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Abstract

The Hardy Uncertainty Principle states that if both a function f and its Fourier transform
f̂ decay faster than the Gaussian function with a specific weight, then f ” 0. This result
can be reformulated for solutions of the free Schrödinger equation, which implies a unique
continuation result for this equation. In a series of work [5, 6, 7, 8] Escauriaza, Kenig, Ponce
and Vega extended this result to the Schrödinger equation with potential and to the nonlinear
Schrödinger equation, by the use of Carleman estimates. More precisely, the authors proved
that if u is a solution to the Schrödinger equation with potential, which at two times has
Gaussian decay, and given the right conditions on the potential, then u ” 0.

The formal arguments of the proof, relying on Carleman estimates, are based on calculus
and convexity arguments. However, these computations are not straightforward to justify
rigorously. In particular, we need to justify that }eϕuptq}L2pRnq is finite for all time 0 ď t ď 1,
for a suitable weight function ϕ “ ϕpx, tq. This is not always true, even though u is in L2pRnq

for all 0 ď t ď 1, and }eϕup0q}L2pRnq and }eϕup1q}L2pRnq are finite. In this thesis, we will study
the proof of the main result in [6], which provides a rigorous strategy to justify the use of
the Carleman estimates.
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Introduction

The Schrödinger equation

In the early 1900s, it was discovered by experiments that electrons act as waves. The
Schrödinger equation was developed by the Austrian physicist Erwin Schrödinger in 1926
to describe the time evolution of the wave function u “ upx, tq of the electrons and other
particles. The equation is given by

iℏBtupx, tq “ ´
ℏ2

2m
∆upx, tq ` V px, tqupx, tq,

where ∆ “
řn
j“1

B2

Bxi2
is the Laplacian operator and V px, tq is a physical potential which

depends on the particle, like a magnetic field, or gravitational field, ℏ denotes the Planck
constant and m the mass of the particle. In particular, |upx, tq|2 describes a probability den-
sity function related to the position x at time t. For more details see for example [13].

If we renormalize the equation we get

Btu “ ip∆u ` V px, tquq. (0.1)

In the case where V px, tq “ 0, the equation becomes

Btu “ i∆u,

which is known as the free Schrödinger equation. This is the case of a free particle, where
the potential energy does not vary.

The equation

Btu “ ip∆u ` F pu, ūqq, (0.2)

is called the nonlinear Schrödinger equation (NLS). This equation has applications in several
areas of physics, such as fiber optics [1], fluid dynamics [17], and quantum field theory [16].
In the case F pu, ūq “ |u|2u the equation is called the cubic nonlinear Schrödinger equation.

Uncertainty Principles

A well-known principle in quantum physics is the Heisenberg uncertainty principle. It states
that it is not possible to measure both the position and momentum of a particle simultane-
ously. It was established by W. Heisenberg in 1927. A short time after E. H. Kennard and
H. Weyl gave a mathematical formulation of the principle (see for example [10]). It states
that for f P L2pRnq, and any x0, ξ0 P Rn,

ˆ
ż

Rn

|px ´ x0qfpxq|
2dx

˙ˆ
ż

Rn

|pξ ´ ξ0qf̂pξq|
2dξ

˙

ě
n

4
}f}

4
L2pRnq.
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Since {e´a|x|2 “
`

π
a

˘n{2
e´π2

a
|ξ|2 the equality holds only in the case where f is a specific

multiple of the Gaussian function. Uncertainty principles in general tell us that a function
f and its Fourier transform f̂ cannot both be sharply localized. There are other types of
uncertainty principles where the Gaussian function also plays an important role. In 1933 the
English mathematician G. H. Hardy formulated precisely in [14] that both the function f and
its Fourier transform, f̂ , cannot decay too fast. In fact, if they both decay faster than the
Gaussian with a specific weight, then f ” 0. The principle is mathematically stated as follows.

If fpxq “ Ope´|x|2{β2
q, f̂pξq “ Ope´4|ξ|2{α2

q and αβ ă 4, then f ” 0. Also, if αβ “ 4
then f is a constant multiple of e´|x|2{β2

.

Short History on Unique Continuation and Carleman Estimates

Unique continuation for solutions of partial differential equations is about which properties
the solutions have to satisfy in order to be zero in the whole domain. It arises from the study
of harmonic functions, which are functions u satisfying the equation

∆u “ 0 in Ω Ă Rn,

where Ω is an open connected subset of Rn. Suppose that u is harmonic and vanishes of
infinite order at a given point x P Ω. Since harmonic functions are real analytic, u ” 0 in
Ω. This property is called the “strong unique continuation property”. In comparison, “the
weak unique continuation property”is when u|B “ 0, where B is an open subset in Ω, implies
that u ” 0 in Ω. It is clear that the strong unique continuation implies the weak unique
continuation.

Harmonic functions are the simplest example of solutions of an elliptic PDE. A well-
known result by Hadamard in the early 1900’s, is that for any second-order elliptic PDE
with real analytic coefficients, the solution will be real analytic. This implies that every such
solution will satisfy the strong unique continuation property. However, if the coefficients are
not analytic, this method cannot be applied anymore. T. Carleman introduced in 1939 [2] a
new way of proving uniqueness results for elliptic PDEs with non-analytic coefficients. These
methods are based on weighted L2 estimates and require less regularity on the operators than
having analytic coefficients. These techniques relying on the Carleman estimates have been
very successful with several important applications to elliptic and parabolic PDEs. See for
example [15], [18] and the references therein.

Unique Continuation and Hardy’s Uncertainty Principle for the
Schrödinger Equation

Another question that has been central in the work on unique continuation is how fast a
solution can decay before it vanishes identically. Recall that Hardy’s uncertainty principle
said that if both the function f and the Fourier transform f̂ decay too fast, then f ” 0. This
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result can be reformulated for the free Schrödinger equation.

Consider now the solution u of the free Schrödinger equation, given by

upx, tq “ eit∆u0 “
ei|x|2{4t

p2itqn{2
pei|¨|

2{4tu0qppx{2tq,

so that we can relate the solution at any time t with the Fourier transform of the initial
data u0. By this relation, we can apply the Hardy uncertainty principle to the function
f “ ei|x|2{4u0 and deduce the following unique continuation result:

If u is a solution of the free Schrödinger equation, upx, 0q “ Ope´|x|2{β2
q, upx, 1q “

Ope´|x|2{α2
q and αβ ă 4, then u ” 0.

Because of the application of Hardy’s uncertainty principle to the free Schrödinger equa-
tion, it is natural to wonder whether this principle also applies to solutions of the Schrödinger
equation with a potential, and of the nonlinear Schrödinger equation. The original proof
of the Hardy Uncertainty Principle is based on complex analysis techniques such as the
Phragmén-Lindelöf Theorem. However, to be able to extend this result to the Schrödinger
equation with potential and to the nonlinear Schrödinger equation, we need a proof that does
not depend on analyticity.

In a series of works [5, 6, 7, 8] Escauriaza, Kenig, Ponce and Vega showed unique con-
tinuation results for the Schrödinger equation with potential and the nonlinear Schrödinger
equation. In particular, they proved the following in [6].

Theorem 1 (EKPV). Let u P Cpr0, 1s, L2pRnqq be a solution of the Schrödinger equation

Btu “ ip∆u ` V px, tquq

in Rn ˆ r0, 1s, where V is bounded, and either V px, tq “ V1pxq ` V2px, tq with V1 real valued
and

sup
r0,1s

}e
|x|2

pαt`βp1´tqq2 V2ptq}L8pRnq ă 8,

or

lim
RÑ8

ż 1

0

}V ptq}L8pRnzBRqdt “ 0.

Then, if there exist constants α, β ą 0 such that αβ ă 2 and }e
|x|2

β2 up0q}L2pRnq and

}e
|x|2

α2 up1q}L2pRnq are finite, then u ” 0.

Remark. This result is an extension of the Hardy Uncertainty Principle for the free
Schrödinger equation to the Schrödinger equation with potential. The condition on the
coefficients, αβ ă 2 was not sharp in [6], and a bit weaker than the one from Hardy’s uncer-
tainty principle. However, in [7] the result was improved to be as sharp as in the free case,
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with the condition αβ ď 4.

As a consequence, we can apply the theorem to the NLS and deduce the following result.

Theorem 2 (EKPV). Let u1 and u2 be pCr0, 1s, HkpRnqq solutions of (0.2) with k P Z`, k ą

n{2, F : C2 Ñ C, F P Ck and F p0q “ BuF p0q “ BūF p0q “ 0. If there are positive constants

α and β with αβ ă 2 such that }e
|x|2

β2 pu1p0q ´ u2p0qq}L2pRnq, and }e
|x|2

α2 pu1p1q ´ u2p1qq}L2pRnq

are finite. Then u1 ” u2.

The proof of Theorem 1 relies heavily on the Carleman estimates. The ideas of these
methods are simple and are based on calculus and convexity arguments. The main problem
is that these computations are only formal, and it is not so easy to justify them rigorously.

The goal of this Master thesis is to study the proof of Theorem 1 in [6] in detail. We
explain the main steps of the proof below.

Outline of the proof of Theorem 1.

Step 1: the conformal/Appell transformation. The first step of the proof is to reduce the
problem to the case where the parameters α and β are equal. This can be done with the con-

formal/Appell transformation. Instead of assuming that }e
|x|2

β2 u0}L2pRnq and }e
|x|2

α2 up1q}L2pRnq

are finite for αβ ă 2, we can assume that }eγ|x|2u0}L2pRnq and }eγ|x|2up1q}L2pRnq are finite for
some γ ą 1

2
.

Step 2: heuristic argument. Assume that u is a solution of the equation (0.1). We define
f “ eϕu for some weight function ϕ “ ϕR, to be chosen later, depending on a large parameter
R. Moreover, we let Hptq “ }fptq}2L2pRnq

. We can then show that f satisfies the equation

Btf “ pS ` Aqf,

for a symmetric operator S and a skew-symmetric operator A, both depending on the weight
function ϕ. Ideally, we would like to prove a log-convexity inequality for the function H, by
computing d2

dt2
logHptq. In particular, we want to choose ϕ such that

d2

dt2
logHptq ě ´hpR, γq,

where h is a non-negative function depending on γ and ϕR. Then, after some computations,

}up1{2q}L2pBRϵ{4q ď Hp0q
1{2Hp1q

1{2e´h̃pR,γq, where h̃pR, γq ÝÑ `8 when R Ñ 8 and γ ą
1

2
.

If we let R Ñ 8, and γ ą 1{2, the left hand side goes to }up1{2q}L2pRnq, while the right hand

side goes to 0 since Hp0q1{2 “ }eγ|x|2u0}L2pRnq and Hp1q1{2 “ }eγ|x|2up1q}L2pRnq are finite. This
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implies that up1{2q “ 0, and by the well-posedness theory for the Schrödinger equation, u ” 0.

We will begin by giving the full details for this formal argument for the case V “ 0 in the
second chapter.

However, to be able to rigorously justify this argument, we need to know that }eϕuptq}L2pRnq

is finite for all time t P r0, 1s and for a suitable weight ϕ. This is not obvious in general,
even though we know it is finite at two times 0 and 1. In [6], the authors therefore chose to
follow a different path to prove the main result. Their argument still relies on the Carleman
methods, but makes it easier to justify that }eϕuptq}L2pRnq ă 8 for all times and some spe-
cific weight functions. Most of the work is therefore dedicated to proving this result rigorously.

In particular, we will show the following result from [6].

Theorem. Let u be a solution of the Schrödinger equation with potential (0.1) such that for
some γ P R

}eγ|x|2u0}L2pRnq and }eγ|x|2up1q}L2pRnq ă 8. (0.3)

If V is a bounded potential such that V px, tq “ V1pxq ` V2px, tq , with V1 real and

sup
tPr0,1s

}eγ|x|2V2ptq}L8pRnq ă 8

then }eγ|x|2uptq}L2pRnq is logarithmically convex in r0, 1s and there is a constant Npγq such
that for all t P r0, 1s

}eγ|x|2uptq}L2pRnq ď N
´

}eγ|x|2up0q}
1´t
L2pRnq

}eγ|x|2up1q}
t
L2pRnq

¯

, (0.4)

and

}
a

tp1 ´ tqeγ|x|2∇u}L2pRnˆr0,1sq ď N
´

}eγ|x|2up0q}L1pRnq ` }eγ|x|2up1q}L2pRnq

¯

. (0.5)

In particular,
sup
tPr0,1s

}eγ|x|2u}L2pRnq ă 8

and
}
a

tp1 ´ tqeγ|x|2∇ũ}L2pRnˆr0,1sq ă 8

for all time 0 ă t ă 1, which will be fundamental in the proof of Theorem 1.

By going back with the Appell transform, the result can be generalized to the case when
α ‰ β.

Theorem 3 (EKPV). Assume that u P Cpr0, 1s, L2pRnqq satisfies

Btu “ ip∆u ` V px, tquq in Rn
ˆ r0, 1s, (0.6)
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V px, tq “ V1pxq ` V2px, tq, where V1 is real-valued, }V1}L8pRnq ď M1 and

supr0,1s }e
|x|2

pαt`p1´tqβq2 V2ptq}L8pRnq ă 8. If there exists positive numbers α, β such that

}e
|x|2

β2 up0q}L2pRnq ă 8 and }e
|x|2

α2 up1q}L2pRnq ă 8,

then }e
|x|2

pαt`p1´tqβq2 uptq}
αt`p1´tqβ

L2pRnq
is logarithmically convex in r0, 1s and there is a constant N “

Npα, βq such that

}e
|x|2

pαt`p1´tqβq2 uptq}L2pRnq ď eNpM1`M2`M2
1 `M2

2 q
}e

|x|2

β2 up0q}

βp1´tq

αt`βp1´tq

L2pRnq
}e

|x|2

α2 up1q}
αt

αt`βp1´tq

L2pRnq
(0.7)

for all t P r0, 1s and where M2 “ supr0,1s }e
|x|2

pαt`p1´tqβq2 V2ptq}L8pRnqe
2 supr0,1s }ImV2ptq}L8pRnq . More-

over,

}
a

tp1 ´ tqe
|x|2

pαt`p1´tqβq2∇u}L2pRnqˆr0,1sq

ď NeNpM1`M2`M2
1 `M2

2 q

„

}e
|x|2

β2 up0q}L2pRnq ` }e
|x|2

α2 up1q}L2pRnq

ȷ

.

(0.8)

Remark. In Theorem 1, it was given two different choices of conditions on the potential V .
The condition on the potential in Theorem 3 corresponds to the first condition in Theorem
1. In [6] the authors also proved a corresponding result to Theorem 3, but by using the other
condition on the potential. See in particular Theorem 4 in Chapter 3.

Step 3: parabolic regularization, energy estimate. The main strategy to prove Theorem 3 is
to perform a parabolic regularization on (0.1). We work on the equation

Btu “ pA ` iBqp∆u ` V px, tqu ` F px, tqq, (0.9)

and prove similar results to Theorem 3 for A ą 0.

We start by proving an energy estimate which shows that for a specific weight function
ϕpx, tq “ aptq|x|2, where aptq “

γA
A`4γpA2`B2qt

,

e´MT }e
γA|x|2

A`4γpA2`B2qT upT q}L2pRnq (0.10)

ď }eγ|x|2up0q}L2pRnq `
?
A2 ` B2}e

γA|x|2

A`4γpA2`B2qtF ptq}L1pr0,T s,L2pRnqq. (0.11)

Remark. For this result, we only need the weighted L2 norm to be finite at one time(t “ 0
here). However, the weight we propagate for t ě 0 is smaller than eγA|x|2 and decreases with
time.
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We rigorously justify this argument by showing that

}e
γA|x|2

A`4γpA2`B2qT upT q}L2pRnq ă 8.

through the use of a regularization argument with a cutoff function on the weight aptq|x|2.

Step 4: parabolic regularization, Carleman estimate. The next step is to use the energy
estimate (0.10) to prove that for a solution u of (0.9), such that (0.3) is satisfied, we have for
any time 0 ď t ď 1,

}eγ|x|2uptq}L2pRnq ď N}eγ|x|2up0q}
1´t
L2pRnq

}eγ|x|2up1q}
t
L2pRnq. (0.12)

This is a classical Carleman argument, and the main problem is to justify rigorously that
}eγ|x|2uptq}L2pRnq is finite for 0 ă t ă 1. The idea will be to slightly modify the weight |x|2 by
introducing

ϕapxq “

#

|x|2 |x| ă 1
2|x|2´a´a

2´a
|x| ě 1,

and define ϕa,ρ “ ϕa ˚ θρ, for a radial mollifier θρ, such that at infinity, eγϕa,ρu does not grow
faster than eaptq|x|2u, where aptq is the weight in the energy estimate (0.10). Then we show
that }eϕa,ρuptq}L2pRnq ă 8, and we can rigorously justify the Carleman argument for this
weight. Finally, we conclude the proof of (0.12) by letting a and ρ to 0.

We also need a similar result for eγ|x|2∇u. In particular, we show that

}
a

tp1 ´ tqeγ|x|2∇u}L2pRnˆr0,1sq ` }
a

tp1 ´ tq|x|eγ|x|2u}L2pRnˆr0,1sq

ď N rp1 ` M1q sup
r0,1s

}eγ|x|2uptq}L2pRnq ` sup
r0,1s

}eγ|x|2F }L2pRnqs. (0.13)

In [6] the authors did not include a rigorous justification for this argument. This was not
obvious to us. To be able to justify that }eγ|x|2∇u}L2pRnˆr0,1sq is finite, we needed to modify
the proof of the energy estimate, so that for the same aptq, and for all 0 ď T ď 1

}eapT q|x|2upT q}
2
L2pRnq ` }∇peaptq|x|2uq}

2
L2pRnˆr0,T sq ` }2aptq|x|eaptq|x|2u}

2
L2pRnˆr0,T sq ă 8.

Then, the rigorous justification of (0.13) follows by arguing as above in the justification of
(0.12), relying on the same arguments as those used to prove the Carleman estimate (0.12).

Step 5: proof of Theorem 3. By the previous steps, we have proven the equivalent of estimates
(0.4) and (0.5) for the regularized equation (0.9) with A ą 0. To deduce the results for A “ 0,
we can consider the solution uϵ of the equation

Btu “ pϵ ` iqp∆u ` V px, tqq,

for ϵ ą 0. The previous results hold for uϵ. By using semigroup theory, we show that this
solution converges to a solution u of the original Schrödinger equation when ϵ Ñ 0.
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Step 6: proof of Theorem 1. We start by proving a Carleman estimate for compactly sup-
ported functions in both space and time. In particular, for

ϕ “ µ|x ` Rtp1 ´ tqe1|
2

` p1 ` ϵqR2tp1 ´ tq{16µ, ϵ ą 0, µ ą 0, R ą 0 and g P C8
0 pRn`1

q,

R

c

ϵ

8µ
}eϕg}L2pRn`1q ď }eϕpBt ´ i∆qg}L2pRn`1q.

Then, we introduce the function gpx, tq “ θMpxqηRptqupx, tq, where θM and ηR are com-
pactly supported cutoff functions in space and time respectively, and satisfy g “ u in an open
ball in Rn`1. By applying the Carleman estimate, it follows that

R}eϕg}L2pRnˆr0,1sq ď NϵRe
γ{ϵ sup

tPr0,1s

}eγ|x|2u}L2pRnq

` Nϵ
1

M
eγR

2{ϵ
}eγ|x|2

p|u| ` |∇u|q}L2pRnˆr 1
2R
,1´ 1

2R
sq.

Note that the quantity }eγ|x|2p|u| ` |∇u|q}L2pRnˆr 1
2R
,1´ 1

2R
sq is finite thanks to Step 5, so by

letting M Ñ 8, the last term on the right-hand side goes to 0.

In Bϵp1´ϵq2 R
4

ˆ r1´ϵ
2
, 1`ϵ

2
s, we can bound ϕ from below, such that

ϕpx, tq ě
R2

64
p4µ2

p1 ´ ϵq6 ´ p1 ` ϵq3q ą 0,

which will imply that for some constants N1 “ N1pϵ, γ, uq and N2 “ N2pϵ, γqm

}u}L2pB
ϵp1´ϵq2 R

4
ˆr 1´ϵ

2
, 1`ϵ

2
sq ď N1e

´N2R2

.

Integrating in time, and using the fact that for all t ě 0,

N´1
}up0q}

2
L2pRnq ď }uptq}

2
L2pRnq ď N}up0q}

2
L2pRnq,

show that

}up0q}L2pRnq ď Nγ,ϵ,V e
´Cγ,ϵR2

` e´γR2{16Nγ,ϵ,V ÝÑ 0, as R Ñ 8,

so that u0 “ 0, and hence u ” 0.

Step 7: what can go wrong if we do not justify rigorously the computations. To show how
important it was to rigorously justify the computations, we exhibit an example presented in
[6] of a formal Carleman argument for the free Schrödinger equation with an explicit weight
function, which leads to a false statement.

Step 8: application to the NLS. By treating the nonlinear term F pu, ūq in (0.2) as a poten-
tial, we can show that the unique continuation result also holds for the NLS. For the sake of
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simplicity, we will show the result in the case of the cubic NLS, but the proof of the general
case is similar.

The main goal of this thesis is to understand and explain the proofs of Theorem 1 and
Theorem 3 in [6]. We have detailed all the computations and provided more details on several
steps in the proof. In particular, to justify that }eγ|x|2∇uptq}L2pRnq ă 8, we needed to slightly
change the proof in the energy estimate (see Lemma 3.2).

Structure of the Thesis

In the first chapter, we state some basic preliminary results that will be useful in the rest
of the thesis. We start Chapter 2 with a discussion of the Hardy uncertainty principle and
its application to solutions of the free Schrödinger equation. We prove this result formally
using the argument explained in Step 2. In Chapter 3, we use the parabolic regulariza-
tion, the energy- and Carleman estimates to prove Theorem 3. Chapter 4 is devoted to the
proof of Theorem 1. In Chapter 5, we give an example of what can go wrong when the
computations are not rigorously justified, while in Chapter 6 prove Theorem 2 in the case
of the cubic NLS. Finally, in the appendices, we do most of the long, technical computa-
tions. In Appendix A, we give more details on parabolic regularization, and in Appendix
B, we justify computations to prove that the weighted L2 norms are finite. Appendix C is
devoted to semigroup theory: we recall and explain several fundamental results used in the
thesis. In Appendix D we discuss solutions of an ODE appearing in the example in Chapter 5.

13



1 Preliminaries and Notation

1.1 Notation

• N or C will denote arbitrary positive constants, which can change from line to line.
Sometimes we write Nγ, Cpγ, ϵq, etc. for some parameters γ, ϵ, to specify that the
constants may depend on the specific parameters. If the constant matters, we will
define it properly.

• LppRnq, 1 ď p ă 8, denotes the usual Lebesgue space, with norm

}f}LP pRnq “

ˆ
ż

Rn

|fpxq|
pdx

˙1{p

.

• L8pRnq denotes the space of essentially bounded functions with norm

}f}L8pRnq “ inftC ą 0 : |fpxq| ă C for almost every x P Rn
u.

• HspRnq “ W s,2pRnq denotes the usual Sobolev spaces. See also Definition 1.3.

• ă f, g ąH denotes the scalar product in the respective Hilbert space H.

• We define the Fourier transform

f̂pξq “
1

p2πqn{2

ż

Rn

e´iξ¨xfpxqdx.

We now recall some basic results that will be important throughout the thesis. For more
details, see for example [9], [11] and [19].

1.2 Convergence Theorems

The Monotone Convergence Theorem. Let pfnqn be a sequence of non-negative mea-
surable functions on X such that fnpxq ď fn`1pxq for all n ě 1, x P X which converges
pointwise to a function f. Then

lim
nÑ8

ż

fndµ “

ż

fdµ.

The Dominated Convergence Theorem Let pfnqn b a sequence of measurable functions
on X and f measurable on X such that

iq fn Ñ f a.e. in X

iiq There exists a function g P L1
pXq not depending on n such that |fn| ď g a.e. in X,

for all n ě 1,

14



then

lim
nÑ8

ż

fndµ “

ż

fdµ.

Fatou’s Lemma Let pfnqn be a sequence of non-negative measurable functions on X. Then

iq

ż

lim inf fndµ ď lim inf

ż

fndµ

iiq If fn Ñ fa.e., then

ż

fdµ ď lim inf

ż

fndµ

1.3 Some Important Inequalities

Young’s Inequality with ϵ
For a, b ě 0, ϵ ą 0,

ab ă
ϵa2

2
`
b2

2ϵ

Young’s Inequality for Convolution
For f P LppRnq, g P LqpRnq and for 1

p
` 1

q
“ 1

r
` 1,

}f ˚ g}LrpRnq ď }f}LppRnq}g}LqpRnq.

Grönwall’s Lemma [12] Let y, ϕ and ψ be nonnegative, continuous functions on the line
segment ra, bs. If @ t P ra, bs

yptq ď ϕptq `

ż t

a

ψpsqypsqds,

then @ t P ra, bs

yptq ď ϕptq `

ż t

a

ϕpsqψpsqe
şt
s ψpuqduds. (1.1)

1.4 Mollifiers

Definition 1.1. Let θ P C8
0 pRnq such that 0 ď θ ď 1 and

ş

Rn θdx “ 1. For ρ ą 1 define

θρpxq “ ρ´nθp
x

ρ
q.

If
lim
ρÑ0

θρpxq “ δpxq,

where δpxq is the Dirac delta-distribution, we call θ a mollifier.

Definition 1.2. If f P L1
locpRnq we define

fρpxq :“ f ˚ θρpxq :

ż

Rn

fpyqθρpx ´ yqdy.
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Theorem 1.1.

piq fρ P C8
pRn

q,

piiq fρ Ñ f a.e. as ϵ Ñ 0,

piiiq for f P LppRn
q, 1 ď p ă 8, then lim

ρÑ0
}fρ ´ f}LppRnq “ 0,

pivq if f P CpRn
q then fρ Ñ f uniformly on compact sets.

1.5 Sobolev Spaces

Definition 1.3. For s P R we denote HspRnq “ tf P S 1pRnq : p1 ` |ξ|2qs{2f̂ P L2pRnqu, and
}f}HspRnq “ }p1 ` |ξ|2qs{2f̂}L2pRnq.

Observe that for t ă s we always have HspRnq ãÑ H tpRnq. In particular for s ě 0,
HspRnq ãÑ H0pRnq “ L2pRnq.

Theorem 1.2. If s is a positive integer, then HspRnq coincides with the space of functions
f P L2pRnq whose derivatives(in distribution sense) Bαxf belong to L2pRnq for every α P Nn

with |α| “ α1 ` α2 ` ¨ ¨ ¨ ` αn ď k. In this case, the norms }f}HspRnq and
ř

|α|ďk }Bαxf}L2pRnq

are equivalent.

Theorem 1.3. (Sobolev Embedding Theorem) If s ą n{2 ` k, then HspRnq is continuously
embedded in Ck

8pRnq, the space of functions with k derivatives vanishing at infinity. In other
words there exist a constant cs ą 0 such that }f}CkpRnq ď cs}f}HspRnq.

Theorem 1.4. If s ą n{2 then HspRnq is an algebra with respect to the product of functions,
so that if f, g P HspRnq, then fg P HspRnq, with

}fg}HspRnq ď Cpnq}f}HspRnq}g}HspRnq.

1.6 Solutions of the Schrödinger Equation

We start by recalling some basic properties for the free Schrödinger equation(for more details,
see for example [19]). Consider the initial value problem

#

Btupx, tq “ i∆upx, tq in r0, T s ˆ Rn

upx, 0q “ u0.
(1.2)

Let f be a function and f̂ its Fourier transform. Taking the Fourier transform of (1.2) the
equation becomes

#

Btûpξ, tq “ ´i|ξ|2ûpξ, tq

ûpx, 0q “ û0,
(1.3)

which is an ODE we can solve explicitly. Indeed, we get that

ûpξ, tq “ e´i|ξ|2tû0pxq.
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By taking the inverse Fourier transform we get that

upx, tq “ pe´i|ξ|2tû0pxqqq“
ei|¨|

2{4t

p4πitqn{2
˚ u0pxq :“ eit∆u0,

where tei∆tu is a unitary group in L2. (see appendix C). In particular, the following holds.

Proposition 1.1. For all t P R

piq For all t P R eit∆ : L2
pRn

q ÝÑ L2
pRn

q is an isometry, i.e. for u0 P L2
pRn

q

}eit∆u0}L2pRnq “ }u0}L2pRnq.

piiq eit∆eit
1∆

“ eipt`t
1q∆, and peit∆q

´1
“ e´it∆.

piiiq ei0∆ “ 1.

pivq If u0 P L2
pRn

q, then eit∆u0 P CpR, L2
pRn

qq.

Remark. Since eit∆ is a unitary group, we can always translate the solution from starting
at t “ 0 to any t “ t0. In particular, we can write the solution upx, tq “ eipt`t0q∆upt0q. This
means that if upt0q “ 0 for some time t0, u ” 0.

Let us now consider the Schrödinger equation with a potential

#

Btu “ ip∆u ` V px, tquq

upx, 0q “ u0.

In all of this work, we will consider the case where V is a bounded potential. In the case
V “ 0, the solution will be u “ ei∆tu0, where e

i∆t is a semigroup (see Appendix C). For the
case V px, tq “ V pxq is real, we have that ip∆ ` V pxqq generates a semigroup, and we have a
well-defined solution upx, tq “ eip∆`V pxqqtu0.

If the potential depends both on x and t, we can also justify the solution with semigroup
theory by using the Duhamel formula. All of this is explained in more detail in Appendix C.

We now present an energy estimate for solutions of the Schrödinger equation, which we
will refer to several times in the thesis.

Lemma 1.1. Suppose u P Cpr0, 1s, L2pRnqq satisfies

#

Btu “ ip∆u ` V px, tquq in Rn ˆ r0, 1s

upx, 0q “ u0,

then for N “ esupr0,1s }ImV ptq}L8pRnq ,

N´1
}up0q}L2pRnq ď }uptq}L2pRnq ď N}up0q}L2pRnq. (1.4)
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Proof. We start with a formal argument.

Bt}u}
2
L2pRnq “

ż

Rn

Btpuūqdx

“ 2Re

ż

Rn

Btupūqdx

“ 2Re i

ż

Rn

∆uūdx ` 2Re i

ż

Rn

V px, tquūdx

“ ´2Im

ż

Rn

∆uūdx ´ 2Im

ż

Rn

V px, tq|u|
2dx.

We do the two parts separately. Integration by parts formally shows that

´2Im

ż

Rn

∆uūdx “ 2Im

ż

Rn

∇u ¨ ∇ūdx “ 2Im

ż

Rn

|∇u|
2

“ 0.

For the second part,

´2Im

ż

Rn

V |u|
2dx ď 2}ImV }L8pRnq}u}

2
L2pRnq.

Hence,
Bt}uptq}

2
L2pRnq ď 2}ImV }L8pRnq}uptq}

2
L2pRnq,

and
Bt}uptq}L2pRnq ď sup

r0,1s

}ImV }L8pRnq}u}L2pRnq.

Moreover,
Btp}uptq}L2e´ supr0,1s }ImV }L8 tq ď 0

and

}uptq}L2pRnq ď }up0q}L2pRnqe
suptPr0,1s }ImV }L8pRnqt

ď }up0q}L2pRnqe
suptPr0,1s }ImV }L8pRnq

“ N}up0q}L2pRnq, (1.5)

which proves the second inequality in the lemma. Now we will use this to prove the first
inequality. Fix t P r0, 1s, then for all s P r0, ts,

#

Bsu “ ip∆u ` V uq

u|t “ uptq.

Define ũpx, τq “ upx, t ´ sq,
#

Bτ ũ “ ´ip∆ũ ` V ũq.

ũpx, 0q “ upx, tq.
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We can now apply (1.5) to ũ, since the energy method will be the same, except for a minus
sign. The first part with ∆u will still disappear, for the second term with the potential V,
the minus sign disappears in the L8-norm. Hence,

}ũpτq|L2pRnq ď N}ũp0q}L2pRnq for all s P r0, ts,

}upt ´ sq|L2pRnq ď N}uptq}L2pRnq for all s P r0, ts.

In particular, for s “ t we get

N´1
}up0q|L2pRnq ď }uptq}L2pRnq. (1.6)

Combining (1.5) and (1.6), we get

N´1
}up0q}L2pRnq ď }uptq}L2 ď N}up0q}L2pRnq. (1.7)

For u0 P HspRnq, s ą n{2`2, we can rigorously justify the argument. By a density argument
we prove it rigorously for u0 P L2pRnq. Suppose that u0 P L2pRnq. Then there is a sequence
tuk0u P HspRnq such that uk0 ÝÑ u0 in L2pRnq and uk ÝÑ u uniformly in L2pRnq for all t.
Indeed, since by the Duhamel formula

upx, tq “ ei∆tu0 ` i

ż t

0

eipt´sq∆V psqupsqds,

it follows that

}puk ´ uqptq}L2pRnq ď }ei∆tpuk0 ´ u0q}L2pRnq ` }

ż t

0

eipt´sq∆V psqpuk ´ uqpsqds}L2pRnq

ď }puk0 ´ u0q}L2pRnq `

ż t

0

}V psqpuk ´ uqpsq}L2pRnqds.

Applying Grönwall’s Lemma, Lemma 1.1, we deduce that

}puk ´ uqptq}L2pRnq ď }uk0 ´ u0}L2pRnq

ˆ

p1 `

ż t

0

}V psq}L8pRnqe
şt
0 }V puq}8

L pRnqduds

˙

ď }uk0 ´ u0}L2pRnq

ˆ

p1 `

ż 1

0

}V psq}L8pRnqe
ş1
0 }V puq}8

L pRnqduds

˙

“ N}uk0 ´ u0}L2pRnq,

which goes to 0 as k Ñ 8, and where N only depends on }V }L8pRnˆr0,1sq

From (1.7) we have that
}uk}L2pRnq ď N}uk0}L2pRnq,

and by letting k Ñ 8 the result follows.

19



.
Remark.
(i) By arguing as above, we can obtain the same result also for any τ P r0, 1s. In particular,
for all t P rτ, 1s

}uptq}L2pRnq ď N}upτq}L2pRnq.

(ii) If u0 “ 0, then u ” 0.
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2 Hardy’s Uncertainty Principle and the Schrödinger

Equation

2.1 Application to the Free Schrödinger Equation

In this section, we will discuss the Hardy uncertainty principle and its relations to the
Schrödinger equation.

Let f be a function and

f̂pξq “

´ 1

2π

¯n{2
ż

Rn

e´iξ¨xfpxqdx

its Fourier transform. The Hardy Uncertainty Principle states the following.

Theorem 2.1. [Hardy’s Uncertainty Principle] If fpxq “ Ope´|x|2{β2
q, f̂pξq “ Ope´4|ξ|2{α2

q

and αβ ă 4, then f ” 0. Also, if αβ “ 4 then f is a constant multiple of e´|x|2{β2
.

In the 1980’s Cowling and Price proved a corresponding L2 result in one dimension of the
Hardy Uncertainty Principle [3].

Theorem 2.2. If }e|x|2{β2
f}L2pRq and }e4|ξ|2{α2

f̂}L2pRq are both finite and αβ ă 4, then f ” 0.

The extension of this result to n dimensions has also been deduced using the Radon trans-
form, see [23]. As we discussed in the introduction, this result has a natural application to
the free Schrödinger equation. In particular, consider the solution, u, to the free Schrödinger
equation

#

Btu “ i∆u

upx, 0q “ u0.
(2.1)

The solution u can be written as

upx, tq “ eit∆u0pxq “ pe´i|ξ|2tû0qq“
ei|¨|

2{4t

p4πitqn{2
˚ u0pxq.

Writing out the convolution, we deduce that

upx, tq “

ż

Rn

ei|x´y|2{4t

p4πitqn{2
u0pyqdy

“
ei|x|2{4t

p4πitqn{2

ż

Rn

e´2ix¨y{4tei|y|2{4tu0pyqdy

“
ei|x|2{4t

p2itqn{2
pei|¨|

2{4tu0qppx{2tq,
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so that for any t we can write the solution in terms of the Fourier transform of the initial
data u0. In particular, for t “ 1, we have

upx, 1q “
ei|x|2{4

p2iqn{2
pei|¨|

2{4u0qppx{2q “
ei|x|2{4

p2iqn{2
f̂px{2q (2.2)

where fpxq “ pei|¨|
2{4u0qpxq. Observe that

}e
|x|2

β2 f}L2pRnq “

d

ż

Rn

|e
|x|2

β2 u0|2dx “ }e
|x|2

β2 u0}L2pRnq,

and by (2.2)

}e
4|ξ|2

α2 f̂}L2pRnq “

d

ż

Rn

|e
4|ξ|2

α2 pei|¨|2{4u0qppξq|2dξ “

d

ż

Rnq

|e
|ξ|2

α2 upξ, 1q|2dξ “ }e
|ξ|2

α2 up1q}L2pRnq.

This, combined with the n-dimensional extension of Theorem 2.2, leads to the following
result:

Theorem 2.3. Let u be a solution of the free Schrödinger equation (2.1). Suppose that
}e|x|2{β2

u0}L2pRnq and }e|x|2{α2
up1q}L2pRnq are both finite. If αβ ă 4 then u ” 0.

This result tells us that if a solution u of (2.1) at two times decays faster than the Gaus-
sian with a specific weight, then u ” 0. In particular, Hardy’s uncertainty principle implies
a unique continuation result for the free Schrödinger equation.

As we discussed in the introduction, this result was extended to the Schrödinger equation
with potential and to the NLS in [6], and the proof is based on Carleman estimates. We
state the result again.

Theorem 1 (EKPV). Let u P Cpr0, 1s, L2pRnqq be a solution of the Schrödinger equation

Btu “ ip∆u ` V px, tquq

in Rn ˆ r0, 1s, where V is bounded, and either V px, tq “ V1pxq ` V2px, tq with V1 real valued
and

sup
r0,1s

}e
|x|2

pαt`βp1´tqq2 V2ptq}L8pRnq ă 8,

or

lim
RÑ8

ż 1

0

}V ptq}L8pRnzBRqdt “ 0.

Then, if there exist constants α, β ą 0 such that αβ ă 2 and }e
|x|2

β2 up0q}L2pRnq and

}e
|x|2

α2 up1q}L2pRnq are finite, then u ” 0.
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We will start by proving this result formally, in the case where V “ 0. This result corre-
sponds to the Hardy uncertainty principle for the free Schrödinger equation and shows the
formal idea of the Carleman estimates. However, these computations are only formal, and
we will see later in the thesis that it is not straightforward to justify them rigorously.

Before we start the proof we will present and prove the conformal/Appell transform,
which will help us reduce the proof to a simpler case.

Lemma 2.1. The Conformal/Appell Transformation
Let

Bsu “ pA ` iBqp∆u ` V py, squ ` F py, sqq in Rn
ˆ r0, 1s.

If A ` iB ‰ 0, α, β ą 0, γ P R, and let

ũpx, tq “

´

?
αβ

αp1 ´ tq ` βt

¯n{2

u
´

?
αβx

αp1 ´ tq ` βt
,

βt

αp1 ´ tq ` βt

¯

e
pα´βq|x|2

4pA`iBqpαp1´tq`βtq .

Then ũ satisfies

Btũ “ pA ` iBqp∆ũ ` Ṽ px, tqũ ` F̃ px, tqq inRn
ˆ r0, 1s,

where

Ṽ px, tq “
αβ

pαp1 ´ tq ` βtq2
V
´

?
αβx

αp1 ´ tq ` βt
,

βt

αp1 ´ tq ` βt

¯

F̃ px, tq “

ˆ ?
αβ

αp1 ´ tq ` βt

˙n{2`2

F
´

?
αβx

αp1 ´ tq ` βt
,

βt

αp1 ´ tq ` βt

¯

e
pα´βq|x|2

4pA`iBqpαp1´tq`βtq

Moreover,

}eγ|x|2F̃ ptq}L2pRnq “
αβ

pαp1 ´ tq ` βtq2
}e

r
γαβ

pαs`βp1´sqq2
`

pα´βqA

4pA2`B2qpαs`βp1´sqq
s|x|2

F psq}L2pRnq, (2.3)

and

}eγ|x|2ũptq}L2pRnq “ }e
r

γαβ

pαs`βp1´sqq2
`

pα´βqA

4pA2`B2qpαs`βp1´sqq
s|x|2

upsq}L2pRnq (2.4)

for s “
βt

αp1´tq`βt
.

Proof. Suppose u satisfies

Bsu ´ pA ` iBq∆u “ pA ` iBqHpy, sqq, (2.5)

where Hpy, sq “ V py, squ`F py, sq. For y “
?
rx, s “ rt` τ , define u1px, tq “ up

?
rx, rt` τq.

Btu1 “ pA ` iBqp∆u1 ` rHp
?
rx, rt ` τqq (2.6)

For y “ x
t
and s “ 1

t
, define u2px, tq “ t´n{2upx

t
, 1
t
qe

|x|2

4pA`iBqt . We will show that u2 satisfies

Btu2 “ ´pA ` iBqp∆u2 ` t´n{2´2H
´x

t
,
1

t

¯

qe
|x|2

4pA`iBqt . (2.7)
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Using the Leibniz rule, it follows that

Btu2 “ ´
n

2
t´1u2 ` ∇yu2Bty ` ∇su2Bts ` u2

|x|2

4pA ` iBq
p
´1

t2
q

“

ˆ

´n

2
t´1

´
|x|2

4pA ` iBqt2

˙

u2 ´ ∇yu2
x

t2
´ ∇su2

1

t2
,

where by ∇yu2 and ∇su2, we actually mean t´n{2e
|x|2

4pA`iBqt∇yu2 and t´n{2e
|x|2

4pA`iBqt Bsu2 respec-
tively. Moreover,

Bxju2 “
1

t
Byju2 `

2xj
4pA ` iBqt

u2

where similarly Byju2 “ “ ” t´n{2e
|x|2

4pA`iBqt Byju.

B
2
xj
u2 “ Bxjp

1

t
Byju2q ` Bxjp

2xj
4pA ` iBqt

u2q

“
1

t2
B
2
yj
u2 ` Byju2

2xj
4pA ` iBqt2

`
2u2

4pA ` iBqt
`

2xj
4pA ` iBqt

ˆ

1

t
Byju2 `

2xj
4pA ` iBqt

u2

˙

“
1

t2
B
2
yj
u2 ` Byju2

2xj
4pA ` iBqt2

`
2u2

4pA ` iBqt
`

2xjByju2

4pA ` iBqt2
`

4x2j
p4pA ` iBqtq2

“
1

t2
B
2
yj
u2 `

xjByju2

pA ` iBqt2
`

ˆ

1

2pA ` iBqt
` `

x2j
4pA ` iBq2t2

˙

u2.

Then

∆u2 “

n
ÿ

j“1

Bxju2 “
1

t2
∆yu2 `

1

pA ` iBqt2
x ¨ ∇yu2 `

n

2

1

pA ` iBqt
u2 `

|x|2

4pA ` iBq2t2
u2,

so it follows that

Btu2 ` pA ` iBq∆u2 “ ´
1

t2
p∇su2 ´ ∆yu2q

“ ´t´2

ˆ

t´n{2e
|x|2

4pA`iBqt pBsu ´ ∆uq

˙

“ t´n{2´2Hp
x

t
,
1

t
qe

|x|2

4pA`iBqt .

Let us assume that α ą β. By the change of variables r ÞÑ
αβ
α´β

and τ ÞÑ ´
β

α´β
(2.6) implies

that ũ “ up

b

αβ
α´β

x, αβ
α´β

t ´
β

α´β
q satisfies the equation

Btũ “ pA ` iBqp∆ũ `
αβ

α ´ β
Hp

d

αβ

α ´ β
x,

αβ

α ´ β
t ´

β

α ´ β
qq.
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Furthermore, letting t ÞÑ pα ´ tq and combining (2.7) and (2.6), the function

1

pα ´ tqn{2
up

?
αβx

?
α ´ βpα ´ tq

,
αβ

pα ´ βqpα ´ tq
´

β

α ´ β
qe

|x|2

4pA`iBqpα´tq

will satisfy (2.5) but with right hand side

αβ

pα ´ βqpα ´ tqn{2`2
H

ˆ ?
αβ

?
α ´ βpα ´ tq

x,
αβ

pα ´ βqpα ´ tq
´

β

α ´ β

˙

e
|x|2

4pA`iBqpα´tq .

We let now px, tq ÞÑ p
?
α ´ βx, pα ´ βqtq. It follows that

1

pαp1 ´ tq ` βtqn{2
u

ˆ ?
αβx

pαp1 ´ tq ` βt
,

αβ

pα ´ βqpαp1 ´ tq ` βtq
´

β

α ´ β
q

˙

e
pα´βq|x|2

4pA`iBqpαp1´tq`βtq

(2.8)
satisfies (2.5) with right-hand side

αβpα ´ βq

pα ´ βqpαp1 ´ tq ` βtqn{2`2
e

pα´βq|x|2

4pA`iBqpαp1´t`βtq

ˆ H

ˆ ?
αβ

pαp1 ´ tq ` βtq
x,

αβ

pα ´ βqpαp1 ´ tq ` βtq
´

β

α ´ β

˙

. (2.9)

A simple computation shows that

αβ

pα ´ βqpαp1 ´ tq ` βtq
´

β

α ´ β
“

βt

αp1 ´ tq ` βt
,

so we can write (2.9) as

αβ

pαp1 ´ tq ` βtqn{2`2
H

ˆ ?
αβ

pαp1 ´ tq ` βtq
x,

βt

αp1 ´ tq ` βt

˙

e
pα´βq|x|2

4pA`iBqpαp1´tq`βtq .

Finally, multiplying both (2.8) and (2.9) with p
?
αβqn{2 we get that

ˆ ?
αβ

pαp1 ´ tq ` βtq

˙n{2

u

ˆ ?
αβx

pαp1 ´ tq ` βt
,

αβ

pα ´ βqpαp1 ´ tq ` βtq
´

β

α ´ β
q

˙

e
pα´βq|x|2

4pA`iBqpαp1´tq`βtq

(2.10)
satisfies (2.5) with right hand side

ˆ ?
αβ

pαp1 ´ tq ` βtq

˙n{2`2

H

ˆ ?
αβ

pαp1 ´ tq ` βtq
x,

βt

αp1 ´ tq ` βt

˙

e
pα´βq|x|2

4pA`iBqpαp1´tq`βtq .

Since Hpy, sq “ V py, squ ` F py, sq the result follows. Indeed,

V u “

ˆ ?
αβ

pαp1 ´ tq ` βtq

˙n{2`2

V

ˆ ?
αβ

pαp1 ´ tq ` βtq
x,

βt

αp1 ´ tq ` βt

˙

ˆ u

ˆ ?
αβ

pαp1 ´ tq ` βtq
x,

βt

αp1 ´ tq ` βt

˙

pe
pα´βq|x|2

4pA`iBqpαp1´tq`βtq

“
αβ

pαp1 ´ tq ` βtq2
V

ˆ ?
αβ

pαp1 ´ tq ` βtq
x,

βt

αp1 ´ tq ` βt

˙

ũpx, tq

“ Ṽ px, tqũ.
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Similarly, we get that

F py, sq “

ˆ ?
αβ

pαp1 ´ tq ` βtq

˙n{2`2

F

ˆ ?
αβ

pαp1 ´ tq ` βtq
x,

βt

αp1 ´ tq ` βt

˙

e
pα´βq|x|2

4pA`iBqpαp1´tq`βtq

“ F̃ px, tq.

The case α ă β follows by reversing the time with s1 “ 1 ´ s, t1 “ 1 ´ t. For the final part,
let y “

?
αβx

αp1´tq`βt
, s “

βt
αp1´tq`βt

. Observe also that αs ` βp1 ´ sq “
αβ

αp1´tq`βt
. Then it follows

that

}eγ|x|2ũptq}
2
L2pRnq

“

ż

Rn

e2γ|x|2
´

?
αβ

αp1 ´ tq ` βt

¯n
ˇ

ˇ

ˇ

ˇ

u
´

?
αβx

αp1 ´ tq ` βt
,

βt

αp1 ´ tq ` βt

¯

e
pα´βq|x|2

4pA`iBqpαp1´tq`βtq

ˇ

ˇ

ˇ

ˇ

2

dx

“

ż

Rn

e2γ|y|2
pαp1´tq`βtq2

αβ e
pα´βq|y|2A pαp1´tq`βtq2

αβpαp1´tq`βtq4pA2`B2q |upy, sq|
2dy

“

ż

Rn

e
2|y|2

´

αβγ

pαs`βp1´sqq2
`

pα´βqA

4pA2`B2qpαs`βp1´sqq

¯

|upy, sq|
2ds

“ }e
|y|2

´

αβγ

pαs`βp1´sqq2
`

pα´βqA

4pA2`B2qpαs`βp1´sqq

¯

upsq}L2pRnq.

The argument for }eγ|x|2F̃ ptq}L2pRnq is similar.

Remark. In particular, this transformation lets us reduce the problem from having two
different parameters α, β to only having one parameter γ.

2.2 Proof of Theorem 2.3 in the case αβ ă 2

Proof. We split the proof into 4 steps.

Step 1: Reducing the problem to α “ β “ γ. We will show that by Lemma 2.1 it suffices
to prove the theorem in the case where α “ β “ γ. Define ũ as in the conformal/Appell
transformation. For γ P R it follows by (2.4) that

}eγ|x|2ũp0q}L2pRnq “ }eγ
α
β

|x|2up0q}L2pRnq

}eγ|x|2ũp1q}L2pRnq “ }eγ
β
α

|x|2up1q}L2pRnq.

In particular, if we let γ “ 1
αβ
, then

}eγ|x|2ũp0q}L2pRnq “ }e
1
β2

|x|2

up0q}L2pRnq,

}eγ|x|2ũp1q}L2pRnq “ }e
1
α2 |x|2up1q}L2pRnq.

By these relations, we see that if }eγ|x|2ũp0q}L2pRnq and }eγ|x|2ũp1q}L2pRnq are finite for αβ ă 2,
and if this implies that u “ 0, then it is equivalent to show that for γ ą 1

2
, we have ũ “ 0.
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Hence, we can assume α “ β.

Step 2: Carleman estimate for the free Schrödinger eqution.
Define f “ eϕu, where ϕ is a real valued function, depending on both x and t, to be chosen
later. We also define Hptq :“ }fptq}2L2pRnq

.

Claim 2.1. For a well-chosen ϕ, we can show that logHptq2 ě ´R2

4γ
. In other words, this

function is “almost”logarithmically convex. In particular, we choose ϕ “ γ|x`Rtp1 ´ tqe1|2

for γ,R ą 0.

Assuming the claim, consider the function F ptq :“ e
´R2tp1´tq

8γ Hptq. Observe that

logF ptq2
“ p´

R2

8γ
tp1 ´ tqq

2
` logHptq2

“ 2
R2

8γ
` logHptq2

ě
R2

4γ
´
R2

4γ

ě 0.

Hence, F ptq is logarithmically convex.

Step 3: Finish the proof assuming the claim. Since F ptq is logarithmically convex, it follows
that for t1, t2 P r0, 1s and λ P p0, 1q

logpF pλt1 ` p1 ´ λqt2q ď λ logF pt1q ` p1 ´ λqF pt2.q

In particular, for λ “ 1
2
, t1 “ 0, t2 “ 1,

e´ R2

32γHp1{2q “ F p
1

2
q ď F p0q

1{2F p1q
1{2

“ Hp0q
1{2Hp1q

1{2.

Then it follows

e´ R2

32γ

ż

Rn

e2γ|x`R
4
e1|2upx, 1{2qdx ď

´

ż

Rn

e2γ|x|2
|u0|

2dx
¯1{2´

ż

Rn

e2γ|x|2
|upx, 1q|

2dx
¯1{2

.

Now, if |x| ď ϵR
4
, then it follows that |x ` R

4
e1|

2 ě R
4

p1 ´ ϵq. Hence,
ż

Bp0,ϵR{4q

|upx, 1{2q|
2e2γpR

4
p1´ϵqq2dx ď

ż

Bp0,ϵR{4q

|upx, 1{2q|
2e2γ|x`R

4
e1|2dx. (2.11)

So that
ż

Bp0,ϵR{4q

|upx, 1{2q|
2dx ď e

R2

32γ e´
2γR2p1´ϵq2

16 }eγ|x|2u0}L2pRnq}e
γ|x|2up1q}L2pRnq

“ e
R2

32γ
p1´4γ2p1´ϵq2q

}eγ|x|2u0}L2pRnq}e
γ|x|2up1q}L2pRnq.
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For ϵ ą 0 small enough and

1 ´ 4γ2 ă 0, ðñ γ ą
1

2

we get that the exponent on the right-hand side is negative, so by letting R Ñ 8 it follows
that upx, 1{2q “ 0 in L2pRnq, so u ” 0 in L2pRnq. Remark that one of the reasons the func-
tion ϕ was chosen as it was, was that we needed the condition that ϕpx, 0q “ ϕpx, 1q “ γ|x|2.
If not, we would not necessarily get that the right-hand side goes to 0 as R Ñ 8.

Step 4: Proof of Claim 2.1. Observe that

Btf “ Btϕf ` Btue
ϕ

“ Btϕf ` ieϕ∆u

“ Btϕf ` ieϕ∆pe´ϕfq

eϕ∇pe´ϕfq “ eϕp´∇pϕqe´ϕf ` ∇fe´ϕ
q

“ ´∇ϕf ` ∇f

eϕ∆pe´ϕfq “ eϕ∇ ¨ p∇e´ϕfq

“ eϕ∇e´ϕ
q ¨ peϕ∇e´ϕ

qf

“ p´∇ϕ ` ∇q ¨ p´∇ϕ ` ∇qf

“ p|∇ϕ|
2

´ ∆ϕ ´ 2∇ϕ ¨ ∇ ` ∆qf.

So f satisfies the IVP

#

Btf “ Btϕf ` ip∆f ´ 2∇ϕ ¨ ∇f ` |∇ϕ|2f ´ ∆ϕfq

fpx, 0q “ eϕpx,0qu0.

We want to divide the operators into symmetric and skew-symmetric parts with respect to
the L2-inner product, to make the computations simpler. We write

Btf “ pS ` Aqf,

where the symmetric part is

S “ Btϕ ´ ip2∇ϕ∇ ` ∆ϕq (2.12)

and the skew-symmetric part is

A “ ip∆ ` |∇ϕ|
2
q. (2.13)

In particular, let w1, w2 be two functions. By a formal integration by parts, and since ϕ is
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real,

xSw1, w2yL2pRnq “

ż

Btϕw1w2 ´

ż

2i∇ϕ∇w1w2 ´

ż

i∆ϕw1w2

“

ż

w1Btϕw2 `

ż

2iw1∇ ¨ p∇ϕw2q ´

ż

iw1∆ϕw2

“

ż

w1Btϕw2 ´

ż

w12i∇ϕ∇w2 ´

ż

w1i∆ϕw2

“ xw1,Sw2yL2pRnq

Similarly, we can show that

xAw1, w2yL2pRnq “ ´xw1,Aw2yL2pRnq.

We first compute the derivatives of Hptq and logHptq.

H 1
ptq “ xBtf, fyL2pRnq ` xf, BtfyL2pRnq

“ xpS ` Aqf, fyL2pRnq ` xf, pS ` AqfyL2pRnq

“ 2xSf, fyL2pRnq

H2
ptq “ 2xBtpSfq, fyL2pRnq ` 2xSf, BtfyL2pRnq

“ 2xBtSf, fyL2pRnq ` 2xSBtf, fyL2pRnq ` 2xSf, BtfyL2pRnq

“ 2xBtSf, fyL2pRnq ` 2xSpS ` Aqf, fyL2pRnq ` 2xSf, pS ` AqfyL2pRnq

“ 2xBtSf, fyL2pRnq ` 4xSf,SfyL2pRnq ` 2xrS,Asf, fyL2pRnq

logHptq2
“ p

H 1

H
q

1

“
H2H

H2
´
H 12

H2

“
2xpBtS ` rS,Asqf, fyL2pRnq

xf, fyL2pRnq

`
4xSf,SfyL2pRnq

xf, fyL2pRnq

´
4xSf, fy2L2pRnq

xf, fy2L2pRnq

.

Observe that by the Cauchy-Schwarz inequality:

4xSf, fy2L2pRnq

xf, fy2L2pRnq

ď
4xSf,SfyL2pRnq

xf, fyL2pRnq

,

so that the last two terms together are positive. That means that when we want to find a
lower bound for logHptq2, we only need to consider

2
xpBtS ` rS,Asqf, fyL2pRnq

xf, fyL2pRnq

.
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The next step is to compute the inner product and try to see how we choose ϕ.

SApfq “ Btϕpip∆f ` |∇ϕ|
2fqq ` 2∇ϕ ¨ ∇p∆f ` |∇ϕ|

2fq ` ∆ϕp∆f ` |∇ϕ|
2fq

“ iBtϕ∆f ` iBtϕ|∇ϕ|
2f ` 2∇ϕ ¨ ∇p∆fq ` 2∇ϕ ¨ ∇p|∇ϕ|

2
qf ` 2∇ϕ|∇ϕ|

2
¨ ∇f

` ∆ϕ∆f ` ∆ϕ|∇ϕ|
2f

“ iBtϕ∆f ` iBtϕ|∇ϕ|
2f ` 2∇ϕ ¨ ∇p∆fq ` 4∇ϕ ¨ D2ϕp∇ϕq ` 2∇ϕ|∇ϕ|

2
¨ ∇f

` ∆ϕ∆f ` ∆ϕ|∇ϕ|
2f

ASpfq “ ip∆ ` |∇ϕ|
2
qpBtϕfq ` p∆ ` |∇ϕ|

2
qp2∇ϕ ¨ ∇fq ` p∆ ` |∇ϕ|

2
qp∆ϕfq

“ i∆pBtϕfq ` i|∇ϕ|
2
Btϕf ` 2∆p∇ϕ ¨ ∇fq ` 2|∇ϕ|

2∇ϕ ¨ ∇f ` ∆p∆ϕfq ` |∇ϕ|
2∆ϕf

“ ip∆Btϕqf ` iBtϕ∆f ` 2i∇pBtϕq ¨ ∇f ` i|∇ϕ|
2
Btϕf ` 2p2D2ϕ ¨ D2f ` ∇p∆ϕq ¨ ∇f

` ∇p∆fq ¨ ∇ϕq ` 2|∇ϕ|
2∇ϕ ¨ ∇f ` ∆2ϕf ` 2∇p∆ϕq∇f ` ∆ϕ∆f ` |∇ϕ|

2∆ϕf.

where we have used that

∇p∇ϕ ¨ ∇fq “ D2ϕp∇fq ` D2fp∇ϕq,

and

∆p∇ϕ ¨ ∇fq “ ∇ ¨ pD2ϕp∇fq ` D2fp∇ϕqq “ 2D2ϕ ¨ D2f ` ∇p∆ϕq ¨ ∇f ` ∇p∆fq ¨ ∇ϕ.

It therefore follows that

rS,As “ 4∇ϕ ¨ D2ϕp∇ϕqf ´ i∆pBtϕqf ´ 2i∇pBtϕq ¨ ∇f
´ 4D2ϕ ¨ D2f ´ 4∇p∆ϕq ¨ ∇f ´ ∆2ϕf. (2.14)

Let us now compute BtSpfq.

BtSpfq “ pB
2
t ϕ ´ ipBtp2∇ϕ ¨ ∇ ` ∆ϕqqqf “ pB

2
t ϕ ´ 2i∇pBtϕq ¨ ∇ ´ i∆pBtϕqqf. (2.15)

By combining (2.14) and (2.15) we get

pBtS ` rS,Asqpfq “ B
2
t ϕf ´ 2i∇pBtϕq ¨ ∇f ´ i∆pBtϕqf

` 4∇ϕ ¨ D2ϕp∇ϕqf ´ i∆pBtϕqf ´ 2i∇pBtϕq ¨ ∇f
´ 4D2ϕ ¨ D2f ´ 4∇p∆ϕq ¨ ∇f ´ ∆2ϕf

“ B
2
t ϕf ´ 4i∇pBtϕq ¨ ∇f ´ 2i∆pBtϕqf ` 4∇ϕ ¨ D2ϕp∇ϕqf

´ 4∇ ¨ pD2ϕp∇fqq ´ ∆2ϕf. (2.16)

First, we see what happens if ϕ “ γ|x|2, not depending on t. Then it obviously satisfies
ϕpx, 0q “ ϕpx, 1q “ γ|x|2. Then all the derivatives with respect to t, and all derivatives of
higher order than two, will vanish, so we are only left with

pBtS ` rS,Asqpfq “ 4∇ϕ ¨ D2ϕp∇ϕqf ´ 4∇ ¨ pD2ϕp∇fqq “ 32γ3|x|
2f ´ 8γ∆f.
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Then it follows that

xpBtS ` rS,Asqf, fyL2pRnq “

ż

Rn

32|x|
2
|f |

2dx `

ż

Rn

8∆ffdx

“

ż

Rn

32|x|
2
|f |

2
` 8|∇f |

2dx ě 0

and H will be log-convex. The problem with choosing this weight is that we cannot bound it
from below which we needed to do in (2.11) to finish the proof. If we let ϕ “ γ|x`Rtp1´tqe1|

2,
where γ and R are some positive, real constants, then we can show that

xpBtS ` rS,Asqf, fyL2pRnq

xf, fyL2pRnq

ě
´R2

8γ
.

This choice of ϕ is somehow the second simplest choice we can guess where ϕ still satisfies
ϕpx, 0q “ ϕpx, 1q “ γ|x|2, but where it also depends on t. We start with computing the
partial derivatives of ϕ.

Bx1ϕ “ 2γpx1 ` Rtp1 ´ tqq

Bxjϕ “ 2γxj, j ‰ 1

B
2
xj
ϕ “ 2γ

∇ϕ “ 2γpx ` Rtp1 ´ tqe1q

∆ϕ “ 2γn

D2ϕ “ 2γI

Btϕ “ 2γRpx1 ` Rtp1 ´ tqqp1 ´ 2tq

B
2
t ϕ “ 2γRrRp1 ´ 2tq2 ´ 2px1 ` Rtp1 ´ tqqs

∇pBtϕq “ 2γRp1 ´ 2tqe1

∆pBtϕq “ 0.

Then (2.16) becomes

pBtS ` rS,Asqpfq “ 2γR2
p1 ´ 2tq2f ´ 4γRpx1 ` Rtp1 ´ tqqf

´ 8iγRp1 ´ 2tqBx1f ` 32γ3|x ` Rtp1 ´ tqe1|
2f ´ 8γ∆f

and the inner product

xpBtS ` rS,Asqf, fyL2pRnq “

ż

Rn

2γR2
p1 ´ 2tq2|f |

2dx ´

ż

Rn

4γRpx1 ` Rtp1 ´ tq|f |
2dx

´

ż

Rn

8iγRp1 ´ 2tqBx1ffdx `

ż

Rn

32γ3|x ` Rtp1 ´ tqe1|
2
|f |

2dx

`

ż

Rn

8γ|∇f |
2dx.
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To make the notation easier, let us write

xpBtS ` rS,Asqf, fyL2pRnq “ p1q ` p2q ` p3q ` p4q ` p5q

ě p1q ´ |p2q| ´ |p3q| ` p4q ` p5q.

Observe that all terms are real, but p2q and p3q are the bad terms which are not positive.
Let us deal with p2q first, by using Cauchy-Schwarz and Young’s inequalities.

|p2q| “

ż

Rn

4uRpx1 ` Rtp1 ´ tqq|f |
2dx

ď 4γR}px1 ` Rtp1 ´ tqqf}L2pRnq}f}L2pRnq

ď 4γR
ϵ2

2
}px1 ` Rtp1 ´ tqqf}L2pRnq ` 4γR

1

2ϵ2
}f}L2pRnq

ď 4γR
ϵ2

2
}px ` Rtp1 ´ tqe1qf}

2
L2pRnq ` 4γR

1

2ϵ2
}f}

2
L2pRnq

“ 4γR
ϵ2

2

ż

Rn

|x ` Rtp1 ´ tqe1|
2
|f |

2dx ` 4γR
1

2ϵ2
}f}

2
L2pRnq. (2.17)

By choosing ϵ2 “
16γ2

R
, we can use p4q to cancel the first term, and we are left with

p4q ´ |p2q| ě ´
R2

8γ
}f}

2
L2pRnq. (2.18)

For p3q

|p3q| “

ż

Rn

8γRp1 ´ 2tqBx1ff̄dx

ď 8γR}Bx1f}L2pRnq}p1 ´ 2tqf}L2pRnq

ď 8γR
ϵ2

2
}Bx1f}

2
L2pRnq ` 8γR

1

2ϵ2
}p1 ´ 2tqf}

2
L2pRnq

ď 8γR
ϵ2

2
}∇f}

2
L2pRnq ` 8γR

1

2ϵ2
}p1 ´ 2tqf}

2
L2pRnq

“ 8γR
ϵ2

2

ż

Rn

|∇f |
2dx ` 8γR

1

2ϵ2

ż

Rn

|p1 ´ 2tqf |
2dx. (2.19)

Now, let ϵ2 “ 2
R
. Then

p1q ` p5q ´ |p3q| “ 0. (2.20)

We are left with

xpBtS ` rS,Asqf, fyL2pRnq ě ´
R2

8γ
}f}

2
L2pRnq, (2.21)

so we have shown that

logHptq2
ě 2

xpBtS ` rS,Asf, fyL2pRnq

xf, fyL2pRnq

ě
´R2

4γ
,

which concludes the proof of the claim.
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This shows the formal argument that we ideally would have liked to extend to the case with
a non-zero potential. However, to justify the argument rigorously is not easy. We therefore
follow a slightly different path, and the first step is to perform a parabolic regularization and
work on the equation

Btu “ pA ` iBqp∆u ` V px, tqu ` F px, tqq,

for A ą 0. We will prove energy and Carleman estimates for solutions to this equation.
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3 Important Estimates and Proof of Theorem 3

In this chapter, the main goal is to prove Theorem 3. To do this, we start by proving estimates
for the regularized equation (0.9), for A ą 0.

3.1 Energy Estimate

Lemma 3.1. Assume u P Cpr0, 1s, L2pRnqq X L2pr0, 1s, H1pRnqq satisfies

Btu “ pA ` iBqp∆u ` V px, tqu ` F px, tqq in Rn
ˆ r0, 1s

A ą 0, B P R. Then

e´MT }e
γA|x|2

A`4γpA2`B2qT upT q}L2 ď }eγ|x|2up0q}L2 `
?
A2 ` B2}e

γA|x|2

A`4γpA2`B2qtF ptq}L1pr0,T s,L2pRnqq,

when γ ě 0, 0 ď T ď 1 and MT “ }ApRe V q` ´ B Im V }L1pr0,T s,L8pRnqq.

Remark. In Lemma A.1 in Appendix A, we discuss the existence of solutions
u P Cpr0, 1s, L2pRnqq X L2pr0, 1s, H1pRnqq when u0 P L2pRnq.

Proof. Let f “ eϕu, where ϕ is a real-valued function to be chosen later. Then

Btf “ Btϕe
ϕu ` eϕBtu

“ Btϕf ` pA ` iBqeϕ∆pe´ϕfq ` V f ` Feϕ

“ Btϕf ` pA ` iBqp|∇ϕ|
2

´ ∆ϕ ´ 2∇ϕ ¨ ∇ ` ∆qf ` V f ` Feϕ

“ pS ` Aqf ` Feϕ,

where
S “ Ap∆ ` |∇ϕ|

2
q ´ iBp2∇ϕ ¨ ∇ ` ∆ϕq ` pBtϕ ` AReV ´ B ImV q

A “ iBp∆ ` |∇ϕ|
2
q ´ Ap2∇ϕ ¨ ∇ ` ∆ϕq ` ipB ReV ` A ImV q.

We have that

Bt}f}
2
L2pRnq “ 2Re xSf, fyL2pRnq ` 2Re xpA ` iBqeϕF, fyL2pRnq.

It follows by integration by parts that

Re xSf, fyL2pRnq “ Re

ż

Rn

Ap∆f ` |∇ϕ|
2fqf̄dx ´ Re iB

ż

Rn

p2∇ϕ ¨ ∇f ` ∆ϕfqf̄dx

` Re

ż

Rn

pBtϕ ` AReV ´ B ImV q|f |
2dx

“ ´

ż

Rn

A|∇f |
2dx `

ż

Rn

pA|∇ϕ|
2

` Btϕq|f |
2dx ` 2B Im

ż

Rn

∇ϕ ¨ ∇ff̄dx

`

ż

Rn

pAReV ´ BImV q|f |
2dx

“ p1q ` p2q ` p3q ` p4q.
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We want to find an upper bound for Bt}f}2L2pRnq
so we will apply similar methods as we did

in the proof of Theorem 2.3, with Cauchy-Schwarz and Young’s inequalities. Observe that

|p3q| ď 2B

ż

Rn

|∇ϕ ¨ ∇ff̄ |dx

ď 2B}∇f}L2pRnq}f̄∇ϕ}L2pRnq

ď Bϵ

ż

Rn

|∇f |
2dx `

B

ϵ

ż

Rn

|f̄∇ϕ|
2dx.

By letting ϵ “ A
B
, it follows

|p3q| ď A

ż

Rn

|∇f |
2dx `

B2

A

ż

Rn

|f |
2
|∇ϕ|

2dx. (3.1)

Hence, the first term in (3.1) will be canceled by p1q, and

RexSf, fyL2pRnq ď

ż

Rn

pA `
B2

A
q|∇ϕ|

2
|f |

2
` Btϕ|f |

2dx ` }AReV `
´ B ImV }L8pRnq}f}

2
L2pRnq.

If we require that

pA `
B2

A
q|∇ϕ|

2
` Btϕ ď 0, (3.2)

then

RexSf, fyL2pRnq ď }AReV `
´ B ImV }L8pRnq}f}

2
L2pRnq. (3.3)

Also, it follows by Cauchy-Schwarz that

Re xpA ` iBqeϕF, fyL2pRnq ď

ż

Rn

a

pA2 ` B2q|eϕF f̄ |dx

ď
?
A2 ` B2}eϕF }L2pRnq}f}L2pRnq. (3.4)

Combining (3.3) and (3.4),

Bt}f}
2
L2pRnq ď 2}AReV `

´ B ImV }L8pRnq}f}
2
L2pRnq ` 2

?
A2 ` B2}eϕF }L2pRnq}f}L2pRnq,

which implies that

Bt}f}L2pRnq ď }AReV ptq`
´ B ImV ptq}L8pRnq}f}L2pRnq `

?
A2 ` B2}eϕF }L2pRnq,

so by Grönwall’s differential inequality,

}f}L2pRnqe
´MT ´ }fp0q}L2pRn ď

?
A2 ` B2

ż T

0

e´Mt}eϕF }L2pRnq2dt

ď
?
A2 ` B2}eϕF }L1pr0,1s,L2pRnq. (3.5)
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Let us now assume ϕpx, tq “ aptqΦpxq, where we in the end want Φpxq “ |x|2. (3.2) is satisfied
when aptq satisfies the initial value problem

#

a1ptq “ ´4pA ` B2

A
qaptq2

ap0q “ γ,

for some γ ą 0, with solution

aptq “
γA

4pA2 ` B2qtγ ` A
. (3.6)

To justify the formal computation above, we will do a regularization argument with a cutoff
function on the weight ϕ. Define

ΦRpxq “

#

|x|2, |x| ď R

R2, |x| ą R.

Then let θρpxq “ ρ´nθpρ´1xq, where θ is a radial mollifier, and define

ϕρ,Rpx, tq “ aptqθρ ˚ ΦRpxq

fρ,Rpx, tq “ eϕρ,Rpx,tqupx, tq.

Since u P L2pRnq for all 0 ď t ď 1,

}fρ,Rptq}
2
L2pRnq “

ż

Rn

|eaptqθρ˚ΦRpxqupx, tq|
2dx

ď

ż

Rn

e2γR
2

|upx, tq|
2dx

ď e2γR
2

}uptq}
2
L2pRnq ă 8

so, fρ,R P L2pRnq for 0 ď t ď 1. Replacing f with fρ,R in (3.5) implies that

}fρ,RpT q}L2pRnqe
´MT ´ }fρ,Rp0q}L2pRnq

ď
?
A2 ` B2

ż T

0

e´
şt
0 }AReV psq`´B ImV psq}L8pRnqds}eϕF }L2pRnqdt

ď
?
A2 ` B2

ż T

0

}eϕF }L2pRnqdt,

so that

}e
γA

4pA2`B2qTγ`A
θρ˚ΦRpxq

upT q}L2pRnqe
´MT

ď }eγθρ˚ΦRpxqup0q}L2pRnq `
?
A2 ` B2}e

γA

4pA2`B2qtγ
θρ˚ΦRF }L1pr0,T s,L2pRnqq.
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By first letting ρ Ñ 0, using The Dominated Convergence Theorem and the properties of θρ
being a radial mollifier, then letting R Ñ 8, using the monotone convergence theorem, we
deduce that

}e
γA|x|2

4pA2`B2qTγ`AupT q}L2pRnqe
´MT ď }eγ|x|2up0q}L2pRnq `

?
A2 ` B2}e

γA|x|2

4pA2`B2qtγF }L1pr0,T s,L2pRnq,

which concludes the proof.

Remark.
piq As we discussed in the introduction it is not always true that the norm }eϕuptq}L2pRnq is
finite for all time, even though u P Cpr0, 1s, L2pRnqq. What this lemma tells us, is that for
a specific weight function ϕ “ aptq|x|2 ď γ|x|2, we can justify that }eϕuptq}L2pRnq is finite for

all t. This will be important for us later in Lemma 3.4 when we justify that }eγ|x|2uptq}L2pRnq

is finite for all time t P r0, 1s.

piiq By modifying this argument a little bit we can also prove that
şT

0
}∇f}2L2pRnq

dt and
şT

0
}∇ϕf}2L2pRnq

dt are finite for all T P r0, 1s. This will in particular be important to us in

the proof of Lemma 3.5. This result is not shown in [6], but for us, it was not obvious how
to rigorously justify the arguments without it. We only state the result here, and save the
proof for the appendix, see Appendix A.

Lemma 3.2. Let u P Cpr0, 1s, L2pRnqq X L2pr0, 1s, H1pRnqq satisfy

Btu “ pA ` iBqp∆u ` V px, tqu ` F px, tqq in Rn
ˆ r0, 1s, (3.7)

A ą 0, B P R. Then

}eapT q|x|2upT q}
2
L2pRnq ` A}∇peaptq|x|2uq}

2
L2pRnˆr0,T sq ` 2A}2aptq|x|eaptq|x|2u}

2
L2pRnˆr0,T sq

ď eMV `
?
A2`B2

}eγ|x|2up0q}L2pRnq `
?
A2 ` B2eMV `

?
A2`B2

}eaptq|x|2F ptq}
2
L2pRnˆr0,T sq,

for aptq “
γA

A`8pA2`B2qγt
, γ ě 0, T P r0, 1s andMV “ suptPr0,1s }ApRe V q` ´B Im V }L8pRnq.

Corollary 3.1. Under the same conditions as in Lemma 3.2 and if }eγ|x|2up0q}L2pRnq and

}e
γA|x|2

A`8γpA2`B2qtF ptq}L2pRnˆr0,T sq are finite, then

}eapT q|x|2upT q}
2
L2pRnq ` }∇peaptq|x|2uq}

2
L2pRnˆr0,T sq ` }2aptq|x|eaptq|x|2u}

2
L2pRnˆr0,T sq ă 8

for aptq “
γA

A`8pA2`B2qγt
, γ ě 0, T P r0, 1s.
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3.2 Carleman Estimates

Lemma 3.3. Suppose that S is a symmetric operator, A is a skew-symmetric operator, both
can depend on a time variable, G is a positive function, fpx, tq is a reasonable function

Hptq “ xf, fyL2pRnq, Dptq “ xSf, fyL2pRnq, Nptq “
Dptq

Hptq
.

Then

B
2
tH “ 2BtRe xBtf ´ Sf ´ Af, fyL2pRnq ` 2xBtSf ` rS,Asf, fyL2pRnq

` }Btf ´ Af ` Sf}
2
L2pRnq ´ }Btf ´ Af ´ Sf}

2
L2pRnq, (3.8)

and

N 1
ptq ě

xBtSf ` rS,Asf, fyL2pRnq

H
´

}Btf ´ Af ´ Sf}2L2pRnq

2H
. (3.9)

Moreover, if

|Btf ´ Af ´ Sf | ď M1|f | ` G in Rn
ˆ r0, 1s, BtS ` rS,As ě ´M0, (3.10)

and

M2 “ sup
r0,1s

›

›

›

›

Gptq

fptq

›

›

›

›

L2pRnq

ă 8,

then logHptq is convex in r0, 1s and there is a universal constant N s.t

Hptq ď eNpM0`M1`M2`M2
1 `M2

2 qHp0q
1´tHp1q

t when 0 ď t ď 1. (3.11)

Remark. By a “reasonable”function f , we mean that we can justify all of the computations
in the proof.

Proof. Define Hptq “ xf, fyL2pRnq. Then

H 1
ptq “ 2Re xBtf, fyL2pRnq

“ 2Re
`

xBtf ´ Sf ´ Af, fyL2pRnq ` xSf, fyL2pRnq ` xAf, fyL2pRnq

˘

“ 2Re xBtf ´ Sf ´ Af, fyL2pRnq ` 2Dptq. (3.12)

We can also write

H 1
ptq “ RexBtf ` Sf, fyL2pRnq ` Re xBtf ´ Sf, fyL2pRnq. (3.13)

Dptq “ xSf, fyL2pRnq “
1

2
Re xBtf ` Sf, fyL2pRnq ´

1

2
Re xBtf ´ Sf, fyL2pRnq. (3.14)

By multiplying (3.14) and (3.13) we have that

H 1
ptqDptq “

1

2

`

Re xBtf ` Sf, fyL2pRnq

˘2
´

1

2

`

Re xBtf ´ Sf, fyL2pRnq

˘2
.
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Since the real part of the skew-symmetric operator is 0, it follows

H 1
ptqDptq “

1

2

`

Re xBtf ´ Af ` Sf, fyL2pRnq

˘2
´

1

2

`

Re xBtf ´ Af ´ Sf, fyL2pRnq

˘2
. (3.15)

Now,

D1
ptq “ xBtSf ` SBtf, fyL2pRnq ` xSf, BtfyL2pRnq

“ xBtSf, fyL2pRnq ` 2Re xBtf,SfyL2pRnq

“ xBtSf ` rS,Asf, fyL2pRnq ´ xrS,Asf, fyL2pRnq ` 2Re xBtf,SfyL2pRnq

“ xBtS ` rS,Asf, fyL2pRnq ` 2Re xBtf ´ Af,SfyL2pRnq.

The polarization identity, i.e.

Re xx, yy “
1

4

´

}x ` y}
2

´ }x ´ y}
2
¯

,

yields that

D1
ptq “ xBtSf ` rS,Asf, fyL2pRnq `

1

2
}Btf ´ Af ` Sf}

2
L2pRnq ´

1

2
}Btf ´ Af ´ Sf}

2
L2pRnq.

(3.16)

Hence, from (3.12) and (3.16) we get that

H2
ptq “ 2BtRe xBtf ´ Sf ´ Af, fyL2pRnq ` 2D1

ptq

“ 2BtRe xBtf ´ Sf ´ Af, fyL2pRnq ` 2xBtSf ` rS,Asf, fyL2pRnq

` }Btf ´ Af ` Sf}
2
L2pRnq ´ }Btf ´ Af ´ Sf}

2
L2pRnq,

which proves (3.8). For (3.9) we have that

N 1
ptq “

D1ptqHptq ´ H 1ptqDptq

Hptq2

“
xBtSf ` rS,Asf, fyL2pRnq

H
`

}Btf ´ Sf ` Sf}2L2pRnq

2H
´

}Btf ´ Sf ´ Sf}2L2pRnq

2H

´
pRe xBtf ´ Af ` Sf, fyL2pRnqq

2

2H2
`

pRe xBtf ´ Af ´ Sf, fyL2pRnqq
2

2H2

“
xBtSf ` rS,Asf, fyL2pRnq

H

`
}Btf ´ Af ` Sf}2L2pRnq

}f}2L2pRnq
´ pRe xBtf ´ Af ` Sf, fyL2pRnqq

2

2H2

`
pRe xBtf ´ Af ´ Sf, fyL2pRnqq

2 ´ }Btf ´ Af ´ Sf}2L2pRnq
}f}2L2pRnq

2H2

ě
xBtSf ` rS,Asf, fyL2pRnq

H
´

}Btf ´ Af ´ Sf}2L2pRnq

2H
.
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where we on the last inequality used Cauchy-Schwarz inequality and that

pRe xBtf ´ Af ´ Sf, fyL2pRnqq
2

ě 0.

Now, if (3.10) holds, then
N 1

ptq ě ´pM0 ` M2
1 ` M2

2 q.

Then, by (3.12) for ϕptq “ 2Re xBtf ´ Sf ´ AfyL2pRnq and Φptq “
şt
ϕpsqds,

BtplogHptq ` Φptqq “ 2Nptq,

where since ϕ ď M1 ` M2, it implies Φ ď M1 ` M2 and Φ “ Op1q on r0, 1s. Similarly, on
r0, 1s,

B
2
t plogHptq ` Op1qq ě, 0 (3.17)

where now |Op1q| ď NpM0 ` M1 ` M2 ` M2
1 ` M2

2 qq in r0, 1s. By using (3.17), we get that
for 0 ď s ď t ď τ ď 1,

BsplogHpsq ` Op1qq ď Bτ plogHpτq ` Op1qq.

By integrating two times, first from 0 to t, and then from t to 1, we get

p1 ´ tq log
Hptq

Hp0q
ď t log

Hp1q

Hptq
` Op1q,

and thus,

Hptq ď Op1qHp1q
tHp0q

1´t
ď eNpM0`M1`M2`M2

1 `M2
2 qHp1q

tHp0q
1´t,

for 0 ď t ď 1.

Lemma 3.4. Assume that u P Cpr0, 1s, L2pRnqq X L2pr0, 1s, H1pRnq satisfies

Btu “ pA ` iBqp∆u ` V px, tqu ` F px, tqq in Rn
ˆ r0, 1s, (3.18)

where A ą 0, B P R, V is complex-valued, γ ą 0, and supr0,1s }V ptq}L8pRnq ď M1. Set

M2 “ sup
r0,1s

}eγ|x|2F ptq}L2pRnq

}uptq}L2pRnq

,

and assume that }eγ|x|2up1q}L2pRnq, }e
γ|x|2up0q}L2pRnq and M2 are finite. Then }eγ|x|2uptq}L2pRnq

is logarithmically convex in r0, 1s, and there is a universal constant N such that

}eγ|x|2uptq}L2pRnq ď eNrpA2`B2qpM2
1 `M2

2 q`
?
A2`B2pM1`M1qs

}eγ|x|2up0q}
1´t
L2pRnq

}eγ|x|2up1q}
t
L2pRnq.

(3.19)
for 0 ď t ď 1.
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Proof. Let f “ eγϕu, where ϕ “ ϕpx, tq is to be chosen later. As in the previous computations,
we can show that f satisfies the equation

Btf “ Sf ` Af ` pA ` iBqpV f ` eγϕF q,

where

S “ Ap∆ ` γ2|∇ϕ|
2
q ´ iBγp2∇ϕ ¨ ∇ ` ∆ϕq ` γBtϕ “ AS1 ´ iBγS2 ` γBtϕ

A “ iBp∆ ` γ2|∇ϕ|
2
q ´ Aγp2∇ϕ ¨ ∇ ` ∆ϕq “ iBS1 ´ AγS2.

Let us now compute the commutator.

rS,As “ ´γpA2
` B2

qpS1S2 ´ S2S1q ` iBγpBtϕS1 ´ S1Btϕq ` Aγ2pS2Btϕ ´ BtϕS2q.

By the calculations we already did for the free case, we have that

´γpA2
` B2

qpS1S2 ´ S2S1q “ γpA2
` B2

qrγ24∇ϕ ¨ D2ϕp∇ϕq ´ 4∇ ¨ pD2ϕ∇q ´ ∆2ϕs

iBγpBtϕS1 ´ S1Btϕq “ ´iBγr2∇pBtϕq ¨ ∇ ` ∆pBtϕqs

Aγ2pS2Btϕ ´ BtϕS2q “ Aγ2r2∇ϕ ¨ ∇ ` ∆ϕqpBtϕq ´ Btϕp2∇ϕ ¨ ∇ ` ∆ϕqs

“ Aγ2r2∇ϕ ¨ ∇pBtϕq ` 2Btϕ∇ϕ ¨ ∇ ` ∆ϕBtϕ ´ 2Btϕ∇ϕ ¨ ∇ ´ ∆ϕBtϕs

“ 2Aγ2∇ϕ ¨ ∇pBtϕq.

Also,

BtS “ BtpAS1 ´ iBγS2 ` γBtϕq

“ ABtp∆ ` γ2|∇ϕ|
2
q ´ iBγBtp2∇ϕ ¨ ∇ ` ∇ϕq ` γB

2
t ϕ

“ 2Aγ2∇ϕ ¨ ∇pBtϕq ´ iBγp2∇pBtϕq ¨ ∇ ` ∆pBtϕqq ` γB
2
t ϕ,

so that

BtS ` rS,As “ γB
2
t ϕ ` γpA2

` B2
qr4γ2D2ϕp∇ϕq ¨ ∇ϕ ´ 4∇ ¨ pD2ϕp∇q ´ ∆2ϕs

` 4Aγ2r∇ϕ ¨ ∇pBtϕqs ´ 2iBγr2∇pBtϕq ¨ ∇ ` ∆pBtϕqs. (3.20)

Again as in the free case, if ϕpx, tq “ |x|2, it follows that

BtS ` rS,As “ γpA2
` B2

qr32γ2|x|
2

´ 8∆s,

and if we can justify the integration by parts,

xBtSf ` rS,Asf, fy “ γpA2
` B2

q

ż

Rn

32γ2|x|
2
|f |

2
` 8|∇f |

2dx, (3.21)
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so BtS ` rS,As ě 0. We want to use Lemma 3.3, to prove the result. We have

|Btf´Sf´Af | ď
?
A2 ` B2p|V f |`|eγϕF |q ď

?
A2 ` B2pM1|f |`eγϕ|F |q “

?
A2 ` B2pM1|f |`Gq,

(3.22)
so if all calculations can be justified, we can use the lemma to say that }eγ|x|2u}2L2pRnq

is

logarithmically convex. Moreover, if M̃1 “
?
A2 ` B2M1,

M̃2 “ sup
tPr0,1s

?
A2 ` B2

}eγ|x|2F }L2pRnq

}eγ|x|2uptq}L2pRnq

it follows that

}eγ|x|2uptq}
2
L2pRnq ď eNpM̃1`M̃2`M̃1

2
`M̃2

2
q
}eγ|x|2up0q}

2p1´tq

L2pRnq
}eγ|x|2up1q}

2t
L2pRnq (3.23)

ď eNpM1`M2`M2
1 `M2

2 q
}eγ|x|2up0q}

2p1´tq

L2pRnq
}eγ|x|2up1q}

2t
L2pRnq (3.24)

Where M1 “ suptPr0,1s }V ptq}L8pRnq and M2 “ suptPr0,1s

}eγ|x|2F }L2pRnq

}uptq}L2pRnq

. The result follows after

taking the square root on both sides.

For this argument to be rigorously justified, we need to know that }eγ|x|2uptq}L2pRnq is
finite for all t P r0, 1s. The idea will be to modify the weight in such a way that we can use
the Lemma 3.1 to justify that it will be finite. See the appendix, in particular Section B.1,
for the detailed computations.

We now show a similar estimate to deduce that }
a

tp1 ´ tqeγ|x|2∇u}L2pRnˆr0,1sq ă 8 for
t P p0, 1q.

Lemma 3.5. Assume u, A, B, V, M1, and γ are as in Lemma 3.4. Then

}
a

tp1 ´ tqeγ|x|2∇u}L2pRnˆr0,1sq ` }
a

tp1 ´ tq|x|eγ|x|2u}L2pRnˆr0,1sq

ď N rp1 ` M1q sup
r0,1s

}eγ|x|2uptq}L2pRnq ` sup
r0,1s

}eγ|x|2F }L2pRnqs. (3.25)

Proof. We start with the formal proof. Let f “ eγ|x|2u. Assuming all calculations in Lemma
3.3 are justified for f , we start by multiplying inequality (3.8) with tp1 ´ tq and integrate
from 0 to 1. The left side of (3.8) becomes

ż 1

0

B
2
tHptqtp1 ´ tqdt “ ´

ż 1

0

p1 ´ 2tqBtHptqdt

“ ´rp1 ´ 2tqHptq
ˇ

ˇ

1

0
s ´ 2

ż 1

0

Hptqdt

“ Hp0q ` Hp1q ´ 2

ż 1

0

Hptqdt

ď Hp0q ` Hp1q. (3.26)
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For the first part of the right-hand side of (3.8), we get

2

ż 1

0

tp1 ´ tqBtRexBtf ´ Sf ´ Af, fyL2pRnqdt “ ´2

ż 1

0

p1 ´ 2tqRexBtf ´ Sf ´ Af, fyL2pRnqdt.

(3.27)

It then follows from (3.8), (3.26) and (3.27) that

2

ż 1

0

tp1 ´ tqxBtSf ` rS,Asf, fyL2pRnq

ď Hp1q ` Hp0q ` 2

ż 1

0

p1 ´ 2tqRexBtf ´ Sf ´ Af, fyL2pRnqdt

`

ż 1

0

tp1 ´ tq}Btf ´ Af ´ Sf}
2
L2pRnqdt. (3.28)

From (3.21),

xBtSf ` rS,Asf, fyL2pRnqdt “ 8N

ż

Rn

p|∇f |
2

` 4γ2|x|
2
|f |

2dxdt

“ N

ˆ

2

ż

Rn

|∇f |
2

` 4γ2|x|
2
|f |

2dx ` 2

ż

Rn

|∇f |
2

` 4γ2|x|
2
|f |

2dx

˙

ě N

ˆ

2

ż

Rn

|∇f |
2

` 4γ2|x|
2
|f |

2dx ` 8γ2
ż

Rn

|x|
2
|f |

2dx

˙

(3.29)

We wan to find a lower bound on 2
ş

Rn |∇f |2 ` 4γ2|x|2|f |2dx. We have that

∇f “ eγ|x|2
p2γxu ` ∇uq

|∇f |
2

“ e2γ|x|2
p4γ|x|

2
|u|

2
` |∇u|

2
` 2γxu ¨ ∇ū ` 2γ∇u ¨ xūq.

Integration by parts shows that
ż

Rn

|∇f |
2dx

“

ż

Rn

e2γ|x|2
p4γ2|x|

2
|u|

2
` |∇u|

2
qdx ` 2γ

ż

Rn

e2γ|x|2ux ¨ ∇ūdx ` 2γ

ż

Rn

e2γ|x|2∇u ¨ xūdx

“

ż

Rn

e2γ|x|2
p4γ2|x|

2
|u|

2
` |∇u|

2
qdx ´ 2γ

ż

Rn

e2γ|x|2∇uū ¨ xdx ´ 2γ

ż

Rn

e2γ|x|2
|u|

2∇ ¨ xdx

´ 2γ

ż

Rn

4γe2γ|x2
|u|

2
|x|

2dx ` 2γ

ż

Rn

e2γ|x|2ū∇u ¨ xdx

“

ż

Rn

eγ|x|2
|∇u|

2
qdx ´ 2γn

ż

Rn

e2γ|x|2
|u|

2dx ´ 4γ2
ż

Rn

|f |
2
|x|

2dx,

where n “ ∇ ¨ x. This shows
ż

Rn

|∇f |
2

` 4γ2|x|
2
|f |

2dx “

ż

Rn

e2γ|x|2
p|∇u|

2
´ 2nγ|u|

2
qdx. (3.30)
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Also, by using Cauchy-Schwarz and Young’s inequalities,

4γ

ż

Rn

p∇f ¨ xqf̄dx ď

ż

Rn

2|∇f |2γ|x||f |dx

ď
2

ϵ

ˆ
ż

Rn

|∇f |
2dx

˙1{2

2ϵγ

ˆ
ż

Rn

|x|
2
|f |

2dx

˙1{2

ď
2

ϵ2

ż

Rn

|∇f |
2dx ` 2ϵ2γ2

ż

Rn

|x|
2
|f |

2dx,

In particular, for ϵ “
?
2 it follows

ż

Rn

4γ|∇f ||x||f |dx ď

ż

Rn

|∇f |
2dx ` 4γ2

ż

Rn

|x|
2
|f |

2dx, (3.31)

On the other hand, integrating by parts shows

2γ

ż

Rn

p∇f ¨ xqf̄dx “ ´2γ

ż

Rn

∇ ¨ x|f |
2dx ´ 2γ

ż

Rn

fx ¨ ∇f̄ ,

so that

2γn

ż

Rn

|f |
2dx “ ´2γ

ˆ
ż

Rn

fx ¨ ∇f̄dx `

ż

Rn

∇f ¨ xf̄dx

˙

ď 4γ

ż

Rn

|f ||x||∇f |dx. (3.32)

Then (3.32) and (3.31) implies that
ż

Rn

p|∇f |
2

` 4γ2|x|
2
|f |

2
qdx ě 2γn

ż

Rn

|f |
2dx (3.33)

Adding (3.30) and (3.33), it follows that

2

ż

Rn

p|∇f |
2

` 4γ2|x|
2
|f |

2
qdx ě

ż

Rn

e2γ|x|2
|∇u|

2dx

Returning back to (3.29) we see that
ż 1

0

tp1 ´ tqxBtSf ` rS,Asf, fyL2pRnqdt

ě N

ˆ
ż 1

0

tp1 ´ tq

ż

Rn

e2γ|x|2
|∇u|

2dxdt `

ż 1

0

tp1 ´ tq|x|
2e2γ|x|2

|u|
2dxdt

˙

“ N
´

}
a

tp1 ´ tqeγ|x|2
|∇u|}

2
L2pRnˆr0,1sq ` }

a

tp1 ´ tq|x|eγ|x|2u}
2
L2pRnˆr0,1sq

¯

.

Hence, by (3.28)

}
a

tp1 ´ tqeγ|x|2∇u}
2
L2pRnˆr0,1sq ` }

a

tp1 ´ tq|x|eγ|x|2u}
2
L2pRnˆr0,1sq

ď N

ż 1

0

tp1 ´ tqxBtSf ` rS,Asf, fyL2pRnqdt

ď N
´

pHp1q ` Hp0q ` 2

ż 1

0

p1 ´ 2tqRexBtf ´ Sf ´ Af, fyL2pRnqdt

`

ż 1

0

tp1 ´ tqp}Btf ´ Af ´ Sf}
2
L2pRnqdt

¯

.
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Now we want to find an upper bound for the right-hand side. Using (3.22) we get that

ż 1

0

tp1 ´ tq}Btf ´ Af ´ Sf}
2
L2pRnqdt ď sup

tPr0,1s

ż

Rn

|Btf ´ Af ´ Sf |
2dx

ď N sup
tPr0,1s

ż

Rn

pM1|f | ` eγ|x|2
|F |q

2dx

ď N sup
tPr0,1s

}M1|f | ` eγ|x|2F }
2
L2pRnq

ď N

˜

sup
tPr0,1s

}M1f}
2
L2pRnq ` sup

tPr0,1s

}eγ|x|2F }
2
L2pRnq

¸

ď N

˜

sup
tPr0,1s

}M1f}L2pRnq ` sup
tPr0,1s

}eγ|x|2F }L2pRnq

¸2

Again by using (3.22) it follows

2

ż 1

0

p1 ´ 2tqRexBtf ´ Sf ´ Af, fyL2pRnq ď N sup
tPr0,1s

|xBtf ´ Sf ´ Af, fyL2pRnq|

ď N sup
tPr0,1s

ż

Rn

|Btf ´ Sf ´ Af ||f |dx

ď N sup
tPr0,1s

ż

Rn

pM1|f | ` eγ|x|2
|F |q|f |dx.

Moreover, Young’s inequality implies

2

ż 1

0

p1 ´ 2tqRexBtf ´ Sf ´ Af, fyL2pRnq

ď N sup
tPr0,1s

ˆ
ż

Rn

1

2
pM1|f | ` eγ|x|2

|F |q
2

`
1

2
|f |

2dx

˙

ď N sup
tPr0,1s

´

}M1f ` eγ|x|2F }
2
L2pRnq ` }f}

2
L2pRn

¯

ď N sup
tPr0,1s

´

}M1f ` eγ|x|2F }L2pRnq ` }f}L2pRnq

¯2

ď N sup
tPr0,1s

´

}M1f}L2pRnq ` }eγ|x|2F }L2pRnq ` }f}L2pRnq

¯2
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Finally, since Hp0q ` Hp1q ď 2 suptPr0,1s }eγ|x|2uptq}L2pRnq,

´

}
a

tp1 ´ tqeγ|x|2∇u}L2pRnˆr0,1sq ` }
a

tp1 ´ tq|x|eγ|x|2u}L2pRnˆr0,1sq

¯2

ď N
´

}
a

tp1 ´ tqeγ|x|2∇u}
2
L2pRnˆr0,1sq ` }

a

tp1 ´ tq|x|eγ|x|2u}
2
L2pRnˆr0,1sq

¯

ď N

˜

sup
tPr0,1s

}eγ|x|2u}L2pRnq ` sup
tPr0,1s

}eγ|x|2F }L2pRnq

¸2

,

which formally proves the result. To prove the result rigorously, we will do an argument sim-
ilar to the one in the justification of Lemma 3.4. Even though we have proven in Lemma 3.4
that }eγ|x|2uptq}L2pRnq is finite for all 0 ď t ď 1, it is still not clear that }∇eγ|x|2uptq}2L2pRnˆr0,1sq

is finite, which we will need to make this argument rigorous. The idea is to modify the
weight as we did in Lemma 3.4 and use Lemma 3.2 to justify that the modified weight will be
finite. We then proceed by doing the computations we did above, which now can be justified
rigorously, for the modified weight. The details can be found in Appendix B.2.

3.3 Proof of Theorem 3

By the previous two lemmas, we have now proven the equivalent estimates in Theorem 3
for the regularized version of the equation, for A ą 0. To prove Theorem 3, we also need to
deduce the results for A “ 0. Let us first recall the theorem before we prove the result.

Theorem 3 (EKPV). Assume that u P Cpr0, 1s, L2pRnqq satisfies

Btu “ ip∆u ` V px, tquq in Rn
ˆ r0, 1s, (0.6)

V px, tq “ V1pxq ` V2px, tq, where V1 is real-valued, }V1}L8pRnq ď M1 and

supr0,1s }e
|x|2

pαt`p1´tqβq2 V2ptq}L8pRnq ă 8. If there exists positive numbers α, β such that

}e
|x|2

β2 up0q}L2pRnq ă 8 and }e
|x|2

α2 up1q}L2pRnq ă 8,

then }e
|x|2

pαt`p1´tqβq2 uptq}
αt`p1´tqβ

L2pRnq
is logarithmically convex in r0, 1s and there is a constant N “

Npα, βq such that

}e
|x|2

pαt`p1´tqβq2 uptq}L2pRnq ď eNpM1`M2`M2
1 `M2

2 q
}e

|x|2

β2 up0q}

βp1´tq

αt`βp1´tq

L2pRnq
}e

|x|2

α2 up1q}
αt

αt`βp1´tq

L2pRnq
(0.7)

for all t P r0, 1s and where M2 “ supr0,1s }e
|x|2

pαt`p1´tqβq2 V2ptq}L8pRnqe
2 supr0,1s }ImV2ptq}L8pRnq . More-

over,
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}
a

tp1 ´ tqe
|x|2

pαt`p1´tqβq2∇u}L2pRnqˆr0,1sq

ď NeNpM1`M2`M2
1 `M2

2 q

„

}e
|x|2

β2 up0q}L2pRnq ` }e
|x|2

α2 up1q}L2pRnq

ȷ

.

(0.8)

Proof. The main idea of the proof will be to work on the regularized equation,

Btv “ pϵ ` iqp∆v ` V px, tqvq,

for ϵ ą 0, apply Lemma 3.4 and Lemma 3.5 to this solution, and finally use semigroup theory
to obtain the result for ϵ “ 0. All details we use regarding semigroup theory can be found in
Appendix C.

We can assume α ă β. If α “ β we can do the previous case for α “ β ` δ, and then let
δ to zero. If α ą β, then we can let ū “ up1 ´ tq.

Define the operator H :“ ∆ ` V1pxq and consider the mild solution v “ etpA`iBqHu0 P

Cpr0, 1s, L2pRnqq of

#

Btv “ pA ` iBqp∆v ` V1pxqvq in Rn ˆ r0, 1s

vp0q “ u0,

for A ě 0. Since u P Cpr0, 1s, L2pRnqq is a solution of (0.6) , it satisfies the equation

Btu “ iHu ` iV2px, tqu,

so that by the Duhamel formula,

upx, tq “ eitHu0 ` i

ż t

0

eipt´sqH
pV2psqupsqqds in Rn

ˆ r0, 1s. (3.34)

Let ϵ P p0, 1s. We then define

Fϵptq “
i

ϵ ` i
eϵtHpV2ptquptqq,

uϵptq “ epϵ`iqtHu0 ` pϵ ` iq

ż t

0

epϵ`iqpt´sqHFϵpsqds.

Then uϵ is a solution of the equation

#

Btuϵ “ pϵ ` iqpHuϵ ` Fϵq in Rn ˆ r0, 1s

uϵp0q “ up0q.
(3.35)
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and from Lemma A.1 we have uϵ P Cpr0, 1s, L2pRnqq XL2pr0, 1s, H1pRnqq. Moreover, since H
generates an analytic semigroup,

epz1`z2qH
“ epz2`z1qH

“ ez1Hez2H . (3.36)

It follows that for t P r0, 1s

uϵptq “ eϵtHeitHup0q ` pϵ ` iq

ż t

0

epϵ`iqpt´sqH i

pϵ ` iq
eϵsHV2upsqds

“ eϵtHeitHup0q ` eϵtHi

ż t

0

eipt´sqHV2upsqds

“ eϵtHuptq, (3.37)

and in particular, for t “ 1,
uϵp1q “ eϵHup1q.

We now want to apply Lemma 3.1. Let us define the function u˚
ϵ ptq :“ eϵtHup1q. Observe

that
#

Btu
˚
ϵ “ ϵp∆u˚

ϵ ` V1u
˚
ϵ q

u˚
ϵ p0q “ up1q,

so by Lemma 3.1 with A ` iB “ ϵ, F “ 0, γ “ 1
β2 , T “ 1, and MT “ }ϵV1}L1p0,1q,L8pRnq ď

ϵ}V1}L8pRnq, we get the estimate

}e
|x|2

β2`4ϵuϵp1q}L2pRnq ď eϵ}V1}L8 }e
|x|2

β2 up1q}L2pRnq. (3.38)

Since uϵp0q “ up0q, we also have

}e
|x|2

α2 uϵp0q}L2pRnq “ }e
|x|2

α2 up0q}L2pRnq. (3.39)

We use a similar argument to (3.38), but now to the function F ˚
ϵ psq :“ i

ϵ`i
eϵsHV2uptq. We

have
$

’

&

’

%

BsF
˚
ϵ “ ϵp∆F ˚

ϵ ` V1F
˚
ϵ q

F ˚
ϵ p0q “ V2uptq

F ˚
ϵ ptq “ Fϵptq.

Then by applying Lemma 3.1 with A ` iB “ ϵ, F “ 0, γ “ 1
pαt`βp1´tqq2

, T “ t it follows that
for all 0 ď t ď 1,

}e
|x|2

pαt`βp1´tqq2`4ϵtFϵptq}L2pRnq ď eϵ}V1}L8pRnq}e
|x|2

pαt`βp1´tqq2 V2ptq}L8pRnq}uptq}L2pRnq. (3.40)

One last application of the lemma to the functions F ˚
ϵ psq and u˚˚

ϵ psq :“ eϵsHuptq, A ` iB “

ϵ, F “ 0, γ “ 0 shows that

}Fϵptq}L2pRnq ď eϵ}V1}L8pRnq}V2ptq}L8pRnq}uptq}L2pRnq, (3.41)

}uϵptq}L2pRnq ď eϵ}V1}L8pRnq}uptq}L2pRnq. (3.42)
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Define αϵ “ α` 2ϵ and βϵ “ β ` 2ϵ, then β2
ϵ “ β2 ` 4ϵ` 4ϵ2 ě β2 ` 4ϵ, so that together with

(3.38), we get that

}e
|x|2

β2ϵ uϵp1q}L2pRnq ď eϵ}V1}L8 }e
|x|2

β2 up1q}L2pRnq. (3.43)

The same argument for (3.39) and (3.40) shows that

}e
|x|2

α2
ϵ uϵp0q}L2pRnq ď }e

|x|2

α2 up0q}L2pRnq (3.44)

and

}e
|x|2

pαϵt`βϵp1´tqq2Fϵptq}L2pRnq ď eϵ}V1}L8pRn }e
|x|2

pαt`βp1´tqq2 V2ptq}L8pRnq}uptq}L2pRnq. (3.45)

We now want to apply the Appell transformation in Lemma 2.1, to reduce to the case where
α “ β. Let γϵ “ 1

αϵβϵ
, and

ũϵpx, tq “

´

?
αϵβϵ

αϵp1 ´ tq ` βϵt

¯n{2

uϵ

´

?
αϵβϵx

αϵp1 ´ tq ` βϵt
,

βϵt

αϵp1 ´ tq ` βϵt

¯

e
pαϵ´βϵq|x|2

4pϵ`iqpαϵp1´tq`βϵtq

Since uϵ P Cpr0, 1s, L2pRnqq X L2pr0, 1s, H1pRnqq, and since α ă β, we have that αϵ ă βϵ so
that ũϵ P Cpr0, 1s, L2pRnqq X L2pr0, 1s, H1pRnqq as well. By Lemma 2.1, ũϵ satisfies

Btũϵ “ pϵ ` iqp∆ũϵ ` Ṽ1
ϵ
px, tqũϵ ` F̃ϵpx, tqq in Rn

ˆ r0, 1s, (3.46)

where Ṽ1
ϵ
is real valued, and

Ṽ ϵ
1 px, tq “

αϵβϵ
pαϵp1 ´ tq ` βϵtq2

V1

´

?
αϵβϵx

αϵp1 ´ tq ` βϵt

¯

,

F̃ϵpx, tq “

?
αϵβϵ

αϵp1 ´ tq ` βϵt

n{2`2

Fϵ

´

?
αϵβϵx

αϵp1 ´ tq ` βϵt
,

βϵt

αϵp1 ´ tq ` βϵt

¯

e
pαϵ´βϵq|x|2

4pϵ`iqpαϵp1´tq`βϵtq .

Moreover,

sup
r0,1s

}Ṽ ϵ
1 ptq}L8 ď

βϵ
αϵ
M1 ď

β

α
M1, (3.47)

}F̃ϵptq}L2pRnq ď
β

α
}Fϵpsq}L2pRnq, (3.48)

and from Lemma 2.1, and since α ă β,

}eγϵ|x|2F̃ϵptq}L2pRnq “
αϵβϵ

pαϵp1 ´ tq ` βϵtq2
}e

r
γϵαϵβϵ

pαϵs`βϵp1´sqq2
`

pαϵ´βϵqϵ

4pϵ2`i2qpαϵs`βϵp1´sqq
s|x|2

Fϵpsq}L2pRnq

ď
β

α
}e

|x|2

pαϵs`βϵp1´sqq2Fϵpsq}L2pRnq, (3.49)
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}eγϵ|x|2ũϵptq}L2pRnq “ }e
r 1

pαϵs`βϵp1´sqq2
`

pαϵ´βϵqϵ

4pϵ2`i2qpαϵs`βϵp1´sqq
s|x|2

uϵpsq}L2pRnq, (3.50)

and

}ũϵptq}L2pRnq ď }uϵpsq}L2pRnq (3.51)

for s “
βt

αp1´tq`βt
. Observe that t “ 0 ùñ s “ 0 and t “ 1 ùñ s “ 1. In particular, for

t “ 0, (3.50) implies that

}eγϵ|x|2ũϵp0q}L2pRnq “ }e
r 1

β2ϵ
`

pαϵ´βϵqϵ

4pϵ2`i2qβϵ
s|x|2

uϵp0q}L2pRnq ď }e
|x|2

β2 uϵp0q}L2pRnq, (3.52)

and for t “ 1 that

}eγϵ|x|2ũϵp1q}L2pRnq ď }e
r

|x|2

α2
ϵ uϵp1q}L2pRnq ď eϵ}V1}L8 }e

|x|2

α2 up1q}L2pRnq, (3.53)

where we also used (3.43). Moreover,

Bt}ũϵptq}
2
L2pRnq “ 2Re

ż

Btũϵũϵdx

“ 2Re

ż

pϵ ` iqp∆ũϵqũϵdx ` 2Re

ż

pϵ ` iqṼ1
ϵ
px, tq|ũϵ|

2dx ` 2Re

ż

pϵ ` iqF̃ϵũϵdx

ď ´2Re

ż

pϵ ` iq|∇ũϵ|2dx ` 2ϵ}Ṽ ϵ
1 }L8pRnq}ũϵ}

2
L2pRnq ` 2Re

ż

pϵ ` iqF̃ϵũϵdx

ď ´2ϵ

ż

|∇ũϵ|2 ` 2ϵ}Ṽ ϵ
1 }L8pRnq}ũϵ}

2
L2pRnq ` 2

ż

2|F̃ϵũϵ|dx

ď 2ϵ}Ṽ ϵ
1 }L8pRnq}ũϵ}

2
L2pRnq ` 4}F̃ϵ}L2pRnq}ũϵ}L2pRnq.

Moreover, together with (3.47) and (3.48),

Bt}ũϵptq}L2pRnq ď ϵ}Ṽ ϵ
1 }L8pRnq}ũϵ}L2 ` 2}F̃ϵ}L2pRnq

ď ϵ
β

α
M1}ũϵptq}L2pRnq ` 2

β

α
}Fϵpsq}L2pRnq.

Lemma 1.1 and (3.41) implies now that

Bt}ũϵptq}L2pRnq ď ϵ
β

α
M1}ũϵ}L2pRnq ` 2

β

α
eϵM1}V2ptq}L8}uptq}

ď ϵ
β

α
M1}ũϵ}L2pRnq ` 2

β

α
eϵM1}V2ptq}L8pRnqN1}up0q}L2pRnq

We make a uniformly distributed partition of r0, 1s, 0 “ t0, t1, ..., tk “ 1, k to be chosen later.
Let ti´1 ď t ď ti, 0 ď i ď k. Then for N1 “ esuptPr0,1s }ImV2ptq}L8pRnq ,

Btp}ũϵptq}L2pRnqe
´ϵ β

α
M1tq ď 2

β

α
eϵM1}V2ptq}L8pRnqN1}up0q}L2pRnqe

´ϵ β
α
M1t
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for ti´1 ď t ď ti, and integrating from t to ti

}ũϵptiq}L2pRnqe
´ϵ β

α
M1ti

ď }ũϵptq}L2pRnqe
´ϵ β

α
M1t `

ż ti

t

2
β

α
eϵM1p1´s β

α
q
}V2psq}L8pRnqN1}up0q}L2pRnqds.

}ũϵptiq}L2pRnq

ď eϵ
β
α
M1pti´tq}ũϵptq}L2pRnq ` eϵ

β
α
M1ti2

β

α
N1}up0q}L2pRnq sup

tPr0,1s

}V2}L8pRnqpti ´ tqeϵM1 .

Since ti´1 ď t ď ti and ti ´ t ă 1,

}ũϵptiq}L2pRnq ď eϵ
β
α
M1}ũϵptq}L2pRnq ` N2pti ´ ti´1q}up0q}L2pRnq, (3.54)

where

N2 “ 2
β

α
eϵM1p

β
α

`1q
` N1 sup

tPr0,1s

}V2}L8pRnq.

Now we choose k such that N2maxipti ´ ti´1q ď 1
4N1

. Moreover since

}uϵptq}L2pRnq ´ }uptq}L2pRnq ď eϵ}V }L8 }uptq}L2pRnq ´ }uptq}L2pRnq ÝÑ 0

when ϵ Ñ 0, (3.51) implies that

}ũϵptq}L2pRnq ´ }upsq}L2pRnq ď }uϵpsq}L2pRnq ´ }upsq}L2pRnq ÝÑ 0, when ϵ goes to zero,

so limϵÑ0` }ũϵptq}L2pRnq “ }upsq}L2pRnq. This, combined with Lemma 1.1, implies that D ϵ0
such that for all 0 ă ϵ ă ϵ0,

}ũϵptiq}L2pRnq ě
1

2
}uptiq}L2pRnq ě

1

2N1

}up0q}L2pRnq. (3.55)

Therefore, from (3.54) and the two inequalities above,

eϵ
β
α
M1}ũϵptq}L2pRnq ě

1

2N1

}up0q}L2pRnq ´
1

4N1

}up0q}L2pRnq “
1

4N1

}up0q}L2pRnq. (3.56)

If ϵ “ mintϵ0,
α log 2
βM1

u, we get that

}ũϵptq}L2pRnq ě
1

8N1

}up0q}L2pRnq (3.57)

This, together with (3.49), (3.45) and Lemma 1.1, gives us that

sup
tPr0,1s

}eγϵ|x|2F̃ϵptq}L2pRnq

}ũϵptq}L2pRnq

ď sup
tPr0,1s

8N1β

}up0q}L2pRnqα
eϵM1}e

|x|2

pαt`βp1´tqq2 V2ptq}L8pRnq}uptq}L2pRnq

ď
8N2

1β

α
eϵM1 sup

tPr0,1s

}e
|x|2

pαt`βp1´tqq2 V2ptq}L8pRnq

“
8β

α
M2pϵq, (3.58)
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where

M2pϵq “ N2
1 e

ϵM1 sup
tPr0,1s

}e
|x|2

pαt`βp1´tqq2 V2ptq}L8pRnq,

which is finite when ϵ Ñ 0 if suptPr0,1s }e
|x|2

pαt`βp1´tqq2 V2ptq}L8pRnq ă 8, and this allows us to
apply 3.4 to ũϵ. Indeed, since

sup
tPr0,1s

}Ṽ ϵ
1 ptq}L8pRnq ď

β

α
M1,

sup
tPr0,1s

}eγϵ|x|2F̃ϵptq}L2pRnq

}ũϵptq}L2pRnq

ď
8β

α
M2pϵq,

from (3.52) and (3.53) we have both }eγϵ|x|2ũϵp0q}L2pRnq and }eγϵ|x|2ũϵp1q}L2pRnq finite, so by

Lemma 3.4, }eγϵ|x|2ũϵptq}L2pRnq is logarithmically convex in r0, 1s and D a constant N so that

}eγϵ|x|2ũϵptq}L2pRnq

ď eNrpϵ2`1qp
β2

α2M
2
1 `64 β2

α2M2pϵq2q`
?
ϵ2`1p

β
α
M1`8 β

α
M2pϵqqs

}e
|x|2

β2 up0q}
1´t
L2pRnq

}e
|x|2

α2 up1q}
t
L2pRnq

ď eN
β2

α2 rM2
1 `M2pϵq2`M1`M2pϵqs

}e
|x|2

β2 up0q}
1´t
L2pRnq

}e
|x|2

α2 up1q}
t
L2pRnq. (3.59)

From Lemma 3.5, (3.59) and the bounds on F̃ϵ we also get that

}
a

tp1 ´ tqeγϵ|x|2∇ũϵ}L2pRnˆr0,1sq ` }
a

tp1 ´ tq|x|eγϵ|x|2ũϵ}L2pRnˆr0,1sq

ď N

˜

p1 `
β

α
M1q sup

tPr0,1s

}eγϵ|x|2ũϵptq}L2pRnq ` sup
tPr0,1s

}eγϵ|x|2F̃ϵ}L2pRnq

¸

ď N

˜

sup
tPr0,1s

}eγϵ|x|2ũϵptq}L2pRnq ` sup
tPr0,1s

β

α
eϵM1}e

|x|2

pαt`βp1´tqq2 V2ptq}L8pRnqN1}up0q}L2pRnq

¸

ď N

˜

sup
tPr0,1s

}eγϵ|x|2ũϵptq}L2pRnq ` sup
tPr0,1s

β

α
eϵM1}e

|x|2

pαt`βp1´tqq2 V2ptq}L8pRnqN1}e
|x|2

β2 up0q}L2pRnq

¸

ď N

ˆ

eNrM2
1 `M2pϵq2`M1`M2pϵqs

}e
|x|2

β2 up0q}
1´t
L2pRnq

}e
|x|2

α2 up1q}
t
L2pRnq ` C}e

|x|2

β2 up0q}L2pRnq

˙

,

where C “ suptPr0,1s
β
α
eϵM1}e

|x|2

pαt`βp1´tqq2 V2ptq}L8pRnqN1. Now, by Young’s inequality,

}
a

tp1 ´ tqeγϵ|x|2∇ũϵ}L2pRnˆr0,1sq ` }
a

tp1 ´ tq|x|eγϵ|x|2ũϵ}L2pRnˆr0,1sq

ď N reNrM2
1 `M2pϵq2`M1`M2pϵqs

}e
|x|2

β2 up0q}L2pRnq ` }e
|x|2

α2 up1q}L2pRnqq

` Cp}e
|x|2

β2 up0q}L2pRnq ` }e
|x|2

α2 up1q}L2pRnqqs.
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Moreover, there exists some constant N such that C ď eNrM2
1 `M2pϵq2`M1`M2pϵqs, so it follows

that

}
a

tp1 ´ tqeγϵ|x|2∇ũϵ}L2pRnˆr0,1sq ` }
a

tp1 ´ tq|x|eγϵ|x|2ũϵ}L2pRnˆr0,1sq

ď NeNrM2
1 `M2pϵq2`M1`M2pϵqs

p}e
|x|2

β2 up0q}L2pRnq ` }e
|x|2

α2 up1q}L2pRnqq.

The result follows now by the relations between u and ũ, and by letting ϵ Ñ 0. We justify
this in Appendix B.3.

Corollary 3.2. Let u be as in Theorem 3 and ũ defined through the Appell transform(
Lemma 2.1), with γ “ 1

αβ
. Then under the same assumptions as in Theorem 3, R ą 0 s.t.

r 1
2R
, 1 ´ 1

2R
s Ă r0, 1s

}eγ|x|2
p|ũ| ` |∇ũ|q}L2pr 1

2R
,1´ 1

2R
sˆRnq ă 8

Proof. For t P r 1
2R
, 1 ´ 1

2R
s,
a

tp1 ´ tq ě 1
2R
, so that by Theorem 3

1

2R
}eγ|x|2∇ũ}L2pr 1

2R
,1´ 1

2R
sˆRnqq ă 8.

Hence,

}eγ|x|2
p|ũ| ` |∇ũ|q}L2pr 1

2R
,1´ 1

2R
sˆRnq ď sup

tPr0,1s

}eγ|x|2ũ}L2pRnq ` }eγ|x|2∇ũ}L2pr 1
2R
,1´ 1

2R
sˆRnqq ă 8.

Recall that in Theorem 1, we have two different conditions on the potential V . We will now
prove a similar result to Theorem 3 but in the case where limRÑ8 }V }L|pr0,1s,L8pRnzBRqq “ 0.
As we said, the result in Theorem 3 will be fundamental to prove the main theorem. The
result we obtain from the next theorem is the same, but with a different hypothesis on the
potential. To prove this theorem we will admit one result from [5].

Lemma 3.6. There are N and ϵ0 ą 0 such that the following holds: If λ P Rn, V is a
complex-valued potential, }V }L1pr0,1s,L8pRnqq ď ϵ0 and u P Cr0, 1s, L2pRnqq satisfies

Btu “ ip∆u ` V px, tqqu ` F px, tq in Rn
ˆ r0, 1s

then

sup
tPr0,1s

}eλ¨xuptq}L2pRnq ď N
“

}eλ¨xup0q}L2pRnq ` }eλ¨xup1q}L2pRnq ` }eγ¨xF ptq}L1pr0,1s,L2pRnqq

‰

.

Theorem 4 (EKPV). Assume that u P Cpr0, 1s, L2pRnqq satisfies

Btu “ ip∆u ` V px, tquq in Rn
ˆ r0, 1s,
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where V is in L8pRnˆr0, 1sq, limRÑ8 }V }L1pr0,1s,L8pRnqzBRqq “ 0, α and β are positive constants

such that }e
|x|2

β2 up0q}L2pRnq and }e
|x|2

α2 up1q}L2pRnq are finite. Then there is N “ Npα, βq such
that

sup
tPr0,1s

}e
|x|2

pαt`p1´tqβq2 uptq}L2pRnq ` }
a

tp1 ´ tqe
|x|2

pαt`p1´tqβq2∇u}L2pRnˆr0,1sq

ď NeN suptPr0,1s }V }L8pRnq

«

}e
|x|2

β2 up0q}L2pRnq ` }e
|x|2

α2 up1q}L2pRnq ` sup
tPr0,1s

}uptq}L2pRnq

ff

.

Proof. Define ũ and Ṽ through the Appell transformation in Lemma 2.1 with γ “ 1
αβ
. Then

Btũ “ ip∆ũ ` Ṽ uq. (3.60)

Moreover,

sup
tPr0,1s

}Ṽ ptq}L8pRnq ď max

"

α

β
,
β

α

*

sup
tPr0,1s

}V ptq}L8 ,

and
lim
RÑ8

}Ṽ }L1r0,1s,L8pRnzBRqq “ 0.

Now, let R be large enough so that

}Ṽ }L1r0,1s,L8pRnzBRqq ď ϵ0,

and define ṼRpx, tq “ 1RnzBR
Ṽ px, tq, F̃Rpx, tq “ 1BR

Ṽ px, tqũ. Then

Btũ “ ip∆ũ ` ṼRpx, tqũq ` F̃Rpx, tq,

and we can apply Lemma 3.6. It follows that

sup
tPr0,1s

}eλ¨xũptq}L2pRnq

ď N
”

}eλ¨xũp0q}L2pRnq ` }eλ¨xũp1q}L2pRnq ` }eλ¨xF̃Rptq}L1pr0,1s,L2pRnqq

ı

ď N

«

}eλ¨xũp0q}L2pRnq ` }eλ¨xũp1q}L2pRnq ` e|λ|R sup
tPr0,1s

}Ṽ ptq}L8pRnq sup
tPr0,1s

}uptq}L2pRnq

ff

.

(3.61)

Now we need to go from exponential weight to Gaussian weight. Since (3.61) hods for all
λ P Rn, we can replace λ with λ

?
γ. Squaring both sides and multiplying with e´|λ|2{2 implies

that

sup
tPr0,1s

ż

Rn

e2λ
?
γ¨x´|λ|2{2

|ũpx, tq|
2dx

ď N
”

ż

Rn

e2λ
?
γ¨x´|λ|2{2

|ũpx, 0q|
2dx `

ż

Rn

e2λ
?
γ¨x´|λ|2{2

|ũpx, 1q|
2dx

` e2|λ|
?
γR´λ{2 sup

tPr0,1s

}Ṽ }
2
L8pRnq sup

tPr0,1s

}ũptq}
2
L2pRnq

ı

,
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Next we integrate with respect to λ over Rn, and by using the identity
ż

Rn

e2
?
γλ¨x´|λ|2{2dλ “ p2πq

n{2e2γ|x|2 ,

we deduce that

sup
tPr0,1s

}eγ|x|2ũptq}L2pRnq

ď N
”

}eγ|x|2ũp0q}L2pRnq ` }eγ|x|2ũp1q}L2pRnq ` e2γR
2

sup
tPr0,1s

}Ṽ }L8pRnq sup
tPr0,1s

}ũptq}L2pRnq

ı

.

Going back with the Appel transform, using the identities

}eγ|x|2ũptq}L2pRnq “ }e
|x|2

pαs`βp1´sqq2 upsq}L2pRnq, }ũptq}L2pRnq “ }upsq}L2pRnq

completes the first part of the result. In particular, we have proven that

sup
tPr0,1s

}eγ|x|2ũptq}L2pRnq

ď NeN suptPr0,1s }V ptq}L8pRnq

”

}e
|x|2

β2 up0q}L2pRnq ` }e
|x|2

α2 up1q}L2pRnq ` sup
tPr0,1s

}uptq}L2pRnq

ı

. (3.62)

Now we need to prove the same bound for

}
a

tp1 ´ tqeγ|x|2∇ũ}L2pRnˆr0,1sq.

Here we again need to do a parabolic regularization, similar to what we did in the proof of
Theorem 3 since we want to apply Lemma 3.5, which only holds in the case A ą 0. Most of
the computations will be very similar to the proof of Theorem 3, so we will not do everything
as detailed as we did in the previous theorem. The difference is that since we do not split up
the potential as V px, tq “ V1pxq ` V2px, tq, we work with the semigroup et∆ instead of etH .

Since ũ satisfies (3.60), ũpx, tq “ eit∆ũ0`i
şt

0
eipt´sq∆pṼ psqũpsqqds. Let ϵ P p0, 1q and define

F̃ϵptq “
i

ϵ ` i
eϵt∆pṼ ptqũptqq, (3.63)

ũϵptq “ epϵ`iq∆ũ0 ` i

ż t

0

epϵ`iqpt´sq∆
pṼ psqũpsqqds. (3.64)

The above relations, and since ∆ generates an analytic semigroup, shows that

ũϵptq “ eϵt∆ũptq. (3.65)

We want to apply Lemma 3.1, and as we did in Theorem 3, we define a new function
ũ˚
ϵ psq “ eϵs∆ũptq. Then

$

’

&

’

%

Bsũ
˚
ϵ “ ϵ∆ũ˚

ϵ

ũ˚
ϵ px, 0q “ ũptq

ũ˚
ϵ ptq “ ũϵptq.
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Applying Lemma 3.1 with A ` iB “ ϵ, T “ t, F “ V “ 0 we get that for all t P r0, 1s,

}e
ϵγ|x|2

ϵ`4γϵ2t ũϵptq}L2pRnq ď }eγ|x|2ũptq}L2pRnq.

Since t P r0, 1s, ϵγ|x|2

ϵ`4γϵ2t
ě

ϵγ|x|2

ϵ`4γϵ2
, and by letting γϵ “

γ
1`4γϵ

, it follows that

sup
tPr0,1s

}eγϵ|x|2ũϵptq}L2pRnq ď sup
tPr0,1s

}eγ|x|2ũptq}L2pRnq. (3.66)

Similarly, we define F̃ ˚
ϵ psq “ i

ϵ`i
eϵs∆pṼ ptqũptqq, and apply Lemma 3.1 with A ` iB “ ϵ and

T “ t, F “ V “ 0. Then

sup
tPr0,1s

}eγϵ|x|2F̃ϵptq}L2pRnq ď sup
tPr0,1s

}eγ|x|2Ṽ ptqũptq}L2pRnq

ď esuptPr0,1s }Ṽ ptq}L8pRnq sup
tPr0,1s

}eγ|x|2ũptq}L2pRnq. (3.67)

Now we apply Lemma 3.5 to ũϵ to deduce that

}
a

tp1 ´ tqeγϵ|x|2∇ũϵ}L2pRnˆr0,1sq ` }
a

tp1 ´ tq|x|eγϵ|x|2ũϵ}L2pRnˆr0,1sq

ď N

«

sup
tPr0,1s

}eγϵ|x|2ũϵptq}L2pRnq ` sup
tPr0,1s

}eγϵ|x|2F̃ϵ}L2pRnq

ff

.

Furthermore, (3.66), (3.67), (3.62) and the relations between ũ and u imply

}
a

tp1 ´ tqeγϵ|x|2∇ũϵ}L2pRnˆr0,1sq ` }
a

tp1 ´ tq|x|eγϵ|x|2ũϵ}L2pRnq

ď N

«

sup
tPr0,1s

}eγ|x|2ũ}L2pRnq ` esuptPr0,1s }Ṽ ptq}L8pRnq sup
tPr0,1s

}eγ|x|2ũptq}L2pRnq

ff

ď NeN suptPr0,1s }V ptq}L8pRnq

«

}e
|x|2

β2 up0q}L2pRnq ` }e
|x|2

α2 up1q}L2pRnq ` sup
tPr0,1s

}uptq}L2pRnq

ff

. (3.68)

The final result follows by letting ϵ Ñ 0 The limit process can be rigorously justified in the
spirit of the argument we used for Theorem 3 in Appendix B.3.
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4 Proof of Theorem 1

In this section, we prove Theorem 1. To prove the result, we will need a Carleman estimate.
This estimate is for functions g, which are compactly supported in both space and time, so
there will be no problem with justifying that }eϕg}L2pRn`1q ă 8.

Lemma 4.1. The inequality

R

c

ϵ

8µ
}eµ|x`Rtp1´tqe1|2´p1`ϵqR2tp1´tq{16µg}L2pRn`1q

ď }eµ|x`Rtp1´tqe1|2´p1`ϵqR2tp1´tq{16µ
pBt ´ i∆qg}L2pRn`1q

holds when ϵ ą 0, µ ą 0, R ą 0 and g P C8
0 pRn`1q.

Proof. Let f “ eϕg, where ϕ “ µ|x ` Rtp1 ´ tqe1|
2 ´

p1`ϵqR2tp1´tq
16µ

. We consider the operator

eϕpBt ´ i∆qe´ϕ, and want to split it into symmetric and skew-symmetric parts on the form,

eϕpBt ´ i∆qe´ϕf “ Btf ´ Sf ´ Af.

We have

eϕpBt ´ i∆qe´ϕf “ ´Btϕf ` Btf ´ ieϕ∆pe´ϕ
qf

“ ´Btϕf ` Btf ´ ip|∇ϕ|
2

´ ∆ϕ ´ 2∇ϕ ¨ ∇ ` ∆qf

“ Btf ´ Sf ´ Af,

where S “ ´ip2∇ϕ ¨ ∇ ` ∆ϕq ` Btϕ and A “ ip∆ ` |∇ϕ|2q. This is exactly as in Lemma 3.4
with A “ 0, B “ 1, and γ “ 1, so by (3.20) we have

BtS ` rS,As “ B
2
t ϕ ` 4 D2ϕp∇ϕq ¨ ∇ϕ ´ 4∇ ¨ pD2ϕp∇q ´ ∆2ϕ ` ´2ir2∇pBtϕq ¨ ∇ ` ∆pBtϕqs.

For ϕ “ µ|x ` Rtp1 ´ tqe1|
2 ´

p1`ϵqR2tp1´tq
16µ

, we can use almost the same computations as in
Theorem 2.3 for the free Schrödinger equation for all derivatives, and we get

BtS ` rS,As “2µR2
p1 ´ 2tq2 ´ 4µRpx1 ` Rtp1 ´ tqq `

p1 ` ϵqR2

8µ
` 32µ3

|x ` Rtp1 ´ tqe1|
2

´ 8µ∆ ´ 8iµRp1 ´ 2tqBx1 .

The L2pRnq inner product will be

xBtSf ` rS,Asf, fyL2pRnq “

ż

2µR2
p1 ´ 2tq2|f |

2dx ´

ż

4µRpx1 ` Rtp1 ´ tqq|f |
2dx

´

ż

8iµRp1 ´ 2tqBx1ff̄ `

ż

32µ3
|x ` Rtp1 ´ tqe1|

2
|f |

2dx

` 8

ż

|∇f |
2dx `

p1 ` ϵq

8µ
R2

ż

|f |
2dx

“ p1q ` p2q ` p3q ` p4q ` p5q ` p6q.
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Observe that all the terms are equal to the computation we did in Chapter 2, except for p6q.
Therefore we can do exactly as we did in (2.17) and (2.19), and get that

xBtSf ` rS,Asf, fyL2pRnq ě ´
R2

8µ
}f}

2
L2pRnq `

p1 ` ϵq

8µ
R2

}f}
2
L2pRnq “

ϵR2

8µ
}f}

2
L2pRnq. (4.1)

To conclude the proof we claim that

}Btf ´ Sf ´ Af}
2
L2pRn`1q ě

ż

xBtSf ` rS,Asf, fyL2pRnqdt. (4.2)

Then by (4.1) it follows that

}Btf ´ Sf ´ Af}L2pRn`1q ě
ϵR2

8µ

ż

}f}
2
L2pRnqdt “

ϵR2

8µ
}f}

2
L2pRn`1q,

and since eϕpBt ´ i∆qe´ϕf “ Btf ´ Sf ´ Af ,

R

c

ϵ

8µ
}eµ|x`Rtp1´tqe1|2´

p1`ϵqR2tp1´tq

16µ g}L2pRn`1q ď }eµ|x`Rtp1´tqe1|2´
p1`ϵqR2tp1´tq

16µ pBt ´ i∆qg}L2pRn`1q.

The claim follows since

}Btf ´ Sf ´ Af}
2
L2pRn`1q “ }Btf ´ Af}

2
L2pRn`1q ` }Sf}

2
L2pRn`1q ´ 2RexSf, Btf ´ AfyL2pRn`1q

ě ´

ż ż

SfpBtf ´ Afqdxdt ´

ż ż

pBtf ´ AfqSfdxdt

“

ż ż

pBt ´ AqSff̄dxdt ´

ż ż

SpBt ´ Aqff̄dxdt

“

ż ż

ppBtSqf ` SBtf ´ ASf ´ SBtf ` SAfqf̄dxdt

“

ż ż

pBtS ` rS,Asqff̄dxdt

“

ż

xBtS ` rS,Asf, fyL2pRnqdt.

This concludes the proof.

Now we are ready to prove Theorem 1.

Proof. Let u be described as in the Theorem 1. Let ũ, Ṽ be defined through the Appell
transformation in Lemma 2.1, where A ` iB “ i. We have that

Btũ “ ip∆ũ ` Ṽ px, tqũq in Rn
ˆ r0, 1s,

and for γ “ 1
αβ
, γ ą 1

2
, }eγ|x|2ũp0q}L2pRnq, }e

γ|x|2ũp1q}L2pRnq are both finite. Let R ą 0, and let
µ and ϵ ą 0 small enough satisfy

p1 ` ϵq3{2

2p1 ´ ϵq3
ă µ ď

γ

1 ` ϵ
, (4.3)
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and
1 ´ ϵ

2
ě

1

R
,

1 ` ϵ

2
ď 1 ´

1

R
. (4.4)

Remark. p1`ϵq5{2

p1´ϵq3
will be close to 1 if ϵ is small enough, and since γ ą 1

2
, there exists µ such

that (4.3) is satisfied.

We want to use Lemma 4.1, so we need to define a function g with compact support. Let
θ P C8

0 pRnq be such that

θpxq “

#

1, |x| ď 1

0, |x| ą 2

and for M ě R, θMpxq “ θp x
M

q,

θMpxq “

#

1, |x| ď M

0, |x| ą 2M.
(4.5)

Let η1ptq P C8
0 pRq be such that

η1ptq “

#

1, t ě 1

0, t ă 1
2
,

η1,Rptq “ η1pRtq “

#

1, t ě 1
R

0, t ă 1
2R
.

Now let η2ptq “ η1p1 ´ tq, and

η2,Rptq “ η2pRtq “

#

1, t ď 1 ´ 1
R

0, t ě 1 ´ 1
2R
.

Then we define ηRptq “ η1,Rptqη2,Rptq. It follows

ηRptq “

#

1 t P r 1
R
, 1 ´ 1

R
s

0 t P r0, 1
2R

s Y r1 ´ 1
2R
, 1s.

(4.6)

We compute the derivatives

∇θMpxq “
1

M
∇θp

x

M
q,

∆θM “
1

M2
∆θp

x

M
q,

η1
Rptq “ Rη1

pRtq,
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so that

}∇θMpxq}L8pRnq ď
N

M

}∆θMpxq}L8pRnq ď
N

M2

}η1
Rptq}L8pr0,1sq ď NR

for some constant N.
Finally, we define gpx, tq “ ũpx, tqθMpxqηRptq.

It follows from a direct computation that

Btg ´ ip∆g ` Ṽ gq “ θMη
1
Rũ ´ ip2∇θM ¨ ∇ũ ` ũ∆θMqηR. (4.7)

Now observe that for the first term on the right-hand side of (4.7)

supppθMη
1
Rũq Ă tpx, tq : |x| ă 2M, t P r

1

2R
,
1

R
s Y r1 ´

1

R
, 1 ´

1

2R
su,

and on this region we have, using Young’s inequality and (4.3),

µ|x ` Rtp1 ´ tqe1|
2

ď µp|x|
2

` 2Rtp1 ´ tq|x| ` R2t2p1 ´ tq2q

ď µp|x|
2

` 2|x| ` 1q

ď µp|x|
2

` ϵ|x|
2

`
1

ϵ
` 1q

“ µp|x|
2
p1 ` ϵq ` µp1 `

1

ϵ
q

ď γ|x|
2

`
γ

ϵ
. (4.8)

For the second term on the right-hand side of (4.7) we have

supppp2∇θM ¨ ∇ũ ` ũ∆θMqηRq Ă tpx, tq :M ď |x| ď 2M, t P p
1

2R
, 1 ´

1

2R
qu,

so that

µ|x ` Rtp1 ´ tqe1|
2

ď µp|x|
2

` 2R|x|tp1 ´ tq ` R2t2p1 ´ tq2q

ď µp|x|
2

` 2R|x| ` R2
q

ď µp|x|
2

` ϵ|x|
2

`
R2

ϵ
` R2

q

ď µ|x|
2
p1 ` ϵq ` R2

p
1

ϵ
` 1q

ď γ|x|
2

` γ
R2

ϵ
. (4.9)
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Since g has compact support in Rn ˆ r0, 1s we apply the Carleman estimate in Lemma 4.1.
Let

ϕpx, tq “ µ|x ` Rtp1 ´ tqe1|
2

´
p1 ` ϵqR2tp1 ´ tq

16µ
.

Using the lemma, the bounds for ∇θM ,∆θM and η1
R together with (4.8) and (4.9) we get

R}eϕg}L2pRnˆr0,1sq ď Nϵ}Ṽ }L8pRnˆr0,1sq}e
ϕg}L2pRnˆr0,1sq

` NϵR}eγ|x|2`γ{ϵũ}L2pRnˆr0,1sq

` Nϵ
1

M
}eγ|x|2`γR2{ϵ

p|ũ| ` |∇ũ|q}L2pRnˆr0,1sq

ď Nϵ}Ṽ }L8pRnˆr0,1sq}e
ϕg}L2pRnˆr0,1sq

` NϵRe
γ{ϵ sup

tPr0,1s

}eγ|x|2ũ}L2pRnq

` Nϵ
1

M
eγR

2{ϵ
}eγ|x|2

p|ũ| ` |∇ũ|q}L2pRnˆr 1
2R
,1´ 1

2R
sq. (4.10)

For R ě 2Nϵ}Ṽ }L8pRnˆr0,1sq,

R}eϕg}L2pRnˆr0,1sq ď 2NϵRe
γ{ϵ sup

tPr0,1s

}eγ|x|2ũ}L2pRnq

` 2Nϵ
1

M
eγR

2{ϵ
}eγ|x|2

p|ũ| ` |∇ũ|q}L2pRnˆr 1
2R
,1´ 1

2R
sq. (4.11)

From Corollary 3.2 we have that

}eγ|x|2
p|ũ| ` |∇ũ|q}L2pRnˆr 1

2R
,1´ 1

2R
sq ă 8. (4.12)

By letting M to `8, the last term on the right-hand side of (4.11) goes to zero, and we are
only left with

R}eϕg}L2pRnˆr0,1sq ď 2NϵRe
γ{ϵ sup

tPr0,1s

}eγ|x|2ũ}L2pRnq. (4.13)

In Bϵp1´ϵq2 R
4

ˆ r1´ϵ
2
, 1`ϵ

2
s, we have |x| ă ϵp1 ´ ϵq2R

4
ă R ď M and t P r1´ϵ

2
, 1`ϵ

2
s Ă r 1

R
, 1 ´ 1

R
s,

which implies that in Bϵp1´ϵq2 R
4

ˆ r1´ϵ
2
, 1`ϵ

2
s, g “ ũ. Moreover,

ϕpx, tq ě µpRtp1 ´ tq ´ |x|q
2

´
p1 ` ϵqR2tp1 ´ tq

16µ

ě µ

ˆ

Rp1 ´ ϵq2

4
´
Rϵp1 ´ ϵq2

4

˙2

´
R2p1 ` ϵqp1 ` ϵq2

64µ

“
µ

16
p1 ´ ϵq6R2

´
p1 ` ϵq3R2

64µ

“
R2

64
p4µ2

p1 ´ ϵq6 ´ p1 ` ϵq3q ą 0, (4.14)
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where we used (4.3) in the last inequality. By using (4.14), and since suptPr0,1s }eγ|x|2ũ}L2pRnq

is finite, it follows that

R}e
R2

64
p4µ2p1´ϵq6´p1`ϵq3qg}L2pB

ϵp1´ϵq2 R
4

ˆr 1´ϵ
2
, 1`ϵ

2
sq ď R}eϕg}L2pRnˆr0,1sq

ď 2NϵRe
γ{ϵ sup

tPr0,1s

}eγ|x|2ũ}L2pRnq

ď RNγ,ϵ,

or equivalently, since g “ ũ in Bϵp1´ϵq2 R
4

ˆ r1´ϵ
2
, 1`ϵ

2
s,

ReCγ,ϵR2

}ũ}
L2pB

ϵp1´ϵq2 R
4

ˆr
p1´ϵq

2
, p1`ϵq

2
sq

ď RNγ,ϵ. (4.15)

We also have that

}ũptq}
2
L2pRnq ď

ż

BR
4

|ũptq|
2dx ` e´γ R2

16

ż

|x|ąR
4

|ũptq|eγ|x|2dx ď }ũptq}
2
L2pBR

4
q ` e´γ R2

16 N2
γ , (4.16)

and from Lemma 1.1

1

NV

}ũp0q}L2pRnq ď }ũptq}L2pRnq ď NV }ũp0q}L2pRnq, for all t P r0, 1s, NV “ esupr0,1s }ImṼ ptq}L8pRnq .

(4.17)
Combining the two inequalities above,

1

N2
V

}ũp0q}
2
L2pRnq ď }ũptq}

2
L2pBR

4
q ` e´γR2{16N2

γ ,

Then, integrating in time from 1´ϵ
2

to 1`ϵ
2

and using (4.15),

ϵ
1

N2
V

}ũp0q}
2
L2pRnq ď }ũ}

2
L2pBR

4
ˆrp1´ϵq{2,p1`ϵq{2s ` e´γR2{16N2

γ,ϵ

ď Nγ,ϵe
´Cγ,ϵR2

` e´γR2{16Nγ,ϵ.

so that finally, by using that pa ` bqλ ď Cλpaλ ` bλq, @ a, b, λ ą 0,

}ũp0q}L2pRnq ď Nγ,ϵ,V e
´Cγ,ϵR2

` e´γR2{16Nγ,ϵ,V ÝÑ 0, as R Ñ 8.

which shows that ũ “ 0. By going back with the Appell transformation we can conclude the
proof.

Remark. Since u is a Cpr0, 1s, L2pRnqq solution, we can not guarantee that the function
g “ θMηRũ is regular enough. To fix the problem, let ũρ “ ũ ˚ hρ, where h is a radial
mollifier. Then gρ “ θMηRũρ P C8

0 pRn ˆ r0, 1sq.
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Claim 4.1. If
}eγ|x|2ũp0q}L2pRnq ă 8 and }eγ|x|2ũp1q}L2pRnq ă 8,

then
}eγ|x|2ũρp0q}L2pRnq ă 8 and }eγ|x|2ũρp1q}L2pRnq ă 8.

Assuming the claim, we can apply the proof to ũρ, to deduce that ũρ “ 0, and hence
ũ “ 0.
Proof of Claim: Let δ ą 0. By Young’s inequality

|x|
2

“ |x ´ y ` y|
2

ď |x ´ y|
2

` 2|x ´ y||y| ` |y|
2

ď p1 ` δq|x ´ y|
2

` Npδq|y|
2,

so that

}e
γ

1`δ
|x|2ũρp0q}L2pRnq “

›

›

›
e

γ
1`δ

|x|2
ż

Rn

ũ0px ´ yqhρpyqdy
›

›

›

L2pRnq

ď

›

›

›

ż

Rn

e
γ

1`δ
p1`δq|x´y|2ũ0px ´ yqe

Npδq

1`δ
γ|y|2hρpyqdy

›

›

›

L2pRnq
.

By Young’s inequality for convolution, it follows that

}e
γ

1`δ
|x|2ũρp0q}L2pRnq ď }eγ|x|2u0}L2pRnq}e

Npδq

1`δ
|y|2hρpyq}L1pRnq,

where }e
Npδq

1`δ
|y|2hρpyq}L1pRnq ă 8 by the right choice of h. Since this holds for all δ ą 0, we

can apply the monotone convergence theorem and deduce the result for δ “ 0. By the same
argument we can deduce the same result for }eγ|x|2ũρp1q}L2pRnq.
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5 Counterexample of a Formal Carleman Argument

In this chapter, we give an example, presented in [6], of a formal Carleman argument for
which the corresponding inequalities lead to a false statement.

Let u be the solution of the free Schrödinger equation (2.1) R ˆ r´1, 1s, and define
f “ eaptq|x|2u, for some function aptq to be chosen later. We also define Hptq “ }fptq}2L2pRnq

.

From (2.12) and (2.13) in Chapter 2, we deduce that

Btf “ Sf ` Af,

where S “ a1x2 ´ 4iapxBx ` 1{2q and A “ ipB2
x ` 4a2x2q. Moreover, from (2.16) we get that

BtS ` rS,As “ a2x2 ´ 8ixa1
Bx ´ 4ia1

` 32x2a3 ´ 8aB
2
x “

2a1

a
S ´ 8aB

2
x ` x2pa2

` 32a3 ´
2a12

a
q.

We require now that a satisfies

a2
` 32a3 ´

2a12

a
“ 0 in r´1, 1s,

and we assume the following claim. See Appendix D for details.

Claim 5.1. If a is a solution of the second-order nonlinear ODE
#

32a3 ` a2 ´ 2a12

a
“ 0

ap0q “ 1, a1p0q “ 0,

then aptq ą 0, even, and limRÑ8 RapRq “ 0.

It follows that

xpBtS ` rS,Asqf, fyL2pRq ě
2a1

a
xSf, fyL2pRq.

Moreover,

B
2
t logHptq ě 2

xpBtS ` rS,Asqf, fyL2pRq

xf, fyL2pRq

ě 4
a1

a

xSf, fyL2pRq

xf, fyL2pRq

“ 2
a1

a

H 1

H

“ 2
a1

a
BtplogHptqq.

From this, we deduce that

Btpa
´2

BtplogHptqqq ě 0 in r´1, 1s,
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which yields that for ´1 ď s ď 0 ď τ ď 1,

a2pτqBs logHpsq ď a2psqBτ logHpτq.

Integrating the above inequality from ´1 ď s ď 0 and then from 0 ď τ ď 1, and using that
a is an even function, we get that

Hp0q ď Hp´1q
1{2Hp1q

1{2. (5.1)

Define the function aRptq “ RapRtq. Then aR also satisfies the ODE, so by (5.1)

}eRx
2

up0q}L2pRq ď }eRapRqx2up´1q}L2pRq}e
RapRqx2up1q}L2pRq.

If we let R Ñ 8 in the above inequality, the right-hand side stays finite if we assume that
u P Cpr´1, 1s, L2pRqq, while the left-hand side goes to infinity, unless u ” 0. This would
imply that all solutions of the free Schrödinger equation are zero, but we can find an initial
data that contradicts this fact.

So what went wrong in this example? Observe first that we did not assume anything
on the weighted norms }eγ|x|2up´1q}L2pRq and }eγ|x|2up1q}L2pRq. If we add this assumption,
we have seen from Hardy’s uncertainty principle that u ” 0. Since we did not assume this
condition to hold, we can find examples of initial data not satisfying this, which makes the
statement false. For example, if u0 “ e´|x|2 , then

}e
|x|2

β2 u0}L2pRq “ }e
|x|2p 1

β2
´1q

}L2pRq,

which is finite if and only if
β ą 1.

Moreover,

upx, tq “ p4it ´ 1q
´1{2e´

´|x|2

4it`1 ,

so that

upx, 1q “ Ce
´4i|x|2

17 e
|x|2

17 ,

which means that }e
|x|2

α

2

upx, 1q}L2pRq can never be finite for any α ą 0, and Hardy’s uncer-
tainty principle can never be applied.

The reason why this argument breaks down is that because for the specific weight function
eaptq|x|2 , the weighted L2 norm }eaptq|x|2uptq}L2pRq is not finite for 0 ă t ă 1.
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6 Application to the Non-Linear Schrödinger Equation

Consider now the non-linear Schrödinger equation
#

Btu “ ip∆u ` F pu, ūqq in Rn ˆ r0, 1s

upx, 0q “ u0.
(6.1)

Suppose that u is a solution to (6.1) such that for αβ ă 2,

}e
|x|2

β2 u0}L2pRnq and }e
|x|2

α2 up1q}L2pRnq (6.2)

are finite. Then
Btu “ ip∆u ` V px, tquq

where V px, tq “
F pu,ūq

u
. If V satisfies either

lim
RÑ8

}V }L1pr0,1s,L8pRnzBRqqq “ 0 (6.3)

or

sup
tPr0,1s

}e
|x|2

pαt`p1´tqβq2 V ptq}L8pRnq ă 8, (6.4)

we can conclude by Theorem 1 that u ” 0. In particular, consider the cubic NLS

Btu “ ip∆u ` |u|
2uq in Rn

ˆ r0, 1s

and let u be a Cpr0, 1s, HkpRnqq for k P Z` k ą n{2 solution (see [19] for existence of solutions
there) such that (6.2) is satisfied. Then

V px, tq “
|u|2u

u
“ |u|

2.

Since k ą n{2 we have by the Sobolev embedding theorem, and since Hk is an algebra, that

}V }L8pRnzBRq “ }|u|
2
}L8pRnzBRq

ď }u}
2
HkpRnzBRq

,

so that

lim
RÑ8

}V }L1pr0,1s,L8pRnzBRqq ď N lim
RÑ8

ż 1

0

ż

Rn

ÿ

|αďk

}B
αu}L2pRnzBRq “ 0

by applying the dominated convergence theorem. This means that the potential V satisfies
the condition (6.3), so that by applying Theorem 1, u ” 0.

Remark. The result can also be generalized to the case where u1 and u2 are two solutions
of the cubic NLS. In particular, this is just a general case of the following Theorem from [6].

Theorem 2 (EKPV). Let u1 and u2 be pCr0, 1s, HkpRnqq solutions of (0.2) with k P Z`, k ą

n{2, F : C2 Ñ C, F P Ck and F p0q “ BuF p0q “ BūF p0q “ 0. If there are positive constants

α and β with αβ ă 2 such that }e
|x|2

β2 pu1p0q ´ u2p0qq}L2pRnq, and }e
|x|2

α2 pu1p1q ´ u2p1qq}L2pRnq

are finite. Then u1 ” u2.
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A Parabolic Regularization

A.1 A Classical Energy Estimate

One of the main steps in the proof was to do a parabolic regularization. In this section, we
go into more detail on the parabolic regularization to the Schrödinger equation and prove
some useful estimates.

We consider u to be the solution to the problem

#

Btu “ pA ` iBqp∆u ` V px, tqu ` F px, tqq

upx, 0q “ u0
, (A.1)

where A ą 0, B P R. Observe that if u0 P L2pRnq, then by the semigroup theory,(see
Appendix C) there exists a solution u P Cpr0, 1s, L2pRnqq. However, we have more regularity
on the solution.

Lemma A.1. Let u satisfy the equation

#

Btu “ pA ` iBqp∆u ` V px, tqu ` F px, tqq in Rn ˆ r0, 1s

upx, 0q “ u0

where A ą 0, B P R. Then for all t P r0, 1s,MV “ 2 suptPr0,1s }AReV ´ BImV }L8pRnq and

MAB “
?
A2 ` B2 we have

}uptq}
2
L2pRnq ` 2A

ż t

0

}∇u}
2
L2pRnqds ď eMV `MAB}u0}L2pRnq ` MABe

MV `MAB}F }
2
L2pRnˆr0,tsq.

In particular, if u0 P L2pRnq, F P L2pRn ˆ r0, 1sq and V is bounded then

u P Cpr0, 1s, L2
pRn

qq X L2
pr0, 1s, H1

pRn
qq.

Proof. Formally,

Bt}u}
2
L2pRnq “ 2Re

ż

Rn

Btuūdx

“ 2RepA ` iBq

ˆ
ż

Rn

∆uū ` V px, tq|u|
2

` F px, tqūdx

˙

“ ´2ARe

ż

Rn

|∇u|
2dx ` 2RepA ` iBq

ż

Rn

V px, tq|u|
2

` F px, tqūdx

ď ´2A

ż

Rnq

|∇u|
2dx ` 2 sup

tPr0,1s

}AReV ´ BImV }L8pRnq}u}
2
L2pRnq

` 2
?
A2 ` B2}F }L2pRnq}u}L2pRnq.
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By Young’s inequality, it follows that

Bt}u}
2
L2pRnq ď ´2A

ż

Rnq

|∇u|
2dx ` pMV ` MABq}u}

2
L2pRnq ` MAB}F }

2
L2pRnq.

Integrating from 0 to t, we get that

}u}
2
L2pRnq ď }up0q}L2pRnq ´ 2A

ż t

0

}∇u}
2
L2pRnqds ` MAB

ż t

0

}F }
2
L2pRnqds

` pMV ` MABq

ż t

0

}u}
2
L2pRnqds.

Applying Grönwall’s lemma (1.1) with

ϕptq “ }up0q}L2pRnq ´ 2A

ż t

0

}∇u}
2
L2pRnqds ` MAB

ż t

0

}F }
2
L2pRnqds,

and ψptq “ MV ` MAB, we deduce that

}u}
2
L2pRnq ď ϕptq ` pMV ` MABq

ż t

0

ϕpsqepMV ´MABpt´sqds.

Since

pMV ` MABq

ż t

0

ϕpsqepMV `MABqpt´sqds

“ pMV ` MABq

´

ż t

0

}up0q}
2
L2pRnqe

pMV `MABqpt´sqds `

ż t

0

MAB

ż s

0

}F }
2
L2pRnqdτe

pMV `MABqpt´sqds

´ 2A

ż t

0

ż s

0

}∇u}L2pRnqdτe
pMV `MABqpt´sqds

¯

ď }fp0q}
2
L2pRnqpe

pMV `MABqt
´ 1q ` MAB

ż t

0

}F }
2
L2pRnqdτpepMV `MABqt

´ 1q

´ 2A

ż t

0

}∇u}
2
L2pRnqdτpepMV `MABqt

´ 1q,

we deduce that

}u}
2
L2pRnq ` 2A

ż t

0

}∇u}
2
L2pRnq ď eMV `MAB}up0q}

2
L2pRnq ` MABe

MV `MAB}F }
2
L2pRnˆr0,tsq.

This proves the result formally for u0 P L2pRnq and rigorously for u0 P HspRnq, s ą n{2 ` 2,
by the Sobolev Embedding Theorem. If u0 P L2pRnq, there exists a sequence tuk0u P HspRnq

such that

uk0 ÝÑ u0 in L2
pRn

q
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and by the formal argument, uk P L8pr0, 1s, L2pRnqq X L2pr0, 1s, H1pRnqq and

}uk}L8pr0,1s,L2pRnqq ` }uk}L2pr0,1s,H1pRnqq ă 8.

Then by the Banach-Alaoglu Theorem D a subsequence tukju of tuku and ũ such that

ukj ÝÑ ũ weak * in L8
pr0, 1s, L2

pRn
qq

and

ukj á ũ in L2
pr0, 1s, H1

pRn
qq.

On the other hand, we have by the semigroup theory that u P Cpr0, 1s, L2pRnqq, and that,
see in particular the argument we used for convergence in Lemma 1.1,

uk ÝÑ u in Cpr0, 1s, L2
pRn

qq,

and therefore also weakly * in L8pr0, 1s, L2pRnqq. By uniqueness of the weak * limit, ũ “ u,
and hence u P Cpr0, 1s, L2pRnqq X L2pr0, 1s, H1pRnqq.

Remark. Now it makes sense to consider solutions u of (A.1) to be in Cpr0, 1s, L2pRnqq X

L2pr0, 1s, H1pRnqq, which we in particular do in Lemma 3.1, when u0 P L2pRnq.

A.2 Proof of Lemma 3.2

Proof. We proceed exactly as in Lemma 3.1 to deduce that

Re xSf, fyL2pRnq “ ´

ż

Rn

A|∇f |
2dx `

ż

Rn

pA|∇ϕ|
2

` Btϕq|f |
2dx ` 2B Im

ż

Rn

∇ϕ ¨ ∇ff̄dx

`

ż

Rn

pAReV ´ BImV q|f |
2dx

“ p1q ` p2q ` p3q ` p4q.

Using Young with ϵ “ A
2B

instead of A
B
we get that

|p3q| ď
A

2

ż

Rn

|∇f |
2dx `

2B2

A

ż

Rn

|∇ϕ|
2
|f |

2dx.

Moreover, we are also interested in keeping ´A
ş

Rn |∇ϕ|2|f |2, so we write

Re xSf, fyL2pRnq ď
´A

2

ż

Rn

|∇f |
2dx ´ A

ż

Rnq

|∇ϕ|
2
|f |

2dx

`

ż

Rn

„ˆ

2B2

A
` 2A

˙

|∇ϕ|
2

` Btϕ

ȷ

|f |
2dx

` }AReV ´ BImV }L8pRnq}f}
2
L2pRnq.
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If we choose aptq “
γA

8pA2`B2qγt`A
, and ϕpx, tq “ aptq|x|2, then

p
2B2

A
` 2Aq|∇ϕ|

2
` Btϕ “ 0, (A.2)

so proceeding with the argument just as in Lemma 3.1, we will deduce that

Bt}f}
2
L2pRnq ď 2 sup

tPr0,1s

}AReV `
´ BImV }L8pRnq}f}

2
L2pRn ` 2

?
A2 ` B2}eϕF }L2pRnq}f}L2pRnq

´ A}∇f}
2
L2pRnq ´ 2A}∇pϕqf}

2
L2pRnq

“ MV }f}
2
L2pRnq ` 2MAB}eϕF }L2pRnq}f}L2pRnq ´ A}∇f}

2
L2pRnq ´ 2A}∇pϕqf}

2
L2pRnq.

Integrating from 0 to t, and using Young’s inequality, implies

}f}
2
L2pRnq ď}fp0q}

2
L2pRnq ´ A

ż t

0

}∇f}
2
L2pRnqds ´ 2A

ż t

0

}∇ϕf}
2
L2pRnqds ` MAB

ż t

0

}eϕF }
2
L2pRnqds

` pMV ` MABq

ż t

0

}f}
2
L2pRnqds.

Applying Grönwall’s lemma (1.1), we get

}f}
2
L2pRnq ď ψptq `

ż t

0

ψpsqpMV ` MABqepMV `MABqpt´sqds,

where

ψptq “ ´A

ż t

0

}∇f}
2
L2pRnqds ´ 2A

ż t

0

}∇pϕqf}
2
L2pRnqds ` }fp0q}L2pRnq ` MAB

ż t

0

}eϕF }
2
L2pRnqds.

Moreover, we have that

pMV ` MABq

ż t

0

ψpsqepMV `MABqpt´sqds

“ pMV ` MABq

´

ż t

0

}fp0q}
2
L2pRnqe

pMV `MABqpt´sqds

`

ż t

0

MAB

ż s

0

}eϕF }
2
L2pRnqdτe

pMV `MABqpt´sqds ´ A

ż t

0

ż s

0

}∇f}L2pRnqdτe
pMV `MABqpt´sqds

´ 2A

ż t

0

ż s

0

}∇ϕf}L2pRnqdτe
pMV `MABqpt´sqds

¯

ď }fp0q}
2
L2pRnqpe

pMV `MABqt
´ 1q ` MAB

ż t

0

}eϕF }
2
L2pRnqdτpepMV `MABqt

´ 1q

´ A

ż t

0

}∇f}
2
L2pRnqdτpepMV `MABqt

´ 1q ´ 2A

ż t

0

}∇ϕf}
2
L2pRnqdτpepMV `MABqt

´ 1q.
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Thus,

}f}
2
L2pRnq ď epMV `MABqt

´

´ A

ż t

0

}∇f}L2pRnqds ´ 2A

ż t

0

}∇ϕf}L2pRnqds ` }fp0q}L2pRnq

` MAB

ż t

0

}eϕF }L2pRnqds
¯

,

which implies

}f}
2
L2pRnq ` A}∇f}

2
L2pRnˆr0,tsq ` 2A}∇ϕf}

2
L2pRnˆr0,tsq ď }fp0q}L2pRnqe

pMV `MABq

` MABe
pMV `MABq

}eϕF }L2pRnˆr0,tsq,

when fpx, tq “ e
γA|x|2

8pA2`B2qγt`Aupx, tq, MV “ suptPr0,1s }AReV ` ´ BImV }L8pRnq and MAB “
?
A2 ` B2. The formal argument can be made rigorous by the same argument as in Lemma

3.1.
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B Justification of Computations

B.1 Lemma 3.4

We will now prove the argument in Lemma 3.4 rigorously. Let ρ P p0, 1q, a P p0, 1{2q we
define a new function

ϕapxq “

#

|x|2, |x| ă 1
2|x|2´a´a

2´a
, |x| ě 1,

and let ϕa,ρ “ ϕa˚θρ, where θ P C8
0 pRnq is a radial mollifier. Then we define fa,ρ “ eγϕa,ρu.We

will replace f with fa,ρ, so we need to compute the derivatives and BtSa,ρfa,ρ`rSa,ρ,Aa,ρsfa,ρ.
Observe that at infinity ϕa,ρ does not grow faster then |x|2´a, so we can use Lemma 3.1 to
justify that }eγϕa,ρuptq}L2pRnq will be finite for all time 0 ď t ď 1. We see that ϕa is C1pRnq,
but not C2pRnq. However, taking the second derivative still makes sense pointwise but is not
continuous. Indeed, have that

∇ϕa “

#

2x, |x| ă 1

2x|x|´a |x| ě 1

∆ϕa “

#

2n, |x| ă 1

2pn ´ aq|x|´a |x| ě 1

∆ϕa is not continuous for |x| “ 1, and we compute Bj∆ϕa in the distributional sense. We
have that

Bj∆ϕapxq “ ´2apn ´ aqxj|x|
´a´2

1|x|ě1 ´ 2axjdσ1, (B.1)

where dσ1 is the surface measure on BB1. Moreover, ϕa is a convex function. Indeed, since
ϕa is a radial function, and

ϕ1
a “

#

2r, r ă 1

2r1´a, r ě 1

ϕ2
a “

#

2, r ă 1

2p1 ´ aqr´a, r ě 1

we see that ϕa is convex as a radial function. We claim that this implies that the Hessian-
matrix D2ϕa is positive definite. We do the computation for n “ 2, but the general case is
similar. For |x| ă 1 the calculation is trivial, so we only consider the case |x| ě 1.

D2ϕa “ ϕ2
a

«

x21
r2

x1x2
r2

x1x2
r2

x22
r2

ff

` ϕ1
a

«

1
r

´
x21
r3

´x1x2
r3

´x1x2
r3

1
r

´
x22
r3

ff

:“ D1 ` D2 (B.2)

For a vector ph, kq P R2 we compute ph, kqD1ph, kqT and ph, kqD2ph, kqT .

ph, kqD1ph, kq
T

“ ϕ2
ap
x21
r2
h2 ` 2

x1x2
r2

hk `
x22
r2
k2q “ ϕ2

ap
x1h

r
`
x2k

r
q
2, (B.3)
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ph, kqD2ph, kq
T

“
ϕ1
a

r
p1 ´

x21
r2

qh2 ´
2x1x2
r2

hk ` p1 ´
x22
r2

qk2 “
ϕ1
a

r

´

h2 ` k2 ´ p
x1
r
h `

x2
r
kq

2
¯

(B.4)

Adding (B.3) and (B.4) we deduce that

ph, kqD2ϕaph, kq
T

“ 2p1 ´ aqr´a

ˆ

x1h

r
`
x2k

r

˙2

` 2r´a

˜

h2 ` k2 ´

ˆ

x1h

r
`
x2k

r

˙2
¸

“ ´2ar´a

ˆ

x1h

r
`
x2k

r

˙2

` 2r´a
ph2 ` k2q

ě ´4ar´a

ˆ

px1hq2

r2
`

px2kq2

r2

˙

` 2r´a
ph2 ` k2q

ě ´4ar´a
ph2 ` k2q ` 2r´a

ph2 ` k2q

“ 2r´a
p1 ´ 2aqph2 ` k2q ě 0

for a ă 1
2
, and we deduce that ϕa is convex. However, since we want to work with ϕa,ρ,

we want to show that taking the convolution does not change this property. We claim that
D2pϕa ˚ θρq “ D2ϕa ˚ θρ. Indeed, for n=2, we have that

D2
pϕa ˚ θρq “

«

B2ϕa
Bx21

˚ θρ
B2ϕa

Bx1x2
˚ θρ

B2ϕa
Bx2x1

˚ θρ
B2ϕa
Bx22

˚ θρ

ff

“

«

ş

B2ϕa
Bx21

psqθρpt ´ sqds
ş

B2ϕa
Bx1x2

psqθρpt ´ sqds
ş

B2ϕa
Bx2x1

psqθρpt ´ sqds
ş

B2ϕa
Bx22

psqθρpt ´ sqds

ff

“

ż

θρpt ´ sq

«

B2ϕa
Bx21

psq B2ϕa
Bx1x2

psq
B2ϕa

Bx2x1psq

B2ϕa
Bx22

psq

ff

ds

“

ż

θρpt ´ sqD2ϕpsqds

“ θρ ˚ D2ϕa

Since θρ ě 0, it follows that D2pϕa,ρq ě 0. Now we need to compute BtSa,ρ ` rSa,ρ,Aa,ρs for
ϕa ρ. Recall that

BtSa,ρ ` rSa,ρ,Aa,ρs

“ γB
2
t ϕa,ρ ` γpA2

` B2
qr4γ2D2ϕa,ρp∇ϕa,ρq ¨ ∇ϕa,ρ ´ 4∇ ¨ pD2ϕa,ρp∇qq ´ ∆2ϕa,ρs

` 4Aγ2r∇ϕa,ρ ¨ ∇pBtϕa,ρqs ´ 2iBγr2∇pBtϕa,ρq ¨ ∇ ` ∆pBtϕa,ρqs.

Since the weight does not depend on t, we can reduce it to

BtSa,ρ ` rSa,ρ,Aa,ρs “ γpA2
` B2

qr4γ2D2ϕa,ρp∇ϕa,ρq ¨ ∇ϕa,ρ ´ 4∇ ¨ pD2ϕa,ρp∇qq ´ ∆2ϕa,ρs.
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From (B.1) we deduce that

∆2ϕa,ρ “

n
ÿ

j“1

Bj∆ϕa ˚ Bjθρ

“

n
ÿ

j“1

´2apn ´ aqxj|x|
´a´2

1|x|ě1 ˚ Bjθρ ´ 2axjdσ1 ˚ Bjθρ,

and by using Young’s inequality for convolutions

}∆2ϕa,ρ}L8pRnq ď

n
ÿ

j“1

2apn ´ aq}xj|x|
´a´2

1|x|ě1 ˚ Bjθρ}L8pRnq ` 2a}xjdσ1 ˚ Bjθρ}L8pRnq

ď

n
ÿ

j“1

2apn ´ aq}|x|
´1
1|x|ě1}L1pRnq}Bjθρ}L8pRnq ` 2a}xjdσ1 ˚ Bjθρ}L8pRnq.

The first part will be bounded by Cpn, ρqa. We want to find a bound for the second part.
Let ψ be a test function and let θ̃pxq “ θp´xq. Then

xxjdσ1 ˚ Bjθρ, ψy “ xdσ, Bj θ̃ρ ˚ pxjψqy

“

ż

BB1

Bj θ̃ρ ˚ pxjψqdσpxq

“

ż

BB1

ˆ
ż

Rn

Bj θ̃ρpx ´ yqyjψpyqdy

˙

dσpxq

“

ż

Rn

ψpyq

ˆ
ż

BB1

yjBj θ̃ρpx ´ yqdσpxq

˙

dy

“ xΘ, ψy

so that xjdσ1 ˚ Bjθρ “ Θ “
ş

BB1
yjBj θ̃ρpx ´ yqdσpxq as a distribution. Moreover,

Θpyq “ ´

ż

BB1

pxj ´ yjqBj θ̃ρpx ´ yqdσpxq `

ż

BB1

xjBj θ̃ρpx ´ yqdσpxq,

and

}Θ}L8pRnq ď |BB1|

´

}yjBj θ̃ρpyq}L8pRnq ` }Bj θ̃ρ}L8pRnq

¯

ď Cpn, ρq.

Combining the two parts we get the bound

}∆2ϕa,ρ}L8pRnq ď Cpn, ρqa. (B.5)
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The above inequality, and the fact that D2ϕa,ρ ě 0 will imply that

xpBtSa,ρ ` rSa,ρ,Aa,ρsqfa,ρ, fa,ρy “N1xD
2ϕa,ρ∇ϕa,ρ ¨ ∇ϕa,ρfa,ρ, fa,ρy

´ N2x∇ ¨ pD2ϕa,ρ∇fa,ρq, fa,ρy
´ N3x∆

2ϕa,ρfa,ρ, fa,ρy

“ N1x∇ϕTa,ρD2ϕa,ρ∇ϕaρfa,ρ, fa,ρy ` N2xD
2ϕa,ρ∇fa,ρ,∇fa,ρy

´ N3x∆
2ϕa,ρfa,ρ, fa,ρy. (B.6)

The first term of (B.6) is non-negative since ϕa,ρ is convex. For the second term, we have

xD2ϕa,ρ∇fa,ρ,∇fa,ρyL2pRnq “

ż

Rn

D2ϕa,ρ∇fa,ρ ¨ ∇fa,ρ

“

ż

Rn

∇fTa,ρD2ϕa,ρ∇fa,ρ

which also is non-negative since ϕa, ρ is a convex function. For the last term of (B.6) we use
(B.5) to obtain that

x∆2ϕa,ρfa,ρ, fa,ρyL2pRnq ď Cpn, ρqaxfa,ρ, fa,ρyL2pRnq.

Thus we are left with

BtSa,ρ ` rSa,ρ,Aa,ρs ě ´Cpn, ρqa “ ´M0pa, ρq, (B.7)

where M0pa, ρq Ñ 0 as a Ñ 0. Moreover we have that Btfaρ “ Sa,ρfa,ρ ` Aa,ρfa,ρ ` pA `

iBqpV fa,ρ ` eγϕa,ρF q, so that

|Btfaρ ´ Sa,ρfa,ρ ´ Aa,ρfa,ρ| ď
?
A2 ` B2pM1|fa,ρ| ` eγϕa,ρF q. (B.8)

Moreover,

ϕa,ρpxq ď |x|
2

˚ θρ

ď

ż

Rn

|x ´ y|
2θρpyqdy.

Since for all δ ą 0, |x ´ y| ď p1 ` δq|x|2 ` Cpδq|y|2, it follows that
ż

Rn

|x ´ y|
2θρpyqdy ď p1 ` δq|x|

2

ż

Rn

θρpyqdy `

ż

Rn

Cpδq|y|
2θρpyqdy

ď p1 ` δq|x|
2

` ρ2Cpδq

ż

Rn

|y|
2θpyqdy

ď p1 ` δq|x|
2

` ρ2Cpδ, nq.

By letting δ Ñ 0, it follows that

ϕa,ρ ď |x|
2

` ρ2Cpnq. (B.9)
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Then we define

M2pa, ρq “ sup
tPr0,1s

}eγϕa,ρF }L2pRnq

}u}L2pRnq

ď eρ
2CpnqM2.

We observe that eρ
2CpnqM2 Ñ M2 when ρ Ñ 0. Now we can use Lemma 3.3 to see that the

function Ha,ρ “ }fa,ρ}
2
L2pRnq

is logarithmically convex in [0,1]and that

Ha ρptq ď eNpM0pa,ρq`M1`M2pa,ρq`M2
1 `M2pa,ρq2qHa,ρp0q

1´tHa,ρp1q
t

so that

}eγϕa,ρuptq}
2
L2pRnq ď eNpCpn,ρqa`M1`ρ2CpnqM2`M2

1 `M2pa,ρq2q
}eγϕa,ρup0q}

2p1´tq

L2pRnq
}eγϕa,ρup1q}

2t
L2pRnq.

(B.10)
Finally, we obtain the result, by first letting a Ñ 0, then ρ Ñ 0. In particular, since ϕa is
a monotone increasing function, and converges to |x|2 pointwise as a Ñ 0, we can use the
Monotone convergence theorem to justify that

}eγ|x|2˚θρuptq}
2
L2pRnq ď eNpM1`M2pρq`M2

1 `M2pρq2q
}eγ|x|2˚θρup0q}

2p1´tq

L2pRnq
}eγ|x|2˚θρup1q}

2t
L2pRnq. (B.11)

Now we claim that || ¨ |2 ˚ θρpxq ´ |x|2| ď C1pnqρ2 ` C2pnqρ|x|. Indeed,

|| ¨ |
2

˚ θρpxq ´ |x|
2
| ď

ż

Rn

ˇ

ˇ

ˇ
|x ´ y|

2
´ |x|

2
ˇ

ˇ

ˇ
θρpyqdy

ď

ż

Rn

p|x| ` |y|q
2

´ |x|
2
qθρpyqdy

“

ż

Rn

ρ2|y|
2

` 2ρ|x||y|θpyqdy

“ ρ2
ż

Rn

|y|
2θpyqdy ` 2ρ|x|

ż

Rn

|y|
2θpyqdy

ď C1pnqρ2 ` C2pnqρ|x|.

Then, by also using (B.9), we deduce that

e´C1pnqρ2
}e´C2pnqρ|x|eγ|x|2u}

2
L2pRnq

ď }eγ|x|2˚θρuptq}
2
L2pRnq

ď eNpM1`M2pρq`M2
1 `M2pρq2q

}eγ|x|2˚θρup0q}
2p1´tq

L2pRnq
}eγ|x|2˚θρup1q}

2t
L2pRnq

ď eNpM1`M2pρq`M2
1 `M2pρq2qeCpnqρ2

}eγ|x|2up0q}
2p1´tq

L2pRnq
eCpnqρ2

}eγ|x|2up1q}
2t
L2pRnq.

The final result now follows by letting ρ Ñ 0 and using the Monotone Convergence Theorem
on the left-hand side.
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B.2 Lemma 3.5

We recall that for a P p0, 1
2
q and ρ P p0, 1q

ϕapxq “

#

|x|2, |x| ă 1
2|x|2´a´a

2´a
, |x| ě 1,

and ϕa,ρ “ ϕa ˚ θρ, where θ is radial mollifier. We define fa,ρ “ eγϕa,ρu. By Lemma 3.2 we can
justify that both }fa,ρ}L2pRnq and }∇fa,ρ}L2pRnˆr0,1sq will be finite for all t P r0, 1s. We proceed
as for the formal computation and deduce that

2

ż 1

0

tp1 ´ tqxBtSfa,ρ ` rSa,ρ,Aa,ρsfa,ρ, fa,ρyL2pRnq

ď Hp1q ` Hp0q ` 2

ż 1

0

p1 ´ 2tqRexBtfa,ρ ´ Sa,ρfa,ρ ´ Aa,ρfa,ρ, fa,ρyL2pRnqdt

`

ż 1

0

tp1 ´ tq}Btfa,ρ ´ Aa,ρfa,ρ ´ Sa,ρfa,ρ}2L2pRnqdt.

We first want to find a lower bound for xBtSfa,ρ ` rSa,ρ,Aa,ρsfa,ρ, fa,ρyL2pRnq. From (B.6),

xBtSfa,ρ ` rSa,ρ,Aa,ρsfa,ρ, fa,ρyL2pRnq

ě N
´

x∇ϕTa,ρD2ϕa,ρ∇ϕaρfa,ρ, fa,ρyL2pRnq ` xD2ϕa,ρ∇fa,ρ,∇fa,ρyL2pRnq (B.12)

´ x∆2ϕa,ρfa,ρ, fa,ρyL2pRnq

¯

. (B.13)

For the second term of (B.12), we have that

xD2ϕa,ρ∇fa,ρ,∇fa,ρyL2pRnq

“ xpD2ϕa ´ 2Iq ˚ θρ∇fa,ρ,∇fa,ρyL2pRnq ` xp2I ˚ θρq∇fa,ρ,∇fa,ρyL2pRnq

“ xpD2ϕa ´ 2Iq ˚ θρ∇fa,ρ,∇fa,ρyL2pRnq ` 2}∇fa,ρ}2L2pRnq.

Moreover, by using the expressions for the derivatives of ϕa and (B.2),

D2ϕa ´ 2I “ pϕ2
a ´ 2q

«

x21
r2

x1x2
r2

x1x2
r2

x22
r2

ff

` pϕ1
a ´ 2rq

«

1
r

´
x21
r3

´x1x2
r3

´x1x2
r3

1
r

´
x22
r3

ff

“ 1||x|ě1p2p1 ´ aq|x|
´a

´ 2qD1 ` 1|x|ě1p2|x|
´a

´ 2q|x|D2 :“ C1pa, xq.

Observe that

D1 “

«

x21
r2

x1x2
r2

x1x2
r2

x22
r2

ff

ď

„

1 1
2

1
2

1,

ȷ

,
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and

rD2 “ r

«

1
r

´
x21
r3

´x1x2
r3

´x1x2
r3

1
r

´
x22
r3

ff

ď

„

0 ´1
2

´1
2

0

ȷ

,

so that D1 and rD2 are bounded matrices, and C1pa, xq Ñ 0 pointwise when a Ñ 0. It follows
that

xD2ϕa,ρ∇fa,ρ,∇fa,ρyL2pRnq “ xC1pa, xq ˚ θρ∇fa,ρ,∇fa,ρyL2pRnq ` 2}∇fa,ρ}L2pRnq.

For the first term of (B.12) we do similar and write

x∇ϕTa,ρD2ϕa,ρ∇ϕa,ρfa,ρ, fa,ρyL2pRnq

“ x∇ϕTa,ρpD2ϕa ´ 2Iq ˚ θρ∇ϕa,ρfa,ρ, fa,ρyL2pRnq ` 2}∇ϕa,ρf}
2
L2pRnq

“ x∇ϕTa,ρpC1pa, xq ˚ θρq∇ϕa,ρfa,ρ, fa,ρyL2pRnq ` 2}∇ϕa,ρfa,ρ}2L2pRnq,

so that

xBtSfa,ρ ` rSa,ρ,Aa,ρsfa,ρ, fa,ρyL2pRnq

ě xC1pa, xq ˚ θρ∇fa,ρ,∇fa,ρyL2pRnq ` 2}∇fa,ρ}2L2pRnq

` x∇ϕTa,ρpC1pa, xq ˚ θρq∇ϕa,ρfa,ρ, fa,ρyL2pRnq ` 2}∇ϕa,ρfa,ρ}2L2pRnq

´ Cpn, ρqa}fa,ρ}L2pRnq.

Furthermore, since

∇fa,ρ “ eϕa,ρp∇ϕa,ρu ` ∇uq,

ż

Rn

|∇fa,ρ|2dx “

ż

Rn

e2ϕa,ρp|∇ϕa,ρ|2|u|
2

` |∇u|
2
qdx `

ż

Rn

e2ϕa,ρp∇ϕa,ρu ¨ ∇ūqdx

`

ż

Rn

e2ϕa,ρp∇u ¨ ∇ϕa,ρūqdx.

Integrating by parts shows that

ż

Rn

e2ϕa,ρ∇ϕa,ρu ¨ ∇ūdx “ ´

ż

Rn

e2ϕa,ρ∇ϕa,ρ ¨ ∇uūdx ´

ż

Rn

e2ϕa,ρ∇ ¨ p∇ϕa,ρq|u|
2dx

´

ż

Rn

2|∇ϕa,ρ|2e2ϕa,ρ |u|
2dx,

so that
ż

Rn

|∇fa,ρ|2 ` |∇ϕa,ρ|2|fa,ρ|2dx “

ż

Rn

e2ϕa,ρ |∇u|
2dx ´

ż

Rn

|fa,ρ|
2∇ ¨ p∇ϕa,ρqdx. (B.14)
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In addition, integration by parts, Cauchy-Schwarz and Young’s inequalities again show that

ż

Rn

|fa,ρ|
2∇ ¨ p∇ϕa,ρqdx ď 2

ż

Rn

|∇fa,ρ||fa,ρ||∇ϕa,ρ|dx

ď

ż

Rn

|∇fa,ρ|2dx `

ż

Rn

|fa,ρ|
2
|∇ϕa,ρ|2dx. (B.15)

Combining (B.14) and (B.15),

2

ż

Rn

|∇fa,ρ|2 ` |fa,ρ|
2
|∇ϕa,ρ|2dx ě

ż

Rn

e2ϕa,ρ |∇u|
2dx.

Thus,

ż 1

0

xBtSa,ρ ` rSa,ρ,Aa,ρsfa,ρ, fa,ρyL2pRnqtp1 ´ tqdt

ě 2

ż 1

0

ż

Rn

|∇fa,ρ|2 ` |∇ϕa,ρ|2|fa,ρ|
2tp1 ´ tqdxdt

`

ż 1

0

xC1pa, xq ˚ θρ∇fa,ρ,∇fa,ρyL2pRnq ` xϕTa,ρpC1pa, xq ˚ θρq∇ϕa,ρfa,ρ, fa,ρyL2pRnqdt

´

ż 1

0

Cpn, ρqa}fa,ρ}L2pRnqdt

ě
1

2

ż 1

0

ż

Rn

tp1 ´ tqe2ϕa,ρ |∇u|
2dxdt `

ż 1

0

ż

Rn

|∇ϕa,ρ|2|fa,ρ|2tp1 ´ tqdxdt

`

ż 1

0

xC1pa, xq ˚ θρ∇fa,ρ,∇fa,ρyL2pRnq ` xϕTa,ρpC1pa, xq ˚ θρq∇ϕa,ρfa,ρ, fa,ρyL2pRnqdt

´

ż 1

0

Cpn, ρqa}fa,ρ}L2pRnqdt.

Finally, we have that

ż t

0

tp1 ´ tq

ż

Rn

e2ϕa,ρ |∇u|
2dxdt `

ż t

0

tp1 ´ tq

ż

Rn

e2ϕa,ρ |u|
2
|∇ϕa,ρ|2dxdt

ď Hp1q ` Hp0q ` 2

ż 1

0

p1 ´ 2tqRexBtfa,ρ ´ Sa,ρfa,ρ ´ Aa,ρfa,ρ, fa,ρyL2pRnqdt

`

ż 1

0

tp1 ´ tq}Btfa,ρ ´ Aa,ρfa,ρ ´ Sa,ρfa,ρ}2L2pRnqdt.
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Using (B.8) and the same arguments as in the formal computation, we deduce that

}
a

tp1 ´ tqeϕa,ρ∇u}
2
L2pRnˆr0,1sq ` }

a

tp1 ´ tqeϕa,ρu∇ϕa,ρ}2L2pRnˆr0,1sq

ď N

˜

sup
tPr0,1s

}eϕa,ρu}L2pRnq ` sup
tPr0,1s

}eϕa,ρF }L2pRnq

¸

´

ż 1

0

xC1pa, xq ˚ θρ∇fa,ρ,∇fa,ρyL2pRnq ` xϕTa,ρpC1pa, xq ˚ θρq∇ϕa,ρfa,ρ, fa,ρyL2pRnqdt

`

ż 1

0

Cpn, ρqa}fa,ρ}L2pRnqdt. (B.16)

The result will follow by passing to the limit as a, ρ Ñ 0. We start with the left-hand side
of (B.16). Since both ϕa,ρ and ∇ϕa,ρ are monotone increasing functions when a Ñ 0, and
converges to |x|2 and 2x respectively, we can use the Monotone Convergence Theorem and
let a Ñ 0. Moreover, since ||x|2 ˚ θρ ´ |x|2| ď C1pnqρ2 ` C2pnqρ|x|, we deduce exactly

}
a

tp1 ´ tqeγ|x|2∇u}
2
L2pr0,1sˆRnq ` }

a

tp1 ´ tqeγ|x|2xu}
2
L2pRnq

on the left-hand side when we proceed by monotone convergence theorem as in the rigorous
argument in the previous lemma when letting ρ Ñ 0.

We move on to the right-hand side of (B.16). Since |x|2 ˚ θρ ď Cpnqρ2 ` |x|2 and ϕa,ρ is
a monotone increasing function as a Ñ 0, we can use a similar argument as we used in the
limit process in the justification of Lemma 3.4 to see that

sup
tPr0,1s

}eϕa,ρu}L2pRnq ` sup
tPr0,1s

}eϕa,ρF }L2pRnq ÝÑ sup
tPr0,1s

}eγ|x|2u}L2pRnq ` sup
tPr0,1s

}eγ|x|2F }L2pRnq

when a, ρ Ñ 0. For the two next terms, observe that

xC1pa, xq ˚ θρ∇fa,ρ,∇fa,ρyL2pRnq

“

ż

|x|ě1

`

p2p1 ´ aq|x|
´a

´ 2qD1 ` p2|x|
´a

´ 2q|x|D2

˘

˚ θρ|∇fa,ρ|2dx

ď

ż

|x|ě1

ż

|x|ě1

p2p1 ´ aq|y|
´a

´ 2qD1 ` p2|y|
´a

´ 2q|y|D2θρpx ´ yqdy|∇fa,ρ|2dx

Since a P p0, 1
2
q,
ż

|x|ě1

p2p1 ´ aq|y|
´a

´ 2qD1 ` p2|y|
´a

´ 2q|y|D2θρpx ´ yqdy ď N,

and thus,
`

p2p1 ´ aq|x|
´a

´ 2qD1 ` p2|x|
´a

´ 2q|x|D2

˘

˚ θρ|∇fa,ρ|2

ď N |∇fa,ρ|2

ď |∇e
γA|x|2

8pA2`B2qγt`Aupx, tq|
2.
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By Lemma 3.2 |∇e
γA|x|2

4pA2`2B2qγt`Aupx, tq|2 P L2pr0, 1s ˆ Rnq, so we can use the dominated con-
vergence theorem to see that this term goes to 0 when a Ñ 0. A similar argument can be
used for xϕTa,ρpC1pa, xq ˚ θρq∇ϕa,ρfa,ρ, fa,ρyL2pRnq. Indeed,

∇ϕTa,ρpC1pa, xq ˚ θρq∇ϕa,ρfa,ρ, fa,ρ ď N |∇ϕa,ρ|2|fa,ρ|2

ď N |∇
ˆ

γA|x|2

8pA2 ` B2qγt ` A

˙

e
γA|x|2

8pA2`B2qγt`Aupx, tq|
2,

which also by Lemma 3.2 is in L2pr0, 1s ˆ Rnq, and we can use the Dominated Convergence
Theorem.

Finally, and now rigorously justified, we can let a Ñ 0 and then ρ Ñ 0, and we deduce
our final result.

B.3 Limits in Theorem 3

We have shown that

}eγϵ|x|2ũϵptq}L2pRnq ď eNpM2
1 `M2pϵq2`M1`M2pϵqq

}e
|x|2

β2 up0q}
1´t
L2pRnq

}e
|x|2

α2 up1q}
t
L2pRnq, (B.17)

}
a

tp1 ´ tqeγϵ|x|2∇ũϵ}L2pr0,1sˆRnq ` }
a

tp1 ´ tq|x|eγϵ|x|2ũϵ}L2pr0,1sˆRnq

ď NeNpM2
1 `M2pϵq2`M1`M2pϵqq

ˆ

}e
|x|2

β2 up0q}L2pRnq ` }e
|x|2

α2 up1q}L2pRnq

˙

,

(B.18)

and formally the result follows by letting ϵ to 0. We want to justify it rigorously and start
with (B.17).

1). Since uϵptq ÝÑ upx, tq in L2pRnq, there exists a subsequence tϵku, ϵk Õ 0, such that
limkÑ8 uϵkpx, tq “ upx, tq almost everywhere.

2). By (3.50)

}eγϵ|x|2ũϵptq}
2
L2pRnq “ }e

”

1
pαϵs`βϵp1´sqq2

`
pαϵ´βϵqϵ

4pϵ2`i2qpαϵs`βϵp1´sqq

ı

|x|2

uϵpsq}
2
L2pRnq

“

ż

Rn

|e

”

1
pαϵs`βϵp1´sqq2

`
pαϵ´βϵqϵ

4pϵ2`i2qpαϵs`βϵp1´sqq

ı

|x|2

uϵpsq|
2dx,

3. Passing to the limit inside the integral we see that,
´

ż

Rn

lim
ϵkÑ0

|e
r 1

pαϵs`βϵk
p1´sqq2

`
pαϵk

´βϵk
qϵk

4pϵk
2`i2qpαϵk

s`βϵk
p1´sqq

s|x|2

uϵpsq|
2dx

¯1{2

“

´

ż

Rn

|e
r 1

pαϵk
s`βp1´sqq2

|x|2

upsqq|
2dx

¯1{2

“ }e
|x|2

pαt`βp1´tqq2 uptq}
2
L2pRnq.
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Then, by Fatou’s lemma and (3.59):

}e
|x|2

pαt`βp1´tqq2 uptq}L2pRnq “

´

ż

Rn

lim
ϵkÑ0

|eγϵk |x|2ũϵkptq|
2dx

¯1{2

ď lim inf
ϵkÑ0

}eγϵk |x|2ũϵptq}
2
L2pRnq

ď lim inf
ϵkÑ0

eNrM2
1 `M2pϵkq2`M1`M2pϵkqs

}e
|x|2

β2 up0q}
1´t
L2pRnq

}e
|x|2

α2 up1q}
t
L2pRnq.

Since the only part depending on ϵ on the right hand side is M2pϵq and M2pϵq Ñ M2 when
ϵ Ñ 0, we get the result

}e
|x|2

pαt`βp1´tqq2 uptq}L2pRnq ď eNrM2
1 `M2

2 `M1`M2s
}e

|x|2

β2 up0q}
1´t
L2pRnq

}e
|x|2

α2 up1q}
t
L2pRnq. (B.19)

For (B.18) we could have used a similar argument, but it was not clear how we could
justify that ∇ũϵ ÝÑ ∇u. If we had chosen the initial data u0 P H1pRnq it would be clear
from the semigroup theory. However, since we considered u P Cpr0, 1s, L2pRnqq, we need a
different argument.

From (B.18) it follows that ũϵ is a bounded sequence in the weighted space L2ppr0, 1s, tp1´

tqdtq : H1pRn, eγϵ|x|2dxqq. We want to use the Banach-Alaoglu Theorem to obtain a weakly
convergent subsequence of ũϵ in this space. However, since we will take the limit when ϵ Ñ 0,
we want to make the weight independent of ϵ. Recall that γϵ “ 1

pα`2ϵqpβ`2ϵq
. For all δ ą 0

there exists a ϵδ such that for 0 ă ϵ ă ϵδ, we can make γ ´ δ ă γϵ ă γ, so that

}
a

tp1 ´ tqepγ´δq|x|2∇ũϵ}L2pr0,1sˆRnq ă 8.

Then there exist a subsequence tũϵku of tũϵu such that

ũϵk á ũ in L2
ppr0, 1s, tp1 ´ tqq : H1

pRn, epγ´δq|x|2dxqq,

and

}
a

tp1 ´ tqepγ´δq|x|2∇ũ}L2pr0,1sˆRnq

ď lim inf
ϵkÑ0

}
a

tp1 ´ tqepγ´δq|x|2∇ũϵk}L2pr0,1sˆRnq

ď lim inf
ϵkÑ0

NeNpM2
1 `M2pϵkq2`M1`M2pϵkqq

ˆ

}e
|x|2

β2 up0q}L2pRnq ` }e
|x|2

α2 up1q}L2pRnq

˙

“ NeNpM2
1 `M2

2 `M1`M2q

ˆ

}e
|x|2

β2 up0q}L2pRnq ` }e
|x|2

α2 up1q}L2pRnq

˙

ă 8.

Now, since eγ´δ|x|2 Õ eγ|x|2 when δ Ñ 0, we can conclude by the Monotone Convergence
Theorem and let δ Ñ 0. Finally we obtain that

}
a

tp1 ´ tqeγ|x|2∇ũ}L2pr0,1sˆRnq ď NeNpM2
1 `M2

2 `M1`M2q

ˆ

}e
|x|2

β2 up0q}L2pRnq ` }e
|x|2

α2 up1q}L2pRnq

˙

.
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Remark. The reason why we did not include

}
a

tp1 ´ tq|x|eγϵ|x|2ũϵ}L2pr0,1sˆRnq

in the argument is because it will not be important for us when we apply the result in the
proof of Theorem 1. However, that

sup
tPr0,1s

}eγ|x|2ũ}L2pRnq ` }
a

tp1 ´ tqeγ|x|2∇ũ}L2pr0,1sˆRnq ă 8

will be fundamental to prove the main result.
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C Semigroups of Linear Operators

This section is meant as a supplement to Theorem 3 and the theory of semigroups. We give
the most important definitions and recall the results, without proofs, we need to prove that
the operator L “ pA ` iBqp∆ ` V pxqq generates a C0 semigroup for A ě 0, B P R when V
is a bounded potential. Moreover, we discuss some applications to both the inhomogeneous
and the homogeneous Schrödinger equation and justify the existence of solutions for these
equations. For references, see for example [20], [4] or [22]

C.1 Operator Theory

We assume that A is a densely defined operator on a Hilbert space H, i.e. DpAq is dense in
H.

Definition C.1.

A : DpAq Ă H ÝÑ H

is symmetric if

xAϕ, ψyH “ xϕ,AψyH

for all ϕ, ψ P DpAq. We say that A is skew-symmetric, or anti-symmetric, if

xAϕ, ψyH “ ´xϕ,AψyH

for all ϕ, ψ P DpAq.

Definition C.2. Let A be a densely defined operator. We define the adjoint of A, A˚:

#

DpA˚q “ tη P H : D ψ P H s.t. xAϕ, ηyH “ xϕ, ψyH

A˚η “ ψ

Definition C.3. We say that A is self-adjoint if

A˚
“ A, that means DpAq “ DpA˚

q and Aϕ “ A˚ϕ

for all ϕ P DpAq. We say that A is skew-adjoint if A˚ “ ´A or that iA is self-adjoint.

Definition C.4. Let A : DpAq Ă X ÝÑ X be a closed operator. The resolvent set is the set

ρpAq :“
␣

z P C : pA ´ zq
´1 is injective and surjective

(

.

The spectrum of A is the set

ΣpAq “ CzρpAq.
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C.2 Semigroups and the Homogeneous IVP

Definition C.5. Let X be a Banach space. A one-parameter family Sptq, 0 ď t ă 8 of
bounded linear operators from X to X is a strongly continuous semigroup, or C0 semigroup
if

piq Sp0q “ I

piiq Spt ` sq “ SptqSpsq

piiiq Sptqϕ ÝÑ Spt0qϕ as t Ñ t0 @ ϕ P X.

Definition C.6. Let Sptq be a C0 semigroup. The infinitesimal generator of S is the operator
L : DpLq Ñ X where

$

&

%

DpLq : tϕ P X : limhÑ0`

´

Sphq´Id
h

¯

ϕ exists in Xu

Lϕ “ limhÑ0`

´

Sphq´Id
h

¯

ϕ

Proposition C.1. Let L be the generator of the semigroup Sptq. Let ϕ in DpLq. Then

piq Sptqϕ P DpLq, @t ě 0

piiq LSptqϕ “ SptqLϕ

piiiq : t ÞÑ Sptqϕ is differentiable and
d

dt
Sptqϕ “ LSptqϕ.

Observe that by this proposition it makes sense to denote the semigroup Sptq “ eLt, and
it satisfies the natural properties of the exponential. Moreover, Sptqϕ is a solution to the
initial value problem

#

u1ptq ´ Lu “ 0

up0q “ ϕ.

Definition C.7. A one parameter family Sptq, ´8 ă t ă 8 of bounded linear operators on
a Banach space X is C0 group if

piq Sp0q “ I

piiq Spt ` sq “ SptqSpsq

piiiq Sptqϕ ÝÑ Spt0qϕ as t Ñ t0 @ ϕ P X.

Moreover, if }Sptqϕ} “ }ϕ} @ ϕ P X, we say that Sptq is a unitary group of operators.

Remark.
piq For t ě 0 a C0 group is also a C0 semigroup. We define the infinitesimal generator, L of
a group similarly as for a semigroup, but the limit as h Ñ 0 has to be from both sides, not
only as h Ñ 0`.
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piiq Moreover, since SptqSp´tq “ Sp0q “ I, we have a well-defined inverse for a C0 group.
We denote Sptq´1 “ Sp´tq. It is now clear that from Proposition 1.1 that eit∆ is a unitary
group.

piiiq For the heat operator et∆ we do not have a group, since it is not well-defined for t ď 0.
More generally, this is the case for the operator epA`iBqt∆, when A ą 0. Since we mainly
want to prove results for this operator, we will focus on results for semigroups, rather than
only for groups.

Theorem C.1. (Hille-Yosida Theorem) Let X be a Banach Space. Let L : DpLq Ă X Ñ X
be a closed, densely defined linear operator. Then L is the infinitesimal generator of a strongly
continuous semigroup Sptq satisfying }Sptq} ď Meβt if and only if

pH1q pβ,8q Ă ρpLq, β ě 0

pH2q ||RLpλq
n
} “ }pλI ´ Lq

´n
} ď Mpλ ´ βq

´n for λ ą β, for all n “ 1, 2, ...

A consequence of this theorem is the following.

Theorem C.2. Let X be a Banach space. Let L : DpLq Ă X Ñ X be a closed, densely
defined operator that satisfies the conditions pH1q and pH2q, then @ u0 P DpLq D! u P

C1pr0,8q, Xq X Cpr0,8q, DpAqq such that
#

u1ptq ´ Lu “ 0 in X, @ t ą 0

up0q “ u0
(C.1)

In particular, uptq “ Sptqϕ “ eLtu0.

Remark. From this result we can only justify the existence of a unique solution in the case
where u0 P DpLq. For the Schrödinger equation this is when u0 P H2pRnq. In this thesis we
usually work with initial data only in L2pRnq, which is not enough to have the existence of a
unique solution on this form. In this case, we consider a generalized solution to the problem.
One way of formally defining the generalized solution is the following way from [20]:

Definition C.8. A continuous function u on r0,8q is a generalized solution of (C.1) if there
are xn P DpLq such that xn ÝÑnÑ8 u0 and eLtxn ÝÑ uptq uniformly on bounded intervals.

With this definition it makes sense to consider a generalized solution for all u0 P X as
u “ eLtu0. Since e

Lt is a semigroup, we will have that u P Cpr0, T s, Xq.We denote uptq “ eLtu0
as a mild solution of (C.1) for u0 P X.

We now want to apply these results to the operator L “ pA`iBqp∆`V pxqq “ pA`iBqH,
where V pxq is a real valued, bounded potential. If we can show that L generates a C0

semigroup, uptq “ epA`iBqHu0 is a solution to the initial value problem

#

Btu ´ Lu “ 0

up0q “ u0.
(C.2)
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We first consider the case V “ 0, so that L “ pA` iBq∆, A ě 0, B P R. Taking the Fourier
transform of (C.2), we get that for some constant C

#

Btûpξ, tq “ CpA ` iBq|ξ|2ûpξ, tq

ûp0q “ û0,

and the solution becomes upx, tq “

´

e´CpA`iBq|ξ|2tû0

¯

q“ epA`iBqt∆u0. It is now straightfor-

ward to verify that epA`iBqt∆ is a C0 semigroup by Definition C.5 and that L “ pA ` iBq∆
is the infinitesimal generator of the semigroup. Let us now consider the case

L “ pA ` iBqp∆ ` V pxqq,

where V is a real, bounded potential. We have the following theorem on perturbations by a
bounded linear operator, see Theorem 3.1 in [20].

Theorem C.3. Let X be a Banach space and let L be the infinitesimal generator of a C0

semigroup T ptq satisfying }T ptq} ď Meωt. If V is a bounded linear operator on X then L`V
is the infinitesimal generator of a C0 semigroup Sptq on X satisfying }Sptq} ď Mepω`M}V }qt.

The proof of Theorem C.3 relies on the Hille-Yosida Theorem. By this result, it follows
that L “ pA ` iBqp∆ ` V q generates a C0 semigroup

Sptq “ epA`iBqp∆`V qt,

such that

}Sptq} ă eA}V }L8 t.

Indeed, since }epA`iBqt∆qϕ}L2 ď }ϕ}L2 , we have that }epA`iBqt∆q} ď 1, and since }V pxqϕ}L2 ď

}V }L8}ϕ}L2 , it follows that }Sptq} ă eA}V }L8 t.

Remark.
piq This result is valid for all A ě 0, B P R. In particular, the operators ∆ ` V pxq and
ip∆ ` V pxqq also generates C0 semigroups.

piiq There are other ways in which we could have proven that the operator pA ` iBqH
generates a semigroup. For example, we could have deduced from Stones Theorem [20] that
since ∆ ` V pxq is indeed self-adjoint, iH generates a unitary group. However, we could not
have applied this result to pA`iBqH, since A ą 0. Even though the method with perturbation
of bounded operators justifies that we have a solution to the initial value problem, it was
not clear that it justifies one of the properties we need, which is that epz1`z2qH “ ez1Hez2H

for two complex numbers z1 and z2 with non-negative real part. This is why we in the next
section choose to follow a different approach, which is to prove that H generates an analytic
semigroup. By verifying this, we get the property we will need for free.
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C.3 Analytic Semigroups

In this section we will follow chapter 2 in [4]. We omit proofs and details.

Definition C.9. Let Σδ “ tz P C : |argz| ă δu. A family of linear operators on a Banach
space X tT pzquzPΣδYt0u is called an analytic semigroup of angle δ P p0, π{2s if

piq T p0q “ I and T pz1 ` z2q “ T pz1qT pz2q @ z1, z2 P Σδ,

piiq the map : z ÞÑ T pzq is analytic in Σδ,

piiiq lim
zÑ0

T pzqϕ “ ϕ @ϕ P X. z P Σδ1 , 0 ă δ1
ă δ.

If moreover }T pzq} is bounded in Σδ1 we call tT pzqu a bounded analytic semigroup.

Observe that if T pzq is an analytic semigroup of some angle δ, then if we restrict z to the
non-negative real axis, it is also a C0 semigroup.

Theorem C.4. For an operator L on a Banach space X the following are equivalent.

piq L generates a bounded analytic semigroup tT pzquzPΣδYt0u on X,

piiq L generates a bounded strongly continuous semigroup on X and there exists a constant

C ą 0 such that}RLpr ` isq} ď
C

|s|
for all r ą 0 and 0 ‰ s P R.

Without proof and further details one can deduce from this theorem and the Spectral
Theorem, see [4] for details, that a self-adjoint operator that is bounded from above, i.e.
that there exists ω P R such that xLϕ, ϕy ď ω}ϕ}2 @ϕ P DpLq, generates an analytic semi-
group of angle π{2.

Let us again consider the operator H “ ∆`V pxq, where V pxq is a real bounded potential,
DpHq : H2pRnq Ă L2pRnq.

Lemma C.1. The operator H is self-adjoint and bounded from above.

To prove the lemma we present some useful theorems. The proofs can be found in [21].

Theorem C.5. Let H be a Hilbert space. If A is symmetric, then the following are equiva-
lent.

piq A is self-adjoint,

piiq A is closed and kerpA˚
˘ iq “ t0u

piiiq RpA ˘ iq “ H.

Theorem C.6. (Kato-Rellich)
Let A : DpAq Ă H ÝÑ H be self-adjoint, and B : DpBq Ă H ÝÑ H be symmetric. Suppose
DpAq Ď DpBq and that there exists α, β ą 0 such that

}Bϕ}H ď α}ϕ}H ` β}Aϕ}H, @ ϕ P DpAq. (C.3)

If moreover β0 “ inftβ such that pC.3q holdsu ă 1, then pA`Bq : DpAq ÝÑ H is self-adjoint.
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We now prove the lemma.

Proof. Step 1: ∆ is self-adjoint.
An application of integration by parts shows that the Laplacian operator is symmetric. To
verify that it is self-adjoint we can show that Rp∆ ˘ iq “ L2pRnq. This follows directly since
the spectrum Σp∆q is real.

Step 2: H is self-adjoint.
We can now use the Kato-Rellich Theorem to see that when we perturb ∆ with a bounded,
real potential V pxq we still get a self-adjoint operator. Since V pxq is real, it is symmetric.
Moreover,

}V ϕ}L2pRnq ď }V }L8pRnq}ϕ}L2pRnq ` 0}∆ϕ}L2pRnq ď }V }L8pRnq ` β}∆ϕ}L2pRnq,

for some β ă 1. We can apply the Kato-Rellich Theorem to deduce that H “ ∆ ` V pxq is
self-adjoint.

Step 3: H is bounded from above.
We observe that

xHϕ, ϕyL2pRnq “ x∆ϕ, ϕyL2pRnq ` xV pxqϕ, ϕyL2pRnq

“ x´|ξ|
2ϕ̂, ϕ̂yL2pRnq ` xV pxqϕ, ϕyL2pRnq

ď ´|ξ|
2
}ϕ}

2
L2pRnq ` }V }L8pRnq}ϕ}

2
L2pRnq

ď }V }L8pRnq}ϕ}
2
L2pRnq,

which concludes the proof of the lemma.

Since H is self-adjoint and bounded from above, we deduce that it generates an analytic
semigroup T pzq “ ezH of angle π{2. In particular this means that @ z1, z2 with non-negative
real part, we have epz1`z2qH “ ez1Hez2H .

C.4 The Inhomogeneous IVP

Consider now the problem

#

Btu ´ Lu “ f for t P r0, T s

up0q “ u0,
(C.4)

where L generates a C0 semigroup eLt.

Theorem C.7. Let u be a solution of the initial value problem (C.4). Then u is given by

uptq “ eLtu0 `

ż t

0

eLpt´sqfpsqds.
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Observe that if f P L1pr0, T s, Xq, u0 P X, then eLtu0 `
şt

0
eLpt´sqfpsqds P Cpr0, T s, Xq.

Even if it is not differentiable, and is not a solution of (C.4) in the classical sense, it still makes
sense to consider a solution on this form. We say that if f P L1pr0, T s, Xq, and u0 P X, then
uptq “ eLtu0 `

şt

0
eLpt´sqfpsqds is a mild solution of (C.4). If we make stronger assumptions

on f and u0, we see that the mild solution is indeed a classical solution.

Theorem C.8. Let u0 P DpAq, f P Cpr0, T s, Xq and suppose that f P W 1,1pr0, T s, Xq or
f P L1pr0, T s, DpAqq, then the mild solution is a classical solution.

To sum up everything, let us go back to the specific problem in the proof of Theorem 3.
where pA ` iBqH “ pA ` iBqp∆ ` V1pxqq generates a C0-semigroup for A ě 0, B P R. Since
u P Cpr0, 1s, L2pRnqq satisfies

Btu “ ip∆u ` pV1pxq ` V2px, tqquq “ iHu ` iV2px, tqu

with initial data u0, we have by Theorem C.7 that

uptq “ eitHu0 ` i

ż t

0

eipt´sqH
pV2psqupsqqds.

Then we define

uϵptq “ epϵ`iqtHu0 ` pϵ ` iq

ż t

0

epϵ`iqpt´sqHFϵpsqds.

This will be a mild solution to the problem

#

Btuϵ “ pϵ ` iqpHuϵ ` Fϵptqq

uϵp0q “ u0.

Since u0 P L2pRnq and

}Fϵ}L1pr0,1s,L2pRnq ď sup
tPr0,1s

eϵ}V1}L8pRnq}V2ptq}L8pRnq}uptq}L2pRnq ă 8,

uϵptq P Cpr0, 1s, L2pRnqq. However, since u0 R H2pRnq “ DpHq we will not get any more
regularity of uϵ from Theorem C.8. On the other hand, since

Btuϵ “ pϵ ` iqp∆uϵ ` V1pxquϵ ` Fϵpx, tqq

we can use Lemma A.1 to obtain more regularity. Indeed, we have uϵ P L8pr0, 1s, L2pRnq X

L2pr0, 1s, H1pRnqq.

90



D Problem with an ODE

Consider the initial value problem

#

a2ptq ` 32a3 ´
2pa1q2

a
“ 0

ap0q “ 1, a1p0q “ 0.
(D.1)

This is a nonlinear, autonomous second-order ode, which appears naturally in the Carleman
estimate in Section 5. We want to prove the following properties for a solution of (D.1).

Lemma D.1. Let a be a solution of the IVP (D.1). Then aptq is positive, even and
limtÑ8 taptq “ 0.

Proof. Suppose that a is a solution, and define ãptq “ ap´tq. Then

ã2
` 32ã3 ´

2pã1q2

ã
“ a2

p´tq ` 32ap´tq3 ´
2p´a1p´tqq2

ap´tq
“ 0,

so that ã also is a solution.

Observe that the function F pa, a1q “ ´32a3`
2pa1q2

a
is C1 away from 0, so that by the Cauchy-

Lipschitz theorem, we can prove that there exist a local solution a such that ap0q “ 1. Since
ap0q “ ãp0q, we must have aptq “ ap´tq, so that a is even.

Now we want to prove existence of a global solution, for t P R, and that this solution is
positive. Let

T ˚
“ suptT ą 0 : there exist a solution a on r0, T s and aptq P p0, 1s for all 0 ď t ď T u.

T ˚ is well defined because of the local existence as explained above, and the fact that
a1p0q “ 0 and a2p0q ă 0. Assume by contradiction that T ˚ ă 8. It means that either
piq limtÑT˚ aptq “ 0 or piiq limtÑT˚ aptq ą 1. We will show that neither of these cases can
be true.

Define the function

fptq “
a1ptq

p2aptqq2
.

It follows that f 1ptq “ ´8a. If aptq P p0, 1s, then f 1ptq ă 0, so f is decreasing, and since
fp0q “ 0, fptq ď 0, which implies that also a1ptq ď 0, and aptq is decreasing. This holds for
all t P r0, T ˚q, so that limtÑT˚ aptq ă 1, and piiq cannot be true.

Suppose now that limtÑT˚ aptq “ 0. Observe that

ż t

0

´8apsqds “

ż t

0

f 1
psqds “ fptq ´ fp0q “ fptq.
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Since aptq ÝÑ 0 when t Ñ T ˚,

´

ż t

0

8apsqds ÝÑ ´c when t Ñ T ˚,

for 0 ă c ă 8. Thus,

fptq “
a1ptq

p2aptqq2
“

1

4

ˆ

´1

aptq

˙1

P r´c, 0s, @ t P r0, T ˚
q.

It follows that
ż t

0

´cds ď
1

4

ż t

0

ˆ

´1

apsq

˙1

ds ď 0,

or equivalently that

4 ď
1

aptq
ď 1 ` 4ct ðñ

1

1 ` 4ct
ď aptq ď

1

4
, @t P r0, T ˚

q,

which contradicts that limtÑT˚ aptq “ 0.

Thus, T has to be infinite, and we have a global, even solution aptq, such that aptq P p0, 1s

for all t P R.
Next we show that limtÑ8 aptq “ 0. We already know that a is decreasing and positive,

so we assume by contradiction that limtÑ8 aptq “ c1 ą 0. It then follows that

f 1
ptq “ ´8a ă ´8c1,

for all t ě 0, and integrating this inequality shows that

fptq ă ´8c1t.

Integrating one more time, we deduce that

1

4

ˆ

´
1

aptq
` 1

˙

ă ´4c1t
2.

Then

aptq ă
1

16c1t2 ` 1
,

which shows that limtÑ8 aptq ă limtÑ8
1

16c1t2`1
“ 0, which contradicts the hypothesis.

Now we are only left to prove that limtÑ8 taptq “ 0, or that aptq “ op1
t
q. We did not see

how to complete the proof, so instead we have included numerical plots of aptq and taptq,
which shows that the claimed properties are likely to hold. See Figures 1-3, where we have
coded in Python.

92



Figure 1: A numerical plot of aptq and taptq. We see that the properties we proved for aptq
hold, and it is also likely from the plot that taptq stays finite.

Figure 2: We can see that aptq is an even function and that the properties we claim for taptq
are also likely to hold when t Ñ ´8.

Remark. piq Observe that in both Figure 1 and Figure 2 we have only plotted the solutions
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for t ď 10. If we plot it over a larger time interval, it is hard to see the behavior of the
solution, and we would only see a straight, horizontal line close to 0.

piiq Even though it is likely from Figure 1 that taptq stays finite when t Ñ 8, it is not obvious
that it goes to 0. Therefore, we have also included a plot of taptq compared to 1

ln t
, since we

know that limtÑ8
1
ln t

“ 0.

Figure 3: Numerical plot oftaptq, aptq and 1
ln t

.
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[16] T. Katō. Perturbation theory for linear operators. Classics in mathematics. Springer,
Berlin, 1995.

[17] D. Lannes. The Water Waves Problem, volume 188 of Mathematical Surveys and Mono-
graphs. American Mathematical Society, Providence, Rhode Island, May 2013.

[18] N. Lerner. Carleman Inequalities: An Introduction and More, volume 353 ofGrundlehren
der mathematischen Wissenschaften. Springer International Publishing, Cham, 2019.

[19] F. Linares and G. Ponce. Introduction to Nonlinear Dispersive Equations. Springer,
New York, 2 edition, 2015.

[20] A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equa-
tions, volume 44 of Applied Mathematical Science. Springer, New York, 1983.

[21] M. Reed and B. Simon. Functional Analysis. Number 1 in Methods of modern mathe-
matical physics. Academic Press, London, 1980.

[22] M. Renardy and R.C. Rogers. An Introduction to Partial Differential Equations. Num-
ber 13 in Texts in Applied Mathematics. Springer-Verlag, New York, 1992.

[23] A Sitaram, M Sundari, and S Thangavelu. Uncertainty principles on certain Lie groups.
Proceedings Mathematical Sciences, 105(2):135–151, May 1995.

96


	Introduction
	Preliminaries and Notation
	Notation
	Convergence Theorems
	Some Important Inequalities
	Mollifiers
	Sobolev Spaces
	Solutions of the Schrödinger Equation

	Hardy's Uncertainty Principle and the Schrödinger Equation
	Application to the Free Schrödinger Equation 
	Proof of Theorem 2.3 in the case <2

	Important Estimates and Proof of Theorem 3
	Energy Estimate
	Carleman Estimates
	Proof of Theorem 3

	Proof of Theorem 1
	Counterexample of a Formal Carleman Argument
	Application to the Non-Linear Schrödinger Equation
	Parabolic Regularization
	A Classical Energy Estimate
	Proof of Lemma 3.2

	Justification of Computations
	Lemma 3.4
	Lemma 3.5
	Limits in Theorem 3

	Semigroups of Linear Operators
	Operator Theory
	Semigroups and the Homogeneous IVP
	Analytic Semigroups
	The Inhomogeneous IVP

	Problem with an ODE

