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Abstract A deterministic system of ocean surface waves and flow in the oceanic boundary layer is key to
understanding the dynamics of the upper ocean. For the description of such complex systems, a higher‐order
shear‐current modified nonlinear Schrödinger equation is newly derived and then used to physically interpret
the interplay between Stokes drift, Eulerian return flow due to a passing wave group, and an open‐ocean
vertically sheared flow in the extreme sea wave generation. The conditions for the suppression or enhancement
of the modulation instability in the rogue wave dynamics in the presence of a background flow are reported,
whose relevance and influence to the Craik‐Leibovich type 2 instability in triggering a Langmuir‐type
circulation is discussed. The findings highlight the need for future studies to establish and assess the energy
transfer from waves to currents or in the reversing order, asserting a plausible physical mechanism for the
dissipation of the surface wave energy through wave‐current interactions in the open ocean.

Plain Language Summary The dynamics of the upper‐ocean involve many complex processes,
including for instance the interplay between wind, waves, currents, and global circulation systems. Such
interactions can give rise to instabilities and extreme events with far‐reaching consequences. In this letter, we
use a newly derived weakly nonlinear wave framework accounting for the presence of shear currents to quantify
the requirements to trigger modulation instability, giving rise to long‐crested rogue waves. Our investigation
also provides combined conditions for the occurrence of both, modulation and Craik‐Leibovich (type 2)
instabilities, and demonstrates the possibility of energy transfers between waves as well as between waves and
currents in the ocean.

1. Introduction
Surface waves are ubiquitous in the open ocean. They interact with both small‐ and large‐scale open‐ocean flows,
for example, tidal, wind‐induced, and submesoscale currents, which has led to both, influencing ocean circula-
tions (McWilliams, 2016; Suzuki & Fox‐Kemper, 2016) and altered properties as a result of interactions with
currents. The latter is the focus of this study in which we devote a particular focus on the relevance of such
interplay on global circulation processes.

The approximate scale ranges for the wavelength of surface gravity waves are typically within 0.10–100 m which
means wave‐induced oscillating motions are much more rapid and shorter in length than those induced by upper
ocean flows (Suzuki & Fox‐Kemper, 2016; Toffoli & Bitner‐Gregersen, 2017; L. Wu et al., 2019). The much
smaller scales of surface waves, compared to other processes in the ocean, demand extra computing powers to
represent their effects in larger scale regional and global models for oceanic flows. For a better efficiency, surface
waves have been represented in the last three decades in a wave‐phase averaged manner in newly developed
asymptotic theories and models for ocean circulations (McWilliams et al., 2004; Mellor, 2016; Suzuki & Fox‐
Kemper, 2016), also known as wave‐averaged effects in the wave‐current interaction framework. This in
particular permits the consideration of long‐term and slowly varying features of surface waves to be physically
resolved, albeit short and rapidly varying scales compared with upper ocean flows (D’Asaro, 2014).

The phase‐averaged effects of infinitesimal waves are represented in the form of Stokes drift in a few ocean
models (Ardhuin et al., 2008; Breivik et al., 2014; Lane et al., 2007; Madec et al., 2017; McWilliams et al., 2004;
Shchepetkin &McWilliams, 2005), which lead to the coupling with a current in a leading‐order approximation as
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a combination of vortex force and adjusted pressure (Suzuki & Fox‐Kemper, 2016), while there are other ocean
models which physically interpret these effects in the form of radiation stress (Babanin & Chalikov, 2012;
Longuet‐Higgins & Stewart, 1962; Mellor, 2015, 2016; Qiao et al., 2010). Following Craik and Leibovich (1976),
the Stokes drift is considered contributing to an instability mechanism for the generation of Langmuir circulation,
also known as the Craik‐Leibovich type 2 (CL2) mechanism. It is widely investigated to model and understand the
dynamics of upper ocean flows (Leibovich, 1983; McWilliams et al., 2004; van den Bremer & Breivik, 2018).
Stokes drift profiles are primarily parameterized in ocean models, see, for example, Breivik et al. (2014, 2016),
Breivik and Christensen (2020), and S. F. Zippel et al. (2022) among others. Therefore, it is evident that surface
waves play a role as an external driving source in such ocean models. This role implies that the respective ocean
flows should consist of a part that is highly correlated to the Stokes drift, such as in the case of waves in a stratified
fluid (Higgins et al., 2020) or depth dependent flow (Zheng et al., 2024), which is referred to as the wave‐modified
background flow and detectable through in situ findings by Smith (2006). Note that the drift processes near the
ocean surface are largely driven by short waves, which are not accurately modeled in the operational wave
forecast models (Janssen & Bidlot, 2018). A key observation by Smith (2006) is the higher correlation between
Eulerian flows and Stokes drift, being much stronger than those forced by second‐order surface waves alone.
Indeed, a wave‐modified background flow differs physically from the wave‐induced Eulerian return flow as
generated from a passing wave group. The former requires the additional presence of a background flow, whereas
the latter does not and has been extensively studied in the framework of potential flow theory, see for example,
Dysthe (1979), McIntyre (1981), Pizzo and Melville (2016), van den Bremer et al. (2019), and Li & Li (2021). A
wave‐modified background flow defined here in an Eulerian frame differs from a Lagrangian mean flow in
studies using a Lagrangian frame. In this latter work, the authors have rigorously quantified the unidirectional
physical wave behavior resulting from a kinematic constraint on the fluid's vorticity. How such a wave‐modified
background flow affects the evolution of surface waves, and to the best of our knowledge, has not been physically
elucidated and will be rigorously addressed in this work. Through our study, we especially demonstrate that a
wave‐modified background flow plays a key role in both, suppressing or enhancing the formation of abnormally
large waves caused by an instability mechanism called Modulational Instability (MI), which has been widely
known in both, optics and hydrodynamics (Dudley et al., 2019; Fujimoto et al., 2019). Here, we derive a combined
criterion in which the exponential growth of wave amplitude and the CL2 instability can be both met. This may
provide novel physical insights into the possible relationship between growing waves and intense Langmuir
circulations as discussed in Phillips (2002).

Rogue waves, which belong to a type of extremely large sea wave events in natural hazard classifications, have
been measured in the world's oceans and are thereby well‐documented. They are referred to as those that appear
unexpectedly and have a much larger amplitude or height than their surrounding waves (Kharif & Pel-
inovsky, 2003). Both, the MI and wave‐current interaction have been recognized as a possible mechanism of their
formation (Janssen, 2003; Kharif & Pelinovsky, 2003; Trulsen et al., 2000). The MI, in principle, attributes to the
combined physics of (quasi‐) quartet wave interaction and third‐order nonlinearity in wave steepness, which can
be described by the nonlinear Schrödinger equation (NLS) in the case of narrow energy spectrum
(Benjamin, 1967; Chabchoub et al., 2011; Onorato et al., 2009; Zakharov, 1968). Rogue wave events have been
observed to be triggered at seas in the presence of strong currents, for example, the Gulf Stream and Agulhas
Current (Lavrenov, 1998; Peregrine, 1976; White & Fornberg, 1998). A current being assessed as “weak” or
“strong” depends on its wavenumber‐weighted velocity magnitude compared with the phase velocity of waves
(Banihashemi & Kirby, 2019; Ellingsen & Li, 2017; Quinn et al., 2017; Shrira, 1993). Strong currents can lead to
the refraction and spatial focusing of waves (White & Fornberg, 1998). When nonlinear effects are at play, the
spatial gradients of the profile of spatially varying currents can particularly lead to the energy transfer from
current to waves using a current‐amended NLS for water waves as the model (Hjelmervik & Trulsen, 2009;
Onorato et al., 2013). In fact, it has been reported that the significant wave height is considerably amplified in the
presence of strong opposing currents in experiments (Toffoli et al., 2015; Zhang et al., 2023), theoretical and
numerical simulations (Zheng et al., 2023), and in situ observations (Romero et al., 2017; S. Zippel & Thom-
son, 2017). The three‐dimensional Doppler shift of a weak current on the linear dispersion relation of waves has
been well‐studied and incorporated into wave models (Banihashemi & Kirby, 2019; Cavaleri et al., 2018). In all
the aforementioned studies, the current in the form of a wave‐altered background flow has not been so far
considered in triggering rogue wave events, even in two‐way coupling models. This is likely due to the fact that
wave phases cannot be resolved in coupled wave and circulation models. As noted earlier, we aim to fill in this
knowledge gap as is going to be elaborated upon in the next sections.
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2. Methods
2.1. Problem Statement and Perturbation Expansion

We start with the problem statement for a system consisting of three‐dimensional surface gravity waves and an
open‐ocean flow. The origin of the vertical axis z is placed on a still water surface given by z= 0, and the elevation
of the free water surface is z = ζ(x, t), where ζ denotes the surface elevation and x = (x, y) together with t denote
the position vector in the horizontal plane and time, respectively. The main propagation direction of the waves is
in the direction of the carrier wave vector k0 which is following the positive x axis, thereby, k0 = (k0, 0) and
k0 × x= 0 for k0 denoting the carrier wavenumber. The wave‐induced velocity is described byV(x, z, t)= [u(x, z,
t), w(x, z, t)], while u and w denote the wave‐induced velocity vector in the horizontal plane and vertical velocity,
respectively.

On the other hand, the characteristic properties of the background flow are in principle assumed relative to the
scales of the carrier wave. The velocity of the background flow is described byU (χ ,z,τ) where χ and τ are slowly
varying position vectors in the horizontal plane and time, respectively, such that χ ∼ αx and τ ∼ βt. The variables
α ≪ 1 and β ≪ 1 are dimensionless scaling parameters. LetU = (Ub,W) with Ub( χ, z, τ) andW(χ, z, τ) being the
velocity vector in the horizontal plane and the vertical velocity, respectively. Assuming an incompressible flow,
negligible viscosity, and Coriolis force, the fluid system of surface waves in a large‐scale flow is described by the
continuity and Euler momentum equations given by

∇3 ⋅ (V +U ) = 0, (1a)

∂t(V +U ) + [(V +U ) ⋅∇3](V +U ) + ∇3(P − ρgz)/ρ = 0. (1b)

Here,∇3= (∇, ∂z) denotes the spatial gradient operator in three dimensions with∇= (∂x, ∂y) the gradient operator
in the horizontal plane, ρ denotes the water density which is assumed constant, g denotes the gravitational ac-
celeration, and P(x, z, t) is the pressure, which is expressed in a form of P= Pw(x, z, t)+ Pb(x, z, t), with Pw and Pb

the pressure due to waves and the background flow, respectively. The system is described by the dynamic and
kinematic boundary conditions at the free water surface z = ζ, and the deep‐water boundary condition,
respectively,

P − ρgz = 0 and ∂tζ + (u + Ub) ⋅∇ζ = w +W; (2a, b)

(V +U ) → 0 as z→ − ∞. (3)

The multiple‐scales approximate solution to the boundary value problem described by Equations 1–3 are obtained
with additional assumptions detailed in the following sections.

The potential flow theory has been widely recognized in accurately describing the motions induced by surface
waves in the open ocean. Nevertheless, this becomes inapplicable in the additional presence of a background flow
owing to that the flow can modify the wave motions to become rotational (see, e.g., Craik and Leibovich (1976);
McWilliams et al. (2004)). To account for both, the rotational and irrotational components, the velocity of the
wave‐induced motions is expressed in a form as follows

V = ∇3ϕ(x,z,t) + Vr(x,z,t), (4)

where ϕ(x, z, t) denotes the velocity potential and accounts for the irrotational flow motions, and Vr denotes the
velocity of the wave‐induced rotational motions which can lead to non‐vanishing vorticity, that is, ∇3 × Vr ≠ 0.
Following a perturbation expansion, the unknown wave‐perturbed fields in the description of the boundary value
problem by Equations 1–3 are found in the form of power series in wave steepness ɛ as follows

ζ = ∑
3

j=1
ε jζ( j), ϕ =∑

3

j=1
ε jϕ( j),Vr = μ0∑

3

j=1
ε jV( j)

r , (5)
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being truncated up to the third‐order. The superscripts “( j)” denotes O( ε j), and μ0 denotes the leading order of
magnitude of the velocity of the background flow.

Using the characteristic velocity Uc, length Lc, and period Tc, we assume the leading‐order scales of the profile
dependence of the background flow in the horizontal plane and time below, regardless of its correlation to the
waves. Following the dimensionless analysis and taking into account the continuity equation for the background
flow, we obtain

|∇Ub| ∼ αμ0Uc/Lc,|∂tUb| ∼ βμ0Uc/Tc, and W ∼ α2μ0Uc, (6a, b, c)

where the scaling of Equation 6 used the widely utilized assumption for geophysical flows that the horizontal
length of the flow is an order of magnitude higher than the vertical one and the temporal scale depends on a time
much slower than the characteristic period Tc.

The linearized boundary value problem for wave‐inducedmotions (see Text S1.1 in Supporting Information S1 for
details) can be obtained based on Equations 1–3, which requires additional initial conditions to be properly solved.
To this end, two types of initial conditions are typical; surface elevation prescribed in space at an initial instant, for
example, data measured from sea surface stereo images or satellites (Guimarães et al., 2020), or a record of time
series of the surface elevation measured at a fixed position, for example, measurements from single‐point wave
buoys (Ribal & Young, 2019). In both cases, the linear elevation admits a general expression as follows

ζ(1)(x,t) =∫ ζ̂(1)(k,0)eiψ(x,t)dk. (7)

Here, ψ(x, t; k, ω) = k ⋅ x − ωt denotes the wave phase of the monochromatic wave with vector and angular

frequency given by k and ω, respectively. Moreover, ζ̂(1)(k,0) denotes the Fourier transform of surface elevation

at t = 0 s and ζ̂(1)(k,t) = ζ̂(1)(k,0)exp(− iωt) denotes the Fourier transform of ζ(1) at an arbitrary time instant.
Inserting the surface elevation expression into the linearized kinematic boundary condition from Equation 2b
leads to the vertical velocity in the form as (Li & Ellingsen, 2019)

w(1)(x,z,t) =∫ i(k ⋅Ub(z = 0) − ω)ζ̂(k)ŵ(1)(k,z)eiψdk, (8)

where the linear vertical velocity w(1)(x,z,t) = ∂zϕ(1) + w(1)r , ŵ(k,z) denotes the dimensionless vertical velocity
which depends on depth z, and ŵ(k,0) = 1 by definition. Substituting the expression for the linear vertical ve-
locity into the linearized boundary value problem based on (2.1)–(3) gives rise to

(k ⋅Ub − ω)(∂zz − k2) ŵ(1)(k,z) − k ⋅U′′b ŵ
(1)(k,z) = 0 for − ∞ ≤ z ≤ 0 (9a)

(ω − k ⋅Ub)
2∂zŵ(1) − [gk2 − (ω − k ⋅Ub) k ⋅U′b] ŵ

(1) = 0 for z = 0, (9b)

ŵ→ 0 for z→ − ∞, (9c)

see, for example, Li and Ellingsen (2019). Here, the prime denotes the derivative with respect to z (i.e., U′ = ∂zU
and U′′ = ∂zzU). Following Stewart and Joy (1974), Kirby and Chen (1989), Shrira (1993), and Ellingsen &
Li (2017), the boundary value problem described by Equations 9a–9c leads to the approximate current‐modified
dispersion relation under the assumption of weak current, given by

ω(k) =
̅̅̅̅̅
gk

√
(1 +

̅̅̅̅̅̅̅
k/g

√
Ũb) with Ũb(k,χ ,τ) =∫

0

− ∞
2k ⋅Ub(χ ,ξ,τ)e2kξdξ, (10a, b)

where Ũb(k,χ ,τ) is interpreted as the leading‐order effect of the large‐scale open flow, which is depth‐ and
wavenumber‐weighted. The dispersion relation given by Equation 10a is applicable when the latter depth‐ and
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wavenumber‐weighted velocity Ũb is small compared to the phase velocity
̅̅̅̅̅̅̅̅
g/k

√
, which leads to a non‐

dimensional velocity defined as

U (k; χ ,τ) ≡
̅̅̅̅̅̅̅
k/g

√
Ũb(k) with |U | ≪ 1. (11)

The dimensionless velocity given by Equation 11 suggests that O(U ) ∼ μ0 ≪ 1 is assumed hereafter,
implying Uc =

̅̅̅̅̅̅̅̅
g/k

√
was used. This assumption indicates the difference in the applicability regime of the

derivations from Thomas et al. (2012). In this latter pioneering theoretical work, the authors have considered
the constant vorticity of the shear current to be strong, as has also been confirmed by experimental ob-
servations (Steer et al., 2020). We proceed to derive a shear‐current modified envelope equation based on the
dispersion relation given by Equation 10a. The complex envelope A of the surface elevation is introduced
such that

ζ(1) =
1
2
A(x,t)eiψ0 +

1
2
A∗ (x,t)e− iψ0 , with A(x,t) = ∫ Â(k,t)eik ⋅ xdk and (12a)

Â(k,t) = 2ζ̂(1) (k + k0,0)Θ((k + k0) ⋅k0) e− i[ω(k+k0)− ω0]t, (12b)

where the asterisk denotes the complex conjugates, Â(k,t) denotes the Fourier transform of the complex envelope
A, Θ denotes the Heaviside step function, and ψ0 = (x, t; k0, ω0) with ω0 =

̅̅̅̅̅̅̅
gk0

√
the angular frequency of the

characteristic wave in the absence of a current by definition (Li, 2023). Using this definition of the complex
envelope we obtain

∂tA = ∫ − iω(k + k0) Â(k,t)eik ⋅ xdk + iω0A. (12c)

Inserting the approximate dispersion relation given by Equation 10a for ω(k + k0) leads to

ω(k + k0) = ω0[

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
|k + k0|

k0

√

+
Ũb (k0)
̅̅̅̅̅̅̅̅̅
g/k0

√ + (

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
|k + k0|

k0

√
Ũb (k + k0)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
g/|k + k0|

√ −
Ũb (k0)
̅̅̅̅̅̅̅̅̅
g/k0

√ )]. (13)

Let δ be the dimensionless bandwidth of surface waves, a leading‐order approximation to ω(k + k0) − ω0 can be
derived based on Equation 13

ω(k + k0) − ω0 ≈ ω0(
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
|k + k0|/k0

√
− 1 +U (k0; χ ,τ)) + O(μ0δ). (14)

Following Li (2021) and Trulsen et al. (2000), we introduce the operator in the physical plane

L(∂x,∂y) = [(1 − i∂x/k0)2 − ∂2y/k
2
0]
1/4
− 1. (15a)

Noting the operators in the physical and Fourier k plane, respectively, as follows

∇ → ik and L(∂x,∂y) → ω0Lκ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
g|k + k0|

√
−

̅̅̅̅̅̅̅
gk0

√
(15b)

where Lκ ≡ L(ikx,iky) . Substituting the approximate form Equations 14 into 12c leads to

∂tA + iω0L(∂x,∂y)A + iω0U (k0; χ ,τ)A = 0, (16)

which is correct to max([O( ε2),O(μ0δ)] ). The linear envelope equation accounting for the effects of a shear
current is given by Equation 16. In the absence of a background flow, we emphasize that the relation between

Geophysical Research Letters 10.1029/2023GL107381

LI AND CHABCHOUB 5 of 15

 19448007, 2024, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
107381 by U

N
IV

E
R

SIT
Y

 O
F B

E
R

G
E

N
, W

iley O
nline L

ibrary on [31/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



nonlinear wave evolution, Stokes drift, and low‐vorticity waves has been discussed within the framework of the
unidirectional NLS in A. Abrashkin and Pelinovsky (2017) and A. A. Abrashkin and Pelinovsky (2018).

2.2. The Higher‐Order Shear‐Current Wave Envelope Evolution Framework

Based on Equation 16 and following Dysthe (1979), we drive a Shear‐Current Modified NLS (SC‐MNLS)
equation for the complex envelope A with the assumption that the order of magnitude of the background current
velocity is at least at second‐order in wave steepness, that is, μ0 ∼ ɛ2, which is mostly the case in the open‐ocean.
The assumption of the scales for the shear current means that the vertically sheared flow affects the evolution of
the envelope in Equation 12c inO( ε3) . This leads to SC‐MNLS equation for the complex envelope A by combing
Equation 16 and the nonlinear terms in the NLS equation by Dysthe (1979) as follows (see Text S1.2 in Sup-
porting Information S1 for detailed derivations)

∂tA+ iω0L(∂x,∂y)A + 3k0ω0|A|2∂xA/2 + k0ω0A2∂xA∗
/4

+iAω0 [k20|A|
2
/2 + ∂xϕ̄(k,0,t)/(2cg,0) +U (k0; χ ,τ)] = 0,

(17)

where cg,0 denotes the group propagation velocity of the wave packet in deep‐water, ϕ̄(x,z,t) = ω0 ∫ ikx
F{
⃒
⃒A|2} exp(kz + ik ⋅ x)/ (2k)dk is the mean velocity potential at the second‐order in wave steepness, with F

representing the Fourier transform with respect to x. While the first two terms in the square bracket of Equation 17
are the nonlinear terms in the famed Dysthe equation and accounting for the waves' directionality, the three terms
in the square brackets of the same Equation 17 can be physically interpreted as the contribution of the Stokes drift,
Eulerian return flow, and background flow as follows. A leading‐order approximation to the Stokes drift velocity
is given by Longuet‐Higgins (1953), van den Bremer et al. (2019), and Li and Li (2021):

Us(x,z,t) = 2cg,0(k0|A|)2 exp(2k0z). (18)

We introduce a wavenumber‐weighted and depth‐integrated velocity Ũs, defined by integrating the product of the
carrier wavenumber and the Stokes drift velocity over the entire water column

Ũs(A) = ∫

0

− ∞
k0Us(x,z,t)dz such that Ũs(A) = cg,0(k0|A|)2. (19)

Similarly, we introduce a physical velocity due to the Eulerian return flow defined as

Ũe(A) ≡ ∂xϕ̄(x,0,t) = − cg,0∫[k2x/(kk0)]F{k20|A|
2} eik ⋅ xdk. (20)

The negative sign in Equation 20 is due to the flow propagating opposing to the main propagation direction of the
wavepacket. Inserting Equation 19 for k20|A|

2, Equation 20, and the definition ofU according to Equation 11 into
the SC‐MNLS

∂tA + iω0L(∂x,∂y)A + (
3k0ω0
2

|A|2∂xA +
k0ω0
4

A2∂xA∗) + iAω0
Ũs + Ũe + Ũb

2cg,0
= 0, (21)

where the subscripts “s,”, “e,” and “b” denotes the contribution due to the Stokes drift, Eulerian return flow, and
background flow, respectively, at leading order of O( ε2) , O( ε2δ) , and O(μ0) , the first two terms and these in the
big round brackets are at O(εδ) and O( ε3δ) , respectively. The updated SC‐MNLS equation described by
Equation 21 shows, mathematically, how the interplay of the Stokes drift, Eulerian return flow, and background
flow affects the evolution of the complex wave envelope. The physical interpretations of Equation 21 in the
modulational instability of Stokes waves are elucidated next in Section 3.1.

We remark that, with additional assumptions, Equation 21 can be used to recover different previous versions of

dynamic evolution equations for the envelope. For example, without a background flow where Ũb = 0,
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Equation 21 recovers to the modified NLS equation derived by Trulsen et al. (2000, their Equation 19). With the
narrowband assumption of δ ≪ 1, the operator L admits a leading‐order approximation

L(∂x,∂y) = − i∂x/(2k0) + (∂xx − 2∂yy)/(8k20) + i(∂xxx − 6∂xyy)/ (16k30), (22)

which is truncated to O(δ3) . A lower‐order approximation to L can be obtained based on Equation 22. More
specifically, removing the terms inO(δ2) (O(δ3) ) and higher leads to a first‐order (second‐order) approximation.
Substituting the first‐order approximation toL into the SC‐MNLS equation, eliminating the nonlinear terms in the
big round brackets, and neglecting the effects of the Eulerian return flow, that is, Ũe = 0, recovers the wave
envelope dynamic equation by McWilliams et al. (2004, their Equation 5.35) in the limit of infinite water depth.
Similarly, using the second‐order approximation forL instead and with the neglected nonlinear terms in the round
brackets, negligible y dependence, and vanishing Eulerian return flow, Equation 21 leads to the equation in a
similar structure as that derived by Pizzo et al. (2023, their Equation 3.16) for long‐crested waves in a Lagrangian
frame.

3. Results and Discussion
3.1. Influence of Shear‐Currents on the Modulational Instability

Based on Equation 21 a uniform wave solution with a constant amplitude a0 is given by

A = a0 exp[− iω0t(Ũs (a0) + Ũb)/(2cg,0)]. (23)

The stability of the uniform wave to sideband perturbations is investigated assuming small perturbations in
amplitude a and phase θ of the form

A = a0(1 + a + iθ)exp[− iω0t(Ũs (a0) + Ũb)/(2cg,0)] (24)

having the plane wave solution [a,θ] = [â, θ̂] exp[i(δxk0x + δyk0 y − δωω0t)] + c.c., where c.c. denotes the
complex conjugates, δx and δy denote the (real) dimensionless bandwidth in the longitudinal and transverse di-
rection, respectively, and δω the dimensionless bandwidth in wave frequency, â and θ̂ denote the (real) amplitude
and phase of the perturbations which are assumed to be small compared with the amplitude a0 of the uniform
wave. Inserting Equation 24 for the envelope into Equation 21 leads to a linearized perturbation equation whose
solution gives rise to an expression for the dimensionless frequency, δω. The expression depends on the velocity
profile of the background flow.

As noted, a background flow in ocean models with surface waves being a driving force shall have a component
called wave‐modified background flow. This suggests that such a flow in addition depends on the perturbations.
We may assume the velocity profile of the wave‐modified background flow in the form (see, e.g., Pizzo
et al. (2023); Higgins et al. (2020))

Ũb ≡ Ũb(A) ∼ cg,0 ( k20|A|
2), and thus Ũb/cg,0 ∼ μ0 ∼ ε2 as assumed. (25a, b)

Due to Equation 25, inserting the envelope given by Equation 24 into the SC‐MNLS, the linearized perturbation
equation leads to an explicit expression for the dimensionless frequency δw,

δω = Li ±
̅̅̅̅
Δ

√
with Δ = Lr [Lr + ϵ 2

0 ( γs + γe + γb)] + δ2x ϵ
4
0 /16, (26a, b)

where ϵ0 = k0a0 is the wave steepness, Li = [L(iδxk0,iδyk0) + L∗ (iδxk0,iδyk0)]/2 and Lr = − i[L(iδxk0,iδyk0)
− L∗ (iδxk0,iδyk0)]/2, and the other non‐dimensional parameters γ with different subscripts are given by

Geophysical Research Letters 10.1029/2023GL107381
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γs ≡
1
ϵ 2
0

Ũs (a0)
cg,0

= 1, γe =
1
ϵ 2
0

Ũe (k0,a0,0)
cg,0

, and γb =
1
ϵ 2
0

Ũb (a0)
cg,0

(27a, b, c)

which are interpreted as the effect of the Stokes drift, Eulerian return flow, and the perturbed background flow on
the stability of a uniform wave, respectively. The sideband instability occurs when the imaginary component of
the dimensionless frequency δw is positive, requiring the inequality

Δ< 0 (28)

to hold. This inequality defines a region of instability shown in Figure 1. The region of instability varying with the
longitudinal (δx) and transverse bandwidth (δy) is computed in Figure 1 with an increasing value for γba for the
panels from (a) to (f).

Figure 1 shows consistent results with the following discussions using the approximation Lr ≈ δ2y/4 − δ2x/8.
When neglecting, in addition, the effects due to Eulerian return flow and the nonlinear terms dependent on the
bandwidth, the inequality Δ < 0, as in Equation 28, becomes

Δ≈ < 0 with Δ≈ ≡ (δ2y/4 − δ2x/8)[δ
2
y/4 − δ2x/8 + ϵ 2

0 ( γs + γb)]. (29a, b)

The inequality Equation 29b recovers to Pizzo et al. (2023, their Equation 3.18) in the limiting cases of long‐
crested waves where δy = 0, albeit it shall be noted that the theory by Pizzo et al. (2023) is derived in a
Lagrangian frame. Based on Equation 26b, the suppression of the MI occurs if Δ = 0 as this means the per-
turbations cannot grow. In the limit of extremely small waves where ϵ0 → 0, the identity Δ = 0 is met under two
conditions

γs + γe + γb = 0, (30)

which means Δ = 0 when Lr = 0 and Δ = L2r ≥ 0 in general, or

Figure 1. The instability region against the sidebands δx and δy in the main direction of the carrier wave propagation and the transverse direction, respectively, where
ϵ0= 0.15. The panels (a–g) are obtained based on (26b) (back solid) with an increasing γb, from the negative value of − 2, − 1.2, − 1, − 0.5 denoting an opposing current to
the positive value of 0.5, 0.8, and 1.2 which denotes a background flow following the carrier wave. In all panels, the instability region in the absence of a background
current predicted by Li (2021) (red dashed) and the approximation Δ≈ (blue dots) are included.
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γs + γe + γb = (δ2x − 2δ
2
y)/ (8ϵ

2
0 ). (31)

The identities Equations 30 and 31 define the boundaries of the region where the MI occurs, as a result of the
interplay of the three different flows. Given that γs = 1 based on Equation 27a and γe → 0− as ɛ → 0 based on
Equation 27b, the identities Equations 30 and 31 holds when

γb ≈ − 1 and γb ≈ (δ2x − 2δ
2
y)/(8ϵ

2
0 ) − 1, (32a, b)

respectively. The identity Equation 32a corresponds to the case of an opposing current. The ratio of bandwidth to
steepness in Equation 32b has the same sign as the sign of γb+ 1, meaning an opposing current with γb < − 1 leads
to the region boundaries of the MI intersect with the axis of the transverse bandwidth at δy ≈ 2ϵ0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− 1 − γb

√
or with

the positive axis of the longitudinal bandwidth at δx ≈ 2 ϵ0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2(1 + γb)
√

for γb > − 1.

With the definition of γb given by Equation 27c, the approximation γb ≈ − 1 based on Equation 32a is a special
case that has a twofold meaning, as shown in panel (c) of Figure 1. Firstly, the instability for long‐crested waves
starts to be completely suppressed if the magnitude of the flow becomes stronger. Secondly, it leads to an
extremely limited instability region near the origin as inserting the approximation into Equation 32b leads to
δx = δy = 0. This special case corresponds to an estimate of the magnitude of the background flow

Ũb/cg,0 ∼ − ϵ 2
0 , (33)

which falls into the regime of a background flow that predominantly occurs in the open ocean, especially, the
wind‐drift currents (Leibovich, 1983; J. Wu, 1983). For example, when wind waves have a typical spectral peak
period of 10 s, which corresponds to the phase velocity of ∼16 m/s, the suppression of the MI occurs for
Ũb ≈ − 0.18 m/s and Ũb ≈ 0.08 m/s and ϵ0 = 0.15, corresponding to wind‐drift currents whose velocity on a still
water surface (|Ub(z = 0)|) of ∼2.25% and ∼1% of the wind speed, respectively.

The condition for the suppression of MI of long‐crested waves also corresponds to when the transverse instability
starts to be more pronounced with γb ≤ − 1, as shown in panels (a–c) in Figure 1. When the longitudinal bandwidth
vanishes, that is, δx = 0, Equation 26b has two roots for the dimensionless transverse bandwidth δy

δy = 0 or δy ≈ 2ϵ0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− ( γs + γb + γe)
√

. (34a, b)

Substituting the values for γb of − 2, − 1.2, and − 1 into Equation 34b leads to the value for the dimensionless
transverse bandwidth of ∼0.30, 0.13, and 0, respectively. This is in agreement with the graphic intersection of the
boundary of the instability region (black solid lines) with the vertical axis in panel (a), (b), and (c) of Figure 1,
respectively. This can also be observed in Figure 2 in which a slightly higher value for the wave steepness was
adopted. Figure 2 shows that the MI for unidirectional or long‐crested waves is suppressed for γb ≤ − 1. When the
instability occurs, |

̅̅̅̅
Δ

√
| (or |

̅̅̅̅̅̅̅
Δ≈

√
|) quantifies the growth rate of the energy transfers. The Eulerian return flow

represented by γe, with 0 ≤ γe < 1, leads especially to a decreased growth rate and has larger effects on the
decreased growth rate for larger longitudinal bandwidth or steepness.

The estimate of the background flow modified constant, γb, depends on the vertical profile in addition to the order
of magnitude of the velocity of the background flow given by Equation 25. We may express the velocity
component of the background flow as

Uk0 = 2cg,0k
2
0|A|

2Ū(z), (35)

where the subscript “k0” denotes the projection of the velocity vector Ub in the main propagation direction of the
waves, k0; Ū(z) ∼ O(1) denotes a dimensionless function that shows the dependence of the velocity on depth z.
We consider three different profiles which can lead to an explicit expression for γb

Geophysical Research Letters 10.1029/2023GL107381
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Ū(z) ≡ Ūc = Ū0 → γb = 2Ū0, (36a)

Ū(z) ≡ Ūexp = Ū0 (exp(Λk0z) − υ) → γb = 2U0 [2(2 + Λ)− 1 − υ], (36b)

Ū(z) ≡ ŪL = U0 + Sk0z → γb = 2U0 (1 − S/2), (36c)

where the subscripts “c,” “exp,” and “L” denote a constant, exponential, and linear profile, respectively;
Ū0 = Ū(0) is the dimensionless velocity at the still water surface; Λ, υ, and S are dimensionless parameters that
are chosen to denote the different dependence of the profile of the vertical shear current on z. In the limiting case
of γb = − 1 which corresponds to suppressed MI in wave dynamics, Equations 36a–36c lead to, respectively,

Ū0 = − 1/2, − 1 = Ū0 [4/(2 + Λ) − 2υ], and − 1 = Ū0(1 − S/2). (37a, b, c)

In the presence of the exponential sheared current for υ = 0, Λ = 2, and Ū0 = − 1 such that

Uk0 = − 2cg,0k0e
2k0z(k0|A|)2 ≡ − Us(z), (38)

it particularly represents a case of suppressedMI, when the Stokes drift velocity is canceled out by the background
flow at different depths.

We emphasize that when a shear current is not considered correlated to the waves, that is, the current is only
interpreted as a Doppler shift to the frequency (see, e.g., Cavaleri et al. (2018)), γb = 0 is admitted and the shear
currents with the assumed scales discussed in this section do not affect the MI process.

3.2. Impact of the Background Flow and Modulational Instability on Langmuir Circulations

We have so far demonstrated how a system of surface waves in a sheared mean flow becomes unstable subject to
small perturbations owing to MI. It is interesting to point out that this system can also be unstable to small span‐
wise perturbations arising from the CL2 instability mechanism, which leads to vertical vortex lines being tilted,
the generation of streamwise vorticity, and enhanced vertical motions (Thorpe, 2004). Likely due to the appli-
cations in two different communities, that is, wave hydrodynamics and ocean modeling, we remark that both

Figure 2. Instability region similarly to Figure 1. In panels (a, b) ϵ0= 0.18 with different values for γb: panel (a) γb= − 1.5 and
panel (b) γb = − 1.1.

Geophysical Research Letters 10.1029/2023GL107381
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instability mechanisms have been separately considered in the past. Whether the two different phenomena of great
interest to the different communities shall be considered together is an open research question that requires further
studies. Nevertheless, it can be instructive to point out the conditions which can establish a possible relationship
between the two mechanisms. Specifically, the conditions correspond to when both instabilities can occur or
when one occurs, however, the other is instead suppressed.

Following Craik and Leibovich (1976) and Leibovich (1977, 1983), the linearized stability analysis can be
applied for the mean flows denoted by U here, while detailed derivations are not included to avoid unnecessary
repetition. The same conclusions can be drawn to determine the condition for which the CL2 instability occurs

U′bU′s > 0, (39)

which applies for inviscid and non‐stratified shear flows with negligible Earth's rotation. We recall thatU′b andU′s
are the vertical gradients of the shear current and Stokes drift, respectively, as in Leibovich (1983). The timescale
for the modulational and CL2 instability to occur is, respectively

(ω0ε2) tw ∼ 1 and 0.2ω0εtc ∼ 1, (40a, b)

the latter of which is estimated using the properties of the mean flow as follows. The mean flow is assumed to be a
wind‐drift current of the order of 3% of the wind speed (Leibovich, 1977, their Section 6). The timescales of the
two different mechanisms for an unstable system estimated by Equations 40a, b mean that these are of the same
order, and thus nonlinear energy transfers between waves and between waves and currents are expected to occur
in the ocean within the same time duration. This is indeed a feature that should be useful from an observational
point of view.

Combing the discussion in Section 3.1 and the criterion by Equation 39 for the modulational and CL2 instability,
respectively, both mechanisms depend on the profile of Stokes drift and vertically sheared current. To demon-
strate this, a diagram of a train of right‐propagating quasi‐monochromatic waves in a vertically sheared current
modeled by different velocity profiles is shown in Figure 3. We stress that the discussion here is not limited to the
current profiles whose magnitude varies monotonically with depth, although they are used as examples in
Figure 3. The profiles shown by panels (a, b) and (e, f), which are typical as wind‐drift currents (Peregrine, 1976),

Figure 3. Diagram of the profiles of a background flow with monotonically varying velocities with depth. In the Figure, Us(z) denotes the velocity of the Stokes profile
beneath a train of right‐propagating quasi‐monochromatic waves; Ub(z) denotes the component profile of a horizontally uniform and vertically sheared flow in the
direction of wave propagation. Panels (a–d) and (e–h) show a profile of a sheared current which can and cannot lead to the CL2 instability, respectively. Panels (a, b, g,
h) and (c–f) show a profile of vertically sheared current which can enhance and suppress the MI of long‐crested waves.

Geophysical Research Letters 10.1029/2023GL107381
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can trigger and suppress both instabilities, respectively, as the profiles in panels (a, b) can satisfy Equation 39 and
a following current leads to an increased area of the region of the MI of long‐crested waves, while the profiles in
panels (e, f) suppresses the streamwise MI instability of long‐crested waves and the CL2 instability. The profiles
by panels (c, d) and (g, h) can be used to model the superposition of a tidal current and a wind‐drift current. Panels
(c, d) show that the CL2 can be triggered but suppress the MI due to transverse perturbations, whereas panels (g,
h) show the opposite phenomena. The profiles depicted by panels (c, d) can be unstable to oblique perturbations
due to the additional MI to the CL2 instability, similar to panels (a, b). Note that Gerstner waves do not induce
drift and thus, neither Langmuir circulation (Holm, 1996; A. A. Abrashkin & Pelinovsky, 2018).

4. Conclusion
Using a newly derived shear‐current modified NLS equation for narrowband deep‐water surface waves in a
background open flow, we have explicitly represented the roles of three different currents in the generation of
extremely large amplitude sea waves subject to MI in three dimensions. These three different currents are a Stokes
drift, an Eulerian return flow due to a passing quasi‐monochromatic wave group, and an open‐ocean background
flow with induced motions being also rotational. The background flow is assumed to be horizontally oriented but
vertically sheared, whose velocity varies slowly in the horizontal space and time compared with the phase of the
characteristic wave. The magnitude of the background flow has a component at the second order in wave
steepness in the main propagation direction of waves.

The complex interplay between the three flows is represented by the superposition of three dimensionless pa-
rameters in the shear SC‐MNLS equation, which is used in the condition given by Section 3.1 for the MI to occur.
When the background flow is simply interpreted as a Doppler shift being completely uncorrelated with external
perturbations and waves, it does not affect the conditions for the occurrence of MI. Nevertheless, for the opposite
case, that is, the background flow is both perturbation and waves correlated (Pizzo et al., 2023), its role is
interpreted by the dimensionless parameter γb defined in Equation 27c, denoting the magnitude of the shear
current‐modified effect scaled with the product of ϵ 2

0 and cg,0, where ϵ0 and cg,0 denotes the dimensionless
steepness and group velocity of the carrier wave, respectively. It is worth noting that the effect of the vertically
sheared current is depth‐averaged as well as wave vector‐weighted, which means the effect on waves depends on
both, wavelength and the angle between wave propagation and current orientation (Ellingsen & Li, 2017). An
opposing and following flow can, in general, suppress or enhance the MI of unidirectional (long‐crested) waves.
The MI of such waves can be completely suppressed when γb ≤ − 1, whereas the oblique instability remains not
affected. The conditions of γb ≤ − 1 can be found especially in wind‐drift currents as their magnitude is about the
order of ϵ 2

0 of the characteristic wind speed, which can be well‐approximated by the phase velocity of local wind‐
induced waves (Leibovich, 1983; J. Wu, 1983).

The Stokes drift is explicitly represented by Ũs in Equation 19 in the newly derived NLS‐type equation given by
Equation 21 in an Eulerian frame. It has been widely used in wave‐induced mean flow equations for under-
standing the dynamics of the upper ocean flow, partly due to its role in triggering the CL2 instability which can tilt
and generate vortex rolls and promote vertical motions in the upper ocean (see, e.g., Suzuki and Fox‐Kem-
per (2016)). Both the MI and CL2 instability can lead to a system composed of surface waves and an open‐ocean
flow becoming unstable subject to small perturbations. We have determined combined conditions for the
occurrence of both, therefore demonstrated that these processes shall be considered together to determine energy
transfers between waves and between wave and current interactions in realistic circumstances in the open ocean.

Although the reported findings are based on asymptotic approximate theory, they can be used to guide and better
interpret in situ observations (Malila et al., 2023). Moreover, the roles of a background flow on the MI have
demonstrated the need for physically coupling the ocean and wave models in the upper mixed ocean layer, in
which the wave phases should be resolved. In doing so, when both instabilities occur in the open ocean, energy
cascades from waves to waves to currents and vice versa may open up novel physical insights in the perspective of
the partition of the energy of surface waves in the real ocean, as studied in S. F. Zippel et al. (2022), and the
maintenance of Langmuir circulations by surface waves (Phillips, 2002; Thorpe, 2004). Furthermore and simi-
larly to the Dysthe equation (Kit & Shemer, 2002; Lo & Mei, 1985; Pizzo & Melville, 2016; Trulsen & Stans-
berg, 2001), a spatial form of our newly derived framework can be useful for experimental explorations and
numerical benchmark studies to assess the influence of an additional mean flow on the evolution of nonlinear
waves.

Geophysical Research Letters 10.1029/2023GL107381
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Data Availability Statement
All figures and data from this work can be reproduced by following the theoretical equations used.
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