
Application of Wavenet to financial
times series prediction

Author: Endre Moen

Supervisor: Hans Karlsen

Master’s Thesis in statistics
Department of Mathematics

University of Bergen

February 15, 2024

2

Acknowledgements

I would like to express my gratitude to Hans Karlsen, my thesis advisor, for patiently
listening and good advice during this thesis. I would like to thank Kristine Lysnes for
helping me register for this 30 points master thesis 3 times, and for helping me process
an application for extension after a sick leave.

Additionally, I would like to acknowledge the use of ChatGPT, a language model
developed by OpenAI, which played a valuable role in assisting me with coding, gen-
erating and refining content during the course of this thesis.

Endre Moen
Bergen, 15/02/2024

ii Acknowledgements

Abstract

This thesis explores the application of the WaveNet model utilizing dilated causal con-
volutions, originally designed for text-to-speech synthesis on univariate time series.
Here it is adapted to predicting on multivariate financial time series focusing on 43
commodities consisting of currencies, bonds, indexes, soft commodities, metal, grains,
energy and live stock. The study trains, and evaluates the models on commodities from
Pinnacle data corp’s CLC database, with the loss function of mean squared error and
model performance is evaluated on a scorecard of metrics like accuracy, edge, noise,
and calibration ratio. The results reveal varying performance across commodities, with
heating oil demonstrating the highest edge of 0.005 and accuracy of 53% and rbob
gasoline having the second highest edge with 0.001 and accuracy of 52.2%. Outcomes
demonstrate that around half the models had a higher than 50% accuracy in predict-
ing the daily movement and about half, below. New insight into adapting WaveNet to
multivariate time-series prediction is found, and discussion highlights the potential of
hyper-parameter tuning and suggest further exploration of advanced models and alter-
native data-sets for enhanced predictions. The findings underscore further investigation
into deep learning in financial forecasting, with implications for trading strategies and
future model refinement, but does not contradicts the efficient market hypothesis. A
comparison is made on the results of one commodity, Sugar, to a GARCH(1,1) model.

Keywords: artificial intelligence, financial time series, time-series momentum,
WaveNet, dilated causal convolutions, predictive modeling, deep learning, hyperpa-
rameter tuning, efficient market hypothesis

iv Abstract

Contents

Acknowledgements i

Abstract iii

1 Introduction 1
1.1 . 1
1.2 Motivation . 1
1.3 Objective . 2
1.4 Time series fundamentals . 2
1.5 History is a filtration . 6

1.5.1 Convolutional neural network 7
1.5.2 The WaveNet architecture . 8
1.5.3 Receptive field . 9

1.6 Outliers . 10

2 Methods 11
2.1 Feature engineering . 11
2.2 Data cleaning and transformation . 13
2.3 Data windowing . 13
2.4 Building WaveNet for multivariate time series 15

2.4.1 Hyperparameter tuning . 17
2.5 Training and Time Series Cross Validation 17

2.5.1 Evaluating models . 17

3 Results 21
3.1 Scorecard results and analyses . 21

3.1.1 Regression plots . 21

4 Discussion 27
4.1 Loss function and prediction on the test set 27

4.1.1 Interpreting the scorecard . 27
4.1.2 Scorecard for Sugar (SB) . 30
4.1.3 Fitting an ARMA model to Sugar (SB) 31
4.1.4 Future work . 33
4.1.5 Conclusions . 34

Appendices . 38

vi CONTENTS

List of Figures

1.1 A 4x4 image with a 2x2 max pooling filter applied and a stride of 2.
Source: https://kusemanohar.info/2016/12/30/convolutional-networks/ . 7

1.2 Causal, dilated convonlutions with filter size of 2, 4 dilated layers, con-
nected in a causal way, and a depth of 5. Source: (Oord et al., 2016) . . 8

1.3 A detailed illustration of one hidden layer in WaveNet. It has 3 convo-
lutions, two activation functions and a residual connection. The final
output layer is not used in this project. Source: (Oord et al., 2016) . . . 9

2.1 Close price, Volume, and daily return with sigma (volatility2) of sugar
(SB) contracts plotted from the start of the time series. 14

2.2 WaveNet with 2 MLP layers and a linear output. 16
2.3 Train- validation- and test-set split . 18

3.1 The y-axis shows accuracy with standard deviation, and the x-axis
shows each model, sorted by edge in descending order. We see that
most models has accuracy no lager than 50% when we include only 1
x standard deviation. AN, ZG, ZH, and ZU are above, but not for 2 x
standard deviation. 22

3.2 The y-axis shows noise, and the x-axis shows each instrument sorted
by edge in descending order. Heating oil, ZH, and soybean meal, ZM,
has high noise. 22

3.3 The y-axis is edge, and the x-axis is accuracy. There is a correlation
between accuracy and edge. Most models are within the confidence
interval of the regression plot, with a cluster in the middle. Also here
heating oil, ZH, is an outlier. 23

3.4 The y-axis shows capture ratio, and the x-axis shows each instrument
sorted by edge in descending order. We see that LB has the highest
capture ratio as well as highest accuracy and edge 24

3.5 The y-axis shows capture ratio, and the x-axis shows accuracy. It is
similar to the noise-accuracy plot. 24

3.6 The y-axis shows prediction calibration, and the x-axis shows each in-
strument sorted by edge in descending order. We see that FB and US
has highest calibration ratio, but US has lowest edge and accuracy . . . 25

3.7 The y-axis is prediction calibration, and the x-axis is accuracy. We see
that the plot has negative regression line with the best model with low
prediction calibration . 25

viii LIST OF FIGURES

4.1 Training- and validation-loss on pretraining. From top left, Australian $
(AN), heating Oil (ZH), Nikkei index (NK), and T-notes, 5 years (FB). 28

4.2 Grokking: A double hump on the validation loss and it drops to lower
low after overfitting. Source: (Power et al., 2022) 28

4.3 First 100 predictions on the test set. Blue line is the true change in price
and red line is predicted change. 29

4.4 Auto-correlation and Partial auto-correlation function plotted for the
Next-Returns-Daily of Sugar (SB) on the test-set 32

Chapter 1

Introduction

1.1

1.2 Motivation

Artificial intelligence (AI) is increasingly improving the accuracy of time series predic-
tions in financial competitions like the M6 Financial Forecasting Competition. In the
autumn 2021, after completing the course in time-series (stat211), I participated in an-
other competition, Kaggle’s Optiver Realized Volatility Prediction. Optiver is a market
maker, and continuously quoting bid and ask prices, thereby providing liquidity to the
market. Implied volatility is a key input in options-pricing models like Black-Scholes
(Black and Scholes, 1973). Having a good estimate of realized volatility Optiver can
calibrate their pricing models more accurately. Increasing profit and reducing losses.
E.g higher implied volatility generally leads to higher option prices. This was the mo-
tivation for Optiver to create the competition. Together with another student we trained
3 machine learning models, a small multilayer perceptron (MLP) of only 5 layers, Tab-
Net, and Light Gradient boosting. With an ensemble of these models we managed to
get a top 2% result. This motivated me to define this master thesis.

ML is becoming more prevalent in the financial industry. Companies are using in-
sights gained from these competitions in their day-to-day business like Optiver. This
trend is further supported by the increasing computational power of modern graphical
processing units (GPUs), and new breakthroughs in machine learning, which again
is making these AI models increasingly more capable, and accessible. The initial
motivation for this project was to try and reproduce the results published in the arti-
cle (Lim et al., 2019) which investigated four models on a momentum trading strat-
egy. The models were Multi layer perceptron (MLP) (Werbos, 1982), Lasso regres-
sion (Tibshirani, 1996), Long-short term memory (LSTM) (Hochreiter and Schmid-
huber, 1997), and WaveNet (Oord et al., 2016), on 88 instruments on the Pinnacle
data corp’s CLC database (Continuously Linked Commodity Contracts) (Pinnacle Data
Corp. CLC Database). The work on WaveNet got very involved, and the implementa-
tion of WaveNet was not made available or described in the article. Therefore this thesis
is about WaveNet only. The findings include new insight on how to apply WaveNet to
multivariate time series, and encouraging results on the prediction on applied time se-
ries.

2 Introduction

1.3 Objective

In this thesis I will investigate how well the WaveNet model (Oord et al., 2016) can
predict financial time series. This is a pointless exercise according to the efficient mar-
ket hypothesis, which states in some form (weak, semi-weak or strong form) that prices
in an efficient market incorporate all available information, and shares some conceptual
similarities with the idea of a Martingale (Ville, 1939).

WaveNet is a relatively mature generative convolutional neural network (CNN) (Le-
Cun et al., 1989) for time series. The article was published by Google’s Deep Mind in
2016, for text-to-speech synthesis from raw audio wave-forms, using supervised learn-
ing. In this thesis it will be used to learn to predict the price change for a set of 43
instruments, with mean squared error (MSE) as the loss function, and evaluated on a
set of metrics like accuracy, edge and noise. The model will be evaluated on a score-
card of these metrics on each model. The instruments are commodities purchased from
Pinnacle data corp’s CLC database. The Continuously Linked Commodity Contracts
(CLC) database covers the 98 most popular commodities and includes the most active
contracts. This data set is prepared in order to back-test future prices for the most liq-
uid contracts. The CLC database then links them together. The contracts are linked
because the contracts has an expiry date. The instruments include commodities like
Australian dollar, British Punds, Coffe, Cotton, Platinum, and Crude oil, and the data
set contains prices at Open, High, Low, close, Open Interest, Total Volume, and Total
Open Interest as well as the Fed fund rate. The first instrument Live Hogs, started trad-
ing in 1970, and the last instrument included, Canadian 10yr Bond, started trading in
1994. The last trading date is 27.01.2023.

The list of 43 instruments, from the list of 98 instruments, was selected based on
having the least missing data, and being traded on the last trading date. They are shown
in Table 1.1.

Since the model use multivariate time series we define the random variables of any
time series in terms of data at time t as:

Xt = (Xt,1, . . . ,Xt,m)
and we define the random variables to predict, daily returns, in terms of data at time

t as:
Rt = (Rt,1, . . . ,Rt,m)
where m = 43 so that R−,1 =AN, R−,2 =BN and so on.

1.4 Time series fundamentals

Some fundamental time-series concepts are introduced to explain the pre-processing,
and the model architecture. The pre-processing steps are data cleaning and lagged
feature generation into exogenous time series.

Auto correlation: is the degree of correlation of the same variables between two
successive time intervals. It measures how the lagged version of the value of a variable
is related to the original version of it in a time series.

The covariance function:

γ(r,s) = E[(Xr −µ(r))(Xs −µ(s))] = Cov(Xr,Xs) (1.1)

1.4 Time series fundamentals 3

Symbol Market Name Symbol Market Name
AN AUSTRALIAN $$, composite CN CANADIAN $$, composite
BN BRITISH POUND, composite CT COTTON #2
CC COCOA DT EURO BOND (BUND)
DX US DOLLAR INDEX FB T-NOTE, 5yr composite
FN EURO, composite GI GOLDMAN SAKS C. I.
GS GILT, LONG BOND JN JAPANESE YEN, composite
JO ORANGE JUICE KC COFFEE
KW WHEAT, KC LB LUMBER
LX FTSE 100 INDEX MD S&P 400 (Mini electronic)
MW WHEAT, MINN NK NIKKEI INDEX
SB SUGAR #11 SN SWISS FRANC, composite
TY T-NOTE, 10yr composite US T-BONDS, composite
ZA PALLADIUM, electronic ZB RBOB, Electronic
ZC CORN, Electronic ZF FEEDER CATTLE, Electronic
ZG GOLD, Electronic ZH HEATING OIL, electronic
ZI SILVER, Electronic ZK COPPER, electronic
ZL SOYBEAN OIL, Electronic ZM SOYBEAN MEAL, Electronic
ZN NATURAL GAS, electronic ZO OATS, Electronic
ZP PLATINUM, electronic ZR ROUGH RICE, Electronic
ZS SOYBEANS, Electronic ZT LIVE CATTLE, Electronic
ZU CRUDE OIL, Electronic ZW WHEAT, Electronic
ZZ LEAN HOGS, Electronic

Table 1.1: 43 selected commodities to predict from the Pinnacle CLC database

4 Introduction

where {X(t)} is a time series.
The covariance function defined with only one parameter γ(h) = γ(Xt+h,Xt). The

stationary auto correlation function is the normalised covariance function:

ρ(h) =
γ(h)
γ(0)

(1.2)

assuming {X(t)} is stationary.
Stationarity: A time series is said to be stationary when its statistical properties,

such as mean, variance, and auto correlation, remains constant over time. Stationarity
is essential for many time series modeling techniques because it simplifies the analysis.
If a time series is not stationary, it may exhibit trends or seasonality, which can make
predictions challenging. Stationarity can often be achieved through differencing, which
removes a trend.

Autoregressive: Is a model where the value of a variable at the next time step is
a linear combination of its past values, and white noise which cannot be modelled.
E.g AR(2) which describes the next value as a linear combination of its past 2 values.
Autoregressive models are widely used for modeling and forecasting time series data,
such as stock prices, weather patterns, or any data that evolves over time.

Definition:
Xt = c+φ1Xt−1 +φ2Xt−2 + ...+φpXt−p + εt (1.3)

where

• Xt represents the value of the time series at time t

• c is a constant term.

• φ1,φ2, ...φp are the autoregressive coefficients, which determine the influence of
past values on the current value. These coefficients are estimated from the data.

• X1,X2, ...Xp are the past values of the time series, lagged by 1,2, ...p time units.
p is the models window size.

• εt is a random error term, which represents the noise or unpredictability in the
data at time t

The Simple Moving Average (SMA) of a time series xt with a window size of n is
defined as:

SMAt =
1
n

t

∑
i=t−n+1

Xi

and it identifies the time series trend.
The Exponential Moving Average (EMA) of a time series Xt with a smoothing

factor α and a window size of n is defined as:

EMAt(n) = α ·Xt +(1−α) ·EMAt−1(n−1)

where α is the smoothing factor between 0 and 1. EMA identifies trends, as well
as dynamic support or resistance. EMA(n) can also be expressed as an infinite sum

1.4 Time series fundamentals 5

EMAt(n) = ∑
n
i=0(1−α)iαXt−i. In this project a truncated smoothing factor of n = 60

is used.
The Moving Average Convergence Divergence, MACDt(8,24), is defined as the

difference between the 8-day Exponential Moving Average (EMAt(8)) and the 24-day
Exponential Moving Average (EMAt(24)):

MACDt(8,24) = EMAt(8)−EMAt(24)

and it can be used for identifying potential trend reversal or convergence. Here
EMAt(24) means that the window size is 24.

The conditional variance today, σ2
t , is another feature generated using EMA:

σ
2
t = λσ

2
t−1 +(1−λR2

t−1) (1.4)

where

• σ2
t is variance today

• σ2
t−1 is variance yesterday

• λ is the weight, the smoothing parameter

• µ2
t−1 squared return yesterday

which is a Garch(1, 1) where α0 = 1,β =−α = λ model.
Volatility is defined by σt . Using EMA we say that the volatility today is more

important than yesterday, and the volatility is biased toward more recent data. Volatility
can be useful for identifying current market risk.

Concept drift: occurs when the statistical properties of the data change, and the
model that was trained on historical data may become less accurate over time. Trend-
related concept drift implies a shift in the long-term pattern of the time series.

Trend: represents a long-term increase or decrease in the data points over time.
It reflects the underlying direction or pattern that is not due to seasonal or short-term
fluctuations.

Trend as a concept drift: Trends can be seen as a form of concept drift, because
they reflect a shift in the underlying patterns of the time series. Identifying and model-
ing trends is crucial in time series analysis, because they can significantly impact future
predictions. For example, if a model is trained during a period of upward trend, and
there is a subsequent shift to a downward trend, the model may make less accurate
predictions.

Time series split: When working with time series data, it’s essential to use a proper
time series split for model evaluation. Unlike random data splits, commonly used in
machine learning, time series data should be split sequentially to simulate real-world
forecasting scenarios. This means that earlier data is used for training, and later data
is used for testing, to avoid data leakage and ensure that the model is tested on unseen
future data. Overfitting can occur if this sequential splitting is not followed.

Inflation: Inflation is the rate at which the general level of prices for goods and
services rises, leading to a decrease in the purchasing power of a currency. Inflation is
typically measured using indices like the Consumer Price Index (CPI) or Producer Price

6 Introduction

Index (PPI). Inflation rates can vary significantly from year to year due to economic
factors, policy changes, and other factors.

Supervised learning: Supervised learning is a machine learning paradigm where
a model is trained on a labeled data set, meaning that it learns to make predictions
or classifications based on input-output pairs provided during training. In the context
of time series forecasting, supervised learning involves using historical data to predict
future values or events, treating the time series as a sequence prediction problem.

Causality and the arrow of time: When working with time series data, it’s im-
portant not to violate causality, which means not assuming that past events are caused
by future events. The arrow of time signifies that causality flows from the past to the
future. Models and analyses should respect this principle to avoid making unrealistic
assumptions or predictions.

Aggregating for long-term predictions: Time series models often perform better
when predicting short time periods rather than long ones. Aggregating data, such as
taking monthly averages, can help capture long-term patterns more effectively. This
reduces the noise associated with daily data and focuses on the broader trends, making
long-term predictions more accurate and stable.

1.5 History is a filtration

A filtration is a sequence of sigma-algebras that represent the information available at
different points in time within a stochastic process, {Xt , t ∈ T}. In other words, it’s a
way to formalize the concept of how information becomes available over time.

The history is the collection of all past observations or data points in the time series
up to a specific point in time. It represents the information available at that particular
moment. As time progresses, a model has access to more and more information, and
this information is represented by the sigma-algebras in the filtration.

If Ht represents the history of observations up to time t, and Ft represents the sigma-
algebra of information available at time t, then filtration means that Ht is a sub-sigma-
algebra of Ft , or more precisely, Ht ⊆ Ft . In other words, the history contains all the
information available up to that point in time.

This concept is important in understanding how information flows and accumulates
in time series data, and is often used in the context of stochastic processes and math-
ematical modeling to describe how past observations affect future predictions and the
evolution of the system. It’s a fundamental idea in time series analysis, particularly in
the field of stochastic calculus and mathematical finance, where it’s used to model and
analyze financial time series data.

If the stochastic process is a fair game then it is a martingale (Ville, 1939) and the
long term expected return of the fortune of the gambler is constant. This is what is
referred to as the efficient market hypothesis (Bachelier, 1900).

A stochastic process {Xt ,Ft , t ∈ T} is a martingale if:

(i) The family of sigma-algebras {Ft , t ∈ T} is a filtration.

(ii) The process Xt , t ∈ T is adapted to the filtration {Ft}. Xt is Ft-measureable.

(iii) For each t ∈ T , Xt is integrable, i.e., E|Xt |< ∞.

1.5 History is a filtration 7

(iv) For each s < t ∈ T , the Martingale property holds: Xs = E[Xt |Fs]

1.5.1 Convolutional neural network
CNNs are most commonly used to classify images, and had its breakthrough with the
introduction of AlexNet by Krizhevsky et al. (2012) which pushed the state-of-the-art
performance by significantly reducing the top-5 error rate on the ImageNet benchmark
(Deng et al., 2009). However, CNNs can equally well be used to do regression on
images Moen et al. (2018, 2021, 2023), or classify and regress on 1D datasets like
financial time series or speech.

Convolutional filters, also called kernels, are designed to detect specific patterns
or features in the input data, and may be the input to the first layer like an image or
in this case a time series. The output becomes the input to the first hidden layer, and
the output of that layer becomes the input to the next layer and so on. The output of a
convolutional layer are the result of applying learnable filters (or kernels), having small
widths and heights and the same depth as that of the input volume. When applying
multiple filters the depth increases. With images the first layer typically has depth
three, from the colors red, green and blue. Applying a convolutional filter of size 2 x 2
on a 4 x 4 input matrix is illustrated in Figure 1.1.

Figure 1.1: A 4x4 image with a 2x2 max pooling filter applied and a stride of 2. Source: https://kuse-
manohar.info/2016/12/30/convolutional-networks/

A stride describes how much a filter is sliding over the input data during the
forward-propagation to produce an output to the next layer.

Padding is done to preserve the spatial dimensions of the input layer before ap-
plying the filter. Padding involves adding extra pixels around the border of the input
feature map before convolution, if it is an image, or before and after a sequence if it
is a time series. Valid padding reduces the dimension of the feature map and same
padding preserves the spatial dimensions of the feature maps.

8 Introduction

1.5.2 The WaveNet architecture
The WaveNet architecture, introduced by Oord et al. (2016), is designed for genera-
tive tasks, such as generating realistic audio waveforms from text. It’s a convolutional
neural network used to predict sequential data. CNNs are popular for classification and
regression on images, due to its spatial structure and hierarchical patterns, which re-
duces the number of parameters in the model by having translational invariance, which
means it can recognize patterns regardless of position in the image. WaveNet uses
1-dimensional convolutions as opposed to 2-dimensional convolutions used on images.

CNNs also have a hierarchical architecture with multiple convolutional layers. Each
layer captures increasingly complex and abstract features. WaveNet uses a particular
hierarchical architecture called dilated, causal-convolution. To model long term rela-
tionships the input layers are connected with dilated causal convolutions, see Figure
1.2. Dilated convolutions is a convolution where the filter or kernel is applied over
an area larger than its length by skipping input values with a certain step. The length
skipped is described by the dilation rate. This increases the receptive field of the model,
and allows the receptive field of the network to grow exponentially with the number of
dilated layers.

The causal convolution describes that there is no information processed from the
future into predicting the past. The causal convolution means that the filter applied on
x1,x2 can only be applied to predicting y3 and greater.

Figure 1.2: Causal, dilated convonlutions with filter size of 2, 4 dilated layers, connected in a causal
way, and a depth of 5. Source: (Oord et al., 2016)

Each node in a layer is connected with a residual block to the next layer. The
residual block takes the previous layer’s output as its input. An output is generated
by applying a convolution, and then applying two activation functions on the output,
sigmoid(x) and tanh(x). The final activation is given by multiplying the two. A new
convolution with kernel size of 1, same padding of 1, and filters are applied to the
output. Finally a residual connection is made for the layer. This is normal for deep
neural networks and is a regularization technique. This is done by adding the input and
output as the new output. If the layer learns the weights of 0 then that is the same as
a skip connection since 0 is the identity element on addition. See Figure 1.3 for an
illustration of the composition of each node.

1.5 History is a filtration 9

Figure 1.3: A detailed illustration of one hidden layer in WaveNet. It has 3 convolutions, two activation
functions and a residual connection. The final output layer is not used in this project. Source: (Oord
et al., 2016)

CNNs benefits from being able to be accelerated on a GPU. In Oord et al. (2016)
the model was trained on a large set of high frequency speech in real-time. Several
preprocessing steps were applied for this use case. In this project there is neither a
requirement for high processing speed as one time steps consists of a days trading, nor
are there compression or sampling preprocessing steps needed to aggregate the data in
real time.

1.5.3 Receptive field
In a WaveNet-like architecture, the sequence length or receptive field required to con-
volve over all dilations depends on the maximum dilation rate used in the network. The
receptive field size increases exponentially with the depth of the network. To calculate
the required receptive field, we must consider the maximum dilation rate in the model.

WaveNet typically uses dilation rates that are powers of 2, because the filter width
is 2 (e.g., 1, 2, 4, 8, etc.). In a network with 10 dilation and input layers, the dilation
rate of each layer ranges from 1 to 512 (20 to 29). The required input data sequence
length needed to saturate the receptive field of the model is then 512.

The formula to calculate the required total receptive field (RFtotal) of the entire
network with a depth of D:

RFtotal = 2D−1 (1.5)

assuming a filter width of 2 and a stride of 1. This number is required when preparing
the data into windows.

10 Introduction

1.6 Outliers

In statistical analyses, outliers may exert an undue influence on the results, making
the results unreliable. Financial data are notoriously subject to outliers. Commonly,
empirical asset pricing researchers usually take an ad hoc approach when dealing with
outliers.

One such technique is winsorization. It is performed by setting the values of a
variable Xn with n observations, that are in the top h percent of all values of X to the
(100h)th percentile of X . Similarly, values of X in the bottom l percent of X values are
set to the l-th percentile of X .

Winsorization of outliers was not performed in the final training of the models, but
has been experimented with using the 99-percentile and 1-percentile clipping.

The data transformation can be represented as:

X ′
t = min(max(Xt ,q0.01),q0.99) (1.6)

where q : [0,1] → R is the quantile function that maps its input p to a threshold
value x so that the probability of X being less or equal to x is p.

Chapter 2

Methods

2.1 Feature engineering

Creating information rich features from the raw time series data was the first step taken
in creating a model to predict the movement of the instrument prices. Lag features,
moving averages, technical indicators and other transformations were created. The
features derived were from the Github repository Lamberti (2020), and implemented
parts of the article Lim et al. (2019). The raw data for each instrument contained seven
time series. These were:

• Date

• Open - first trade of the day

• High - highest price during the day

• Low - lowest price during the day

• Close - Settle price established by the exchange

• Volume - total contract volume

• Open Interest - contract open interest. Total number of contracts held by market
participants

The Federal fund rates were provided in another file:

• ShortRateDaily - daily federal funds rate

• ShortRateAnnual - annual federal funds rate

Lagged features were generated:

• ReturnsDaily - Percentage change of Close prices, Rt

• NextReturnsDaily - Shifted back 1 day of ReturnsDaily. This is the time series
to predict! It holds the next days return

• Sigma - Standard deviation of EMAt(60) of daily returns

12 Methods

• NormReturnsDaily - Daily returns normalized by Sigma

• NormReturnsMonthly - Montly returns normalized by Sigma

• NormReturnsQuarterly - Quarterly returns normalized by Sigma

• NormReturnsSemiannually - Semi-annual returns normalized by Sigma

• NormReturnsAnnually - Annual returns normalized by Sigma

• MACDt(8,24) - MACD of close price with trend estimate of short timescales 8,
EMAt(8), and long time-scale 24, EMAt(24)

• MACDt(16,48) - MACD of close price with short timescales 16 and long time-
scale 48

• MACDt(32,96) - MACD of close price with short timescales 32 and long time-
scale 96

• Binary_MACDt(8,24) - True if short time scale is larger, EMAt(8) > EMAt(24)

• Binary_MACDt(16,48) - True if EMAt(16) > EMAt(48)

• Binary_MACDt(32,96) - True if EMAt(32) > EMAt(96)

• SigmaNorm - Log of Sigma divided by the mean of EMAt(181) of Sigma.

• ReturnsWeekly - calculates the rolling 5 day return, by adding 1 to the past 5
days return, taking the product and subtracting 1.

• ExcessReturnsDaily - The difference between daily returns and short rate daily

A set of 25 time series was recorded for each instrument, with 24 of these time
series serving as features for prediction. The specific time series targeted for prediction
was NextReturnsDaily which is the 9th feature in the code. We have defined it as Rt
but we can also define it as Xt,i,9 as the 9th feature, which is the return of the i’th asset
at time t

The list of features were selected based on the implementation of (Lim et al., 2019)
with source available at https://github.com/maxlamberti/time-series-momentum.

Formalizing the objective, we consider the random variable Xt,i, j where i= 1, . . . ,m,
in this case m = 43, the number of instruments. j = 1, . . . ,k, and in this case, K = 25
time series pr instrument. The goal is to predict Xt+1,i,9 such that

X̂t+1,i,9 = E

(
Xt+1,i,9 |

m∨
i=1

Fi
t

)
for i = 1, . . . ,m.

where F is the filtration, and {Ft , t ∈ T} is a discrete time sub-sigma-algebras from the
sigma-algebra of continuous time.

2.2 Data cleaning and transformation 13

2.2 Data cleaning and transformation

Financial time series are intermittent and lumpy with missing data on holidays, week-
ends, special market closures, trading halts, regulatory actions, technical issues or other
events that may stop one or more instruments from trading.

The dates with missing data has been forward filled:

data[asset].ffill(inplace=True)

In Figure 2.1 shows graphs of close price, volume, sigma squared (the variance or
volatility squared) and daily price change of close price for commodity sugar (SB) after
data cleaning.

Prior to creating lagged features, the input features (the first 7 features) have been
transformed. This has been done using min-max normalization to set the values to
between 0 and 1.

scaler = MinMaxScaler()
scaled = scaler

.fit_transform(
df[[

'Open', 'High', 'Low', 'close', 'Volume', 'Open_Interest'
]]
.values

)

MinMaxScalar transforms the data with:

X_range = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))

where min and max is given by the feature range of each series. MinMaxScalar is
an alternative to zero mean, unit variance scaling. MinMaxScaling is more sensitive
to outliers but preserves the distribution and the values are more intuitive. They are
simply scaled down.

2.3 Data windowing

To train the model, the data was transformed from a matrix of multiple time series to
a 3 dimensional tensor in the format of (batch size, window length, feature length),
where batch size is the dimension used for one training step of the model (forward- and
backwards-propagation). The window length is the number of time steps the model sees
to base its prediction on, and the feature length is the number of time series. Initially
WaveNet was developed for speech, which uses a univariate time series, and it predicts
multiple time steps. While this project predicts one time step from a multivariate time
series. Note: After the first hidden layer the dimension changes to (batch size, window
length, number of filters), and it does no longer make sense to talk about multiple
time series but output from applying multiple filters. The model is time independent
of a batch of steps as the weights are equally updated by the error residuals. While,

14 Methods

Figure 2.1: Close price, Volume, and daily return with sigma (volatility2) of sugar (SB) contracts plotted
from the start of the time series.

2.4 Building WaveNet for multivariate time series 15

the order the batches, and the model is trained, as the weights depend on the order of
updates.

A horizon is the number of time steps into the future we want to predict, and a win-
dow size is the number of time steps we’re going to use to predict the horizon. The win-
dow size corresponds to the order-p of a autoregressive model. The window size must
be calculated from the depth of the WaveNet, and is given by f ilter −widthnumLayers

which in this case is 28 = 256. Since we’re predicting 1 time step, the horizon is 1.
There are two approaches to preparing data to be forecast by neural networks. A slid-
ing window or an expanding window. A sliding window uses a fixed width window
and predicts the horizon outside the window. The expanding window uses a larger and
larger window length of training data to predict the horizon.

A fixed window size was chosen because the receptive field of a WaveNet model is
defined by the depth of the WaveNet given by the number of hidden layers. Therefore it
will not increase the available information if the window size increase past the networks
receptive field, also having a window smaller than the receptive field means the model
could be made smaller.

Data windowing is done with:

def create_window(df1):
window_size = 255
shift = 1
num_windows = (df1.shape[0] - window_size) // shift + 1
result = np.empty((num_windows, window_size, df1.shape[1]))
for i in range(num_windows):

result[i] = df1[i * shift:i * shift + window_size]
return result

2.4 Building WaveNet for multivariate time series

The architecture can be altered in six different ways to make predictions. It can be
defined to predict one or multiple time steps from one time series, or from two or
more time series with exogenous time series. The architecture can also predict one or
multiple time steps for multiple time series. This architecture is build to predict one
time step from the input of multiple time series.

There are two changes made to the original WaveNet. For the model to allow for
multiple time series as input, the first layer does not have a residual connection. After
the first layer in the CNN, the number of time series becomes the number of filters de-
fined for the network. A skip connection, which is implemented as an add operation
of the input to a layer and the output of the layer, has different shape in the last di-
mension. This is because the number of features becomes the number of filters. When
the input layer has 25 time series, and the number of features is 256, there is a dimen-
sion mismatch. In the original use of WaveNet, the input was only of 1 time series.
Tensorflow (Abadi et al., 2016) handles this gracefully (via Numpy) by broadcasting
the 1 dimension to 256. However, when there are more dimensions, Tensorflow (using
Numpy) doesn’t know how to do this. The solution for allowing WaveNet to work for
multiple exogenous time series, is to not implement the residual connection on the first

16 Methods

layer. This resolves the problem because the input and output of the second layer is
then the same. For a deep network, say of depth 15, the difference between having only
14 residual connection vs 15 is minor, as the residual connections work to regularize,
allowing networks to be deeper (He et al., 2016).

The second change is to add 2 hidden layers with MLP because the output of the
last CNN layer has 10 000’s of parameters. To make a prediction from this will be
a too large data compression. To compress the information more gradually, the two
last layers are MLP’s with 256 and 64 fully connected nodes, and then a linear output
of 1 parameter (plus bias) predicts the next time step. See Figure 2.2 for the new
architecture.

Figure 2.2: WaveNet with 2 MLP layers and a linear output.

The model has a total of 9.798.017 parameters. There are also ca about 10 million
data points in the data set containing both training, validation and test set. The model
has 8 dilated causal convolutional layers and a filter width of 2. In Tensorflow the
causal convolution is implemented with padding = 'causal' . The receptive field
from 8 convolutions is 256. The batch size is 32 and there are a total of 25 time series,
of which 24 are exogenous. So the input of a training batch has dimension (32, 256,
25). The last time step is predicted. After the first convolution, this changes to (32, 256,
256) because there are a total of 256 filters learned. A model summary is available in
supplementary information4.1.5.

Convolutional filters with learnable weights are applied from left to right, from past
values to new values and across the input series, but the batches can be in random
order or in sequential order. It does not matter because the model is trained only on the
data window. Filter of width 2 was chosen (and height 1). A stride of 1 was chosen,
which means the filters are applied to overlapping regions of the series. No padding
was applied.

In the implementation the dilation rate is 128, and the required minimum input is
28 = 256. This means a sequence length of at least 256 data points are needed to
ensure that all dilation convolutions in the WaveNet model has access to past context

2.5 Training and Time Series Cross Validation 17

when making predictions. The defined window uses 256 data points. Full source code
and implementation of the model can be found in 4.1.5.

Source code for the model definition can be found in supplementary information.

2.4.1 Hyperparameter tuning
Little effort has been made to tuning hyperparameters, therefore it is likely possible to
improve the performance of the models by exploring the performance of different hyper
parameters. A standard learning rate is 0.001, and the range of percentage change in
the closing price of an instrument was in the order of 0.01. Therefore a learning rate
of 10−5 was chosen. Also a relatively large batch size of 96 was chosen because time
series data does not occupy as much memory on the GPU as images which typically
have a batch size of between 8 and 32 on a consumer-end GPU. Training was done for
100 epochs with a patience of 20 (validation loss does not decrease in 20 epochs). The
Adam gradient descent algorithm Kingma and Ba (2017) was used.

2.5 Training and Time Series Cross Validation

In general, we cannot randomly split time series models into train, validation and test
data sets. That will allow the model to learn data points from the future. Financial time
series splits are based on walk forward training, which is a way of back testing your
model. The model is trained on past values, and tested on newer data by dividing the
historical data into multiple chronological parts.

To saturate the parameters and because transfer learning is a thing also for deep
learning on time-series (Fawaz et al., 2018), the model was first trained on all the
training sets of all instruments, expect a small subset of instruments (CT and MW) due
to divergence of training. Then fine-tuned to the training set of the model to predict.

Each data set was split into training, validation and a test set. The last date for all
the 43 instruments was 26. January 2023, and the last 1430 to the last 715 time steps
were used for validation. The last 715 time steps were used for testing. For one of
the smallest time series, like the Nikkei Index (NK), this corresponds to 80% training,
10% validation and 10% test set. By selecting a fixed point in time for validation-
and test-sets, this guaranteed that no time series contained training data past any other.
This was necessary to prevent data leakages, since the model was trained on all the 43
time series, before being fine-tuned on the time series to predict. Figure 2.3 shows an
example of a train-, validate- and test-set split for COCOA.

The implementation was done using Tensorflow (Abadi et al., 2016) and Keras
(Chollet and others, 2018) software packages in Python. Computation was done us-
ing CUDA 11.7 and CuDNN with Nvidia (Nvidia Corp., 148 Santa Clara, California)
RTX3090 accelerator card with 24 GB.

2.5.1 Evaluating models
There is no trading strategy defined for trading the signal from the predictions, hence
there is not a sharpe ratio (Sharpe, 1966) to base the evaluation on. However, using a

18 Methods

Figure 2.3: Train- validation- and test-set split

scorecard of metrics in an effort to analysing the models (Gray, 2018) is given (Gray,
2018).

Noise =
1
n

n

∑
i=2

∣∣R̂i − R̂i−1
∣∣ (2.1)

The noise metric quantifies the extent of fluctuations in a model’s predictions from
one day to the next. A higher noise value suggests that the model exhibits abrupt and
frequent changes in its predictions, making it challenging to interpret and potentially
more costly for trading activities. In contrast, a lower noise value, indicates a more sta-
ble model that maintains a steadier prediction pattern, facilitating easier comprehension
and potentially reducing trading expenses.

Edge =
1
n

n

∑
i=1

sign(R̂i) ·Ri (2.2)

Arguably one of the most valuable metrics, this represents the expected average pre-
diction value across a significantly large number of simulations or draws. Analogous
to a blackjack card counter assessing the expected profit for each dollar bet under fa-
vorable odds, this metric provides insight to the average outcome over a diverse range
of scenarios, aiding in strategic decision-making and risk assessment.

Accuracy =
Number of Correct Predictions
Total Number of Predictions

×100 (2.3)

This measures the percent of sign-correct predictions.

Prediction Calibration =
mean(|R̂|)
mean(|R|)

(2.4)

A simple ratio of the magnitude of the predictions vs. magnitude of truth. This gives
some indication of whether the model is properly tuned to the size of movement, in
addition to the direction of it.

2.5 Training and Time Series Cross Validation 19

Capture Ratio =
Edge

mean(|R|)
×100 (2.5)

Capture ratio is edge scaled by mean return. The ratio measures how well our predic-
tions align with the actual daily changes. A value of 100 indicates perfect alignment,
signifying that our predictions accurately capture the true movements of the target vari-
able.

20 Methods

Chapter 3

Results

3.1 Scorecard results and analyses

The scorecard table 3.1.1 is sorted in descending order on edge, the most useful betting
metric. The columns edge, noise y-true-change, y-prediction-change, edge-long and
short are multiplied by 100.

We see that 22 out of 43 models (44%) have an accuracy of predicting the daily
directional change of more than 50%. This gives a p-value of 44% for the hypothesis
that accuracy is greater than 50% using a one tailed Z-test:

z =
p− p0

p0−(1−p0√
n

where p = 22/43 the sample proportion, p = 0.5 the hypnotized population proportion,
and n = 43 is the sample size, which gives Z = 0.152. The probability of the area above
the Z-score is 44%, which is not significant (p<0.05).

Three models has an accuracy of 50% and 18 models has an accuracy of less than
50%. The highest accuracy is gold (ZG) with 54.14%, but has only an edge of only
0.0006. 21 models has a positive edge, and 16 models has a negative edge, and 6
models has no edge. The highest edge is for Heating oil (ZH) with an edge of 0.0053.
The lowest accuracy is wheat, KC (KW) with an accuracy of only 46.33%. It has also
the lowest edge of -0.002.

3.1.1 Regression plots
From Figure 3.1 we see that the models looks randomly spread around 50%. Only 4
models has accuracy above when including standard deviation, AN, ZG, ZH, and ZU
are above, but not for 2 x standard deviation.

From Figure 3.2 we see that all models has low noise, except two outliers, heating
oil, ZH, and soybean meal, ZM. ZH has the best edge. With high noise it means that
the model, and possibly also the underlying instrument changes sign of the return often.
This can make the model difficult to follow, as there is little trend movement. It also
increases the transaction cost of following the model.

From Figure 3.3 we see that there is a correlation between accuracy and edge. Most
models are within the confidence interval of the regression plot, with a cluster in the

22 Results

Figure 3.1: The y-axis shows accuracy with standard deviation, and the x-axis shows each model,
sorted by edge in descending order. We see that most models has accuracy no lager than 50% when we
include only 1 x standard deviation. AN, ZG, ZH, and ZU are above, but not for 2 x standard deviation.

Figure 3.2: The y-axis shows noise, and the x-axis shows each instrument sorted by edge in descending
order. Heating oil, ZH, and soybean meal, ZM, has high noise.

3.1 Scorecard results and analyses 23

middle. Also here heating oil, ZH, is an outlier.

Figure 3.3: The y-axis is edge, and the x-axis is accuracy. There is a correlation between accuracy and
edge. Most models are within the confidence interval of the regression plot, with a cluster in the middle.
Also here heating oil, ZH, is an outlier.

From Figure 3.4 we see that round half the models has capture ratio above and
below 0, with US T-note, 5years(FB), Nikkei index (NK), and heating oil (ZH) having
the highest capture ratio and wheat, KC (KW) having the lowest. This means that the
models FB, NK and ZH captures the daily changes well and are easy to follow. In the
case of ZH which has high noise, it means the instrument is noisy but it is predictable,
because it is captured well by the model. The models are sorted by edge in descending
order, and there does not look like there is a correlation between edge and calibration
ratio.

From Figure 3.5 we see that there is a positive relationship between capture ratio and
accuracy as expected. Most models are clustered in the middle, and they fit relatively
close to the regression line.

From Figure 3.6 we see that T-bonds, 5 years (US) and heating oil (ZM) has the
highest calibration ratio, and the other models has a calibration ratio between 0.2 and
0.4. This describes the relationship between magnitude of our predictions vs. magni-
tude of truth. A model with high calibration ratio captures the true magnitude of the
daily movement and we can have higher confidence in the true movement if also the ac-
curacy is high. The models are sorted by edge in descending order. It looks like values
with mean edge are more likely to have high calibration.

From Figure 3.7 we also see there is a positive correlation with calibration ratio and
accuracy. US and ZM are again positive outliers.

24 Results

Figure 3.4: The y-axis shows capture ratio, and the x-axis shows each instrument sorted by edge in
descending order. We see that LB has the highest capture ratio as well as highest accuracy and edge

Figure 3.5: The y-axis shows capture ratio, and the x-axis shows accuracy. It is similar to the noise-
accuracy plot.

3.1 Scorecard results and analyses 25

Figure 3.6: The y-axis shows prediction calibration, and the x-axis shows each instrument sorted by
edge in descending order. We see that FB and US has highest calibration ratio, but US has lowest edge
and accuracy

Figure 3.7: The y-axis is prediction calibration, and the x-axis is accuracy. We see that the plot has
negative regression line with the best model with low prediction calibration

26 Results

accu- edge noise ytrue ypred prediction capture edge edge edge edge
Instr. racy chg chg calibration ratio long short win lose

ZH 52.94 0.53 3.14 7.39 3.24 43.85 7.19 0.46 -1.12 6.67 -8.12
ZB 52.17 0.11 0.31 2.01 0.41 20.40 5.36 0.06 -0.44 1.77 -2.25
ZR 50.00 0.06 0.44 0.97 0.44 45.55 6.74 0.07 -0.02 1.00 -0.96
NK 52.25 0.06 0.15 0.90 0.17 18.85 7.26 0.09 -0.03 0.88 -0.92
ZN 50.28 0.06 0.88 3.43 0.80 23.30 1.72 0.12 -0.26 3.31 -3.58
ZA 49.93 0.06 0.50 2.04 0.81 39.73 2.85 0.16 0.04 2.10 -1.97
ZW 52.03 0.05 0.29 1.50 0.28 18.62 3.04 0.08 -0.04 1.45 -1.56
ZS 50.00 0.03 0.44 1.03 0.40 38.16 2.72 0.05 -0.20 0.95 -1.13
CC 50.92 0.02 0.18 1.28 0.21 16.54 1.88 0.02 -0.04 1.26 -1.33
JN 51.42 0.02 0.14 0.38 0.14 36.53 6.22 0.02 0.10 0.43 -0.34
ZG 54.14 0.02 0.14 0.72 0.15 20.35 2.66 0.02 -0.01 0.67 -0.78
ZP 52.03 0.02 0.49 1.65 0.42 25.35 1.15 0.02 -0.10 1.55 -1.76
SN 50.00 0.02 0.13 0.37 0.13 34.95 4.70 0.02 0.02 0.40 -0.36
TY 51.86 0.01 0.12 0.27 0.13 47.58 4.76 0.02 0.07 0.31 -0.25
FB 52.00 0.01 0.14 0.17 0.16 97.08 7.26 0.01 0.06 0.20 -0.15
ZU 53.30 0.01 0.58 5.08 0.60 11.84 0.21 -0.05 2.80 6.21 -4.02
CN 51.26 0.01 0.15 0.37 0.13 34.97 2.75 0.01 -0.01 0.37 -0.38
AN 53.02 0.01 0.21 0.56 0.23 41.20 1.81 0.00 -0.04 0.52 -0.62
SB 49.64 0.01 0.17 1.26 0.22 17.33 0.77 0.09 -0.18 1.21 -1.39
DX 48.79 0.01 0.18 0.34 0.18 52.42 2.70 0.01 -0.00 0.36 -0.33
US 51.98 0.01 0.57 0.53 0.79 148.36 1.47 0.01 0.08 0.56 -0.52
MW 50.71 0.00 0.16 1.26 0.18 14.59 0.43 0.03 -0.13 1.20 -1.38
LX 50.70 0.00 0.16 0.79 0.16 20.72 0.39 0.02 -0.12 0.72 -0.86
ZT 49.36 0.00 0.38 0.69 0.33 47.46 0.37 0.00 -0.09 0.67 -0.73
ZM 49.65 0.00 1.74 1.49 1.80 120.76 0.06 0.04 -0.22 1.40 -1.61
LB 50.56 -0.00 0.16 2.76 0.27 9.90 -0.06 0.07 -0.48 2.48 -3.06
DT 51.84 -0.00 0.28 0.35 0.30 85.52 -1.12 0.00 0.05 0.36 -0.34
FN 50.14 -0.01 0.15 0.38 0.15 40.08 -1.91 -0.00 0.00 0.38 -0.39
ZK 49.30 -0.01 0.78 1.22 0.66 54.55 -0.75 0.01 -0.17 1.14 -1.31
MD 49.65 -0.02 0.16 1.31 0.16 12.64 -1.50 -0.03 -0.22 1.21 -1.41
GS 48.03 -0.02 0.16 0.42 0.18 41.79 -4.95 -0.04 0.02 0.44 -0.41
ZO 50.07 -0.02 0.63 1.63 0.66 40.56 -1.54 0.01 -0.15 1.55 -1.76
BN 47.04 -0.03 0.18 0.46 0.17 36.93 -6.39 -0.03 -0.02 0.46 -0.46
ZC 50.78 -0.04 0.22 1.23 0.25 20.40 -3.01 -0.05 -0.34 1.06 -1.44
ZZ 49.44 -0.04 0.36 1.58 0.38 24.17 -2.36 0.02 -0.21 1.45 -1.71
GI 48.93 -0.04 0.16 1.18 0.28 23.57 -3.29 0.07 -0.23 1.06 -1.33
ZL 48.87 -0.05 0.67 1.56 0.59 37.72 -3.04 -0.03 -0.36 1.39 -1.76
ZF 46.35 -0.05 0.16 0.68 0.18 26.44 -7.21 -0.06 -0.05 0.68 -0.68
KC 47.16 -0.07 0.21 1.68 0.25 14.73 -4.24 -0.07 -0.22 1.67 -1.75
ZI 47.69 -0.09 0.93 1.58 0.84 52.75 -5.76 -0.09 -0.23 1.49 -1.69
JO 46.55 -0.10 0.24 1.63 0.25 15.25 -6.12 -0.10 -0.33 1.53 -1.76
CT 48.17 -0.18 0.26 1.87 0.63 33.91 -9.62 -0.10 -0.40 1.57 -2.18
KW 46.33 -0.20 0.20 1.67 0.20 12.19 -11.90 -0.18 -0.45 1.51 -1.85

Chapter 4

Discussion

4.1 Loss function and prediction on the test set

From Figure 4.1 we see training- and validation-loss of Australian $ (AN), heating oil
(ZH), Nikkei index (NK), and T-notes 5 years (FB). An expected graph of validation
loss declining is seen in AN, and this model was the first one trained. Training could
have been longer because we don’t see overfitting, but this is just for pre-training. The
other graphs are more unusual, but here the model already has been trained on similar
time series, and training is not always improving the validation error. This is the case
for ZH and NK. However, the model does improve on training FB. An experiment
was run where predictions where made where each model was trained from random
initialization and then predicted on the test set. On all models the model accuracy was
lower than when pre-training first. This also agrees with the general concept of transfer
learning.

Little effort was placed on tuning hyperparameters, and likely the models would
benefit from individual hyperparameters tuning such as learning rate, batch size, epochs
and using a learning rate scheduler. The archictectur could also be explored more, e.g
by adding drop-out (Srivastava et al., 2014), and exploring different activation func-
tions.

Another interesting result that has been shown lately is that of Grokking (General-
ization Beyond Overfitting on Small Algorithmic Data sets) (Power et al., 2022) which
shows that training for a long time after validation loss has started to overfit, then the
validation loss drops lower than previous lows (Figure 4.2). This contradicts the prac-
tice of early stopping, and it could be interesting to investigate if training these models
for much longer without early stopping, could improve the results.

When we look at the predictions made on the first 100 time steps of the test set
of of Lumber (LB) and T-bond (US) (Figure 4.3 that has the max accuracy and min
accuracy of prediction on the test set, we see that the predictions in blue doesn’t follow
the movement, but one gets the direction right and the other more wrong.

4.1.1 Interpreting the scorecard
The scorecard shows that around half the models has slightly above 50% accuracy and
the same for edge. This is no more accurate than drawing from a distribution of random

28 Discussion

Figure 4.1: Training- and validation-loss on pretraining. From top left, Australian $ (AN), heating Oil
(ZH), Nikkei index (NK), and T-notes, 5 years (FB).

Figure 4.2: Grokking: A double hump on the validation loss and it drops to lower low after overfitting.
Source: (Power et al., 2022)

4.1 Loss function and prediction on the test set 29

Figure 4.3: First 100 predictions on the test set. Blue line is the true change in price and red line is
predicted change.

30 Discussion

models. We can not conclude that these models beats the market. Particularly not after
accounting for transaction costs.

The test set encompasses over two years of trading data, from April 2020 to 27.
January 2023. This period coinciding with the increasing integration of machine learn-
ing methods in trading during this period. If the test-set was of older data (assuming
training and validation set was even older) we might have seen a more positive result.
The paper this work was inspired from Lim et al. (2019) published their work in 2021,
and it was done in 2020. So if the test set was as old as their work I might have found
a different result. Since Lim et al. (2019) did not publish their code, it might also be
a result of errors in the implementation, e.g in the architecture or in hyper-parameters.
However, these details was not sufficiently described in their work. If Lim et al. (2019)
found alpha in 2020, that alpha (Sharpe, 1964) is perhaps not there anymore.

The effectiveness of following the models’ recommendations even for the models
with highest edge remain uncertain. Only testing it with live data to compile a Profit
and Loss statement will give answers. A related question is how well does the strategy
fare compared to inflation or a buy-and-hold approach with a large index fund?

Another consideration is the potential for data leakage during training. This thesis
has been rewritten after finding data leakage which substantially improved the accuracy
of the models. There might be more data leakage, and the simplest and most reliable
method to find out if there still is data leakage is by testing the models on live trading
scenarios.

The model employed was published in 2016. It is well-established model and here
it was operating on a relatively small dataset featuring only 7 time series with low res-
olution, capturing daily changes. Accuracy of the prediction can be made by increased
by incorporating higher-resolution data. Leveraging newer and more advanced mod-
els may also improve accuracy, however, there are results suggests that transformers
((Vaswani and et al., 2017)) is not all we need for time series data (Zeng et al., 2022).

Platforms like Yahoo Finance offer free access to 1-minute resolution data, while
market makers operate with resolutions measured in picoseconds. Additionally, the ad-
dition of alternative datasets, such as extracting sentiment from Twitter (Pagolu et al.,
2016), has demonstrated its potential advantage. The advent of large language models
(LLMs) suggests that even more alternative datasets could enhance predictive capabil-
ities in this domain.

4.1.2 Scorecard for Sugar (SB)
Looking at the scorecard for sugar (SB) in table 4.1.2 we see that it has the 8th best
edge of 0.0046, an accuracy of 61.8%. It has the 4th best capture ratio of 0.36. The
predictions aligns well with the daily changes.

accu- edge noise ytrue ypred prediction capture edge edge edge edge
Instr. racy chg chg calibration ratio long short win lose

SB 49.64 0.01 0.17 1.26 0.22 17.33 0.77 0.09 -0.18 1.21 -1.39

4.1 Loss function and prediction on the test set 31

4.1.3 Fitting an ARMA model to Sugar (SB)
To benchmark the performance of the WaveNet model, a comparison to more tradi-
tional time series prediction by modelling the next-days-return as a stochastic process
has been done. This investigates if there are any moving-average(MA) or autoregres-
sive(AR) processes. If the neural network outperforms the ARMA model, it suggests
that the neural network is capturing more complex patterns in the data. However, if the
ARMA model finds patterns, this provide insight into the underlying dynamics of the
time series, as the ARMA model is more interpretable than the neural network.

import pandas as pd
import statsmodels.api as sm
from pmdarima import auto_arima
from arch import arch_model

#assums data has been read. See supplementary materials.
#selecting the test set from sugar
valuesToFit = df.loc['SB']['Next_Returns_Daily'].values[-715:]

Perform ARIMA model selection using auto_arima
auto_model = auto_arima(valuesToFit, seasonal=False,

suppress_warnings=True)

auto_model
#>(ARIMA(order=(0, 0, 0), scoring_args={}),)

If we had a model we would - fit the ARIMA model with
#model = sm.tsa.ARIMA(valuesToFit,
order=(auto_model.order[0], 0, auto_model.order[1]))
#results = model.fit()

We see that the value to predict, Next-Returns-Daily, does not have any evidence of
an underlying AR or MA process. We see this from the best model fitted, having 0 AR
and MA parts in the fitted model. We also observe it in the Figure 4.4.

If there was a MA process, we would expect the Auto-Correlation Function (AFC)
to show a sharp drop-off after a certain lag. E.g in an MA(q) process the autocorrelation
will be significant at lag q but not for lags greater than q. There should be a spike at lag
q.

In an AR process we would expect the ACF to decay gradually. For a AR(p) process
the autocorrelation would be significant for the first p lags, and then gradually decay.

Fitting a Garch(1,1) model

A more sophisticated model is Generalized Autoregressive Conditional Heteroskedas-
ticity (GARCH) (Bollerslev, 1987) which allows the model to support changes in the
time dependent volatility, such as increasing and decreasing volatility.

32 Discussion

Figure 4.4: Auto-correlation and Partial auto-correlation function plotted for the Next-Returns-Daily
of Sugar (SB) on the test-set

X = df.loc['SB',:]['Returns_Daily'] * 100

trainValMean = X[0:-715].mean() #-0.005
trainValVar = X[0:-715].var() #1.953
testMean = X[-715:].mean() #0.119
testVar = X[-715:].var() #2.718
Fit GARCH(1,1) model
model = arch_model(X[0:-715], mean='Zero', vol='GARCH', p=1, q=1)
modelfit = model.fit(disp='off')
#>modelfit.params
#omega 0.001585
#alpha[1] 0.040180
#beta[1] 0.959828

testSetYhat = np.asarray([])
for i in range(0,715):

model =
arch_model(X[0:-715+i], mean='Zero', vol='GARCH', p=1, q=1)

modelfit = model.fit(disp='off')
forecast = modelfit.forecast(horizon=1)
yHat = forecast.variance['h.1'].values[0]
testSetYhat = np.append(testSetYhat, yHat)

The model has slightly different parameters when looking at the training and vali-

4.1 Loss function and prediction on the test set 33

dation set combined and when including the test set. In the first case the parameters are
ω = 0.016,α = 0.040,β = 0.96 and with the whole set ω = 0.015,α = 0.039,β = 0.96.

With with a horizon of 1, as in the deep learning model, and evaluating the predic-
tions on the scorecard. The GARCH model predicts volatility which is strictly positive
and is not the same as daily change, however a comparison to the deep learning model
is still interesting. In particular for accuracy it is predicting positive return every day,
and this can be viewed as a baseline prediction model to beat.

accu- edge noise ytrue ypred prediction capture edge edge edge edge
Instr. racy chg chg calibration ratio long short win lose

SB 50.93 0.12 0.11 1.30 2.87 2.22 9.20 0.00 NaN 1.30 -1.35

We see from table 4.1.3 that the GARCH(1,1) model performs better than the deep
learning model on almost all scores. In particular it has higher accuracy and higher
edge.

4.1.4 Future work
The model size is restricted by the availability of data. Large language models have
billions of parameters, and train on large data sets collected by crawling the internet.
One interesting work made by Marti (2020) is to sample more financial data based on
the correlation structure of the existing time series, using a model called CorrGAN.
The correlation structure is discovered using a generative adversarial network (GAN)
(Goodfellow et al., 2014) model with a discriminator network and a generator network,
where the generator network generates new time-series based on the existing time se-
ries, while the discriminator learns to discriminate between synthetically generated and
real time series. This generates a min-max algorithm (Neumann, 1928),and the loss
function lives on a saddle-point. The loss function can be notoriously difficult to train
due to the fact that the loss-function can fall off the saddle.

Another question that could be interesting to investigate, is which time series con-
tains the most information helpful in predicting a given instruments daily return. This is
a rich topic with many options to choose from. One approach is to use cross-correlation
analysis to measure the similarity between two time series as a function of their time
lag applied to one of them, or on the residuals. Another approach is to use feature im-
portance analysis. A machine learning model like the random forest (Breiman, 2001)
generates decision trees, which are more interpretable than neural networks, and also
easier to understand the feature importance. There are other methods to understand fea-
ture importance, that can be applied to neural networks like leave-one-feature-out and
measure the change in the loss function.

Yet another approach is to calculate the correlation matrix on the residuals of the
predictions of the model, and do a cluster analysis on the matrix with k-means or hi-
erarchical clustering (Nielsen, 2016) on Euclidean distance or Mahalanobis distance
(Mahalanobis, 1936).

34 Discussion

4.1.5 Conclusions
There is no reason to question the efficient market hypothesis after this work. Some
models has a positive edge, but after accounting for transaction cost, that edge is
marginal, if not negative. If Lim et al. (2019) found alpha in 2020 that alpha is per-
haps not in the market anymore for the commodities in this work, or there are still
room for improvements in the features and models used in this thesis. Or, perhaps
the findings found was too optimistic. WaveNet does not beat a baseline model that
predicts every day a positive return.

Bibliography

Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, et al. (2016), Tensorflow: Large-scale machine learning
on heterogeneous distributed systems, arXiv preprint arXiv:1603.04467. 2.4, 2.5

Bachelier, L. (1900), Théorie de la spéculation, in Annales scientifiques de l’École
normale supérieure, vol. 17, pp. 21–86. 1.5

Black, F., and M. Scholes (1973), The pricing of options and corporate liabilities, Jour-
nal of political economy, 81(3), 637. 1.2

Bollerslev, T. (1987), A conditionally heteroskedastic time series model for speculative
prices and rates of return, The Review of Economics and Statistics, 69(3), 542–547.
4.1.3

Breiman, L. (2001), Random forests, Machine Learning, 45(1), 5–32, doi:10.1023/A:
1010933404324. 4.1.4

Chollet, F., and others (2018), Keras 2.1.3, https://github.com/fchollet/keras. 2.5

Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei (2009), Imagenet: A large-
scale hierarchical image database, in 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255, doi:10.1109/CVPR.2009.5206848. 1.5.1

Fawaz, H. I., G. Forestier, J. Weber, L. Idoumghar, and P. Muller (2018), Transfer
learning for time series classification, CoRR, abs/1811.01533. 2.5

Goodfellow, I. J., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio (2014), Generative adversarial networks. 4.1.4

Gray, C. (2018), Stock prediction with ml: Model evaluation, https://
alphascientist.com/model_evaluation.html, published on 09.08.2018. 2.5.1

He, K., X. Zhang, S. Ren, and J. Sun (2016), Deep Residual Learning for Image Recog-
nition, in Proceedings of 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR ’16, pp. 770–778, IEEE, doi:10.1109/CVPR.2016.90. 2.4

Hochreiter, S., and J. Schmidhuber (1997), Long short-term memory, Neural Compu-
tation, 9(8), 1735–1780, doi:10.1162/neco.1997.9.8.1735. 1.2

Kingma, D. P., and J. Ba (2017), Adam: A method for stochastic optimization. 2.4.1

https://alphascientist.com/model_evaluation.html
https://alphascientist.com/model_evaluation.html

36 BIBLIOGRAPHY

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012), Imagenet classification with deep
convolutional neural networks, Advances in Neural Information Processing Systems,
25, 1097–1105. 1.5.1

Lamberti, M. (2020), Time series momentum, https://github.com/maxlamberti/
time-series-momentum, accessed and cloned: 31.01.2023. 2.1

LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.
Jackel (1989), Backpropagation applied to handwritten zip code recognition, Neural
Computation, 1(4), 541–551, doi:10.1162/neco.1989.1.4.541. 1.3

Lim, B., S. Zohren, and S. Roberts (2019), Enhancing time series momentum strate-
gies using deep neural networks, The Journal of Financial Data Science, available
at SSRN: https://ssrn.com/abstract=3369195 or http://dx.doi.org/10.
2139/ssrn.3369195. 1.2, 2.1, 4.1.1, 4.1.5

Mahalanobis, P. C. (1936), On the generalized distance in statistics, Proceedings of the
National Institute of Sciences (Calcutta), 2, 49–55. 4.1.4

Marti, G. (2020), Corrgan: Sampling realistic financial correlation matrices using gen-
erative adversarial networks, in ICASSP 2020 - 2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), IEEE, doi:10.1109/
icassp40776.2020.9053276. 4.1.4

Moen, E., N. O. Handegard, V. Allken, O. T. Albert, A. Harbitz, and K. Malde
(2018), Automatic interpretation of otoliths using deep learning, PLOS ONE, 13(12),
e0204,713, doi:10.1371/journal.pone.0204713, https://journals.plos.org/plosone/ar-
ticle/file?id=10.1371/journal.pone.0204713. 1.5.1

Moen, E., R. Vabø, S. Smoliski, Åse Husebø, N. O. Handegard, and K. Malde (2021),
Automatic interpretation of salmon scales using deep learning, Ecological Informat-
ics, 63, 101,322, doi:https://doi.org/10.1016/j.ecoinf.2021.101322. 1.5.1

Moen, E., R. Vabø, S. Smoliski, C. Denechaud, N. O. Handegard, and K. Malde (2023),
Age interpretation of cod otoliths using deep learning, Ecological Informatics, 78,
102,325, doi:https://doi.org/10.1016/j.ecoinf.2023.102325. 1.5.1

Neumann, J. v. (1928), Zur theorie der gesellschaftsspiele, Mathematische Annalen,
100, 295–320. 4.1.4

Nielsen, F. (2016), Hierarchical Clustering, pp. 195–211, Springer International Pub-
lishing, Cham, doi:10.1007/978-3-319-21903-5_8. 4.1.4

Oord, A. v. d., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalch-
brenner, A. Senior, and K. Kavukcuoglu (2016), Wavenet: A generative model for
raw audio, cite arxiv:1609.03499. (document), 1.2, 1.3, 1.5.2, 1.2, 1.3, 1.5.2

Pagolu, S., K. Challa, G. Panda, and B. Majhi (2016), Sentiment analysis of twitter data
for predicting stock market movements, 2016 International Conference on Signal
Processing, Communication, Power and Embedded System (SCOPES). 4.1.1

https://github.com/maxlamberti/time-series-momentum
https://github.com/maxlamberti/time-series-momentum
https://ssrn.com/abstract=3369195
http://dx.doi.org/10.2139/ssrn.3369195
http://dx.doi.org/10.2139/ssrn.3369195

BIBLIOGRAPHY 37

Pinnacle Data Corp. CLC Database (), Pinnacle data corp. clc database, https://pinna-
cledata2.com/clc.html. 1.2

Power, A., Y. Burda, H. Edwards, I. Babuschkin, and V. Misra (2022), Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets, CoRR, abs/2201.02177.
(document), 4.1, 4.2

Sharpe, W. F. (1964), Capital asset prices: A theory of market equilibrium under con-
ditions of risk, The Journal of Finance, 19(3), 425–442, doi:10.2307/2977928. 4.1.1

Sharpe, W. F. (1966), Mutual fund performance, The Journal of Business, 39(1),
119–138. 2.5.1

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov (2014),
Dropout: A simple way to prevent neural networks from overfitting, Journal of Ma-
chine Learning Research, 15(56), 1929–1958. 4.1

Tibshirani, R. (1996), Regression shrinkage and selection via the lasso, Journal of the
Royal Statistical Society: Series B (Methodological), 58(1), 267–288. 1.2

Vaswani, A., and et al. (2017), Attention is all you need, NeurIPS, 30(2), 5998–6008,
doi:10.5555/3295222.3295349. 4.1.1

Ville, J. (1939), Étude critique de la notion de collectif, Bulletin of the Ameri-
can Mathematical Society. Monographies des Probabilités, 3(11), 824–825, doi:
10.1090/S0002-9904-1939-07089-4, review by Doob. 1.3, 1.5

Werbos, P. (1982), Applications of advances in nonlinear sensitivity analysis, in Sys-
tem modeling and optimization, pp. 762–770, Springer, archived (PDF) from the
original on 14 April 2016. Retrieved 2 July 2017. https://werbos.com/Neural/
SensitivityIFIPSeptember1981.pdf. 1.2

Zeng, A., M. Chen, L. Zhang, and Q. Xu (2022), Are transformers effective for time
series forecasting? 4.1.1

https://werbos.com/Neural/SensitivityIFIPSeptember1981.pdf
https://werbos.com/Neural/SensitivityIFIPSeptember1981.pdf

38 BIBLIOGRAPHY

Supplementary information

A. Model Summary

Layer (type) Output Shape Param # Connected to
input_2 (InputLayer) [(None, 255, 24)] 0 []
conv1d_16 (Conv1D) (None, 255, 256) 12544 [’input_2[0][0]’]
activation_16 (Activation) (None, 255, 256) 0 [’conv1d_16[0][0]’]
activation_17 (Activation) (None, 255, 256) 0 [’conv1d_16[0][0]’]
tf.math.multiply_8 (TFOpLa (None, 255, 256) 0 [’activation_16[0][0]’,
mbda) ’activation_17[0][0]’]
conv1d_17 (Conv1D) (None, 255, 256) 65792 [’tf.math.multiply_8[0][0]’]
conv1d_18 (Conv1D) (None, 255, 256) 131328 [’conv1d_17[0][0]’]
activation_18 (Activation) (None, 255, 256) 0 [’conv1d_18[0][0]’]
activation_19 (Activation) (None, 255, 256) 0 [’conv1d_18[0][0]’]
tf.math.multiply_9 (TFOpLa (None, 255, 256) 0 [’activation_18[0][0]’,
mbda) ’activation_19[0][0]’]
conv1d_19 (Conv1D) (None, 255, 256) 65792 [’tf.math.multiply_9[0][0]’]
add_7 (Add) (None, 255, 256) 0 [’conv1d_17[0][0]’,

’conv1d_19[0][0]’]
conv1d_20 (Conv1D) (None, 255, 256) 131328 [’add_7[0][0]’]
activation_20 (Activation) (None, 255, 256) 0 [’conv1d_20[0][0]’]
activation_21 (Activation) (None, 255, 256) 0 [’conv1d_20[0][0]’]
tf.math.multiply_10 (TFOpL (None, 255, 256) 0 [’activation_20[0][0]’,
ambda) ’activation_21[0][0]’]
conv1d_21 (Conv1D) (None, 255, 256) 65792 [’tf.math.multiply_10[0][0]’]
add_8 (Add) (None, 255, 256) 0 [’add_7[0][0]’,

’conv1d_21[0][0]’]
conv1d_22 (Conv1D) (None, 255, 256) 131328 [’add_8[0][0]’]
activation_22 (Activation) (None, 255, 256) 0 [’conv1d_22[0][0]’]
activation_23 (Activation) (None, 255, 256) 0 [’conv1d_22[0][0]’]
tf.math.multiply_11 (TFOpL (None, 255, 256) 0 [’activation_22[0][0]’,
ambda) ’activation_23[0][0]’]
conv1d_23 (Conv1D) (None, 255, 256) 65792 [’tf.math.multiply_11[0][0]’]
add_9 (Add) (None, 255, 256) 0 [’add_8[0][0]’,

’conv1d_23[0][0]’]
conv1d_24 (Conv1D) (None, 255, 256) 131328 [’add_9[0][0]’]
activation_24 (Activation) (None, 255, 256) 0 [’conv1d_24[0][0]’]
activation_25 (Activation) (None, 255, 256) 0 [’conv1d_24[0][0]’]
tf.math.multiply_12 (TFOpL (None, 255, 256) 0 [’activation_24[0][0]’,
ambda) ’activation_25[0][0]’]
conv1d_25 (Conv1D) (None, 255, 256) 65792 [’tf.math.multiply_12[0][0]’]
add_10 (Add) (None, 255, 256) 0 [’add_9[0][0]’,

’conv1d_25[0][0]’]
conv1d_26 (Conv1D) (None, 255, 256) 131328 [’add_10[0][0]’]
activation_26 (Activation) (None, 255, 256) 0 [’conv1d_26[0][0]’]

BIBLIOGRAPHY 39

activation_27 (Activation) (None, 255, 256) 0 [’conv1d_26[0][0]’]
tf.math.multiply_13 (TFOpL (None, 255, 256) 0 [’activation_26[0][0]’,
ambda) ’activation_27[0][0]’]
conv1d_27 (Conv1D) (None, 255, 256) 65792 [’tf.math.multiply_13[0][0]’]
add_11 (Add) (None, 255, 256) 0 [’add_10[0][0]’,

’conv1d_27[0][0]’]
conv1d_28 (Conv1D) (None, 255, 256) 131328 [’add_11[0][0]’]
activation_28 (Activation) (None, 255, 256) 0 [’conv1d_28[0][0]’]
activation_29 (Activation) (None, 255, 256) 0 [’conv1d_28[0][0]’]
tf.math.multiply_14 (TFOpL (None, 255, 256) 0 [’activation_28[0][0]’,
ambda) ’activation_29[0][0]’]
conv1d_29 (Conv1D) (None, 255, 256) 65792 [’tf.math.multiply_14[0][0]’]
add_12 (Add) (None, 255, 256) 0 [’add_11[0][0]’,

’conv1d_29[0][0]’]
conv1d_30 (Conv1D) (None, 255, 256) 131328 [’add_12[0][0]’]
activation_30 (Activation) (None, 255, 256) 0 [’conv1d_30[0][0]’]
activation_31 (Activation) (None, 255, 256) 0 [’conv1d_30[0][0]’]
tf.math.multiply_15 (TFOpL (None, 255, 256) 0 [’activation_30[0][0]’,
ambda) ’activation_31[0][0]’]
conv1d_31 (Conv1D) (None, 255, 256) 65792 [’tf.math.multiply_15[0][0]’]
add_13 (Add) (None, 255, 256) 0 [’add_12[0][0]’,

’conv1d_31[0][0]’]
max_pooling1d_1 (MaxPooling (None, 127, 256) 0 [’add_13[0][0]’]
1D)
flatten_1 (Flatten) (None, 32512) 0 [’max_pooling1d_1[0][0]’]
dense_3 (Dense) (None, 256) 8323328 [’flatten_1[0][0]’]
dense_4 (Dense) (None, 64) 16448 [’dense_3[0][0]’]
dense_5 (Dense) (None, 1) 65 [’dense_4[0][0]’]
Total params 9798017 (37.38 MB)
Trainable params 9798017 (37.38 MB)
Non-trainable params 0 (0.00 Byte)

B. Source of project

Multivariate WaveNet for backtesting on financial time series

This notebook reads in the Pinnacle CLC database into a Pandas dataframe, creates features from
the time series provided by Pinnacle for each instruments. This includes date, open, high, low,
close, volumne, and open interest. From these time series new features are derived like exponential
Moving Average (EMA) over the last 60 days, Moving Average Convergence Divergence (MACD).
The code for generating the features are borrowed from https://github.com/maxlamberti/time-
series-momentum which implements some of the deep momentum network timeseries momentum
factor paper proposed by Lim, Zohren and Roberts (2019).

After creating the featuers then time series without an explicit type are cast to the correct type.

We define the WaveNet model which handles multivariate time series.

We define a window size for the model, and the training loop. We split the dataset into train,
validate and test-sets. The model is pretrained on all 43 instruments before it is fine-tuned on the
training set of the instrument it will predict on the test-set. The validation set is used to select the
optimal weights with early stopping.

Finally we evaluate the models on a scorecard of metrics.

[]: pip install scikit-learn
pip install pandas
pip install numpy
pip install matplotlib
pip install seaborn

[]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

import tensorflow as tf
import seaborn as sns
import os
from sklearn.preprocessing import MinMaxScaler

sns.set()

[]: os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
print(tf.__version__)
print(tf.config.list_physical_devices('GPU'))

Reads the .csv files temporarily into a dictionary. Each instrument is merged on Date

[40]: # Source for generating these features: https://github.com/maxlamberti/time-
series-momentum
def load_clc_db_records(path, feds_data=None, assets_to_use=None):

"""Load all CLC futures data into dict. One entry per asset. Path specifies␣
↪location of .csv files"""

1

40 BIBLIOGRAPHY

if feds_data is not None:
short_rate = pd.read_csv(feds_data)
short_rate['DATE'] = pd.to_datetime(short_rate['DATE'],␣

↪format='%Y-%m-%d')
feds_label = short_rate.columns[-1]

data = {}
files = [file for file in os.listdir(path) if '.csv' in file.lower()]
for file in files:

skip assets which are not used for analysis
asset = file[:-4].split('_')[0]
if (assets_to_use is not None) and (asset not in ASSETS_TO_USE):

continue
load asset data //Settle
data[asset] = pd.read_csv(os.path.join(path, file), names=['Date',␣

↪'Open', 'High', 'Low', 'close', 'Volume', 'Open_Interest'])
#0.0 for dates with 0 trading - error in return calc
data[asset]['Open'] = data[asset]['Open'].replace(0.0, method='ffill')
data[asset]['High'] = data[asset]['High'].replace(0.0, method='ffill')
data[asset]['Low'] = data[asset]['Low'].replace(0.0, method='ffill')
data[asset]['close'] = data[asset]['close'].replace(0.0, method='ffill')
data[asset]['Volume'] = data[asset]['Volume'].replace(0.0,␣

↪method='ffill')
data[asset]['Date'] = pd.to_datetime(data[asset]['Date'], format='%m/%d/

↪%Y')
merge with fed short rate if available
if feds_data is not None:

data[asset] = data[asset].merge(short_rate, how='left',␣
↪left_on='Date', right_on='DATE')

data[asset][feds_label].ffill(inplace=True)
data[asset][feds_label] /= 100
data[asset]['Short_Rate_Daily'] = (1 + data[asset][feds_label]) **␣

↪(1 / 252) - 1
data[asset]['Short_Rate_Annual'] = data[asset][feds_label]
del data[asset][feds_label]
del data[asset]['DATE']

#data[asset].set_index('Date', inplace=True)
return data

1. Calculates the normalized period returns for a given time series of daily returns using a rolling
window

2. Computes the Moving Average Convergence Divergence (MACD) features for a given price
time series with a given short and long period

3. Compute binary MACD
4. Calculate various features
5. Loops over a dictionary of instruments creating data frames of calculated features for each

2

BIBLIOGRAPHY 41

[]: # Source: https://github.com/maxlamberti/time-series-momentum
def calc_normalized_period_returns(daily_returns, daily_std, period):

period = int(period)
returns = (1 + daily_returns).rolling(period).apply(np.prod, raw=True) - 1
return returns / (np.sqrt(period) * daily_std)

def calc_macd_features(price, short_period, long_period):
short_ma = price.ewm(span=short_period, min_periods=short_period).mean()
long_ma = price.ewm(span=long_period, min_periods=long_period).mean()
ewmstd_63 = price.ewm(span=63).std()
macd = short_ma - long_ma
q = macd / ewmstd_63
z = q / q.ewm(span=252, min_periods=252).std()
return z

def calc_macd_binary(price, short_period, long_period):
short_ma = price.ewm(span=short_period, min_periods=short_period).mean()
long_ma = price.ewm(span=long_period, min_periods=long_period).mean()
signal = short_ma >= long_ma
return signal

def construct_features_single_asset(df, ewmastd_span=60, inplace=False,␣
↪asset_label=None):

if not inplace:
df = df.copy()

if asset_label is not None:
df['Asset'] = asset_label

df['Returns_Daily'] = df.close.pct_change() # np.log(df['Settle']).diff(),␣
↪Settle

df['Next_Returns_Daily'] = df['Returns_Daily'].shift(-1)
df['Sigma'] = df['Returns_Daily'].ewm(span=ewmastd_span,␣

↪min_periods=ewmastd_span).std()
df['Norm_Returns_Daily'] = df['Returns_Daily'] / df['Sigma']
df['Norm_Returns_Monthly'] =␣

↪calc_normalized_period_returns(df['Returns_Daily'], df['Sigma'], 252 / 12)
df['Norm_Returns_Quarterly'] =␣

↪calc_normalized_period_returns(df['Returns_Daily'], df['Sigma'], 252 / 3)
df['Norm_Returns_Semiannually'] =␣

↪calc_normalized_period_returns(df['Returns_Daily'], df['Sigma'], 252 / 2)
df['Norm_Returns_Annually'] =␣

↪calc_normalized_period_returns(df['Returns_Daily'], df['Sigma'], 252)
df['MACD_8_24'] = calc_macd_features(df['close'], 8, 24) #Settle
df['MACD_16_48'] = calc_macd_features(df['close'], 16, 48)
df['MACD_32_96'] = calc_macd_features(df['close'], 32, 96)

3

42 BIBLIOGRAPHY

df['Binary_MACD_8_24'] = calc_macd_binary(df['close'], 8, 24)
df['Binary_MACD_16_48'] = calc_macd_binary(df['close'], 16, 48)
df['Binary_MACD_32_96'] = calc_macd_binary(df['close'], 32, 96)
df['Sigma_Norm'] = np.log(df['Sigma'] / df['Sigma'].rolling(181).mean())
df['Returns_Weekly'] = ((1 + df.Returns_Daily).rolling(5).apply(np.prod,␣

↪raw=True) - 1)
if 'Short_Rate_Daily' in df.columns:

df['Excess_Returns_Daily'] = df['Returns_Daily'] -␣
↪df['Short_Rate_Daily']

return df

def construct_features_batch(df_map):
for asset, df in df_map.items():

construct_features_single_asset(df, inplace=True, asset_label=asset)
return df_map

Merges multiple asset DataFrames into a single DataFrame along the index assets. Creates multi-
index Asset and Date.

[]: # Source: https://github.com/maxlamberti/time-series-momentum
def merge_asset_data(asset_to_df_map, create_time_asset_index=True):

"Merges multiple asset dataframes together."
asset_dfs = [df for asset, df in asset_to_df_map.items()]
combined_assets = pd.concat(asset_dfs, ignore_index=True)
if create_time_asset_index:

combined_assets.set_index(['Asset', 'Date'], inplace=True, drop=False)
combined_assets.sort_index(inplace=True)
combined_assets['Asset_Col'] = combined_assets['Asset']
combined_assets['Date_Col'] = combined_assets['Date']
del combined_assets['Date']
del combined_assets['Asset']

return combined_assets

Define the Assets to use.

[]: assets_to_use = ['AN', 'BN', 'CC', 'CN', 'CT', 'DT', 'DX', 'EC', 'FB', 'FF',␣
↪'FN',

'FX', 'GI', 'GS', 'JN', 'JO', 'KC', 'KW', 'LB', 'LX', 'MD', 'MW',
'NK', 'SB', 'SN', 'SS', 'TU', 'TY', 'US',
'ZA', 'ZB', 'ZC', 'ZF', 'ZG', 'ZH', 'ZI', 'ZK', 'ZL', 'ZM', 'ZN',
'ZO', 'ZP', 'ZR', 'ZS', 'ZT', 'ZU', 'ZW', 'ZZ']

exclude_assets = ['FF', 'EC', 'TU', 'SS', 'PA' 'W','NR', 'SP']
ASSETS_TO_USE = list(set(assets_to_use) - set(exclude_assets))
len(ASSETS_TO_USE)

Define path to csv files and create dataframe, df, that contains all features for all instruments.

4

BIBLIOGRAPHY 43

[]: RAD_DATA_PATH = '../pinnacle/clc/rad/'
FED_DATA_PATH = '../pinnacle/FEDFUNDS.csv'
load asset data from clc database
clc = load_clc_db_records(RAD_DATA_PATH, FED_DATA_PATH, ASSETS_TO_USE)
clc = construct_features_batch(clc)
df = merge_asset_data(clc, create_time_asset_index=True)
df.dropna(inplace=True) #this drops 'PA' -PALLADIUM

df = df.reindex(df.index, level=0) #Remove 'PA' from Asset index

print(len(df.index.levels[0]))

Some columns has type Object, case these to explicit types.

[]: def convert_types(df):
df = df.copy()
df.loc[:, 'Volume'] = df.loc[:, 'Volume'].astype('int32')
df.Open_Interest = df.Open_Interest.astype('int32')
df.Binary_MACD_8_24 = df.Binary_MACD_8_24.astype('int32')
df.Binary_MACD_16_48 = df.Binary_MACD_16_48.astype('int32')
df.Binary_MACD_32_96 = df.Binary_MACD_32_96.astype('int32')
return df

df = convert_types(df)
if 'Date_Col' in df.columns:

df = df.drop('Date_Col', axis=1)

if 'Asset_Col' in df.columns:
df = df.drop('Asset_Col', axis=1)

print(df.columns)
print("len columns",len(df.columns))

WaveNet for multivariate time series

Its only one change needed from the original WaveNet to add the capability to predict based on
multiple times seires and that is to remove the residual on the first hidden layer.

Then a Multilayer Perceptron (MLP) with 256, and 64 connection is added to the last hidden layer
of the WaveNet model, and finaly the next time step is predicted as a linear layer of size 1.

The input dimension is (batch-size x sequence-length x number of features). After the first hidden
layer it changes to (batch-size x sequence-length x number of filters) and it no longer makes sence
to talk about multiple features, but multiple filters.

The sequence length is 255 and this is the window of attention by the model. In the transition from
WaveNet to MLP we use MaxPooling1D and Flatten to select the max feature across all filters
for each data point in the sequence length. This layer transforms the tensor of shape (batch-size

5

44 BIBLIOGRAPHY

x sequence-length x filter-length) to (batch-size x sequence-length x 1). Flatten removes the last
dimension. This becomes the input to the first MLP layer of size 256.

[]: #WaveNet - multivariate
import tensorflow as tf
from tensorflow.keras.layers import Conv1D, Conv2D, Activation, Add
from tensorflow.keras.layers import MaxPooling1D, Flatten, Dense
from tensorflow.keras.models import Model
from keras.optimizers import Adam

n_features = 24
seq_length = 255
input_shape = (seq_length, n_features) # Input shape for a 1D waveform
num_filters = 256
filter_width = 2
num_layers = 8

def residual_block(x, dilation_rate):
conv = Conv1D(filters=num_filters, kernel_size=filter_width,␣

↪dilation_rate=dilation_rate, padding='causal')(x)
tanh_out = Activation('tanh')(conv)
sigmoid_out = Activation('sigmoid')(conv)
merged = tf.multiply(tanh_out, sigmoid_out)

1x1 convolution to mix the results
out = Conv1D(filters=num_filters, kernel_size=1, padding='same')(merged)

if dilation_rate > 1:
x = Add()([x, out])

else: #no residual connection on first layer
x = out

return x

input_layer = tf.keras.layers.Input(shape=input_shape)
x = input_layer
for i in range(num_layers):

x = residual_block(x, 2**i)

output_layer =x
output_layer = MaxPooling1D(pool_size=2)(output_layer)
output_layer = Flatten()(output_layer)
output_layer = Dense(256, activation='relu')(output_layer)
output_layer = Dense(64, activation='relu')(output_layer)
output_layer = Dense(1, activation='linear')(output_layer)

model = Model(inputs=input_layer, outputs=output_layer)

6

BIBLIOGRAPHY 45

optimizer = tf.keras.optimizers.Adam(learning_rate=0.00001)
model.compile(optimizer=optimizer, loss='mse')
model.summary()

Training loop

The function to start training is defined at the bottom of the cell. to train on all 43 assets define
function to create rolling windows of a specified size from a given time series data. The window is
of size 255 This transforms a 2D dataframe to a 3D numpy tensor of shape (number of windows x
window size, time series lenght)

A training loop is defined which MinMax transforms the time series which was input pr instrument.
The training set is defined as the datapoints from 0 to -1430, validation from -1430 to -715. And
the last 715 datapoints is the test set. The time series to predict is masked. Finally, in a loop the
model is pretrained on all instruments.

[]: from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
batch_size = 96
epochs = 100

def create_window(mk1):
window_size = 255
shift = 1
num_windows = (mk1.shape[0] - window_size) // shift + 1
result = np.empty((num_windows, window_size, mk1.shape[1]))
for i in range(num_windows):

result[i] = mk1[i * shift:i * shift + window_size]
return result

def train_model(train_x, train_y, val_x, val_y):
callbackEarlyStop = tf.keras.callbacks.EarlyStopping(monitor='val_loss',

patience=20,␣
↪restore_best_weights=True)

history = model.fit(
train_x, train_y,
validation_data=(val_x, val_y),
batch_size=batch_size, epochs=epochs, verbose=1,
callbacks=[callbackEarlyStop])

return history, model

def train_window_on_a_asset(asset, doTrain):
print("asset:",asset," has nan:",df.columns[df.isna().any()].tolist())
mk1 = df.loc[asset, :]
mk1 = mk1.copy()
scaler = MinMaxScaler()

7

46 BIBLIOGRAPHY

scaled = scaler.
↪fit_transform(mk1[['Open','High','Low','close','Volume','Open_Interest']].
↪values)

mk1.loc[asset,['Open','High','Low','close','Volume','Open_Interest']] =␣
↪scaled

result = create_window(mk1)
print("result:",result.shape, " val size:",(result.shape[0]*0.2))
test = result[-715:,:,:]
val = result[-1430:-715,:,:]
train = result[:-1430,:,:]

#Remove Next_Daily_Returns, y_hat, from training X
exclude_indices_last_dim = np.array([9])
mask_last_dim = np.ones(train.shape[-1], dtype=bool)
mask_last_dim[exclude_indices_last_dim] = False

train_y=train[:,254,9]
train_x=train[:,:,mask_last_dim]
val_y=val[:,254,9]
val_x=val[:,:,mask_last_dim]
test_y=test[:,254,9]
test_x=test[:,:,mask_last_dim]
print("train_x",train_x.shape)
print("train_y",train_y.shape)
print("val_x",val_x.shape)
print("val_y",val_y.shape)
print("test_x",val_x.shape)
print("test_y",val_y.shape)
print("**************"+str(doTrain))
if doTrain==True:

history, model = train_model(train_x, train_y, val_x, val_y)
x = np.arange(0, len(train_y))
x1 = np.arange(len(train_y), len(train_y)+len(val_y))
x2 = np.arange(len(train_y)+len(val_y),␣

↪len(train_y)+len(val_y)+len(test_y))
plt.plot(x, train_y, label="train")
plt.plot(x1, val_y, label="validation")
plt.plot(x2, test_y, label="test")
plt.savefig(asset+'train_val_test.png')
plt.close("all")
print(history.history.keys())
plt.plot(history.history['loss'][1:])
plt.plot(history.history['val_loss'][1:])
plt.xlabel('Epoch')
plt.ylabel('Mean Absolute Error Loss')
plt.title('Loss Over Time')
plt.legend(['Train','Valid'])

8

BIBLIOGRAPHY 47

plt.savefig(asset+'_hist.png')
plt.close("all")
print("display prediction")
pred_y = model.predict(test_x)
plt.plot(mk1.index.values[-715:-615], pred_y[0:100], label="pred_y")
plt.plot(mk1.index.values[-715:-615], test_y[0:100], label="true_y")
mse = mean_squared_error(test_y, pred_y)
plt.title('Test prediction, MSE: '+ str(mse))
plt.savefig(asset+'_pred_test.png')
plt.close("all")

else:
return train_x, train_y, val_x, val_y, test_x, test_y, mk1.index.

↪values[-1430:-715], mk1.index.values[-715:]

for asset in df.index.get_level_values(0).drop_duplicates():
train_window_on_a_asset(asset, True)

Finetune-training, prediction and evaluting models using scorecards

The function to start training is defined at the bottom of the cell. This cell does the finetuning on
each instrument, before predicting on the test set. The model weights are choosen as those which
predicts with lowest MSE on the validation set and using early stopping. The test predictions are
evaluated using a scorecard of metrics. The evaluation metrics are defined here: https://alphasci-
entist.com/model_evaluation.html

• sign_pred: positive or negative sign of prediction
• sign_true: positive or negative sign of true outcome
• is_correct: 1 if sign_pred == sign_true, else 0
• is_predicted: 1 if the model has made a valid prediction, 0 if not. This is important if models

only emit predictions when they have a certain level of confidence result: the profit (loss)
resulting from betting one unit in the direction of the sign_pred. This is the continuous
variable result of following the model

[]: file_path = 'output_file.csv'

def make_df(y_pred,y_true):
df = pd.concat([pd.Series(y_pred, name="y_pred"),pd.Series(y_true,␣

↪name="y_true")], axis=1)
df['sign_pred'] = df.y_pred.apply(np.sign)
df['sign_true'] = df.y_true.apply(np.sign)
df['is_correct'] = 0
df.loc[df.sign_pred * df.sign_true > 0 ,'is_correct'] = 1 # only registers␣

↪1 when prediction was made AND it was correct
df['is_incorrect'] = 0
df.loc[df.sign_pred * df.sign_true < 0,'is_incorrect'] = 1 # only registers␣

↪1 when prediction was made AND it was wrong
df['is_predicted'] = df.is_correct + df.is_incorrect
df['result'] = df.sign_pred * df.y_true

9

48 BIBLIOGRAPHY

return df

#Accuracy: Just as the name suggests,
this measures the percent of predictions that were directionally␣

↪correct vs. incorrect.
#Edge: perhaps the most useful of all metrics, this is the expected value
of the prediction over a sufficiently large set of draws.
Think of this like a blackjack card counter who knows the expected␣

↪profit
on each dollar bet when the odds are at a level of favorability
#Noise: critically important but often ignored, the noise metric estimates
how dramatically the model's predictions vary from one day to the next.
As you might imagine, a model which abruptly changes its mind every
few days is much harder to follow (and much more expensive to trade)␣

↪than one which is a bit more steady.

y_true_chg and y_pred_chg: The average magnitude of change (per period) in␣
↪y_true and y_pred.

prediction_calibration: A simple ratio of the magnitude of our predictions vs.
↪ magnitude of truth.

This gives some indication of whether our model is␣
↪properly tuned to

the size of movement in addition to the direction of␣
↪it.

capture_ratio: Ratio of the "edge" we gain by following our predictions vs.␣
↪the actual daily change.

100 would indicate that we were perfectly capturing the true␣
↪movement of the target variable.

#edge_long and edge_short: The "edge" for only long signals or for short␣
↪signals.

#edge_win and edge_lose: The "edge" for only winners or for only losers.
def calc_scorecard(df):

scorecard = pd.Series()
building block metrics
scorecard.loc['accuracy'] = df.is_correct.sum()*1. / (df.is_predicted.

↪sum()*1.)*100
scorecard.loc['edge'] = df.result.mean()
scorecard.loc['noise'] = df.y_pred.diff().abs().mean()
derived metrics
scorecard.loc['y_true_chg'] = df.y_true.abs().mean()
scorecard.loc['y_pred_chg'] = df.y_pred.abs().mean()
scorecard.loc['prediction_calibration'] = scorecard.loc['y_pred_chg']/

↪scorecard.loc['y_true_chg']
scorecard.loc['capture_ratio'] = scorecard.loc['edge']/scorecard.

↪loc['y_true_chg']*100

10

BIBLIOGRAPHY 49

metrics for a subset of predictions
scorecard.loc['edge_long'] = df[df.sign_pred == 1].result.mean() - df.

↪y_true.mean()
scorecard.loc['edge_short'] = df[df.sign_pred == -1].result.mean() - df.

↪y_true.mean()
scorecard.loc['edge_win'] = df[df.is_correct == 1].result.mean() - df.

↪y_true.mean()
scorecard.loc['edge_lose'] = df[df.is_incorrect == 1].result.mean() - df.

↪y_true.mean()

return scorecard

def lastTrain(asset, count):
train_x, train_y, val_x, val_y, test_x, test_y, val_idx, test_idx =␣

↪train_window_on_a_asset(asset, False)

callbackEarlyStop = tf.keras.callbacks.EarlyStopping(monitor='val_loss',
patience=20,␣

↪restore_best_weights=True)
history = model.fit(

train_x, train_y,
validation_data=(val_x, val_y),
batch_size=batch_size, epochs=epochs, verbose=1,
callbacks=[callbackEarlyStop])

pred_y = model.predict(test_x).flatten()
df = make_df(pred_y,test_y)
scorecard = calc_scorecard(df)
print(scorecard)
scorecard_df = pd.DataFrame(scorecard)
display(scorecard_df)
theMode = 'a' # mode='a' appends to the existing file
print("count:",count)
if count==0:

theMode = 'w' # mode='w' overwrites the file or creates a new one
count+=1
scorecard_df.to_csv(file_path, index=True, header=True, mode=theMode)
with open(file_path, 'a') as file:

file.write('Instrument: '+str(asset)+'\n')

count = 0
for asset in df.index.get_level_values(0).drop_duplicates():

lastTrain(asset, count)
count += 1

11

50 BIBLIOGRAPHY

	Acknowledgements
	Abstract
	Introduction
	
	Motivation
	Objective
	Time series fundamentals
	History is a filtration
	Convolutional neural network
	The WaveNet architecture
	Receptive field

	Outliers

	Methods
	Feature engineering
	Data cleaning and transformation
	Data windowing
	Building WaveNet for multivariate time series
	Hyperparameter tuning

	Training and Time Series Cross Validation
	Evaluating models

	Results
	Scorecard results and analyses
	Regression plots

	Discussion
	Loss function and prediction on the test set
	Interpreting the scorecard
	Scorecard for Sugar (SB)
	Fitting an ARMA model to Sugar (SB)
	Future work
	Conclusions

	Appendices

