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Abstract 

Low-level mosaic epimutations within the BRCA1 gene promoter occur in 5–8% of healthy individuals and are associated with a sig- 
nificantl y elev ated risk of br east and ov arian cancer. Similar ev ents may also affect other tumor suppressor genes, potentially being a 
significant contributor to cancer burden. While this opens a new area for translational research, detection of low-level mosaic epige- 
netic events requires highly sensitive and robust methodology for methylation analysis. We here present epialleleR, a computational 
fr amew ork for sensiti v e detection, quantification, and visualization of mosaic e pim utations in methylation sequencing data. Anal yz- 
ing simulated and real data sets, we provide in-depth assessments of epialleleR performance and show that linkage to epihaplotype 
data is necessary to detect low-level methylation events. The epialleleR is freely available at https://github.com/BBCG/epialleleR and 

https://bioconductor.org/packages/epialleleR/ as an open-source R/Bioconductor package. 
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Introduction 

Cancer is a major health threat and cause of death world- 
wide. While the minority of cases are due to highly penetrant 
germline pathogenic variants (inherited cancers), the majority 
ar e consider ed spor adic cancers with no known germline genetic 
component. 

In addition to genetic aberrations like single-nucleotide vari- 
ants , indels , copy number alterations , and r earr angements, can- 
cers are known to harbor epimutations [ 1 , 2 ] (i.e., epigenetic distur- 
bances) that lead to aberr ant tr anscriptional up- and downregu- 
lation. Suc h aberr ations ar e often studied at the le v el of cytosine 
DNA methylation. As typical promoters of active genes are hy- 
pomethylated, epimutations within such regions are manifested 

as DNA h ypermeth ylation—the common mechanism of gene re- 
pression in cancer [ 3 ]. For example, aberrant DNA h ypermeth yla- 
tion e v ents (epim utations) within pr omoters of tumor suppr essor 
genes BRCA1 , MGMT , and MLH1 were shown to be associated with 

downregulation of expression of these genes [ 4–6 ], and the pres- 
ence of such epimutations further guides treatment strategies in 

clinical practice [ 7–9 ]. 
Epigenetic aberrations may arise during different stages of car- 

cinogenesis as somatic epimutations (mirroring somatic muta- 
tions) or in utero (affecting se v er al germline layers) as constitu- 
tional normal tissue epim utations. Se v er al studies in large cohorts 
[ 10 , 11 ] have linked constitutional (prenatal), mosaic (affecting a 
small subset of cells only) epimutations to breast and/or ovarian 

cancer risk. Research and interest in this field, ho w ever, have been 

limited by the fact that all these studies were conducted on pa- 
tients alr eady dia gnosed with their cancers, questioning whether 
normal tissue methylation in these patients may be a cancer- 
initiating e v ent or a secondary effect of the disease itself. Recently,
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e found frequent (occurring in > 5% of healthy women) though
ow-le v el (down to 0.03% of affected alleles) mosaic epimuta-
ions within the BRCA1 gene promoter to be associated with a
ignificantl y ele v ated risk for subsequent high-gr ade ov arian as
ell as triple-negative breast cancer, in a large, population-based 

r ospectiv e cohort [ 12 ]. This finding raises a provoking question of
hether similar low-le v el mosaic epim utations may affect other

umor suppressor genes and be associated with an ele v ated risk of
ther cancer forms as well. While this opens a ne w r esearc h ar ea
elated to cancer risk, there are technical issues to account for, as
he low frequency of such mosaic epimutations limits the ampli-
ude of observed changes in methylation. T hus , to explore such
ypotheses, there is a need for robust and sensitive epimutation
etection techniques. 

Curr entl y, the most widely used methods for DNA methylation
r ofiling ar e BeadChip arr ays (suc h as Illumina HumanMethyla-
ion450 or HumanMethylationEPIC) and a variety of methylation 

equencing techniques (for details see [ 13 ]). These methods have
iffer ent pr os and cons: arr ays allow genome-wide assessment at
 reduced cost, while the sequencing provides additional infor- 
ation on haplotype specificity of DNA methylation. The typical 

ioinformatic w orkflo ws designed to analyze both types of data
suall y r esult in sets of beta values (ratio of a count of methylated
ytosines to the total sum of methylated and unmethylated bases)
or each genomic position covered [ 14–16 ]. While this approach is
uitable for addressing large differences in DNA methylation pro- 
les between 2 sets of samples (e.g., cases and contr ols), it lac ks
ensitivity for low-le v el mosaic epim utation detection, as the de-
ection is hindered by sometimes m uc h mor e common biologi-
al variation [ 17 , 18 ] or technical artifacts [ 19 , 20 ]. Moreover, the
ac k of ha plotype linka ge makes suc h anal ysis difficult in Bead-
 Open Access article distributed under the terms of the Cr eati v e Commons 
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hip array-based datasets and therefore requires nontrivial ap-
r oac hes [ 21 ]. Gene pr omoter methylation pr esent in a low frac-
ion of molecules may be detected by conventional methylation-
pecific quantitativ e pol ymer ase c hain r eaction (MS-qPCR), but
he discrimination between methylated and unmethylated alle-
es is limited to the CpGs dir ectl y cov er ed by the primers/probes
 10 ]. In contrast to other methods, analysis of next-generation se-
uencing (NGS)-based data can provide much higher sensitivity
hen the base resolution methylation data are combined with in-

ormation on allelic belongingness (epihaplotype linkage). 
Her e, we pr esent a computational fr ame work for sensitiv e de-

ection and quantification of lo w-frequenc y, mosaic epimutations
n methylation sequencing data. The provided methods can be
sed for the discovery of lo w-frequenc y epialleles (mitotically
nd/or meiotically heritable DNA methylation patterns [ 22 ]) con-
ected to disease risk (as done pr e viousl y in [ 12 , 23 ]), as well as
or purposes allowing less sensitivity, such as assessments related
o treatment response [ 24 , 25 ], or to the development of treat-

ent resistance [ 26 ]. Importantly, the framework also allows one
o connect DNA methylation status with potential underlying cis -
actors, such as single-nucleotide variations or mutations within
he immediate proximity. 

The versatility of the framework makes it applicable for anal-
sis of data from any methylation sequencing experiment, given
hat methylation in these data can be called at individual cyto-
ine residues. Both single-end and paired-end sequencing align-
ent files can be used as an input, and in cases where methy-

ation calls are not a vailable , this framew ork allo ws one to call
ytosine methylation and permanentl y stor e calls in a binary se-
uence alignment/map (BAM) file. 

Similar to other tools that transform NGS reads into counts of
ases or molecules, the fr ame work is not designed to determine
r eanal ytical bias, suc h as cell-type heter ogeneity. Appr opriate
ethods must be used to control confounders in the downstream

nalyses [ 27 , 28 ]. 

esults
pialleleR implementation
he presence of h ypermeth ylated BRCA1 alleles (epimutations) in
ormal tissue (white blood cells [WBCs]) has been shown qualita-

ively for 5–8% of adult women [ 10 ]. Howe v er, the associated quan-
itative changes in DNA methylation at the le v el of individual CpGs
r e typicall y small (in most cases, the intr aindividual fr equency
f epimutations is between 0.03% and 1% [ 12 ]) and ther efor e in-
istinguishable from the background methylation level due to

nherent biological (potentially spurious single-base methylation
 v ents) and technical (sequencing errors) variance [ 17 ]. Methyla-
ion statuses of neighboring CpGs are often concordant [ 29 ], and
uc h spatiall y extended epigenetic c hanges ar e often associated
ith a gene expression silencing [ 30 ]. Given the potential biolog-

cal (gene inactivation) and clinical (cancer risk) importance of
pimutations, we focused on quantification of h ypermeth ylation
 v ents that span over several CpGs, accounting for both methy-
ation status of individual CpGs within the sequence read as well
s the av er a ge methylation le v el of the sequence read itself. This
s possible in NGS-based data sets, while it is not in array-based
ata where methylation information of different CpGs cannot be
onnected to each other as in haplotype data. 

As number of e v ents that lead to variance in methylation (base
eamination, random single-base methylation events, and se-
uencing errors) is limited at the level of individual reads (only a
raction of CpGs might be affected within the same read), the av-
r a ge methylation le v el of the r ead will be moder atel y affected by
uc h e v ents and can help distinguish hyper- from h ypometh ylated
pialleles (where methylation statuses of the majority of CpGs are
oncordant and av er a ge methylation le v el is either close to 0%
r 100%). We ther efor e hypothesized that thr esholding sequence
eads by their average methylation level will reduce the effect of
iological and technical variance and facilitate the detection of in-
requent h ypermeth ylation e v ents. As no suitable generic solution
as publicly a vailable , we implemented it using R software envi-

onment for statistical computing [ 31 ], a de facto standard for sci-
ntific data analysis . T he implemented solution, epialleleR, loads
ethylation call strings and short sequence r eads fr om the sup-

lied BAM file, optionally thresholds read pairs according to their
ethylation properties, and produces methylation reports for in-

ividual cytosines as well as genomic regions of interest (Fig. 1 A).
uring BAM loading, pairs of sequence reads and corresponding
ethylation call strings are merged according to Phred quality

cor e v alues (i.e., base with the highest scor e is c hosen) to pr eserv e
nformation of the highest quality. In contrast to a ppr oac hes that
nvolve simple trimming of ov erla pping parts of read2, the follow-
ng a ppr oac h might r etain mor e information when higher-quality
r a gments of r ead2 (5 ′ -end or middle) ov erla p with lo w er-quality
r a gments of r ead1 (3 ′ -end). The optional thr esholding defines a
ubpopulation of epialleles of interest and is based on the mini-
um number and the average methylation level of cytosines in

arious sequence contexts (e.g., CG , CHG , or CHH). The threshold-
ng parameters are fully adjustable to target desired population of
pialleles; their default values (minimum 2 CpG sites, minimum
v er a ge methylation beta value of 0.5 for CpG sites, maximum av-
r a ge methylation beta value of 0.1 for non-CpG sites) performed
ell in the study linking mosaic BRCA1 epimutations and cancer

isk [ 12 ] and were used here in all downstream analyses. 
The optional thresholding of sequence reads defines 2 modes

f epialleleR (v.1.3.5, RRID:SCR_023913 [ 32 ]) function. Without
hr esholding, epialleleR pr oduces conv entional cytosine r eports
imilar to the ones produced by other tools (e.g., Bismark [ 14 ]).
n this case, methylation beta v alue for e v ery genomic location
s computed as a ratio of a number of methylated cytosines to
he total number of methylated and unmethylated cytosines:
= C /( C + T ). 
When read thresholding is performed (default mode of action),

he le v el of methylation per e v ery genomic position, denoted as a
ariant epiallele frequency (VEF), is calculated as a ratio of a num-
er of methylated cytosines in read pairs passing the threshold
 C 

a ) to total number of methylated and unmethylated cytosines
n all read pairs: VEF = C 

a /( C + T ) (see Fig. 1 B for an example).
hen the report is prepared at a level of extended genomic re-

ions rather than individual bases, VEF equals the ratio of a num-
er of read pairs passing threshold ( N 

a ) to the total number of
ead pairs ( N ) overlapping the region of interest: VEF = N 

a /N. The
erm “variant epiallele” here represents a group of epialleles (i.e.,
ndividual methylation patterns) with similar methylation prop-
rties that is defined by thr esholding; ther efor e, VEF effectiv el y
 epr esents the fr equency of this gr oup of epialleles passing the
hreshold at the level of individual cytosines or extended genomic
egions. 

Methylation beta values (from conventional reporting) as well
s VEF values (from default reporting mode with read threshold-
ng) can be produced from any number of BAM files with no prior
ypothesis, as long as experimental setup allows to call methy-

ation on a per-base le v el. Both of these values effectively repre-
ent methylation le v els per genomic position and, as suc h, can be
ir ectl y used further as an input for other bioinformatic tools in-
luding, but not limited to, differential methylation analysis tools.
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A

B

Figure 1: (A) Flowchart of epialleleR package data-processing steps . T he formulas using to calculate conventional beta as well as VEF values are given 
in boxes. C and T , total number of cytosines and thymines at particular genomic position, r espectiv el y; C a , number of cytosines at particular genomic 
position within read pairs passing a particular methylation threshold ( C a ≤ C ); N , total number of read pairs, mapped to a particular genomic region; 
N 

a , number of mapped read pairs, passing a particular methylation threshold ( N 

a ≤ N ). (B) Schematic illustration of cytosine methylation (circles) 
within epialleles (horizontal lines) and results of thresholding by average read methylation level (labels on the right) using default parameters (i.e., at 
least 2 CpGs in CG context, at least 50% methylation within CG context, at most 10% methylation outside of CG context). These default thresholding 
par ameters wer e c hosen to detect h ypermeth ylated alleles with biological r ele v ance in tumor suppr essor genes; detection of epim utations of a 
differ ent natur e may r equir e adjustments to the default par ameter v alues. Resulting per-cytosine beta and VEF v alues ar e giv en under eac h CpG (lar ge 
circles). In the context of a typical CpG-rich regulatory region of an actively transcribed gene, the 3 h ypometh ylated epialleles on the top represent 
typically abundant scattered methylation or sequencing artifacts (only a minority of cytosines in CG context are called as methylated), the epiallele at 
the bottom r epr esents the product of incomplete bisulfite conversion (cytosines in GG and non-CG contexts are methylated), and the second epiallele 
from the bottom represents a true biologically relevant epimutation (h ypermeth ylation) that leads to gene silencing (majority of cytosines in CG 

context are methylated, while no methylation is detected in the non-CG context). 
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If methylation statuses of cytosines were not determined, epi- 
alleleR allows to create and store methylation calls, allowing anal- 
ysis of BAM files created by various methylation sequencing align- 
ment tools. 

When optional data on single-nucleotide variants are provided 

(as a variant call format, VCF file, or a VCF object), epialleleR 

quantifies the balance or skewness of methylation between al- 
leles, thereby enabling assessment of potential allele specificity 
of epimutations. In particular, this information is important for 
distinguishing epimutations that occurred through a single event 
ollo w ed b y clonal expansion (e.g., pr enatal epim utations that ar e
resent on the same allele in all affected cells, as in [ 12 , 23 ]) from
he ones that occurred in different cells independently and there-
or e pr esent on both alleles. In some cases, allele specificity also
llows to infer causality of epimutations in cancer development 
 23 ]. 

To provide a comprehensive range of means for epiallele anal-
sis, the pac ka ge also offers methods allowing visualization and
 har acterization of all individual epialleles (methylation patterns) 
n a sample (see Fig. 1 and Supplementary figures for details). If
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Table 1: Selected c har acteristics of softwar e/hardwar e solutions for cytosine methylation reporting 

Method 
Requires reference 
(genomic) sequence 

Remo ves o verlaps 
within read pairs 

Outputs epiallele 
frequencies 

Processing speed, read 
pairs per second 

Bismark yes (genome-wide 
cytosine reports) / no 

(bedGr a ph r eports) 

yes (trims read2) no 40–2,800 

methylKit no yes (trims read2) no 9,900–15,400 
DRAGEN yes yes (trims read2) no 2,000–183,000 
epialleleR no yes (base with the 

highest quality is 
chosen) 

yes 129,000–231,000 
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 equir ed, extr acted patterns can include other, noncytosine bases
f interest (e.g., single-nucleotide variations), which allows to con-
ect methylation properties of epialleles with sequence features

n proximity. During methylation pattern extraction, every epial-
ele is c har acterized by number of context sites and methylation
e v el (av er a ge beta v alue) and is assigned with a unique identifier
Fowler -Noll-Vo FNV -1a non-cryptogr a phic hash [ 33 ]) that solel y
epends on positions of included cytosine (and other optional)
ases and their methylation states (or nucleotide symbols for op-
ional bases), enabling to not only group epialleles by their methy-
ation properties but also reliably and consistently track individ-
al epialleles of high importance across different samples or even
tudies . T he a v er a ge beta values for all extracted patterns as well
s patterns themselves can be explored to optimize thresholding
arameters for a genomic region of interest. 

Increasing scale and depth of methylation sequencing exper-
ments impose a r equir ement on the speed of data processing.
her efor e, all time-consuming subtasks were implemented using
ptimized C/C ++ subroutines and, whenever possible, linked to
TSlib, the unified C library for high-throughput sequencing data
rocessing [ 34 ]. The R package epialleleR is freely available at the
ioconductor pac ka ge r epository [ 32 ]. 

eporting accuracy analyses
irst, we sought to validate the accuracy of methylation report-
ng by epialleleR in its conventional mode (no read thresholding)
s compared with 3 other commonly used tools for which read
hresholding is not available: Bismark [ 14 ], methylKit [ 35 ], and Il-
umina DRAGEN Bio-IT Platform. For this pur pose, we sim ulated
arge sets of paired-end bisulfite sequencing reads (2 × 151bp, 100

illion read pairs covering human chromosome 19). In contrast
o real datasets, simulated data allow to calculate “ground-truth”

ethylation le v els for unbiased comparison. Sim ulation par am-
ters were selected to obtain exact methylation levels of 50%
or cytosines in the CG context ( n = 2,211,240) and methylation
e v el of a ppr oximatel y 0.25% (bisulfite conversion rate of ∼99.75%)
or cytosines in the CHG and CHH contexts ( n = 6,593,900 and
9,210,572, r espectiv el y). In addition to endogenous deamination
 v ents [ 17 ], bisulfite treatment-induced changes [ 19 ], and varia-
ion in conversion rates [ 36 ], sequencing itself can introduce er-
 ors that v ary in r ange depending on assay type and sequencing
ec hnology [ 20 ]. Ther efor e, we intr oduced v ariable le v el of arti-
cial sequencing errors (0%, 0.1%, 0.3%, or 0.6%) and e v aluated
heir effect on the accuracy of reported methylation metrics, ap-
lying a selected set of methods (for comparison see Table 1 ).
nal ysis on exactl y the same task (BAM file to cytosine report)
 e v ealed that r eported v alues wer e close to their theoretical ex-
ectations for all methods, with epialleleR being the least affected
y sequencing errors, that is, maintaining the smallest deviance
f r eported v ersus expected methylation beta values for all sam-
les with sequencing err ors intr oduced, possibl y owing to read
uality–assisted merging of paired reads (Table 2 , further details

n Supplementary Table S1 ). 
Of note, epialleleR does not r equir e r efer ence sequence in or-

er to determine the correct sequence context of cytosine bases.
ll observed contexts for every genomic position are counted, and

he most frequent context is assumed to be correct and therefore
 eported. This a ppr oac h allows r eporting of methylation e v ents
ithin de novo (not present in the reference genome) contexts,
eing at the same time not affected by sequencing errors that
hange sequence context of cytosine bases ( Supplementary Table
1 ). 

ensitivity analyses
oncordantly methylated alleles (alleles with most of their CpGs
aving the same methylation status) may possess high biologi-
al importance [ 12 , 23 , 26 ]. Spontaneous 5-methyl cytosine (5mC)
eamination, sequencing errors, and gen uine single-n ucleotide
eth ylation/demeth ylation e v ents affect observ ed bac kgr ound
ethylation le v el and can ther efor e hinder the detection of low-

requency hyper- or hypomethylated alleles. Differences in exper-
mental conditions provide an additional level of variability, which
an sometimes be tackled by normalization during postprocess-
ng [ 37 ]. In contrast to the DNA methylation analysis using Bead-
hip arrays (such as Illumina HumanMethylation450 and Hu-
anMethylationEPIC), whic h r eport av er a ge methylation v alues

t the le v el of individual cytosines onl y, next-gener ation sequenc-
ng provides an additional data dimension by linking methyla-
ion le v els of individual nucleotides within a genomic region cov-
red by a sequencing read (epihaplotypes). Ho w ever , this infor -
ation is lost when methylation is assessed and reported with-

ut accounting for its allelic distribution. To e v aluate the sensi-
ivity of detection for lo w-frequenc y monoallelic h ypermeth yla-
ion e v ents in next-gener ation sequencing data, we sim ulated an
xtended set of samples using real, amplicon-based bisulfite se-
uencing data for human WBCs ( n = 10 with almost no hyper-
ethylated alleles, as described in Materials and Methods) and

ull y methylated contr ol DNA samples. Combining r eal WBC DNA
isulfite sequencing data allo w ed to introduce sample-to-sample
ariability although maintaining biologically relevant background
ethylation le v els acr oss sequenced r egions, while admixing full y
ethylated r eads sim ulated low-fr equency, concordant methyla-

ion e v ents . T he amplicons used cov er ed pr omoter r egions of the
umor suppressors MLH1 , CDKN2A , MGMT , CDH1 , and BRCA1 . The
istributions of per-read beta values ( Supplementary Fig. S1 ) and
ethylation patterns ( Supplementary Fig. S2 ) of admixed samples

how the expected abundance of h ypermeth ylated (av er a ge β ≥
.5) alleles and confirm their high similarity to the real samples

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad087#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad087#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad087#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad087#supplementary-data
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Ta ble 2: Selected accurac y metrics (av er a ge beta v alues and their v ariance) of cytosine methylation r eporting. Av er a ge r eported beta 
v alues that ar e closest to the expected beta values (0.0025 for cytosines in the CHG/CHH contexts and 0.5 for cytosines inthe CG context) 
and lo w est v ariance v alues ar e shown in bold. 

CHH CHG CG 

Sequencing error r a te Method Mean Variance Mean Variance Mean Variance 

0.00% DRAGEN 0 .002501 1 .28E-05 0 .002500 1 .27E-05 0 .499997 5 .96E-07 
Bismark 0 .002501 1 .34E-05 0 .002500 1 .33E-05 0 .499997 5 .92E-07 

methylKit 0 .002503 1 .28E-05 0 .002501 1 .27E-05 0 .499997 5 .97E-07 
epialleleR 0 .002501 1 .28E-05 0 .002500 1 .27E-05 0 .499997 5 .96E-07 

0.10% DRAGEN 0 .002661 1 .37E-05 0 .002662 1 .36E-05 0 .499835 1 .73E-06 
Bismark 0 .002646 1 .42E-05 0 .002648 1 .41E-05 0 .499850 1 .69E-06 

methylKit 0 .002662 1 .37E-05 0 .002664 1 .36E-05 0 .499835 1 .75E-06 
epialleleR 0 .002624 1 .35E-05 0 .002626 1 .34E-05 0 .499872 1 .54E-06 

0.30% DRAGEN 0 .002977 1 .53E-05 0 .002980 1 .53E-05 0 .499504 3 .22E-06 
Bismark 0 .002928 1 .57E-05 0 .002931 1 .57E-05 0 .499554 3 .03E-06 

methylKit 0 .002978 1 .52E-05 0 .002982 1 .52E-05 0 .499506 3 .21E-06 
epialleleR 0 .002857 1 .47E-05 0 .002860 1 .47E-05 0 .499628 2 .59E-06 

0.60% DRAGEN 0 .003498 1 .79E-05 0 .003506 1 .78E-05 0 .498942 1 .29E-05 
Bismark 0 .003393 1 .81E-05 0 .003402 1 .81E-05 0 .499051 1 .25E-05 

methylKit 0 .003497 1 .78E-05 0 .003501 1 .78E-05 0 .498952 1 .28E-05 
epialleleR 0 .003237 1 .66E-05 0 .003241 1 .65E-05 0 .499222 1 .14E-05 
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( Supplementary Figs. S3 and S4 ). Conventional cytosine reports 
(no read thresholding) as well as VEF reports (with read threshold- 
ing) wer e pr epar ed and used for unsupervised clustering of sam- 
ples and differ entiall y methylated r egion (DMR) discov ery. Despite 
quite a low ov er all methylation le v el of amplified regions (aver- 
a ge beta v alue of 0.014, median of 0.005; Fig. 2 A), t-distributed 

stochastic neighbor embedding (t-SNE) analysis based on beta val- 
ues was not able to discriminate between samples with 0.01%,
0.03%, 0.10%, and 0.30% of methylated reads or no methylated 

reads added (Fig. 2 B, left panel). On the other hand, VEF value- 
based t-SNE anal ysis r esulted in spatiall y well-separ ated clus- 
ters that corresponded to each level of admixed methylated reads 
(Fig. 2 B, right panel). Inter gr oup DMR discov ery based on beta v al- 
ues (Fig. 2 C, left panel) sho w ed few er number of regions found as 
well as higher associated false discov ery r ate (FDR), while discov- 
ery based on VEF values resulted in all 5 possible regions identi- 
fied for all possible inter gr oup comparisons as well as gener all y 
lo w er associated FDR. When each sample with admixed methy- 
lated reads was compared against the group of samples without 
admixed methylated r eads, r ecall metrics for differential (by DM- 
Rcate [ 38 ]; Fig. 2 D) or aberrant (by ramr [ 21 ]; Fig. 2 E) methylation 

anal ysis wer e notabl y higher for anal yses based on VEF values 
(Fig. 2 D, E, right panels) in comparison with analyses based on 

beta values (Fig. 2 D, E, left panels). This shows that VEF values are 
mor e v aluable for detection and analysis of lo w-frequenc y ( ≤1%) 
h ypermeth ylation e v ents than methylation beta v alues. 

BeadChip arra ys , such as Illumina HumanMethylationEPIC, 
ar e another widel y used, amplification-fr ee method to assess 
genome-wide DNA methylation for a reduced cost. In order to di- 
r ectl y compar e the sensitivities of tar geted NGS and of the Bead- 
Chip arrays for the detection of lo w-frequenc y DN A methyla- 
tion e v ents, w e emplo y ed both of the methods to analyze small 
set of samples ( n = 8) carrying lo w-frequenc y methylation in 

at least one of the assayed regions (promoter regions of MLH1 ,
CDKN2A , MGMT , CDH1 , and BRCA1 ). Sample distributions of per- 
read beta values ( Supplementary Fig. S3 ) and methylation pat- 
terns ( Supplementary Fig. S4 ) show that these samples indeed 

contain v arying fr equencies of h ypermeth ylated (av er a ge β ≥ 0.5) 
alleles. For unbiased comparison, we limited the corresponding 
ata sets to the CpGs assayed and sufficiently cov er ed by both
ec hniques. Anal ysis r e v ealed that VEF v alues of samples with

any h ypermeth ylated alleles (e.g., A26 and A45 for BRCA1 ; as ap-
ar ent fr om Fig. 3 A) differ significantl y (Fig. 3 B) fr om VEF v alues
f samples with only a few or no h ypermeth ylated alleles (e.g.,
02 or A05 for BRCA1 ; Fig. 3 A). When VEF v alues wer e used for

dentification of aberr antl y methylated r egions (AMRs) or DMRs
y ramr [ 21 ] or DMRcate [ 38 ], respectively, the significant regions
ound correlated well with the notable presence of h ypermeth y-
ated alleles. Of note, slightly inferior performance of DMRcate is
r obabl y due to the fact that for some of the genomic regions, too
any samples in this subset simultaneously contained hyperme- 

hylated epialleles. When DMRcate was used for the same purpose
n an extended set of sequenced samples ( n = 18, containing n =
0 samples c har acterized by the absence of h ypermeth ylated al-
eles that were used to create the admixed sample set), its perfor-

ance in identification of h ypermeth ylated epiallele-containing 
amples was higher ( Supplementary Fig. S5 ). 

In contr ast, onl y a fe w significant differ ences r emained when
GS beta values were used for sample comparison (Fig. 3 C), while
airwise comparisons based on BeadChip array beta values did 

ot r e v eal an y significant differ ences between samples (Fig. 3 D).
he search for aberrantly or differentially methylated regions us- 

ng either NGS or array beta values did not result in identifica-
ion of such regions in relevant (according to methylation patterns
r beta value densities) samples. Generally higher beta values of
eadChip array as compared to NGS beta values likely mask sub-
le changes in methylation caused by the presence of infrequent
 ypermeth ylated alleles and hinder the detection of differences
etween samples. 

Se v er al scor es to describe and quantify v ariability in DNA
ethylation in sequencing reads (within-sample heterogeneity 

WSH]) hav e been pr oposed [ 39 ]. In order to assess WSH, we e v al-
ated the difference in combinatorial entropy between each pair 
f samples using methclone [ 40 ] ( Supplementary Fig. S6A ). The
argest (by absolute value) reported difference in combinatorial 
ntropy of −2.59 between any pair of samples confirms a high sim-
larity between sample methylation profiles, of note, being m uc h
maller than cutoffs for epiallele shifts between samples analyzed 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad087#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad087#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad087#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad087#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad087#supplementary-data
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Figure 2: (A) Line plots of beta (left panel) and VEF (right panel) values for individual samples, color-coded according to the amount of admixed 
methylated r eads. Eac h line r epr esents a sample; y-axis, methylation v alue of all CpGs ( n = 138) sorted by their genomic position (categorical x-axis). 
(B) Embedding plots for t-SNE analysis using beta (left panel) and VEF (right panel) values. Ellipses represent 95% confidence levels. (C) Heatmap of
mean false discovery rate for differentially methylated regions (DMRs) identified by DMRcate. Labels indicate the number of DMRs found (of a total of
5 regions possible). (D) Recall rate for DMR identification using DMRcate for varying FDR cutoffs. (E) Recall rate for aberrantly methylated region (AMR)
identification using ramr for varying P value cutoffs.

beta values VEF values

1e−04

1e−03

1e−02

1e−04

1e−03

1e−02

1e−01

genomic position

va
lu

e

admixed, %

1.00

0.30

0.10

0.03

0.01

0.00

A

beta values VEF values

−20 −10 0 10 20 30 −20 −10 0 10 20 30

−20

0

20

V1

V
2

admixed, %

1.00

0.30

0.10

0.03

0.01

0.00

B

422 5

542

541

53

5

5 55 55

555 5

55 5

5 5

5

beta values VEF values

0.00 0.01 0.03 0.10 0.30 1.00 0.00 0.01 0.03 0.10 0.30 1.00

0.00

0.01

0.03

0.10

0.30

1.00

admixed, %

ad
m

ix
ed

, %

1e−100
1e−80
1e−60
1e−40
1e−20

mean
FDR

C

beta values VEF values

0.0100.001 0.0500.0100.0500.001

0.00

0.25

0.50

0.75

1.00

FDR cutoff

D
M

R
 r

ec
al

l

admixed, %

1.00

0.30

0.10

0.03

0.01

D

beta values VEF values

0.0100.001 0.0500.0100.0500.001

0.00

0.25

0.50

0.75

1.00

P cutoff

A
M

R
 r

ec
al

l

admixed, %

1.00

0.30

0.10

0.03

0.01

E

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giad087/7334271 by U

niversity of Bergen Library user on 27 February 2024



Sensitive methylation analysis in NGS data | 7 

A

B

C

D

Figure 3: (A) Distribution of per-read beta values for NGS read pairs covering CpGs that are common for NGS and BeadChip array. For clarity, only the 
reads with average beta of at least 0.5 (i.e., representing h ypermeth ylated epialleles) are included. Single observations are shown as dots; number of 
observations is given abo ve . Complete density plots are provided in the Supplementary Fig. S3 . Corresponding methylation patterns are provided in 
the Supplementary Fig. S4 . (B) Lo w er panel: boxplots of NGS-derived VEF values for individual CpGs; middle panel: significant aberr antl y or 
differ entiall y methylated regions identified by ramr or DMRcate, respectively, based on VEF values; upper panel: significance levels from pairwise 
comparison of VEF values. (C) Lo w er panel: boxplots of NGS-derived beta values for individual CpGs; middle panel: significant aberr antl y or 
differ entiall y methylated regions identified by ramr or DMRcate, respectively, based on NGS-derived beta values; upper panel: significance levels from 

pairwise comparison of NGS-derived beta values. (D) Lo w er panel: boxplots of BeadChip array-derived beta values for individual CpGs; middle panel: 
significant aberr antl y or differ entiall y methylated r egions identified by r amr or DMRcate, r espectiv el y, based on BeadChip arr ay-deriv ed beta values; 
upper panel: significance le v els fr om pairwise comparison of BeadChip arr ay-deriv ed beta v alues . (B–D) T he lo w er and upper hinges of boxes 
correspond to the first (Q 1 ) and third (Q 3 ) quartiles; the bar in the middle corresponds to the median value; the upper and lo w er whisker extend to Q 3 

+ 1.5 ∗ IQR and Q 1 − 1.5 ∗ IQR, r espectiv el y, while the values outside this range (outliers) are plotted as dots. Zero values are not plotted. ∗∗∗P < 0.001, 
∗∗P < 0.01, ∗P < 0.05, blank P ≥ 0.05. 
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n [ 39 ] ( −60 and lo w er). Further, w e also calculated 4 additional
eter ogeneity scor es: combinatorial entr opy, epipol ymor phism,
raction of discordant read pairs (FDRP), and proportion of discor-
ant reads (PDR). The scores themselves ( Supplementary Fig. S6B )
nd the le v els of scor e-based pairwise significance between sam-
les ( Supplementary Fig. S6C ) are not generally consistent with
ractions of h ypermeth ylated (average β ≥ 0.5) alleles (Fig. 3 A
nd Supplementary Fig. S3 ) or VEF values (Fig. 3 B): for example,
amples A26 and A45 have a notable fraction of h ypermeth ylated
eads in the BRCA1 promoter region compared to other samples,
lthough it is not reflected at the le v el of WSH scor es. Importantl y,
SH scor es pr oduced cannot be dir ectl y used as an input for DMR

nal ysis tools, whic h ar e commonl y emplo y ed to c har acterize ex-
ct differences in methylation between samples. 

It is known that DNA methylation profiles of blood samples de-
end on the varying contribution of individual blood cell types
 41 , 42 ]. While we cannot exclude that h ypermeth ylated alleles
resent in the samples analyzed here originate from a particular
lood cell type, low-le v el, mosaic epim utations of at least BRCA1
er e pr e viousl y shown to be independent of blood subfr action

omposition [ 10 ]. Of note, only 1 CpG (cg05785947 in CDH1 ) out of
7 used in NGS versus BeadChip array comparison here was found
o be significantly differentially methylated between blood cell
ypes of healthy males, and none of the CpGs were significantly
iffer entiall y methylated between blood cell types of newborns. 

rocessing speed analyses
ethylation sequencing data produced by contemporary tech-
iques vary in scale and depth and may contain se v er al thousands
o billions of single or pair ed-end r eads. To anal yze them effi-
iently, computational methods must be scalable and fast enough
or as large as possible range of sample counts or data file sizes.
nfortunatel y, man y academic tools use computationally com-
lex algorithms that do not scale to contemporary tasks. We com-
ar ed data-pr ocessing speed for epialleleR v ersus methylKit, Bis-
ark, and DRAGEN Bio-IT Platform, performing exactly the same

ask (BAM file to cytosine report) of methylation reporting across
nput data coming from various assays: amplicon based ( n = 10
amples with a depth of cov er a ge of ∼20,000 ×), genome-wide cap-
ure based ( n = 10 with a depth of cov er a ge of ∼60 × and n = 3
ith a depth of cov er a ge of ∼1,000 ×), or whole-genome bisulfite

equencing (WGBS, n = 6 with a depth of cov er a ge of ∼60 ×). The
btained results confirm very efficient implementation of epial-
eleR and its suitability for analysis of datasets of any depth and
ov er a ge (Fig. 4 , Table 1 ). 

iscussion
hile conflicting data have linked low-level mosaic primary con-

titutional epimutations to cancer risk for more than a decade
 43 ], we hav e r ecentl y obtained firm e vidence implicating primary
pimutations within the BRCA1 gene in an elevated risk of incident
r east and ov arian cancer [ 12 ]. The assumption that suc h epim u-
ations may affect other tumor suppressor genes and, ther efor e,
ead to other cancer forms [ 43 ] institutes a new research area
ith respect to cancer risk. Further, the findings of such epimuta-

ions in umbilical cord blood [ 10 , 23 ] indicate prenatal events of a
 et unkno wn genesis . T his cr eates the need for m ultidisciplinary
tudies on the mechanisms of these e v ents and on their effects in
espect to cancer risk, as well as the need for ultr asensitiv e meth-
ds allowing sample assessment at a high scale. 

Her e, we pr esent the details on a fast, accur ate, and sensitiv e
ethod to detect, quantify, and visualize epialleles in NGS data.
he method shows its superiority v ersus conv entional methods
f methylation r eporting, especiall y when applied for detection of
o w-frequenc y methylation events, as it is by design less suscep-
ible to variations in conversion efficiency or sequencing quality.
lthough epialleleR is not a differential methylation analysis tool,

ts output can be dir ectl y used to group samples based on their
ethylation profiles (by applying a simple threshold as in [ 12 , 23 ]

r using unsupervised clustering), as well as an input for other
iffer ential/aberr ant methylation anal ysis softwar e (the latter is
ot possible for WSH analysis tools). 

The default epialleleR parameters that were used for read
hresholding in the present and linked studies [ 12 , 23 ] are sought
o be optimal for the detection of aberrant h ypermeth ylation
 v ents within normall y unmethylated genomic r egions suc h as
pG-ric h r egulatory r egions of tumor suppr essor genes. If the na-

ure of regions of interest deviates from the one described abo ve ,
ethylation c har acteristics can be explor ed using other epialleleR
ethods (e.g., extr actP atterns), and thr esholding par ameters can

e adjusted to detect desired methylation events. 
We thor oughl y tested epialleleR using bisulfite sequencing

ata; the method, ho w e v er, can also be a pplied to anal yze and
ompare data obtained using any methylation sequencing tech-
ique (reduced representation bisulfite sequencing [RRBS], oxida-
ive bisulfite sequencing [oxBS-seq], and Tet-assistant bisulfite se-
uencing [TAB-seq]), as long as methylation in these data can be
alled at individual cytosine residues instead of being analyzed
y comparing r elativ e abundance of the fr a gments (suc h as for
ethylation sensitiv e r estriction enzyme sequencing [MRE-seq] or
ethylated DNA imm unopr ecipitation sequencing [MeDIP-seq]). 
The possibility to call cytosine methylation for alignment files

reated by different short sequence aligners and subtle though
oticeable changes in cytosine reporting accuracy, together with

mmense speed gain, make epialleleR a method of choice not only
or discovery of infrequent h ypermeth ylated epialleles (as in [ 12 ,
3 ]) but also as a tool to produce conventional (no read threshold-
ng) cytosine reports from any methylation sequencing alignment
les. 

The implemented method is fully documented and can be eas-
l y used fr om within the R envir onment for statistical computing.

ith the e pialleleR alread y r e v ealing its suitability for detection
f low-le v el mosaic methylation e v ents in a lar ge dataset [ 12 , 23 ],
e belie v e it constitutes an optimal tool for assessment of low-

e v el mosaic epim utations with r espect to risk of cancer as well
s other diseases of r ele v ance. 

onclusions
er e, we pr esent epialleleR, a v ery fast, accur ate, and sensitiv e
ethod to detect, quantify, and visualize epialleles in NGS data.

fficient implementation and impr ov ements in cytosine r eporting
ccurac y allo w us to recommend epialleleR not onl y for anal ysis
f methylation patterns and to enhance low-le v el differ entiall y
ethylated region discovery but also as a conventional cytosine

eporting tool for various kinds of methylation sequencing data.
he epialleleR R/Bioconductor pac ka ge is fr eel y av ailable at [ 44 ,
5 ]. 

aterials and Methods
ext-gener a tion sequencing
BC DNA samples fr om anon ymized males ( n = 88) [ 46 , 47 ] and

uman HCT116 DK O meth ylated DNA control sample (Zymo
esear ch, cat. D5014-2) w ere bisulfite converted, and 5 DNA

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad087#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad087#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad087#supplementary-data
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Figure 4: Data-processing speed (in read pairs per second) of epialleleR as compared to 3 other methods for methylation reporting (methylKit, 
Bismark, and DRAGEN Bio-IT Platform). Read count (in number of pairs) is given at x-axis; light gray boxes outline data obtained by targeted 
amplicon-based, genome-wide ca ptur e-based, or whole-genome bisulfite sequencing. 
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fr a gments, r epr esenting pr omoter r egions of 5 established tu- 
mor suppr essor genes, wer e amplified using a custom set of 
primers (GRCh38 assembly coordinates of assayed regions: MLH1 ,
c hr3:36993123–36993500; CDKN2A , c hr9:21974554–21974921; 
MGMT , c hr10:129467118–129467477; CDH1 , c hr16:68737102–
68737469; BRCA1 , chr17:43125171–43125550), indexed, and 

sequenced similarly to as previously described [ 12 ] (GSE201688).
T he resulting a verage co verage was 5,000 × to 50,000 × per 
amplicon. 

Bioinformatic and statistical analyses
Massiv e par allel sequencing (NGS) r eads wer e ma pped/aligned to 
the GRCh38 human r efer ence genome, and the methylation was 
called using Illumina DRAGEN Bio-IT Platform (v3.9.5) with the 
following par ameters: –methylation-ma pping-implementation 

single-pass , –enable-methylation-calling true , –methylation- 
gener ate-cytosine-r eport false, –methylation-pr otocol nondir ec- 
tional, and –enable-sort false, unless stated otherwise. R software 
environment for statistical computing (v4.1.2) was used for all 
downstream statistical analyses. 

The frequency of h ypermeth ylated alleles across assayed 

regions in n = 88 male WBC DNA samples was estimated 

using e pialleleR::generateAmpliconRe port with the follow- 
ing par ameters: min.ma pq = 30, min.baseq = 20, nthr eads = 4,
thr eshold.r eads = TRUE, r eport.context = “CG , ” and bed.file point- 
ing to a location of a BED (browser extensible data) file with 

genomic regions amplified (see amplicon coordinates above). Two 
ample subgroups ( n = 8 and n = 10) were selected for sensitivity
nalyses based on the frequencies of h ypermeth ylated alleles as
xplained below. 

ytosine reporting accuracy comparison
our sets of paired-end sequencing reads (151 bp, 50 million read
airs each set) were simulated using Sherman Bisulfite FastQ Read
imulator (RRID:SCR_001294) [ 48 ] with the following options: –
ength 151, –number_of_seqs 50000000, –pair ed_end, –minfr a g 70,
maxfr a g 400, –CG_conv ersion 0, –CH_conv ersion 99.5, and v ary-
ng sequencing error rate (–error_rate parameter) of 0%, 0.1%,
.3%, or 0.6%. The quality scores of these simulated sequences
ollo w ed an exponential decay curv e, whic h r esulted in a higher
umber of base errors to w ar d the 3 ′ -end of the read (as seen

n real data). Human chromosome 19 sequence (GRCh38.p13 
C_000019.10, 58,617,616 bp, 1,105,620 forw ar d strand CpGs) 
as used as a r efer ence genome for read simulation and map-
ing/alignment due to its highest CpG content across all human
 hr omosomes [ 49 ] and in order to maintain optimal balance of
nalysis speed and base cov er a ge. Eac h set of reads was then du-
licated, and all read1 cytosines (C) and read2 guanines (G) in any
ontext in the duplicate sets were replaced with thymines (T) and
denines (A), r espectiv el y. T hen, duplicate sets (i.e ., unmethylated
 eads) wer e mer ged with original sets (i.e., methylated r eads), r e-
ulting in 4 sets of reads 100 million pairs each, with the cytosine
onv ersion r ate of exactl y 50% and about 99.75% in CG and non-
G contexts, r espectiv el y. 
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The mapping and alignment of simulated reads were per-
ormed using Illumina DRAGEN Bio-IT Platform v3.9.5 with the
ollowing modification in par ameters: –methylation-pr otocol di-
 ectional. Methylation r eporting b y all tools w as done as described
elow (reporting parameters in Speed comparison section). 

ensitivity comparison on admixed samples
n order to sim ulate v ariable methylation le v els while maintaining
iological heterogeneity of the samples, we selected 10 male DNA
GS samples with the lo w est frequenc y of h ypermeth ylated alle-

es across all assayed regions, then admixed varying fractions of
 eads fr om 2 r andom samples and additionall y “spiked” a certain
umber of fully methylated reads from the methylated DNA con-
rol sample . T his resulted in 150 samples containing 0%, 0.01%,
.03%, 0.1%, 0.3%, or 1% of methylated reads per sample (25 sam-
les per e v ery category). 

Read mapping, alignment, methylation calling, and generation
f genome-wide cytosine reports were performed using the Illu-
ina DRAGEN Bio-IT Platform as described abo ve . VEF calling
as performed using e pialleleR::generateCytosineRe port with the

ollowing par ameters: min.ma pq = 0, min.baseq = 0, nthreads = 4,
hr eshold.r eads = TRUE, and r eport.context = “CG . ”

Methylation patterns and per-read beta values for all sam-
les wer e extr acted using epialleleR::extr actP atterns with the fol-

owing par ameters: min.ma pq = 30, min.baseq = 20, nthreads = 4,
lip.patterns = FALSE, and bed.file pointing to a location of the BED
le with genomic regions amplified (see amplicon coordinates
bove). 

Barnes–Hut t-SNE analysis was performed using R pac ka ge Rt-
ne v0.15 [ 50 ] and matrices of beta or VEF values for all genomic
ositions of CpGs with the cov er a ge of at least 1,000 × and avail-
ble values for all analyzed samples (total number of CpGs, n =
38; MLH1 , n = 20; CDKN2A , n = 35; MGMT , n = 33; CDH1 , n = 32;
RCA1 , n = 18). 

ensitivity comparison to methylation array data
ight additional WBC DNA NGS samples fr om anon ymized
ales carrying h ypermeth ylated alleles in at least one of

he assayed regions were selected, and VEF calling was per-
ormed using e pialleleR::generateCytosineRe port with the fol-
owing par ameters: min.ma pq = 30, min.baseq = 20, nthreads = 4,
hr eshold.r eads = TRUE, and r eport.context = “CG . ” The same DNA
amples were also bisulfite converted using the Zymo EZ DNA
ethylation Kit (Zymo Research, cat. D5001), and genome-wide
ethylation le v els wer e assessed using Illumina HumanMethy-

ationEPIC BeadChip arrays according to the manufacturer’s in-
tructions. Resulting IDAT files were processed (normalized and
nnotated) with the minfi Bioconductor pac ka ge [ 37 ] using the
r epr ocessQuantile method with outlier thresholding enabled

GSE201689). For dir ect comparison, onl y the CpGs that ar e cov-
red in all samples by both BeadChip arrays ( P value of 0) and tar-
eted sequencing (minimum sequencing cov er a ge of 5,000 ×) were
etained ( MLH1 , n = 10; CDKN2A , n = 2; MGMT , n = 4; CDH1 , n = 7;
RCA1 , n = 14). Pairwise sample comparison was performed using
 t -test with Holm adjustment for multiple comparisons. 

The sets of CpGs that are differentially methylated between cell
lood types were reported previously: DNA methylation profiles
or 6 blood cell types from 6 males [ 41 , 51 ] and DNA methyla-
ion profiles for 7 blood cell types from cord blood of 104 new-
orns [ 42 , 52 ]. CpG-le v el differ ential methylation anal ysis P v alues
ere Holm-adjusted, and the ones that remained significant (ad-

usted P ≤ 0.05; n = 73,629 of total 456,655 for male blood data set;
 = 221,246 of total 429,794 for newborn cord blood data set) were
 hec ked for ov erla p with the set of CpGs analyzed in this study
 n = 35 CpGs of total n = 37 wer e pr esent in eac h of male/ne wborn
atasets). 

ifferential methylation analysis
MRs were called using R package DMRcate (v2.12.0) with the fol-

owing parameters: lambda = 1000, min.cpgs = 2, and pcutoff = “fdr”
 38 ]. AMRs were called using R package ramr (v1.6.0) with
he following par ameters: r amr.method = “beta,” min.cpgs = 2,and

erge.window = 500 [ 21 ]. To enable maximum likelihood estima-
ion of beta distribution parameters, all zeros were replaced with

inimum double values (2.26e-308). 
For inter gr oup DMR discov ery in admixed samples, pairwise

omparison of sample groups defined by the number of admixed
eads was performed ( n = 25 samples in each group) using the
efault le v el of the FDR cutoff (equals 0.05). For DMR discov ery

n real samples, as DMRcate methods require 2 classes/categories
or comparison, e v ery r eal sample fr om the test dataset was tested
gainst all the other samples using the default FDR cutoff value. 

To assess DMR (or AMR) recall metrics in admixed samples,
 v ery sample with admixed reads was compared using DMRcate
or ramr) to the group of 25 samples without admixed reads at a
 arying le v el of FDR (or P value) cutoff of 0.05, 0.01, or 0.001. As
he admixed reads covered all 5 assayed regions, only the total
umber of real positive (P) regions (equals 5 for each compari-
on), the number of true-positive (TP) regions, and the number of
alse-negativ e (FN) r egions (FN = P – TP) were known, while the
umbers of true-negative (TN) or false-positive (FP) regions were
ndefined. Ther efor e, r ecall, or true positive rate (TPR = TP/P), was
hosen as a sensitivity metric. 

ithin-sample heterogeneity
stimation of WSH was performed on 8 samples used in the sen-
itivity comparison between array- and NGS-based methylation
r ofiling. Differ ence in entropy was e v aluated using methclone

v1) [ 40 ] with a distance cutoff of 500 and minim um r ead cov er a ge
f 1,000 for e v ery pair of samples. As methclone outputs values for
 ultiple genomic r egions, the minim um v alue (r epr esenting ab-

olute largest difference) was selected and used further. Entropy,
pipol ymor phism, FDRP, and PDR wer e e v aluated using R pac k-
ge WSH (v0.1.6) [ 39 ] with the following options: mapq.filter = 30,
indow.size = 500, and bam.file pointing to a location of the BAM
le. Due to exponential complexity of the FDRP calculation, option
ax.reads was set to 100 for FDRP calculation and to 1e + 06 oth-

rwise. P airwise sample scor e comparison was performed using a
 -test with Holm adjustment for multiple comparisons. 

rocessing speed comparison
omparison of processing speed was performed on 29 BAM
les containing paired-end alignments and methylation calls
eriv ed fr om bisulfite sequencing of human WBC DNA sam-
les pr epar ed using the following assays: (A) amplicon-based
equencing of promoter regions of the BRCA1 gene ( n = 10
les, 0.12–0.33 million read pairs per file, av er a ge cov er a ge of
20,000 ×) [ 12 ], (B) genome-wide ca ptur e-based bisulfite sequenc-

ng of pr omoter r egions of 283 tumor suppressor genes ( n =
0 files, 1.11–2.31 million read pairs per file, av er a ge cov er a ge
f ∼60 ×, and n = 3 files, 51.4–73.4 million read pairs per file,
v er a ge cov er a ge of ∼1,000 ×) [ 53 , 54 ]. and (C) whole-genome
isulfite sequencing ( n = 6 files, 497–723 million read pairs per
le , a v er a ge cov er a ge of ∼60 ×; epialleleR and Illumina DRAGEN
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Bio-IT Platform only). The 2 former data sets (A and B) were gen- 
erated in house and described pr e viousl y, while the latter data 
(C) wer e obtained fr om NCBI Sequence Read Arc hiv e (GEO/SRA 

samples GSM3683953/SRX6640720, GSM3683958/SRX6640725, 
GSM3683965/SRX6640732, GSM3683951/SRX6640718, 
GSM3683955/SRX6640722, and GSM3683962/SRX6640729) and 

r eported else wher e [ 55 ]. 
Processing times to produce conventional cytosine reports were 

recorded as following: 
Bismark CX methylation reports were created using Bismark 

v0.22.3 (RRID:SCR_005604) [ 14 ] with the following parame- 
ters: command bismark_methylation_extr actor, –pair ed-end, 
–no_ov erla p, –compr ehensiv e, –gzip, –mbias_off –par allel 8,
–cytosine_report, –CX, and –buffer_size 64G. Genome-wide cy- 
tosine methylation report but not bedGr a ph r eport was c hosen 

in order to obtain results of highest quality (not affected by se- 
quencing err ors). As par allel pr ocessing was r equested, Bismark 
used up to 24 cores for some of its subtasks. 

meth ylKit CX meth ylation r eports wer e cr eated 

using R/Bioconductor pac ka ge methylKit v1.20.0 
(RRID:SCR_005177) [ 35 ] with the following parameters: func- 
tion methylKit::processBismarkAln, minqual = 0, mincov = 0, 
sa ve .context = c(“CpG , ”“CHG , ”“CHH”), nolap = TRUE, and location 

pointing to the location of a BAM file. P ar allel pr ocessing is 
curr entl y not available for methylKit::processBismarkAln. 

epialleleR CX methylation reports wer e cr eated using 
R/Bioconductor pac ka ge epialleleR v1.3.5 with the follow- 
ing parameters: function e pialleleR::generateCytosineRe port, 
min.ma pq = 0, min.baseq = 0, nthr eads = 4 (number of HT- 
Slib decompr ession thr eads), thr eshold.r eads = FALSE,
report.context = “CX,” and bam pointing to the location of a 
BAM file. epialleleR methods curr entl y run in a single-thr eaded 

mode only but can benefit from additional BAM decompression 

thr eads pr ovided by HTSlib. 
Illumina DRAGEN is a har dw are solution that relies on the 

presence of the FPGA accelerator card, which precludes DRA- 
GEN software execution on other platforms. At the same time,
outdated software development tools available at DRAGEN (GCC 

v4.8.5, R v3.6.0) impede installation of third-party software and 

R/Bioconductor pac ka ges and may potentiall y affect their perfor- 
mance . T her efor e, testing of methylation reporting tools was car- 
ried out in 2 different settings. 

Bismark, methylKit, and epialleleR were tested on the worksta- 
tion equipped with an AMD EPYC 7742 64-core processor, 512 GB 

of memory, and the Red Hat Enterprise Linux Server release 7.9 
(De v eloper Toolset 6, GCC v6.3.1), with BAM files r etrie v ed fr om 

high-speed (10 Gbps) network-accessible stor a ge. 
DRAGEN CX methylation reports were created using Illu- 

mina DRAGEN Bio-IT Platform v3.9.5 (Intel Xeon Gold 6126 
48-cor e pr ocessor, 256 GB of memory, and CentOS Linux release 
7.5.1804) with the following par ameters: –methylation-gener ate- 
cytosine-reports = true , –enable-sort = false , –enable-duplicate- 
marking = false, –methylation-r eport-onl y = true, and –bam-input 
pointing to the location of a BAM file. Default number of threads 
(up to 24) was used for data processing using DRAGEN; BAM files 
were accessed from a local, high-speed NVMe solid state disk. 

For Bismark and DRAGEN, elapsed time measurements were 
stabl y r epr oducible, and thus pr ocessing time was r ecorded 

only once for each file. For methylKit and epialleleR, the tests 
were run 5 times in sequential random order by means of 
R pac ka ge micr obenc hmark v1.4.9, and the av er a ge time was 
used in comparison to mitigate variability in processing time 
measurements. 
vailability of Source Code and
equirements
he epialleleR R/Bioconductor pac ka ge (biotools:epialleleR,
RID:SCR_023913) is fr eel y av ailable at https://bioconductor.or g/ 
ac ka ges/ epialleleR/ and https:// github.com/ BBCG/ epialleleR .
he R scripts used in this manuscript are freely available at
atav erseNO ( https://doi.or g/10.18710/2BQTJP ). 
roject name: epialleleR 

r oject homepa ge: https:// github.com/ BBCG/ epialleleR 

ioconductor: https:// bioconductor.org/ packages/ epialleleR/ 
perating system: Linux, macOS, Windows 
r ogr amming langua ge: R, C, C ++ 

ther r equir ements: C ++ 17, GNU make 
icense: Artistic-2.0 
iotools: epialleleR 

RID: SCR_023913 
ersion 1.3.5 of the epialleleR R/Bioconductor pac ka ge was used
 32 ]. A pr e vious v ersion of this article was de posited in bioRxi v
doi: 10.1101/2022.06.30.498213) and the epialleleR has been ap- 
lied in [ 12 , 23 ] with data available at NCBI Gene Expression Om-
ibus under accession number GSE243966. 

dditional Files
upplementary Fig. S1. Scaled density of per-read beta values 
rom all admixed samples combined, split by the level of admixed
eads and genomic region of interest. The y-axis is scaled to 1 and
imited to 0.015. The h ypermeth ylated ( β ≥ 0.5) r eads ar e incr eas-
ngl y a ppar ent on the right sides of plots in accordance with an
ncrease in admixed methylated reads. 
upplementary F ig. S2. Meth ylation patterns from all admixed
amples combined, split by the le v el of admixed reads and ge-
omic region of interest. Lines depict patterns, and open and
losed circles depict unmethylated and methylated cytosines, re- 
pectiv el y. Numbers on the right of e v ery pattern indicate how
an y times eac h pattern occurs for e v ery giv en gene/sample set.
ue to very high number of methylation pattern types, only the
ost abundant pattern (if any) is shown for each range of average

eta value: [0,0.2), [0.2,0.4), [0.4,0.6), [0.6,0.8), [0.8,1]. The hyperme- 
hylated ( β ≥ 0.5) patterns are increasingly apparent at the top
f plots in accordance with an increase in admixed methylated
eads. 
upplementary Fig. S3. Scaled density of per-read beta values 
rom n = 8 real samples used to compare sensitivity of methy-
ation profiling by NGS and array, split by sample and genomic
 egion of inter est. The y-axis is scaled to 1 and limited to 0.015.
he population of h ypermeth ylated ( β ≥ 0.5) reads that are ap-
arent in the Fig. 3 A in the main text are pointed to by black
rrows. 
upplementary F ig. S4. Meth ylation patterns from n = 8 real
amples used to compare sensitivity of methylation profiling by 
GS and array, split by sample and genomic region of interest.
ines depict patterns, and open and closed circles depict un-
ethylated and methylated cytosines, r espectiv el y. Numbers on

he right of e v ery pattern indicate how many times each pattern
ccurs for e v ery giv en gene/sample set. Due to very high num-
er of methylation pattern types, only the most abundant pat-
ern (if any) is shown for each range of average beta value: [0,0.2),
0.2,0.4), [0.4,0.6), [0.6,0.8), [0.8,1]. The h ypermeth ylated ( β ≥ 0.5)
atterns r epr esent h ypermeth ylated epialleles that are present in
ertain samples/regions, as shown in Fig. 3 A in the main text and
upplementary Fig. S3 . 

https://bioconductor.org/packages/epialleleR/
https://github.com/BBCG/epialleleR
https://doi.org/10.18710/2BQTJP
https://github.com/BBCG/epialleleR
https://bioconductor.org/packages/epialleleR/
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad087#supplementary-data
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upplementary Fig. S5. (A) Distribution of per-read beta values for
GS r eads cov ering CpGs that are common for NGS and BeadChip
rray . For clarity , only the reads with average beta of at least 0.5
i.e., r epr esenting h ypermeth ylated epialleles) are included. Sin-
le observations are shown as dots; number of observations is
iv en abov e. (B) Lo w er panel: boxplots of NGS-derived VEF val-
es for individual CpGs; upper panel: significant aberr antl y or dif-

er entiall y methylated r egions identified by r amr or DMRcate, r e-
pectiv el y, based on VEF values. (C) Lo w er panel: boxplots of NGS-
eriv ed beta v alues for individual CpGs; upper panel: significant
berr antl y or differ entiall y methylated r egions identified by r amr
r DMRcate, r espectiv el y, based on NGS-deriv ed beta v alues. (B, C)
he lo w er and upper hinges of boxes correspond to the first (Q1)
nd third (Q3) quartiles; the bar in the middle corresponds to the
edian value; the upper and lo w er whisker extend to Q3 + 1.5 ∗

QR and Q1 − 1.5 ∗ IQR, r espectiv el y, while the values outside this
ange (outliers) are plotted as dots. Zero values are not plotted.
he coloring is pr eserv ed for n = 8 samples used in Fig. 3 of the
ain text. The n = 10 samples used to create admixed samples

nd not included in Fig. 3 are plotted in light gray. 
upplementary Fig. S6. (A) Heatmap of minimum (equals abso-

ute lar gest) differ ence in combinatorial entr opy for all pairs of
amples, split by genomic region of inter est. (B) Heatma p of com-
inatorial entr opy, epipol ymor phism, fr action of discordant read
airs (FDRP), and proportion of discordant reads (PDR), split by
enomic region of interest. (C) Heatmap of P values for pairwise
omparison of samples using WSH scores, split by score and ge-
omic region of interest. ∗∗∗P < 0.001, ∗∗P < 0.01, ∗P < 0.05, blank
 ≥ 0.05. 
upplementary Table S1. Complete metrics of cytosine report-

ng across all 3 possible cytosine genomic contexts (CHH, CHG,
nd CpG), obtained using simulated chr19 reads with varying se-
uencing error rate by selected tools. “re ported,” n umber of cy-
osines present in the cytosine re ports; “valid context,” n umber
f cytosines for which genomic context was corr ectl y identified;
invalid context,” number of cytosines for which genomic context
as incorr ectl y identified; “not cov er ed,” number of cytosines not
resent in a cytosine report; “mean co verage ,” a verage co verage of
ll cytosines in this context; “mean” and “variance ,” a verage value
nd variance for beta values of all cytosines in this context; “is
.5,” number of cytosines with beta value of exactly 0.5 (ground
ruth for this dataset); “is not 0.5,” number cytosines with beta
alue not equal to 0.5. 

bbreviations
MR: aberr antl y methylated r egion; BAM: binary sequence align-
ent/ma p; BED: br o wser extensible data; CpG: c ytosine follo w ed

y a guanine; DMR: differ entiall y methylated r egion; FDR: false
iscov ery r ate; FDRP: fr action of discordant r ead pairs; IQR: in-
erquartile range; NGS: next-generation sequencing; PDR: propor-
ion of discordant reads; t-SNE: t-distributed stochastic neighbor
mbedding; VCF: variant call format; VEF: variant epiallele fre-
uency; WBC: white blood cell; WGBS: whole-genome bisulfite se-
uencing; WSH: within-sample heterogeneity. 
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