n
CIS N £

OXFORD

GigaScience, 2023, 12, 1-14

DOI: 10.1093/gigascience/giad087
Research

epialleleR: an R/Bioconductor package for sensitive
allele-specific methylation analysis in NGS data

Oleksii Nikolaienko * * Per Eystein Lgnning

12 and Stian Knappskog 12

K. G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen 5021, Norway

?Department of Oncology, Haukeland University Hospital, Bergen 5021, Norway

*Correspondence address. Oleksii Nikolaienko, K. G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen,

Bergen 5021, Norway. Tel: +47 559 76 444; Email: oleksii.nikolaienko@uib.no

Abstract

Low-level mosaic epimutations within the BRCA1 gene promoter occur in 5-8% of healthy individuals and are associated with a sig-
nificantly elevated risk of breast and ovarian cancer. Similar events may also affect other tumor suppressor genes, potentially being a
significant contributor to cancer burden. While this opens a new area for translational research, detection of low-level mosaic epige-
netic events requires highly sensitive and robust methodology for methylation analysis. We here present epialleleR, a computational
framework for sensitive detection, quantification, and visualization of mosaic epimutations in methylation sequencing data. Analyz-
ing simulated and real data sets, we provide in-depth assessments of epialleleR performance and show that linkage to epihaplotype
data is necessary to detect low-level methylation events. The epialleleR is freely available at https://github.com/BBCG/epialleleR and
https://bioconductor.org/packages/epialleleR/ as an open-source R/Bioconductor package.
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Introduction

Cancer is a major health threat and cause of death world-
wide. While the minority of cases are due to highly penetrant
germline pathogenic variants (inherited cancers), the majority
are considered sporadic cancers with no known germline genetic
component.

In addition to genetic aberrations like single-nucleotide vari-
ants, indels, copy number alterations, and rearrangements, can-
cers are known to harbor epimutations [1, 2] (i.e., epigenetic distur-
bances) that lead to aberrant transcriptional up- and downregu-
lation. Such aberrations are often studied at the level of cytosine
DNA methylation. As typical promoters of active genes are hy-
pomethylated, epimutations within such regions are manifested
as DNA hypermethylation—the common mechanism of gene re-
pression in cancer [3]. For example, aberrant DNA hypermethyla-
tion events (epimutations) within promoters of tumor suppressor
genes BRCA1, MGMT, and MLH1 were shown to be associated with
downregulation of expression of these genes [4-6], and the pres-
ence of such epimutations further guides treatment strategies in
clinical practice [7-9].

Epigenetic aberrations may arise during different stages of car-
cinogenesis as somatic epimutations (mirroring somatic muta-
tions) or in utero (affecting several germline layers) as constitu-
tional normal tissue epimutations. Several studies in large cohorts
[10, 11] have linked constitutional (prenatal), mosaic (affecting a
small subset of cells only) epimutations to breast and/or ovarian
cancer risk. Research and interest in this field, however, have been
limited by the fact that all these studies were conducted on pa-
tients already diagnosed with their cancers, questioning whether
normal tissue methylation in these patients may be a cancer-
initiating event or a secondary effect of the disease itself. Recently,

we found frequent (occurring in >5% of healthy women) though
low-level (down to 0.03% of affected alleles) mosaic epimuta-
tions within the BRCA1 gene promoter to be associated with a
significantly elevated risk for subsequent high-grade ovarian as
well as triple-negative breast cancer, in a large, population-based
prospective cohort [12]. This finding raises a provoking question of
whether similar low-level mosaic epimutations may affect other
tumor suppressor genes and be associated with an elevated risk of
other cancer forms as well. While this opens a new research area
related to cancer risk, there are technical issues to account for, as
the low frequency of such mosaic epimutations limits the ampli-
tude of observed changes in methylation. Thus, to explore such
hypotheses, there is a need for robust and sensitive epimutation
detection techniques.

Currently, the most widely used methods for DNA methylation
profiling are BeadChip arrays (such as Illumina HumanMethyla-
tion450 or HumanMethylationEPIC) and a variety of methylation
sequencing techniques (for details see [13]). These methods have
different pros and cons: arrays allow genome-wide assessment at
a reduced cost, while the sequencing provides additional infor-
mation on haplotype specificity of DNA methylation. The typical
bioinformatic workflows designed to analyze both types of data
usually resultin sets of beta values (ratio of a count of methylated
cytosines to the total sum of methylated and unmethylated bases)
for each genomic position covered [14-16]. While this approach is
suitable for addressing large differences in DNA methylation pro-
files between 2 sets of samples (e.g., cases and controls), it lacks
sensitivity for low-level mosaic epimutation detection, as the de-
tection is hindered by sometimes much more common biologi-
cal variation [17, 18] or technical artifacts [19, 20]. Moreover, the
lack of haplotype linkage makes such analysis difficult in Bead-
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Chip array-based datasets and therefore requires nontrivial ap-
proaches [21]. Gene promoter methylation present in a low frac-
tion of molecules may be detected by conventional methylation-
specific quantitative polymerase chain reaction (MS-qPCR), but
the discrimination between methylated and unmethylated alle-
les is limited to the CpGs directly covered by the primers/probes
[10]. In contrast to other methods, analysis of next-generation se-
quencing (NGS)-based data can provide much higher sensitivity
when the base resolution methylation data are combined with in-
formation on allelic belongingness (epihaplotype linkage).

Here, we present a computational framework for sensitive de-
tection and quantification of low-frequency, mosaic epimutations
in methylation sequencing data. The provided methods can be
used for the discovery of low-frequency epialleles (mitotically
and/or meiotically heritable DNA methylation patterns [22]) con-
nected to disease risk (as done previously in [12, 23]), as well as
for purposes allowing less sensitivity, such as assessments related
to treatment response [24, 25], or to the development of treat-
ment resistance [26]. Importantly, the framework also allows one
to connect DNA methylation status with potential underlying cis-
factors, such as single-nucleotide variations or mutations within
the immediate proximity.

The versatility of the framework makes it applicable for anal-
ysis of data from any methylation sequencing experiment, given
that methylation in these data can be called at individual cyto-
sine residues. Both single-end and paired-end sequencing align-
ment files can be used as an input, and in cases where methy-
lation calls are not available, this framework allows one to call
cytosine methylation and permanently store calls in a binary se-
quence alignment/map (BAM) file.

Similar to other tools that transform NGS reads into counts of
bases or molecules, the framework is not designed to determine
preanalytical bias, such as cell-type heterogeneity. Appropriate
methods must be used to control confounders in the downstream
analyses [27, 28].

Results

epialleleR implementation

The presence of hypermethylated BRCA1 alleles (epimutations) in
normal tissue (white blood cells [WBCs]) has been shown qualita-
tively for 5-8% of adult women [10]. However, the associated quan-
titative changes in DNA methylation at the level of individual CpGs
are typically small (in most cases, the intraindividual frequency
of epimutations is between 0.03% and 1% [12]) and therefore in-
distinguishable from the background methylation level due to
inherent biological (potentially spurious single-base methylation
events) and technical (sequencing errors) variance [17]. Methyla-
tion statuses of neighboring CpGs are often concordant [29], and
such spatially extended epigenetic changes are often associated
with a gene expression silencing [30]. Given the potential biolog-
ical (gene inactivation) and clinical (cancer risk) importance of
epimutations, we focused on quantification of hypermethylation
events that span over several CpGs, accounting for both methy-
lation status of individual CpGs within the sequence read as well
as the average methylation level of the sequence read itself. This
is possible in NGS-based data sets, while it is not in array-based
data where methylation information of different CpGs cannot be
connected to each other as in haplotype data.

As number of events that lead to variance in methylation (base
deamination, random single-base methylation events, and se-
quencing errors) is limited at the level of individual reads (only a
fraction of CpGs might be affected within the same read), the av-

erage methylation level of the read will be moderately affected by
such events and can help distinguish hyper- from hypomethylated
epialleles (where methylation statuses of the majority of CpGs are
concordant and average methylation level is either close to 0%
or 100%). We therefore hypothesized that thresholding sequence
reads by their average methylation level will reduce the effect of
biological and technical variance and facilitate the detection of in-
frequent hypermethylation events. As no suitable generic solution
was publicly available, we implemented it using R software envi-
ronment for statistical computing [31], a de facto standard for sci-
entific data analysis. The implemented solution, epialleleR, loads
methylation call strings and short sequence reads from the sup-
plied BAM file, optionally thresholds read pairs according to their
methylation properties, and produces methylation reports for in-
dividual cytosines as well as genomic regions of interest (Fig. 1A).
During BAM loading, pairs of sequence reads and corresponding
methylation call strings are merged according to Phred quality
score values (i.e., base with the highest score is chosen) to preserve
information of the highest quality. In contrast to approaches that
involve simple trimming of overlapping parts of read2, the follow-
ing approach might retain more information when higher-quality
fragments of read2 (5’-end or middle) overlap with lower-quality
fragments of readl (3'-end). The optional thresholding defines a
subpopulation of epialleles of interest and is based on the mini-
mum number and the average methylation level of cytosines in
various sequence contexts (e.g., CG, CHG, or CHH). The threshold-
ing parameters are fully adjustable to target desired population of
epialleles; their default values (minimum 2 CpG sites, minimum
average methylation beta value of 0.5 for CpG sites, maximum av-
erage methylation beta value of 0.1 for non-CpG sites) performed
well in the study linking mosaic BRCA1 epimutations and cancer
risk [12] and were used here in all downstream analyses.

The optional thresholding of sequence reads defines 2 modes
of epialleleR (v.1.3.5, RRID:SCR_023913 [32]) function. Without
thresholding, epialleleR produces conventional cytosine reports
similar to the ones produced by other tools (e.g., Bismark [14]).
In this case, methylation beta value for every genomic location
is computed as a ratio of a number of methylated cytosines to
the total number of methylated and unmethylated cytosines:
B = C/(C + T)A

When read thresholding is performed (default mode of action),
the level of methylation per every genomic position, denoted as a
variant epiallele frequency (VEF), is calculated as a ratio of a num-
ber of methylated cytosines in read pairs passing the threshold
(C% to total number of methylated and unmethylated cytosines
in all read pairs: VEF = C%/(C + T) (see Fig. 1B for an example).
When the report is prepared at a level of extended genomic re-
gions rather than individual bases, VEF equals the ratio of a num-
ber of read pairs passing threshold (N7) to the total number of
read pairs (N) overlapping the region of interest: VEF = N%/N. The
term “variant epiallele” here represents a group of epialleles (i.e.,
individual methylation patterns) with similar methylation prop-
erties that is defined by thresholding; therefore, VEF effectively
represents the frequency of this group of epialleles passing the
threshold at the level of individual cytosines or extended genomic
regions.

Methylation beta values (from conventional reporting) as well
as VEF values (from default reporting mode with read threshold-
ing) can be produced from any number of BAM files with no prior
hypothesis, as long as experimental setup allows to call methy-
lation on a per-base level. Both of these values effectively repre-
sent methylation levels per genomic position and, as such, can be
directly used further as an input for other bioinformatic tools in-
cluding, but not limited to, differential methylation analysis tools.
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Figure 1: (A) Flowchart of epialleleR package data-processing steps. The formulas using to calculate conventional beta as well as VEF values are given
in boxes. C and T, total number of cytosines and thymines at particular genomic position, respectively; C%, number of cytosines at particular genomic
position within read pairs passing a particular methylation threshold (C* < C); N, total number of read pairs, mapped to a particular genomic region;
N¢, number of mapped read pairs, passing a particular methylation threshold (N* < N). (B) Schematic illustration of cytosine methylation (circles)
within epialleles (horizontal lines) and results of thresholding by average read methylation level (labels on the right) using default parameters (i.e,, at
least 2 CpGs in CG context, at least 50% methylation within CG context, at most 10% methylation outside of CG context). These default thresholding
parameters were chosen to detect hypermethylated alleles with biological relevance in tumor suppressor genes; detection of epimutations of a
different nature may require adjustments to the default parameter values. Resulting per-cytosine beta and VEF values are given under each CpG (large
circles). In the context of a typical CpG-rich regulatory region of an actively transcribed gene, the 3 hypomethylated epialleles on the top represent
typically abundant scattered methylation or sequencing artifacts (only a minority of cytosines in CG context are called as methylated), the epiallele at
the bottom represents the product of incomplete bisulfite conversion (cytosines in GG and non-CG contexts are methylated), and the second epiallele
from the bottom represents a true biologically relevant epimutation (hypermethylation) that leads to gene silencing (majority of cytosines in CG
context are methylated, while no methylation is detected in the non-CG context).

If methylation statuses of cytosines were not determined, epi- followed by clonal expansion (e.g., prenatal epimutations that are
alleleR allows to create and store methylation calls, allowing anal- present on the same allele in all affected cells, as in [12, 23]) from
ysis of BAM fliles created by various methylation sequencing align- the ones that occurred in different cells independently and there-
ment tools. fore present on both alleles. In some cases, allele specificity also

When optional data on single-nucleotide variants are provided allows to infer causality of epimutations in cancer development
(as a variant call format, VCF file, or a VCF object), epialleleR [23].
quantifies the balance or skewness of methylation between al- To provide a comprehensive range of means for epiallele anal-
leles, thereby enabling assessment of potential allele specificity ysis, the package also offers methods allowing visualization and
of epimutations. In particular, this information is important for characterization of all individual epialleles (methylation patterns)

distinguishing epimutations that occurred through a single event in a sample (see Fig. 1 and Supplementary figures for details). If
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Table 1: Selected characteristics of software/hardware solutions for cytosine methylation reporting

Requires reference

Removes overlaps

Outputs epiallele Processing speed, read

Method (genomic) sequence within read pairs frequencies pairs per second
Bismark yes (genome-wide yes (trims read2) no 40-2,800
cytosine reports) / no
(bedGraph reports)
methylKit no yes (trims read?) no 9,900-15,400
DRAGEN yes yes (trims read2) no 2,000-183,000
epialleleR no yes (base with the yes 129,000-231,000
highest quality is
chosen)

required, extracted patterns can include other, noncytosine bases
of interest (e.g., single-nucleotide variations), which allows to con-
nect methylation properties of epialleles with sequence features
in proximity. During methylation pattern extraction, every epial-
lele is characterized by number of context sites and methylation
level (average beta value) and is assigned with a unique identifier
(Fowler-Noll-Vo FNV-1a non-cryptographic hash [33]) that solely
depends on positions of included cytosine (and other optional)
bases and their methylation states (or nucleotide symbols for op-
tional bases), enabling to not only group epialleles by their methy-
lation properties but also reliably and consistently track individ-
ual epialleles of high importance across different samples or even
studies. The average beta values for all extracted patterns as well
as patterns themselves can be explored to optimize thresholding
parameters for a genomic region of interest.

Increasing scale and depth of methylation sequencing exper-
iments impose a requirement on the speed of data processing.
Therefore, all time-consuming subtasks were implemented using
optimized C/C++ subroutines and, whenever possible, linked to
HTSlib, the unified C library for high-throughput sequencing data
processing [34]. The R package epialleleR is freely available at the
Bioconductor package repository [32].

Reporting accuracy analyses

First, we sought to validate the accuracy of methylation report-
ing by epialleleR in its conventional mode (no read thresholding)
as compared with 3 other commonly used tools for which read
thresholding is not available: Bismark [14], methylKit [35], and II-
lumina DRAGEN Bio-IT Platform. For this purpose, we simulated
large sets of paired-end bisulfite sequencing reads (2 x 151bp, 100
million read pairs covering human chromosome 19). In contrast
to real datasets, simulated data allow to calculate “ground-truth”
methylation levels for unbiased comparison. Simulation param-
eters were selected to obtain exact methylation levels of 50%
for cytosines in the CG context (n = 2,211,240) and methylation
level of approximately 0.25% (bisulfite conversion rate of ~99.75%)
for cytosines in the CHG and CHH contexts (n = 6,593,900 and
19,210,572, respectively). In addition to endogenous deamination
events [17], bisulfite treatment-induced changes [19], and varia-
tion in conversion rates [36], sequencing itself can introduce er-
rors that vary in range depending on assay type and sequencing
technology [20]. Therefore, we introduced variable level of arti-
ficial sequencing errors (0%, 0.1%, 0.3%, or 0.6%) and evaluated
their effect on the accuracy of reported methylation metrics, ap-
plying a selected set of methods (for comparison see Table 1).
Analysis on exactly the same task (BAM file to cytosine report)
revealed that reported values were close to their theoretical ex-
pectations for all methods, with epialleleR being the least affected
by sequencing errors, that is, maintaining the smallest deviance

of reported versus expected methylation beta values for all sam-
ples with sequencing errors introduced, possibly owing to read
quality-assisted merging of paired reads (Table 2, further details
in Supplementary Table S1).

Of note, epialleleR does not require reference sequence in or-
der to determine the correct sequence context of cytosine bases.
All observed contexts for every genomic position are counted, and
the most frequent context is assumed to be correct and therefore
reported. This approach allows reporting of methylation events
within de novo (not present in the reference genome) contexts,
being at the same time not affected by sequencing errors that
change sequence context of cytosine bases (Supplementary Table
S1).

Sensitivity analyses

Concordantly methylated alleles (alleles with most of their CpGs
having the same methylation status) may possess high biologi-
cal importance [12, 23, 26]. Spontaneous 5-methyl cytosine (5SmC)
deamination, sequencing errors, and genuine single-nucleotide
methylation/demethylation events affect observed background
methylation level and can therefore hinder the detection of low-
frequency hyper- or hypomethylated alleles. Differences in exper-
imental conditions provide an additional level of variability, which
can sometimes be tackled by normalization during postprocess-
ing [37]. In contrast to the DNA methylation analysis using Bead-
Chip arrays (such as Illumina HumanMethylation450 and Hu-
manMethylationEPIC), which report average methylation values
at the level of individual cytosines only, next-generation sequenc-
ing provides an additional data dimension by linking methyla-
tion levels of individual nucleotides within a genomic region cov-
ered by a sequencing read (epihaplotypes). However, this infor-
mation is lost when methylation is assessed and reported with-
out accounting for its allelic distribution. To evaluate the sensi-
tivity of detection for low-frequency monoallelic hypermethyla-
tion events in next-generation sequencing data, we simulated an
extended set of samples using real, amplicon-based bisulfite se-
quencing data for human WBCs (n = 10 with almost no hyper-
methylated alleles, as described in Materials and Methods) and
fully methylated control DNA samples. Combining real WBC DNA
bisulfite sequencing data allowed to introduce sample-to-sample
variability although maintaining biologically relevant background
methylation levels across sequenced regions, while admixing fully
methylated reads simulated low-frequency, concordant methyla-
tion events. The amplicons used covered promoter regions of the
tumor suppressors MLH1, CDKN2A, MGMT, CDH1, and BRCA1. The
distributions of per-read beta values (Supplementary Fig. S1) and
methylation patterns (Supplementary Fig. S2) of admixed samples
show the expected abundance of hypermethylated (average g >
0.5) alleles and confirm their high similarity to the real samples
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Table 2: Selected accuracy metrics (average beta values and their variance) of cytosine methylation reporting. Average reported beta
values that are closest to the expected beta values (0.0025 for cytosines in the CHG/CHH contexts and 0.5 for cytosines inthe CG context)

and lowest variance values are shown in bold.

CHH CHG CG

Sequencing error rate Method Mean Variance Mean Variance Mean Variance
0.00% DRAGEN 0.002501 1.28E-05 0.002500 1.27E-05 0.499997 5.96E-07
Bismark 0.002501 1.34E-05 0.002500 1.33E-05 0.499997 5.92E-07

methylKit 0.002503 1.28E-05 0.002501 1.27E-05 0.499997 5.97E-07

epialleleR 0.002501 1.28E-05 0.002500 1.27E-05 0.499997 5.96E-07

0.10% DRAGEN 0.002661 1.37E-05 0.002662 1.36E-05 0.499835 1.73E-06
Bismark 0.002646 1.42E-05 0.002648 1.41E-05 0.499850 1.69E-06

methylKit 0.002662 1.37E-05 0.002664 1.36E-05 0.499835 1.75E-06

epialleleR 0.002624 1.35E-05 0.002626 1.34E-05 0.499872 1.54E-06

0.30% DRAGEN 0.002977 1.53E-05 0.002980 1.53E-05 0.499504 3.22E-06
Bismark 0.002928 1.57E-05 0.002931 1.57E-05 0.499554 3.03E-06

methylKit 0.002978 1.52E-05 0.002982 1.52E-05 0.499506 3.21E-06

epialleleR 0.002857 1.47E-05 0.002860 1.47E-05 0.499628 2.59E-06

0.60% DRAGEN 0.003498 1.79E-05 0.003506 1.78E-05 0.498942 1.29E-05
Bismark 0.003393 1.81E-05 0.003402 1.81E-05 0.499051 1.25E-05

methylKit 0.003497 1.78E-05 0.003501 1.78E-05 0.498952 1.28E-05

epialleleR 0.003237 1.66E-05 0.003241 1.65E-05 0.499222 1.14E-05

(Supplementary Figs. S3 and S4). Conventional cytosine reports
(no read thresholding) as well as VEF reports (with read threshold-
ing) were prepared and used for unsupervised clustering of sam-
ples and differentially methylated region (DMR) discovery. Despite
quite a low overall methylation level of amplified regions (aver-
age beta value of 0.014, median of 0.005; Fig. 2A), t-distributed
stochastic neighbor embedding (t-SNE) analysis based on beta val-
ues was not able to discriminate between samples with 0.01%,
0.03%, 0.10%, and 0.30% of methylated reads or no methylated
reads added (Fig. 2B, left panel). On the other hand, VEF value-
based t-SNE analysis resulted in spatially well-separated clus-
ters that corresponded to each level of admixed methylated reads
(Fig. 2B, right panel). Intergroup DMR discovery based on beta val-
ues (Fig. 2C, left panel) showed fewer number of regions found as
well as higher associated false discovery rate (FDR), while discov-
ery based on VEF values resulted in all 5 possible regions identi-
fied for all possible intergroup comparisons as well as generally
lower associated FDR. When each sample with admixed methy-
lated reads was compared against the group of samples without
admixed methylated reads, recall metrics for differential (by DM-
Rcate [38]; Fig. 2D) or aberrant (by ramr [21]; Fig. 2E) methylation
analysis were notably higher for analyses based on VEF values
(Fig. 2D, E, right panels) in comparison with analyses based on
beta values (Fig. 2D, E, left panels). This shows that VEF values are
more valuable for detection and analysis of low-frequency (<1%)
hypermethylation events than methylation beta values.
BeadChip arrays, such as Illumina HumanMethylationEPIC,
are another widely used, amplification-free method to assess
genome-wide DNA methylation for a reduced cost. In order to di-
rectly compare the sensitivities of targeted NGS and of the Bead-
Chip arrays for the detection of low-frequency DNA methyla-
tion events, we employed both of the methods to analyze small
set of samples (n = 8) carrying low-frequency methylation in
at least one of the assayed regions (promoter regions of MLH1,
CDKN2A, MGMT, CDH1, and BRCA1). Sample distributions of per-
read beta values (Supplementary Fig. S3) and methylation pat-
terns (Supplementary Fig. S4) show that these samples indeed
contain varying frequencies of hypermethylated (average g > 0.5)
alleles. For unbiased comparison, we limited the corresponding

data sets to the CpGs assayed and sufficiently covered by both
techniques. Analysis revealed that VEF values of samples with
many hypermethylated alleles (e.g., A26 and A45 for BRCAT; as ap-
parent from Fig. 3A) differ significantly (Fig. 3B) from VEF values
of samples with only a few or no hypermethylated alleles (e.g.,
A02 or AO5 for BRCAT; Fig. 3A). When VEF values were used for
identification of aberrantly methylated regions (AMRs) or DMRs
by ramr [21] or DMRcate [38], respectively, the significant regions
found correlated well with the notable presence of hypermethy-
lated alleles. Of note, slightly inferior performance of DMRcate is
probably due to the fact that for some of the genomic regions, too
many samples in this subset simultaneously contained hyperme-
thylated epialleles. When DMRcate was used for the same purpose
on an extended set of sequenced samples (n = 18, containing n =
10 samples characterized by the absence of hypermethylated al-
leles that were used to create the admixed sample set), its perfor-
mance in identification of hypermethylated epiallele-containing
samples was higher (Supplementary Fig. S5).

In contrast, only a few significant differences remained when
NGS beta values were used for sample comparison (Fig. 3C), while
pairwise comparisons based on BeadChip array beta values did
not reveal any significant differences between samples (Fig. 3D).
The search for aberrantly or differentially methylated regions us-
ing either NGS or array beta values did not result in identifica-
tion of such regions in relevant (according to methylation patterns
or beta value densities) samples. Generally higher beta values of
BeadChip array as compared to NGS beta values likely mask sub-
tle changes in methylation caused by the presence of infrequent
hypermethylated alleles and hinder the detection of differences
between samples.

Several scores to describe and quantify variability in DNA
methylation in sequencing reads (within-sample heterogeneity
[WSH]) have been proposed [39]. In order to assess WSH, we eval-
uated the difference in combinatorial entropy between each pair
of samples using methclone [40] (Supplementary Fig. S6A). The
largest (by absolute value) reported difference in combinatorial
entropy of —2.59 between any pair of samples confirms a high sim-
ilarity between sample methylation profiles, of note, being much
smaller than cutoffs for epiallele shifts between samples analyzed
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Figure 2: (A) Line plots of beta (left panel) and VEF (right panel) values for individual samples, color-coded according to the amount of admixed
methylated reads. Each line represents a sample; y-axis, methylation value of all CpGs (n = 138) sorted by their genomic position (categorical x-axis).
(B) Embedding plots for t-SNE analysis using beta (left panel) and VEF (right panel) values. Ellipses represent 95% confidence levels. (C) Heatmap of
mean false discovery rate for differentially methylated regions (DMRs) identified by DMRcate. Labels indicate the number of DMRs found (of a total of
5 regions possible). (D) Recall rate for DMR identification using DMRcate for varying FDR cutoffs. (E) Recall rate for aberrantly methylated region (AMR)
identification using ramr for varying P value cutoffs.
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Figure 3: (A) Distribution of per-read beta values for NGS read pairs covering CpGs that are common for NGS and BeadChip array. For clarity, only the
reads with average beta of at least 0.5 (i.e., representing hypermethylated epialleles) are included. Single observations are shown as dots; number of
observations is given above. Complete density plots are provided in the Supplementary Fig. S3. Corresponding methylation patterns are provided in
the Supplementary Fig. S4. (B) Lower panel: boxplots of NGS-derived VEF values for individual CpGs; middle panel: significant aberrantly or
differentially methylated regions identified by ramr or DMRcate, respectively, based on VEF values; upper panel: significance levels from pairwise
comparison of VEF values. (C) Lower panel: boxplots of NGS-derived beta values for individual CpGs; middle panel: significant aberrantly or
differentially methylated regions identified by ramr or DMRcate, respectively, based on NGS-derived beta values; upper panel: significance levels from
pairwise comparison of NGS-derived beta values. (D) Lower panel: boxplots of BeadChip array-derived beta values for individual CpGs; middle panel:
significant aberrantly or differentially methylated regions identified by ramr or DMRcate, respectively, based on BeadChip array-derived beta values;
upper panel: significance levels from pairwise comparison of BeadChip array-derived beta values. (B-D) The lower and upper hinges of boxes
correspond to the first (Q1) and third (Qs) quartiles; the bar in the middle corresponds to the median value; the upper and lower whisker extend to Qs
+ 1.5 % IQR and Q; — 1.5  IQR, respectively, while the values outside this range (outliers) are plotted as dots. Zero values are not plotted. x#+P < 0.001,
xxP < 0.01, P < 0.05, blank P > 0.05.
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in [39] (—60 and lower). Further, we also calculated 4 additional
heterogeneity scores: combinatorial entropy, epipolymorphism,
fraction of discordant read pairs (FDRP), and proportion of discor-
dantreads (PDR). The scores themselves (Supplementary Fig. S6B)
and the levels of score-based pairwise significance between sam-
ples (Supplementary Fig. S6C) are not generally consistent with
fractions of hypermethylated (average B > 0.5) alleles (Fig. 3A
and Supplementary Fig. S3) or VEF values (Fig. 3B): for example,
samples A26 and A45 have a notable fraction of hypermethylated
reads in the BRCA1 promoter region compared to other samples,
although itis not reflected at the level of WSH scores. Importantly,
WSH scores produced cannot be directly used as an input for DMR
analysis tools, which are commonly employed to characterize ex-
act differences in methylation between samples.

Itis known that DNA methylation profiles of blood samples de-
pend on the varying contribution of individual blood cell types
[41, 42]. While we cannot exclude that hypermethylated alleles
present in the samples analyzed here originate from a particular
blood cell type, low-level, mosaic epimutations of at least BRCA1
were previously shown to be independent of blood subfraction
composition [10]. Of note, only 1 CpG (cg05785947 in CDH1) out of
37 used in NGS versus BeadChip array comparison here was found
to be significantly differentially methylated between blood cell
types of healthy males, and none of the CpGs were significantly
differentially methylated between blood cell types of newborns.

Processing speed analyses

Methylation sequencing data produced by contemporary tech-
niques vary in scale and depth and may contain several thousands
to billions of single or paired-end reads. To analyze them effi-
ciently, computational methods must be scalable and fast enough
for as large as possible range of sample counts or data file sizes.
Unfortunately, many academic tools use computationally com-
plex algorithms that do not scale to contemporary tasks. We com-
pared data-processing speed for epialleleR versus methylKit, Bis-
mark, and DRAGEN Bio-IT Platform, performing exactly the same
task (BAM file to cytosine report) of methylation reporting across
input data coming from various assays: amplicon based (n = 10
samples with a depth of coverage of ~20,000x), genome-wide cap-
ture based (n = 10 with a depth of coverage of ~60x and n = 3
with a depth of coverage of ~1,000x), or whole-genome bisulfite
sequencing (WGBS, n = 6 with a depth of coverage of ~60x). The
obtained results confirm very efficient implementation of epial-
leleR and its suitability for analysis of datasets of any depth and
coverage (Fig. 4, Table 1).

Discussion

While conflicting data have linked low-level mosaic primary con-
stitutional epimutations to cancer risk for more than a decade
[43], we have recently obtained firm evidence implicating primary
epimutations within the BRCA1 genein an elevated risk of incident
breast and ovarian cancer [12]. The assumption that such epimu-
tations may affect other tumor suppressor genes and, therefore,
lead to other cancer forms [43] institutes a new research area
with respect to cancer risk. Further, the findings of such epimuta-
tions in umbilical cord blood [10, 23] indicate prenatal events of a
yet unknown genesis. This creates the need for multidisciplinary
studies on the mechanisms of these events and on their effects in
respect to cancer risk, as well as the need for ultrasensitive meth-
ods allowing sample assessment at a high scale.

Here, we present the details on a fast, accurate, and sensitive
method to detect, quantify, and visualize epialleles in NGS data.

The method shows its superiority versus conventional methods
of methylation reporting, especially when applied for detection of
low-frequency methylation events, as it is by design less suscep-
tible to variations in conversion efficiency or sequencing quality.
Although epialleleR is not a differential methylation analysis tool,
its output can be directly used to group samples based on their
methylation profiles (by applying a simple threshold as in [12, 23]
or using unsupervised clustering), as well as an input for other
differential/aberrant methylation analysis software (the latter is
not possible for WSH analysis tools).

The default epialleleR parameters that were used for read
thresholding in the present and linked studies [12, 23] are sought
to be optimal for the detection of aberrant hypermethylation
events within normally unmethylated genomic regions such as
CpG-rich regulatory regions of tumor suppressor genes. If the na-
ture of regions of interest deviates from the one described above,
methylation characteristics can be explored using other epialleleR
methods (e.g., extractPatterns), and thresholding parameters can
be adjusted to detect desired methylation events.

We thoroughly tested epialleleR using bisulfite sequencing
data; the method, however, can also be applied to analyze and
compare data obtained using any methylation sequencing tech-
nique (reduced representation bisulfite sequencing [RRBS], oxida-
tive bisulfite sequencing [0xBS-seq|, and Tet-assistant bisulfite se-
quencing [TAB-seq]), as long as methylation in these data can be
called at individual cytosine residues instead of being analyzed
by comparing relative abundance of the fragments (such as for
methylation sensitive restriction enzyme sequencing [MRE-seq] or
methylated DNA immunoprecipitation sequencing [MeDIP-seq]).

The possibility to call cytosine methylation for alignment files
created by different short sequence aligners and subtle though
noticeable changes in cytosine reporting accuracy, together with
immense speed gain, make epialleleR a method of choice not only
for discovery of infrequent hypermethylated epialleles (as in [12,
23]) but also as a tool to produce conventional (no read threshold-
ing) cytosine reports from any methylation sequencing alignment
files.

The implemented method is fully documented and can be eas-
ily used from within the R environment for statistical computing.
With the epialleleR already revealing its suitability for detection
of low-level mosaic methylation events in a large dataset [12, 23],
we believe it constitutes an optimal tool for assessment of low-
level mosaic epimutations with respect to risk of cancer as well
as other diseases of relevance.

Conclusions

Here, we present epialleleR, a very fast, accurate, and sensitive
method to detect, quantify, and visualize epialleles in NGS data.
Efficient implementation and improvements in cytosine reporting
accuracy allow us to recommend epialleleR not only for analysis
of methylation patterns and to enhance low-level differentially
methylated region discovery but also as a conventional cytosine
reporting tool for various kinds of methylation sequencing data.
The epialleleR R/Bioconductor package is freely available at [44,
45].

Materials and Methods

Next-generation sequencing

WBC DNA samples from anonymized males (n = 88) [46, 47] and
human HCT116 DKO methylated DNA control sample (Zymo
Research, cat. D5014-2) were bisulfite converted, and 5 DNA
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fragments, representing promoter regions of 5 established tu-
mor suppressor genes, were amplified using a custom set of
primers (GRCh38 assembly coordinates of assayed regions: MLH1,
chr3:36993123-36993500; CDKN2A, chr9:21974554-21974921;
MGMT, chr10:129467118-129467477; CDH1, chr16:68737102—
68737469; BRCA1, chrl7:43125171-43125550), indexed, and
sequenced similarly to as previously described [12] (GSE201688).
The resulting average coverage was 5,000x to 50,000x per
amplicon.

Bioinformatic and statistical analyses

Massive parallel sequencing (NGS) reads were mapped/aligned to
the GRCh38 human reference genome, and the methylation was
called using Hllumina DRAGEN Bio-IT Platform (v3.9.5) with the
following parameters: -methylation-mapping-implementation
single-pass, -enable-methylation-calling true, -methylation-
generate-cytosine-report false, -methylation-protocol nondirec-
tional, and —enable-sort false, unless stated otherwise. R software
environment for statistical computing (v4.1.2) was used for all
downstream statistical analyses.

The frequency of hypermethylated alleles across assayed
regions in n = 88 male WBC DNA samples was estimated
using epialleleR::generateAmpliconReport with the follow-
ing parameters: min.mapg=30, min.baseq=20, nthreads=4,
threshold.reads=TRUE, report.context="CG,” and bed.file point-
ing to a location of a BED (browser extensible data) file with
genomic regions amplified (see amplicon coordinates above). Two

sample subgroups (n = 8 and n = 10) were selected for sensitivity
analyses based on the frequencies of hypermethylated alleles as
explained below.

Cytosine reporting accuracy comparison

Four sets of paired-end sequencing reads (151 bp, 50 million read
pairs each set) were simulated using Sherman Bisulfite FastQ Read
Simulator (RRID:SCR_001294) [48] with the following options: —
length 151, -number_of_seqgs 50000000, —paired_end, -minfrag 70,
-maxfrag 400, -CG_conversion 0, -CH_conversion 99.5, and vary-
ing sequencing error rate (—error_rate parameter) of 0%, 0.1%,
0.3%, or 0.6%. The quality scores of these simulated sequences
followed an exponential decay curve, which resulted in a higher
number of base errors toward the 3’-end of the read (as seen
in real data). Human chromosome 19 sequence (GRCh38.p13
NC_000019.10, 58,617,616 bp, 1,105,620 forward strand CpGs)
was used as a reference genome for read simulation and map-
ping/alignment due to its highest CpG content across all human
chromosomes [49] and in order to maintain optimal balance of
analysis speed and base coverage. Each set of reads was then du-
plicated, and all readl cytosines (C) and read2 guanines (G) in any
context in the duplicate sets were replaced with thymines (T) and
adenines (A), respectively. Then, duplicate sets (i.e., unmethylated
reads) were merged with original sets (i.e., methylated reads), re-
sulting in 4 sets of reads 100 million pairs each, with the cytosine
conversion rate of exactly 50% and about 99.75% in CG and non-
CG contexts, respectively.
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The mapping and alignment of simulated reads were per-
formed using Illumina DRAGEN Bio-IT Platform v3.9.5 with the
following modification in parameters: -methylation-protocol di-
rectional. Methylation reporting by all tools was done as described
below (reporting parameters in Speed comparison section).

Sensitivity comparison on admixed samples

In order to simulate variable methylation levels while maintaining
biological heterogeneity of the samples, we selected 10 male DNA
NGS samples with the lowest frequency of hypermethylated alle-
les across all assayed regions, then admixed varying fractions of
reads from 2 random samples and additionally “spiked” a certain
number of fully methylated reads from the methylated DNA con-
trol sample. This resulted in 150 samples containing 0%, 0.01%,
0.03%, 0.1%, 0.3%, or 1% of methylated reads per sample (25 sam-
ples per every category).

Read mapping, alignment, methylation calling, and generation
of genome-wide cytosine reports were performed using the Illu-
mina DRAGEN Bio-IT Platform as described above. VEF calling
was performed using epialleleR::generateCytosineReport with the
following parameters: min.mapg=0, min.baseq=0, nthreads=4,
threshold.reads=TRUE, and report.context="CG.”

Methylation patterns and per-read beta values for all sam-
ples were extracted using epialleleR::extractPatterns with the fol-
lowing parameters: min.mapq=30, min.baseq=20, nthreads=4,
clip.patterns=FALSE, and bed.file pointing to a location of the BED
file with genomic regions amplified (see amplicon coordinates
above).

Barnes-Hut t-SNE analysis was performed using R package Rt-
sne v0.15 [50] and matrices of beta or VEF values for all genomic
positions of CpGs with the coverage of at least 1,000x and avail-
able values for all analyzed samples (total number of CpGs, n =
138; MLH1, n = 20; CDKN2A, n = 35; MGMT, n = 33; CDH1, n = 32,
BRCA1, n = 18).

Sensitivity comparison to methylation array data

Eight additional WBC DNA NGS samples from anonymized
males carrying hypermethylated alleles in at least one of
the assayed regions were selected, and VEF calling was per-
formed using epialleleR::generateCytosineReport with the fol-
lowing parameters: min.mapg=30, min.baseq=20, nthreads=4,
threshold.reads=TRUE, and report.context="CG.” The same DNA
samples were also bisulfite converted using the Zymo EZ DNA
Methylation Kit (Zymo Research, cat. D5001), and genome-wide
methylation levels were assessed using Illumina HumanMethy-
lationEPIC BeadChip arrays according to the manufacturer’s in-
structions. Resulting IDAT files were processed (normalized and
annotated) with the minfi Bioconductor package [37] using the
preprocessQuantile method with outlier thresholding enabled
(GSE201689). For direct comparison, only the CpGs that are cov-
ered in all samples by both BeadChip arrays (P value of 0) and tar-
geted sequencing (minimum sequencing coverage of 5,000x) were
retained (MLH1, n = 10; CDKN2A, n = 2; MGMT, n = 4; CDH1,n =7,
BRCA1,n = 14). Pairwise sample comparison was performed using
a t-test with Holm adjustment for multiple comparisons.

The sets of CpGs that are differentially methylated between cell
blood types were reported previously: DNA methylation profiles
for 6 blood cell types from 6 males [41, 51] and DNA methyla-
tion profiles for 7 blood cell types from cord blood of 104 new-
borns [42, 52]. CpG-level differential methylation analysis P values
were Holm-adjusted, and the ones that remained significant (ad-
justed P < 0.05; n = 73,629 of total 456,655 for male blood data set;

n = 221,246 of total 429,794 for newborn cord blood data set) were
checked for overlap with the set of CpGs analyzed in this study
(n =35 CpGs of total n = 37 were present in each of male/newborn
datasets).

Differential methylation analysis

DMRs were called using R package DMRcate (v2.12.0) with the fol-
lowing parameters: lambda=1000, min.cpgs=2, and pcutoff="fdr”
[38]. AMRs were called using R package ramr (v1.6.0) with
the following parameters: ramr.method="beta,” min.cpgs=2,and
merge.window=500 [21]. To enable maximum likelihood estima-
tion of beta distribution parameters, all zeros were replaced with
minimum double values (2.26e-308).

For intergroup DMR discovery in admixed samples, pairwise
comparison of sample groups defined by the number of admixed
reads was performed (n = 25 samples in each group) using the
default level of the FDR cutoff (equals 0.05). For DMR discovery
in real samples, as DMRcate methods require 2 classes/categories
for comparison, every real sample from the test dataset was tested
against all the other samples using the default FDR cutoff value.

To assess DMR (or AMR) recall metrics in admixed samples,
every sample with admixed reads was compared using DMRcate
(or ramr) to the group of 25 samples without admixed reads at a
varying level of FDR (or P value) cutoff of 0.05, 0.01, or 0.001. As
the admixed reads covered all 5 assayed regions, only the total
number of real positive (P) regions (equals 5 for each compari-
son), the number of true-positive (TP) regions, and the number of
false-negative (FN) regions (FN = P — TP) were known, while the
numbers of true-negative (TN) or false-positive (FP) regions were
undefined. Therefore, recall, or true positive rate (TPR = TP/P), was
chosen as a sensitivity metric.

Within-sample heterogeneity

Estimation of WSH was performed on 8 samples used in the sen-
sitivity comparison between array- and NGS-based methylation
profiling. Difference in entropy was evaluated using methclone
(v1) [40] with a distance cutoff of 500 and minimum read coverage
of 1,000 for every pair of samples. As methclone outputs values for
multiple genomic regions, the minimum value (representing ab-
solute largest difference) was selected and used further. Entropy,
epipolymorphism, FDRP, and PDR were evaluated using R pack-
age WSH (v0.1.6) [39] with the following options: mapg.filter=30,
window.size=500, and bam.file pointing to a location of the BAM
file. Due to exponential complexity of the FDRP calculation, option
max.reads was set to 100 for FDRP calculation and to 1e406 oth-
erwise. Pairwise sample score comparison was performed using a
t-test with Holm adjustment for multiple comparisons.

Processing speed comparison

Comparison of processing speed was performed on 29 BAM
files containing paired-end alignments and methylation calls
derived from bisulfite sequencing of human WBC DNA sam-
ples prepared using the following assays: (A) amplicon-based
sequencing of promoter regions of the BRCAI gene (n = 10
files, 0.12-0.33 million read pairs per file, average coverage of
~20,000x) [12], (B) genome-wide capture-based bisulfite sequenc-
ing of promoter regions of 283 tumor suppressor genes (n =
10 files, 1.11-2.31 million read pairs per file, average coverage
of ~60x, and n = 3 files, 51.4-73.4 million read pairs per file,
average coverage of ~1,000x) [53, 54]. and (C) whole-genome
bisulfite sequencing (n = 6 files, 497-723 million read pairs per
file, average coverage of ~60x; epialleleR and Illumina DRAGEN

20z Aeniga4 2z uo Jasn Aleiqi uablag Jo Ausianiun Aq L2zy£€///80pe1B/aousiosebib/ga0 L 0L /10p/a]o1ue/aouaiosebif/woo dnoojwapeoe//:sdyy wouy papeojumoq



Bio-IT Platform only). The 2 former data sets (A and B) were gen-
erated in house and described previously, while the latter data
(C) were obtained from NCBI Sequence Read Archive (GEO/SRA
samples GSM3683953/SRX6640720, GSM3683958/SRX6640725,
GSM3683965/SRX6640732, GSM3683951/SRX6640718,
GSM3683955/SRX6640722, and GSM3683962/SRX6640729) and
reported elsewhere [55].

Processing times to produce conventional cytosine reports were
recorded as following:

Bismark CX methylation reports were created using Bismark
v0.22.3 (RRID:SCR_005604) [14] with the following parame-
ters: command bismark _methylation_extractor, -paired-end,
-no_overlap, —comprehensive, —gzip, -mbias_off -parallel 8,
—cytosine_report, -CX, and -buffer_size 64G. Genome-wide cy-
tosine methylation report but not bedGraph report was chosen
in order to obtain results of highest quality (not affected by se-
quencing errors). As parallel processing was requested, Bismark
used up to 24 cores for some of its subtasks.

methylKit CX  methylation reports were created
using R/Bioconductor package methylKit v1.20.0
(RRID:SCR_005177) [35] with the following parameters: func-
tion methylKit:processBismarkAln, minqual=0, mincov=0,
save.context=c(“CpG,”CHG,“CHH"), nolap=TRUE, and location
pointing to the location of a BAM file. Parallel processing is
currently not available for methylKit::processBismarkAln.

epialleleR CX methylation reports were created using
R/Bioconductor package epialleleR v1.3.5 with the follow-
ing parameters: function epialleleR::generateCytosineReport,
min.mapg=0, minbaseq=0, nthreads=4 (number of HT-
Slib decompression threads), threshold.reads=FALSE,
report.context="CX,” and bam pointing to the location of a
BAM file. epialleleR methods currently run in a single-threaded
mode only but can benefit from additional BAM decompression
threads provided by HTSlib.

lllumina DRAGEN is a hardware solution that relies on the
presence of the FPGA accelerator card, which precludes DRA-
GEN software execution on other platforms. At the same time,
outdated software development tools available at DRAGEN (GCC
v4.8.5, R v3.6.0) impede installation of third-party software and
R/Bioconductor packages and may potentially affect their perfor-
mance. Therefore, testing of methylation reporting tools was car-
ried out in 2 different settings.

Bismark, methylKit, and epialleleR were tested on the worksta-
tion equipped with an AMD EPYC 7742 64-core processor, 512 GB
of memory, and the Red Hat Enterprise Linux Server release 7.9
(Developer Toolset 6, GCC v6.3.1), with BAM files retrieved from
high-speed (10 Gbps) network-accessible storage.

DRAGEN CX methylation reports were created using Illu-
mina DRAGEN Bio-IT Platform v3.9.5 (Intel Xeon Gold 6126
48-core processor, 256 GB of memory, and CentOS Linux release
7.5.1804) with the following parameters: -methylation-generate-
cytosine-reports=true, -enable-sort=false, -enable-duplicate-
marking=false, -methylation-report-only=true, and -bam-input
pointing to the location of a BAM file. Default number of threads
(up to 24) was used for data processing using DRAGEN; BAM files
were accessed from a local, high-speed NVMe solid state disk.

For Bismark and DRAGEN, elapsed time measurements were
stably reproducible, and thus processing time was recorded
only once for each file. For methylKit and epialleleR, the tests
were run 5 times in sequential random order by means of
R package microbenchmark v1.4.9, and the average time was
used in comparison to mitigate variability in processing time
measurements.
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Availability of Source Code and
Requirements

The epialleleR R/Bioconductor package (biotools:epialleleR,
RRID:SCR_023913) is freely available at https://bioconductor.org/
packages/epialleleR/ and https://github.com/BBCG/epialleleR.
The R scripts used in this manuscript are freely available at
DataverseNO (https://doi.org/10.18710/2BQTJP).

Project name: epialleleR

Project homepage: https://github.com/BBCG/epialleleR
Bioconductor: https://bioconductor.org/packages/epialleleR/
Operating system: Linux, macOS, Windows

Programming language: R, C, C++

Other requirements: C++17, GNU make

License: Artistic-2.0

biotools: epialleleR

RRID: SCR_023913

Version 1.3.5 of the epialleleR R/Bioconductor package was used
[32]. A previous version of this article was deposited in bioRxiv
(doi: 10.1101/2022.06.30.498213) and the epialleleR has been ap-
plied in [12, 23] with data available at NCBI Gene Expression Om-
nibus under accession number GSE243966.

Additional Files

Supplementary Fig. S1. Scaled density of per-read beta values
from all admixed samples combined, split by the level of admixed
reads and genomic region of interest. The y-axis is scaled to 1 and
limited to 0.015. The hypermethylated (8 > 0.5) reads are increas-
ingly apparent on the right sides of plots in accordance with an
increase in admixed methylated reads.

Supplementary Fig. S2. Methylation patterns from all admixed
samples combined, split by the level of admixed reads and ge-
nomic region of interest. Lines depict patterns, and open and
closed circles depict unmethylated and methylated cytosines, re-
spectively. Numbers on the right of every pattern indicate how
many times each pattern occurs for every given gene/sample set.
Due to very high number of methylation pattern types, only the
most abundant pattern (if any) is shown for each range of average
beta value: [0,0.2), [0.2,0.4), [0.4,0.6), [0.6,0.8), [0.8,1]. The hyperme-
thylated (8 > 0.5) patterns are increasingly apparent at the top
of plots in accordance with an increase in admixed methylated
reads.

Supplementary Fig. S3. Scaled density of per-read beta values
from n = 8 real samples used to compare sensitivity of methy-
lation profiling by NGS and array, split by sample and genomic
region of interest. The y-axis is scaled to 1 and limited to 0.015.
The population of hypermethylated (8 > 0.5) reads that are ap-
parent in the Fig. 3A in the main text are pointed to by black
arrows.

Supplementary Fig. S4. Methylation patterns from n = 8 real
samples used to compare sensitivity of methylation profiling by
NGS and array, split by sample and genomic region of interest.
Lines depict patterns, and open and closed circles depict un-
methylated and methylated cytosines, respectively. Numbers on
the right of every pattern indicate how many times each pattern
occurs for every given gene/sample set. Due to very high num-
ber of methylation pattern types, only the most abundant pat-
tern (if any) is shown for each range of average beta value: [0,0.2),
[0.2,0.4), [0.4,0.6), [0.6,0.8), [0.8,1]. The hypermethylated (8 > 0.5)
patterns represent hypermethylated epialleles that are present in
certain samples/regions, as shown in Fig. 3A in the main text and
Supplementary Fig. S3.
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Supplementary Fig. S5. (A) Distribution of per-read beta values for
NGS reads covering CpGs that are common for NGS and BeadChip
array. For clarity, only the reads with average beta of at least 0.5
(i.e., representing hypermethylated epialleles) are included. Sin-
gle observations are shown as dots; number of observations is
given above. (B) Lower panel: boxplots of NGS-derived VEF val-
ues for individual CpGs; upper panel: significant aberrantly or dif-
ferentially methylated regions identified by ramr or DMRcate, re-
spectively, based on VEF values. (C) Lower panel: boxplots of NGS-
derived beta values for individual CpGs; upper panel: significant
aberrantly or differentially methylated regions identified by ramr
or DMRcate, respectively, based on NGS-derived beta values. (B, C)
The lower and upper hinges of boxes correspond to the first (Q1)
and third (Q3) quartiles; the bar in the middle corresponds to the
median value; the upper and lower whisker extend to Q3 + 1.5 =
IQR and Q1 — 1.5 % IQR, respectively, while the values outside this
range (outliers) are plotted as dots. Zero values are not plotted.
The coloring is preserved for n = 8 samples used in Fig. 3 of the
main text. The n = 10 samples used to create admixed samples
and not included in Fig. 3 are plotted in light gray.
Supplementary Fig. S6. (A) Heatmap of minimum (equals abso-
lute largest) difference in combinatorial entropy for all pairs of
samples, split by genomic region of interest. (B) Heatmap of com-
binatorial entropy, epipolymorphism, fraction of discordant read
pairs (FDRP), and proportion of discordant reads (PDR), split by
genomic region of interest. (C) Heatmap of P values for pairwise
comparison of samples using WSH scores, split by score and ge-
nomic region of interest. #xxP < 0.001, %xP < 0.01, «P < 0.05, blank
P> 0.05.

Supplementary Table S1. Complete metrics of cytosine report-
ing across all 3 possible cytosine genomic contexts (CHH, CHG,
and CpG), obtained using simulated chrl9 reads with varying se-
quencing error rate by selected tools. “reported,” number of cy-
tosines present in the cytosine reports; “valid context,” number
of cytosines for which genomic context was correctly identified;
“invalid context,” number of cytosines for which genomic context
was incorrectly identified; “not covered,” number of cytosines not
presentin a cytosine report; “mean coverage,” average coverage of
all cytosines in this context; “mean” and “variance,” average value
and variance for beta values of all cytosines in this context; “is
0.5,” number of cytosines with beta value of exactly 0.5 (ground
truth for this dataset); “is not 0.5,” number cytosines with beta
value not equal to 0.5.

Abbreviations

AMR: aberrantly methylated region; BAM: binary sequence align-
ment/map; BED: browser extensible data; CpG: cytosine followed
by a guanine; DMR: differentially methylated region; FDR: false
discovery rate; FDRP: fraction of discordant read pairs; IQR: in-
terquartile range; NGS: next-generation sequencing; PDR: propor-
tion of discordant reads; t-SNE: t-distributed stochastic neighbor
embedding; VCF: variant call format; VEF: variant epiallele fre-
quency; WBC: white blood cell; WGBS: whole-genome bisulfite se-
quencing; WSH: within-sample heterogeneity.
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