.4

for more details on how the benchmarking is done.

Graph n m Time spent

Power BCSPWR09 [RA15] 1723 2394 < 1ms

Oldenburg [LCH+05] 6106 7035 1ms

San Joaquin County [LCH+05] 18263 23874 3ms

Cali Road Network [LCH+05] 21048 21693 3ms

Musae Github [RAS19] 37700 289003 18ms

SF Road Network [LCH+05] 174956 223001 46ms

Ca Citeseer [RA15] 227321 814137 132ms

Delaunay 50k 50000 149961 15ms

Delaunay 100k 100000 299959 38ms

Delaunay 150k 150000 449965 64ms

Delaunay 200k 200000 599961 92ms

14

As we can see, the algorithm does very well on all the inputs, and notably has no trouble solving

for the Ca Citeseer graph of 227k vertices and 814k edges in less than 150ms. These results

are excellent. Despite having a similar complexity to the other algorithms in this thesis, this

algorithm is still by far the fastest in practice.

Though we discovered it independently, the algorithm is not particularly groundbreaking or in

any way creative. Therefore, we do not expect it to be original. It is, however, quite fast, and we

are happy with that. The main reason we include it in this thesis is because of its pedagogical

value in introducing our main topic: Shortest Odd Path.

15

Chapter 4

Shortest Odd Path

Now that we have tried out some algorithms for Shortest Odd Walk, we are finally ready

to add the restriction that each vertex is used at most once, and thus solve Shortest Odd

Path:

Shortest Odd Path

Input: a weighted graph G, two vertices s, t ∈ V

Output: an s-t-path in G of minimum cost, that uses an odd number of edges

Even though it is deceptively simple to state the problem, solving it in practice is no easy task.

In fact, [Tho85] has shown that the problem is NP-complete in directed graphs, even without

weights. Undirected graphs are also a challenge: [SS23] have proven that even if the weights

are restricted to just {−1, 1}, and even if we know that they do not form any negative cycles,

Shortest Odd Path is still NP-complete in undirected graphs.

Knowing this, we instead direct our focus to a simpler variant: Shortest Odd Path on

undirected graphs of non-negative weights. Unlike the other variants, this one is possible to

solve in polynomial time, as shown by [Tho85], [SS23], [Der85] and others. The algorithm we are

about to present is based on Derigs’ algorithm [Der85], along with some minor improvements.

4.1 Reduction to Shortest Alternating Path

Consider first another related problem:

Shortest Alternating Path

Input: a weighted graph G := (V,E, from, to,weight), two vertices s, t ∈ V , and a set F ⊆ E

Output: an s-t-path in G of minimum cost, where every other edge used is in F

Derigs observed that Shortest Odd Path can be reduced to a special case of Shortest

Alternating Path, by constructing what we will refer to as a mirror graph.

16

Definition 4.1.1 (Mirror graph). Let G be a graph, and s, t ∈ V (G) be two vertices. We

construct a supergraph M = G, by adding an extra copy of everything in the graph not directly

related to s and t. For each vertex u ∈ V (G) \ {s, t}, we add a ’mirror’ vertex u′, and a

connecting ’mirror’ edge of weight 0 between u and u′. For each edge e ∈ E(G) \ (G[s] ∪G[t])

from u to v we add an edge e′ of the same weight between the ’mirror’ copies of its endpoints,

from u′ to v′. Now M is the mirror graph of G with respect to s and t.

See Figure 4.1 for an example. If G is the graph in Figure 4.1a, then the mirror graph could

look like Figure 4.1b. The part of the mirror graph M that is also present in G is referred

to as the ’real’ side of the graph, while the new vertices are on the ’mirror’ side. Vertices

and edges from the mirror side are usually labeled with an ′. For convenience, we define the

function mirror : V (M) \ {s, t} → V (M) \ {s, t} to go from a vertex to its coun-

terpart on the other side of the mirror. Furthermore, in an abuse of notation, we also de-

fine mirror : E(M) \ (G[s] ∪ G[t]) → E(M) \ (G[s] ∪ G[t]) as the same but for

edges.

The edges in M that ’cross’ the mirror by going between vertices and their counterparts form

a matching in M . We refer to these edges as the edges in the matching, or sometimes simply as

just the matching. Note that with the exception of s and t, this is an almost perfect matching

in M .

s

a

b

c

d

t

(a) The input graph G

s

a

b

c

d

t

a′

b′

c′

d′

(b) The mirror graph M of G, with the match-
ing marked in red

Figure 4.1: Reduction from Shortest Odd Path to Shortest Alternating Path.

Our reduction from Shortest Odd Path to Shortest Alternating Path follows:

1. Let (G, s, t) be an instance of Shortest Odd Path.

2. Construct M as the mirror graph of G, and let F be the matching in M . Now (M, s, t, F)

is an instance of Shortest Alternating Path.

3. Let P ′ be the shortest alternating path of (M, s, t, F), if one exists. If none exist, then we

do not have any odd s-t-paths in G either and are already done.

17

4. Construct P by filtering out the edges in the matching from P ′, and for each edge e′ ∈
E(M) from the mirror side ofM we replace it by the corresponding edge mirror(e′) ∈ E(G)

from the real side.

5. Now P is the shortest odd s-t-path in G.

For example, if our input G for Shortest Odd Path is Figure 4.1a, then M and F could

look like Figure 4.1b. The only alternating s-t-path is P ′ := [(s, a), (a, a′), (a′, b′), (b′, b),

(b, c), (c, c′), (c′, d′), (d′, d), (d, t)]. When we translate it to a path in G, we end up with

P := [(s, a), (a, b), (b, c), (c, d), (d, t)], which is the shortest odd s-t-path in G.

Now that we have two copies of most vertices in M , we run the risk of accidentally using the

same vertex multiple times and ending up with a walk rather than a path in G, like with our

algorithm in Chapter 3. The key to note here is that F is an (almost) perfect matching, and

when we step on a vertex u we have to cross the mirror and step on mirror(u) next. We will

never visit u, go somewhere else, and then later come back to visit mirror(u). So both copies

must be used directly after each other, and when we translate the path in M into a path in G

the two copies are effectively merged into just a single step in the path. Therefore, vertices are

never repeated and we always end up with a path.

To see why the reduction necessarily yields an odd path, simply observe that for each step we

take in the graph, we have to go to the other side of the mirror. If we take another step, we

get back to the same side again. It is only when we reach the target vertex t that we can stop

and not have to go to the other side. Therefore, to reach a neighbor of t, we must have used

an even number of edges from the matching and an even number of edges not in the matching.

When we take the last step to reach t we have used an odd number of edges and thus found an

odd path. If this alternating s-t-path in M is the shortest such path, then the corresponding

path in G must also be the shortest odd s-t-path in G. The interested reader may see [Der85]

for more details on this reduction.

Ball and Derigs [BD83] have shown how to efficiently solve Shortest Alternating Path. In

their algorithms, subgraphs are shrunk into pseudonodes whenever possible, to make the graph

smaller. The drawback is that certain pseudonodes must later be expanded again, which is

the most complicated and expensive part of their algorithms. In our case, however, we have

a special case of Shortest Alternating Path. The set F is, except for s and t, a perfect

matching of M , and we will therefore never have to expand pseudonodes after shrinking them.

The curious reader may visit [BD83] for more on these algorithms and why our almost-perfect

matching is a simpler case.

18

4.2 The idea for our Shortest Alternating Path algorithm

We will explain the general idea of our algorithm by following an example, and solve for the

graph in Figure 4.1a. First, we construct the mirror graph as explained in Section 4.1, to

produce the graph in Figure 4.1b. Then we initialize an empty priority queue of vertices and

edges to be scanned. For each vertex u ∈ V (M), we denote

• d+u := the length of the shortest alternating s-u-path ending on a matched edge

• d−u := the length of the shortest alternating s-u-path ending on a non-matched edge

• predu := the last edge used to find u’s most recent value for d−u

Initially, these are either ∞ or undefined, except for the source vertex s, where we can set

d+s := 0. Then, for each edge e ∈ N(s), we can set d−to(e) := weight(e), predto(e) := e, and add

to(e) to our priority queue with priority 2 · weight(e).

We visualize it in the diagram below.

s

d+ : 0

d− : ∞

a

d+ : ∞
d− : 1

b

d+ : ∞
d− : ∞

c

d+ : ∞
d− : ∞

d

d+ : ∞
d− : ∞

t

d+ : ∞
d− : ∞

a′

d+ : ∞
d− : ∞

b′

d+ : ∞
d− : ∞

c′

d+ : ∞
d− : ∞

d′

d+ : ∞
d− : ∞

Queue:

• Vertex(2,a)

The first and only vertex in the queue is a. We pop it, set d+a′ := d−a , and ’scan’ a′. By that,

we mean to look at each neighbor e ∈ G[a′], and see if our new value d+a′ + weight(e) is better

than the previous value d−to(e). That is the case for both b′ and c′, so we update their values and

add them to the queue. Their priorities in the queue are equal to twice their d− values, which

is 2 · 2 = 4 for both of them.

19

s

d+ : 0

d− : ∞

a

d+ : ∞
d− : 1

b

d+ : ∞
d− : ∞

c

d+ : ∞
d− : ∞

d

d+ : ∞
d− : ∞

t

d+ : ∞
d− : ∞

a′

d+ : 1

d− : ∞

b′

d+ : ∞
d− : 2

c′

d+ : ∞
d− : 2

d′

d+ : ∞
d− : ∞

Queue:

• Vertex(2,a)

• Vertex(4,b′)

• Vertex(4,c′)

The next vertex in the queue is b′, so we set d+b := d−b′ and scan b′:

s

d+ : 0

d− : ∞

a

d+ : ∞
d− : 1

b

d+ : 2

d− : ∞

c

d+ : ∞
d− : 3

d

d+ : ∞
d− : ∞

t

d+ : ∞
d− : ∞

a′

d+ : 1

d− : ∞

b′

d+ : ∞
d− : 2

c′

d+ : ∞
d− : 2

d′

d+ : ∞
d− : ∞

Queue:

• Vertex(4,b′)

• Vertex(4,c′)

• Vertex(6,c)

Now c′ is the next in the queue, we set d+c := d−c′ and scan c′. This is where the interesting

part happens: now we have set both d+ and d− for b and c, and that means that we have found

an odd cycle in the graph. The edge between them, e, is called the blossom edge, and is marked

in green. We add e to the queue, with the priority d+c + d+b +weight(e).

s

d+ : 0

d− : ∞

a

d+ : ∞
d− : 1

b

d+ : 2

d− : 3

c

d+ : 2

d− : 3

d

d+ : ∞
d− : 4

t

d+ : ∞
d− : ∞

a′

d+ : 1

d− : ∞

b′

d+ : ∞
d− : 2

c′

d+ : ∞
d− : 2

d′

d+ : ∞
d− : ∞

Queue:

• Vertex(4,c′)

• Blossom(5,(b,c))

• Vertex(6,c)

• Vertex(6,d)

20

Next up is to scan this blossom edge, and compute its corresponding odd cycle by backtracking

from c and b until they meet at a′. To visualize the cycle, we like to ’stretch out’ the graph a

little, and draw it like below. Note that some of the edges are omitted for clarity. Now we can

see that the cycle consists of [a′, c′, c, b, b′, a′]. We call the set B := {c′, c, b, b′} a blossom, and

a′ the base of the blossom, inspired by the famous Blossom algorithm by [Edm65].

s

d+ : 0

d− : ∞

a

d+ : ∞
d− : 1 b

d+ : 2

d− : 3

c

d+ : 2

d− : 3

d

d+ : ∞
d− : 4

t

d+ : ∞
d− : ∞

a′

d+ : 1

d− : ∞ b′

d+ : ∞
d− : 2

c′

d+ : ∞
d− : 2

d′

d+ : ∞
d− : ∞

Queue:

• Blossom(5,(b,c))

• Vertex(6,c)

• Vertex(6,d)

The first reason why we care about this blossom is because now we can immediately set the

final, optimal d− and d+ for all the vertices in the blossom. That is because we now have two

alternating paths to each vertex, one goes around the cycle while the other takes the shortcut.

One of these ends up on a matched edge, and the other on a normal edge. Furthermore, both of

these are the optimal paths and can be used to set final values for d+ and d−. For example, to go

from s to c′, we can either go through [s, a, a′, c′] with a cost of d−c , or go along [s, a, a′, b′, b, c, c′]

with a cost of d+c .

More specifically, for each u ∈ B:

• If d+u = ∞, we set d+u = d−mirror(u).

• If we can improve d−u by coming from its neighbor in the blossom, we do so.

After all these values have been set, we immediately scan all the vertices in B that just received

values for d+. In this example, we scan c′ and b′, and discover d′. Unfortunately, since this is a

very small blossom we don’t have any vertices that receive new values for d−.

s

d+ : 0

d− : ∞

a

d+ : ∞
d− : 1 b

d+ : 2

d− : 3

c

d+ : 2

d− : 3

d

d+ : ∞
d− : 4

t

d+ : ∞
d− : ∞

a′

d+ : 1

d− : ∞ b′

d+ : 3

d− : 2

c′

d+ : 3

d− : 2

d′

d+ : ∞
d− : 4

Queue:

• Blossom(5,(b,c))

• Vertex(6,c)

• Vertex(6,d)

• Vertex(8,d′)

21

The second reason we compute the blossom is that we no longer care much about the individual

vertices in B, and can shrink them into just the base a′. We will still scan vertices like c from

the queue as before, but whenever we are backtracking to compute blossoms we can skip the

vertices in B entirely and go straight to the base a′ instead. In this example, in a few iterations,

the algorithm will find either (d′, a′) or (d, a′) as a blossom edge, with just {d, d′} as its blossom

and a′ as the base here as well. If we didn’t contract the previous blossom, this new blossom

would instead consist of {c′, c, b, b′, d, d′}, but we are already completely done with most of those

vertices and computing all of it again would be a waste. Therefore we shrink them.

s

d+ : 0

d− : ∞

a

d+ : ∞
d− : 1

a′

d+ : 1

d− : ∞

d

d+ : ∞
d− : 4

d′

d+ : ∞
d− : 4

t

d+ : ∞
d− : ∞

Queue:

• Vertex(6,c)

• Vertex(6,d)

• Vertex(8,d′)

If the concerned reader is familiar with the more general Shortest Alternating Path al-

gorithm [BD83] or the original blossom algorithm [Edm65], and worry that such pseudonodes

often have to be expanded again, then remember that in our case the set F is an almost-perfect

matching and those cases never happen.

Let us now skip a few steps, until t eventually reaches the front of the queue. At that point,

we have that d−t = 5, and that is also the cost of the shortest odd path in our original in-

put graph. To compute the exact path we can backtrack from t to s and then translate

that path as described in Step 4 of our reduction in Section 4.1. We end up with the path

[(s, a), (a, b), (b, c), (c, d), (d, t)], which is the shortest odd s-t-path in the graph.

This example had only two small blossoms, none of which illustrated vertices receiving values for

d−. See Section 4.2 for another, larger example of a blossom. Observe how clear the structure

is: we always have an odd cycle, where every other edge is in the matching, except for the two

edges to the base. In this case every other vertex is missing values for either d+ or d−, as is

common, though it may happen that a vertex in a blossom already has another tentative value

for d−.

22

b
d+ : 10
d− : ∞

c
d+ : 10
d− : ∞

d
d+ : ∞
d− : 11

e
d+ : ∞
d− : 11

f
d+ : 12
d− : 13

g
d+ : 12
d− : 13

a′

d+ : 9
d− : ∞

b′

d+ : ∞
d− : 10

c′

d+ : ∞
d− : 10

d′

d+ : 11
d− : ∞

e′

d+ : 11
d− : ∞

f ′

d+ : ∞
d− : 12

g′

d+ : ∞
d− : 12

(a) A larger blossom with a′ as its base and the blossom edge marked in green.

b
d+ : 10
d− : 15

c
d+ : 10
d− : 15

d
d+ : 14
d− : 11

e
d+ : 14
d− : 11

f
d+ : 12
d− : 13

g
d+ : 12
d− : 13

a′

d+ : 9
d− : ∞

b′

d+ : 15
d− : 10

c′

d+ : 15
d− : 10

d′

d+ : 11
d− : 14

e′

d+ : 11
d− : 14

f ′

d+ : 13
d− : 12

g′

d+ : 13
d− : 12

(b) Every other vertex gets a chance to update their values for d+ or d−, here marked in blue.

Figure 4.2: A larger blossom computed.

4.3 Pseudocode

Here we show a detailed pseudocode of the algorithm, along with explanations of some of the

finer details should the interested reader consider implementing the algorithm on their own. For

the entirety of the code in one piece without comments or alternatives, see Appendix A. And

of course, to see the code implemented in Rust, see the GitHub repository [Sim24b].

4.3.1 Initialization

First, we initialize the arrays we need, with appropriate default values for all vertices. The

mirror graph is constructed as described in Definition 4.1.1.

Code Listing 4.1: Initialization
1 fn init(input_graph , s, t) {
2 graph = create_mirror_graph(input_graph);
3
4 for u in 0..n {
5 d_plus[u] = ∞;
6 d_minus[u] = ∞;
7 pred[u] = null;
8 completed[u] = false;
9 basis[u] = u;

10 in_current_blossom[u] = false;
11 }
12 d_plus[s] = 0;
13 completed[s] = true;
14

23

15 for edge in graph[s] {
16 priority_queue.push(Vertex(weight(edge), to(edge)));
17 d_minus[to(edge)] = weight(edge);
18 pred[to(edge)] = e;
19 }
20 }

The main function ties it all together. The control function includes the main loop and does

most of the work until there is nothing more to do. Then we can either find the shortest odd

path by backtracking or conclude that no odd paths exist.

Code Listing 4.2: Main
1 fn main(input_graph , s, t){
2 init(input_graph , s, t);
3
4 control ();
5
6 if d_minus[t] == ∞ {
7 return None;
8 }
9 cost = d_minus[t];

10 path = backtrack ();
11
12 return Some(cost , path);
13 }

Here is how to backtrack once we know we have the shortest odd path to t. Each of the edges

from the mirror side must be replaced by their equivalents on the real side of the input graph.

Note that unlike when backtracking blossoms, here we do not consider the base of the vertices.

Here we pretend that we never shrunk the blossoms into pseudonodes so that we find the entire

path.

Code Listing 4.3: Backtracking
1 fn backtrack () {
2 current_edge = pred[t];
3 path = [current_edge];
4 while from(current_edge) != s {
5 current_edge = pred[mirror(from(current_edge))];
6 if current_edge is from the mirror side {
7 path.push(mirror(current_edge));
8 }
9 else {

10 path.push(current_edge);
11 }
12 }
13 return path;
14 }

4.3.2 The control loop

This is the main loop of the algorithm. Each iteration of the outer loop will either scan a

vertex, handle a blossom edge, or conclude that we are done. Each vertex can be put on the

queue many times, but we only want to scan it once, so we discard those that have already

been scanned. Likewise, each blossom consists of many edges, each of which can be put on the

24

queue, but we only want to compute each blossom once. If the two endpoints of a potential

blossom edge already have the same basis, then we know they have already been computed as

part of the same blossom and the edge may safely be discarded.

An important detail that is not clear in the pseudocode is that in the event of a tie in priority,

a vertex should always be prioritized before a blossom edge. Otherwise we may get incorrect

results. One way to ensure that is to give a specific implementation of how the Vertex and

Blossom sum type is ordered.

Code Listing 4.4: Control, the main loop
1 fn control () -> bool {
2 loop {
3 while ! priority_queue.is_empty () {
4 match priority_queue.top() {
5 Vertex(_, u) => {
6 if completed[u] {
7 priority_queue.pop();
8 }
9 else {

10 break;
11 }
12 },
13 Blossom(_, edge) => {
14 if base_of(from(edge)) == base_of(to(edge)) {
15 priority_queue.pop();
16 }
17 else {
18 break;
19 }
20 }
21 }
22 }
23
24 if priority_queue.is_empty () {
25 // No odd s-t-paths exist :(
26 return;
27 }
28 match priority_queue.pop() {
29 Vertex(_, u) => {
30 if u == t {
31 // We have found a shortest odd s-t-path :)
32 return;
33 }
34 d_plus[u] = d_minus[mirror(u)];
35 scan(mirror(u));
36 }
37 Blossom(_, edge) => {
38 blossom(e);
39 }
40 }
41 }
42 }

Code Listing 4.5: Scan
1 fn scan(u) {
2 completed[u] = true;
3 dist_u = d_plus[u];
4 for edge in graph[u] {
5 v = to(edge);
6 new_dist_v = dist_u + weight(edge);
7
8 if ! completed[v] {
9 if new_dist_v < d_minus[v] {

10 d_minus[v] = new_dist_v;
11 pred[v] = edge;
12 priority_queue.push(Vertex(new_dist_v , v));

25

13 }
14 }
15 else if d_plus[v] < ∞ and base_of(u) != base_of(v) {
16 priority = d_plus[u] + d_plus[v] + weight(edge);
17 priority_queue.push(Blossom(priority , edge));
18 if new_dist_v < d_minus[v] {
19 d_minus[v] = new_dist_v;
20 pred[v] = e;
21 }
22 }
23 }
24 }

4.3.3 Backtracking a blossom edge

When we compute a blossom edge e, we need to compute the vertices and edges that make up

the blossom. We do this by creating two paths, one starting in from(e), and the other starting

in to(e). We backtrack both of them towards the source while alternating between matched

and non-matched edges until the paths meet up at a common ancestor b. Then we set b as the

base, and the two paths make up our blossom.

The näıve way would be to backtrack both paths individually all the way to the source, and

only then see where they start to overlap. That would run in time linear to all the vertices in

the graph and is a waste of time. A slightly better idea is to backtrack one path all the way to

the source, and then backtrack the other only until it reaches a vertex in the other’s path. That

is better, but even if we somehow know beforehand which path needs the fewest edges this too

would run in linear time.

Instead, we alternatingly backtrack both paths at the same time, and mark each vertex when

added to a path. Whenever one path reaches a vertex that is already marked by the other,

we mark that vertex as the base and delete the vertices in the other path that came after it.

Now we can compute the vertices in the blossom in time linear to the number of vertices in the

blossom, rather than the entire graph.

Implementing this may sound difficult, tedious, and error-prone, but it is actually way worse.

Here are some reasons why this is the most complex part of any algorithm in this thesis, and

why any programmer should take particular care when implementing this:

• It is difficult to alternate through matched and non-matched edges, while simultaneously

alternating between computing two separate paths.

• We have to consider the basis of each vertex found on the paths rather than the vertex

itself because we shrink each blossom into a pseudonode after computing it.

• The paths may not have the same number of edges, even if the graph is unweighted.

• The endpoints we start backtracking from may already be the base if the blossom edge is

adjacent to it.

26

• The blossom edge itself should end up in both, either, or neither of the paths, depending

on where it is in relation to the base.

• The paths may not have any edges at all.

• One path may reach the source vertex before the other path has reached b. Then we have

to stop backtracking that path and focus on the other.

Here is our solution. The procedure returns the base and two lists of all the non-matched edges

that make up the blossom. That usually includes the blossom edge itself, which is part of both

paths unless it is adjacent to the base.

Code Listing 4.6: Backtrack blossom
1 fn backtrack_blossom(edge) {
2 p1 = [reverse(edge)];
3 p2 = [edge];
4 u = get_basis(to(edge));
5 v = get_basis(from(edge));
6 in_current_blossom[u] = true;
7 in_current_blossom[v] = true;
8
9 loop {

10 if u != s {
11 u = get_basis(mirror(u));
12 in_current_blossom[u] = true;
13 e = pred[u];
14 u = get_basis(from(e));
15 p1.push(e);
16
17 // If true , then u is the base
18 if in_current_blossom[u] {
19 p1.pop();
20 in_current_blossom[u] = false;
21
22 // We remove all the edges in p2 after the base
23 while p2 is not empty {
24 e = p2.last();
25 v = get_basis(from(e));
26 in_current_blossom[v] = false;
27 p2.pop();
28 if v == u {
29 break;
30 }
31 }
32 return (u, p1, p2);
33 }
34 }
35 if v != s {
36 // *Here we do the same for the other path*
37 }
38 }
39 }

The last if-statement closely resembles the first, except with other variables, so we have omitted

it here for brevity. See Appendix A for the full version.

4.3.4 Computing blossoms

To compute a blossom, we first have to determine its base and its edges, as discussed in the

previous section. Then we can use the edges in the paths to potentially improve values for d+

27

and d−, and to set the new base for all the vertices involved. Afterward, we scan all the vertices

that we now gave d+ values.

Two lists of edges can be processed simultaneously without issues, but we treat them separately

here to avoid spending time on concatenating them. Setting blossom values and setting the

basis can also be done at the same time, but we split it into two separate functions to improve

readability. However, the scans may only be performed after all the vertices in both lists have

received their new basis.

Code Listing 4.7: Blossom
1 fn blossom(edge) {
2 (b, p1 , p2) = backtrack_blossom(edge);
3
4 to_scan1 = set_blossom_values(p1);
5 to_scan2 = set_blossom_values(p2);
6
7 set_edge_bases(b, p1);
8 set_edge_bases(b, p2);
9

10 for u in to_scan1 {
11 scan(u);
12 }
13 for v in to_scan2 {
14 scan(v);
15 }
16 }

Code Listing 4.8: Set blossom values
1 fn set_blossom_values(path) {
2 to_scan = [];
3
4 for edge in path {
5 u = from(edge);
6 v = to(edge);
7 w = weight(edge);
8 in_current_cycle[u] = false;
9 in_current_cycle[v] = false;

10
11 // We can set a d_minus
12 if d_plus[v] + w < d_minus[u] {
13 d_minus[u] = d_plus[v] + w;
14 pred[u] = reverse(edge);
15 }
16
17 int m = mirror(u);
18 // We can set a d_plus , and scan it
19 if d_minus[u] < d_plus[m] {
20 d_plus[m] = d_minus[u];
21 to_scan.push(m);
22 }
23 }
24
25 return to_scan;
26 }

Code Listing 4.9: Set edge bases
1 fn set_edge_bases(base , path) {
2 for edge in path {
3 u = from(edge);
4 m = mirror(u);
5 set_base(base , u);
6 set_base(base , m);
7 }
8 }

28

4.3.5 Setting the base of blossoms and pseudonodes

When we have found and computed a blossom, we shrink it into a pseudonode by setting the

base of all its vertices to the base of the blossom. Whenever we consider a potential blossom

edge, we see if the two vertices have the same base, and if so, then they are in fact already in

the same pseudonode and the edge can be disregarded. Whenever we set u to have the base b,

we also have to see if any other vertices have u as their base and set their bases to b as well.

Derigs never specified any data structure to update these bases efficiently.

The näıve solution would be to do something like this:

Code Listing 4.10: Näive basis
1 fn set_base(base , u) {
2 basis[u] = base;
3 for v in 0..n {
4 if basis[v] == u {
5 basis[v] = base;
6 }
7 }
8 }
9 fn get_base(u) {

10 return basis[u];
11 }

This would search through all vertices in the graph in linear time. We have found two potential

improvements to this. The first version is to use an Observer pattern, where each vertex u keeps

a record of the vertices that have u as its base. Initially dependents[u] = [] for all of them.

Then, when we update u’s base to base:

Code Listing 4.11: Observer basis
1 fn set_base(base , u) {
2 basis[u] = base;
3 dependents[base].push(u);
4 for v in dependents[u] {
5 basis[v] = base;
6 dependents[base].push(v);
7 }
8 }

Now we go through only the vertices that have u as their base, in time linear to the count of

vertices that need to be updated.

The second version is to use a structure resembling UnionFind, where each disjoint set and its

representative is a blossom and its base. To update the base of u we simply set the new base and

do nothing else. When we require the base of a vertex we recursively query its representative’s

base and contract the path along the way in the style of UnionFind.

29

Code Listing 4.12: UF-like basis
1 fn set_base(base , u) {
2 basis[u] = base;
3 }
4 fn get_base(u) {
5 if u != basis[u] {
6 basis[u] = get_base(basis[u]);
7 }
8 return basis[u];
9 }

Now we can update a base in constant time, with the tradeoff of potentially slower queries. Is

this faster? Well, sometimes it is. Contrary to Observer-based version, now we can set the new

base of a vertex very quickly, but we spend more time looking up the endpoints of potential

blossom edges. It may therefore be preferable in sparse graphs, where the number of edges is

small compared to the number of vertices. We benchmark both versions and discuss the results

in Section 4.5.2.

4.4 Improvements on Derigs’ algorithm

The main idea of our algorithm is the same as the original by Derigs [Der85]. We have, however,

made some minor adjustments, and we will discuss these here.

First, the original algorithm used the idea of building up a tree T of alternating edges to mark

scanned vertices as done. This is to avoid scanning the same vertex multiple times and to make

sure that a blossom edge is only put into the queue after both its vertices have been scanned.

The notation V (T) := V (T) ∪ {k, l} was used to mark k as done. We had multiple problems

with this. To begin, only the matched edges are ever added to the tree, so the disconnected

’tree’ would not be a tree at all. Furthermore, unlike how for example Dijkstra’s Algorithm

builds up an implicit tree of scanned vertices, the vertices in our mirror graph are not at all

scanned in the order of their distance to the source, so even if we were to add actual edges to

the tree it would still not be a tree. Finally, we found that the notation was misleading and

overly complex for what really should be a simple concept. We have replaced this with just

a boolean array called completed, where each vertex u initially has completed[u] = false

until it has been scanned, at which point we set completed[u] = true.

Second, we have chosen to utilize sum types to have one priority queue with both vertices and

blossom edges in one. The original algorithm used two priority queues which always had to

be queried together, and this was difficult to read, write, and debug. We find that combining

them into one queue simplifies the code greatly. The way we set their priorities is also different:

vertices now have a priority of twice its d−, so that blossom edges can have a priority of the

sum of the d+’s of its two endpoints and its edge weight without dividing by two afterwards.

30

We find this to be simpler, and we no longer have to convert integer weights to floating points

just to prioritize them correctly.

Third, we developed two data structures to store and update the basis of each vertex. Neither

improve the theoretical running time, but can be faster in practice depending on the types

of inputs. See Section 4.3.5 for a discussion of their differences, and see Section 4.5.2 for an

empirical analysis of the improvement.

Fourth, and this is more subjective, we will argue that we have improved the presentation of the

algorithm. Derigs’ algorithm is both very neat and very useful, but we believe that the way it is

presented in the original paper [Der85] is too terse in many places, and overly complex in others.

We speak from experience when we say that implementing the algorithm was a challenge, and

one of our goals is to provide an easier starting point for programmers who wish to implement

the algorithm themselves, to make this neat algorithm more accessible.

4.5 Analysis

Theorem 4.5.1. Let (G, s, t) be an instance of Shortest Odd Path, let n := |V | and let

m := |E|.
Claim: the algorithm runs in time at most O(m · logm), or O(m · log n) of the graph is simple.

Proof. First of all, we construct the mirror graph M with 2n − 2 ∈ O(n) vertices and 2m −
deg(s)− deg(t) ∈ O(m) edges, in time O(n+m).

With our completed array we can guarantee that each vertex is scanned at most once, and

the scanning operation just loops through all the neighbors. Therefore, the total cost of all the

scans is O(n+
∑

u∈V deg(u)) = O(n+ 2m) = O(n+m).

The blossom operation is a little more convoluted. Thanks to the overly complicated code in

our backtrack_blossom procedure in Section 4.3.3, we can backtrack from a blossom edge and

determine the vertices in the blossom in time linear to the size of the blossom. Setting their

values for d+ and d− can also be done in linear time, and the potential scans have already

been accounted for above. The key point here is that we shrink the blossom into a pseudonode

afterwards: each vertex can then only be part of such a blossom procedure at most once. Even

though we may compute many blossom edges, the total amount of work will never exceed O(n).

Finally, we have the main loop, which iteratively pops vertices and blossom edges from the

queue. Each of the O(n) vertices may be put into the priority queue many times, at most once

for each of its neighbors. That is a total of O(m) vertices in the queue, for a total cost of O(m).

Though it is unlikely, in the worst case all edges may be enqueued as blossom edges as well,

31

again for a total cost of O(m). In total, enqueueing everything costs O(m), and dequeueing

everything costs O(m · logm).

In total, the algorithm runs in time O(n + m) + O(n + m) + O(n) + O(m) + O(m · logm) =

O(m · logm), which shows the first part of the claim. If the graph is simple, then O(m · logm) ⊆
O(m · log n2) = O(m · 2 · log n) = O(m · log n), which shows the second part of the claim.

4.5.1 Other variants

A running time of O(m · log n) means that the algorithm generally performs well on sparse

graphs. We chose this algorithm with this running time because we will be using it on planar

graphs in Chapter 5, where m ≤ 3n − 6, as shown in Corollary 2.3.2. That means it runs in

O(n log n) on planar graphs.

We should note, however, that there are also other known polynomial algorithms for Shortest

Odd Path. In the same paper that Derigs presented the algorithm of this chapter, he also

presented another variant [Der85]. The main difference is that we drop the priority queues and

use a list instead, and in the control loop instead search through the entire list and pop the

element with the lowest priority. That search takes time at most O(n), and can be done at

most n times, for a total running time of O(n2). If the input graphs are dense, then this that

may be preferable to our O(m log n) algorithm.

In the case where the graphs are unweighted, there is an even better algorithm: [LP84] present

an algorithm that runs in the lightning fast O(n+m) in undirected unweighted graphs.

All this talk about odd paths might cause the curious reader to ask, what about even paths?

The problem of Shortest Even Path is, in fact, equivalent: to find the shortest even s-t-path

in a graph, simply add a new vertex t′ along with an edge from t to t′, and then find the shortest

odd s-t′-path. The same reduction can of course also be used the other way around, should we

prefer to solve Shortest Even Path instead. The reason we choose to focus on odd paths is

simple, each time we write the name of the problem we save one entire character.

4.5.2 Benchmarking different data structures for the Basis

As explained in Section 4.3.5, we have developed multiple data structures to keep track of the

basis of each vertex. One of them is based on the Observer pattern, the other on the well-known

UnionFind structure. We have tested both on seven sparse graphs from the real world, as well

as on four synthetic Delaunay graphs. For each graph and for each structure, we have run the

algorithm 20 times and noted the average times in the table below. See Section 6.4 for more

specific information about how these benchmarks are done.

32

Graph n m Observer UF Change

Power BCSPWR09 [RA15] 1723 2394 1.7ms 1.5ms -12%

Oldenburg [LCH+05] 6106 7035 5.6ms 4.8ms -14%

San Joaquin County [LCH+05] 18263 23874 22ms 18ms -18%

Cali Road Network [LCH+05] 21048 21693 21ms 18ms -14%

Musae Github [RAS19] 37700 289003 125ms 123ms -1.5%

SF Road Network [LCH+05] 174956 223001 225ms 191ms -15%

Ca Citeseer [RA15] 227321 814137 629ms 608ms -3%

Delaunay 50k 50000 149961 106ms 96ms -9%

Delaunay 100k 100000 299959 219ms 205ms -6%

Delaunay 150k 150000 449965 346ms 315ms -9%

Delaunay 200k 200000 599961 476ms 449ms -6%

As we can see, the UnionFind-based structure either outperforms or does as well as the Observer-

based structure on all the graphs we tested. Most notably, we have an 18% decrease in time

spent on the graph of San Joaquin County.

There seems to be a correlation between how well the UnionFind-based structure performs and

how sparse the graphs are. This makes sense: the UnionFind-based structure updates the base

of vertices very fast and spends more time to lookup bases for each potential blossom edge,

while the Observer-based structure does the exact opposite. The focus of this thesis is to create

an algorithm that performs well on sparse graphs, especially planar graphs, which is why we

mostly test on sparse graphs. If we instead had implemented an algorithm for denser graphs,

or just graphs in general, then testing on graphs with more edges would be more appropriate.

Therefore, we will use the UnionFind-based structure as the default in our codebase, as well as

in the remainder of this thesis, and note to the reader that the other option might be preferable

in denser graphs.

4.5.3 Running times on Delaunay graphs

To test how well the algorithm scales, we generate 200 Delaunay graphs of sizes 1000, 2000,

3000, and so on until 200k. We explain how these graphs are generated in Section 6.4. For each

graph, we estimate a source and target with the maximum shortest path between them, and

run our Shortest Odd Path algorithm. We take the median running time of 10 runs and

plot the results below.

The theoretical running time is O(m log n), and we try our best to come up with constants to

create a running time function that matches our algorithm. In Delaunay graphs, we have that

m ≤ 3n, so we have set m := 3n in this function.

33

As we can see, the running times grow almost linearly as the inputs grow larger. The slight

upward curve is barely noticeable, and this is to be expected with a linearithmic theoretical

running time. We are very happy with these results. Being able to solve Shortest Odd Path

on sparse graphs of 100k vertices in a fifth of a second is exactly the kind of performance we

were hoping for.

Now we take this algorithm with us and confidently tackle the next challenge: Network

Diversion.

34

Chapter 5

Network Diversion

5.1 Introduction to Network Diversion

Now that we have an algorithm for Shortest Odd Path, we will use it to solve a much more

useful problem:

Network Diversion

Input: a weighted graph G := (V,E, from, to,weight), two vertices s, t ∈ V , and a diversion

edge d ∈ E

Output: a diversion set D ⊆ E of minimum weight such that all s-t-paths

in (V, E \ D, from, to, weight) must go through d

A diversion set may also equivalently be defined as a minimal s-t-cut that includes d. If all edges

from the diversion set are deleted except d, then d is the bridge between what would otherwise be

two separate components and all s-t-paths must go through d. Network Diversion can then

be restated as the quest to find a minimum minimal s-t-cut that includes d. Both definitions are

equivalent and yield the same optimum results, and being able to switch between formulations

of the problem makes it easier to solve them.

See Figure 5.1 for examples. Figure 5.1a and Figure 5.1b show incorrect attempts at diversions,

while Figure 5.1c shows a valid diversion.

35

s

t

(a) Invalid, there are still paths
that don’t go through the diver-
sion edge after deletion

s

t

(b) Invalid, deleting the diver-
sion set also blocks all paths
that use the diversion edge

s

t

(c) Valid, deleting the diversion
set funnels all traffic through
the diversion

Figure 5.1: Valid and invalid diversions, attempting to force all s-t paths to go through the
diversion edge in red by deleting the diversion set in orange.

Unlike with Shortest Odd Path, it is much easier to come up with practical applications

of Network Diversion. Consider a communication network of machines that communicate

offline, where you, a spy, can intercept all messages between two specific machines. How can

you through outages and other diversions force all traffic in the network to go through where

you can intercept the messages? Or for a more direct example: consider a network of roads

and bridges, the knowledge that the enemy wants to move troops and supplies from one point

to another, and a specific bridge where you are especially prepared to ambush them. How can

you with the least amount of artillery destroy bridges to force the enemy to move through your

ambush?

Initially, finding a minimum minimal s-t-cut that includes a specific edge may seem like yet

another variation of the well-known minimum s-t-cut problem, of which we have numerous

excellent polynomial-time algorithms. Yet, this is considerably harder to solve correctly. If we

just use a normal maximum flow algorithm like Edmonds-Karp [EK72], then we are very likely

to end up with a minimum cut that does not include the diversion edge, like in Figure 5.1b. If

we force the flow algorithm to use the diversion edge, we are likely to end up with a cut that is

not minimal, a cut where we might as well drop the diversion edge from the set and still have

a cut, like in Figure 5.1b.

In fact, [CWN13] have shown that Network Diversion is NP-complete on directed graphs,

even without cycles or weights. Whether Network Diversion can be solved in polynomial

time on undirected graphs is still an open problem. [CWN13] have found polynomial-time

algorithms for the special case where the input graph is s-t-planar, meaning that the graph

can be embedded such that s and t are adjacent to the outside face, but whether there is a

polynomial-time algorithm for planar graphs in the general case is still an open problem.

Until now. We will present the first-ever polynomial-time algorithm that solves Network

Diversion in undirected planar graphs. It will also work with weighted edges, as long as

36

the weights are non-negative. Many graphs based on physical structures are planar. In the

example of roads and bridges, having two roads cross without a crossroad is usually inefficient

and more costly, so such networks are very often planar. The costs associated with cutting an

edge or blowing up a bridge are usually non-negative, too. So even if we do not solve Network

Diversion in the most general case, solving it for planar graphs of non-negative edges is not

far from it in practice.

5.2 Intuition

5.2.1 Detour paths

Before we reveal the algorithm for Network Diversion, we will first look at a curious little

problem that we call Shortest Detour Path. Instead of deleting edges to force all paths

to go through a certain edge, we want to purposefully pass through that edge and look for the

shortest path that does. Perhaps we are going on a road trip, and we want to stop at a specific

gas station along the road to say hi to our friend Mike who works there. And because this is a

road trip, we do not want to drive along the same roads multiple times, that would be boring.

Shortest Detour Path

Input: a graph G, two vertices s, t ∈ V , and a ’detour’ edge d ∈ E

Output: an s-t-path in G of minimum cost, that goes through the detour d

There is no obvious way to solve Shortest Detour Path. One might attempt to concatenate

the shortest s-from(d)-path and the shortest to(d)-t-path, but those two paths might overlap and

reuse the same vertices, and therefore would their concatenation not necessarily be a path but

instead a mere walk. The classical solution is to use a maximum flow algorithm like Edmonds-

Karp [EK72] to find those two paths, to enforce that they are vertex-disjoint. It works, but is

slower and more complicated compared to what we are about to do.

Instead, we create a new graph H, by subdividing all edges in G except d, as seen in Figure 5.2.

The key point to see here is that any odd s-t-path in H must necessarily go through the detour,

otherwise it would not be odd. We can visualize it by ’stepping through’ the edges in H. If

we start on our right leg, then in the beginning every time we reach a vertex that is also in G,

we reach it by stepping on our left leg. That continues until we use the detour edge, and from

then on we step on all vertices from G using our right leg. If we require that we end at t on our

right leg, then the path must be odd, and any odd path must go through the detour. Therefore

we can simply run our Shortest Odd Path algorithm on H, and if such a path exists we can

reverse the subdivision of the edges in the path and the result is the Shortest Detour Path

in G.

37

s

t

(a) An instance of Shortest Deour Path,
the detour marked in red.

s

t

(b) All edges except the detour have been sub-
divided, to create an instance of Shortest
Odd Path.

Figure 5.2: Shortest Detour Path reduced to Shortest Odd Path by subdividing all
edges except the detour.

If we extend the problem to have multiple detour edges, where we have to go through all of them

in any order, then our idea will not work1. The problem is that we have no way of knowing

whether we have used the marked edges 1, 3, or 5, etc. times, because in all of them we hit

vertices from G using our right leg. We can, however, use this idea to find paths that use a

certain set of edges an odd amount of times. As it turns out, that is exactly what we need to

solve Network Diversion.

5.2.2 From a dual path to a real diversion

Remember, we want to find a minimum minimal s-t-cut in G that includes the diversion edge d.

Instead of looking for a minimal cut in G, let us look for a simple cycle in the dual graph G⋆,

as is explained to be equivalent in Fact 2.3.1. We can do this by finding a path in G⋆ that goes

from and to the left and right faces of d, without using d⋆ itself, and then adding d⋆ at the end

to complete the cycle. If the path found is also the shortest such path, then it corresponds to

the minimum minimal cut in G that uses d, though it is not necessarily an s-t-cut.

To force s and t to end up in different components after the cut, we need some additional

details. First, we find any s-t-path in G, not necessarily the shortest path. Then we subdivide

all the edges in the dual graph except those who cross edges on the found s-t-path. Now we

can look for the shortest odd path that goes from and to the left and right faces of d in the

subdivided dual graph, and add d⋆ at the end to make it a cycle. Like before, this corresponds

to a minimum minimal cut in G that uses d, but now it must also cross the edges in the found

s-t-path an odd number of times, as explained in Section 5.2.1.

This cycle, and the found s-t-path, can be interpreted as curves in our embedding. The cycle

can additionally be interpreted as a Jordan curve, and by the Jordan Curve Theorem, the cycle

1This is a good thing, because otherwise we would have solved the Traveling Salesman Problem in
polynomial time and complexity theory as we know it would break down.

38

divides the plane into an ’inside’ and an ’outside’. Since the curve of the s-t-path crosses the

curve of the cycle an odd number of times, exactly one of its endpoints must be on the inside,

as illustrated in Figure 5.3. The endpoints are s and t, meaning that s and t end up in different

components after the cut. It follows that this cut is an s-t-cut in G, specifically a minimum

minimal s-t-cut in G that uses d.

This is the main idea for our algorithm. It should be noted that we did not come up with this

idea ourselves, but have to thank P̊al Grøn̊as Drange [Dra24] for his as for now unpublished

work on the subject.

(a) The path crosses the cycle
once, so exactly one of the end-
points is on the inside.

(b) The path crosses the cy-
cle twice, both endpoints are on
the outside.

(c) The path crosses the cycle
thrice, so the endpoints must
end up on either side of the cy-
cle.

Figure 5.3: The two endpoints of a path end up on different sides of a cycle if and only if it
crosses the cycle an odd number of times.

5.2.3 The algorithm

We will explain the algorithm by following an example. We want to find the minimum minimal

s-t-cut that includes the diversion edge marked in red.

s t

First, we find any s-t-path that does not use the diversion edge. It does not necessarily have to

be the shortest path. We have marked such a path in green below.

39

s t

Next up is to compute the dual graph. We delete the dual edge that crosses the diversion edge

and color the rest in blue. Note that we have omitted the outside face and its edges in this

visualization, otherwise we would have a much too cluttered illustration.

s t

Now we subdivide all the edges in the dual graph except those that cross the path in green.

s t

40

The last step is to find the shortest odd path in the subdivided dual graph from and to the

regions to the left and right of the diversion edge, using our newfound favorite algorithm. If we

find such a path, we know that it must cross the s-t-path in green an odd number of times. If

we add the dual equivalent of the diversion edge to the path to create a cycle, then we know

that this cycle goes around either s or t, but not both. We illustrate the cycle in orange below.

s t

With this, we finally have our diversion set. Simply delete the edges in the original graph that

cross the cycle in orange, except for the diversion edge of course. We end up with a graph where

all s-t-paths must pass through the diversion edge. The problem is solved.

s t

5.3 Pseudocode

Here comes the pseudocode for our Network Diversion algorithm.

41

Code Listing 5.1: Main
1 fn network_diversion(graph , s, t, d) {
2 graph.delete_edge(d);
3 path = shortest_path(graph , s, t);
4 graph.add_edge(d);
5
6 match path {
7 None => {
8 // No s-t-paths exist without d anyway ,
9 // so no diversion is needed.

10 return Some(0, []);
11 }
12 Some(p) {
13 p⋆ = [e⋆ for e in p];
14 dual = subdivide_edges_except(graph⋆, p⋆);
15
16 match shortest_odd_path(dual , left(d), right(d)) {
17 None => {
18 // There are no odd left(d)-right(d)-paths ,
19 // and therefore no way to divert the network.
20 return None;
21 }
22
23 Some(cost , odd_path) {
24 diversion = [e for e⋆ in un_subdivide_edges(odd_path)];
25 return Some(cost , diversion);
26 }
27 }
28 }
29 }
30 }

5.4 Analysis

Theorem 5.4.1. Let (G, s, t, d) be an instance of Network Diversion, and let n := |V |.
Claim: our algorithm runs in time O(n log n).

Proof. We find first a shortest s-t-path in G that does not use d, in time O(n+m).

Then we subdivide all the edges in G⋆ except those found in the path, in time O(n+m). This

new graph has size n′ ≤ 2n ∈ O(n) and m′ ≤ 2m ∈ O(m).

Next up is to find an odd path in the subdivided graph, in time O(m′ log n′) = O(m log n).

Lastly, if we are interested in the specific set of edges in the diversion and not just the cost, we

un-subdivide the odd path in time O(n′) = O(n).

In total, we have a running time of O(n + m) + O(m log n) + O(n) = O(m log n). Since G

is planar we have that m ∈ O(n), so we can simplify the complexity to just O(n log n) and

complete the proof.

42

Note that here we have assumed that the dual graph G⋆ has already been computed prior

to starting the algorithm. If we have a straight-line embedding of G we can compute G⋆ in

O(n+m), which would not change the overall running time. However, if we do not have such

an embedding the total running time might be considerably more.

We compare the theoretical and practical running times on Delaunay graphs as we did in

Section 4.5.3. For each graph, we have estimated a source and target vertex of maximum

distance between each other, and then picked three edges in the graph as diversion edges. We

select whichever diversion edge leads to the worst median running time over 10 runs, and plot

the results below.

Here too we attempt to create a function out of the theoretical running time of O(n log n), this

time with different constants. We have set m := 3n in the plot since the graphs are planar.

As we can see, the running times grow just barely more than linearly compared to the input

size. This is not surprising considering the linearithmic theoretical running time. The algorithm

easily solves Network Diversion on planar graphs of 100k vertices in less than a second. Now

compare that to the existing algorithms that need more than a second to solve for more than

30 vertices, and it is clear why a polynomial running time matters so much.

See Figure 5.4 for yet another example of what a diversion set may look like, this time on a

Delaunay graph of 35 vertices.

43

44

(a) s and t are marked in blue,
the diversion edge in red

(b) One possible diversion set
marked in orange

(c) With the diversion set re-
moved, all s-t-paths must go
through the diversion edge

Figure 5.4: Example of a solution for Network Diversion on a Delaunay graph of 35 vertices

Chapter 6

The Codebase

The crux of this thesis is not about the theory we have presented in the other chapters, but

rather about how well these algorithms work in practice, if at all. We have implemented most

of the algorithms mentioned in the paper, and in this chapter, we will present the codebase. Of

course, we invite the interested reader to explore the repository on their own [Sim24b].

6.1 Functionality

Our library is written in Rust. We chose that language because of its performance, but also

because its type system and strict compiler help massively in reducing the developer overhead

during development. Being able to fearlessly perform large refactors, and to use sum types

rather than just product types to describe the data has had a huge impact on the quality of our

code.

With that, we have successfully implemented the following algorithms:

• Shortest Odd Walk on graphs of non-negative weights, as described in Chapter 3.

• Shortest Odd Path on undirected graphs of non-negative weights, as described in

Chapter 4.

• Network Diversion on undirected planar graphs of non-negative weights, as described

in Chapter 5.

• Shortest Path on unweighted graphs, using a classic breadth-first search. It also runs

on weighted graphs, by happily ignoring the weights.

• Shortest Path on graphs of non-negative weights, using Dijkstra’s Algorithm as shown

in Section 2.2.

45

• Shortest Detour Path on undirected graphs of non-negative weights, as described in

Section 5.2.1.

All of them are generic with respect to edge weights and can handle any type of number-like

weights such as i32, u64, and f64. When we subdivide edges in Network Diversion and

Shortest Detour Path we use a neat little trick to be able to split a weight into two weights

without accidentally rounding down any integers: we set one weight to zero and the other to

the original weight. Any path that uses one of those edges will have to use the other afterwards,

and their sum will then be the same as the original weight before the split.

6.2 Data structures

To perform these algorithms, we have implemented a few different data structures. The first

is a basic structure for undirected graphs, using a vector of vectors of edges to represent the

graph with adjacency lists. It is generic in the type of its edge weights, but also in the type of

its edges. The ’basic’ edge has basic edge methods like .to() and .weight(), but we also have

a struct for planar edges, where we have the methods .left() and .right(). The methods

work as described in Section 2.1 and Section 2.3.

We also have a data structure for planar graphs. They consist of two undirected graphs of planar

edges: the ’real’ graph and its dual. Each of them has edges that know which faces are to their

left and right in the other graph. Even though our algorithm for Network Diversion will

work with any planar graphs, parsing them and finding an embedding is rough. We therefore

assume that we are given coordinates of each of the vertices and that they form a straight-line

embedding. From there we can compute the dual. Whether the given coordinates form true

planar embeddings is usually not checked, since the code to verify that runs in the painfully

slow O(m2) and has been disabled by default.

Another limitation is that we can only handle simple planar graphs: if we have parallel edges,

then the way we compute the dual will not work. If the input graph is not simple, we have

to somehow combine the parallel edges until it is. Depending on the use case we have many

reasonable strategies for combining them. If the edges represent bridges that are to be blown

up with artillery, then the combined edge should probably be the sum of the weights of its

components, or the sum of the artillery rounds needed to destroy the edges between those two

vertices. If we in another case just need to cut any of the edges between them, then we may

want to just take the cheapest one, or perhaps we are forced to take the most expensive one.

Rather than making too many assumptions about the use cases, we provide five strategies for

combining parallel edges, to cover as many use cases as possible:

• Take the first edge

46

• Take the last edge

• Keep the highest weight

• Keep the lowest weight

• Sum all weights

We hope that this is enough. If not, then our framework can easily be extended with more

strategies.

As discussed in Section 4.3.5 and benchmarked in Section 4.5.2, we provide two data struc-

tures to keep track of the basis. They are called ObserverBase and UnionFindBase. Both are

implemented using a common trait and can be switched out interchangeably in the Shortest

Odd Path algorithm. UnionFindBase usually performs the best on sparse graphs and has been

set as the default, but ObserverBase may be preferable in denser graphs. The ’näive’ basis we

mentioned was too inefficient for anything but a temporary prototype and has long since been

deleted.

6.3 Testing

The repository includes a large test suite, to ensure the correctness of everything we have imple-

mented. First of all, each data structure comes with its own set of unit tests. Secondly, we have

a total of 17 hand-crafted graphs of various shapes and sizes, and for each of them we have many

queries for the different graph problems. We have found the optimal solutions manually and

confirmed that the expected answers match the answers provided by the algorithms. Lastly, we

have numerous problem-specific assertions in place, like asserting that the output of Shortest

Odd Path really is a path, or that the output of Network Diversion indeed cuts the graph

in two except for the diversion edge.

These tests have been immensely helpful in the development of our algorithms. Whenever we

modified anything, we could instantly verify the validity with just the press of a hotkey and

its subsequent run of the test suites. Though we do not present many formal proofs for the

algorithms in this thesis, we like to think of the tests as informal proofs by empirical analysis.

6.4 Benchmarking

To benchmark our algorithms for Shortest Odd Walk and Shortest Odd Path, we have

picked seven different graphs from real-life scenarios of various sizes. We focus on sparse graphs,

where the number of edges is not too large compared to the vertices. All benchmarks are run

47

on a laptop with 16GB of memory and an i5-1155G7 of 2.5 to 4.5GHz, which we will denote as

an average laptop. During the runs, we make sure that the power cable is plugged in and that

other processes are shut down, for maximum performance.

To compare the theoretical and practical runtimes of our algorithms, we need a collection

of graphs of easily scalable sizes. Furthermore, as to also be used for benching Network

Diversion, the graphs have to be planar graphs with a built-in planar embedding.

Our solution is this: for a given integer n, generate n random points in the plane, to be

the vertices in our graph. Then, using the scipy library in Python, compute a Delaunay

triangulation of the points. Each of the triangles in the triangulation consists of three points,

inbetween of which we add three edges with random weights. Extra care must be taken not

to add the same edge multiple times, once for each of the two triangles it is adjacent to. The

result is a straight-line embedding of a planar graph of size n, where each face is a triangle in

the triangulation, and the dual graph is a Voronoi diagram of the set of points. Though the

term is not common, we like to refer to a graph generated like this as a Delaunay graph. Now

we have a technique to generate straight-line embeddings of graphs of arbitrary size, which is

exactly what we need for benchmarking. Another advantage is that these graphs often look

quite aesthetically pleasing, as seen in Figure 5.4.

Using this technique, we generate 200 Delaunay graphs of sizes 1000, 2000, 3000, and so on until

200k. Then we use a few heuristic searches to estimate pairs of vertices that are the farthest

away from each other, as inputs for our Shortest Odd Walk and Shortest Odd Path

algorithms. After that, we select some of the worst diversion edges farthest away from these

pairs, as inputs for our Network Diversion. The intention is that each graph gets queries

that are the worst or close to the worst possible case so that the size of the problem roughly

matches the size of the graph.

The interested reader may visit the GitHub repository [Sim24b] to see the graphs and the

Python scripts used to generate them.

48

Chapter 7

Conclusion

The main topic of this thesis is to solve Shortest Odd Path on undirected graphs of non-

negative weights. We have presented a detailed explanation and pseudocode of Derigs’ algorithm

[Der85], with suggested improvements in both its presentation and performance. After that,

we used it to present the first-ever efficient algorithm for Network Diversion on undirected

planar graphs with non-negative edges. Although requiring planarity and non-negative weights

may seem very restrictive, in practical use many real-world graphs fit the criteria.

We have also presented algorithms to solve some minor problems like Shortest Odd Walk

and Shortest Detour Path. We have successfully implemented all of these algorithms in

Rust and tested them thoroughly. All algorithms have been benchmarked to show that their

theoretical running times match the practical running times. In particular, we show that we

can solve Shortest Odd Path and Network Diversion on sparse graphs of 200k vertices

in 0.5s and 1.8s, respectively.

49

Bibliography

[BD83] Michael O. Ball and Ulrich Derigs. An analysis of alternative strategies for imple-

menting matching algorithms. Networks - An International Journal, 13(4), 1983.

[CWN13] Christopher A. Cullenbine, R. Kevin Wood, and Alexandra M. Newman. Theoretical

and computational advances for network diversion. Networks - An International

Journal, 62(3), 2013.

[Der85] Ulrich Dergis. An efficient dijkstra-like labeling method for computing shortest odd-

/even paths. Information Processing Letters, 21(5), 1985.

[Dra24] P̊al Grøn̊as Drange. Unpublished theory. Personal communication, 2024.

[Edm65] Jack Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal of

Research of the National Institute of Standards and Technology, 69B(1), 1965.

[EK72] Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic effi-

ciency for network flow problems. Journal of the ACM, 19(2), 1972.

[LCH+05] Feifei Li, Dihan Cheng, Marios Hadjieleftheriou, George Kollios, and Shang-Hua

Teng. On trip planning queries in spatial databases. In Claudia Bauzer Medeiros,

Max J. Egenhofer, and Elisa Bertino, editors, Advances in Spatial and Temporal

Databases, pages 273–290, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[LP84] Andrea S. LaPaugh and Christos H. Papadimitriou. The even-path problem for

graphs and digraphs. Networks, 14:507–513, 1984.

[Nis88] Takao Nishizeki. Planar Graphs: Theory and Algorithms. Amsterdam ; New York

: North-Holland ; New York, N.Y. : Sole distributors for the U.S.A. and Canada,

Elsevier Science Pub. Co., 1988.

[RA15] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive

graph analytics and visualization. In AAAI, 2015.

[RAS19] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node

embedding, 2019.

50

[Sim24a] Steinar Simonnes. Diverting networks with odd paths. https://github.com/

SteinarSi/DivertingNetworksWithOddPaths.git, 2024.

[Sim24b] Steinar Simonnes. Shortest odd path. https://github.com/SteinarSi/

ShortestOddPath.git, 2024.

[SS23] Ildikó Schlotter and András Sebő. Odd paths, cycles and t-joins: Connections and

algorithms, 2023.

[Tho85] Carsten Thomassen. Even cycles in directed graphs. European Journal of Combina-

torics, 6(1):85–89, 1985.

51

https://github.com/SteinarSi/DivertingNetworksWithOddPaths.git
https://github.com/SteinarSi/DivertingNetworksWithOddPaths.git
https://github.com/SteinarSi/ShortestOddPath.git
https://github.com/SteinarSi/ShortestOddPath.git

Appendix A

The full, uninterrupted pseudocode for Shortest Odd Path

Here is the full pseudocode in one big code block. For explanations and discussion of different

variants, see Section 4.3.

Code Listing A.1: Algorithm for Shortest Odd Path
1 fn main(input_graph , s, t){
2 init(input_graph , s, t);
3
4 control ();
5
6 if d_minus[t] == ∞ {
7 return None;
8 }
9 cost = d_minus[t];

10 path = backtrack ();
11
12 return Some(cost , path);
13 }
14
15 fn init(input_graph , s, t) {
16 graph = create_mirror_graph(input_graph);
17
18 for u in 0..n {
19 d_plus[u] = ∞;
20 d_minus[u] = ∞;
21 pred[u] = null;
22 completed[u] = false;
23 basis[u] = u;
24 in_current_blossom[u] = false;
25 }
26 d_plus[s] = 0;
27 completed[s] = true;
28
29 for edge in graph[s] {
30 priority_queue.push(Vertex(weight(edge), to(edge)));
31 d_minus[to(edge)] = weight(edge);
32 pred[to(edge)] = e;
33 }
34 }
35
36 fn backtrack () {
37 current_edge = pred[t];
38 path = [current_edge];
39 while from(current_edge) != s {
40 current_edge = pred[mirror(from(current_edge))];
41 if current_edge is from the mirror side {
42 path.push(mirror(current_edge));
43 }
44 else {
45 path.push(current_edge);
46 }

52

47 }
48 return path;
49 }
50
51 fn control () -> bool {
52 loop {
53 while ! priority_queue.is_empty () {
54 match priority_queue.top() {
55 Vertex(_, u) => {
56 if completed[u] {
57 priority_queue.pop();
58 }
59 else {
60 break;
61 }
62 },
63 Blossom(_, edge) => {
64 if base_of(from(edge)) == base_of(to(edge)) {
65 priority_queue.pop();
66 }
67 else {
68 break;
69 }
70 }
71 }
72 }
73
74 if priority_queue.is_empty () {
75 // No odd s-t-paths exist :(
76 return;
77 }
78 match priority_queue.pop() {
79 Vertex(delta , u) => {
80 if u == t {
81 // We have found a shortest odd s-t-path :)
82 return;
83 }
84 d_plus[u] = d_minus[mirror(u)];
85 scan(mirror(u));
86 }
87 Blossom(delta , edge) => {
88 blossom(e);
89 }
90 }
91 }
92 }
93
94 fn scan(u) {
95 completed[u] = true;
96 dist_u = d_plus[u];
97 for edge in graph[u] {
98 v = to(edge);
99 new_dist_v = dist_u + weight(edge);

100
101 if ! completed[v] {
102 if new_dist_v < d_minus[v] {
103 d_minus[v] = new_dist_v;
104 pred[v] = edge;
105 priority_queue.push(Vertex(new_dist_v , v));
106 }
107 }
108 else if d_plus[v] < ∞ and base_of(u) != base_of(v) {
109 priority = d_plus[u] + d_plus[v] + weight(edge);
110 priority_queue.push(Blossom(priority , edge));
111 if new_dist_v < d_minus[v] {
112 d_minus[v] = new_dist_v;
113 pred[v] = e;
114 }
115 }
116 }
117 }
118
119 fn backtrack_blossom(edge) {
120 p1 = [reverse(edge)];
121 p2 = [edge];

53

122 u = get_basis(to(edge));
123 v = get_basis(from(edge));
124 in_current_blossom[u] = true;
125 in_current_blossom[v] = true;
126
127 loop {
128 if u != s {
129 u = get_basis(mirror(u));
130 in_current_blossom[u] = true;
131 e = pred[u];
132 u = get_basis(from(e));
133 p1.push(e);
134
135 // Ff true , then u is the base
136 if in_current_blossom[u] {
137 p1.pop();
138 in_current_blossom[u] = false;
139
140 // We remove all the edges in p2 after the base
141 while p2 is not empty {
142 e = p2.last();
143 v = get_basis(from(e));
144 in_current_blossom[v] = false;
145 p2.pop();
146 if v == u {
147 break;
148 }
149 }
150 return (u, p1, p2);
151 }
152 }
153 if v != s {
154 v = get_basis(mirror(v));
155 in_current_blossom[v] = true;
156 e = pred[v];
157 v = get_basis(from(e));
158 p2.push(e);
159
160 if in_current_blossom[v] {
161 p2.pop();
162 in_current_blossom[v] = false;
163
164 while p1 is not empty {
165 e = p1.last();
166 u = get_basis(from(e));
167 in_current_blossom[u] = false;
168 p1.pop();
169 if u == v {
170 break;
171 }
172 }
173 return (v, p1, p2);
174 }
175 }
176 }
177 }
178
179 fn blossom(edge) {
180 (b, p1 , p2) = backtrack_blossom(edge);
181
182 to_scan1 = set_blossom_values(p1);
183 to_scan2 = set_blossom_values(p2);
184
185 set_edge_bases(b, p1);
186 set_edge_bases(b, p2);
187
188 for u in to_scan1 {
189 scan(u);
190 }
191 for v in to_scan2 {
192 scan(v);
193 }
194 }
195
196 fn set_blossom_values(path) {

54

197 to_scan = [];
198
199 for edge in path {
200 u = from(edge);
201 v = to(edge);
202 w = weight(edge);
203 in_current_cycle[u] = false;
204 in_current_cycle[v] = false;
205
206 // We can set a d_minus
207 if d_plus[v] + w < d_minus[u] {
208 d_minus[u] = d_plus[v] + w;
209 pred[u] = reverse(edge);
210 }
211
212 int m = mirror(u);
213 // We can set a d_plus , and scan it
214 if d_minus[u] < d_plus[m] {
215 d_plus[m] = d_minus[u];
216 to_scan.push(m);
217 }
218 }
219
220 return to_scan;
221 }
222
223 fn set_base(base , u) {
224 basis[u] = base;
225 }
226 fn get_base(u) {
227 if u != basis[u] {
228 basis[u] = get_base(basis[u]);
229 }
230 return basis[u];
231 }

55

	Introduction
	Preliminaries
	Graphs
	Graph problems
	Planarity
	Planar embeddings
	Duality

	Shortest Odd Walk
	Intuition
	Pseudocode
	Analysis

	Shortest Odd Path
	Reduction to Shortest Alternating Path
	The idea for our Shortest Alternating Path algorithm
	Pseudocode
	Initialization
	The control loop
	Backtracking a blossom edge
	Computing blossoms
	Setting the base of blossoms and pseudonodes

	Improvements on Derigs' algorithm
	Analysis
	Other variants
	Benchmarking different data structures for the Basis
	Running times on Delaunay graphs

	Network Diversion
	Introduction to Network Diversion
	Intuition
	Detour paths
	From a dual path to a real diversion
	The algorithm

	Pseudocode
	Analysis

	The Codebase
	Functionality
	Data structures
	Testing
	Benchmarking

	Conclusion
	Bibliography
	The full, uninterrupted pseudocode for Shortest Odd Path

