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Sammendrag

Det a kunne riktig identifisere arter er et veldig viktig verktgy i kampen for a bevare arts-
mangfoldet i verden, men dette er kunnskap som er enten forbeholdt eksperter, eller sa er
det veldig tidskrevende for ufagkyndige. I nyere tid har fremskritt i teknologi gjort kameraer
med god kvalitet blitt tilgjengelig for de aller fleste gjennom mobiltelefon samtidig sa har
nyutvikling innenfor GPUer og maskinleering gjort bildegjenkjennings teknologi tilgjengelig
for de fleste gjennom forskjellige apper. Gjennom slike apper kan lekfolk ogsa bidra til a

bevare artsmangfoldet.

Dette prosjektet beskriver prosessen med a lage et plantegjenkjenningsmodel og undersgker

mulighetene for a forbedre modellen ved a inkludere lokasjonsdata i modellen.

Samlet bilder og lokasjons data fra nettsiden artsobservasjoner.no samt andre dataset. Trente
forskjellige ”computer vision” modeller pa bilder av de 100 mest fotograferte artene hos
artsobservasjoner. ResNet-101 modellen oppnadde en trefsikkerhet pa 70.948%. Ved bruk
av relativ frekvens vekting, vekting basert pa planter i omradet og en statistisk modell
knyttet til blant annet landskapstypen, hgyde over havet og koordinat gkte modellen sin
treffsikkerhet med 3.964% opp til 74.912%.
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Abstract

Recent development in technology has led to both ubiquitous camera-phones and
high quality image recognition software. One of the areas this is useful is species-
conservation where accurate plant identification through cellphones is an invaluable

tool.

Introduced Relative Frequency Weighting, weighting based on the surrounding plants
and statistics based on coordinates, landscape and altitude of the image location in

order to improve the plant species identification accuracy.

This increased the accuracy of the deep learning computer vision model between 3.5
and 4.0%.
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Chapter 1

Introduction

25% of all species are threatened by extinction[I]. In order to combat this species knowledge
is essential. Acquiring this knowledge both difficult and time consuming. Thankfully new
technology has made this task a lot easier. This is among others, due to new technology
within image recognition and machine learning. This has made it possible to identify species
quickly without using time-consuming field guides or identification keys[2]. Proper mapping
and identification of species is crucial in halting and reversing biodiversity loss[I] and this
has made it possible for the common man to contribute to preserving the local biodiversity.

In this project I will both create a program for plant recognition with collected data and see
if it is possible to improve the plant image recognition through the use of location data. This
is done with minimal input from biologists which is a big oversight, but since this project is
focusing on larger areas and common species it will hopefully not become to detrimental to
the project.

In this project I will collect data from various online sources both easily available and datasets
collected ourselves through web scraping. Will the process and collate the data to be used
in an image recognition model. Will then try to improve the model buy including location
data through various statistical methods.






Chapter 2

Theory

In this chapter most of the mathematical theory behind the statistical methods used in this
thesis is presented. In addition to this, several computer vision models are presented as well
as the some theory behind how they are trained/fitted to the data.

2.1 Classifications methods

2.1.1 Multinomial Logistic Regression

When there is no natural ordering in a categorical response variable Y, we can use multi-
nomial logistic regression to predict the categories. One category is chosen as the reference
category m; and the logit function for the remaining categories is given by:

j

logit(ﬂj) = log (7'(_) = ﬁ()j + Bljxlj + ...+ BijNj = X}-,Bj fOI'j = 2,. cey J (21)
1

Where 7; is the probability of category j and N is the number of covariates in the model
[3], we use the equations to estimate the parameters 3; as b. The probability is then
given by:

T; = fexp (xjb;) forj=2...,J (2.2)

And since Z}]:1 7, =1, 7y is given by:
1

o= 2.3
! 1+ ZLQ exp (x;b;) (2:3)




We can write the probability equation as:

_ exp (x]b;)
1+ 23;2 exp (x!'b;)

~

J

forj=2,...,J (2.4)

Then, using the multinomial logistic model as a classification method, the class is assigned
according to its highest probability.

2.1.2 Support vector machine(SVM)

A Support vector machine(SVM) is a supervised learning model which can be used for
classification [4]. Tt works by having a p-dimensional hyperplane and it assigns categories
depending on which side of the plane the data point is located. The hyperplane is defined
by the equation:

Bo+ B1X1 + B2 X+ B X, =0 (2.5)
If X > 0 the point X is on one side of the plane and and if 3X < 0 the point is on the
other. This is used in classification where we label the observations y; = 1 and y, = —1.

A hyperplane is then created between them so that the perpendicular distance between the
points on each side and the hyperplane(margin) is as large as possible. This hyperplane is
created by solving the maximization problem:

maxg yy M (2.6)
?zl 532 =1

Yi(Bo+ /i X1+ BoXo- B, X)) >M Y i=1,....n

Where M is the margin. The observations which lie on the margin are called support vectors.
It is not always possible to separate the training set classification by a single hyperplane. To
account for this we can introduce a soft margin where we allow the observations to cross the
margins and even be on the wrong side of the hyperplane. This transforms the optimizatiomn
problem to:

maXﬂ,el,...,en,M M (29)

=15 =1 (2.10)

Yi(Bo + S X1 4 B Xo - B, X)) > M(1 — ), (2.11)
¢>0, Y <C (2.12)



Where (' is a non-negative tuning parameter and €y, ..., ¢, are the slack parameters. The
slack parameters are what allows the observations to be on the wrong side of the margin and
also possibly the separating hyperplane.

If the classes are not separated by a linear border/hyperplane, we may handle this non
linearity by expanding the feature space through the inclusion of terms such as quadratic,
cubic or other kernel functions[4]. Kernel functions are functions dependent on the inner
product of the observations. The inner product is given by:

p
< Ty Lyt > = injxi’j (213)
j=1

The classification function then becomes :

f@)=Po+ Y oK (x,z7) (2.14)

i€S

Where K is the kernel function. The Kernel function can be the inner product (2.13]) by
itself, which is the linear kernel. The polynomial:

d
p
K(.T, I’i/) = (1 + Z l’ﬁl’fj) (215)
j=1

is the polynomial kernel when d > 1 and the radial kernel is given by:

K (5, 20) = exp(—y Y _ (i — ;)% (2.16)

Jj=1

Where ~ is a positive constant and the Radial kernel can be shown to be represented as a
function of an inner product [4]. In order to use this classification technique when there are
more than two categories we have two options: one vs one or one vs all.

One vs One:

Creates (”) classifiers, one for every pair of classes and count the number of classifications

2
in each class.

One vs All:

Create n SVM classifiers, where each classifier classifies an observation between the n-th
class and the remaining n — 1 classes. The class with the highest value, and therefore largest
confidence, gets the classification.



2.1.3 k-Nearest Neighbors

k-Nearest Neighbors(k-NN) is a non parametric classification algorithm which aims to clas-
sify the observation based on the K nearest training observations. Where the estimated
probability of class j given sample X is:

POV = j1X0) = 2= 3 Ty =) (217)
ieNo

Where N are the K closest points. Choosing a small K gives an overly flexible classifier
with a low training error and often a high test error while high K gives a classifier that is
not flexible enough. Therefore the K value needs to be tuned appropriately|[4].

SMOTE

k-NN on an imbalanced data set will always prioritize the majority class of the samples
and therefore have a poorer performance on the minority class. This can be solved by
either undersampling the majority class or oversampling the minority class. One of the ways
to oversample is duplicating data-points in the minority class. This has the downside of
being prone to overfitting[5]. Another way is to synthesize new points from the existing
points. One such method is called Synthetic Minority Oversampling Technique(SMOTE)[5].
SMOTE works as follows:

1. Sample a point and find its k nearest neighbours(default 5) in the original minority
class.

2. Calculate the difference between the sampled point and the nearest neighbours.
3. Multiply the difference with a random number between 0 and 1.
4. Add the multiplied difference to our initial sample point and add a synthetic sample.

5. Repeat until desired amount of synthetic points are created.

SMOTE can be beneficial for handling unbalanced data sets, but is often outperformed by
undersampling the majority classes[6].
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2.1.4 Kernel Density Estimation

Kernel Density Estimation(KDE) [7] is a generalisation of Histogram Density Estimation.
In the Histogram Density Estimation the density is estimated with the formula:

nhz (x_x) (2.18)

Where the h is the bucket width and the weights w are given by w(z) = +1(|z| < 1). In the
kernel density estimator the uniform weights are replaced by a general weight function:

) (2.19)

The general weight function has the property [~ K(z)dz = 1. In this thesis we use the
Gaussian kernel:

ZKhx—xl hz (

K(z,2:) = \/12_7rexp (—M) (2.20)

Here the bandwidth value h decides the smoothness of the estimation. A low bandwidth
gives more local features and variation while a large bandwidth produces a smoother estimate
with less variation.

This can be used in classification by estimating the probability distribution over an area for
several classes and classifying a new point according tho the larges probability given by the
KDEs.

2.2 Computer vision models

2.2.1 VGG

Visual Geometry Group(VGG) is a neural network based on AlexNet. Simonyan and Zisser-
man [§ found that by replacing the convolutional layers in AlexNet(11x11) with smaller ones
(3x3) the VGG network is able to go deeper and preform better on the ImageNet Challenge.
The VGG-16 architecture can be seen in figure 2.1} It consists of 13 layers of either 3x3
convolution layers with Rectified Linear Unit(ReLU) activation and 3 fully connected layers
also with ReLU activation. There are also max-pooling layers between every second or third
layer. Another model, the VGG-19, has three additional 3x3 convolution with ReLU layers.

7
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Figure 2.1: VGG-16 architecture. Here two layers of 3x3 convolutions with ReLLU activation
are followed by a 2x2 max-pooling layer with stride 2. This is repeated once. Then repeated
twice is three 3x3 convolution layers with ReLUs followed by a max-pooling layer. Finally
the model haves three fully connected dense layers with ReLLU activation and a final softmax
classification layer. Figure form ”Very deep convolutional networks for large-scale image
recognition” [§]

2.2.2 Residual Neural Network

Residual Neural Network also known as ResNet are deep learning networks with shortcut
identity mappings[9].

This type of network was created to address the higher training and test error which appeared
when increasing the network depth past a certain point. The deeper models should be able to
preform as well as the shallower models by learning the identity function on their additional
layers. In practice this is hard to do and resulted in a higher error overall. To solve this
He et al. [9 proposed a skip connection(residual connection) between layers which preserves
the identity connection and allows the layers to fit a small perturbation rather than the
identity function. Such a connection can be seen in Figure 2.2l Experiments points toward
that learned residual functions in general have small responses and are easier to optimize.
Making it possible to gain accuracy from the increased network depth.

2.2.3 Vision Transformer(ViT)

Since the Vision Transformer(ViT) is adapted form the deep learning architecture Trans-
former, it is useful to briefly discuss the encoder of the Transformers architecture.

8



F(x) identity

x + F(x) Y

Figure 2.2: A ResNet block where the input x is passed to the function F(-) and the output
is added to x through the residual(identity) connection. Figure from Wikipedia released
under the CC BY-SA 4.0 license [10]

Transformer

Transformers were introduced in 2017 in the article ” Attention is All You Need ” by Vaswani
et al. [11l and has gained a lot of popularity especially within Natural Language Process-
ing(NLP), where it is used in tasks such as translation and text generation. The Transformer
architecture can be seen in figure [2.3

Encoder

The input is first transformed to vectors in an embedding space. This can for example be
a way of grouping words with similar meanings. The embedding vectors are then given
positional information by a positional encoder. The input is then passed through N blocks
containing a residual(skipped connection) Multi-Head Attention layer and a residual Feed
Forward Layer. The Multi-Head Attention layer creates vectors containing correlation be-
tween the different parts of the input. This is done in parallel for all parts of the input and
the output and the result is called an attention vector. The attention vector is an average of
8 different vectors with different attention(correlation) measures [I1]. The attention vectors
are then passed through a feed forward layer and after the N blocks the encoder output is
passed to the decoder.

Vision Transformer

A Vision Transformer works in a way similar to that of a Transformer. First the input image
is divided into fixed size patches, given a positional embedding and passed through a linear
projection layer. The linear projection layer is sometimes implemented with a Convolutional
Neural Network(CNN)-module as in PyTorch’s Vision Transformers. After being passed
through the linear projection layer the patches are passed through N transformer encoder

9
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Figure 2.3: Transformer architecture. Figure from ” Attention is all you need” [I1]



Vision Transformer (ViT)

Transformer Encoder
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Figure 2.4: Visual Transformer Architecture. The input image is split into patches and
passed to a Transformer Encoder. The Transformer Encoder has the same structure as the
input encoder in figure 2.3 Figure from ” An image is worth 16x16 words: Transformers for
image recognition at scale” [12]

blocks, which works the same way as with the NLP Transformer by generating attention
vectors for the image patches. The vectors are then passed to Multilayer Perceptron(MLP)
through which a final classification is performed[12]. The Visual Transformer architecture
can be seen in Figure
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Image

Convolutional
Network

Location Data

Figure 2.5: Sketch of neural network architecture where image data is combined with location
data. Sketch created with the web application diagrams.net.

2.2.4 Combining image and location data

Combining image data and a location data in a neural network can be done by adding
location information to the first fully connected layer after the convolutional layers of our
model as seen in figure[2.5] A similar setup was used by Ghafoorian et al.[I3, and documented
in the article ”Location Sensitive Deep Convolutional Neural Networks for Segmentation of
White Matter Hyperintensities”, where they found that CNNs that incorporated location
information outperformed the CNNs without location information in some medical image

analysis tasks.
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2.2.5 Hyper parameters

Objective function/loss function

In order to compute the best parameters for a Deep Learning model we need to choose a
loss function to minimize. The best parameters are the ones which solve this optimization
problem. The neural network output can be made summable to 1, hence it can be interpreted
as a probability distribution. This is very useful for multi-class classification tasks and can
be done by applying the softmax function to the output|I4]:

exp ;

— (2.21)
=7 expe,

O'([L')l =

Where o(x); is the softmax output for class . Which is the exponential of output i divided
by the sum of the exponential of all the outputs[15].

To compute the difference between the softmax output and the correct classification we use
the Cross Entropy function:

=1 EXP Tnc

N
1 eXD Ty,
n=1

Where [, is the negative log value of the softmax function for the output z, ,, in the correct
target class y,. [(x,y) is the mean loss over a batch of size N[I6] and is the loss function we
want to minimize.

Stochastic Gradient Decent

The Gradient Decent Algorithm is an iterative algorithm for finding the local minimum of a

differentiable function:
Gt = 97571 - *yVF(@t,l) (223)

Where 6 is the parameters/weights of the model, v is the learning rate and F' is the objective
function we are trying to minimize. In this case the objective function is the Cross Entropy
function. In order to use this algorithm on a machine learning model, it is necessary to
use all training data in calculating the gradient VF(6;_;). This is very inefficient and
computationally expensive. The Stochastic Gradient Decent(SGD) algorithm approximate
the gradient decent by using the expected gradient based on a small set of samples. m’

13



samples are drawn uniformly form the training set and the gradient estimate is then given

by [15]:

1 m
g = gve Z F(xi, i, 0-1) (2:24)
=1

In order to prevent overfitting we introduce weight decay:
gt = Gi—1 + N0 (2.25)

Where A is the weight decay coefficient. This introduces a penalty to the weights 6 which
should prevent them from becoming to large and start overfitting.

Momentum is introduced to accelerate learning where, among others, there is high curvature,
small consistent gradients or noisy gradients. It mirrors the physical analog where an object
with mass and velocity continues in its general direction and takes time to stop or change
its direction. This gradient is given this property by accumulating exponentially decaying
moving averages [15]:

by =pb1 + (1 —7)g (2.26)

Where b; is the momentum from the previous time step and 7 is the dampening factor.
Another way of increasing the rate of convergence is to use the Nesterov momentum:

gt = g + pby (2.27)

The Nesterov momentum tries to estimate the current momentum at t instead of the mo-
mentum at ¢ — 1. This is done by adding a correction factor to the momentum calculated at
t — 1. The Nestrov momentum does not necessarily increase convergence, but might under
certain conditions[I5].

Finally we have the updated model parameters:
Qt = Qt—l — Y3+t (228)

Where 7 is the learning rate, indicating how far in the g; direction to move. The learning
rate is often set to decrease in training after a certain time or because of lack of progress.

2.2.6 Training

The goal in training a model is for the model to be able to recognize the general patterns of
the objects it is being trained on and to recognize these patterns in new unseen data. This
ability is called generalization. When training the model the data is split into training and
test data. The model is trained on the training data to minimize the error on them, training

14



error, and the model is then tested on the test data and the generalization error, or test
error, is used to evaluate the model and choose the optimal model parameters.

The two main challenges when training a model are underfitting and overfitting. Underfitting
is when the model is not trained enough to pick out the general pattern in the training data.
This can be mediated by either training the model for longer or by switching to a model
with a higher capacity. A model with a higher capacity generally means a more complicated
model with more parameters, which can fit the model better. Overfitting on the other hand,
is when the model is trained past the point where it learns the general pattern, to where it
also learns the specific pattern in the training data. This is characterized by a widening of the
generalization gap where the training error decreases and the generalization error increases,
as seen in figure [2.60 We can control overfitting by choosing the parameters for the model at
the point where the generalization gap is at its lowest. In addition to this we can introduce
weight decay, as in equation and dropout. Dropout is a practice where we randomly
remove non-output units for the model[15]. The effect of this is analogous to bagging, where
multiple models are trained and evaluated on every test input and their collective output is
used as the final prediction. This is very time consuming for large models so dropout is a
reasonable alternative.

_ _ _ — - Training error
Underfitting zone | Overfitting zone S . .
Generallza.tlon error

FError

0 Optimal Capacity

Capacity

Figure 2.6: Illustration of the Generalization gap during training. Where the Generalization
gap widens as the capacity of the model increases. Figure from the book Deep Learning by
Goodfellow [15]
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2.2.7 Metrics

When evaluating model performance it is important to choose the most suitable performance
metric.

Accuracy:
True Predictions

Total Predictions
is often a suitable metric for model evaluation, but when dealing with an unbalanced data-set
accuracy is often not the optimal metric. E.g if the model is designed to find outliers such as
images with disease or bot-detection in social networks the model can achieve high accuracy
by predicting false for every instance without predicting any positives.

(2.29)

When the predictions correctness is the primary interest precision is a good metric.

Precision: ..
True Positives

2.30
True Positives + False Positives ( )

When detecting the True Positives, it is more important than their correctness, we can use
recall.

Recall o
True Positives

2.31
True Positives + False Negatives ( )

Precision and Recall can be opposed to each other, where high Precision can lead to low
Recall and vice versa. The performance of the model, when using Precision and Recall, can
be expressed through a Precision-Recall curve or the F-score[15]:

2 - Precision - Recall

2.32
Precision + Recall (2.32)
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Chapter 3

Literature

3.1 Earlier research

In the article ”Plant Species Identification Using Computer Vision Techniques: A System-
atic Literature Review”, Waldchen and Mader| present a literature review of 120 articles
published between 2005 and 2015. Here, they compare the different studies on publicly
available datasets, their methods and accuracies. In the majority of the articles studied,
leaves were used for identification. A leaf is a ”usually green, flattened, lateral structure
attached to a stem and functioning as a principal organ of photosynthesis and transpiration
in most plants” [17]. Leaves consists of a blade and a small stalk, called petiole, which goes
through the blade branching off veins along the way before it connects to the stem. Further-
more Waldchen and Mader| separate leaves into simple and compound leaves depending on
whether or not the leaf is undivided or divided into two or more leaflets. In classical manual
classification the leaf base, tip and edge of the leaf blade are used to identify the species[17],
but automatic methods mostly use the whole leaf and ignore local features.

Most of the studies pertained to scans or pseudo-scans of leaves. Only 25 of the studies used
photos taken in a natural environment, as opposed to the images collected through scanning
or photographs against a plain background. Among the most used publicly available datasets
are the Flavia and LeafSnap Dataset. These datasets will be presented further in Chapter
4

For most classification based on leaf or flower analysis several features are extracted from
the scans. Depending on the study the features could be features connected to shape, tex-
ture and color. Shape features include area, diameter, aspect ration and image moments.
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The texture features are among others given by Scale-invariant feature transform(SIFT),
Fourier Transforms and co-occurrence matrices and the color features are for example color
moments, Color Scale-invariant feature transform(CSIFT) and color histograms.

To classify the leaves and flowers based on the scans/pseudo-scans the methods SVM, k-NN
and Neural Networks are used. Achieving an accuracy between 25.3% and 97.8% on the
Flavia dataset with SVMs and k-NN, using various extracted features. While the Neural
Networks achieved between 87% and 96%|[17]. On the LeafSnap Dataset k-NN method
reached 58.51% and SVM reached 72.64% [1§].

In recent years (after 2015), Deep Learning methods have outperformed the more classical
classification methods on the benchmark datasets [19]. Using computer vision models the
accuracy on the Flavia set increased to 99.7% [20] and the LeafSnap accuracy increased to
97.6% [18]. The computer vision models also removed the need for manual feature extraction,
which was necessary in classical classification. The neural networks automatically determines
the features which are suitable for classification. This removes a process which is labor
intensive and requires expert knowledge[21]. Better results, ease of use and the increase in
computational power through the use of GPUs seems to have led to Deep Learning models
to be the dominant classification tool used on plant images, as well as images in general.

3.2 Free Automated Plant Applications

Along with increasing accuracy from machine learning, widely available mobile phones with
cameras and the fact that plant identification is both useful and interesting has led to
the development of several free and commercial plant identification applications. Some of
these applications were tested by [Hart et al. and the results are presented in the article
7 Assessing the accuracy of free automated plant identification applications”. Among the
tested applications were the ”PlantNet” and ”iNaturalist Seek” applications which reached
an accuracy of 95% and 93% respectively on 857 professionally identified images of 277
different plant species.

3.2.1 PlantNet

The PlantNet application(stylized as Pl@ntNet) is a part of the The Pl@ntNet Project which
is a cooperation between the french research institutes CIRAD, INRAE, INRIA and IRD.
They have released an application for identifying plant species. The PlantNet model takes
an input consisting of the plant in question and a tag specifying what part of the plant it is
an image of(leaf, flower fruit, bark, habit or other), as seen in Figure [3.1, The model then
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Figure 3.1: Screenshot taken form the PlantNet app where a picture is given a tag for easier
discrimination.

classifies the image between 10 000 different species(2017[22]) and a rejection class indication
that the object is not a plant. In 2017 the CNN model used was based on the inception
model. This model also checks the proposed species against plants observed in the region of
the mobile device location, eg West Europe, North Africa, North America etc.
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3.2.2 iNaturalist Seek

iNaturalist Seek is an application developed by iNaturalist for plant and animal identification.
iNaturalist is an American nonprofit social network of naturalists, citizen scientists, and
biologists. They observe and map species all over the world. iNaturalist Seek is an application
for species identification, while iNaturalist is both a website and an application where species
identification and registration can be done with automatic methods and with help from other
users. The species includes plants, animals and fungi, as well as other organisms. iNaturalist
species recognition model uses the Xception architecture as a basis and the models predictions
are weighted by the iNaturalist geomodel.

iNaturalist Geomodel

Until recently (21.09.23) iNaturalist used a Seen-Nearby Geomodel where the relative number
of observations in the surrounding area is used to weight their Computer Vision model. The
surrounding area is given by a 3x3 grid. Where each grid is a 1-degree lat long square.
This model has since be replaced with an Expected-Nearby Geomodel where the species
geographical range is estimated from sparse observations [23]. This switch improved the
the top-1 suggestion accuracy 4%. Where the Seen-Nearby Geomodel improved the Top-1
accuracy from 75% to 83% and the Expected-Nearby Geomodel increased Top-1 accuracy
to 87%.

Sceloporus consobrinus V

Sceloporus occidentalis

Sceloporus occidentalis Scefoporus consobrinus

Figure 3.2: Image from https://www.inaturalist.org/blog/84677-introducing-the-inaturalist-
geomodel demonstrating iNaturalist Geomodel[24].  Where the Sceloporus consobri-
nus(southern prairie lizard) and Sceloporus occidentalis(western fence lizard) is weighted
according to the expected species nearby.

3.3 Bias in collected Data

Most of the data used in this project is collected by citizen scientists and not professionals
within the relevant fields such as biology and data science. This is reflected in the data
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through the reliability of the identification and the over-representation of easily recognizable
and charismatic species [25]. This also causes species which are difficult to identify to be
under-represented in the Data.
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Chapter 4

Data Sources and Data Collection

In this chapter the Data used in this thesis is presented, as well as the data collection methods
and processing pipeline used on the collected data.

4.1 Data Sources

4.1.1 Species Opservations

Most of the data used for this thesis is collected from the website Artsobservasjoner.no.
Artsobservasjoner(Species observations) is a database where citizens can report any wildlife
observation anywhere in Norway. The database is owned and maintained by Artsdata-
banken(Species Databank) which is a Norwegian public organization for biological diversity
with the mission of providing independent, updated and easily available information about
the Norwegian flora, fauna and habitat. The database contains both flora and fauna obser-
vations with observation dates and locations of the observations. Some of the observations
are also presented with pictures. The veracity of some of the observations are confirmed by
the umbrella organization SABIMA (Council for biodiversity) and their members, such as
the Norwegian Botanical Association and Norwegian Ornithological Society, but most the
observations are not verified. As of May 2020 over 23 million observations have been regis-
tered with over 3 million of them being vascular plants observations. A small overview of
registrations between 31.07.23 and 08.11.23 in southern Norway can be seen in Figure [.1]

Two images connected to the same observation of a Sitka spruce(Picea sitchensis) can be
seen in Figure [4.2] and location for the observation can be seen in Figure [1.3] Those kinds
of observations with pictures is the data collected from Artsobservasjoner.
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Figure 4.1: Map showing the species observations in Norway from 31.07.23 to 08.11.23.
Where yellow circles indicate single observations while blue circles indicates clusters.

Sitka spruce A Sitka spruce B

Figure 4.2: Two images of a Sitka spruce(Picea sitchensis) taken and registered as an ob-
servation at artsobservasjoner.no by Snorre Henriksen. Images released under the creative

common license.
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Figure 4.3: Screenshot from artsobservasjoner.no . Location registration corresponding to
the two Sitka spruce images. Here the location is Spongdalsvegen, Trondheim municipality,

Trendelag county, with UTM-32 coordinates: E558153,N7031650 (+2m),
Elevation data

Based on the locations of the observations we are able to get the elevation of that location
from Norwegian Mapping Authority(Statens kartverk). This is done by querying their API.
The data is collected by Flying Laser Scanning with 1 meter resolution. Where the eleva-
tion data is unavailable from the Laser Scanning the remaining points are estimated using
interpolation, usually giving an accuracy between 0.1 and 3 meters, but may be as much as
10 certain places|26].

AR-50

AR-50 is Database/Land resource map of mainland Norway which classifies the areas ac-
cording to suitability for agriculture and natural plant production [27]. It is collected and
maintained by the Norwegian institute for bio-economy(NIBIO) The map classifies each area
with the following values:

e ARTYPE - Area type: Buildings, Agriculture, Forrest, Field, Swamp, Glacier, Fresh
water or Ocean.
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e ARJORDBR - Agricultural Land: Fully cultivated, Infield grazing or Not relevant.

e ARTRESLAG - Forrest type: Conifer forest, Deciduous forest, Mixed forest or Not
relevant.

e ARSKOGBON - Forest bonity: High bonity, Medium bonity, Low bonity, Unporduc-
tive woodland or Not relevant

e ARVEGET - Field type: Fresh vegetation, Medium fresh vegetation, Lichen covered,
Patchy vegetation, No vegetation or Not relevant.

Landscape Data

The Norwegian Species Map Service(NSMS),(Norwegian: Artsdatabanken) also has several
maps describing landscapes based on their NiN(Nature in Norway, Norwegian: Natur i
Norge)-system. NSMS separates the Norwegian landscape into three groups with three
major categories and within them there are again several sub-categories. The main groups
and categories are:

Marine Landscape
e Marine hill and mountain landscape
e Marine valley landscape
e Marine plains

Coastal landscape:
e (Coastal hill and mountain landscape
e Fjord landscape
e Coastal plain landscape

Inland landscape:
e Inland hill and mountain landscape
e Inland valley landscape
e Inland plain landscape

The polygons classifying the area as either Marine, Costal or Inland Landscape can be seen
in Figure [£.4] and the categories within Inland Landscape can be seen in Figure [4.5]

These landscape types describe larger connections in nature, where nature-systems and land-
forms and man-made objects are included as elements of the landscape. The goal is to
describe landscape variations in the simplest way[28].
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Figure 4.4: Overview of polygons classifying the area as Marine Landscape(Blue), Costal
Landscape(purple) and Inland Landscape(Green). Image from The Norway’s Species Map
Service web-page

4.1.2 LeafSnap

LeafSnap is a data set consisting of leaf images from 185 tree species from north-eastern
part of the United States. These images and accompanying segmented images were used
in a study from 2012 by Kumar et al[29] to create a system for automatic plant species
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Figure 4.5: Overview of polygons within Inland Landscape characterizing the area further
as Hill and Mountain, Valley or plain landscape. Image from The Norway’s Species Map
Service web-page
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identification by extracting morphological features and classifying the images using a com-
bination of the Support Vector Machine(SVM) Algorithm and the K-Nearest Neighbors(k-
NN) Algorithm[29]. The data set contains 23,147 ”high-quality” laboratory images(scans) of
pressed leaves from the Smithsonian collection and 7719 field images taken with cellphones
or other mobile devices[I7]. The Dataset used in this thesis uses augmented training images(
flipped, cropped and/or mirrored) in order to increase the generality of the Model.

4.1.3 Flavia Dataset

The Flavia Dataset contains 1907 images of leaves from 32 different plant species with
between 50 and 77 images of each plants leaves. The images are taken with scanners or
digital cameras and are collected at Nanjing University and The Nanjing Botanical Garden
Memorial Sun Yat-Sen in Jiangsu, China. The images each depict a single leaf on a plain
white background[17].

4.2 Data Collection

In order to collect the observation data from artsobservasjoner.no, a python pacakage called
selenium was used. Selenium WebDriver is a tool for web browsing automation through
which web-pages can be navigated and information can be gathered automatically from
them. Selenium Python is an API, which allows the user access the Selenium WebDriver.
This tool allows the user to collect data much more efficiently.

4.2.1 Location Data

When collecting the location data the WebDriver opens the webpage

hitps:/ /www.artsobservasjoner.no/ViewSighting/SearchSighting, selecting the Vascular plants
as the species group of interest and then selecting the date range from 2000 to 2023, as seen
in figure Vascular plants(Tracheophyta) are plants in which water and nutrients are
transported through a vascular system[30].
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Figure 4.6: Web-interface at artsobservasjoner.no. Here selecting the species group Vascular
plants (Karplanter) for the time period 2000-2023.

Then choosing the output as exporting data( Eksportere data), the webdriver maneuvers to a
new page. Where the vascular plants observations can be downloaded as Excel-files[4.7] Each
Excel-file contains 2000 observations. Using selenium most observations were downloaded as
Excel-files before being concatenated to one file. In the image [4.7] there is a total of 3205434
logged observations available. The total number used here is a bit lower due to some of the
downloads failing and the screenshot in was taken in the middle of November 2023, while
the data collection was done early September 2023.

-, Sok funn i Presentere funn -~ 3< Del sgk

Eksportere data

Funn 1-2000 av totalt 3205434

Du kan eksportere 2000 observasjoner om gangen. Bruk navigasjonen under for & navigere til neste.
8 (2) () (4] (5] (¢) (7] (e] (3] (2] (5] [sste]

Sokeparametre: [UENET T B0 ERT k3

Ikke vis observasjoner som inngér i sammenslatte funn x
Her vises hvilke parametre som er benyttet for & f4 fram
sekeresultatet nedenfor. Klikk pa fanen "sgk funn' for & endre soket.

Figure 4.7: Exporting data from artsobservasjoner.no to Excel-files for observations of Vas-
cular plants (Karplanter) in the time period 2000-2023.
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Figure 4.8: Additional search parameters when collecting observations where images have
been taken.

This data was used to create three different datasets. The first dataset consists of the
locations of the top 185 most registered plant species. This dataset was used in an experiment
where LeafSnap species were mapped to the top 185 in the Species-Observation Dataset.
This dataset will be referred to as Species-Observation-185 Dataset. The second dataset,
the Species-Observation-100 Dataset, is made out of the location data for the 100 most
photographed species. The third dataset is a merger of the image data described in the
next section and the location data collected, as well as the data collected from AR—50,
Elevation and Landscape data. This dataset will be referred to as the Combined
Species-Observation Dataset or Combined Dataset.

4.2.2 Image Data

The process of collecting the logged observation with uploaded images was initially quite sim-
ilar to the process of collecting the observation data. Choosing Vascular plants(Karplanter),
as for the location data in section [4.2.1] and the time interval from 2000 to 2023. In addition
to this, we include the condition that we only get returned observations registered with a
picture. The settings for this search can be seen in figure

The Excel-files were collected as described in section before selecting the 100 most
commonly observed plants which were registered with a picture. Each of these observations
have an Id which identifies the observation. The pictures connected to the observation
can be found at the webpage hitps://www.artsobservasjoner.no/Image/{1d}. Where {Id} is
replaced with a specific observation-Id. When accessing the website we use selenium to find
the images and download them. Before creating a new data-file where the row connected to
the observation is connected to the image-Id and the local computer path to the downloaded
image. For observations with more than one image the observation-row is duplicated. Images
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Ikke validert (funnet er ikke kvalitetssikret)

lusegras Huperzia selago

Figure 4.9: Screenshot form the webpage https://www.artsobservasjoner.no/Image/2444828.
Here we see two images connected to the same observation. This serves as only as an example
and the observation was arbitrarily chosen from observations with two or more images under
creative commons licence. Image taken by Rune Zakariassen and published under creative
commons licence. Website accessed 23.11.23

were collected for 200 observations for each of the 100 most popularly photographed plants.
An example of two images connected to an observation can be seen in the screenshot in

figure [4.9]
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4.2.3 Elevation data

Height data was added to the observations through the Norwegian Mapping Authority’s
API, where the data was queried in chunks of 50 points at a time. For the first iteration
the returned heights are from airborne laser scanning with a resolution of 1 meter. This is
form the Dataset Hoydedata-laser at kartkatalog.geonorge.no/. In the next iteration all the
points whose height were returned as None, were queried against a different source giving an
interpolated height. The second source(N50 Kartdata) has an error between 0.1-3m for the
majority of the points, but the error also be in the tens for some cases. After trying both
sources for the elevation data, the remaining None values were filled with the average value.

4.2.4 Area Resources(AR-50)

The AR-50 data-file was downloaded from NIBIOs website as a geodatabase(gdb). The file
was opened with geopandas. Then the coordinates were taken from the species observations
and iterated through the many polygons in the AR-50 geodatabase and added the data from
AR-50 to the Species-Observations-Combined Dataset. In addition to geopandas the Python
packages pandas and shapley were used for this.

4.2.5 Landscape Data

As with the AR-50 Dataset the Landscape Datasets consists of a series of polygons. This
time the data was found at the website of the Species Databank(artsdatabanken). Where the
classification of different landscapes can be downloaded as a geojson files. The geojson files
were opened with geopandas, and the package shapley was used to check every location point
against the polygons in the geojsons. Most observation points were classified through this
and the remaining points were classified according to the prediction of the k-NN algorithm.

4.3 Computer Code Used for Data Collection and Pro-
cessing

The code for collecting and processing the Data can be found in the GitHub project:
https://github.com/vegardwho/MasterThesis
In the jupyter Notebooks:

e Webscraping the Norwegian Species Observation Service( Artsobservasjoner) webscrap-
ing_species_observations.ipynb

e Processing and merging the collected data: geo_pipeline_species_observation.ipynb
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Chapter 5

Experiments

In this chapter the experiments performed for this thesis are described. This includes fit-
ting and training SVMs and computer vision models, and the use of additional location
information to improve their accuracy.

5.1 Location as Auxiliary Information

Initial experiments were based on the possibility of using existing computer vision models
as is and supplying additional information using location data. This was either done by
weighting the model predictions with the location model predictions.

5.1.1 SVM on LeafSnap with Height and Latitude

Gupta and Florescu [31] created a SVM classifier on the Flavia dataset. The classifier
produced a 98.604% accuracy. The classification is based on a collection of extracted features
such as mean and standard deviation of the RGB values, aspect ratio, area, circumference,
circularity, rectangularity and image moments. These are among the features outlined by
Waldchen and Méder [I7] in their literature review. I was able to confirm through personal
correspondence with Aayush Gupta, that these features were selected from various different
studies in order to get the best results. Four examples of leaf scans from the Flavia Dataset,
with rectangular and ellipsoid features drawn on the them, can be seen in Figure [5.1]

The same procedure was applied for feature extraction on the LeafSnap Dataset to determine
how well the SVM method scales and how well it works on a different dataset. In addition
to this I tried to add sampled location data from the Species-Observation Dataset where a
species from Flavia is mapped to a species in Species-Observation Dataset.
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Figure 5.1: Four leafs from the Flavia Dataset, with the features rectangle and ellipsoid
drawn around them.

5.1.2 LeafSnap with CNNs and Semi-Simulated Location Data

A CNN classifier created by Vishwajith [32] on the LeafSnap data-set increased the accuracy
from 70.8% to 86.2% for Top-1, and 96.8% to 98.4% for Top-5, when compared with the
[29, [32]. It should also be possible to gain 91.86% top 1 accuracy with a pretrained VGG-19

model[33].

An exploratory experiment was done using the LeafSnap images and location data from art-
sobservasjner.no, where a Convolutional Neural Network(CNN) is trained on the LeafSnap
Dataset and the CNN-output is augmented based on location data. Here the 185 species from
LeafSnap-data are mapped to the 185 most common species in the Species-Observation-185
Dataset. Each image is given a location sampled from the Observation-Data correspond-
ing to the species the LeafSnap-species is mapped to. The pretrained models, Resnet-18,
34, 50 and 101, are trained on the LeafSnap-images and their output is augmented either
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by multiplication or addition with KDE, KNN and an In Area value. Here the unbalanced
data-points in the Species-Observation-185 Dataset is handled with SMOTE. KDE and KNN
are explained in the Theory chapter, while the In Area with Floor values gives 1 to species
observed within a given radius and 0.1 to species not observed. This is further explained in
section In Area values are added both through addition and multiplication.

5.2 Species-Observations with Locations

On the Species-Observation-Combined Dataset we first trained different computer vision
models on the collected images. These images are transformed into a resolution of 225x225
pixels before being put through the Computer Vision models. This is quite a low resolution,
but gives us more errors to work with when trying to improve the models accuracies. It is
also a manageable size for the my laptop to work with. After training we choose one or two
models to see if their accuracy can be increased by using location based methods. The species
concentration for the top 100 observed photographed plant species(Species-Observation-100
Dataset) can be seen in Figure [5.2] The dataset contains 844603 samples of 100 different
plant species and a histogram showing the number of observation per species can be seen in

Figure

The different distributions for the species Vaccinium myrtillus/European Blueberry and Acer
pseudoplatanus/Sycamore can be seen inn Figure and an image of both can be seen in
Figure[5.5] From the Figure it is easy to see that these two plants have different distributions.
The Sycamore is a non native species imported in the 17-hundreds and is now considered
an invasive species[34]. Since it is imported it makes sense that the plant is found along the
coast. The European blueberry grows all over Norway, as can be seen in Figure[5.4] It is this
difference seen here that we wish to exploit in order to increase the precision of the models.

5.2.1 Location Based methods

The location based method used in order to improve the predictions are:

e k-Nearest Neighbours (k-NN).
Kernel Density Estimation (KDE).
Weighing plant species within a given radius.

Multinomial logistic model.

Relative frequency weighting.

Here is a quick overview of how they are implemented
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Observation distribution

Figure 5.2: Heatmap showing the distribution and concentration of the Species-Observation-
100 Dataset
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Figure 5.3: Histogram showing the number of observation per species in the Species-

Observation-100 Dataset.

Vaccinium myrtillus/European blueberry

Acer pseudoplatanus/Sycamore

Figure 5.4: Heatmap showing the different distributions of European Blueberry and the

Sycamore tree.
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(a) European Blueberry (b) Sycamore

Figure 5.5: Image of a Blueberry and a Sycamore
E-NIN

k-NN method is outlined in subsection Where the k nearest points votes on what the
point is and the probability is given by this. Here it is implemented on the entire Combined
Dataset using the locations from the Species-Observation-100 Dataset to give probabilities
for the location in question. Every row in the Combined Dataset is given a array of 100
probabilities for every k value we want to look at.

KDE

The KDE estimation for a point is calculated by taking a square around the point and
using the points within that square in the Species-Observation-100 Dataset. This produced
an array of length 100 with a KDE value for every plant species at the given point in the
Combined Dataset. Again every row got an array for every combination of square and
bandwidth size.

Weighting plants with In Area

The In Area value comes from looking at the surrounding area of a point, from the Combined
Dataset, and weighting all plants found within a given radius in the Species-Observation-100
Dataset as 1. The plants not within the radius are given the value 0. This creates an array
of length 100 for each point and for every radius we are interested in. The In Area weighting
is done in two different ways. The first way is to add extra weight for the plants observed in
the area. This will be referred to as In Area. The other way is to set all plants observed in
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the area to 1 and all other values to a value ¢ and multiply the proposed probabilities, from
the computer vision model, with the tensor containing the 1s and ¢s and then normalizing
the product. This will be referred to as In Area with Floor

Multinomial Logistic Model

This model uses all relevant categorical values connected to the location in question. This
includes the landscape and sub landscape classification for the Landscape Data. From AR-
50 Dataset the values for Area type, Agricultural Land, Forrest type, Forest bonity and
Field type. The height was also slit into 5 categories corresponding to height intervals, did
the same for the latitude spans. In addition to this I also added the county for the given
observation and used the LogisticRegression from the python package sklearn.

Relative Frequency Weighting.

Weighting the models’ proposed probabilities by the Relative Frequency within the current
area. This was done in two slightly different manners. For both the map is partitioned into
squares and the relative frequency of the plants observed in each square is determined. This
was done for squares of varying sizes by taking the eastern and western most points and
separating the area between them into 8, 10 , 15, 20, 30, 40, 50 ..., 100 intervals. Then
taking intervals of same lengths from the southern most point until the northern most point
is within an interval. These squares are partitions of the map consisting of areas of sizes
between 28606 km? and 143 km?.

For the first method the probabilities for an observation in a square are multiplied by the
plant species relative frequency in that square and the surrounding eight. The second method
we give all values of zero the lowest positive number found in the combined nine squares.
These two methods will be referred to as Relative Frequency Weighting without Floor and
Relative Frequency Weighting with Floor.The partition and squares of interest for 131km x
131km and 62km x 62km can be seen in Figure [5.60 This method is based on iNaturalists
former geomodel [23].
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(a) 131km x 131km (b) 62km x 62km

Figure 5.6: Partitioned area for 10 intervals east to west b) giving squares of 17161km?,
and area for 20 intervals a) giving squares of 3844km?. With the area of interest and its
surrounding squares highlighted.
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5.3 Machine Learning Training

The code for training the machine learning models utilized in this thesis can be found in the
GitHub project:

https://github.com/vegardwho/MasterThesis

In the jupyter Notebooks:

e SVM on Flavia and LeafSnap data: SVM _flavia_leafsnap.ipynb
Creating the geo samples for the Leafsnap experiment with semi-simulated data:
geo_functions_leafsnap.ipynb

Training and Testing the computer vision models on LeafSnap data and location data
. train_test_geo_leafsnap.ipynb
Training the Computer vision models on species observation data: geo_on_species_observation.ipynb

Create plots used in the thesis: species_observation_create_plots.ipynb

Most of the code used for training the computer vision models is based on the Deep-Leafsnap
github code of Vishwajith [32] at https://github.com/sujithv28 /Deep-Leafsnap. It has how-
ever been changed significantly. The code in SVM flavia_leafsnap.ipynb is mostly an ex-
tention of Gupta and Florescu [31] work at: https://github.com/AayushG159/Plant-Leaf-
Identification.
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Chapter 6

Results

In this chapter the results from the experiments are presented.

6.1 Preliminary experiments:

These are the results of the first experiments on the already existing Datasets Flavia and
LeafSnap, where the species in those sets are mapped to species in the Species-Observations
Dataset and locations are sampled from the mapped species in the Species-Observations
Dataset.

6.1.1 SVM on LeafSnap with Height and Latitude

By using SVM Gupta and Florescu [31] were able to classify the leaves in the Flavia-dataset
with an accuracy of 98.604%. As seen in Table

Table 6.1: Results for SVM on Flavia-dataset

# Plants  Accuracy/Recall[%] Precision[%] F-Score[%]
32 98.604 98.604 98.604

Using the same code I was able to perform the same feature extraction from the LeafSnap
Dataset. Four examples of LeafSnap scans with the features rectangularity and ellipsoid
drawn on them can be seen in Figure [6.1] In this experiment we discard samples form the

45



254

50

751

100 -

125 A

150 -

175 A

200 4

254

504

754

100 -

125 A

150

175 A

200 A

Figure 6.1: Four leafs from the LeafSnap Dataset, with the features rectangle and ellipsoid
drawn around them.

LeafSnap Dataset with low quality, where features such as area and rectangularity were not
possible to determine.

For each selection of plants species, going from 10 to 150 different plants in increments of
10s, 5 SVMs were created. Each of the SVMs is fitted with randomly sampled plant species
with 60 sampled images for each of them. The parameters for each SVM were determined
by optimizing the result on the training data using a grid search over Radial basis function
kernels and Linear Kernels. The average and max values for the SVMs classifications can <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>