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A B S T R A C T

Extreme wave climate provides the basis for safe design of offshore structures and is crucial for planning and
executing offshore operations. Covariate modeling of extremes significantly enriches and improves estimates
of return levels and exceedance probabilities of extreme sea states. Based on novel observational and hindcast
datasets, we formulate a seasonal–directional extreme value model for individual wave heights and present
exceedance probabilities for the Ekofisk oil and gas field, a location in the Central North Sea. Subsequently, we
elucidate how to downscale estimates of monthly exceedance probabilities and return levels to daily maxima
and illustrate how to retrieve consistent results on seamless directional sectors and different seasons, or for
the entire covariate space. We conclude with a versatile statistical framework to obtain seasonal–directional
extreme waves and reveal a strong seasonal and directional dependence of extreme individual waves at Ekofisk
with the highest waves coming from northwest during winter. Moreover, we apply our approach to normalized
wave heights and show noticeable variability depending on season and direction with implications for offshore
design.
Sea state conditions in the North Sea expressed by the parameter
significant wave height (𝐻s) depict directional and seasonal dependen-
cies (Feld et al., 2014, 2019; Hansen et al., 2020) and the probabilities
of the occurrence of extreme sea states can vary dramatically. In order
to correctly estimate exceedance probabilities, it is crucial to take non-
stationarity into account (Jonathan et al., 2008; Jonathan and Ewans,
2011, 2013). Recent studies (Breivik et al., 2022; Malila et al., 2022b,a)
provide a data base that allows us to apply this knowledge to observed
individual waves. In what follows, we present a statistical frame-
work on how to retrieve seamlessly customizable seasonal–directional
extreme individual wave heights.

A convenient, and therefore common, approach to statistically
model non-stationary extreme values is to condition parameters of the
extreme value model on variables that are the suspected cause of non-
stationarity. The nature of the dependency is not necessarily linear and
is often unknown. A way of dealing with unknown but assumed smooth
dependencies in a model with covariates, is to utilize regression splines
as incorporated in a Generalized Additive Model (GAM) (Wood, 2017)
where dependence on cyclic variables can elegantly be implemented
using cyclic splines.

Interestingly and importantly, it can be crucial to take into ac-
count non-stationary behavior even if one only plans to use stationary
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exceedance probabilities. Jonathan et al. (2008) demonstrated that
omni-directional estimates from a stationary model resulted in heavily
biased estimation of return values while omni-directional estimates
from a directional model were almost unbiased. For the North Sea, 𝐻s
extremes from the NORA10 wave hindcast (Reistad et al., 2011) were
shown to depend on both season and direction (Jonathan et al., 2008;
Feld et al., 2014). Similar to 𝐻s, we also expect individual waves to
display directional and seasonal dependency.

The typical prime source of sea surface elevation observations for
studying individual waves are offshore platforms. There are few pub-
licly available time series which, however, encompass a large amount
of data across many platforms world wide (Christou and Ewans, 2014;
Häfner et al., 2021). In recent years, Gaussian process (GP) models have
proven to be useful for filtering wave related time series (Bohlinger
et al., 2019; Malila et al., 2022b). This finally resulted in a unique, high-
quality dataset (Malila et al., 2022a) tailored to the analysis of extreme
waves where the existence of four simultaneous measuring lasers help
to determine whether an observation is a true measurement or should
be discarded. We base our study on this novel dataset that focuses on
preserving the extremes.
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Fig. 1. Left: Ekofisk location in the central North Sea marked by the red dot. Center: Footbridge between the Ekofisk 2/4 K and 2/4 B platforms, looking toward the 2/4 B
platform. Right: The 4 laser altimeters placed in a 2.6m × 2.6m array formation inside the footbridge.
Combining direct sea surface elevation measurements with wave
direction from the novel wave model hindcast NORA3 (Breivik et al.,
2022), we develop a seasonal–directional extreme value model to es-
timate exceedance probabilities of monthly maxima for a location in
the central North Sea, the Ekofisk oil and gas field. To contextualize
our results, we will showcase exceedance probabilities for extreme
wave heights with magnitudes comparable to the famous Andrea freak
wave (Donelan and Magnusson, 2017). Moreover, we demonstrate how
this model can be used to up- or downscale the results in the covariate
space according to user needs.

We start by first describing our data basis and the methodology,
including details about the statistical model. We continue with general
results from the model, aggregation across the covariate space, and
tailoring the results to user needs. Finally, we provide our thoughts on
the limitations of this model together with a conclusion and an outlook
addressing possible future extensions.

1. Data description and related challenges

The observational data base for our study comes from a laser
array mounted on the Ekofisk oil and gas field located in the central
North Sea (Fig. 1). The laser array consists of four Optech Sentinel
3100 infrared laser altimeters that measure the distance to the sea
surface at a frequency of 𝑓LA = 5Hz. The dataset was originally noisy
mainly due to sea spray and specular reflection occurring especially
during calm sea states, and contained missing values due to random
system failures and subsequent maintenance periods. For the purpose
of exploring extreme waves this dataset has been filtered utilizing a
GP model (Malila et al., 2022b) and was made publicly available for
further studies (see Malila et al., 2022a). For our study we will use
the up-crossing wave height (𝐻U) time series of the highest available
quality level (QC3).

To avoid counting the same wave multiple times we merged the
time series of the four lasers by choosing for each time step the value
from the preferred laser. The order of preference is L2 (best), L1, L3,
and L4 (worst). The order was determined from the experienced quality
of the lasers during data acquisition and preparation of Malila et al.
(2022b,a). The resulting merged time series encompasses the years
2003–2020. For details on the filtering method and the dataset please
refer to Malila et al. (2022b,a), respectively.

The 𝐻U time series consists of 9,213,028 waves after the quality
control procedure. A pronounced seasonal cycle is visible with the
lowest 𝐻U values recorded in summer and the highest during the
storm season in fall and winter (Fig. 2). This causes clusters and
auto-correlation that need to be taken into account when computing
exceedance probabilities. For the North Sea, Bell et al. (2017) found
that prevailing northerly winds have the greatest potential for building
the highest sea states. It is thus already known that there is a direc-
tional dependency for high sea states in the North Sea and directional
information needs to be considered. Since storms, that occur mainly
in the storm season, will preferably cause large waves from specific
2

directions due to the effective fetch length and low pressure tracks, it
is reasonable to assume that season and direction are not completely
independent which should be dealt with adequately.

Another challenge are missing data due to instrument or software
failures, and erroneous observations that lead to censoring. Although
the instrument can randomly fail, there is a type of systematic left
censoring due to the physical measurement principle of the laser.
Whenever the sea is too calm/flat, specular reflection can occur and
yield missing/erroneous recordings (Malila et al., 2022b). This occurs
mainly during low sea states below 𝐻s of roughly 3 m and consequently
during the summer months. If no informative insights exist on the
censoring mechanism, a zero-order approach would be to consider
waves for given sea states, typically done by calculating the normalized
wave heights 𝐻norm = 𝐻U

𝐻s
. For these ratios, there exist physically

reasoned and mathematically derived equations, i.e., the theoretical
Rayleigh (Rayleigh, 1880) and Tayfun (Tayfun, 1980) distributions,
expressing their probability of exceedance. The downside is that these
theoretical distributions are merely a reference, do not incorporate
all possible physical processes, and therefore might not correctly de-
scribe all waves at the site of interest. Another disadvantage when
working with 𝐻norm while interested in the exceedance probability of
an individual wave is that the sea state needs to be known. When
in addition there is interest in the exceedance probability given a
direction and/or season, there is little variability left to be explained
by this information as 𝐻s already explains most of the variability of
𝐻U given their above mentioned physical relationship (Fig. 4 right).
In fact, for this feature to change in a given direction and season,
the presence of some physical mechanism is required to alter these
ratios systematically. Although this can certainly be of interest, in this
paper we focus on extreme absolute heights of individual waves and
thus cannot avoid the censoring challenge by choosing 𝐻norm. We will,
however, briefly show an application to normalized wave heights.

2. Methodology

2.1. Strategy to meet the challenges

As already described, the laser dataset poses multiple challenges.
In short those consist of (1) auto-correlation, (2) systematic censoring,
(3) cyclic variables as covariates, (4) directionality is needed but not
present in the laser data, and (5) correlated covariates. We propose the
following strategies to handle these challenges.

(1) and (2): By choosing monthly maxima we avoid most of the
problematic censoring. Considering a threshold approach or higher
temporal resolution approach will need to be followed with a statement
about the likelihood of exceedance of the threshold when part of the
data is not known. Daily maxima bring about the problem with days
that come without any data because of calm sea conditions, which
consequently leads to a systematic under-representation of low daily
maxima. When considering monthly maxima, however, it is less likely
that entire months are censored due to calm seas and that the monthly
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Fig. 2. Time series of hourly maxima of 𝐻U and 𝐻s from combined time series. The crosses denote the recording of the Andrea freak wave.
Fig. 3. Time series of monthly maxima of 𝐻U and 𝐻s from combined time series. The crosses denote the recording of the Andrea freak wave. The blue circles mark the maximum
that was removed due to correlation.
maxima are suspect to systematic left censoring. In fact, the retained
maxima are consequently likely real monthly maxima as all other waves
were in too low sea states to be measured. Considering monthly maxima
also mitigates the issue of auto-correlation as it is unlikely that a storm
crosses the boundaries between months and creates monthly maxima
related to the same storm. There is, however, one exception which we
removed (Fig. 3). In this case, two maxima occurred only a few hours
apart and were created by the same storm system.

(3): We use both directionality (0–360◦) and seasonality (months
1–12), as covariates for our extreme value model. Both covariates are
cyclic and need to be dealt with appropriately. Therefore, we model
the dependency of the model parameters on these covariates utilizing
penalized cyclic cubic regression splines.

(4): As has been shown in previous studies, directionality should
be included and is also demanded by users. We have not yet found a
reliable way to systematically retrieve directions from the laser array
and use therefore the novel NORA3 hindcast dataset (Breivik et al.,
2022) to retrieve the direction of the dominant sea partition called peak
direction (PDIR) as a proxy for wave direction.

(5): We will deal with correlation between covariates, i.e., depen-
dency between direction and month of year, using tensor product
smoothers (Wood, 2006, 2017). The use of these smoothers is appro-
priate when dealing with multiple covariates of completely different
magnitude and when non-isotropic behavior is assumed.

The basis for our statistical model are the monthly maxima of the
original dataset which reduces to 191 values across 18 years (2003–
2020) (Fig. 3) with a clear dependency on season and direction (Fig. 4 ,
left and center). The highest sea states and individual waves occur
in storms during the fall and winter seasons with waves approaching
Ekofisk from the northwest.

2.2. Clarification on the term ‘‘exceedance probability’’

It is important to distinguish between different exceedance proba-
bilities that may at first glance seem similar but really are not the same
3

and can take fundamentally different values. For this study, we are
interested in an exceedance probability given a threshold, a direction,
and the season. For clarification of the results there are the following
probabilities to consider:

• In a situation where waves come from a certain direction during
a certain season one might wonder what is the probability, given
these conditions, that a wave will exceed a critical threshold.
The answer to that question would be what we coin here the
conditional probability (CP).

• Another important probability is the occurrence probability (OP) of
the respective conditions, since we are interested in a probability
varying with season and direction.

• Finally, we define the total probability (TP) which combines CP
and OP and can thus more generally answer the question on how
likely it is that a wave exceeds a threshold from a direction during
a given season while incorporating the fact that the conditions are
only a subset of what can occur, be it seldom or frequent. For
offshore design, TP is typically most important as it indirectly
dictates the loads an offshore structure has to withstand and in
this form TP is comparable with the non-stationary, and hence
omni-directional, exceedance probability.

When considering directions, the probability for one wave to be
large from a direction with high probability of large waves is of course
higher than for a direction with low probability of large waves. When
allowing for a wave to come from a random direction, the probability
for this wave to be large is somewhere in the middle because there is a
chance that a direction with a low or high probability for large waves
are chosen. This probability is of type CP, i.e., without considering the
effect of OP. Although this could technically be called omni-directional,
as one allows the wave to come from any direction, this is not what
is typically meant in offshore standards. When demanding that omni-
directional extremes have to be larger than extremes from the direction
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Fig. 4. Diagnostic figures visualizing the data basis consisting of monthly maxima. The crosses denote the recording of the Andrea freak wave. The blue circles mark the maximum
that was removed due to correlation.
with the highest probability for large waves, the NORSOK standard
operates with extremes and their probabilities of type TP.

The same is true when, instead of directions, one considers seasons
or months of the year versus omni-seasonal extremes. Even though
extreme waves in January are among the largest during a year, it
is more likely a wave exceeds a threshold when allowing for more
time to pass, i.e., the aggregated probability over multiple months or
seasons. So instead of denoting extremes and their probability from a
random month (CP) omni-seasonal, omni-seasonal typically means the
aggregation of all months (TP) which then considers also OP.

Finally, the choice of months and directions can be combined
arbitrarily. For the discussion of our results we make the following
distinctions:

• An omni-seasonal and omni-directional model aggregated along
neither dimension would just be denoted omni-directional/seasonal
CP.

• An omni-seasonal and omni-directional model aggregated along
both dimensions would just be denoted omni-directional/seasonal
TP.

• If one dimension is not aggregated it will be explicitly added to
the name, e.g.: omni-directional TP for January or omni-seasonal TP
for {NameOfSector}. The same applies for combinations with CP.

2.3. Model description

We use extreme value theory (Coles, 2001) and apply a Generalized
Extreme Value (GEV) distribution whose parameters are expressed as
smooth functions of month and direction. This is implemented as a
Generalized Additive Model or GAM (Wood, 2017), using the R package
mgcv. In GAMs, smooth functions of covariates use penalized regres-
sion splines, so a smooth function of covariate 𝑥𝑖 say, is constructed as
a linear combination

𝑓 (𝑥𝑖) =
𝐾
∑

𝑘=1
𝛽𝑘𝑏𝑘(𝑥𝑖) = 𝑿𝑖𝜷 (1)

where 𝜷 = {𝛽𝑘} are unknown coefficients (𝑘 = 1 conventionally
aliased to an intercept) and 𝑏𝑘(⋅) are basis functions such as cubic
splines. Matrix 𝑿𝑡 = {𝑏𝑘(𝑥𝑖)} with dimension 𝑛 × 𝐾 (𝑛 being the
number of data points) is the model matrix. The value of 𝐾 (known
as the number of knots) determines the flexibility of 𝑓 (⋅). The model
is estimated using penalized likelihood, where the penalty restricts the
amount of flexibility in 𝑓 (⋅) in order to avoid overfitting (Wood, 2011).
Specifically, the log-likelihood to be maximized is written as

𝓁(𝜷, 𝜃; 𝒚) − 𝜆𝛽𝜷′𝑺𝛽𝜷 (2)

where 𝓁(⋅) is the log-likelihood, 𝜃 are other model parameters and 𝜆𝛽
is a penalty parameter. The penalty matrix 𝑺𝛽 relates to a quadratic
penalty on 𝜷. The second term in (2) penalizes the flexibility (wiggli-
ness) of 𝑓 (⋅) so that the larger 𝜆𝛽 is the more the penalization.

The fact that in GAMs we assume a priori that all unknown functions
of the covariates are smooth can be viewed as a constraint on the values
4

that 𝜷 can take. From a Bayesian viewpoint, this can be achieved by
assuming that 𝜷 has the following prior distribution:

𝜷 ∼ 𝑁(𝟎,𝑺−∕𝜆𝛽 ) (3)

where 𝑺− is the pseudo-inverse of the penalty matrix 𝑺 (Wood, 2017).
The posterior distribution can be approximated by a multivariate Nor-
mal and is readily provided after fitting the model in the R package
mgcv. Using this, we can then obtain samples from the posterior
predictive distribution of 𝐻U for any value of direction or month, this
being a distribution that includes all associated uncertainty (Gelman
et al., 2013).

Lastly, functions of more than one covariate can be constructed us-
ing tensor product interactions (Wood, 2017) where a smooth function
of 𝑥𝑖 and 𝑧𝑖 say, can be constructed by making the coefficients of Eq. (1)
smooth functions of 𝑧, e.g.

𝑓 (𝑥𝑖, 𝑧𝑖) =
𝐽
∑

𝑗=1
𝛽𝑗 (𝑧𝑖)𝑏𝑗 (𝑥𝑖) (4)

where 𝛽𝑗 (𝑧𝑖) =
∑𝑀

𝑚=1 𝛾𝑗,𝑚𝑎𝑚(𝑧𝑖) and where 𝑎𝑚(⋅) can be of different basis
than 𝑏𝑗 (⋅).

2.4. Model specification

We fit the following model for 𝑦𝑚 being maximum 𝐻U at month 𝑚:

𝑦𝑚 ∼ GEV(𝜇𝑚, 𝜎𝑚, 𝜉) (5)
𝜇𝑚 ∼ 𝑓 (𝑚, 𝑑(𝑚)) (6)

log(𝜎𝑚) ∼ 𝑔(𝑚, 𝑑(𝑚)) (7)

where 𝜇𝑚, 𝜎𝑚 and 𝜉 are the location, scale and shape parameters of the
GEV. Smooth functions 𝑓 (⋅) and 𝑔(⋅) are tensor products of month 𝑚
and direction 𝑑(𝑚). These are constructed using a cyclic cubic spline
for each covariate and then interacted as in Eq. (4). Cyclic splines have
an added constraint that the smooth functions join at the end points
(e.g., month 1 and 12, and angle 0◦ and 360◦). We choose 63 knots for
each of the two functions (which was judged adequate using mgcv’s
function gam.check). The shape parameter (median ca. −0.11, ) was
left constant since introducing non-stationarity did not improve our
model.

2.5. Model predictions and checking

Fitting the model in mgcv and obtaining samples from the posterior
predictive distribution of the observed 𝐻U values allows for thorough
model checking. In practice, this involves simulation from the posterior
distribution of the spline coefficients Eq. (3), and then for each such
sample a further simulation from the GEV distribution.

We assess the quality of our model by checking whether sam-
ples from the posterior predictive distribution resemble the empirical
distribution of the observations. Our model tends to slightly under-
predict the highest waves compared to the empirical distribution of
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Fig. 5. Validation of our statistical model. Left: comparison of the empirical pdf from the observations against the model pdf from the posterior predictive distribution. Densities
are estimated with a Gaussian kernel smoother of width 5 both for model and observation distributions. Right: A QQ-plot comparing the mean of 1000 simulated values for each
observation (black) with 2.5% and 97.5% quantiles as credible intervals (red) and quantiles from all simulated data (gray) against the quantiles from the observations.
s

the observations (Fig. 5, left). However, the slight wiggly behavior
of the observation quantiles may be caused by the limited number of
considered observations. This becomes more clear when comparing the
distributions in a QQ-plot (Fig. 5, right). Although the highest quantiles
of the simulated maxima are lower than the highest quantiles of the
observed maxima, the observations still lie well within the prediction
intervals of the simulated maxima, meaning our model allows for
higher maxima to occur.

We tested also a non-stationary shape parameter incorporating di-
rection and season comparing the Akaike Information Criterion (AIC)
which is defined as

AIC = 2𝑘 − 2 ln(max()) (8)

with the likelihood function  and the number of estimated parameters
𝑘. Including the number of estimated parameters the AIC penalizes for
model complexity and discourages overfitting. However, we obtained
almost identical results (not shown) with a non-stationary shape param-
eter. Since the AIC was slightly higher (stationary shape: AIC = 886, 63
nots for location and scale, respectively; non-stationary shape: AIC =
94, 48 knots for location, scale, and shape, respectively), indicating no
dditional benefit for the increased complexity, we choose the simpler
odel and continue with a stationary shape parameter.

.6. Stationary baseline model

For comparison with our non-stationary GAM, we fit a stationary
EV distribution using the extRemes package (Gilleland and Katz,
016) with the default maximum likelihood estimation method. As
ata base we had to choose annual maxima instead of monthly max-
ma to satisfy the constraint that all values must be independent and
dentically distributed (i.i.d.) random variables. The resulting GEV
istribution has a slightly negative shape parameter close to zero and is
lmost Gumbel type with parameters 𝜇 = 15.72, 𝜎 = 2.27, and 𝜉 = −0.01.

3. Results

The estimated location and scale parameters exhibit a clear seasonal
and directional dependency (Fig. A.11) and vary considerably across
the covariate space. The shape parameter indicates a GEV of type III
but allows also for predictions from a long-tailed, Fréchet-type GEV
(Fig. A.12). The landscapes of location and scale leave their imprints
on the exceedance probability landscapes (Fig. 6).

We compute exceedance probabilities for monthly maxima of indi-
vidual waves larger than 12 m (Fig. 6 left) and 21 m (Fig. 6 right). The
5

first threshold of 12 m is a common threshold of interest for Ekofisk t
and 21 m is about the size of the famous Andrea wave. The largest
waves and the highest probabilities for exceeding the thresholds are
in the fall and winter season. 12 m is being exceeded virtually every
year consistent with the time series of monthly maxima (Fig. 3). During
summer the sea states in the central North Sea are much more calm
and large waves are very unlikely. An Andrea type wave exceeding a
threshold of 21 m seems only possible in winter and from north or
northwest. Then, however, during the winter months the chance of
exceeding a 21 m wave height can be as high as CP = 0.033. From
the south and east and especially in summer it is virtually impossible
to build up sea states that can lead to such large waves. This result is
consistent with the fetch length available for building up phenomenal
sea states and Bell et al. (2017) who state that northerly winds are most
likely to create high sea states in the North Sea.

4. Accounting for user needs

The following section describes how we would apply our model to
tasks frequently required by the offshore sector. We delineate three
showcases that should enable the reader to perform methodological
extrapolation to other similar cases.

4.1. Downscaling return levels and probabilities: From monthly to daily
estimates

As explained in the beginning, we were using monthly maxima
to construct the statistical model. However, when planning offshore
operations, considering monthly block maxima might be too coarse. In
this case, the return levels and exceeding probabilities can be adjusted
and downscaled to, e.g., daily estimates. Assuming that, just like the
monthly maxima, the daily maxima are independent one could compare
the probabilities,

𝑃
(

𝑋m ≤ 𝑇
)

=
[

𝑃
(

𝑋d,𝑚 ≤ 𝑇
)]𝑛 (9)

where 𝑋m are the monthly maxima, 𝑋d represent the daily maxima
within the month 𝑚, 𝑇 some threshold, and 𝑛 is the number of con-
sidered days in a month 𝑚. In terms of GEV distribution function,
downscaling with the power of 𝑛 becomes

𝐺 (𝑧)𝑛 =
⎛

⎜

⎜

⎝

exp
{

−
[

1 + 𝜉𝑚

(

𝑧 − 𝜇𝑚
𝜎𝑚

)]− 1
𝜉𝑚
}

⎞

⎟

⎟

⎠

𝑛

(10)

where 𝐺 is the GEV distribution function with shape parameter 𝜉,
location 𝜇, and scale 𝜎. In this way, the probability can be scaled to
ome multiple of 𝑛 corresponding to, e.g., one day or to an arbitrary
ime window of operation. Estimates of extreme quantiles of the daily



Ocean Engineering 270 (2023) 113535P. Bohlinger et al.
Fig. 6. Exceedance probability landscape (CP) for given wave direction (coming from) and month for the exceedance of two different thresholds 12 m (left) and an Andrea type
wave of 21 m (right). The position of the Andrea wave on the landscape figure is marked with a black cross. Note the different color scales for each panel.
Fig. 7. Exceedance probability landscapes (CP) for an individual wave higher than a threshold of 12 m. Left: same as in Fig. 6 (left). Right: Exceedance probability for a given
direction and day in a given month. Note the different color scales for each panel.
maxima distribution for a given month can then be obtained for 𝜉 ≠ 0
as

𝑧𝑝 = 𝜇𝑚 −
𝜎𝑚
𝜉𝑚

[

1 − {−𝑛 log (1 − 𝑃 )}
]

(11)

with the probability 𝑃 , the considered month 𝑚, and number of days
in the month 𝑛 which can be chosen freely.

This results in an exceedance probability landscape (Fig. 7) similar
to the monthly maxima but with the lower probabilities corresponding
to the duration of one day. When interested in specific time windows
this approach can easily be adjusted even if transitioning between
months.

Although we used daily maxima in this example, it is important to
note that this is for illustration purposes. If wave maxima are assumed
to be correlated, for instance due to a decorrelation time scale within
storms longer than a day, then the time period needs to be prolonged.

4.2. Results tailored to directional sectors and arbitrary subsets of the
covariate space

Commonly an offshore operator needs to consider a directional sec-
tor rather than one specific direction. One key question is whether the
directions within the chosen sector can be considered approximately
equally likely to occur or not. If the directions are equally likely to
occur one can assume a uniform distribution and establish a fine grid
to approximate sampling along the continuous spline in our GAM GEV
model.

If, however, as in our case, the occurrence probabilities of directions
vary with season, we model first the directions for each month using
a cyclic statistical model, i.e., the von Mises distribution (von Mises,
1918) included in the R package circular (Agostinelli and Lund,
2022). We then sample directions from the cyclic model valid for the
sector of interest to subsequently exploit the Bayesian interpretation
of our spline-based non-stationary GAM GEV model and sample from
the posterior predictive distribution monthly maxima for the directions
of the chosen sector and month. Finally, we set a threshold 𝑇 and
6

count exceedances of all return levels and compute the exceedance
probability (CP = 𝑃 (𝑋𝑚 > 𝑇 |𝑠, 𝑚)) for the desired sector and month.

As already mentioned, an offshore operator might want to combine
CP with OP of sea from a given sector and month. OP is equal to the
fraction of directions from our monthly von Mises model within a sector
divided by all sampled directions. The larger the sector the larger the
probability and for the omni-directional case this converges to 1 while
narrow sectors will be scaled with a fraction of 1 accordingly. It is
now straightforward to formulate and compute the total exceedance
probability TP,

TP(𝑋 > 𝑇 |𝑠, 𝑚) = OP(𝑠, 𝑚) ⋅ CP(𝑋 > 𝑇 |𝑠, 𝑚) (12)

As thoroughly illustrated by Feld et al. (2019), the common ap-
proach to account for OP in directional probabilities or return levels is
to artificially re-scale either one or the other in cases where directional
estimates exceed omni-directional estimates (omni-directional TP). This
is inconsistent as it is not applied always, the re-scaling is done in the
aftermath, the re-scaled estimates may lead to a mismatch in return
periods, and as Feld et al. (2019) points out, the approach is not clearly
defined in the offshore standards. Using the approach we describe, one
does not need any re-scaling or adjustment of this kind, once the results
are retrieved. The retrieval of the results is by definition consistent and
any prediction from an arbitrary sector or time period can directly be
put in context to an omni-seasonal or/and omni-directional estimate.
Predictions are consistent when moving from a point estimate, rep-
resented by a very narrow sector, to a directional sector or seasonal
estimate and further to omni-directional and omni-seasonal predictions.
As commonly required by offshore design and operation guidelines,
e.g., NORSOKSTANDARD N-003 (2017), and summarized for direc-
tional estimates by Feld et al. (2019), predictions for the sector most
prone to extremes can thus never exceed omni-directional/seasonal
predictions because they are scaled by OP for the given sector and the
temporal range. This can be done seamlessly along the covariate space
without pre-defining e.g. sectors prior to a model fit.
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Table 1
Exceedance probabilities for monthly maxima from various sector/month combinations
as well as the respective omni-directional probabilities. Probabilities are computed for
a threshold of 12 m and 21 m based on 1000 model predictions for each considered
scenario.

January OD January S1 January S2 July OD July S1 July S2

P(𝐻U > 12 m) 0.846 0.136 0.007 0.037 0.016 0.000
P(𝐻U > 21 m) 0.031 0.005 0.000 0.000 0.000 0.000

4.3. Practical showcase illustration

To illustrate the consistency of our approach, we compute ex-
ceedance probabilities for two directional sectors and two different
months as well as for the omni-directional and omni-seasonal case.
Fig. 8 (left) shows directions from all observed monthly maxima spread
across the directional circle with the majority of cases coming from
the northwest. The occurrence probability of directions for monthly
maxima varies with season which is illustrated by von Mises densi-
ties for January and July (Fig. 8 center and right). We consider the
directional sectors S1 comprising 300◦ to 330◦ (depicted in orange)
and S2 for 120◦ to 150◦ (in cyan). Those sectors are chosen because S1
resembles a region on the directional dimension with a high probability
to encounter large waves and S2 represents the counterpart with a low
probability of experiencing large waves, varying slightly with season
(Fig. 6).

Table 1 summarizes the omni-directional and sectorial probabilities
for January and July. Note that, as demanded by the previously men-
tioned guidelines like NORSOK, TP from the most exposed sector S1 is
less than for the omni-directional case without applying artificial scal-
ing. In January it is almost 85% certain that a wave larger than 12 m
will pass under the laser altimeter. Waves larger than 21 m still have
a 3% chance to occur. When only allowing waves from S1 the chances
diminish to 14% for a threshold of 12 m and 0.5% for a threshold
of 21 m. Exceedance probabilities for July and S2 are naturally much
smaller compared to January and demonstrate the added information
that can be extracted from our non-stationary model.

Omni-directional TP for January should also be less than omni-
directional TP for the omni-seasonal case even though January is one of
the months most prone to large waves. As shown in Table 2, indeed, the
omni-seasonal/directional TP values (annual values) are again larger
than the omni-directional TPs for January or July in Table 1. This
makes sense since it is more likely to experience large waves allowing
for 12 months to pass compared to only considering a single month. The
monthly omni-seasonal probability (CP) denotes the probability for a
wave to exceed the threshold given a random month. This again needs
to be lower than the probability for January because also a month with
lower wave climate might be drawn.

The TPs and CPs from Table 2 and Fig. 9 summarize and com-
pare the results for the omni-seasonal/directional results from our
non-stationary model versus an annual block maxima baseline sta-
tionary model. Broadly speaking, these results condense what could
be seen from the probability landscapes, a wave exceeding 12 m is
almost certain to occur every year with an omni-directional/seasonal
TP (𝑋 > 12m) = 0.987 while exceeding 21 m has an omni-directional/
seasonal of TP (𝑋 > 21m) = 0.057, which equates to a return period
of roughly 17.5 years. The stationary model predicts similar results
but yields increasingly higher probabilities the further one moves out
into the tail, illustrated for omni-seasonal/directional CPs in Fig. 9
(left). Although the probabilities differ slightly between the stationary
model and the non-stationary model, the stationary model is a probable
outcome from our non-stationary model and it falls well within the
distribution of probabilities from our non-stationary model (Fig. 9
7

right).
Table 2
Exceedance probabilities for annual block maxima of stationary baseline model and our
non-stationary GAM model for the omni-directional/omni-seasonal case. Probabilities
are computed for a threshold of 12 m and 21 m based on 1000 model predictions for
each considered scenario. Annual scaling for the non-stationary model is derived with
the logic from Eq. (10).

Stationary model OD
and OS

Non-stationary OD and
OS (monthly)

P(𝐻U > 12m) 0.994 0.987 (0.306)
P(𝐻U > 21m) 0.091 0.057 (0.005)

5. A brief application to normalized wave heights

The standard approach, i.e., all sea state approach or initial dis-
tribution method (IDM), would, in this context, focus on plotting
all normalized wave heights (𝐻norm) according to their probability,
together with e.g. a 2-parameter Weibull distribution to finally com-
pare against theoretical distributions such as Forristall and Rayleigh
(see Fig. B.13 for omni-seasonal and omni-directional estimates). For
different sectors and seasons the data is typically split, which reduces
the respective amount of information, and results may require arbitrary
scaling. Since there are two variables 𝐻U and 𝐻s, at least one needs
to be given in order to retrieve a probability. Further assumptions
on a representative wave period are needed to transform the number
of waves to the time domain, i.e. transform a 1 in 10 000 waves ex-
ceedance probability to something like a daily or monthly exceedance
probability. Our novel framework provides a probability in a unit time,
and if desired direction, without prior knowledge and without having
to rely on theoretical distributions that in turn have assumptions on the
characteristics of the waves.

Moreover, our approach can just as well be applied to 𝐻norm which
may be easier to directly adapt to metocean applications. As an ex-
ample, we briefly explore the behavior of 𝐻norm across the covariate
space by fitting the same GAM model to the respective 𝐻𝑛𝑜𝑟𝑚 (see
QQ-plot Fig. C.14). If interested in sectorial or seasonal estimates
one can follow the same steps as already described above. Instead of
exceedance probability, we display the model’s median prediction of
𝐻norm depending on season and direction (Fig. 10). Slight variations
between 1.86 and 1.96 are evident along season and direction. These
variations are nevertheless noteworthy, as 𝐻norm effectively is a factor.
For 𝐻s of, e.g. 10 m the corresponding maximum individual wave
would vary about 1 m depending on season and direction. While the
displayed return level landscape may vary from location to location,
these results reveal an important underlying message. The assumption
of a universally applicable, all sea state theoretical distribution, or a
stationary IDM applied to all data may lead to erroneous assumptions
on the wave climate and subsequently the design of offshore structures.

6. Discussion and limitations

We created a modeling framework to extract individual seasonal–
directional extreme waves and their exceedance probabilities for the
Ekofisk complex utilizing novel datasets.

The model and our framework can further be refined and adjusted
to common user needs such as conditioning on the sea state. As already
mentioned, the monthly maxima are heavily connected to the sea state
variable 𝐻s which explains most of the variation and hijacks some
of the seasonal and directional information we would like to extract.
However, although to a limited extent, we can indirectly condition the
model by only allowing maxima above a given sea state threshold (not
shown). Another common covariate of interest is the sea level. This
variable could be either added to the model (although that might mean
to adjust and possibly reduce the number of knots for the spline fits)

or exchange one of the covariates.
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Fig. 8. Left: Empirical distribution of PDIR. Center/Right: Empirical distribution and von Mises density for PDIR of two months (January, July) as well as two directional sectors
are displayed, 300–330◦ (orange) and 120–150◦ (cyan).
Fig. 9. Left: Comparison of exceedance probabilities (omni-directional/seasonal TP for random month) for various 𝐻U between a stationary model and a seasonal–directional model
with prediction intervals based on the estimation of the 𝛽’s in gray (0.5% and 99.5%). Right: Histogram of distribution of exceedance probabilities (omni-directional/seasonal TP
for a random month) for P[𝐻U > 21m] from our non-stationary GAM model divided into 20 regularly spaced bins. The stationary exceedance probability is displayed as a red
stippled line.
Fig. 10. Prediction of median for 𝐻norm along the entire covariate space, i.e. months
(1–12) and direction (0–360◦).

This framework may also be applied to other met-ocean variables
like wind, current, and integrated wave parameters like 𝐻s. Addi-
tionally, not only offshore locations but also coastal applications can
be considered. However, especially in fjord like geometries, where
channeled wind and fetch length may allow for a bi-modal distribution
of directions, the cyclic model needs to be revised. Once modeling
of occurrences of directions is settled one can continue with the here
presented framework.

For the purpose of this study, we consider our approach more
intuitive than the artificial scaling described in the offshore standards.
Although we involve a more complex model, once established, one only
counts exceedances from simulated extremes being the basic empirical
approach of calculating exceedance probabilities. Hence, the proba-
bilities are more understandable, interpretable, and ultimately more
tangible for the end-user.
8

Some limitations are important to keep in mind when considering
extremes from the here presented non-stationary model. The directions
used for the model fit were not measured but are from a numerical
model hindcast (NORA3). Although it has been shown that both the
quality of the wind forcing (Haakenstad et al., 2021) and of the
simulated waves (Breivik et al., 2022) even surpass the state-of-the-
art, NORA10 (Reistad et al., 2011), they are merely from a discretized,
numerical model. The directions in NORA3 are binned (36 directions
encompassing 10 degrees each) but PDIR undergoes a quadratic in-
terpolation prior to model output which makes the directions appear
smooth in the figure (Fig. 4 center) in contrast to clearly visible bins
in NORA10 directions (not shown). Another limitation is the lack of
a censoring mechanism in the model which might impair, although
probably only to a minor degree, the return levels and exceedance prob-
abilities during summer. Supported by the performed model checking
we cannot observe a mismatch for the low to medium extremes and
consider this effect in our case negligible. Additionally, the use of block
maxima leads to a comparably small sample size increasing uncertainty
connected to the limited number of samples.

A final limitation is connected to an incident in 1 November 2006
when the bridge, where the lasers were mounted, was hit by an individ-
ual wave. Unfortunately, only one laser was active and since the bridge
was hit, this event was not reliably recorded with the main wave event
missing leaving the wave height remain hidden. Not including drastic
events like this might yield a negative bias in exceedance probabilities
of the highest waves. We tested the sensitivity to such an event by
replacing the October 2006 event of about 23 m with a considerably
increased value of 27 m. The October 2006 event was chosen for
replacement since the missing wave was from the same storm as the
October and November events 2006, and should as such not be counted
double. While the exceedance probabilities remain similar for the lower
waves (not shown), the highest waves exceeding 21 m experience a
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Fig. A.11. Quantiles of location and scale parameters from our non-stationary GAM GEV model for the entire covariate space.
noticeable change from an omni-seasonal/directional TP of 0.057 to
ca 0.08 which equates to a return period of about 12.5 years instead
of 17.5 years. At this place, it is important to reflect on the uncer-
tainty for exceedance probabilities of such extreme waves. As shown
in Fig. 9 (right), a change from 0.057 to 0.08 is still well within the
probability range induced by uncertainty on the estimation of the 𝛽s
in our model. In fact, the valid range allows easily for a much larger
change. Having this in mind, we consider the impact of such a missed
extreme event tolerable, especially when compared to the uncertainty
of our GAM model.

Left or right censoring or arbitrary periods of missing values are
a common issue when dealing with observations. There is no easy
recipe for dealing with these challenges, especially when the censoring
mechanism behind is difficult to quantify, and the alternatives are
sparse. Other observation data, e.g. from wave buoys, often come with
an inherent low bias especially for the highest and steepest waves due
to their hydrodynamic behavior (Allender et al., 1989; Casas-Prat and
Holthuijsen, 2010; Barbariol et al., 2019). This is an issue which does
not apply to our filtered laser dataset. Using, on the other hand, sea
states from a spectral numerical wave model and subsequently gener-
ating individual waves using theoretical distributions (as e.g. Rayleigh)
9

is, especially for complex seas with very steep waves, typically biased,
as not all physical mechanisms are included. In fact, we show that such
a use may yield misleading results as the quantiles of normalized wave
heights can vary. For the theoretical distributions the sea states, and
often other additional parameters, need to be known which come with
additional uncertainty.

All options considered, we believe our approach to provide realistic
exceedance probabilities and valuable, additional information of the
seasonal and directional variation and magnitude of individual extreme
waves.

7. Conclusion and outlook

We have constructed a versatile seasonal–directional, block max-
ima, extreme value model for Ekofisk primarily based on high fre-
quency laser altimeter measurements of the sea surface and PDIR from
the NORA3 hindcast archive. The omni-seasonal/direction exceedance
probabilities of monthly maxima are consistent with a stationary GEV
model. Compared to a stationary model, our non-stationary model and
the presented framework comes with rich and useful information along
the covariate space and indicate that at Ekofisk the highest waves are
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Fig. A.12. Empirical distribution of the shape parameter. Red, stippled line depicts the
edian.

ikely to approach from northwest during winter. We further reveal a
on-stationarity in the quantiles of the normalized wave heights with
mplications for offshore design.

Future work could aim at understanding and modeling the censoring
echanism in the dataset. We are also planning to create a seasonal–
irectional point process (PP) model to estimate the extremes and in
articular investigate normalized wave heights. A better understanding
f the censoring mechanism could come in handy for this task. Once
he PP model is formulated much of the here described procedure can
e repeated to extract the exceedance probabilities. Another interesting
ontinuation would be to extract the directional information from the
aser array. This is challenging and we have not yet come to a satisfying
esult, but in theory this should be possible and could yield exciting and
aluable insights.
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10

See Figs. A.11 and A.12.
Fig. B.13. Probability of normalized wave height along the theoretical distributions
Rayleigh an Forristall and a standard two-parameter Weibull fit. The blue dots depict
all waves contained in the dataset with the monthly maxima, used in this study, marked
in red. The red cross denotes the Andrea wave.

Fig. C.14. A QQ-plot comparing the mean of 1000 simulated values for each obser-
vation (black) with 2.5% and 97.5% quantiles as credible intervals (red) against the
quantiles from the observations.

Appendix B. Standard approach

See Fig. B.13.

Appendix C. GAM on normalized wave heights

See Fig. C.14.
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