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Abstract

The Hardy Uncertainty Principle states that if both a function f and its Fourier transform
f decay faster than the Gaussian function with a specific weight, then f = 0. This result
can be reformulated for solutions of the free Schrodinger equation, which implies a unique
continuation result for this equation. In a series of work [5, 6, 7, 8] Escauriaza, Kenig, Ponce
and Vega extended this result to the Schrodinger equation with potential and to the nonlinear
Schrodinger equation, by the use of Carleman estimates. More precisely, the authors proved
that if u is a solution to the Schrodinger equation with potential, which at two times has
Gaussian decay, and given the right conditions on the potential, then u = 0.

The formal arguments of the proof, relying on Carleman estimates, are based on calculus
and convexity arguments. However, these computations are not straightforward to justify
rigorously. In particular, we need to justify that ||e®u(t)|r2(zn) is finite for all time 0 < ¢ < 1,
for a suitable weight function ¢ = ¢(z,t). This is not always true, even though u is in L?(R"™)
for all 0 < ¢ < 1, and [e?u(0)]2(gn) and |e®u(1)|2(rn are finite. In this thesis, we will study
the proof of the main result in [6], which provides a rigorous strategy to justify the use of
the Carleman estimates.
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Introduction

The Schrodinger equation

In the early 1900s, it was discovered by experiments that electrons act as waves. The
Schrodinger equation was developed by the Austrian physicist Erwin Schrodinger in 1926
to describe the time evolution of the wave function u = wu(x,t) of the electrons and other
particles. The equation is given by

h2
ihou(x,t) = —%Au(x, t)+ V(x,t)u(z,t),

where A = Z?Zl  is the Laplacian operator and V(z,t) is a physical potential which

ox;
depends on the particle, like a magnetic field, or gravitational field, A denotes the Planck
constant and m the mass of the particle. In particular, |u(z,?)[* describes a probability den-

sity function related to the position = at time ¢. For more details see for example [13].
If we renormalize the equation we get

ou = i(Au + V(x, t)u). (0.1)

In the case where V (z,t) = 0, the equation becomes
ou = 1Au,

which is known as the free Schrodinger equation. This is the case of a free particle, where
the potential energy does not vary.

The equation
ou = i(Au + F(u, 1)), (0.2)

is called the nonlinear Schrédinger equation (NLS). This equation has applications in several
areas of physics, such as fiber optics [1], fluid dynamics [17], and quantum field theory [16].
In the case F(u,u) = |u|?u the equation is called the cubic nonlinear Schrodinger equation.

Uncertainty Principles

A well-known principle in quantum physics is the Heisenberg uncertainty principle. It states
that it is not possible to measure both the position and momentum of a particle simultane-
ously. It was established by W. Heisenberg in 1927. A short time after E. H. Kennard and
H. Weyl gave a mathematical formulation of the principle (see for example [10]). It states
that for f e L?(R"), and any g, & € R",

(f o= xo>f<w>!2dx) ( | e so>f<s>\2ds) > 1l
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Since e—alzl’ = a)n/Q e_%|§|2 the equality holds only in the case where f is a specific
multiple of the Gaussian function. Uncertainty principles in general tell us that a function
f and its Fourier transform f cannot both be sharply localized. There are other types of
uncertainty principles where the Gaussian function also plays an important role. In 1933 the
English mathematician G. H. Hardy formulated precisely in [14] that both the function f and
its Fourier transform, f , cannot decay too fast. In fact, if they both decay faster than the
Gaussian with a specific weight, then f = 0. The principle is mathematically stated as follows.

If f(z) = O(e™#1P/8%) " f(&) = O(e*P/**) and aff < 4, then f = 0. Also, if aff = 4
then f is a constant multiple of e~1*°/5

Short History on Unique Continuation and Carleman Estimates

Unique continuation for solutions of partial differential equations is about which properties
the solutions have to satisfy in order to be zero in the whole domain. It arises from the study
of harmonic functions, which are functions u satisfying the equation

Au=01in Q c R",

where (2 is an open connected subset of R™. Suppose that u is harmonic and vanishes of
infinite order at a given point x € ). Since harmonic functions are real analytic, v = 0 in
Q). This property is called the “strong unique continuation property”. In comparison, “the
weak unique continuation property”is when u|g = 0, where B is an open subset in 2, implies
that v = 0 in Q. It is clear that the strong unique continuation implies the weak unique
continuation.

Harmonic functions are the simplest example of solutions of an elliptic PDE. A well-
known result by Hadamard in the early 1900’s, is that for any second-order elliptic PDE
with real analytic coefficients, the solution will be real analytic. This implies that every such
solution will satisfy the strong unique continuation property. However, if the coefficients are
not analytic, this method cannot be applied anymore. T. Carleman introduced in 1939 [2] a
new way of proving uniqueness results for elliptic PDEs with non-analytic coefficients. These
methods are based on weighted L? estimates and require less regularity on the operators than
having analytic coefficients. These techniques relying on the Carleman estimates have been
very successful with several important applications to elliptic and parabolic PDEs. See for
example [15], [18] and the references therein.

Unique Continuation and Hardy’s Uncertainty Principle for the
Schrodinger Equation
Another question that has been central in the work on unique continuation is how fast a

solution can decay before it vanishes identically. Recall that Hardy’s uncertainty principle
said that if both the function f and the Fourier transform f decay too fast, then f = 0. This



result can be reformulated for the free Schrodinger equation.

Consider now the solution u of the free Schrédinger equation, given by
oill?/at

(2it)"2

u(x,t) = eitAUO = (ei‘.|2/4tu0)/\($/2t)a

so that we can relate the solution at any time ¢ with the Fourier transform of the initial
data wug. By this relation, we can apply the Hardy uncertainty principle to the function
f= e'l7*/4 and deduce the following unique continuation result:

If u is a solution of the free Schrédinger equation, u(z,0) = O(e /8% wu(z,1) =
O(e 1#P/2*y and a8 < 4, then u = 0.

Because of the application of Hardy’s uncertainty principle to the free Schrodinger equa-
tion, it is natural to wonder whether this principle also applies to solutions of the Schrodinger
equation with a potential, and of the nonlinear Schrédinger equation. The original proof
of the Hardy Uncertainty Principle is based on complex analysis techniques such as the
Phragmén-Lindelof Theorem. However, to be able to extend this result to the Schrodinger
equation with potential and to the nonlinear Schrodinger equation, we need a proof that does
not depend on analyticity.

In a series of works [5, 6, 7, 8] Escauriaza, Kenig, Ponce and Vega showed unique con-
tinuation results for the Schrodinger equation with potential and the nonlinear Schrodinger
equation. In particular, they proved the following in [6].

Theorem 1 (EKPV). Let u e C([0, 1], L*(R™)) be a solution of the Schrodinger equation
o = i(Au + V(x, t)u)
in R™ x [0, 1], where V' is bounded, and either V(xz,t) = Vi(z) + Va(z,t) with V; real valued

and
2

||
sup e @0 V(1) o) < o0,
[0,1]

or 1
]}?EI;oJ(‘) Hv(t)HLOO(R”\BR)dt = 0

2
||

Then, if there exist constants «, 3 > 0 such that o3 < 2 and [e #* u(0)| 2y and
E
|e o u(1)| L2(rny are finite, then u = 0.

Remark. This result is an extension of the Hardy Uncertainty Principle for the free
Schrodinger equation to the Schrédinger equation with potential. The condition on the
coefficients, a3 < 2 was not sharp in [6], and a bit weaker than the one from Hardy’s uncer-
tainty principle. However, in [7] the result was improved to be as sharp as in the free case,
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with the condition aff < 4

As a consequence, we can apply the theorem to the NLS and deduce the following result.

], H*(R™)) solutions of (0.2) with k € Z*, k >

Theorem 2 (EKPV). Let u; and usy be (C]0, 1
(0) = 0z F(0) = 0. If there are positive constants

(
n/2, F:C?* - C, FeC’kandF() 2w

212
a and f with af < 2 such that ||e = (u1(0) — u2(0))| L2(mny, and He%(ul(l) — u2(1))|| L2y
are finite. Then u; = u,.

The proof of Theorem 1 relies heavily on the Carleman estimates. The ideas of these
methods are simple and are based on calculus and convexity arguments. The main problem
is that these computations are only formal, and it is not so easy to justify them rigorously.

The goal of this Master thesis is to study the proof of Theorem 1 in [6] in detail. We
explain the main steps of the proof below.

Outline of the proof of Theorem 1.

Step 1: the conformal/Appell transformation. The first step of the proof is to reduce the
problem to the case where the parameters o and 3 are equal. This can be done With the con-
L= o2
formal/Appell transformation. Instead of assuming that [e 5% ug| 2y and He o2 u(1) p2mny
are finite for a8 < 2, we can assume that |e7l*’ Uo|| 2 (rny and ey (1 )| 2(rny are finite for

some 7y > %

Step 2: heuristic argument. Assume that u is a solution of the equation (0.1). We define
f = e®u for some weight function ¢ = ¢, to be chosen later, depending on a large parameter
R. Moreover, we let H(t) = Hf(t)HQLQ(Rn). We can then show that f satisfies the equation

atf = (S+A>f7

for a symmetric operator S and a skew-symmetric operator A, both depending on the weight
function ¢. Ideally, we would like to prove a log-convexity inequality for the function H, by
computing dt2 log H(t). In particular, we want to choose ¢ such that
2
—log H(t —h(R
oz 108 H(t) > —h(R,7),

where h is a non-negative function depending on v and ¢g. Then, after some computations,

7 ~ 1
1w(1/2) ] L2(Bg, 0) < H(0)2H(1)?e7 "R swhere h(R, ) — +00 when R — o0 and 7 > 3

If we let R — oo, and v > 1/2, the left hand side goes to |u(1/2)|12(rn), while the right hand
side goes to 0 since H(0)"2 = ||e"*Fug| 2 (gny and H(1)Y? = e u(1)] 12 (gny are finite. This
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implies that u(1/2) = 0, and by the well-posedness theory for the Schrodinger equation, u = 0.

We will begin by giving the full details for this formal argument for the case V' = 0 in the
second chapter.

However, to be able to rigorously justify this argument, we need to know that |le?u(t)|| z2(rn)
is finite for all time ¢ € [0, 1] and for a suitable weight ¢. This is not obvious in general,
even though we know it is finite at two times 0 and 1. In [6], the authors therefore chose to
follow a different path to prove the main result. Their argument still relies on the Carleman
methods, but makes it easier to justify that |e®u(t)|r2@n) < oo for all times and some spe-
cific weight functions. Most of the work is therefore dedicated to proving this result rigorously.

In particular, we will show the following result from [6].

Theorem. Let u be a solution of the Schrédinger equation with potential (0.1) such that for
some v € R
2 2
||6WC| Uo|| 2 (rny and ||67|$| u(1)| L2mny < 0. (0.3)

If V is a bounded potential such that V' (z,t) = Vi(z) + Va(x,t) , with V} real and

sup “€7|x‘2%(t)‘|Lw(Rn) <
te[0,1]

then |e7# u(t)[ 2gny is logarithmically convex in [0,1] and there is a constant N(v) such
that for all ¢ € [0, 1]

I u(t) Ly < N (I O 3l €7 01 i) (0.4
and
IV = ) V| pagasgoy < N <H67‘w|2u<0)HL1(R”) + Heﬂz‘zu(l)HLZ(R")) : (0.5)
In particular,

sup ||67|x|2u|\L2(Rn) <
te[0,1]

H\/ t(l — t)€7|m|2v1’lHL2(RnX[0’1]) < 0O

for all time 0 < ¢t < 1, which will be fundamental in the proof of Theorem 1.

and

By going back with the Appell transform, the result can be generalized to the case when
a # B

Theorem 3 (EKPV). Assume that u € C([0, 1], L*(R™)) satisfies

dru = i(Au+ V(z,t)u) in R™ x [0,1], (0.6)

9



V(z,t) = Vi(x) 4+ Va(z,t), where Vi is real-valued, |Vi|po@n) < M; and

|=|?
Suppg 1 lle @+ 0-092 Vo (t)| oo mny < c0. If there exists positive numbers a, 3 such that

|| |22
le 7 u(0) | L2mny < 00 and [e' o u(1)| r2m@n) < o0,
[

then |e(et+G=08%y(t )HEZERi D% is logarithmically convex in [0,1] and there is a constant N =

N(a, ) such that

\1\2 2 B(1—t)
||e<at+<1T>B)2 u(t)HLQ(R") < 6N(M1+M2+M12+M22)H€|62 ( )Hz;ﬂgg 1) He 2 u( )Hz?ﬂgs 1) (0.7)

||
for all ¢ € [0,1] and where My = supyg 4 [e(e+0-057 Vo (t) | poo gy € P10:11 HmVa(®)L@n)  More-
over,

||
H ) /t(l _ t)e(at+(l—t)5)2 VUHL2(R”)><[O,1])
|22 ||
< NeN MMt ME M) [’6 u(0)]r2m) + |€“2U(1)L2(R")] :
(0.8)

Remark. In Theorem 1, it was given two different choices of conditions on the potential V.
The condition on the potential in Theorem 3 corresponds to the first condition in Theorem
1. In [6] the authors also proved a corresponding result to Theorem 3, but by using the other
condition on the potential. See in particular Theorem 4 in Chapter 3.

Step 3: parabolic reqularization, energy estimate. The main strategy to prove Theorem 3 is
to perform a parabolic regularization on (0.1). We work on the equation

o= (A+iB)(Au+ V(z, t)u + Fz, 1)), (0.9)

and prove similar results to Theorem 3 for A > 0.

We start by proving an energy estimate which shows that for a specific weight function
A
¢(z,t) = a(t)|z]?, where a(t) = s lrpm

Ale|?
e—MT||€A+4’Y(A2+B2>Tu( )||L2(]Rn) (0.10)

A\x\2
< Heﬂx‘QU(O)HLQ(Rn) —+ vV A2 + BQH€A+43(A2+B2>’5F(t)HLl([O7T]7L2(Rn)). (011)

Remark. For this result, we only need the weighted L? norm to be finite at one time(t = 0
here). However, the weight we propagate for ¢ = 0 is smaller than e7A7* and decreases with
time.

10



We rigorously justify this argument by showing that

Alz|?
e TF (AT 52T (T 2@y < 0.

through the use of a regularization argument with a cutoff function on the weight a(t)|x|?.

Step 4: parabolic reqularization, Carleman estimate. The next step is to use the energy
estimate (0.10) to prove that for a solution u of (0.9), such that (0.3) is satisfied, we have for
any time 0 <t <1,

2|2 P _ P
le P u(t) | 2@ny < N[ w(0)] fafam e u(1) 72 @n)- (0.12)

This is a classical Carleman argument, and the main problem is to justify rigorously that
| Pu(t)| L2 (ny is finite for 0 < ¢ < 1. The idea will be to slightly modify the weight |z|> by

introducing
|| 7| <1
a\ L) = —a_
¢ ( ) {QW’Q . ’l” = 17

and define ¢, , = @, * 0,, for a radial mollifier 6,, such that at infinity, €7y does not grow
faster than e®®/**y, where a(t) is the weight in the energy estimate (0.10). Then we show
that [e?*ru(t)|r2®n) < o, and we can rigorously justify the Carleman argument for this
weight. Finally, we conclude the proof of (0.12) by letting a and p to 0.

We also need a similar result for e**Vu. In particular, we show that

H’\/ t(l — t>€7‘$|2VUHL2(Rnx[O,1]) + H’\/ t(]_ — t)|x|6’7|$|2uHL2(R”X[O,1])

< N[(1+ M) sup e u(t)| 2@y + sup |77 F L2 @n]. (0.13)
1

) 07

In [6] the authors did not include a rigorous justification for this argument. This was not
obvious to us. To be able to justify that HeﬂxPVuHLz(RnX[O,lD is finite, we needed to modify
the proof of the energy estimate, so that for the same a(t), and for all 0 < 7' < 1

(T2 alt)|z2 a(t)|x|?
@)l u(T)H%z(Rn) + |V (e*®lel U)H%(RW[&T]) + 12a(t)|z|e D! uH%Q(RnX[OyT]) < .

Then, the rigorous justification of (0.13) follows by arguing as above in the justification of
(0.12), relying on the same arguments as those used to prove the Carleman estimate (0.12).

Step 5: proof of Theorem 3. By the previous steps, we have proven the equivalent of estimates
(0.4) and (0.5) for the regularized equation (0.9) with A > 0. To deduce the results for A = 0,
we can consider the solution u, of the equation

Oru = (€ +0)(Au+ V(w, 1),

for € > 0. The previous results hold for u.. By using semigroup theory, we show that this
solution converges to a solution u of the original Schrédinger equation when e — 0.

11



Step 6: proof of Theorem 1. We start by proving a Carleman estimate for compactly sup-
ported functions in both space and time. In particular, for

¢ = plr + Rt(1 —t)e |* + (1 + €)R*t(1 — t)/16p,e > 0, > 0, R > 0 and g € C°(R™*1),

E .
By falesliatern) < 16900 = i)gl e

Then, we introduce the function g(x,t) = 0y (x)ng(t)u(x,t), where 85 and ng are com-
pactly supported cutoff functions in space and time respectively, and satisfy ¢ = u in an open
ball in R**!. By applying the Carleman estimate, it follows that

€ xX 2
RHe‘bng(Rnx[OJ]) < N.Re"¢ sup ||67| | u 2(rn)
te[0,1]

1 R2/€ |l"2
+ N6M67 e (] + |vu|>HL2(R"x[ﬁ,1—ﬁ])'

Note that the quantity [e”/*(|u| + IVul)| p2@ax s 1~ 7) Is finite thanks to Step 5, so by

2R’

letting M — oo, the last term on the right-hand side goes to 0.

In B6(176)2§ X [%, %], we can bound ¢ from below, such that
RQ
6o 1) > T (@1 = 9 — (14 ) > 0,

which will imply that for some constants N7 = Nj(e,7,u) and Ny = Ny(e,y)m

_ 2
HUHLQ(B a E)2§X[156’1;€]) < Nle N2R )

Integrating in time, and using the fact that for all t > 0,
N7 u(0) Zony < lu(®)]Z2@n) < Nw(0)72(@n),

show that

Cy,cR?

[w(0)] 2mny < Nyeve” + e‘”RQ/lGN%G,V — 0, as R — o0,

so that uy = 0, and hence u = 0.

Step 7: what can go wrong if we do not justify rigorously the computations. To show how
important it was to rigorously justify the computations, we exhibit an example presented in
[6] of a formal Carleman argument for the free Schrodinger equation with an explicit weight
function, which leads to a false statement.

Step 8: application to the NLS. By treating the nonlinear term F'(u,u) in (0.2) as a poten-
tial, we can show that the unique continuation result also holds for the NLS. For the sake of

12



simplicity, we will show the result in the case of the cubic NLS, but the proof of the general
case is similar.

The main goal of this thesis is to understand and explain the proofs of Theorem 1 and
Theorem 3 in [6]. We have detailed all the computations and provided more details on several
steps in the proof. In particular, to justify that He“"””'QVu(t) |L2mny < 00, we needed to slightly
change the proof in the energy estimate (see Lemma 3.2).

Structure of the Thesis

In the first chapter, we state some basic preliminary results that will be useful in the rest
of the thesis. We start Chapter 2 with a discussion of the Hardy uncertainty principle and
its application to solutions of the free Schrodinger equation. We prove this result formally
using the argument explained in Step 2. In Chapter 3, we use the parabolic regulariza-
tion, the energy- and Carleman estimates to prove Theorem 3. Chapter 4 is devoted to the
proof of Theorem 1. In Chapter 5, we give an example of what can go wrong when the
computations are not rigorously justified, while in Chapter 6 prove Theorem 2 in the case
of the cubic NLS. Finally, in the appendices, we do most of the long, technical computa-
tions. In Appendix A, we give more details on parabolic regularization, and in Appendix
B, we justify computations to prove that the weighted L? norms are finite. Appendix C is
devoted to semigroup theory: we recall and explain several fundamental results used in the
thesis. In Appendix D we discuss solutions of an ODE appearing in the example in Chapter 5.

13



1 Preliminaries and Notation

1.1 Notation

e N or C will denote arbitrary positive constants, which can change from line to line.
Sometimes we write N, C(v,¢€), etc. for some parameters v,e¢, to specify that the
constants may depend on the specific parameters. If the constant matters, we will
define it properly.

e [P”(R"), 1 < p < o0, denotes the usual Lebesgue space, with norm

1/p
1P @ny = <fRn !f(x)|pdx> .

e L*(R™) denotes the space of essentially bounded functions with norm

| flze@ny = inf{C > 0:|f(x)| < C for almost every x € R"}.

o H*(R") = W*2(R") denotes the usual Sobolev spaces. See also Definition 1.3.
e < f g >p denotes the scalar product in the respective Hilbert space H.

e We define the Fourier transform

r 1 —ifx
f) = WJR”@  f()dz.

We now recall some basic results that will be important throughout the thesis. For more
details, see for example [9], [11] and [19].

1.2 Convergence Theorems

The Monotone Convergence Theorem. Let (f,), be a sequence of non-negative mea-
surable functions on X such that f,(x) < f,i1(x) for all n = 1, z € X which converges
pointwise to a function f. Then

i | fudu = [ i

The Dominated Convergence Theorem Let (f,), b a sequence of measurable functions
on X and f measurable on X such that

i) fon— fae in X
i) There exists a function g € L'(X) not depending on n such that |f,| < g a.e. in X,

foralln > 1,

14



then
lim and,u = deu.

Fatou’s Lemma Let (f,), be a sequence of non-negative measurable functions on X. Then
i) flim inf f,dp < lim infjfndu

it) If f, = fa.e., then ffd,u < lim infffndu

1.3 Some Important Inequalities
Young’s Inequality with ¢

For a,b > 0,e > 0,

ECL2 2

b< —+ —
W= T

Young’s Inequality for Convolution
For f e LP(R"), g € LY(R™) and for }D + % = % + 1,

1+ gller@ey < | fLe@m gl Logn)-
Gronwall’s Lemma [12] Let y, ¢ and ¢ be nonnegative, continuous functions on the line

segment [a,b]. If V t € [a, b]

mw<ww+fw@M$@,

then V t € [a, b]
mw<ww+f¢@wwwWM“w. (11)

1.4 Mollifiers
Definition 1.1. Let § € C°(R") such that 0 < 6 < 1 and {, dz = 1. For p > 1 define

0y(0) = 701
It
lim 0,(z) = 6(z),

p—0

where d(x) is the Dirac delta-distribution, we call  a mollifier.

Definition 1.2. If f € L] (R") we define

fp(x) =[x 9p<x) : o f(y)0p<x —y)dy.

15



Theorem 1.1.

(¢) f, e C*(R"),
(i1) f, = f a.e. as € = 0,

)
)
(iti) for fe LP(R"), 1 <p <o, thenlim |f, = flo@n) =0,
p—
)

(iv) if fe C(R") then f, — f uniformly on compact sets.

1.5 Sobolev Spaces

Definition 1.3. For s € R we denote H*(R") = {f € S"(R") : (1 + |£|2)s/2f e L2(R™)}, and
[ flers@ny = 11+ €[22 fll 2 @ny-

Observe that for t < s we always have H*(R") — H'(R™). In particular for s > 0,
H*(R") — H°(R") = L*(R").

Theorem 1.2. If s is a positive integer, then H*(R™) coincides with the space of functions
f € L*(R™) whose derivatives(in distribution sense) 0% f belong to L*(R") for every a € N"
with |a| = a1 + a2 + - + @, < k. In this case, the norms | f||=@n) and >}, <, |05 f[ r2®n)
are equivalent.

Theorem 1.3. (Sobolev Embedding Theorem) If s > n/2 + k, then H*(R™) is continuously
embedded in C* (R"), the space of functions with k derivatives vanishing at infinity. In other
words there exist a constant ¢, > 0 such that | f|crgn) < ¢ f]

Theorem 1.4. If s > n/2 then H*(R") is an algebra with respect to the product of functions,
so that if f,g € H*(R"), then fg € H*(R"™), with

I£9]

ey < C()| fllms@nlg] s @n)-

1.6 Solutions of the Schrodinger Equation

We start by recalling some basic properties for the free Schrodinger equation(for more details,
see for example [19]). Consider the initial value problem

{&:U(:v,t) = iAu(x,t) in [0,T] x R” (1.2)

u(z,0) = ug.

Let f be a function and f its Fourier transform. Taking the Fourier transform of (1.2) the
equation becomes

{ata(g,t) = —i|¢[Pa(E, ) (1.3)

Yl(.%, O) = UA(),
which is an ODE we can solve explicitly. Indeed, we get that

a(E,t) = e P ().

16



By taking the inverse Fourier transform we get that
ei"|2/4t

itA
(dmitynz =10

u(z,t) = (e iy (z)) = (z) = ey,

where {e*2t} is a unitary group in L2. (see appendix C). In particular, the following holds.

Proposition 1.1. For all t e R

(i) For all t e R ¢ : L?(R") — L*(R™) is an isometry, i.e. for uy e L*(R™)
||€itAU0HL2(Rn) = [uof 2@

(“) eitAeit’A _ ei(t+t/)A7 and (eitA)—l _ e—itA'

(i3i) €02 = 1.

(iv) If ug € L*(R™), then e"®uy e C(R, L*(R")).

Remark. Since ¢® is a unitary group, we can always translate the solution from starting

at t = 0 to any t = to. In particular, we can write the solution u(z,t) = e!+%)2y(ty). This
means that if u(ty) = 0 for some time ¢y, u = 0.

Let us now consider the Schrodinger equation with a potential

u(x,0) = ug.

{atu — i(Au+ V(x, t)u)

In all of this work, we will consider the case where V' is a bounded potential. In the case

V =0, the solution will be u = ¢"**u, where €*2! is a semigroup (see Appendix C). For the

case V(x,t) = V(z) is real, we have that i(A + V(x)) generates a semigroup, and we have a
well-defined solution u(x,t) = e/ATV@)ty,,

If the potential depends both on = and ¢, we can also justify the solution with semigroup
theory by using the Duhamel formula. All of this is explained in more detail in Appendix C.

We now present an energy estimate for solutions of the Schrodinger equation, which we
will refer to several times in the thesis.

Lemma 1.1. Suppose u € C([0,1], L*(R")) satisfies

ow = i(Au+ V(z,t)u) in R™ x [0,1]
U(l’, O) = Uo,
then for N = e5'Plo,1] Hlmv(t)”LOO(]R”)’

N7Huw(0) 2@ < Jult)|z2ny < Nu(0)] z2n)- (1.4)

17



Proof. We start with a formal argument.

Bl gy = f 0y(uii) dz
R'I’L
= 2Re | owu(u)dx
Rn

=2Rei | Auudr + 2Re zf V(z, t)uudz

Rn

n

= -2Im | Auudr —2Im | V(x,t)ul*dx.
Rr Rr

We do the two parts separately. Integration by parts formally shows that

—2Im | Auudr = QImf Vu-Viudr = 2Im | |Vul? = 0.
n Rn

R

For the second part,

—2Im | V|uPde < 2[ImV| o @) )72 gy

Rn
Hence,
Oelu(t)F2@ny < 21TV | Loy |u(t) |72 gny
and
é’tHu(t) HLQ(R") < ?UI]) H_[mVHLoo(Rn) HUHLQ(R”) .
0,1
Moreover,
u(Ju(t) |z P I 1i2t) <
and
[u(®)llz2qmy < [1(0) | p2(me™ Pecton oot
< HU(O)”LQ(Rn)eSUPtE[O,I] [ImV | Loo @ny
= N|u(0)] r2(mn), (1.5)

which proves the second inequality in the lemma. Now we will use this to prove the first
inequality. Fix ¢ € [0, 1], then for all s € [0, ¢],

{&Su = i(Au+ Vu)
uly = u(t).

Define a(z, 7) = u(z,t — s),

{(m — —i(AG+ V).
a(z,0) = u(x,t).

18



We can now apply (1.5) to @, since the energy method will be the same, except for a minus
sign. The first part with Au will still disappear, for the second term with the potential V,
the minus sign disappears in the L*-norm. Hence,

|a(7)|L2mny < N|@(0)|2mny for all s € [0,1],

|lu(t = 5)|2@ny < N|u(t)|r2@ny for all s € [0,t].

In particular, for s =t we get
N_IHU(O)|L2(R7L) < Hu(t)HLz(Rn). (16)
Combining (1.5) and (1.6), we get
N7Hw(0) ] r2gny < Ju(®)]ze < N|u(0)] 2. (L.7)

For ug € H*(R™), s > n/2+2, we can rigorously justify the argument. By a density argument
we prove it rigorously for ug € L?(R"). Suppose that ug € L*(R"). Then there is a sequence
{uf} € H*(R") such that uf — ug in L?*(R") and u* — w uniformly in L?(R") for all ¢.
Indeed, since by the Duhamel formula

t
u(z,t) = ey + ZJ =AY (s)u(s)ds,
0

it follows that

t
I = ) Ol < 1205 = w1 | V()0 = u)o)dsliogee
0

t
< e = o)z + || V)t = )5

Applying Gronwall’s Lemma, Lemma 1.1, we deduce that

t
I = ) (8) gy < 1§ = o2y ((1 # | VOl V<“>°L°<R”>d“ds)
0

! 1 [ce} n

< Ju§ — uol 2rn) <(1 +J |V ()| 1o nyelo IV IE® >d“ds>
0

= N”Ulg — UOHLQ(R")a

which goes to 0 as k — o0, and where N only depends on |V'| oo (®n x[0,1])

From (1.7) we have that
|u¥ | 2@y < Nug| r2gn),

and by letting k — oo the result follows. O]
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Remark.

(i) By arguing as above, we can obtain the same result also for any 7 € [0, 1]. In particular,
for all t € [7,1]

[u(®)] 2@y < Nlu(r)] c2@n).

(ii) If up = 0, then u = 0.
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2 Hardy’s Uncertainty Principle and the Schrodinger
Equation

2.1 Application to the Free Schrodinger Equation

In this section, we will discuss the Hardy uncertainty principle and its relations to the
Schrodinger equation.

Let f be a function and

o= ()" | e s

its Fourier transform. The Hardy Uncertainty Principle states the following.

Theorem 2.1. [Hardy’s Uncertainty Principle] If f(z) = O(e~l7*/6%), f(€) = O(e 4lP/o?)
and a8 < 4, then f = 0. Also, if a8 = 4 then f is a constant multiple of e~1#*/5*.

In the 1980’s Cowling and Price proved a corresponding L? result in one dimension of the
Hardy Uncertainty Principle [3].

Theorem 2.2. If He|x‘2/’82f||L2(R) and H€4|E‘2/a2f“L2(R) are both finite and a8 < 4, then f = 0.

The extension of this result to n dimensions has also been deduced using the Radon trans-
form, see [23]. As we discussed in the introduction, this result has a natural application to
the free Schrodinger equation. In particular, consider the solution, u, to the free Schrodinger

u(z,0) = up.
The solution « can be written as

, , pil-12/4t
1) = e"uple) = (7o) = ey < wola)

Writing out the convolution, we deduce that

6i|907y|2/4t
u(z,t) = JRn W uo(y)dy

z\x| /4t ] .

- (47m’t)”/2 JR e /4tu0(y)dy
i|z|? /4t
e

= Gl (@/20),
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so that for any ¢ we can write the solution in terms of the Fourier transform of the initial
data ug. In particular, for t = 1, we have

ei|;t|2/4 2/ z|x| /4
u(z,1) = W(e uo) (z/2) = SORE

f(x/2) (2.2)

—~

where f(z) = (e'"/4ug)(x). Observe that

22 22 lzI?
le# fllrzmny = f le 7% wg|2dx = ||e 5 uol| 2 (rny,
n

and by (2.2)

o 5 (P ) ()2 e ue, )P e
le™a fllz2gn) 7o (el /0] (€)|2dE = (&,1)2d¢ = ||e o7 u(1) | z2@ny.

This, combined with the n-dimensional extension of Theorem 2.2, leads to the following
result:

Theorem 2.3. Let u be a solution of the free Schrédinger equation (2.1). Suppose that
”€|$|2/ﬁ2UOHL2(Rn) and |‘e|x‘2/a2u<1)”LQ(Rn) are both finite. If a8 < 4 then u = 0.

This result tells us that if a solution u of (2.1) at two times decays faster than the Gaus-
sian with a specific weight, then v = 0. In particular, Hardy’s uncertainty principle implies
a unique continuation result for the free Schrédinger equation.

As we discussed in the introduction, this result was extended to the Schrodinger equation
with potential and to the NLS in [6], and the proof is based on Carleman estimates. We
state the result again.

Theorem 1 (EKPV). Let u e C([0,1], L*(R™)) be a solution of the Schrodinger equation
o = i(Au+ V(z, t)u)

in R™ x [0, 1], where V' is bounded, and either V(x,t) = Vi(z) + Va(z,t) with V; real valued
and ,
=]
Sup |‘e(at+ﬁ(17t))2 %(t)”Lw(R”) < w7
[0,1]

or 1
1‘ (ve} n —_— .
RlIn L Hi (t)HL R \BR)dt 0

l=|?
Then, if there exist constants «, 3 > 0 such that a3 < 2 and [e #* u(0)| 2y and

lz|?
|e’«® u(1)| L2(rny are finite, then u = 0.
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We will start by proving this result formally, in the case where V' = 0. This result corre-
sponds to the Hardy uncertainty principle for the free Schrédinger equation and shows the
formal idea of the Carleman estimates. However, these computations are only formal, and
we will see later in the thesis that it is not straightforward to justify them rigorously.

Before we start the proof we will present and prove the conformal/Appell transform,
which will help us reduce the proof to a simpler case.

Lemma 2.1. The Conformal/Appell Transformation
Let
Osu = (A+iB)(Au+ V(y,s)u+ F(y,s)) in R" x [0, 1].

fA+iB#0, a,0>0,v€eR, and let
vap )n/2u< vapfx St ) (a=B)|z|?
af

’ e TAFIB) a(I-0+50)
1—t)+ 0t a(l —t)+ fpt

w0 = Gy v

Then o satisfies
Ot = (A +iB)(Ad + V(z,t)ia + F(z,t))  inR" x [0,1],

where

. af Vapx pt
Vet = a7 Bt)2v<a(1 —t)+ Bt a(l—1t) + th)

F(x,t):<a( Vap >/ e JaBe LA

e WATiB)(a(I-D)+At)

1—t)+ pt 1—t)—|—ﬁt’oz(1—t)+ﬁt
Moreover,
- aB (a=p)A
Hevlw‘QF(t)Hm(Rn) = ( (1 O;)B_i_ ﬁt)Q He[(aerg(lfs))Q+4(A2+B2)(as+ﬁ(175))]IxPF(S)HLZ(Rn), (2.3)
a —
and
’Y|x‘2~ — [ as+’ya15—s 2-"_4 142-%—3(37(5s)-if-1 1—s ]|$|2
e a(t) ] 2@ny = ||e (estBO-)2 T4 s tB0=D T () | L2 (mmy (2.4)
- Bt
fOI' S = m.
Proof. Suppose u satisfies
Osu — (A+iB)Au = (A+iB)H(y,s)), (2.5)

where H(y,s) = V(y,s)u+ F(y,s). For y = \/rz, s = rt + 7, define uy (z,t) = u(y/rz,rt + 7).
druy = (A+iB)(Auy + rH(\/rz,rt + 7)) (2.6)

||
For y = £ and s = 1, define us(z,t) = t7"?u(%, 1)e @+, We will show that u, satisfies

1y, _Jel®
(%Ug = —(A + ’ZB) (AUQ + tin/272H(%, ;) )64(‘4"'|1'B)t . (27)
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Using the Leibniz rule, it follows that

n,_ |z|? -1

atltg = —§t 1U2 + VyuQﬁty + Vsugﬁts + Ugm(t—z)
-n |z |2 x 1
(e Y Vit Vs,
( 2 A(A+ iB)tQ) w2 Valizg T Vst

|2 Jz|2
where by V,us and Vuy, we actually mean t‘"/2e4<A+iB>tVyu2 and "2 TA+BY Oy respec-

tively. Moreover,

1 2z ;
Oty = 20wy 2T
2 = e By

2
x
where similarly 0, us “ =" t~"/2eTAa+BY Oy, U

1 22
9 B 1 e A
aijQ = aa:j(taijZ) + ax](4(A + ZB)tUQ)

1 2wt 2x; N 2uy N 2x; 1a N 2x;

= — u U — Oy U — U
2y 2 TR A+ iB) 2 4(A+iB)t  4(A+iB)t \t ¥ ° 4(A+iB)t °
1 21‘]' 2uo 2$jaij2 42

= —0? Oy, :
2 T T BYE T A+ iB)t | A(A+iB)2 | (4(A+iB)i)?

250y, 2 j

1 3
W T Arip)e (2(A YR Taa+ z’B)2t2) e

Then

n 1 |z|?

1
Av e Vet e T A By

Augy = Z é’xqu = _AyUQ +

so it follows that

1
(9tuQ + (A + ZB)AUQ = —t—2(vsu2 — Ayu2)

2
||

= 2 (t‘”/2e4<f‘+1'3>t(8su - Au))

[

_ tfn/%ZH(f, l)em.
t't

Let us assume that o > 3. By the change of variables r — ao‘fjﬁ and 7 — —aLiﬁ (2.6) implies
that @ = u(, /Of‘—_ﬁﬁx, Oj"—_ﬂﬁt - a‘%ﬂ) satisfies the equation
_ : _ . af of af p
= (A+1iB)(A H t— .
o = (A+1B)( u+a—6 ( a—ﬁx’a—ﬁ oz—ﬂ»
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Furthermore, letting ¢ — (a — t) and combining (2.7) and (2.6), the function
212
! (e ofz , of __b e T BT
@- 0 e Ba—0 a-Ala-1 a-7
will satisfy (2.5) but with right hand side
afs ( vapB afs I& ) |z |2
x, — e4(A+iB)(a—t)
(= B) (=) \Va—Bla—t) " (a=p)la—t) a—p
We let now (z,t) — (va — Bz, (o — B)t). It follows that
1 ( Vapx af B )) (a—B)|z|?

4(A+iB)(a(1-t)+pBt)
(a(l—t) + Bty ‘

(@1 —t)+ pt" (o= P)(a(l —1) + 5t)  a—f

(2.8)
satisfies (2.5) with right-hand side
af(o - f) TR D
(o = B)(a(1 —t) + pt)/>+2
VaB af B
(L T A0 aeF) 2

A simple computation shows that

af B Bt
(a—B)a(l—t)+pt) a—p ol —t)+pt
so we can write (2.9) as
a/B m /Bt 4 A+fg_§¢)‘;lzl2t +B8t
mu_w+5wwwH<mu_w+5w%aa_w+ﬁge( B
Finally, multiplying both (2.8) and (2.9) with (v/a3)"? we get that

B e e

e 2(A+iB)(a(1-1)+Bt)
1—t)+pt

L—t)+ Bt (a—B)(a(l—t)+5t) a-—
satisfies (2.5) with right hand side

(a(l—1t) + ft -0 +8) al—t)+pt)°
Since H(y,s) = V(y, s)u + F(y, s) the result follows. Indeed,

(2.10)

_ vaB o\ Vap Bt
Vu_(@ﬁl—®+5®> ‘/(WO—¢M+WV%M1—O+BJ
9 ( vab Bt )<M$mw;w

"Nad-—tH+sal -t +5t) "
af Vap Bt N
N V(mu_w+ﬁﬂ%@a_w+59“@¢)
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Similarly, we get that

e

x7 e4(A+iB)(a(1—t)+ﬁt)

F(y78)=<

(a(1—1t)+ pt —t)+ pt) T a(l —t)+ St
— F(x,1).
The case a <  follows by reversing the time with s’ = 1 — s,# = 1 —t. For the final part,
)l:;c ty = a(ﬁim, s = a(l—ﬁtt)-i-ﬁt' Observe also that as + 5(1 — s) = a(l—a—tﬁ)-i-ﬁt Then it follows
a

2
dx

IQ"’
| @) 72 @n
_ J it (B __ vap )" Ju( vapz At )e<(>()(|>a>
n a(l—t)+ pt a(l—t)+ Bt a(l —t)+ Ot

2 (a(1—t)+p1)2 _ 2 (a(1—t)+p1)2
_ J 627\y| R 6(oc Byl A a0 1 pA(AZT B |u(y, s)|2dy
n

(a=p)A
= J €2|y|2((as+g?115))2+4(A2+B2a)(58+ﬁ(1*8))) ’u(y’ 5)‘2(13

= Hew ( rsaae 4<A2+1;§>753f5<1—s)) ) u(s)|| 2 mn)-

The argument for He""xpﬁ’(t)HLz(Rn) is similar. O

Remark. In particular, this transformation lets us reduce the problem from having two
different parameters «, 8 to only having one parameter ~.

2.2 Proof of Theorem 2.3 in the case af < 2
Proof. We split the proof into 4 steps.

Step 1: Reducing the problem to o = = . We will show that by Lemma 2.1 it suffices
to prove the theorem in the case where @ = = 7. Define @ as in the conformal/Appell
transformation. For v € R it follows by (2.4) that

- a|p2
[ a@(0) | 2@ny = €73 u(0)] L2y

- By
| (1) 2@y = €7 u(1) ] 2.
In particular, if we let v = %, then
a2
&7 (0 |2y = Nl ™ u(0) | p2qany,

z|? ~ L 1z|?
[ a(1)] 2ny = 2 u(1)] 2n)-
By these relations, we see that if He”‘foL(O)HLz(Rn) and He”'“”'QQ(l)HLz(Rn) are finite for aff < 2,
and if this implies that u = 0, then it is equivalent to show that for v > %, we have u = 0.
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Hence, we can assume o = (.

Step 2: Carleman estimate for the free Schrodinger eqution.
Define f = e®u, where ¢ is a real valued function, depending on both z and ¢, to be chosen
later. We also define H(t) := Hf(t)H%Q(Rn).

Claim 2.1. For a well-chosen ¢, we can show that log H(t)” > 74—?2. In other words, this

function is “almost”logarithmically convex. In particular, we choose ¢ = |z + Rt(1 — t)e;|?
for v, R > 0.

—R2t(1-t)

Assuming the claim, consider the function F(t) := e~ &  H(t). Observe that

2
log F(¢)" (—%t(l — 1) + log H()"
2

R "
— 2" Llog H(t
8,y+og ()

R? R2
2___

v 4y
> 0.

Hence, F(t) is logarithmically convex.

Step 3: Finish the proof assuming the claim. Since F'(t) is logarithmically convex, it follows
that for t;,t, € [0,1] and A € (0,1)

log(F(Aty + (1 — AN)tg) < Alog F(t1) + (1 — N\) F(t2.)
In particular, for A = %, t1 =0, ty =1,
e HH(1/2) = F(5) < FO)F(1)? = HO)VH(1)
Then it follows
o f e el (e, 1/2)dr < f 21 g Y 2( f 1 u(e, 1) dr "

Now, if |z| < <, then it follows that |z + £e;]* > £(1 — €). Hence,

f lu(z, 1/2)2e2 (T 0D gy < J u(z, 1/2) 2+ 50l gy (2.11)
B(0,eR/4) B(0,eR/4)

So that

LI E LNk 2|2
JB(O /) |u(, 1/2)|2da: <ede 16 ”67| | UOHLQ(Rn)Heﬂ \ u(l)HB(Rn)

2
_ 6%(1_472(1_6)2)H67‘x|2 67|27|2u(1)”L2(Rn).

Uo HLz(Rn)
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For € > 0 small enough and

1
1 -4 <0, <— 7> 3

we get that the exponent on the right-hand side is negative, so by letting R — oo it follows
that u(x,1/2) = 0 in L?*(R"), so u = 0 in L?(R"). Remark that one of the reasons the func-
tion ¢ was chosen as it was, was that we needed the condition that ¢(z,0) = ¢(z,1) = v|z|>.
If not, we would not necessarily get that the right-hand side goes to 0 as R — 0.

Step 4: Proof of Claim 2.1. Observe that

ﬁtf = ﬁt(bf + 5tue¢
= 0,0f +ie®Au
= 0,0f +ie®A(e™?f)

V(e ?f) = e?(=V(p)e f + Ve ?)
=—Vof+Vf

e?A(e™f) = eV - (Ve ?f)
=e?Ve %) (e?Ve ) f
=(-Vo+V) (-Vo+V)f
= (\VQS\Q —Ap—2Vop- -V + A)f.

So f satisfies the IVP

Of = 0of +i(Af —=2Ve-Vf +|Vo|*f — A¢f)
f(z,0) = e?@0qy4.

We want to divide the operators into symmetric and skew-symmetric parts with respect to
the L%-inner product, to make the computations simpler. We write

atf = (S + A)f7
where the symmetric part is
S =010 —i(2VoV + A9) (2.12)
and the skew-symmetric part is
A =i(A+|Vo]?). (2.13)

In particular, let wy,ws be two functions. By a formal integration by parts, and since ¢ is
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real,

r
<SU}1, w2>L2(]R") = 6t¢w1w_2 — JQ@VQbVU)ﬂU_Q — J"LAQMUﬂlTQ

r -
= | widipwy + JZiwlv - (Vowy) — Jiw1A¢w2

( _ - -
= wlﬁtqﬁwg - Jw12zV¢Vw2 - leZAQZﬁU)Q

J

= <’LU1, Sw2>L2(Rn)
Similarly, we can show that
<.A’LU1, w2>L2(Rn) = —<w1, Aw2>L2(Rn).

We first compute the derivatives of H(t) and log H(t).

H'(t) = (Ouf, lremny + {f, Ouf)r2mny
=S+ A, fHremny + {1 (S + A f)remn
= 2<Sf; f>L2(R”)

H"(t) = 2{0,(Sf), f>L2(]R") +2(Sf, atf>L2(]Rn)
= 20 [, [Hremny + 2(S0f, [remny + 2SS f, 0 f)r2@n
=20 Sf, fHrzwny + 2AS(S + A f, fHrzwny + 2Sf (S + A) f)rzmn)
= 20 St frremny + KSF, Sfrzmny + €[S, Alf, frz@n

H/
log H(1)" = (L
H//H Hl2
T H2 o2
_ 20(0:S + [S, AN, fore@n . XS, Sf>L2(R”) «Sf, f>L2 ®")

s foremm s Premn {f, f>L2 R

Observe that by the Cauchy-Schwarz inequality:

ST Piawny _ 4SF,SFren)
<f f>L2 R7) h <f7 f>L2(R")

so that the last two terms together are positive. That means that when we want to find a
lower bound for log H (t)”, we only need to consider

(S +[S, AN, reen
s forz@n
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The next step is to compute the inner product and try to see how we choose ¢.

SA(f) = 0p(i(Af + |V’ f)) + 2V - V(AS + [V’ f) + Ad(Af + Vo[ f)
= i OAf + 00| VoI’ f + 2V - V(ASf) + 2V - V(IVo[*) f +2V¢|[Ve[* - V f
+ APAf + Ag|Vo[* f
= i PAf + 00|V’ f + 2V - V(Af) + 4V - D*¢(V) + 2Ve|Vo[* - V f
+ AQAf + Ag|Vo[* f

AS(f) = i(A + [Vo[)) (0 f) + (A +[V[*)(2Ve - V) + (A + [Vo[*) (A f)
= iA(O0f) +i|VO[opf +2A(Vo - V) +2[VoPVe - VI + A(Agf) + [Vo[? Adf
= i(A0)f +i0dAf + 2V (0,0) - Vf +i|Vo|*0i0f +2(2D%*¢ - D*f + V(A¢) -V f
+V(Af) - V@) +2|Vh|*°Vo - Vf+ A%pf +2V(AQ)Vf + APAf + [V Adf.

where we have used that
V(V¢-Vf)=D*(Vf)+D*f(Vo),
and
AV V)=V (D*$(V])+ D*f(V)) = 2D - D*f + V(A¢) - V[ + V(Af) - V.
It therefore follows that

(S, A] = 4V¢ - D*$(V) f — iA(0,9)f — 20V (0,9) - V f
—4D%*p- D*f —4V(A¢) - Vf — A*¢f. (2.14)
Let us now compute 0;S(f).
aS(f) = (00 = i(0(2Vd -V + Ag))) f = (3¢ — 2iV(019) - V — iA(0,9)) . (2.15)
By combining (2.14) and (2.15) we get
(0:S +[S, AN(f) = o f —2iV(0rp) - Vf —iA(0r) f
+4Ve - D*6(Vo)f —iA(Go)f — 21V (0p) - V
—4D% - D*f —4V(Ag) - Vf — A% f

= 070 f — 4iV(01¢) - V[ — 2iA(0:0) f + 4V ¢ - D*¢(V) f
— 4V - (D?6(Vf)) — A%, (2.16)

First, we see what happens if ¢ = v|z|?, not depending on ¢. Then it obviously satisfies
d(x,0) = ¢(z,1) = v|z|>. Then all the derivatives with respect to ¢, and all derivatives of
higher order than two, will vanish, so we are only left with

(0S +[S, AN(f) = 4V - D*6(V)f — 4V - (D*$(V [)) = 329°|z[*f — 8A .
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Then it follows that
Rn Rn
= J 32| f|> + 8|V f|*dz = 0

and H will be log-convex. The problem with choosing this weight is that we cannot bound it
from below which we needed to do in (2.11) to finish the proof. If we let ¢ = v|z+ Rt(1—t)e1|?,
where v and R are some positive, real constants, then we can show that

(@S + (S, ADS, Frzwn - —R?

<f7 f>L2(]R") 87 '

This choice of ¢ is somehow the second simplest choice we can guess where ¢ still satisfies
d(x,0) = @(x,1) = v|z|>, but where it also depends on t. We start with computing the
partial derivatives of ¢.

O, @& = 2y(x1 + RE(1 —t))
aﬁ?j¢ = 27$j7 J#1

029 =2y

Vo =2v(x + Rt(1 —t)e;)
A¢p = 2yn

D*¢ = 291

Orp = 2yR(z1 + Rt(1 —1))(1 — 2t)

02¢ = 2yR[R(1 — 2t)* — 2(z1 + Rt(1 —t))]
V(ai¢) = 27R(1 — 2t)ey
A(09) = 0.

Then (2.16) becomes

(0,8 + [S, A (f) = 2vR*(1 — 2t)*f — 4yR(x1 + Rt(1 —t)) f
— 8ivR(1 — 2t)0,, f + 32v%|x + Rt(1 — t)es|*f — 8yAf

and the inner product

(@S +[S, AN/, f>L2(]Rn) = f

R”

- J 8ivR(1 — 2t)0,, f fdx + f 3273z + Rt(1 — t)er || f)?dx

n

n

2y R2(1 — 24)2|fPdx — f Uy R(zy + Rt(1 — 1)|f2dz

+ f 87|V f|*dx.
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To make the notation easier, let us write

(OS + S ANS Hre@n = (1) +(2) + (3) + (4) + (5)

= (1) =@ =163) + (4) + ().

Observe that all terms are real, but (2) and (3) are the bad terms which are not positive.

Let us deal with (2) first, by using Cauchy-Schwarz and Young’s inequalities.

(2)] = J SuR(z; + RE(1 — 1)) f2dz
< o1+ RiCL = )l e
< RS (w1 + RHL 1)l + B e
2

< 47R5H(:C + Rt(1 = t)er) flL2@n) + 47R Hme Rn)
2

€
= 4735 |z + Rt(1 = t)e, [*| f[*de + 473 ”fHL2 R")

By choosing ¢* = &ﬁ, we can use (4) to cancel the first term, and we are left with

R

RQ
(4) - 12) = —ngHLz (&m)-

For (3)

(3)] = j SYR(1 — 20)0,, f fdu
< SRS (1 2t)fHL2<Rn>

< 8RS H@xlmeRn +873 =11 - 2t) f 17 )

8’YR HVfHIﬂ ®n) T S’YR H( )fH%Z(R")
2

1
_ c 2 — 1 —2t) f|*dz.
87R2 . V£l dx+8’yR2€2 I( t)fl°dx

Rn
Now, let € = %. Then
(1) +(6)—163)] =
We are left with 9
(@S +1S.AS. sy >~ ey

so we have shown that
(248 +[S. Al iy _ —R?

{F Poren B

log H(t)" = 2
which concludes the proof of the claim.
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This shows the formal argument that we ideally would have liked to extend to the case with
a non-zero potential. However, to justify the argument rigorously is not easy. We therefore
follow a slightly different path, and the first step is to perform a parabolic regularization and
work on the equation

ou = (A+iB)(Au + V(x,t)u + F(x,t)),

for A > 0. We will prove energy and Carleman estimates for solutions to this equation.
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3 Important Estimates and Proof of Theorem 3

In this chapter, the main goal is to prove Theorem 3. To do this, we start by proving estimates
for the regularized equation (0.9), for A > 0.

3.1 Energy Estimate
Lemma 3.1. Assume u € C([0, 1], L*(R™)) n L3(]0, 1], H'(R")) satisfies
dru = (A+iB)(Au+ V(z,t)u+ F(z,t)) in R" x [0, 1]
A >0, BeR. Then
M | T (T2 < [ u(O)gz + VAT BT (1) 13 o e
when v >0, 0<7T < 1and Mp = |A(Re V)* — B Im V|| 110,17, (&))-
Remark. In Lemma A.1 in Appendix A, we discuss the existence of solutions
ue C([0,1], L*(R™)) n L*([0,1], H'(R™)) when uo € L*(R"™).
Proof. Let f = e®u, where ¢ is a real-valued function to be chosen later. Then
O f = @tqﬁed’u + e®Ou
=0,0f + (A+iB)e®Ale™f) + Vf + Fe?
= 00f + (A+iB)(|V]* — A¢p—2Vp -V + A)f + V f + Fe?
= (S+A)f + Fe,

where

S=AA+|Vo]*) —iB(2V¢ -V + A¢) + (0190 + AReV — BIm V)
A=iB(A+|Ve|*) — A(2V¢ -V + Ag) +i(B ReV + AImV).
We have that
atHfH%Q(Rn) = 2Re (Sf, [r2rn) + 2Re ((A + iB)e’F, f)r2gn).
It follows by integration by parts that

Re{Sf, f)r2@mny = Re J A(Af + |Vo|*f) fdr — ReiBJ (2Vo -V f + A¢f)fdx

n n

+ Re f (i + AReV — BIm V)| f*dx
=— | A|Vf|ldx + J (AIVO|]* + 0:0)|f|?dr +2BIm | Vo - Vffdx
R R R"”

+J (AReV — BImV)|f|*dz

=M+ @)+ B)+ )
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We want to find an upper bound for | f|3. (gny 50 We will apply similar methods as we did
in the proof of Theorem 2.3, with Cauchy-Schwarz and Young’s inequalities. Observe that

1(3)] < 2BJ VoV fflde
< QBHVfHL?(Rn)HfV¢HL2(R”)
B _
< Bef IV fdx + = |fV¢|*da.
Rn € Rn

By letting € = %, it follows

B2
@) <A| VP 5| 1PVoPar (3)

Hence, the first term in (3.1) will be canceled by (1), and

B2
Re(SS, Funeny < | (A S)IVOPIT + 86l Pde + |ARe V' = B poqeo | f12sqeny

R"
If we require that
BQ
(A+ Z)WW + 0 <0, (3.2)
then
Re<5'f, f>L2(]R") < ||AR€ V+ — B ImV”Lw(Rn) H-f”%z(R") (33)
Also, it follows by Cauchy-Schwarz that
Re((A+iB)e’F, fyremn) < f V(A% + B2)|e? F f|dx
Rn
<V A2 + B2||6¢FHL2(R7L)HfHL2(Rn). (34)
Combining (3.3) and (3.4),

5,5Hf||%g(Rn) < 2HAR,€ V+ - B ImVHLoo(Rn)

Fl2@ny + 2V A2 + B|€F| 2@y f 22,
which implies that
Ol flr2@ny < [AReV ()Y — BImV (t)|po@n)| flz2mn) + VA% + B2|e?F| r2(mny,

so by Gronwall’s differential inequality;,

T
||fHL2(Rn)67MT — Hf(O>HL2(R" < VA2 4+ B2J ethHed)FHL%Rnpdt
0
< VA2 4+ B2||6¢F‘|L1([0’1]’L2(Rn). (35)
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Let us now assume ¢(z,t) = a(t)®(x), where we in the end want ®(z) = |x|2. (3.2) is satisfied
when a(t) satisfies the initial value problem

d(t) = —4(A+ Ba(t)?
a(0) =1,
for some v > 0, with solution

() —
T AT B+ A

(3.6)

To justify the formal computation above, we will do a regularization argument with a cutoff
function on the weight ¢. Define

|z, |z[ <R
(@) = {R?, 2| > R.

Then let 6,(x) = p~"0(p~'x), where 6 is a radial mollifier, and define

bpr(z,t) = a(t)d, » Pr(x)
for(z,t) = e‘pﬂﬁ(w’t)u(l‘, t).

Since u € L*(R™) for all 0 < ¢ < 1,

o (8) o) = JR” D02y (1 )[2d
<J A u(z, t) [P
< ezvRQHU(t)H%Q(Rn) <
s0, f,r € L*(R™) for 0 <t < 1. Replacing f with f, g in (3.5) implies that
| fo (D) p2emye ™™™ = | fo,1(0) | 2 in)

T
g /AQ + BQJ e~ Sé ”AReV(S)+_BImV(S)HLw(Rn)d8Hed)FHLZ(Rn)dt
0
T
< VAT B2 f € F | paganydt,
0

so that

A
Tz B2 Y PRy (T | e M

A
< He’yﬁp*@;{(w)u(o)||L2(Rn) + \/m"e“AZlBQ)Mep*@RFHL1([0,T],L2(Rn))'
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By first letting p — 0, using The Dominated Convergence Theorem and the properties of 6,
being a radial mollifier, then letting R — o0, using the monotone convergence theorem, we
deduce that

vA|z 2

| Ala)|?
H64(A2+32)T'Y+AU(T)||L2(Rn)6_MT < H€7‘$|QU<O)HL2(R") + vV A2 + B2”64(Aﬂ%+5§)t7 FHLl([O,T],LQ(R"))
which concludes the proof. O

Remark.

(i) As we discussed in the introduction it is not always true that the norm [le®u(t)| p2(gn) is
finite for all time, even though u € C([0,1], L*(R")). What this lemma tells us, is that for
a specific weight function ¢ = a(t)|z]* < v|z|?, we can justify that |e®u(t)] z2(zn) is finite for
all £. This will be important for us later in Lemma 3.4 when we justify that |\67|z|2u(t)||L2(Rn)
is finite for all time ¢ € [0, 1].

(77) By modifying this argument a little bit we can also prove that S?; HVfH%z(Rn)dt and

Sg IVof H%z(Rn)dt are finite for all 7' € [0,1]. This will in particular be important to us in
the proof of Lemma 3.5. This result is not shown in [6], but for us, it was not obvious how
to rigorously justify the arguments without it. We only state the result here, and save the
proof for the appendix, see Appendix A.

Lemma 3.2. Let u e C([0,1], L*(R")) n L*([0, 1], H*(R™)) satisfy
oiu = (A+iB)(Au+ V(z,t)u+ F(x,t)) in R" x[0,1], (3.7)

A >0, BeR. Then

a z|? a(t)]z]? a(®)ll?
HG (D)l U(T)||%2(Rn) + A”V(6 ®lel U’)H%P(R”X[O,T]) + 2A|\2a(t)|x|e (Ol UH%2(R"X[O:T])
< M HVATEBE ey (0) | pa oy + VA2 + BRM VAR Ol P2,

for a(t) = WﬁB?)vt’ 7 20,7 €[0,1] and My = supyejo 1) [A(Re V)" — B Im V|| 10 (gn).

Corollary 3.1. Under the same conditions as in Lemma 3.2 and if Heﬂf’:Pu(O)HLz(Rn) and
Alz|?
| 5042 7520 F(¢) | 2 (e xfo.ry) ate finite, then

a 272 a 1‘2 a $2
e (T | Zageny + 1V (O w) [Fagn o7 + 1200|211 0t Zo g0 79 < 00

for a(t) = WﬁBz)wt’ v7=0,Tel0,1].
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3.2 Carleman Estimates

Lemma 3.3. Suppose that S is a symmetric operator, A is a skew-symmetric operator, both
can depend on a time variable, G is a positive function, f(x,t) is a reasonable function

D(t
H(t) = <f7 f>L2(R")a D(t) = <Sfa f>L2(R”)7 N(t) = %
Then
0t H = 20Re (Oif — Sf — Af, Freny + 20:Sf + [S, Alf. framn)
+|0uf — Af + SflLa@ny — 10:f — Af = Sf L2y, (3-8)
" Joef = Af = SS13
/ GSf+I[S AL Pregn t) = A)— L2(R™)
N'(t) = Vi — 5H : (3.9)
Moreover, if
0 f — Af =Sfl < M|f|+G in R"x[0,1], &S +[S,A] = —My, (3.10)
and o
Ms = sup ﬂ < 0,
0,11 1 S () |l L2 ey
then log H(t) is convex in [0, 1] and there is a universal constant N s.t
H(t) < NMot MM+ ME+ME) b (0)1=t 1 (1)" when 0 < ¢ < 1. (3.11)

Remark. By a “reasonable” function f, we mean that we can justify all of the computations
in the proof.

Proof. Define H(t) = {f, f)r2(rn). Then

H'(t) = 2Re{0:f, f>L2(Rn)
= 2Re ((Ouf = Sf — Af, [Yrzmn) + (ST, [rzmn) + (A, [rzmm))

=2Re(0,f = Sf — Af, f)r2mn) + 2D(t). (3.12)

We can also write
Hl(t) = Re<8tf + Sf, f>L2(R”) + Re <(3tf - Sf, f>L2(]R")- (313)
D(t) = (SF, fran = %Re (uf + S oo — %Re Gof — S ey (3.14)

By multiplying (3.14) and (3.13) we have that

2

H'(t)D(t) = % (Re{oef + SF, Framm)’ — % (Reauf = Sf, @)
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Since the real part of the skew-symmetric operator is 0, it follows

2

(D) = 5 (Re(@uf — AT + 85, Dizan)’ = 5 (ReCauf — Af = S, fruogen)’ . (3.15)

Now,

D'(t) ={0:Sf + Soif, frrzmy +{Sf, 0 f)r2@n)
= (0;Sf, f>L2(R") + 2Re (0., Sfr2mn
= @S+ [S. AL, Fraqeny — (S, Al Przan + Re @f, S rageny
=S + [S, Alf, [Ir2mny + 2Re (0 f — Af, Sf)r2mn).

The polarization identity, i.e.
1
Rea,y) = 7 (o +yI* = o — yI?).

yields that

, 1 1
D'(t) = (aSf+ S, Alf, rzmm) + §Hatf —Af + SfH%Q(R") - 5“9tf —Af - SfH%%Rn)-

(3.16)
Hence, from (3.12) and (3.16) we get that
H”<t) = 2&tRe <(9tf — Sf - Af, f>L2(Rn) + 2D/(t)
= 20Re (O, f = Sf — Af, [re@ny +2(0:Sf + [S, Alf, 2@
+0uf = Af + SflTa@n — 10f — Af = Sfl72@n).
which proves (3.8). For (3.9) we have that
oy DIHR) — H'(t)D(2)
MO ==y
oS+ IS, Alf, reen lOf —Sf + SfH%Q(R") B loof —Sf— Sf”%man)
B H " 2H 2H
B (Re(Ouf — Af +Sf, [remn))? n (Re(Ouf — Af = Sf, frre@m)?
2H? 2H?
_ OSf+[S,Alf, [rzmn
H

|ocf — Af + SfH%%Rn)HfH%%Rn) — (Re{0uf — Af + S, re@n)?
* 2H?

(Re(Orf — Af = SF, fuan)? — 160 = Af = S 12agam | e
" ViE
> <at8f + [SaA]fa f>L2(1R") _ Hatf - Af - SfH%?(R”)
- H 2H '

39



where we on the last inequality used Cauchy-Schwarz inequality and that

(Re <§tf - .Af - Sf, f>L2(R”))2 = 0.

Now, if (3.10) holds, then
N'(t) = —(My + M} + M3).

Then, by (3.12) for ¢(t) = 2Re (0, f — Sf — Af)r2@ny and ®(t) = " ¢(s)ds,
(log H(t) + ©(t)) = 2N (1),

where since ¢ < M; + My, it implies ® < M; + My and ® = O(1) on [0, 1]. Similarly, on
[0, 1],
?(log H(t) + O(1)) =,0 (3.17)

where now |O(1)] < N(My + My + My + M? + M3)) in [0, 1]. By using (3.17), we get that
for0<s<t<Tt<I1,

ds(log H(s) + O(1)) < d-(log H(7) + O(1)).

By integrating two times, first from 0 to ¢, and then from ¢ to 1, we get

H(t) H(1)
(1—1t)log ——= < tlog——= + O(1),
(0) H(t)
and thus,
H(t) < O<1)H(1)tH<O)l—t < €N(MO+M1+M2+M12+M22)H(1)tH<0)1_t,
for 0 <t <1. O

Lemma 3.4. Assume that u € C([0, 1], L*(R")) n L*([0, 1], H'(R") satisfies
oiu=(A+iB)(Au+ V(z,t)u+ F(x,t)) in R" x [0,1], (3.18)
where A >0, B e R,V is complex-valued, v > 0, and supyg 7 |V ()| Lo ®n) < Mi. Set

|1 F(t)] 12y
01  u®)|r2@n

M, =

Y

and assume that \|67‘x|2u(1)||L2(Rn), He”‘“zu(())HLz(Rn) and M, are finite. Then |\67|z|2u(t)||Lz(Rn)
is logarithmically convex in [0, 1], and there is a universal constant N such that
He'ﬂx|2u<t>HL2(Rn) < eN[(A2+B2)(M12+M22)+\/A2+BQ(M1+M1)]He'y\x|2u<0)H1LgEtRn)He'y\xﬁu(l)Hi%Rn).
(3.19)
for 0 <t <1.
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Proof. Let f = ¥%u, where ¢ = ¢(z,t) is to be chosen later. As in the previous computations,
we can show that f satisfies the equation

oaf=8Sf+ Af + (A—i—iB)(Vf—i—ewF),
where

S = A(A + %V} —iBy(2V¢ - V 4+ A¢) + 70,0 = ASy — iBySy + 0,0
A=iB(A+*Ve|?) — Ay(2V¢ - V + A¢) = iBS; — AySs.

Let us now compute the commutator.
S, Al = —9(A” + B*)(515: — $251) + iBY(C16S1 — 81010) + Ay* (82016 — 0165s).
By the calculations we already did for the free case, we have that
—(A* + B*)(818; = $251) = 7(A* + B*)[y* 4V - D*$(V¢) — 4V - (D*$V) — A%
iBy(0:9S1 — S10:¢) = —iBY[2V(01¢) - V + A(0:9)]
A (8201 — 019Ss) = AV?[2V ¢ - V + Ap)(019) — 01p(2V¢ - V + Ag)]

= AY[2V6 - V(0,9) + 2016V - V + Addsd — 20,6V 6 - V — Apésg]
— 247’V V(010).

Also,
8t8 = &t(Asl - lB’YSQ + Vﬁtgb)
= A0(A +*|Vol*) —iBy0(2V¢ -V + V) + 707 ¢
=249’V - V(0:0) — iBv(2V(0:0) - V + A(0r9)) + 70} 0,
so that

08 + [8, A] = 1026 + 1(A? + BY[42D?6(V) - Vi — 4V - (D?$(V) — A%]
+4AY (VS V(0i9)] - 2BA[2V(06) - V + A1) (3.20)

Again as in the free case, if ¢(x,t) = |z|?, it follows that
S + [S, Al = v(A% + B)[32+*|z|* — 8A],
and if we can justify the integration by parts,

O+ [SAIf ) = (A + B) | 3P aPlsF + 8V Pan, (321)
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so 0;S + [S, A] = 0. We want to use Lemma 3.3, to prove the result. We have

00/ =S —Af| < VA2 + BX(|V f|+]e"F|) < VA2 + BX(M|f|+€™|F|) = VA2 + B*(Mi|f|+G),
(3.22)
so if all calculations can be justified, we can use the lemma to say that He”'x‘QuH%g(Rn) is

logarithmically convex. Moreover, if M, = /A2 + B2M;,

| F 2y

M, = sup VA2 + B2

te[0,1] [P u(t)] pagen)
it follows that
IQ ~ ~ ~ 2 ~ 2 272 1,2
&7 u(t) [y < MO O) [ e u (D] ey (3:23)
< 6N(M1+M2+M12+M22)He“/|xl2 0 )Hi(letn le z|? u(l )HLQ(Rn (3.24)

2
le?1=" Pl 12 g,

——————& 2 The result follows after
”u(t)HL2(mm)

Where M; = supyep 1 IV (t)| Lo mny and My = SUD¢ef0,1]

taking the square root on both sides.

For this argument to be rigorously justified, we need to know that | u(t)] L2(rny 18
finite for all ¢ € [0,1]. The idea will be to modify the weight in such a way that we can use
the Lemma 3.1 to justify that it will be finite. See the appendix, in particular Section B.1,
for the detailed computations.

We now show a similar estimate to deduce that [+/t(1 — t)e”'xPVuHLz(Rnx[m]) < oo for
€ (0,1). O

Lemma 3.5. Assume u, A, B, V, M, and y are as in Lemma 3.4. Then

IV = 1) V| 2@ oy + [VEA = 1)z ] 2@ o))

< N[(1 + M) sup e wu(t)| 2@y + sup |77 F L2 @ny]. (3.25)
[0,1] [0,1]

Proof. We start with the formal proof. Let f = ey, Assuming all calculations in Lemma
3.3 are justified for f, we start by multiplying inequality (3.8) with #(1 — ¢) and integrate
from 0 to 1. The left side of (3.8) becomes

fa2 t(1 —t)dt

- J (1= 200 H ()t

0

~[(1 —2t)H(t)|,] - zf: H(t)dt

— H(0)+ H(1) — Qf H(t)dt
< H(0) + H(1). (3.26)
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For the first part of the right-hand side of (3.8), we get

1 1
0
" (3.27)
It then follows from (3.8), (3.26) and (3.27) that
1
2 L {1 — )OS S + [S, Alf, Frzn

1

< H(1) + H(0) + 2f (1 20)Re(orf — Sf — Af. ozt

0
1
+ J t(1 —t)|onf — Af — Sl 72 nydt. (3.28)
0
From (3.21),

OSf+[S, Al fore@ndt = 8N | (IVfP + 49%[a?|f|*dwdt

Rn

=N(2 [ 195+ aoplapspae 2 | \Vf|2+472|x\2|f!2d96)
R™ R™

>N (QJ IV f]? +472|x|2|f|2dx+872f |x|2|f]2dx) (3.29)

We wan to find a lower bound on 2 {,, |V f|* + 4v°||?| f|*dz. We have that

n

Vf = e (2yzu + Vu)
|Vf‘2 = 627|x‘2(47|$|2\u|2 + |VU|2 + 2yzu - Va + 2yVu - za).
Integration by parts shows that

| 19
= f e27|‘”|2(4fy2]x|2\u]2 + | Vu?)dx + 2fyf

- f Y (2P luf? + [Vul)de — 2y f

n

21y - Vade + 27[ N7y - pudae
Rn

1Py - wda — 27f 217 |u?V - zdx
R”l

n

- QVJ 4ye" u)? |z Pz + 27[ e aVu - xdx
Rn R™

= J 17|V u?)da — 27nJ

Rn

P lufds 497 | (e,

n

where n = V - . This shows

f IV f1? 4+ 4y% 2| f|*dx = J 4'22“””5|2(|Vu|2 — 2ny|u|?)dw. (3.30)
Rn

n
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Also, by using Cauchy-Schwarz and Young’s inequalities,

| (Vo< | AVl

5 1/2 1/2
<2 ([ wspan) 2 ([ rePispac)
<5 | 1spdz 2 f 22| f2da,
In particular, for e = /2 it follows
| v silifide < [ (9sPar e | ol sPds,
On the other hand, integrating by parts shows ’
2 [ (Vfo)fde =2y | VealfPd-2 | foevE
i Rn Rn
so that
QWnJR |f|?dr = —2 ( i fx-Vfdr +
Then (3.32) and (3.31) implies that
| 491+ ar?lab s Pde = 20m | 11
Adding (3.30) and (3.33), it follows that )

2J (V12 + 49?2 f]P)dx = J 27 | uPd

Rn

R”

Returning back to (3.29) we see that

J t(l - t)<§t8f + [S, A]f, f>L2 Rn dt

0

vy :vfdx) < j f1]2]|V .

(3.31)

(3.32)

(3.33)

1
>N ( f ¢( 1—t 27'””‘2|Vu|2dmdt+ f t(l—t)|x|2627|x2|u|2dxdt)
0 0

2
- N (V1= ev'x' IVl o, + VL = kel ulagon o ) -

Hence, by (3.28)
IvE(1 = t)eﬂw‘ VUH%Q(R”X[OJ]) + vt = t)]x|e”|“| UH%Q(R”X[OJ])
1
< Nf t(1 =1)OSf + [S, Alf, [)re@ndt
0

1
< N((H(l) +H(0) + 2J (1= 20)Redorf — Sf — Af, Foragmndt
0

1
b |t D0 ~ AS - SR,

0
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Now we want to find an upper bound for the right-hand side. Using (3.22) we get that

1
| =10 = Af = SFauydt < sup [ Jorf = AF — Sy
0 n

te[0,1] JR

<N Supj (M| f| + 1| F|)2da

te[0,1]

< N sup | M| f] + 67|$‘2F”L2 R7)
te[0,1]

<N (SUP HleHL2 rn) T SElp Heﬂxl F”B(Rn )

te[0,1]

2
<N (sup IMy f2@ny + sup He”’l al? F||L2(Rn>
te[0,1] te[0,1

Again by using (3.22) it follows

1
QL (1 =2t)ReOf —Sf — Af, rewny < N sup [(Of —Sf —Af, [remm)l

t€[0,1]

< N sup Jn|5tf—5f—-/4f||f|dx

te[0,1]

< N sup f (My|f] + €| )| f|da.

te[0,1]

Moreover, Young’s inequality implies

1
JO—%&WJ SF— Af, P

2 1
<N s ([ ORI+ @) 5
te|0,1 2
Nam@MJ+memw+wmz)
te[0,1]
2
<N sup (IMf + € Flpaue) + | |12 )
te[0,1]
9 2
< ¥ sup (1o + €7 Plisgen + 1l
te[0,1]
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Finally, since H(0) + H(1) < 2sup;eo 1 ||€’Y|m|2u(t)||L2(Rn),

2
<H\/ t(]. — t)€7|x‘2VU|‘L2(RnX[O71]) + ||\/ t(l — t)|I|€7‘x|QUHL2(RnX[071])>
LE2 $2
N(H’\/ t(1—t)e! Vul 2o @nxpoay + V(1 = t) || UH%Q(R”X[OJ]))

2
<N | sup He”‘ al? UHLQ(Rn + sup He’” zl? FHLz Ry |
te[0,1] te[0,1]

which formally proves the result. To prove the result rigorously, we will do an argument sim-
ilar to the one in the justification of Lemma 3.4. Even though we have proven in Lemma 3.4
that \\e”‘f”'Qu(t)HLz(Rn) is finite for all 0 < ¢ < 1, it is still not clear that HV@V‘”CPu(t)H%Q(RnX[O 1)
is finite, which we will need to make this argument rigorous. The idea is to modify the
weight as we did in Lemma 3.4 and use Lemma 3.2 to justify that the modified weight will be
finite. We then proceed by doing the computations we did above, which now can be justified

rigorously, for the modified weight. The details can be found in Appendix B.2.

3.3 Proof of Theorem 3

By the previous two lemmas, we have now proven the equivalent estimates in Theorem 3
for the regularized version of the equation, for A > 0. To prove Theorem 3, we also need to
deduce the results for A = 0. Let us first recall the theorem before we prove the result.

Theorem 3 (EKPV). Assume that u € C([0, 1], L*(R"™)) satisfies
diu = i(Au+ V(z,t)u) in R" x [0,1], (0.6)

V(x,t) = Vi(x) 4+ Va(z,t), where Vi is real-valued, |Vi|po@n) < M; and

||
SUp(o1y €@+ -2 Vo (t)]| Lo (mny < 0. If there exists positive numbers a, 8 such that

la)? o)
le 8 u(0) | L2ny < o0 and |le’ o u(1)| L2(mn) < o0,
||

then |e(et+0-08%y(t )HCL”;JFR}L D% is logarithmically convex in [0,1] and there is a constant N =

N(a, ) such that

|22 |2 B—t)
”e(at-%—(?—t)ﬁ)Q u(t)|r2eny < e NMi+Ma+ M{+M3) | o 7 E u(0 )Hg?ﬂgf Y He o u( )szﬂgﬁf Y (0.7)

|z|2

|
for all ¢ € [0,1] and where My = supyg 1) | e @005 Vy(t) || oo () € P10 V2Ol More-
over,
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VL~ Dem i Ve
< NeV(Mi+Ma+MP+M3) [|€;22U(0)”L2(R") + |6|:‘|22u(1)L2(]R{")] )
(0.8)
Proof. The main idea of the proof will be to work on the regularized equation,
o = (e +1)(Av + V(x, t)v),

for € > 0, apply Lemma 3.4 and Lemma 3.5 to this solution, and finally use semigroup theory
to obtain the result for € = 0. All details we use regarding semigroup theory can be found in
Appendix C.

We can assume o < 3. If a =  we can do the previous case for « = § + ¢, and then let
d to zero. If a > f3, then we can let u = u(1 —t).

Define the operator H := A + Vi(z) and consider the mild solution v = e!A*B)Hy, e
C([0,1], L*(R")) of

{atv — (A+iB)(Av + Vi(z)v) inR™ x [0,1]
v(0) = uo,

for A > 0. Since u € C([0,1], L*(R™)) is a solution of (0.6) , it satisfies the equation
o = iHu + iVa(z, t)u,

so that by the Duhamel formula,

¢
u(z,t) = ey + ZJ eI (Vo (s)u(s))ds in R™ x [0,1]. (3.34)
0

Let € € (0,1]. We then define

() = ﬁeﬁﬂﬂwwu@»,

uc(t) = e Ty 4 (e 4 Z)J eI B (6)ds.
0

Then u, is a solution of the equation

{@ue = (e +i)(Huc+ F) in R" x [0,1] (3.35)

ue(0) = u(0).
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and from Lemma A.1 we have u. € C([0, 1], L*(R™)) n L*([0, 1], H*(R™))- Moreover, since H
generates an analytic semigroup,

z1 +Z2)H — e(Z2+Z1)H

el = et (3.36)

It follows that for ¢ € [0, 1]

t .
uc(t) = ey (0) + (e + Z)J e(EJri)(t_s)H;egSHV'gu(s)ds
0 (e +1)
t
_ eetHez'tHu<0) + €EtHiJ ei(tfs)HVqu(S)ds
0
= e Hy(t), (3.37)
and in particular, for t =1,
uc(1) = eHu(l).
We now want to apply Lemma 3.1. Let us define the function u*(t) := e“*u(1). Observe

that

oput e(Au* + Viul)
ug(0) = u(l),

so by Lemma 3.1 with A +iB = ¢, F = 0,y = é,T = 1, and My = [eVi]|p1(0.1),00(rn) <
€| Vi] re(rn), we get the estimate
o AViloo o
||65 +46u€(1)”L2(Rn) < efIMHiL He B u(l)HLz(Rn). (338)

Since uc(0) = u(0), we also have

L= le2
He a2 ue(O)HLQ(R”) = ”6 a2 U’<O)HL2(R”) (339)

We use a similar argument to (3.38), but now to the function F*(s) := e Vyu(t). We
have
0 F*  =€e(AFF + VIFY)
F2(0) = Vau(t)
Fx(t) = F(b).
Then by applying Lemma 3.1 with A +iB =¢, F =0,y = m, T =t it follows that
forall 0 <t <1,
|| 2

| |z
|‘e(at+5(1—t))2+4€t Fe(t)HLQ(R") < eeuleLwUR") |’6(°‘t+5(1_”)2 ‘/2(t) ||L°°(]R") Hu(t) ||L2(R")' (340)

One last application of the lemma to the functions F*(s) and u**(s) := e“*7u(t), A +iB =
e, F ' =0,v = 0 shows that

| Fe()ll 2y < eI | Va(#)] oo eny [ (t) | 2 emy, (3.41)

<
e (t) | 2qny < eTVHIE2E uu(E) | 2 qgeny- (3.42)
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Define o = o+ 2¢ and 3. = 3 + 2¢, then 82 = % + 4e + 4€ > 3% + 4e, so that together with
(3.38), we get that

1= l=|?
e 3% e ()] paqany < V1152 3 (1) prgam- (3.43)

The same argument for (3.39) and (3.40) shows that

Lz 2|2
e 7 e(0)] La(any < e u(0) 2qan) (3.44)
and
|| |z |2
||€ (cet+Be(1— t))i (t) ||L2(Rn) g eel‘leLoo(Rn He (at+B(1-t)) ‘/2(75) HLw(R") ||U(t) HL2(R") . (345)

We now want to a,pply the Appell transformation in Lemma 2.1, to reduce to the case where
a = . Let v, = , and

(ae—Be)|x|?

e M(eti)(ae(1—1) T Bet)

) B Jab. n/2 aBex Bet
te(x, ) = (Oée(l — )+ Bet> “e(ae(l — 1) + Bt (1 —t) + ﬁet)

Since u. € C([0,1], L2(R™)) n L*([0, 1], H'(R™)), and since o < 3, we have that o, < . so
that u. € C([0,1], L*(R™)) n L*([0, 1], H*(R™)) as well. By Lemma 2.1, 1, satisfies

Oriie = (€ + 1) (Al + Vi (2, t)0e + Fu(z,t))  in R™ x [0,1], (3.46)
where V;° is real valued, and

o acfe vacbe
A P &t)?Vl(ae(l —t) + W)’

n/2+2 o B a2
n VS I VaePex pet )e4(e+5’)(€a5ﬁ(4§!t)l+ﬁgt)‘

Fe ,t = € )
S e ey (1 — 1)+ Bt ac(l— 1) + Bit
Moreover,
sup | (0 < 2ty < 2, (3.47)
[0,1] Qe a
I3 < b ) 4
[Ee®)z2@ny < I Ee(s) 2@y, (3.48)
and from Lemma 2.1, and since a < (3,
Telal? P S e o
||€ Fe(t)HLZ(R") = ( ( )+ ﬂ ) ||@ (es+Be(1—s)) (244 )(aes+ﬁe( s)) F( )”L2(Rn)
Byt
_|’€(a59+55(1 5))2 FE(S>HL2(R")7 (349)
o
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1 (ae—Be)e
el . (t) |r2mny = ||e[ (aestBe(—s)Z T 4(€2+i2)(0¢65+ﬁ6(1—3))]‘w|2ue(s) |22 @®ny, (3.50)

and

lae(®)] L2@ny < Jue(s)] L2 (3.51)
for s = m Observe that t =0 = s=0andt =1 = s = 1. In particular, for
t =0, (3.50) implies that

2

22 1y (046*_56)5 2 =7
€088 (0) |2y =l HFT DT 4 (0)] 2y < € 57 we(0)] 22, (3:52)
and for ¢ = 1 that
o2 l=|2 Vil ooy 122
€1 i (1)) ey < e o) p2n) < 17215 €22 (1) 2, (3.53)

where we also used (3.43). Moreover,
21 () 22 gy = 2Ref&taea_edx
= 2Re f(e + 1) (A, )tcdr + 2Re J(e + Vi (z, )| |*dz + 2Re J(e + i) FLtiedx

< —2Re J(e +4)| Vit |*dx + 2€| Vi oo gy HﬁEH%Q(Rn) + 2Re J(e + i) F.d.dx

N

~2¢ [ IV + 26|V loten @l + 2 [ 2R T
< 2€||V15||L°O(R”)HﬂeH%Q(R") + 4] F 2y | tie]| 2 ).
Moreover, together with (3.47) and (3.48),
O ()| 2@ry < €l Vi@ licl2 + 21 Bl 2 )
< D an @) + 22 B e

Lemma 1.1 and (3.41) implies now that

_ B B .
Oullie(t) ey < € Muliie] pgen) + 2 [Va ()] oo fut)]
B

Bt c
< e Mifjae] 2@y + 27 e M Ve ()| oo ey N [10(0) [ 2

We make a uniformly distributed partition of [0, 1], 0 = ¢, ¢y, ..., tx = 1, k to be chosen later.
Let t;_1 <t <t;, 0<i<k. Then for N; = e*Preloa) ImVa®)lro@n)
s

N _B . _8
Oe([[ae(t)] L2mnye QM”)<256MlH‘é(t)HLw(leHU(O)HLQ(Rn)e a !

20



for t;_1 <t < t;, and integrating from t to t;
- Bt
i (t:) ] L2 mmye™ M0

t.
. _8 B o (1—s8
< ”Ue(t)”LQ(Rn)e o Mt + f 256 M1 0‘)”‘/Q(S)HLOO(Rn)NlHU(O)HLZ(Rn)dS
t

e (t:)]| 2@y

€— 6 €
< e aMl Hu€< )HL2 Rn) + e Mltzz—NlHU(O)HLZ(Rn) SU.p H‘/Q”Loo(Rn)(tz — t)e Ml.
« te[0,1]

Since t; 1 <t<t;andt; —t <1,

|tie(t:) | 2mmy < e <M |t ()| L2 mny + No(ts — ti1) [u(0)]| L2 @ny, (3.54)

where

Ny = 2§€€M1(§+1) + Ny sup H‘/Q”Lw(Rn)
« te[0,1]

Now we choose k such that Ny max;(t; — t;_1) < ﬁ. Moreover since
e ()] p2ny = [w(®) 2@y < eV [u(t) | 2@n) = Ju(t)] p2@ny — O
when € — 0, (3.51) implies that

|@e(t)| L2mny — [u(s)|L2@n) < |ue(s)] r2@ny — |u(s)||L2@ny — 0, when € goes to zero,

so limeo+ [[@e(t)|z2@n)y = |u(5)|z2@mn). This, combined with Lemma 1.1, implies that 3 €
such that for all 0 < € < ¢,
- 1 1
[ac(t) 2@y > 5 lluti)l 2@y > SN, o | w(0)l| 2 (). (3.55)
Therefore, from (3.54) and the two inequalities above,
i 1) 1) 1) 1O (3.56)
o n / ny — n Uu ny. .
€ Ue L2(R7) 2N, u L2(R") AN, u L2(R7) = AN, L2(R")
If € = min{eo, O‘logQ} we get that
[ac(®)] —[u(0)] (3.57)
UE 2 n u 2(Rn .
L2(R 8N L2(R™)
This, together with (3.49), (3.45) and Lemma 1.1, gives us that
el F (8)]| 2@y 8N w2
L LR A1 Py 15 P
wef0]  1|Te(t)]L2n) ref0.1] [u(0) | L2 rnycx
8N? e
< DD et gy e Vi (8) o
Q te[0,1]
8
- Do), (3.59)
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where ,
||

Mg( ) N2 eM, sup ||6(at+,8(1 )2 ‘/2( )”LOO(]R")7
te[0,1]

||
which is finite when ¢ — 0 if sup;epg 1) [e@+0-D2 Vy(t)[ L (rn) < o0, and this allows us to
apply 3.4 to .. Indeed, since
B

sup |V (8) ] oommy < =M,
te[0,1] Q

H6'76|5”|2F6(t)”[/2(]1§n) 85

sup — < —Ms(e),
tefoa]  ||e(t)] L2 mm a
from (3.52) and (3.53) we have both |e¥l*F i, (0)] 2(gny and [€?** G (1) 12@ny finite, so by

|z

Lemma 3.4, |7 @ (t)| L2(rn is logarithmically convex in [0, 1] and 3 a constant N so that

z|? ~
e e (t) ] 2 ey

2 2 7| \
< NUE+D(EZ M 46425 M () +1/ TS M1 +82 Mz (€))] le 5% (0 )HLQ rmylle ( )”Lz Rn)
2
< 6Nﬁ—2[M2+M2(e) +M;+Ms(e)] le ﬁz u(0 )||L2(Rn Heyu(l)HtLZ(R")' (3.59)

From Lemma 3.5, (3.59) and the bounds on F, we also get that

V(1 = 1) PV | 2@ oy + [VEQ = )]z @ ]| L2 @npo.y)

B z|2 ~ |2 7
SN[ (1 +=M) sup [P ()| 2@y + sup [|e** 7 F | 12 @n)
« te[0,1] te[0,1]

||
<N | sup [ i (t)|pamey + sup £€6M1\|€“‘“‘“1*”’2Vz(t)HLOO(JR”)NlHU(O)HLQ(R")
te[0,1] te[0,1] &

|| Lz
<N sup [ i (t)|paey + sup éeeMlHe“““*“*”’Q Va ()] ooy N1 € 7 w(0) | 2y
te[0,1] te[0,1] &

L= |2 L=
<N (eN[M12+M2( €)2+Mi+Ma(e)] le 5% u(0 )HL2 - Heﬁu(l)utﬁ(ﬂ&n) + Cle#? U(O)LQ(R,L)) ’

z\2

\
where C' = sup,cpg 1 geEMl |etet+80=02 V5(1) | oo mnyN1. Now, by Young’s inequality,

IVt = ) V| 2@ oy + [vVEA = 1)zl @ | L2 @n o)

7\ ||
<N[e [M3Z4+Ma(€)?+My+Ma(e H 52 (O)HL?(Rn)+H€7U(1)HL2(RH))

2
||

+ C(|le # u(0)| L2 rny + He?u(l)HLz(Rn))].
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N[M32+Ms(€)2+M1+Ma(e)]

Moreover, there exists some constant N such that C' < e , so it follows

that

IVt = 1) V| 2 @n oy + IVEL = 82l 2@ o)
2

2 )2 le? Lz
< NN RO (| o w(0) 2@y + lle e u(1)]z2@n))-

The result follows now by the relations between v and @, and by letting ¢ — 0. We justify
this in Appendix B.3. O

Corollary 3.2. Let u be as in Theorem 3 and @ defined through the Appell transform(
Lemma 2. 1), with v = =. Then under the same assumptions as in Theorem 3, R > 0 s.t.

[zva - ] [O’ 1]

e (] + Va1 a1t ey < 0

Proof. For te [55,1 — =], A/t(1 —t) = so that by Theorem 3

2RY 2R = 2R’
L ol g
ﬁ“@ VUHLQ([ﬁ,l—ﬁ]XR")) << 00.
Hence,
[ (il + [V 2 g1t ey < 5D | it 2@y + [Vl oo 1oy < 0.

te[0,1]
[l

Recall that in Theorem 1, we have two different conditions on the potential V. We will now
prove a similar result to Theorem 3 but in the case where limg .o [|V| 10,17, & Br)) = O-
As we said, the result in Theorem 3 will be fundamental to prove the main theorem. The
result we obtain from the next theorem is the same, but with a different hypothesis on the
potential. To prove this theorem we will admit one result from [5].

Lemma 3.6. There are N and ¢y > 0 such that the following holds: If A € R", V is a
complex-valued potential, | V| ,1(jo.17,1&n)) < €0 and u € C[0,1], L*(R")) satisfies

dru = i(Au+ V(z,t))u + F(z,t) in R" x [0,1]
then

SEéIi] H@A.IU(t)H[g(Rn) < N [He/\mu(())”Lz(Rn) + He)\'x’l,L(l)H[;(Rn) =+ He”'mF(t)HL1([O71]7L2(R7L))] .
te[o,

Theorem 4 (EKPV). Assume that u € C([0,1], L*(R™)) satisfies
dru = i(Au+ V(z,t)u) in R" x [0,1],
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where V' is in L*(R"x [0, 1]), limp_o |V | 21([0,1],20(&7)\Br)) = 0, a and /3 are positive constants
|z|?

2l |2
such that e #* u(0)|2®n) and He%u(l)HLQ(Rn) are finite. Then there is N = N(a, ) such
that

sup ||e<at+<1 tw (O]l 2@ny + [WE(1 = 1) e(at+<1 t>ﬂ>2 V| L2 mnx[0,1])

te[0,1]

lz? 2|2
< NeNsupiero VLo en) [|6 u(0)] L2 m) + He%u(l)HLZ(R") + sup [u(t)] L2 @n
te[0,1]
Proof. Define @ and V through the Appell transformation in Lemma 2.1 with v = -&.. Then
ot = i(Au + Vu). (3.60)
Moreover,
~ o ﬂ
sup |V (t)|re@ny < max<{ —, = sup [V (t)|ze,
te[0,1] B a te[0,1]
and .
}%1_1)130 ”VHLl[O,l],Lm(R"\BR)) = 0
Now, let R be large enough so that
IV Lro,17, &\ Br)) < €0,
and define Vi (z,t) = lgm g,V (2,t), Fr(z,t) = 15,V (z,t)a. Then
Oyt = i(AT + Vi(z,0)a) + Fr(x,t),
and we can apply Lemma 3.6. It follows that

sup [|e**a(t)] g2y
te[0,1]

< N[ IO ey + €70 12em) + € Frlt) s o 22ge

M sup |V (1)) o) sup \u(t)Hm(Rn)] :
te[0,1]

<N [He @(0) ]2y + e u(1)|L2@n) + €
te[0,1]

(3.61)

Now we need to go from exponential weight to Gaussian weight. Since (3.61) hods for all
A € R", we can replace A with A,/7y. Squaring both sides and multiplying with e ~P/2 implies
that

supf VT2 G (1 )2 d
te[0,1] JR™

< N[ f VT2 4 (1 0)2d + f VT2 G (2 1) Pd

n

+ PR up ([T [0 gy sup [(8) g |-

te[0,1] te[0,1]
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Next we integrate with respect to A over R”, and by using the identity
J €2ﬁ>\~:c—\)\|2/2d>\ _ (27T)n/262'y|x|2’

we deduce that

sup [ (t) | 2y
te[0,1]

< N[He”"JFQZ(O)HLZ(Rn) + e @(1) | p2ny + €™ sup |V (ey sup Hﬂ(t)HLz(Rn)].

te[0,1] te[0,1]

Going back with the Appel transform, using the identities

o2~ B G ~
| a@(t)| 2 @ny = le@ =0T u(s) | L2@m, @) |L2@n) = |uls)]L2@n)

completes the first part of the result. In particular, we have proven that

z|? ~
sup He’” | a(t)] r2mmy
te[0,1]

le2 lz|?
< NeMoupeeon VOl [He #u(0) | 2@y + e u(1) L2 @n) + sup Hu(t)HLQ(R”)]- (3.62)
t€[0,1]

Now we need to prove the same bound for

[V = 1)V 2@ o))

Here we again need to do a parabolic regularization, similar to what we did in the proof of
Theorem 3 since we want to apply Lemma 3.5, which only holds in the case A > 0. Most of
the computations will be very similar to the proof of Theorem 3, so we will not do everything
as detailed as we did in the previous theorem. The difference is that since we do not split up
the potential as V (z,t) = Vi(z) + Va(z,t), we work with the semigroup e'® instead of €.

Since @ satisfies (3.60), @(x,t) = A g+ S(t) e t=9)2(V (s)iu(s))ds. Let e € (0,1) and define

~ 1

F.(t) = meem(f/(t)ﬂ(t)), (3.63)
U (t) = el T2, + z‘f e HNE=IX (Y (5)a(s))ds. (3.64)

The above relations, and since A generates an analytic semigroup, shows that
e (t) = e a(t). (3.65)

We want to apply Lemma 3.1, and as we did in Theorem 3, we define a new function
! (s) = e=2u(t). Then

€



Applying Lemma 3.1 with A+iB =€, T =t, F =V =0 we get that for all ¢ € [0, 1],

_ealal? -
€€+4752tue(t)“L2(Rn) < H@W‘leU(t)HLQ(R")'

Since t € [0, 1] e 1 by letting 7. = —1—, it follows that

) e+dvyelt T et+4dye?? 1+4vye?
sup [ a. (8)] L2 ny < sup @) L2 gy (3.66)
t€[0,1] te[0,1]

Similarly, we define F*(s) = ﬁeeSA(V(t)ﬂ(t)), and apply Lemma 3.1 with A +iB = € and
T=t F=V=0. Then

sup %" F (1) 2y < sup eV ()a(t)]| 2y
te[0,1] te[0,1]

< el VO loo@n) gy HGV\IIQQ(QHLQ(R”)_ (3.67)
te[0,1]

Now we apply Lemma 3.5 to @, to deduce that

vt - t)e%‘zPVﬂeHB(Rnx[o,l]) + [/t (1 = t)|x|6%|z‘2aeHL2(R”x[0,1])

< N | sup [ () 2 + sup [ oy |
t€[0,1] te[0,1]

Furthermore, (3.66), (3.67), (3.62) and the relations between @ and u imply
H’\/ t(l — t)e’yé|x|2V’lTL€HL2(RnX[071D + H’\/ t(l — t)\:c]e*'x'Q&E”Lz(Rn)

< N | sup ”e’leIQaHLQ(Rn) + eSPreio) [VOleo@n) gy, ||e”|$|2ﬂ(t)||L2(Rn)
te[0,1] te[0,1]

a2 |z
< NefVoupreton VOl [|€ #u(0)]2@ny + e o™ u(1)] 2@y + sup |U(t)|L2(R”)] . (3.68)
te[0,1]

The final result follows by letting ¢ — 0 The limit process can be rigorously justified in the
spirit of the argument we used for Theorem 3 in Appendix B.3. ]
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4 Proof of Theorem 1

In this section, we prove Theorem 1. To prove the result, we will need a Carleman estimate.
This estimate is for functions g, which are compactly supported in both space and time, so
there will be no problem with justifying that [e?g| p2gn+1) < o0.

Lemma 4.1. The inequality

\f el R e PR g

< |eplar Rt Jer|*—(1+e)R*t(1—t) 160, —iN)g| 12 (R+1)

holds when € > 0,4 > 0, R > 0 and g € C°(R™*1).

Proof. Let f = e®g, where ¢ = p|z + Rt(1 — t)e;|> — %. We consider the operator

e?(0; — iA)e~?, and want to split it into symmetric and skew-symmetric parts on the form,
e?(0y —iN)e ™ f = 0,f —Sf — Af.
We have

(0, — iN)e O f = —0idf + O f — ie®A(e ) f
= —0of +of —i(|V|* — Ap —2VH -V + A) f
=af —-S8f—Af,

where § = —i(2V¢ - V + Ag¢) + 0y and A = i(A + |V¢[?). This is exactly as in Lemma 3.4
with A =0,B =1, and v = 1, so by (3.20) we have

S +[S, Al = 020 + 4 D*¢(V¢) - Vo — 4V - (D?*¢(V) — A?¢ + —2i[2V(0,¢) - V + A(0,0)].

For ¢ = u|z + Rt(1 — t)ey|? — %, we can use almost the same computations as in

Theorem 2.3 for the free Schrodinger equation for all derivatives, and we get

(1+¢)R?
8

S + [S, Al =2uR*(1 — 2t)* — 4uR(z, + Rt(1 — 1)) + + 321° |z + Rt(1 — t)eq|?

— 8uA — 8ipR(1 — 2t)0,,.
The L?*(R") inner product will be

GSf+I[S Al frawny = JQMRQ(l — 2t)?| f|?dax — J4MR($1 + Rt(1 —1))| f[*d
- JSiuR(l — 20)0u, [ + J32u3|x + Rt(1 — t)es )| f|Pdx
+8J|Vf|2d:v+ %szm?dﬁ
=(1)+2)+3)+4)+(5)+(6).
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Observe that all the terms are equal to the computation we did in Chapter 2, except for (6).
Therefore we can do exactly as we did in (2.17) and (2.19), and get that

(1—1—6)

OSf+I[S, Alf, frrzen ||fHL2 Rn) 3

RS ey = Sl ey (4
To conclude the proof we claim that
(0.F = S5 = AflBagersny > [(@iST + (S, A, Druzgenyd (1.2
Then by (4.1) it follows that
0 = 85 = Aflgueot > S [ 1 et = S ey
and since e?(d; — iA)e ?f = 0, f — Sf — Af,

[ € (1+e)R?t(1-t) (1+e)R?t(1-t)
H plr+Rt(1—t)er |2—UE 16: t gHLZ(RM-l) < Heu\w+Rt(1—t)e1|2_ + 16: ¢ (6t —z'A)gHLQ(RnH),

The claim follows since
[00f = Sf = AfZe@nsry = [0f — AfF2@nrny + S FI72@nry — 2Re(S f, 0 f — Af)r2mnsr)
—ffSﬂ@f—Aﬂ&Mriﬁﬂ@f—Aﬂ?ﬁmﬁ
ZJ (0 Sffdxdt—Jf (0, — A)f fdxdt

- J (0S)f + Souf — ASf — Souf + SAF) fdwdt

_ J (05 + [S, A f Fdudt

- J<§t5 + [8, A]f, f>L2(]R”)dt

This concludes the proof. O
Now we are ready to prove Theorem 1.

Proof. Let u be described as in the Theorem 1. Let 4, V be defined through the Appell
transformation in Lemma 2.1, where A + iB = i. We have that

oyt = i(AG + V(x,t)a) in R™ x [0,1],

and for vy = ﬁ, v > 1, HG’Y‘J/"Q{L(O)HLQ(Rn), He,y‘l"za(].)HLZ(Rn) are both finite. Let R > 0, and let
i and € > 0 small enough satisfy
(1+e)%? Y

21—ep HMS13e 43)
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and

1—c¢ 1 1+e¢ 1
<1-——. 4.4
2 R’ 2 R (4:4)

(1+¢€)%/2

Remark. (1_6);/3 will be close to 1 if € is small enough, and since v > %, there exists p such

that (4.3) is satisfied.

We want to use Lemma 4.1, so we need to define a function g with compact support. Let
6 € C$(R™) be such that
1, |z| <1

0, |z]>2

and for M > R, Oy(x) = 0(57),

1, |z|<M
Or(x) = 4.5
w(®) {o, 2| > 2M. (4.5)
Let n1(t) € C°(R) be such that
1, t=1
1) = )
() {0, t <1,
1, t>4
m.r(t) = m(Rt) = i
0, t < 3R"
Now let ny(t) = m (1 —t), and
0 —m(ry - =1
T = 0, t=1- L.
Then we define ng(t) = m r(t)n2.r(t). It follows
1 te[s,1—%]
nr(t) = v (4.6)
{0 te0,55] Ul —55,1]
We compute the derivatives
Vou(e) = - Vo()
M\T) = M M )
1 x
AbOy = —A0(—



so that

IVOr ()| o mny <

B

|20y (2)] Lo@ny < 773

=5

7R ()] Lo 0,17) <

for some constant N.
Finally, we define g(x,t) = u(x, )0y (x)nr(t).
It follows from a direct computation that

0rg — i(Ag + Vg) = Ounlnti — i(2V0y - Vi + 4AOa) 5.
Now observe that for the first term on the right-hand side of (4.7)

5 1 1 1 1

and on this region we have, using Young’s inequality and (4.3),

plr + Rt(1 —t)er|* < pu(|z|* + 2Rt(1 — t)|x| + R**(1 —t)?)
0

<
< p(|zf + 2]z + 1)

1
< p(|x® + elz]® + -+ 1)

= pllaf 1+ ) + (1 + )

€

<Alaf? + L.
€

For the second term on the right-hand side of (4.7) we have

1
supp((2V0yr - Vu + uAOy)nr) < {(x,t) : M < |z| < 2M, te (ﬁ’ 1

so that

u(jof? + 2R|zft(1 — t) + R*(1 — )?)

<
< p(|z* + 2R|z| + R?)
R2
< p(|z]? + elz)?* + — + R?)
€

plz + Rt(1 — t)e;|?

1
< plef(1+e€) + RQ(E +1)
I
< ylx) + 7y =
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Since g has compact support in R™ x [0, 1] we apply the Carleman estimate in Lemma 4.1.

Let
(1+e)R%t(1—1t)

164
Using the lemma, the bounds for V@, Ay, and 1, together with (4.8) and (4.9) we get

o(x,t) = plr + Rt(1 — t)es|* —

RH6¢9HL2(R”X[O,1]) < NeHVHLOO(R“X[OJ])HGQSQHLZ’(R"X[OJ])
+ N€R||67‘x|2+7/efb||L2(Rnx[o,l])

1 22 2 /e 1~ -
+ NeMHG7| PR (a) + | Va)) | e @ax o)

< NeHVHLw(Rn x[0,1]) Hed)gHL?(R”x [0,1])

+ N.ReV* sup ||6’Y|$|2’L~LHL2(RTL)
te[0,1]

2 € $2
+ N M@W e (1@ + [Val) | a1t (4.10)
For R > QNEHVHLOO(R"X[OJ]):

RI€*gl12axioan) < 2N sup €7 e
te|0,1

2 € CEQ
+ 2N, MeVR/ le " (ja| + IVa|) | p2rn Xk 1)) (4.11)
From Corollary 3.2 we have that
z? )~ ~
€77 (3] + V) | 2 e g1 < (4.12)

By letting M to +o0, the last term on the right-hand side of (4.11) goes to zero, and we are
only left with

R|e®g| r2mnxjorp < 2NRe® sup [ ]| 2 gy (4.13)

te[0,1]
l—c lte _ 2R 1-c Ite 1q_ 1
InBe(l—e)2§X[27 <], we have |z] < €(1 —€)’F < R< M and te [455, 5] < [5,1 - %],

1—e 1+e
2

which implies that in B._on x [ +<1, 9 = . Moreover,

(1+¢)R%t(1—1t)

S, t) = p(Rt(1 —t) —|z])* -

164
R(1—€)? Re(l1—€¢?2\> RX1+e)(l+e)?
>’”‘( i 4 ) - 641
H 2 (1+¢)°R?
=151 -9 641
?4 (421 — ) — (14 )*) > 0, (4.14)
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where we used (4.3) in the last inequality. By using (4.14), and since sup;e 1 e L2(Rn)
is finite, it follows that

R72 2 —667 63
Rje s 0Dl g xtige ) < Bleglizopony

< 2N.ReV* sup He”'xPﬂHLz(Rn)

te[0,1]
< RN,
or equivalently, since g = 4 in B€(1_6)2§ X [%, %],
2
Re“ | o (o < BN, .. 4.15
” HL2(B€(1_6)2%X[(12 )’(142r )]) x v,€ ( )

We also have that

2
wwam<L|WWm+f&f

R |z[>

4

2
[a(t) e dw < |@(t)]3205,) + eV N2, (4.16)
R T
4

and from Lemma 1.1

1 ~
Ny 13(0)] 2y < [[@(t) | z2ny < Ny [@(0)] p2qny, for all t € [0,1], Ny = e¥Pon ImVOleen,
(4.17)
Combining the two inequalities above,
1 u Y] _ 2
N2 [a(0) 2@y < H“(t)Hiz(B%) +e RN,

Then, integrating in time from % to % and using (4.15),

1 . - P2
EWHU(O)H%Q(R") < HUH%Q(B%x[(lfe)/Q,(1+e)/2] +e /16N’3,e
%

< N

2 2
—Cny e — 1
€ Crelt® | o=V RY/ 6N%E.

so that finally, by using that (a + b)* < Cy(a* + b*), ¥V a,b, X > 0,
12(0) [ L2rny < ny,e,vefc”’éR2 + 677R2/16N’y,e7\/ — 0, as R — o0.

which shows that u = 0. By going back with the Appell transformation we can conclude the
proof.

Remark. Since u is a C([0, 1], L*(R™)) solution, we can not guarantee that the function
g = Oymgrt is regular enough. To fix the problem, let 4, = @  h,, where h is a radial

mollifier. Then g, = Oyngrt, € CF(R™ x [0, 1]).
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Claim 4.1. If
I2~ CL’Q"’
Hevl | @(0)| L2mny < 0 and He’yl | (1) 2@y < 0,

then 0
12"‘ 12"’
e, (0) | 2y < o0 and [, (1) | 2qny < 0.

Assuming the claim, we can apply the proof to w,, to deduce that u, = 0, and hence
u=0.
Proof of Claim: Let 0 > 0. By Young’s inequality
2 =z —y +yP <o —yl* + 2l — yllyl + [yI* < 1+ Oz — y* + N(O)[y[*,

so that

orhgle? f tio(w — y)h, () dy

)2 ~
|71 (0)] 2 ey = |

L2(R™)

< HJ 61%(1+5)|x—y\2a0(x — y)€%7|y|2hp(y)dy

L2 (Rn)

By Young’s inequality for convolution, it follows that

]2 ~ 2|2 N(8) 1,12
et @, (0) p2geny < € w0l 2y le 750 T iy (y) | 2 ),
(8)
where H6%|y|2hp(y)HLl(Rn) < o by the right choice of h. Since this holds for all § > 0, we
can apply the monotone convergence theorem and deduce the result for 6 = 0. By the same

argument we can deduce the same result for Heﬂx‘2ﬂp(1)H L2(Rn)- H
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5 Counterexample of a Formal Carleman Argument

In this chapter, we give an example, presented in [6], of a formal Carleman argument for
which the corresponding inequalities lead to a false statement.

Let uw be the solution of the free Schrédinger equation (2.1) R x [—1,1], and define
f = ey, for some function a(t) to be chosen later. We also define H(t) = | f(t )HL2 Rn)

From (2.12) and (2.13) in Chapter 2, we deduce that

of =Sf+Af,
where § = a'z? — 4ia(x0, + 1/2) and A = i(0? + 4a*z?). Moreover, from (2.16) we get that
", 2 . - 2 3 2 _ 2d 2 20 n 5 2a7
oS + [S, A] = a"x* — 8ixd 0, — 4id’ + 32x°a” — 8ad; = 78—8@01—%95 (a" + 32a”° — - ).

We require now that a satisfies

2a12

a’ + 32a* — =0 in[-1,1],

a
and we assume the following claim. See Appendix D for details.
Claim 5.1. If a is a solution of the second-order nonlinear ODE
{32&3 ta -2
a(0) =1, d'(0) =0,
then a(t) > 0, even, and limg_,,, Ra(R) = 0.
It follows that .
(88 +1S, ADF. Dizcey > (S F, Dy

Moreover,

(S +[S, AN, ey
s Prem

4a_<3f f>L2

a {f, Prem

a H'

:2——
a H

- 2%8t(10g H(t)).

0?log H(t) = 2

From this, we deduce that

di(a20;(log H(t))) = 0 in [-1,1],
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which yields that for -1 < s <0<7 <1,
a®(1)0s1log H(s) < a*(s)0, log H(T).

Integrating the above inequality from —1 < s < 0 and then from 0 < 7 < 1, and using that
a is an even function, we get that

H(0) < H(-1)Y2H(1)Y2, (5.1)
Define the function agr(t) = Ra(Rt). Then ag also satisfies the ODE, so by (5.1)

e w(0) ] 2y < €™ u(=1) | 2gr) P u(1)] 2.

If we let R — oo in the above inequality, the right-hand side stays finite if we assume that
u € C([—1,1], L*(R)), while the left-hand side goes to infinity, unless u = 0. This would
imply that all solutions of the free Schrodinger equation are zero, but we can find an initial
data that contradicts this fact.

So what went wrong in this example? Observe first that we did not assume anything
on the weighted norms ||67‘3”|2u(—1)||L2(R) and Heﬂ”‘Qu(l)HLz(R). If we add this assumption,
we have seen from Hardy’s uncertainty principle that u = 0. Since we did not assume this
condition to hold, we can find examples of initial data not satisfying this, which makes the
statement false. For example, if ug = e~ 1*I*, then

2
z|

e ol oy = e~ aqe,
which is finite if and only if
g > 1.
Moreover,
u(a, 1) = (dit — 1) V2T
so that

—4ilz|? |z

u(z,1) = Ce 17 17,

22
which means that He% u(r,1)||,2) can never be finite for any o > 0, and Hardy’s uncer-
tainty principle can never be applied.

The reason why this argument breaks down is that because for the specific weight function
e?®lel® the weighted L? norm [[e®®@y(t)| 12(gy is not finite for 0 < t < 1.
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6 Application to the Non-Linear Schrodinger Equation

Consider now the non-linear Schrodinger equation

o = i(Au + F(u,u)) in R x [0,1]
(6.1)
u(z,0) = up.
Suppose that u is a solution to (6.1) such that for af < 2,
lsf2 o2
e ol 2 ary and. e u(1)] p2gary (6.2
are finite. Then
o = i(Au+ V(z, t)u)
where V(z,t) = @ If V satisfies either
Jim [V 21,1, 0 @ BRy)) = 0 (6.3)
or »
sup ||6(0‘t+(1*t>5)2V(t)HLoo(Rn) < 00, (64)

te[0,1]
we can conclude by Theorem 1 that v = 0. In particular, consider the cubic NLS

O = i(Au + |u|*u) in R™ x [0,1]

and let u be a C([0, 1], H*(R")) for k € Z* k > n/2 solution (see [19] for existence of solutions
there) such that (6.2) is satisfied. Then
Juf*u

V(z,t) = —— =

[ul®.
Since k > n/2 we have by the Sobolev embedding theorem, and since H* is an algebra, that
IVIize@nsr) = lul*l2e@n g

< HU”%k(Rn\BRy
so that

]%EI;O ||VHL1([O’1]7LOO(RTL\BR N llm J fn Z Hé’ UHL2 R"\BR) = 0

R—0
la<k

by applying the dominated convergence theorem. This means that the potential V' satisfies
the condition (6.3), so that by applying Theorem 1, u = 0.

Remark. The result can also be generalized to the case where u; and uy are two solutions
of the cubic NLS. In particular, this is just a general case of the following Theorem from [6].

Theorem 2 (EKPV). Let u; and uy be (C[0, 1], H*(R™)) solutions of (0.2) with k € Z*, k >
n/2, F:C*— C, FeC*and F(0) = 3,F(0) = 05F(0) = 0. If there are positive constants

o2 o2
a and § with af < 2 such that |le 5 (uy(0) — u2(0))] z2®n), and He%(ul(l) — u2(1))|| L2 mny

are finite. Then u; = wu,.
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A Parabolic Regularization

A.1 A Classical Energy Estimate

One of the main steps in the proof was to do a parabolic regularization. In this section, we
go into more detail on the parabolic regularization to the Schrédinger equation and prove
some useful estimates.

We consider u to be the solution to the problem

{atu = (A+iB)(Au+ V(z,t)u + F(z,1)) (A.1)

u(z,0) = ug

where A > 0,B € R. Observe that if ug € L*(R"), then by the semigroup theory,(see
Appendix C) there exists a solution u € C([0, 1], L*(R")). However, we have more regularity
on the solution.

Lemma A.1. Let u satisfy the equation

{ﬁtu — (A+iB)(Au+V(z,t)u+ F(z,t)) inR" x [0,1]

u(z,0) = ug

where A > 0, B € R. Then for all ¢ € [0,1], My = 2supc 1 [|AReV — BImV | 1= gn) and
Map = VA% + B? we have

t
Ju(t) 72 gny + QAL [V 22 gnyds < €MV FEVMAB |ug| pogny + Mape™ M2 | F 22 60 0.0
In particular, if ug € L*(R"), F € L?*(R™ x [0,1]) and V is bounded then
we C([0,1], L*(R™)) n L*([0, 1], H'(R")).

Proof. Formally,

8tHuH%2(Rn) = 2R€J 8tuﬁdx

Rn

= 2Re(A +iB) (J

= —QARGJ \Vul*dz + 2Re(A + iB) f V(x,t)|u]® + F(z,t)udx

At + V(z,t)|ul® + F(x, t)udx)

n

n

< —2AJ |Vul?dx + 2 sup | AReV — BImVHLoo(Rn)HuH%Q(Rn)
n) te[0,1]

+ 24/ A? + BQHFHL2(R7L)HuHLZ(Rn).
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By Young’s inequality, it follows that
Orl|ull 72 @ny < —QAJR | Vuldz + (My + Mag)|ulZ2@ny + Mag| F|72gn)-
Integrating from 0 to ¢, we get that
t t
il ey < Oz~ 2 | [Flaoyds + Mas | [l
0 0
t
+ (My + Map) f 22 gy .
0
Applying Gronwall’s lemma (1.1) with
t t
0(0) = |u0) ey ~ 24 | IVulEagunds + Mas [ 1P [agen s,
0 0
and ¢ (t) = My + Myp, we deduce that
t
HUH%Q(Rn) < o(t) + (My + MAB)J P(s)eMv—Mag(t=s) g
0
Since
t
(Mv + MAB)J ¢(3)6(Mv+MAB)(t—S)dS
0
t t S
= (MV + MAB) (J HU(O)||%2(Rn)€(MV+MAB)(t_S)dS + f MABJ HFH%Q(Rn)dTe(MV+MAB)(t_S)dS
0 0 0
t S
— ZAJ J HVUHLz(Rn)dTe(MVJrMAB)(t’S)ds)
o Jo
t
<[ F(0) 72y (€M FMaB — 1) 4 MABJ0 | F|[72 ey (M HMan)t — )
t
- QAL HVuH%z(Rn)dT(e(M‘/JrMAB)t - 1),
we deduce that

t
ullZ2 gy + 2AJ@ IVl Zoggny < €45 [0(0) | Zagny + Mape™ 45 | Fl L@ po)-

This proves the result formally for ug € L*(R™) and rigorously for ug € H*(R"), s > n/2 + 2,
by the Sobolev Embedding Theorem. If ug € L*(R"), there exists a sequence {uf} € H*(R")
such that

uf — ug in L*(R™)
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and by the formal argument, u* € L*([0, 1], L*(R"™)) n L?([0, 1], H*(R")) and
[ e oy.c2eey) + |2 gy < o0
Then by the Banach-Alaoglu Theorem 3 a subsequence {u*’} of {u*} and @ such that
uM — @ weak * in L*([0, 1], L*(R™))

and
u — @ in L*([0, 1], H*(R™)).

On the other hand, we have by the semigroup theory that u € C([0, 1], L*(R")), and that,
see in particular the argument we used for convergence in Lemma 1.1,

uF — uin O([O, 1], L2(Rn))u

and therefore also weakly * in L*([0, 1], L*(R™)). By uniqueness of the weak * limit, & = u,
and hence u € C([0, 1], L*(R")) n L*([0, 1], H*(R"™)). O

Remark. Now it makes sense to consider solutions u of (A.1) to be in C([0, 1], L*(R™)) n
L3([0,1], H(R™)), which we in particular do in Lemma 3.1, when ug € L*(R").

A.2 Proof of Lemma 3.2

Proof. We proceed exactly as in Lemma 3.1 to deduce that

Re(Sf, frzgn = — JR AV f2dx + JRH(A|V¢|2 +0,0)|f|%dx + 2BIm Vo Vffdx

- f (AReV — BIm V)| f|*dx
=1+ 2)+6)+ ).

Using Young with € = 55 instead of % we get that

2 2 2 2 2
\—‘1 V f|2d 2B \V, dz.
|(3)!<2fw\ flrdx + 1 JRHI o7 f|7dx

Moreover, we are also interested in keeping —A §,, [Vo[?|f|?, so we write

—A
Re (S, Duey <5 | [VfPde—4
R n

232 2 2
n = T 2A) VO + o | |fde
+ |AReV — BImV | o e | f 22z

) VoI f|*dx
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If we choose a(t) = and ¢(z,t) = a(t)|z|?, then

YA
8(A2+B2)yt+ A’

2o + a0 0, (A2)

so proceeding with the argument just as in Lemma 3.1, we will deduce that

Ol f172n) < 2 sup [AReVY — BImV | o m | fl72@n + 2V A% + B[ e F|| 2@n)

te[0,1]
— AV fl72@ny = 241V (0) f11 72
= My | flZ2@ny + 2Maslle? Fll 2@ fl 2@y — AV FlI22@n) — 2AIV(9) f72(n)-

fHLZ (Rn)

Integrating from 0 to ¢, and using Young’s inequality, implies
t + "
2 2 2 9 )
1122y <IFOz2@ey = Af IV flz2@nyds — QAJ IVOfIL2@nyds + MABJ “€¢F|‘L2(R”)d8
0 0 0
t
(M + M) [ 15
Applying Gronwall’s lemma (1.1), we get
t
22y < (1) + j B8 (My + Mo )eMv+Mas)e) g
0
where
t t .
Y(t) = —-A J IV £l 2 gy ds — zAf IV(0) fl72@nyds + 1f(0)] 22y + Mas f € F |2 gnds.
0 0 0
Moreover, we have that
t
(My + MAB)J w(s)e(MwMAB)(tfs)dS
0
t
= (M + 2 [ 1O e 4051
0
t s t s
+ J{; MABJ;] He(i’FH%Q(Rn)dTe(Mv+MAB)(t—s)dS _ AJ[; J; HvfHL2(Rn)dT€(MV+MAB)(t_S)dS
t s
- QAJ f HV<Z5fHL2(Rn)dTe(MV+MAB)(t’S)ds)
0 Jo
t
< [ FO)Zaqgny (e 1) + MABf & F 2 gedr (et M)t — 1)
0

t
- AJ IV f Ly (e M) — 1) — QAJ [V fl72gnydr (eMVHHMan) — 1),
0 0
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Thus,
t t
HfH%Q(R") < e(Mv-‘rMAB)t( — AJ HVf||L2(Rn)dS — ZAAJv HVQSfHLQ(Rn)dS + Hf(O)HLQ(R”)
0 0
t
+ MAB J Hed)FHLz(Rn)d8> y
0

which implies

HfH%Q(R") + AHVfH%%Rnx[o,t]) + 2A||V¢f||%2(Rnx[O7t]) < ||f(0)HL2(]Rn)e(MV+MAB)

+ MABe(Mv+MAB) H€¢FHL2(R"X[O,t])>

Ale|?
when f(z,t) = 68<A21B2)7t+Au(x,t), My = supsepoq) [AReV™ — BImV | oy and Map =
v/ A% + B2. The formal argument can be made rigorous by the same argument as in Lemma
3.1. O
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B Justification of Computations

B.1 Lemma 3.4
We will now prove the argument in Lemma 3.4 rigorously. Let p € (0,1),a € (0,1/2) we

define a new function
|z?, lz] <1
¢a(x) = {2|z|2_aa

e l2l=1,

and let @, , = ¢,*0,, where § € CF(R") is a radial mollifier. Then we define f, , = €7?=ru. We
will replace f with f, ,, so we need to compute the derivatives and 0;Sqpfap + [Sa,ps Aa,p) fap-
Observe that at infinity ¢, , does not grow faster then |z|>~*, so we can use Lemma 3.1 to
justify that |e"®*ru(t)||z2rn) Will be finite for all time 0 < ¢ < 1. We see that ¢, is C*'(R"),
but not C*(R™). However, taking the second derivative still makes sense pointwise but is not
continuous. Indeed, have that

Vo, = {Qx, lz] <1

2rlz|™ |zl =1

Ad, = {271, lz] <1

2(n —a)lx|™® |z| =1

A¢, is not continuous for |x| = 1, and we compute J;A¢, in the distributional sense. We
have that

0jA¢.(z) = —2a(n — a)zj|z| " 1iys1 — 2azjdoy, (B.1)

where do; is the surface measure on 0B;. Moreover, ¢, is a convex function. Indeed, since
¢4 1s a radial function, and
, 2r, r<1
Pq =

ori=e r>1

o = 2, r<1
¢ 21 —a)yr—, r=1
we see that ¢, is convex as a radial function. We claim that this implies that the Hessian-

matrix D?¢, is positive definite. We do the computation for n = 2, but the general case is
similar. For |z| < 1 the calculation is trivial, so we only consider the case |z| = 1.

2 U xi xl? / 1 x:}, _xl?sm
D = T r oo r =D D B.2
¢a ¢a T1T2 a3 T ¢a _xTiz2 1 a3 1+ Ly ( )

72 r2 r3 r r3

For a vector (h, k) € R? we compute (h, k)Dy(h, k)T and (h, k)D?(h, k)T.

v nih | 1ok

)%, (B.3)

2
1L2 x ,
_ hk+r—§k2) = ¢(

r a

2
(hy k) Dy (hy k)T = 9li(*Lh? + 2
.

r r
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(h, k) Do, KT = P2 (1 — "’3—%)h2 20214 (1 —%)kQ %% (h2 + k2 — (T h+ ffk;f)

Adding (B.3) and (B.4) we deduce that

2 2
o <20 (2 s (s (222 22 )

h xok”
= —2ar™* (i + xi) +2r7%(h?* + k?)

r T

—dar~ <($1h)2 + (M)2> -2 (B 4+ K

7”2 T2
—4ar~(h* + k*) 4+ 2r~*(h* + k?)
=21 —2a)(R* +k*) =0

for a < %, and we deduce that ¢, is convex. However, since we want to work with ¢, ,,
we want to show that taking the convolution does not change this property. We claim that

D?*(¢, #0,) = D*¢, = 0,. Indeed, for n=2, we have that

[ P00, g O *Gp]

x2 122
DQ((b(z * ep) = 6a¢>1a 8 a(’) ¢)a " 0

* ——
(33:211 P ox 2

2
TR s T2l )i
| 68:52(%1 ( ) (t - S) %%a (5)0p<t — S)dS
P¢a P00 (¢
= fgp(t —5) [ 35¢( *) 6«121(;2(( ;] ds
o0xax1(s) oz S

= JGp(t — 5)D?*¢(s)ds
= ep * D2¢a

Since 6, = 0, it follows that D?*(¢,,) = 0. Now we need to compute ¢;S,,, + [Sa p, Aa,] for
®ap- Recall that

atSa,p + [Samv Aa,p]
= Vatnga,p + 7<A2 + BQ)[472D2¢0L,9(V¢&,0) ’ vQba,p — 4V (DQQba,p(v)) - A2¢a,p]
+4AY [V, - V(0itap)] — 2iB[2V (0i0a,) - V + A(Ora)]-

Since the weight does not depend on t, we can reduce it to

atSa,p + [Sa,pa Aa,p] = 7(142 + Bz)[4’72D2¢a,p(v¢a,p) : vgba,p — 4V - <D2¢a,p<v)) - A2¢0«,P]'
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From (B.1) we deduce that

Moo, = Y 0A¢, 00,

j=1

Z a(n —a)xjlz|™® ]l|m|>1 * 0;0, — 2ax;doy * 0;0,,

and by using Young’s inequality for convolutions

n

||A2¢a7pHLoo(Rn) Z n —Qa ‘ZL‘]|$| a= 21\m|>1 * 6 9 HLoo (R") + QCLHZE]CZUl * 6 9 HLoo (R™)

Z a(n — a)||z] " Ligiz1 |1 we) 056, Lo ®n) + 2a]xjdoy * 0,0, oo gn).-

The first part will be bounded by C(n,p)a. We want to find a bound for the second part.
)

Let 9 be a test function and let 6(x) = §(—x). Then
(xydoy * 0;0,, ) = (do, 06,  (x;1))

= [ 5j§p* (xj)do(z)

JaB1

= ;31 (J ) 0;0,(x — y)ij(y)dy) do ()

= [ vt ([ wosta = yinta) ) ay

(&

J

= (6,4

so that z;doy « 0,0, = © = SaBl y;0;0,(x — y)do(z) as a distribution. Moreover,

o) = - j (g = )iyl = y)do(a) + j 0y = y)dola),

and

[©]0 @y < 0B ] (Hyjajép(y)HmRn) + ||@j5p\|m(w))
< C(n, p).

Combining the two parts we get the bound
‘|A2¢a,pHLOO(Rn) < C(n,p)a.
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The above inequality, and the fact that D?¢, , = 0 will imply that

{0Sap + [Saps Aap)) faps fap) =N1{D*Pa,,V bap - Vapfarps fap)
— NV - (D*6apV fap)s farp
— N3(A%Pap fapr fap)
- N1<V¢aT,pD2¢a,pv¢apfa,pv Jap) + N2<D2¢a,pvfa,p> V fap)
— Ns(A*@apfapr fap)- (B.6)

The first term of (B.6) is non-negative since ¢, , is convex. For the second term, we have

<D2¢a,pvfa,p7 Vfa,p>L2(]R") = D2¢a,pvfa,p : vfa,p

R”

_ JR A

which also is non-negative since ¢,, p is a convex function. For the last term of (B.6) we use
(B.5) to obtain that

<A2¢a,pfa,pa fa7p>L2(R") < C(n, p)a<fa,pa fa,p>L2(R")-

Thus we are left with
atSa,,o + [Sa,mAa,p] = _C(na p)a = _M0<aa p)a (B7)

where My(a,p) — 0 as a — 0. Moreover we have that 0,f,, = Supfap + Aapfap + (A +
iB)(V fo, + €% F), so that

|atfap - Sa,pfa,p - Aa,pfa,p| <V A2 + BQ(M1|fa7p| + 67¢a,pF). (BS)
Moreover,
Pap(T) < mz * 0,

< f & — y[26,(y)dy.

Since for all § > 0, |z — y| < (1 + 0)|z|* + C(d)|y|?, it follows that
| o= sPowy < @+ o)l |
R" R

< (1+6)f + p20<5>f y0(y)dy

n

< (14 9)|z|* + p*C(5,n).

6,(y)dy + f C() 420, (y)dy

Rn

n

By letting 6 — 0, it follows that
Gap < |2|* + p*C(n). (B.9)
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Then we define

Ms(a, p) = sup
2{: /) ref01]  |ulze@n)

We observe that e”QC(")Mg — M5 when p — 0. Now we can use Lemma 3.3 to see that the
 is logarithmically convex in [0,1]and that

function H, , =

H,,(t) < eN(MO(avﬂ)+M1+M2(a7p)+M12+M2(a,p)2)Hap

(0)"" Ha (L)'

so that

N(C(”vf’)aJer+p20(")M2+M12+M2(a,P)2)He“@a,pu( )HL2 R H67¢apu( )||L2(Rn

(B.10)
Finally, we obtain the result, by first letting a — 0, then p — 0. In particular, since ¢, is
a monotone increasing function, and converges to |z|? pointwise as a — 0, we can use the
Monotone convergence theorem to justify that

le e u(t)| Lz gen < e

N

GN(M1+M2(P)+M12+M2(P)2)He"f|$|2*apu( 0)

x|?%
H o (1) 7o @y (B11)

2
e 0 u(t) |72 e 75

Now we claim that || - |* = 0,(z) — |z]|?| < C1(n)p? + Ca(n)plx|. Indeed,
P <) ~ JaPl < |
Rn
< | el ? = kPt )
= |l + 20lallylot)in

=0 | POy + 20la] [ luPotw)dy
R™ R™
< Ci(n)p? + Co(n)plz].

y|* — |z?(6,(y)dy

Then, by also using (B.9), we deduce that
e—Cl(n)02||6—C2(N)ﬂ|z\elelzuH%Q(Rn)
< e+ ()| 72 )

N(M1+M2(p)+M12+M2(p)2)He'ymz*@ u(0 )Hi(lRw; e y|z|2%6, u(1)

2 2 )2 z|? 21 t z|?
N(Mi+Mz(p)+Mi+Ms(p)?) ,C(n)p He”' \ u(0) |2 ( n)p? Hev\ | u(l )HL2 @)

|12 &y

N

e

N

e

The final result now follows by letting p — 0 and using the Monotone Convergence Theorem
on the left-hand side. O
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B.2 Lemma 3.5
We recall that for a € (0,3) and pe (0,1)

2

and ¢, , = ¢, *0,, where 6 is radial mollifier. We define f, , = ¢?**ru. By Lemma 3.2 we can
justify that both | fo,|r2@ny and ||V fo | z2(mn < [0,17) Will be finite for all ¢ € [0, 1]. We proceed
as for the formal computation and deduce that

1
2 f H1 = )OS Fap + [Sups Aap) o fondrzn

0
1

< H(l) + H(O) + QJ (1 - 2t>R6<atfa,p - Sa,pfa,p - Aa,pfa,pa fa,p>L2(R")dt
0

1
+ f t(l - t)Hatfa,p - Aa,pfa,p - Sa,pfa,p‘|%2(Rn)dt.
0

We first want to find a lower bound for {0;S fa,, + [Sa.p: Aapl faps fap)r2@n). From (B.6),

<6t8fa,p + [Sa,pa Aa,p] fa,pa fa,p>L2 (R™)
> N <<V¢Z’pD2¢a,pv¢apfa7pa fa,p>L2 (R™) + <D2¢a,pvfa,p7 vfa,p>L2(R”) (B12)

- <A2¢a,pfa,pa fa,p>L2(R")> . (B13)
For the second term of (B.12), we have that

<D2¢a,pvfa,p7 vfa,p>L2(R")
= <<D2¢a - 21) * epvfmpv Vfa7p>L2(R") + <(2[ * ep)vfa,pa Vfa,p>L2(R”)
= <(D2¢a - 2[) * epvfcwn Vfa,p>L2(]Rn) + QHVfa,p”%z(Rn)-

Moreover, by using the expressions for the derivatives of ¢, and (B.2),

2

2 " w% gclg? / i % _1'1-§2
D?¢, — 21 = (¢! — 2) O B I (¢, —2r) "o s
2 3 3

I3 1_
r2 r2 r

= 1||I‘21(2(1 - a’)’x|7a - 2)D1 + ]1|x\>1(2’x|7a - 2)|£|D2 = C’l(a,:c).

Observe that

Dy

I
| —
8
= ~z|£~2
[N/ SV )
&)

‘a
|H~z —
SISENES)

v}

|
N
| —

<



and
1_ % — g2 0o =1
— r r T < 2
rDy=r _mw 1 _zm | (1o
3 r 2

so that D; and r D, are bounded matrices, and C(a, z) — 0 pointwise when a — 0. It follows
that

<D2¢a,pvfa,pa vfa,p>L2(R”) = <Cl (aa l’) * ‘gpvfa,pu vfa,p>L2(R”) + 2HVfa,pHL2(R")'

For the first term of (B.12) we do similar and write

<V¢Z,pD2¢a,pv¢a,pfa,p7 fa,p>L2(R")
= (V4 ,(D*¢a = 21) * 0,V Gupfaps fappr2@n) + 21V bapf 12y
= <V¢Z,p(01 (a7 ZE) * gﬁ)vd)a,pfa,p? fa,p>L2(R") + 2Hv¢a,pfa,p||%2(mn);

so that

(O¢S fap + [Sarps Aapl farps fap)r2@n)

= <C1(CL, 37) * epvfa,pa Vfa,p>L2(lR”) + 2vaa7PH%2(R”)
+ (Vo ) (Cr(a,2) * 0,)V Bap fops fap)r2@n) + 2|V bapfapl T2
— C(n, p)a| fa | 2@y

Furthermore, since

Vfup = €7 (Vo ,u + Vu),

n

J |V fap|*d :f 220 (|V apl*Jul® + |Vul?)dx +J 00 (Vg pu - Vit)dz
R’I’L n

+ f e?%er (Vu - Vg i) dz.
Integrating by parts shows that

f 2N By pu - Vdr = — J

_J 2V P00 |uf2d,

e2¢a,pv¢a7p - Vuudx — f 62¢a,PV . (V¢a,p)|u|2dﬂ?

R”

n

so that

JR |vf(lvﬂ|2 + |V¢a,p|2|fa,p|2dl’ = J

Rn

rofuds — [ 1PV (G (B1
Rn
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In addition, integration by parts, Cauchy-Schwarz and Young’s inequalities again show that

f\aﬁV«V%mm<2frvmmnAW@ﬂm
Rn Rn

<J|Vﬁﬂ%x+f o |2V a2, (B.15)
R™ Rn

Combining (B.14) and (B.15),

2] ‘vfa,p|2 + \fa,p|2|V¢a7p]2dx > f e*Pr|Vu|*dz.
Rn

n

Thus,

1
J <at8a,p + [Sa,pa Aa,p]fa,pa fa,p>L2(R”)t(1 - t)dt
0
1
22 [ [V hual? 4 190010~ )
0 n
1
+ J <Cl (CL7 ]7) * epvfa,pv Vfa,p>L2(R") + <¢£p(01 (a, Jf) * ep)vqba,pfa,pu fa,p>L2(R")dt
0
1
~ || Ol foploi
0
1 1
> %f f t(1 — t)e*er |Vu|?dxdt + f J IV dap?| fa Pt (1 — t)dzdt
0 n 0 Jrn
1
+ J <Cl (CL, ‘7:) * Hpvfa,pv Vfa,p>L2(R”) + <¢£p(c’1 (a, SL’) * ep)V(ba,pfa,pu fa,p>L2(R”)dt
0

1
—JCWWMWWMWW-
0

Finally, we have that

t t
Jﬁu—wfeMﬂwmma+fayﬁd“&%wmv%ﬁmm
0 n 0 n

1

< H(l) + H(O) + QJ (1 - 2{;)R€<atfa,p - Samfa,p - Aa,pfa7p> fa,p>L2(R”)dt
0

1
+ f t(l - t)Hatfa,p - Aa,pfa,p - Sa,pfa,p”%Q(Rn)dt-

0

79



Using (B.8) and the same arguments as in the formal computation, we deduce that
V(L = 8)e? VulTa@n o1y + IVEL = 1)e® uV oo T2 @mn o)

<N (Sup |’€¢a’pu|’L2(Rn) + sup \ed’“vPF”Lz(Rn)>
te[0,1] te[0,1]

1
- L <Cl (CZ, :E) * epvfa,pa Vfa,,o>L2(]R”) + <¢Z,_;p(cl (aa 1’) * 0p>v¢a,pfa,pa fa,p>L2(R")dt

1
+ J C(n, p)a| foplr2@mdt. (B.16)
0

The result will follow by passing to the limit as a,p — 0. We start with the left-hand side
of (B.16). Since both ¢,, and V¢, , are monotone increasing functions when a — 0, and
converges to |z|* and 2z respectively, we can use the Monotone Convergence Theorem and
let @ — 0. Moreover, since |[z]* = 0p — |z|?| < C1(n)p* + Ca(n)p|z|, we deduce exactly

x 2 €T 2
VAT = 0Tl g ey + /T = D67 w3

on the left-hand side when we proceed by monotone convergence theorem as in the rigorous
argument in the previous lemma when letting p — 0.

We move on to the right-hand side of (B.16). Since |z[* 0, < C'(n)p? + |z|? and ¢, , is
a monotone increasing function as a — 0, we can use a similar argument as we used in the
limit process in the justification of Lemma 3.4 to see that

2 2
sup He%”’UHLQ(Rn) + sup He%’pFHLQ(Rn) — sup [ ufr2mn) + sup e Flr2@n)
te[0,1] te[0,1] te[0,1] te[0,1]

when a, p — 0. For the two next terms, observe that
<Cl ) 0 vfa,pa Vfa p>L2 R™)
f 21— a)lz| " — 2Dy + 2l — 2)[a|Dy) # 0,V o, Pde

[=1

f j 21— a)ly| " — D1 + 2l — DI Dobly(x — 4)dy|V o, P
x|=1

l\')l»—A

Since a € (

j O = 20Dy + 2~ DA x )y < N
z|=1

and thus,

(21 = a)|z|™* = 2) Dy + (2|x]~* — 2)|z|D2) * 0,|V fa,*
< NIV,

£d]
< [Ver By, )2
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Alz|?
By Lemma 3.2 |Ve4(A21252>7f+Au(x, t)|> € L*([0,1] x R™), so we can use the dominated con-
vergence theorem to see that this term goes to 0 when a — 0. A similar argument can be
used for (¢f (C1(a,x) * 0,)V bapfap fap)r2@n). Indeed,

Vér (C1(a, ) % 0,)Vbapfap: fap < NIVéapl|| fapl”
YAz A
< 8(A2+B2)yt+A t
NIV (8(/1? T Byt +A)C (e OF,

which also by Lemma 3.2 is in L%([0,1] x R"), and we can use the Dominated Convergence
Theorem.

Finally, and now rigorously justified, we can let a — 0 and then p — 0, and we deduce
our final result.

B.3 Limits in Theorem 3
We have shown that

l=|?
”6%‘w|2fbe(t)”L2(R") < 6N(M2-&-M2(6)2+M1—&-M2 e))”e 52 ( )”L2 - HG?U(DHE%R")? (Bl?)

IV = 1) Vi 2o 1yxmny + [V = )]zl ™ | 2011 xme)
|z 2
< Ne N (M2 +Ma(€)?+M1+Ma(e) (’e BTy (O)HLQ(Rn) 4 ‘elagu(l)LQ(Rn)) ,
(B.18)

and formally the result follows by letting € to 0. We want to justify it rigorously and start
with (B.17).

1). Since u.(t) — u(x,t) in L?*(R"), there exists a subsequence {e;}, e, " 0, such that
im0 te, (z,t) = u(x,t) almost everywhere.

2). By (3.50)

(e —Be)e
”6*'”2566(?5)\\%2(11@) = He[(aesﬂi:(l—s))Q+4(62+i2)(asf+ﬁe(1—s))]|x|2u ($)IZ2 ey

€ e
:J |€[(aes+ﬁe(1 s))2+4(e2+12>(a€f+ﬁ6(1 S))]| |2U€(S)’2dx,

3. Passing to the limit inside the integral we see that,

[ 1 (aek Bék)Ck :H |2 1/2
<f lim e (e Peg (=902 " 2067 52) (e s+ ey (1) E(s)|2dx)
R

n €—0

[asmsazell 25\
= ([ 1= u(s))Pdz )

2
|

|
— (@i u(t)2 (-
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Then, by Fatou’s lemma and (3.59):

|| 1/2
€ at+sa-6)2 u(t)HLz(Rn) = <J hm |e’Yek\I| (t>|2dl’>

Rn ex—0
< liminf He%’v‘m' ae@)HLZ(R”)
ex—0

< liminfe [M324+Ma(eg)?+ M1+ Ma(er) He 52 ( )

Ekﬁo

||L2(Rn le"o® u(1) |72 @ny-

Since the only part depending on € on the right hand side is My(e) and Ms(e) — My when
e — 0, we get the result

|z |=|2
|etetrs-0Z (L) | L2(rn) < eV [ME + M3+ M, + My le 52 u(0 )HL2 Rn)HeaTu(l)HtLg(Rn). (B.19)

For (B.18) we could have used a similar argument, but it was not clear how we could
justify that Vi, — Vu. If we had chosen the initial data uy € H'(R™) it would be clear
from the semigroup theory. However, since we considered u € C([0,1], L*(R")), we need a
different argument.

From (B.18) it follows that @, is a bounded sequence in the weighted space L*(([0, 1], ¢(1—
t)dt) - H'(R", e*l*Pdz)). We want to use the Banach-Alaoglu Theorem to obtain a weakly
convergent subsequence of . in this space. However, since we will take the limit when ¢ — 0,
we want to make the weight independent of €. Recall that v, = Wl(ﬁﬂe) For all 6 > 0
there exists a €5 such that for 0 < € < €5, we can make v — § < . <, so that

[Vt = )T L2 o 17 xmny < 0.

Then there exist a subsequence {7, } of {u.} such that

i, — @ in L*(([0,1],¢(1 — 1)) : H'(R™, =12 g,

and

Vi —1) (7_5)|x‘2VﬂHL2 [0,1]x R”)
llm 1nf [v/t(1 e, W22, xmm)

2 . 2
< liminf NeMN(Mi+Malen)*+Mit+Ma(er) (\eﬁzu(O)L?(R”) + le‘ﬂu(l)\’LQ(RnO
€p—

la? |z|?
— NNMP+M3+M+Ms) (6 7 u(0)| p2rny + |eazu(1)L2(Rn)) < 0.

Now, since e??|x|? / €7|z|> when § — 0, we can conclude by the Monotone Convergence
Theorem and let 6 — 0. Finally we obtain that

le2 |
IVEL = 1) Vit 2o 1y < NeNOEFMEFMTM) <H€ u(0)] 2 @ny + efﬁu(l)HLQ(Rn)) :
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Remark. The reason why we did not include

IVt = 8] L2 g0 17y

in the argument is because it will not be important for us when we apply the result in the
proof of Theorem 1. However, that

te|0,1

will be fundamental to prove the main result.
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C Semigroups of Linear Operators

This section is meant as a supplement to Theorem 3 and the theory of semigroups. We give
the most important definitions and recall the results, without proofs, we need to prove that
the operator L = (A + iB)(A + V(z)) generates a Cy semigroup for A > 0, B € R when V
is a bounded potential. Moreover, we discuss some applications to both the inhomogeneous
and the homogeneous Schrodinger equation and justify the existence of solutions for these
equations. For references, see for example [20], [4] or [22]

C.1 Operator Theory

We assume that A is a densely defined operator on a Hilbert space H, i.e. D(A) is dense in
H.

Definition C.1.
A:D(A)cH—H

is symmetric if
(A, = (¢, Abyy
for all ¢,9 € D(A). We say that A is skew-symmetric, or anti-symmetric, if

<A¢7 7vb>7'lf = _<¢7 Aw>7-[,
for all ¢,1 € D(A).

Definition C.2. Let A be a densely defined operator. We define the adjoint of A, A*:

D(A*) ={neH: 3P eH st. (A, mn = (¢, ¥)n
At =

Definition C.3. We say that A is self-adjoint if
A* = A, that means D(A) = D(A*) and Ap = A%¢
for all ¢ € D(A). We say that A is skew-adjoint if A* = —A or that A is self-adjoint.
Definition C.4. Let A: D(A) € X — X be a closed operator. The resolvent set is the set
p(A) :={zeC: (A—z2)""is injective and surjective} .

The spectrum of A is the set
%(A) = C\p(A).
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C.2 Semigroups and the Homogeneous IVP
Definition C.5. Let X be a Banach space. A one-parameter family S(¢), 0 < t < w0 of

bounded linear operators from X to X is a strongly continuous semigroup, or Cjy semigroup
if
(1) S(0) =1
(17) S(t +s) = S(t)S(s)
(1ii) S(t)p —> S(to)p ast —to ¥V ¢ € X.

Definition C.6. Let S(t) be a Cj semigroup. The infinitesimal generator of S is the operator
L:D(L)— X where

D(L) : {¢p € X : limy,_,o+ <w> ¢ exists in X}
Ld) = hmhﬂo-# <—S(h;:[d) Qb

Proposition C.1. Let L be the generator of the semigroup S(t). Let ¢ in D(L). Then

(i) S(t)¢ € D(L), ¥t =0
(i1) LS(t)p = S(t)L¢
(i73) : t — S(t)¢ is differentiable and %S(t)gb = LS(t)o.

Observe that by this proposition it makes sense to denote the semigroup S(t) = e, and
it satisfies the natural properties of the exponential. Moreover, S(t)¢ is a solution to the
initial value problem

{u’(t) —Lu=0
u(0) = ¢.

Definition C.7. A one parameter family S(t), —o0 < ¢t < o0 of bounded linear operators on
a Banach space X is Cj group if

(i) S(0) =1
(17) S(t +s) = S(t)S(s)
(1ii) S(t)p —> S(to)p ast —tg ¥V ¢ € X.
Moreover, if |S(t)¢| = |¢| V ¢ € X, we say that S(t) is a unitary group of operators.

Remark.

(1) For t = 0 a Cy group is also a Cy semigroup. We define the infinitesimal generator, L of
a group similarly as for a semigroup, but the limit as h — 0 has to be from both sides, not
only as h — 0.
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(17) Moreover, since S(t)S(—t) = S(0) = I, we have a well-defined inverse for a Cy group.
We denote S(t)~! = S(—t). It is now clear that from Proposition 1.1 that €2 is a unitary
group.

(ii7) For the heat operator e'® we do not have a group, since it is not well-defined for ¢ < 0.
More generally, this is the case for the operator e +B1*A when A > 0. Since we mainly
want to prove results for this operator, we will focus on results for semigroups, rather than
only for groups.

Theorem C.1. (Hille-Yosida Theorem) Let X be a Banach Space. Let L : D(L) ¢ X — X
be a closed, densely defined linear operator. Then L is the infinitesimal generator of a strongly
continuous semigroup S(t) satisfying |S(¢)| < MeP* if and only if

(H1) (B,0) = p(L), B=0
(H2) |ReOV)"| = [(M = L)™ < M(A— 8)™" for A > 8, forall n=1,2, ...

A consequence of this theorem is the following.

Theorem C.2. Let X be a Banach space. Let L : D(L) ¢ X — X be a closed, densely

defined operator that satisfies the conditions (H1) and (H2), then V ug € D(L) 3! u €

C1([0,0), X) n C([0,20), D(A)) such that

W(t)—Lu=0in X, Vt>0 (1)
u(0) = g

In particular, u(t) = S(t)¢ = eltuy.

Remark. From this result we can only justify the existence of a unique solution in the case
where ug € D(L). For the Schrodinger equation this is when ug € H*(R™). In this thesis we
usually work with initial data only in L?(R™), which is not enough to have the existence of a
unique solution on this form. In this case, we consider a generalized solution to the problem.
One way of formally defining the generalized solution is the following way from [20]:

Definition C.8. A continuous function u on [0, 90) is a generalized solution of (C.1) if there
are x,, € D(L) such that x, —, . ug and e*x, — u(t) uniformly on bounded intervals.

With this definition it makes sense to consider a generalized solution for all ug € X as
u = elluy. Since e is a semigroup, we will have that u € C([0, T], X). We denote u(t) = eltug

as a mild solution of (C.1) for uy € X.

We now want to apply these results to the operator L = (A+iB)(A+V (z)) = (A+iB)H,
where V(z) is a real valued, bounded potential. If we can show that L generates a Cj
semigroup, u(t) = ey, is a solution to the initial value problem

(C.2)

ou— Lu=0
u(0) = uo.
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We first consider the case V' =0, so that L = (A +iB)A, A >0, B € R. Taking the Fourier
transform of (C.2), we get that for some constant C'

{ata@, t) = C(A+iB)|¢[a(€, 1)
0(0) = 1o,

and the solution becomes u(x,t) = (e‘C(A”B)'g'Qtdo)V: eAHIBItAy Tt is now straightfor-

ward to verify that e(AT"B?A is a Cj semigroup by Definition C.5 and that L = (A 4+ iB)A
is the infinitesimal generator of the semigroup. Let us now consider the case

L= (A+iB)(A+V(x)),

where V' is a real, bounded potential. We have the following theorem on perturbations by a
bounded linear operator, see Theorem 3.1 in [20].

Theorem C.3. Let X be a Banach space and let L be the infinitesimal generator of a Cj
semigroup 7'(t) satisfying ||T'(¢)| < Me*t. If V is a bounded linear operator on X then L+ V
is the infinitesimal generator of a Cy semigroup S(t) on X satisfying |S(¢)| < Me@MIVIE,

The proof of Theorem C.3 relies on the Hille-Yosida Theorem. By this result, it follows
that L = (A+iB)(A + V) generates a Cj semigroup

S(t) _ e(A+iB)(A+V)t7

such that
[S(t)] < eVt

Indeed, since [+ )] < ]2, we have that e+ < 1, and since [V (x)d]1 <
IV |z |@ L2, it follows that ||S(¢)| < eAlVIc=t,

Remark.
(7) This result is valid for all A > 0, B € R. In particular, the operators A + V(x) and
i(A 4+ V(x)) also generates Cyy semigroups.

(77) There are other ways in which we could have proven that the operator (A + iB)H
generates a semigroup. For example, we could have deduced from Stones Theorem [20] that
since A + V(z) is indeed self-adjoint, iH generates a unitary group. However, we could not
have applied this result to (A+iB)H, since A > 0. Even though the method with perturbation
of bounded operators justifies that we have a solution to the initial value problem, it was
not clear that it justifies one of the properties we need, which is that e*1+22)H — ez HzH
for two complex numbers z; and 2o with non-negative real part. This is why we in the next
section choose to follow a different approach, which is to prove that H generates an analytic

semigroup. By verifying this, we get the property we will need for free.
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C.3 Analytic Semigroups
In this section we will follow chapter 2 in [4]. We omit proofs and details.

Definition C.9. Let X5 = {z € C : |argz| < 0}. A family of linear operators on a Banach
space X {T(2)}.ex;0(0p 1s called an analytic semigroup of angle ¢ € (0,7/2] if

(1) T(0) =1 and T(z1 + 22) = T(21)T(22) V 21, 29 € Es,
(#7) the map : z — T(z) is analytic in X,
(i11) hII(l)T(z)qS =pVope X. 2eXy, 0<d <.
If moreover |T(2)| is bounded in ¥y we call {T'(z)} a bounded analytic semigroup.

Observe that if T'(2) is an analytic semigroup of some angle 0, then if we restrict z to the
non-negative real axis, it is also a Cy semigroup.

Theorem C.4. For an operator L on a Banach space X the following are equivalent.

(i) L generates a bounded analytic semigroup {7(2)}.es,u(0; on X,

(73) L generates a bounded strongly continuous semigroup on X and there exists a constant

C
C > 0 such that|| Rz (r + is)| < ] for all » > 0 and 0 # s € R.
s

Without proof and further details one can deduce from this theorem and the Spectral
Theorem, see [4] for details, that a self-adjoint operator that is bounded from above, i.e.
that there exists w € R such that (L¢, ¢y < w|¢|?* V¢ € D(L), generates an analytic semi-
group of angle /2.

Let us again consider the operator H = A+V (x), where V(z) is a real bounded potential,
D(H) : H*(R") c L*(R").
Lemma C.1. The operator H is self-adjoint and bounded from above.

To prove the lemma we present some useful theorems. The proofs can be found in [21].

Theorem C.5. Let H be a Hilbert space. If A is symmetric, then the following are equiva-
lent.

(1) A is self-adjoint,
(i1) A is closed and ker(A* + i) = {0}
(ii) R(A + 1) = H.

Theorem C.6. (Kato-Rellich)
Let A: D(A) € H — H be self-adjoint, and B : D(B) € H — H be symmetric. Suppose
D(A) < D(B) and that there exists «, > 0 such that

| Bl < alldlla + BlAd|w, ¥ &€ D(A). (C.3)
If moreover 3y = inf{ such that (C.3) holds} < 1, then (A+B) : D(A) — H is self-adjoint.
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We now prove the lemma.

Proof. Step 1: A is self-adjoint.

An application of integration by parts shows that the Laplacian operator is symmetric. To
verify that it is self-adjoint we can show that R(A + i) = L*(R"). This follows directly since
the spectrum X(A) is real.

Step 2: H is self-adjoint.

We can now use the Kato-Rellich Theorem to see that when we perturb A with a bounded,
real potential V(x) we still get a self-adjoint operator. Since V(x) is real, it is symmetric.
Moreover,

Vo) < [V]zo@ny@]2@ny + OlAG[ L2@ny < [V zo@ny + B AB L2®ny,

for some 5 < 1. We can apply the Kato-Rellich Theorem to deduce that H = A + V(x) is
self-adjoint.

Step 3: H is bounded from above.
We observe that

(Hp, ¢)r2mny = (Ag, ¢>L2(Rn) +{V(z)9, ¢>L2(Rn)
= (~|¢*9, @L?(Rn) +{V(2)d, $)r2(mm)
< — €8] Z2@ny + IV | Lo m) | D172y
<V o @y 0172 @y,

which concludes the proof of the lemma. O

Since H is self-adjoint and bounded from above, we deduce that it generates an analytic
semigroup T'(z) = e* of angle /2. In particular this means that V z;, 2z, with non-negative
real part, we have e(1t22)H — p21H gzoll

C.4 The Inhomogeneous IVP
Consider now the problem

ou—Lu=f fortel0,T]
u(0) = uo,

where L generates a Cj semigroup e’

Theorem C.7. Let u be a solution of the initial value problem (C.4). Then u is given by
t

u(t) = eHug + f el t=9) £ (s5)ds.
0

89



Observe that if f e LY([0,T],X), up € X, then eltuy + S(t) ekt=9) f(s)ds e C([0,T], X).
Even if it is not differentiable, and is not a solution of (C.4) in the classical sense, it still makes
sense to consider a solution on this form. We say that if f € L'([0,T], X), and ug € X, then
u(t) = eMug + § e"=*) f(s)ds is a mild solution of (C.4). If we make stronger assumptions
on f and wug, we see that the mild solution is indeed a classical solution.

Theorem C.8. Let ug € D(A), f € C([0,T],X) and suppose that f € WH([0,T], X) or
f € LY([0,T],D(A)), then the mild solution is a classical solution.

To sum up everything, let us go back to the specific problem in the proof of Theorem 3.
where (A+ iB)H = (A +iB)(A + Vi(x)) generates a Cp-semigroup for A > 0, B € R. Since
ue C([0,1], L*(R")) satisfies

ow = i(Au+ (Vi(z) + Va(z,t))u) = iHu + iVa(z, t)u

with initial data ug, we have by Theorem C.7 that

u(t) = etyq + zfo - (1 ()u(s) )ds.

Then we define .
uc(t) = eIy 4 (e 4 Z)J elHNEIH P (6)ds.
0

This will be a mild solution to the problem

{&ue = (e +i)(Hu, + F.(1))
ue(0) = .

Since ug € L*(R™) and

|Fell o), L2y < SEIP] GEM”LOO(R”)\|V2(t)\|LO°(Rn)Hu(t)HLQ(R") < 0,
te[0,1

u(t) € C([0,1], L*(R™)). However, since uy ¢ H?*(R") = D(H) we will not get any more
regularity of u, from Theorem C.8. On the other hand, since

Opue = (€ + 1) (Aue + Vi(x)ue + Fe(z,t))

we can use Lemma A.1 to obtain more regularity. Indeed, we have u, € L*([0, 1], L*(R") n
L2([0, 1], H' ("))
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D Problem with an ODE

Consider the initial value problem

(D.1)

a"(t) + 32a® — 290 — g
a(0) =1, a/(0)=0.

This is a nonlinear, autonomous second-order ode, which appears naturally in the Carleman
estimate in Section 5. We want to prove the following properties for a solution of (D.1).

Lemma D.1. Let a be a solution of the IVP (D.1). Then a(t) is positive, even and

Proof. Suppose that a is a solution, and define a(t) = a(—t). Then

A& () 4 32a(—ty? - 2ECCDE

~I 32~3_
a + 32a z a(—1)

so that a also is a solution.

Observe that the function F(a,a’) = —32a® + # is C! away from 0, so that by the Cauchy-
Lipschitz theorem, we can prove that there exist a local solution a such that a(0) = 1. Since
a(0) = a(0), we must have a(t) = a(—t), so that a is even.

Now we want to prove existence of a global solution, for £ € R, and that this solution is
positive. Let

T* = sup{T > 0: there exist a solution a on [0,T] and a(t) € (0,1] for all 0 < ¢t < T}.

T* is well defined because of the local existence as explained above, and the fact that
a’(0) = 0 and @”(0) < 0. Assume by contradiction that T* < co. It means that either
(1) limyp+a(t) = 0 or (i) lim,r+a(t) > 1. We will show that neither of these cases can
be true.

Define the function
a'(t)

10 = Gatny

It follows that f'(t) = —8a. If a(t) € (0,1], then f'(t) < 0, so f is decreasing, and since
f(0) =0, f(t) <0, which implies that also a/(t) < 0, and a(t) is decreasing. This holds for
all t € [0,7*), so that lim; 7+ a(t) < 1, and (i7) cannot be true.

Suppose now that lim, 7= a(t) = 0. Observe that

L —8a(s)ds = fo f'(s)ds = f(t) = f(0) = f(t).
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Since a(t) — 0 when t — T*,
t
—J 8a(s)ds —> —c when t — T,

for 0 < ¢ < co. Thus,

(ﬁ))l e[~c,0], Vie[o,T*)

It follows that

or equivalently that

1
<alt)< 7. Vte[0.T"),

1
A< —— <1+4dct — <
a( 1+ 4ct

t)
which contradicts that lim;_, 7+ a(t) = 0.

Thus, T" has to be infinite, and we have a global, even solution a(t), such that a(t) € (0, 1]
for all t € R.

Next we show that lim; ., a(t) = 0. We already know that a is decreasing and positive,
so we assume by contradiction that lim;_, a(t) = ¢; > 0. It then follows that

f'(t) = —8a < —8c,
for all t > 0, and integrating this inequality shows that
f(t) < —SClt.

Integrating one more time, we deduce that

1 1
S 1) < —ae2
4( alt) " )< ‘“
Then
1
< ——
a(t) 16,82 + 1

which shows that lim; . a(t) < lim;_ m = 0, which contradicts the hypothesis.

Now we are only left to prove that lim, o ta(t) = 0, or that a(t) = o(3). We did not see
how to complete the proof, so instead we have included numerical plots of a(t) and ta(t),
which shows that the claimed properties are likely to hold. See Figures 1-3, where we have
coded in Python.
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Figure 1: A numerical plot of a(t) and ta(t). We see that the properties we proved for a(t)
hold, and it is also likely from the plot that ta(t) stays finite.
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Figure 2: We can see that a(t) is an even function and that the properties we claim for ta(t)

are also likely to hold when t — —oo0.

Remark. (i) Observe that in both Figure 1 and Figure 2 we have only plotted the solutions

93



for t < 10. If we plot it over a larger time interval, it is hard to see the behavior of the
solution, and we would only see a straight, horizontal line close to 0.

(77) Even though it is likely from Figure 1 that ta(t) stays finite when ¢t — o0, it is not obvious

that it goes to 0. Therefore, we have also included a plot of ta(t) compared to ﬁ, since we
know that lim;_, ﬁ = 0.
1.0
— alt)
ta(t)
— 1In(t)
0.8
0.6
0.4
0.2 —!
0-0 T T T T
0 20000 40000 60000 80000 100000
Figure 3: Numerical plot ofta(t), a(t) and .
O
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