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A graph H is an induced minor of a graph G if H can be 
obtained from G by vertex deletions and edge contractions. 
We show that there is a function f(k, d) = O(k10+2d5) so that 
if a graph has treewidth at least f(k, d) and maximum degree 
at most d, then it contains a k × k-grid as an induced minor. 
This proves the conjecture of Aboulker, Adler, Kim, Sintiari, 
and Trotignon (2021) [1] that any graph with large treewidth 
and bounded maximum degree contains a large wall or the line 
graph of a large wall as an induced subgraph. It also implies 
that for any fixed planar graph H, there is a subexponential 
time algorithm for maximum weight independent set on H-
induced-minor-free graphs.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

A graph H is a minor of a graph G if H can be obtained as a contraction of a 
subgraph of G. An induced minor is a minor that is obtained as a contraction of an 
induced subgraph.
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The famous grid minor theorem of Robertson and Seymour [19] (see also [9,10]) states 
that there is a function f : N → N so that any graph with treewidth at least f(k)
contains a k×k-grid as a minor. A question with several applications in graph theory and 
algorithms [1,5,16] is when can “minor” be replaced by “induced minor” in the grid minor 
theorem. In general this is not possible: complete graphs have unbounded treewidth but 
do not contain a 2 × 2-grid as an induced minor. However, one could expect that minors 
and induced minors behave similarly in sparse graphs. Fomin, Golovach, and Thilikos 
proved that for any fixed graph H, there is a constant cH so that any H-minor-free 
graph with treewidth at least cH · k contains a k × k-grid as an induced minor [13]. In 
this paper, we give a grid induced minor theorem for another important class of sparse 
graphs, in particular for the class of graphs with bounded maximum degree.

Theorem 1. There is a function f(k, d) = O(k10 + 2d5) so that for any positive integers 
k, d it holds that if a graph has treewidth at least f(k, d) and maximum degree at most 
d, then it contains a k × k-grid as an induced minor.

For graphs with treewidth at least 2d5 , the size of the grid that we obtain is up to 
a subpolynomial 2O(log5/6 k) factor the same as the size of the grid in the grid minor 
theorem. In particular, the bound O(k10 + 2d5) on f(k, d) follows from the most recent 
bound on the grid minor theorem [10] and will improve if the bound on the grid minor 
theorem is improved.

Together with some routing arguments from [1], Theorem 1 implies that the following 
conjecture of Aboulker, Adler, Kim, Sintiari, and Trotignon [1] holds.

Corollary 1. For every d ∈ N, there is a function fd : N → N such that every graph with 
maximum degree at most d and treewidth at least fd(k) contains a k× k-wall or the line 
graph of a k × k-wall as an induced subgraph.

In addition to [1], this conjecture has been explicitly mentioned by Abrishami, Chud-
novsky, Dibek, Hajebi, Rzążewski, Spirkl, and Vušković in three articles of their “Induced 
subgraphs and tree decompositions” series [2–4] and the main results of the first two ar-
ticles of this series [2,5] are special cases of this conjecture.

Theorem 1 has several direct algorithmic implications. In particular, by known algo-
rithms using treewidth [7,11], it implies that a large number of combinatorial problems 
can be solved in linear-time on graphs that exclude a planar graph as an induced minor 
and have bounded maximum degree. Note that in contrast, for any non-planar graph H, 
for example the maximum independent set problem is NP-complete on subcubic graphs 
that exclude H as an induced minor [18].

Theorem 1 implies also the following algorithmic result.

Corollary 2. For every fixed planar graph H, there is a 2O(n/ log1/6 n) time algorithm for 
maximum weight independent set on H-induced-minor-free graphs, where n is the number 
of vertices of the input graph.
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Algorithms for maximum weight independent set on H-induced-minor-free graphs for 
specific planar graphs H have recently received attention [12,14,15]. In this area a central 
open question asked by Dallard, Milanic, and Storgel [12] is if there exists a fixed planar 
graph H so that maximum weight independent set is NP-complete on H-induced-minor-
free graphs, or whether a polynomial time or quasipolynomial time algorithm could be 
obtained for H-induced-minor-free graphs for all planar graphs H. Theorem 1 can be 
seen as a step towards the latter direction.

2. Preliminaries

We use log to denote base-2 logarithm. A graph G has a set of vertices V (G) and a 
set of edges E(G). For a vertex v ∈ V (G), N(v) denotes the set of its neighbors. For a 
set of vertices S ⊆ V (G), G[S] denotes the subgraph of G induced by S. The distance 
between two vertices in a graph is the minimum number of edges on a path between 
them, or if they are in different connected components the distance is infinite.

A minor model of a graph H in a graph G is a collection {Xv}v∈V (H) of pairwise 
disjoint vertex sets Xv ⊆ V (G) called branch sets so that each induced subgraph G[Xv]
is connected, and if there is an edge uv ∈ E(H), then there is an edge between Xu and 
Xv in G. A graph G contains H as a minor if and only if there is a minor model of H in 
G. An induced minor model of H is a minor model with an additional constraint that 
if u, v ∈ V (H), u �= v, and uv /∈ E(H), then there are no edges between Xu and Xv. A 
graph G contains H as an induced minor if and only if there is an induced minor model 
of H in G.

A tree decomposition of a graph G is a pair (T, β), where T is a tree and β is a 
function β : V (T ) → 2V (G) mapping nodes of T to sets of vertices of G called bags so 
that

1. V (G) =
⋃

i∈V (T ) β(i),
2. for every uv ∈ E(G) there exists i ∈ V (T ) with {u, v} ⊆ β(i), and
3. for every v ∈ V (G), the nodes {i ∈ V (T ) | v ∈ β(i)} induce a connected subtree of 

T .

The width of a tree decomposition is maxi∈V (T ) |β(i)| − 1 and the treewidth of a graph 
is the minimum width of a tree decomposition of it.

We recall a standard lemma on treewidth.

Lemma 1. Let G be a graph of treewidth k and let X1, . . . , Xp be pairwise disjoint subsets 
of V (G) so that for each Xi it holds that |Xi| ≤ q and G[Xi] is connected. The treewidth 
of the graph obtained by contracting each set Xi into a single vertex is at least k/q.

Proof. Let G′ be the graph obtained from G by contracting each set Xi into a vertex 
xi. Suppose that G′ has a tree decomposition of width at most k/q − 1. We construct a 
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tree decomposition of G by replacing each vertex xi in the decomposition by the set Xi. 
This increases the bag sizes by a factor of q, so we obtain a tree decomposition of G of 
width at most k − 1, which is a contradiction. �
3. Proof of Theorem 1

We will first define sparsifiable graphs and show that minors in sparsifiable graphs 
correspond to induced minors. Then we show that if a graph has treewidth k and max-
imum degree at most log1/5 k, then it has an induced subgraph that is sparsifiable and 
has treewidth k/2O(log5/6 k).

3.1. Sparsifiable graphs

We say that a vertex v of a graph is sparsifiable if it satisfies one of the following 
conditions:

1. v has degree at most 2,
2. v has degree 3 and all of its neighbors have degree at most 2, or
3. v has degree 3, one of its neighbors has degree at most 2, and the two other neighbors 

form a triangle with v.

We call a graph sparsifiable if every vertex of it is sparsifiable. We say that a vertex 
is of type 2 if it satisfies the condition 2 and that a vertex is of type 3 if it satisfies the 
condition 3 but does not satisfy the condition 2.

Now we show that minors and induced minors are highly related in sparsifiable graphs.

Lemma 2. Let G be a sparsifiable graph and H a graph of minimum degree at least 3. If 
G contains H as a minor, then G contains H as an induced minor.

Proof. Let {Xv}v∈V (H) be a minor model of H in G. Say that an edge ab ∈ E(G) is 
violating if there exists non-adjacent vertices u, v of H so that a ∈ Xu and b ∈ Xv. Note 
that if there are no violating edges, then {Xv}v∈V (H) is also an induced minor model of 
H. Suppose that {Xv}v∈V (H) minimizes the number of violating edges among all minor 
models of H. We will show by contradiction that the number of violating edges must be 
zero.

Let ab ∈ E(G) be a violating edge with a ∈ Xu and b ∈ Xv. Both a and b must have 
degree at least 2 because otherwise u or v would have degree 1. First, consider the case 
that ab has a degree 2 endpoint, and by symmetry assume that the degree 2 endpoint 
is a ∈ Xu. The neighbor of a not in Xv must be in Xu because u has degree at least 3. 
It also holds that G[Xu \ {a}] is connected because a has degree 1 in G[Xu]. The only 
other branch set that a is adjacent to than Xu is Xv, but there is no edge between u
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and v in H, so we can replace Xu by Xu \ {a} in the minor model. This decreases the 
number of violating edges.

The other case is that both a and b have degree 3. Because they are adjacent, they 
both are of type 3, so they form a triangle together with a vertex c. First, consider the 
case that c ∈ Xv. Now, a is adjacent to two vertices in Xv and the third vertex it is 
adjacent to must be in Xu because u has degree at least 3. Therefore, we can replace Xu

by Xu \ {a} in the minor model, which decreases the number of violating edges.
The same argument as above works also if c ∈ Xu or if c is not in any branch set. 

The remaining case is that c ∈ Xw for some w ∈ V (H) \ {u, v}. If w is not adjacent to u
(resp. to v), then removing a from Xu (resp. b from Xv) again decreases the number of 
violating edges, so we can assume that w is adjacent to both u and v. Because u and v
have degree at least 3 and u and v are not adjacent, it holds that the unique vertex in 
N(a) \{b, c} is in Xu and that the unique vertex in N(b) \{a, c} is in Xv. We replace Xu

by Xu \ {a}, Xv by Xv \ {b}, and Xw by Xw ∪ {a, b}. This removes the violating edge 
ab, and does not create any new violating edges because w is adjacent to both u and v, 
and both N(a) and N(b) are contained in Xu ∪Xv ∪Xw. �

Lemma 2 cannot be directly used when H is the k × k-grid because its corners have 
degree 2. However, contracting four edges each incident to a distinct corner of the k×k-
grid yields a graph of minimum degree 3 that contains the k−2 ×k−2-grid as an induced 
minor. Therefore Lemma 2 implies that if a sparsifiable graph contains a k×k-grid minor, 
then it contains a k − 2 × k − 2-grid induced minor.

3.2. Sparsifying a graph

We will make use of the following theorem proved by Chekuri and Chuzhoy that every 
graph contains a degree-3 subgraph that approximately preserves its treewidth.

Theorem 2 ([8]). There exists a constant δ so that every graph with treewidth k ≥ 2 has 
a subgraph with maximum degree 3 and treewidth at least k/ logδ k.

For the rest of this section we will use δ to denote the constant δ given by Theorem 2. 
We note that instead of Theorem 2 we could alternatively use the grid minor theorem, 
but that would yield a significantly worse dependence on the treewidth in our result.

A distance-5 independent set in a graph G is a set I ⊆ V (G) of vertices so that for 
any pair u, v ∈ I of distinct vertices, the distance between u and v in G is at least 
5. Next we show how to make all vertices in a distance-5 independent set sparsifiable 
while approximately preserving treewidth. This will be then used to prove Theorem 1 by 
observing that the vertices of a graph with maximum degree d can be partitioned into 
d4 + 1 distance-5 independent sets.

Lemma 3. Let G be a graph of treewidth k and maximum degree d with 2d2 ≤ k, and let 
I ⊆ V (G) be a distance-5 independent set in G. There exists an induced subgraph G[S]
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of G so that G[S] has treewidth at least k/((d2 + 1) logδ k) and every vertex in I ∩ S is 
sparsifiable in G[S].

Proof. For each vertex v ∈ I, let Bv be the set of vertices at distance at most 2 from 
v (i.e. Bv = {v} ∪N(v) ∪N(N(v))). The induced subgraphs G[Bv] are connected, and 
because I is a distance-5 independent set, the sets Bv are disjoint. Let H be the graph 
obtained by contracting each set Bv into one vertex. Because |Bv| ≤ d2 + 1, Lemma 1
implies that the treewidth of H is at least k/(d2 + 1). By Theorem 2, there exists a 
subgraph H ′ of H with maximum degree 3 and treewidth at least k/((d2 + 1) logδ k). 
We can assume that V (H ′) = V (H). Let Q ⊆ V (G) be the vertices of G that are not in 
any Bv. The graph H ′ is a minor of G, with a minor model whose branch sets are the 
sets Bv for each v ∈ I and singleton sets {u} for each u ∈ Q.

We will construct a set S ⊆ V (G) so that Q ⊆ S, all vertices of I ∩ S are sparsifiable 
in G[S], and H ′ has a minor model in G whose branch sets are the sets Bv ∩ S for all 
v ∈ I and singleton sets {u} for all u ∈ Q. The graph G[S] therefore will contain H ′ as 
a minor and therefore will have treewidth at least k/((d2 + 1) logδ k).

Consider a vertex v ∈ I. We will construct Bv ∩ S so that either v /∈ S or v is 
sparsifiable in G[S]. Because H ′ has maximum degree 3, we can choose a set T ⊆ Bv of 
at most three terminal vertices that are at distance 2 from v whose connectivity should 
be preserved in G[Bv ∩ S] in order to preserve the minor model of H ′. We start by 
setting Bv ∩ S to be the union of the shortest paths from the terminals t ∈ T to v. 
Note that the only vertices at distance 2 from v that are on the shortest paths are the 
terminals T . Then, we say that a terminal t ∈ T is private to a vertex u ∈ N(v) ∩ S if 
u is the only vertex in N(v) ∩ S adjacent to t. If a vertex u ∈ N(v) ∩ S does not have 
a private terminal, we remove u from S. Now, every vertex in N(v) ∩ S has a private 
terminal. If |N(v) ∩ S| ≤ 2, the vertex v has degree at most 2 in G[S] and we are done. 
The remaining case is that |N(v) ∩ S| = 3 and each vertex in N(v) ∩ S has a private 
terminal, implying that |T | = 3 and the edges between N(v) ∩S and T form a matching. 
If the graph G[N(v) ∩ S] is connected, we remove v from S and are done. If the graph 
G[N(v) ∩ S] is not connected, it contains at most one edge. If it contains no edges, the 
vertices N(v) ∩ S have degree 2 in G[S], and therefore v is a type 2 vertex in G[S]. If it 
contains one edge, then v is a type 3 vertex in G[S]. �

Next we finish the proof of Theorem 1 by applying Lemma 3 d4 + 1 times.

Lemma 4. If a graph G has treewidth k and maximum degree at most log1/5 k, then it 
contains an induced subgraph that is sparsifiable and has treewidth at least k/2O(log5/6 k).

Proof. Let G be a graph with treewidth k and maximum degree d. The vertices of G can 
be partitioned into d4 + 1 distance-5 independent sets I1, . . . , Id4+1 by observing that 
there are at most d4 vertices at distance at most 4 from any vertex and using a greedy 
method. We then sequentially apply Lemma 3 with these distance-5 independent sets, in 
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particular letting G0 = G, and then for each i with 1 ≤ i ≤ d4+1 letting Gi be the graph 
obtained by applying Lemma 3 with Gi−1 and Ii∩V (Gi−1). As taking induced subgraphs 
only increases distances, Ii ∩ V (Gi−1) is a distance-5 independent set in Gi−1. It also 
holds that once a vertex becomes sparsifiable, it will stay sparsifiable because taking 
induced subgraphs cannot increase vertex degrees or add new neighbors. Therefore Gd4+1
is sparsifiable. The graph Gd4+1 has treewidth at least k/((d2 + 1) logδ k)d4+1, meaning 
that when d5 ≤ log k, the decrease in the treewidth is by a factor of at most

((d2 + 1) logδ k)d
4+1 = 2O(d4(log(d2+1)+log logδ k)) = 2O(d4 log logδ k) = 2O(log5/6 k). �

Theorem 1 follows from using Lemma 4 to obtain a sparsifiable induced subgraph with 
treewidth at least k/2O(log5/6 k), then applying the grid minor theorem [10] to obtain a 
Ω(k1/10) ×Ω(k1/10) grid minor, and then using Lemma 2 to argue that this grid minor, 
after contracting the corners, is also an induced minor.

4. Proofs of corollaries

We detail how Corollary 1 and Corollary 2 follow from Theorem 1.

Corollary 1. For every d ∈ N, there is a function fd : N → N such that every graph with 
maximum degree at most d and treewidth at least fd(k) contains a k× k-wall or the line 
graph of a k × k-wall as an induced subgraph.

Proof. The proof of Theorem 1.1 in [1] shows that there is a function g : N → N so that 
if a graph contains a triangulated g(k) × g(k)-grid as an induced minor, then it contains 
either a k × k-wall or the line graph of a k × k-wall as an induced subgraph. Then, this 
corollary follows from Theorem 1 by observing that a k× k-grid contains a triangulated 
k/6 × k/6-grid as an induced minor and setting fd(k) = c · (g(k)10 + 2d5) for some large 
enough constant c. �
Corollary 2. For every fixed planar graph H, there is a 2O(n/ log1/6 n) time algorithm for 
maximum weight independent set on H-induced-minor-free graphs, where n is the number 
of vertices of the input graph.

Proof. Let G be the input graph and assume that n is sufficiently large compared to 
H. While there is a vertex of degree at least log1/5(n/ logn) in G, we branch from this 
vertex. This branching tree has size at most

n

(
n

n/ log1/5(n/ logn)

)
< n(e · log1/5(n/ logn))n/(log

1/5(n/ logn)) = 2O(n/ log1/6 n).

Then, if all vertices of G have degree less than log1/5(n/ logn) and G has treewidth 
more than cn/ logn for some constant c, then by Theorem 1 G contains a Ω(n1/11) ×
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Ω(n1/11) grid induced minor, and therefore contains any planar graph H as an induced 
minor if n is sufficiently large compared to H. Therefore, if all vertices of G have degree 
less than log1/5(n/ logn), then G must have treewidth O(n/ logn), and we can use a 
parameterized single-exponential time constant-factor approximation of treewidth [17]
together with dynamic programming [6] to solve maximum weight independent set in 
2O(n/ logn) time. �
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