
Applied Categorical Structures (2023) 31:22
https://doi.org/10.1007/s10485-023-09711-6

Profunctors Between Posets and Alexander Duality

Gunnar Fløystad1

Received: 18 August 2021 / Accepted: 30 January 2023 / Published online: 10 April 2023
© The Author(s) 2023

Abstract
We consider profunctors f : P |−→Q between posets and introduce their graph and ascent.
The profunctors Pro(P, Q) form themselves a poset, and we consider a partition I � F of
this into a down-set I and up-set F , called a cut. To elements of F we associate their graphs,
and to elements of I we associate their ascents. Our basic results is that this, suitably refined,
preserves being a cut: We get a cut in the Boolean lattice of subsets of the underlying set of
Q × P . Cuts in finite Booleans lattices correspond precisely to finite simplicial complexes.
We apply this in commutative algebra where these give classes of Alexander dual square-free
monomial ideals giving the full and natural generalized setting of isotonian ideals and letter-
place ideals for posets. We study Pro(N, N). Such profunctors identify as order preserving
maps f : N → N ∪ {∞}. For our applications when P and Q are infinite, we also introduce
a topology on Pro(P, Q), in particular on profunctors Pro(N, N).

Keywords Profunctor · Poset · Cut · Distributive lattice · Duality · Alexander duality ·
Stanley–Reisner ideal · Graph · Ascent · Letterplace ideal
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Introduction

This article advocates for general posets P and Q the notion of profunctor P |−→Q as
more effective than the notion of isotone (order preserving) maps P → Q between posets,
especially for applications in algebra.When Q is totally ordered, these notions are practically
the same, butwhen Q is not, profunctors seem to have a clear advantage for developing natural
theory.

Let 2 be the two element boolean poset {0 < 1}. A profunctor P |−→Q is simply an isotone
map P×Qop → 2. If P and Q are sets (discrete posets), then this is simply a relation between
P and Q. The notion of profunctor may generally be defined between categories or between
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Fig. 1 Profunctor from [5] to [4]

categories enriched in a symmetric monoidal closed category (like 2), see [2], [3], or, for a
recent gentle introduction focusing on applications, [13, Section 4].

The opposite Pop of a poset P , has the same elements but order relation reversed. The
elements in the distributive lattice ̂P associated to P identifies as pairs (I , F), called cuts,
where I is a down-set in P and F the complement up-set. There is then a duality between ̂P
and P̂op sending (I , F) to (Fop , I op ). We call two such pairs dual or Alexander dual (as is
common in combinatorial commutative algebra).

Denote by Pro(P, Q) the profunctors P |−→Q. This is again a a partially ordered set
and the opposite of this poset is Pro(Q, P). The basic notions we introduce associated to a
profunctor f : P |−→Q between posets are the notions of its graph � f and its ascent � f .
These are dual notions in the sense that if g : Q |−→P is the dual profunctor, the graph of f
equals the ascent of g. LetU P andU Q denote the underlying sets of P and Q. In Pro(P, Q)

let I be a down-set and F its complement up-set, so (I,F) is a cut for Pro(P, Q). Let F�

be the up-set in the Boolean lattice of all subsets of U Q × U Pop generated by the ascents
� f for f ∈ F . Let I� be the down-set in this Boolean lattice generated by the complements
of the graphs � f for f ∈ I.
Example 0.1 In Fig. 1 the red discs give the graph of a profunctor [5] |−→[4]. The blue circles
give the ascent of this profunctor. The graphs and the ascents are then subsets of U [4] ×
U [5]op . The up-set F� is the up-set of the Boolean lattice of subsets of U [4] × U [5]op
generated by the ascents of f ∈ F . The down-set I� is the down-set of this Boolean lattice
generated by the complements of graphs of f ∈ I.

Our main theorem states the following.

Theorem 3.7.(Preserving the cut) Let P and Q be well-founded posets, and (I,F) a cut for
Pro(P, Q). Then (I�,F�) is a cut for the Boolean lattice of subsets of U Q × U Pop .

Example 0.1 continued. This says that given any subset S of U [4] × U [5]op , then either S
contains an ascent � f for f ∈ F , or the complement Sc contains a graph � f for f ∈ I.
These two cases are also mutually exclusive.

This theorem has alternative formulations in Theorem 3.9 asserting that two up-sets are
Alexander dual, with applications to Stanley–Reisner theory, and in Theorem 3.10 asserting
that the map sending the ideal I to the ideal I� respects the duality on profunctors. In
Theorem 7.1 we give a version with conditions on P and Q ensuring that � f and � f are
always finite sets, suitable for applications to monomial ideals, Sect. 8. An open problem is
if a more functorial formulation is possible, Problem 3.11.
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Althoughwedevelop a general theory here, our originalmotivation came fromapplications
related to commutative algebra.
Applications to Stanley–Reisner theory. When P and Q are finite posets we get general
constructions, Sect. 4, of Alexander dual squarefree monomial ideals, generalizing isotonian
ideals and letterplace and co-letterplace ideals, [7, 8, 10, 16, 17]. In particular, when Q is a
chain these constructions have given very large classes of simplicial balls and spheres, [5,
11].
Applications to order preserving maps f : N → N ∪ {∞}. The profunctors from N to N

identify as order preserving maps from N to the distributive latticêN, and the latter identifies
as N ∪ {∞}. Profunctors f : N |−→N are the topic of many our examples. These benefit the
reader with a quick access to many of our notions and results: 1.2, 1.4, 2.5, 2.12, 2.13, 3.3,
3.8, 5.10, 6.7, 6.8, 6.9. See also the end of Sect. 8.

Injective order preserving maps f : N → N form the so called increasing monoid, which
has gained recent interest. In [20] Nagel andRömer show that ideals in the infinite polynomial
ring invariant for the increasing monoid, have an essentially finite Gröbner basis, thereby
generalizing previous results for the symmetric group. In [14] Güntürkün and Snowden
studies in depth the representation theory of the increasing monoid. Note that the injective
order preserving maps g : N → N are in bijection with order preserving maps f : N → N

by g = f + id − 1. Order preserving maps f : N → N also occur in the definition of the
bicylic semi-group [6], a basic notion in inverse semi-group theory. Our main application is
in [9], relating profunctors f : N |−→N (i.e. order preserving maps f : N → N ∪ {∞}) to
the duality theory of strongly stable ideals in the the infinite polynomial ring k[xi ]i∈N.

In order for the substantial parts of our theory, related to graphs and ascents, to work well
we must have certain conditions on the posets P and Q. Our weakest condition is that they
are well-founded. For our applications to polynomial rings, we work in the class of natural
posets, Sect. 6. These are posets where all anti-chains are finite and for every x in the poset
the principal down-set ↓ x is finite. This is a subclass (closer to natural numbers) of well
partially ordered sets.

Another feature we introduce is a topology on Pro(P, Q), Sect. 5, in particular on
Pro(N, N). This is needed for our applications to commutative algebra. For Pro(N, N) a
basis for the topology consists of intervals [ f , g] where i) the image f (N) is contained in a
finite interval, and ii) g(p) = ∞ for all but a finite set of p’s.

Organization of article:

1. Preliminaries on posets. Notions for posets are recalled, most significantly cuts for
posets and the associated distributive lattice. It relates to simplicial complexes, Alexander
duality, and Stanley–Reisner rings.

2. Profunctors between posets.We introduce these and develop basic theory.
3. The graph, the ascent and preserving the cut.We give our main theorem on

Alexander duality, together with variants.
4. Applications to finite posets and Alexander duality. We connect to com-

mutative algebra and get Alexander dual ideals in finite dimensional polynomial rings.
5. Topology on Pro(P, Q). We define the topology and in particular look at interior

open down-sets.
6. Profunctors between natural posets. We consider natural posets P and Q and

investigate the topology in this setting. We show an open down-set is also closed (clopen
down-set), if and only if it is finitely generated.
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7. Natural posets and finite type cuts.We give the version of the main theorem for
natural posets, suitable to get Alexander dual ideals in (infinite dimensional) polynomial
rings.

8. Monomial ideals. When Q = N we get monomial ideals in the polynomial ring
generated by x p, p ∈ P . We briefly indicate the applications to strongly stable ideals in
[9] when P = Q = N.

Note. We let N = {1, 2, 3, . . .}. We only use the ordered structure on this so we could equally
well have used N0 = {0, 1, 2, 3, · · · }. Only in the last Sect. 8 do we, in a somewhat different
setting, use the commutative monoid structure and then we explicitly write N0.

1 Preliminaries on Posets

We give basic notions and constructions concerning posets: down-sets, up-sets, dualities,
distributive lattices, simplicial complexes. We also recount the algebraic notions of Stanley–
Reisner ideal and ring.

1.1 Down- and Up-Sets in P

Let P be a partially ordered set. The opposite poset Pop has the same underlying set as P
but with order relation ≤op where p ≤op q if p ≥ q in P .

A down-set I of P is a subset of P closed under taking smaller elements. An up-set F in
P is a subset of P closed under taking larger elements. If I and F are complements of each
other, we call (I , F) a cut for P . Since each of I and F determine each other, we sometimes
denote this as (−, F) if we focus on F , and similarly with (I ,−). Down-sets are sometimes
called order ideals and up-sets order filters, whence the suggestive notation I and F . (The
single term ideal is usually reserved for order ideals in lattices closed under joins.)

An element p ∈ P induces the principal up-set ↑ p consisting of all p′ with p′ ≥ p, and
a principal down-set ↓ p consisting of all p′ ≤ p.

Definition 1.1 The Alexander dual (or just dual) of the cut (I , F) for P is the cut (Fop , I op )

for Pop . The Alexander dual of the down-set I is the down-set J = Fop of Pop , and the
Alexander dual of the up-set F is the up-set G = I op .

1.2 The Distributive Lattice

If P and Q are two partially ordered sets, amap f : P → Q is isotone if it is order-preserving,
i.e. p1 ≤ p2 implies f (p1) ≤ f (p2). We denote by Hom(P, Q) the set of all isotone (order-
preserving) maps f : P → Q. It is itself a partially ordered set (an internal Hom) by f ≤ g
if f (p) ≤ g(p) for every p ∈ P . The opposite poset Hom(P, Q)op naturally identifies as
Hom(Pop , Qop ). The category of posets forms a closed symmetric monoidal category and
so for any three posets P, Q, R we have:

Hom(P × Q, R) ∼= Hom(P,Hom(Q, R)). (1)

Denote by 2 the ordered set {0 < 1}. The (complete) distributive lattice associated to P
is ̂P = Hom(Pop , 2). Given an f ∈ ̂P , the elements p in P such that pop maps to 1 ∈ 2,
constitute a down-set I in P . The complement up-set F in P consists of those p ∈ P such
that pop maps to 0. An element f of ̂P may thus be identified either with:
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Fig. 2 The poset P and its cut ((↑ p)c, ↑ p)), giving p̂ in P̂

• A down-set I of P ,
• An up-set F of P ,
• A cut (I , F) for P .

We shall usually identify elements of ̂P with the down-sets DP . In categorical terms DP
is the free cocompletion of P . Thus an element i ∈ ̂P is a down-set I of P . However we
sometimes will consider the elements of ̂P to be cuts (I , F) for P . We speak of a cut (I , F)

in ̂P , or equivalently a cut (I , F) for P . The cuts for P are then ordered by

(I , F) ≤ (J , G) if and only if I ⊆ J or equivalently F ⊇ G.

The distributive lattice ̂P has a unique maximal element, denoted ∞. It sends every pop

to 1, and corresponds to the cut (I , F) = (P,∅).

Example 1.2

• P = [n] = {1 < 2 < · · · < n} has cuts (I , F) where I = {1, 2, . . . , i − 1} and
F = {i, . . . , n} for i = 1, . . . , n + 1. Thus ̂P ∼= [n + 1] = [n] ∪ {∞} where ∞ = n + 1.

• Any set A may be considered a discrete poset (only relations are a ≤ a). Then ̂A is the
Boolean lattice on A. It consists of subsets S ⊆ A. We identify such a subset with the
cut (S, Sc). (So for instance the cut (−, T ) identifies as the subset T c in A.)

• If P = N the natural numbers, then ̂N = N ∪ {∞}.
Given an element p in P we get a map

p̂ : Pop → 2,

where if p′ ≥ p we send p′op �→ 0 and all other elements of Pop to 1. It corresponds to the
cut ((↑ p)c,↑ p) for P (where ()c denotes the complement set).

This gives a distinguished injective poset map

P −→ ̂P = Hom(Pop , 2), p �→ p̂, corresponding to the cut ((↑ p)c,↑ p) (2)

see Fig. 2. Note that the image of the map (2) is in ̂P\{∞}.
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Remark 1.3 A poset may be considered a 2-category for the symmetric monoidal closed
category 2. Where

Hom2(p′, p) =
{

1 p′ ≤ p

0 p′
� p

.

The map (2) is not the Yoneda embedding

P → Hom(Pop , 2), p �→ Hom2(−, p). (3)

Rather the map (2) is derived as follows. One has the Yoneda embedding:

Pop → Hom(P, 2), p �→ Hom2(p,−).

Taking the opposite of this we get:

P → Hom(P, 2)op . (4)

This is the co-Yoneda embedding, [1]. Note that 2op ∼= 2 by sending 0op �→ 1 and 1op �→ 0.
So

Hom(P, 2)op = Hom(Pop , 2op ) ∼= Hom(Pop , 2) = ̂P. (5)

In general however, for instance ordinary categories with set instead of 2, the Yoneda and
co-Yoneda embedding map to different categories. Composing (4) above with (5) we get the
embedding (2).

Example 1.4 Let P = [n]. The map (2), the co-Yoneda embedding, is

[n] −→ ̂[n] = [n + 1], i �→ i .

On the other hand the Yoneda embedding (3)

[n] −→ ̂[n] = [n + 1], i → i + 1.

In particular the top element n �→ n + 1 = ∞.
In more abstract terms, the Yoneda embedding embeds a chain of length n into the upper

part of a chain of length n +1, while the co-Yoneda embedding embeds it into the lower part.

1.3 Down- and Up-Sets in̂P

Let I be a down-set for ̂P , and F the complement up-set of ̂P . So I consists of cuts (I , F)

closed under forming cuts with smaller I ’s, and F consists of cuts (I , F) closed under
forming cuts with larger I ’s (or equivalently smaller F’s). Then (I,F) is a cut for ̂P (note
again terminology: (I , F) is a cut in ̂P). Also (I,F) is a cut in ̂

̂P .

Lemma 1.5 A cut (I ′, F ′) in ̂P is in I iff F ′ ∩ I �= ∅ for every (I , F) in F .

Proof That (I ′, F ′) is in I means that we cannot find any (I , F) in F such that I ⊆ I ′.
Alternatively F ′ ∩ I �= ∅ for each (I , F) in F . ��

For later use we look closer at Alexander duality for ̂P and̂
̂P . A cut (I , F) for P , i.e. a

cut in ̂P , gives a dual cut (Fop , I op ) for Pop . A cut (I,F) for ̂P , i.e. a cut in̂
̂P gives a dual
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cut (Fop , Iop ) for (̂P)op = P̂ op which we denote by P ôp . Thus (Fop, Iop) is a cut in P ̂ôp .
For u = (I , F) ∈ I ⊆ ̂P , then uop ∈ Iop is

uop = (I , F)op = (Fop , I op ) ∈ P ôp .

So when we take the dual of the cut (I,F) for ̂P , we not only get a switch (Fop , Iop ) but
also the elements u = (I , F) of I or F are switched, to uop = (Fop , I op ).

1.4 Finite Type Cuts

The elements of the distributive lattice ̂P identify as cuts (I , F).

Definition 1.6

• ̂Pf in is the sublattice of ̂P consisting finite cuts: cuts (I , F) where I is finite.
• ̂P f in is the sublattice of ̂P consisting of cofinite cuts: cuts (I , F) where F is finite.

When P is an infinite discrete poset, an infinite set, such cuts (I , F) of P are a standard
example of infinite Boolean algebras, called finite-cofinite algebras.

Definition 1.7 A finite type ̂P-cut is a pair (I,F) where F is an up-set for ̂Pf in and I a
down-set for ̂P f in such that the following holds.

1. (I , F) ∈ I if and only if F ∩ J �= ∅ for every (J , G) ∈ F .

2. (J , G) ∈ F if and only if F ∩ J �= ∅ for every (I , F) ∈ I.

Note that for P finite then 1 and 2 are equivalent. If P is infinite, one of the above will
in general not imply the other. The point of having both fulfilled is that F determines I by
1, and vice versa by 2. If only 1 holds then F determines I, but one may not be able to
reconstruct F from I.

In Sect. 7 we construct such finite type cuts for infinite posets.

1.5 Simplicial Complexes and Stanley–Reisner Rings

Let A be a set. A simplicial complex X on A is a set of subsets of A closed under taking
smaller subsets, i.e. if I ∈ X and J ⊆ I , then J ∈ X .

The set A may be considered as a poset with the discrete poset structure, i.e. the only
comparable elements are a ≤ a for a ∈ A. Then ̂A identifies as the Boolean lattice on A (see
Example 1.2), consisting of all subsets of A. A cut (I,F) for ̂A corresponds precisely to a
simplicial complex X . The elements I in X give the cuts (I , I c) in I.

The Alexander dual simplicial complex Y of X consists of all the complements I c of
subsets I ⊆ A such that I is not in X . The Alexander dual cut (Fop , Iop ) for ̂Aop ∼= ̂A then
corresponds to Y : The cuts (Fop , I op ) in Fop give precisely the elements Fop = (I op )c in
Y .

Denote by k[xA] the polynomial ring in the variables xa for a ∈ A. When A is finite,
to the simplicial complex X corresponding to the cut (I,F), we associate a monomial
ideal IX in k[xA], the Stanley–Reisner ideal of X . It is generated by monomials xI =
∏

i∈I xi for (I , F) ∈ F . These are the subset I of A such that I is not in the simplicial
complex X . Themonomials in theAlexander dual Stanley–Reisner ideal IY are then precisely
those monomials which have non-trivial common divisor with every monomial in IX , by the
characterization of Lemma 1.5.
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When A is infinite, we still have a polynomial ring k[xA]. But the construction above
does not give meaning if F is non-empty, since there would be (I , F) in F with I infinite.
However if (I,F) is a finite type ̂A−cut, it gives rise to a Stanley–Reisner ideal IX of k[xA],
as above.

2 Profunctors Between Posets

We introduce profunctors P |−→Q between posets. Such a profunctor has a dual Q |−→P
and we investigate this correspondence. For an introduction to profunctors, see [13, Chap.4].
See also [3, Section 7] and [2] where they are called distributors.

2.1 Duality on Profunctors

A profunctor P |−→Q is simply a poset homomorphism P → ̂Q. By the adjunction

Hom(P, ̂Q) = Hom(P,Hom(Qop , 2))

= Hom(P × Qop , 2)

= Hom((Q × Pop )op , 2) = (Q × Pop )̂.

Thus a profunctor is equivalently an isotone map P × Qop → 2 and this is often taken as
the definition. It is also equivalently an element of the distributive lattice (Q × Pop )̂, and so
corresponds to a cut (I , F) for Q × Pop . (Our convention differs somewhat from [13], since
there a profunctor P |−→Q corresponds to an isotone map Pop × Q → 2.)

In particular if Q = B and P = A are sets, this is simply a subset of B × Aop or a
relation between the sets A and B. Profunctors are also called distributors or bimodules in
the literature. We denote the set of profunctors P |−→Q as Pro(P, Q)(= Hom(P, ̂Q)). It is
itself a partially ordered set, in fact a distributive lattice.

Remark 2.1 Profunctors can be taken to be the morphisms between two ordered sets. They
may be composed and form a category. R.Rosebrugh and R.J.Wood show in [21] that this
category is equivalent to the category of totally algebraic lattices, those of the form ̂P for
some poset P , with supremum-preserving isotone maps. (There the term ideal is used for
profunctor.)

Order theory may also be done in a more categorical setting, for objects in a topos as
in [21], or even more general categories [4]. The result of Rosebrugh and Wood mentioned
above also has a more general categorical formulation [22] in terms of a monad on a category
where idempotents split.

When (I , F) is the cut of Q × Pop corresponding to f , the down-set I may be considered
as a relation defining the profunctor. We then write q f p when (q, pop ) ∈ I .

Lemma 2.2 Given a profunctor f : P |−→Q.

a. The following are equivalent: i) q ∈ f (p) and ii) q f p.
b. The following are equivalent: i) q ∈ f (p)c, ii) f (p) ≤ q̂, and iii) ¬ q f p.

Proof Let f correspond to P → ̂Q = Hom(Qop , 2). That q ∈ f (p), the latter a down-
set, means that qop �→ 1. This says (p, qop ) �→ 1, and so (q, pop ) is in the down-set I
corresponding to f .

The element q̂ corresponds to the cut ((↑ q)c,↑ q). That f (p) ≤ q̂ then means that
f (p) ⊆ (↑ q)c, or equivalently q /∈ f (p). ��
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Since Pro(P, Q) identifies as (Q × Pop )̂, the following is seen to be natural, by taking
opposites.

Lemma 2.3 Let P, Q be posets. There is a a natural isomorphism of posets

Pro(P, Q)op
D∼= Pro(Q, P).

Proof First

Hom(P, ̂Q)op ∼= Hom(Pop , (̂Q)op ) ∼= Hom(Pop ,Hom(Q, 2op )).

Using that 2op naturally is isomorphic to 2, and the adjunction (1) this further becomes

Hom(Pop ,Hom(Q, 2)) ∼= Hom(Pop × Q, 2) ∼= Hom(Q,Hom(Pop , 2))
∼= Hom(Q, ̂P).

��

Here is more detail on the duality D.

Lemma 2.4 Given a profunctor f : P |−→Q and its dual g = D f : Q |−→P.

a. q f p if and only if ¬ pgq,
b. f (p) = {q ∈ Q | g(q) ≤ p̂}.

In particular f (p) = ∞ if and only if g(q) ≤ p̂ for every q ∈ Q.

Proof If f corresponds to the cut (I , F) of Q × Pop , the dual profunctor g corresponds to
the cut (Fop , I op ) of P × Qop . The statements in a are equivalent to (q, pop ) ∈ I .

For part b, the condition q ∈ f (p) is equivalent to g(q) ≤ p̂ by part a and Lemma 2.2. ��

Example 2.5 Let P = Q = N = {1, 2, 3, . . .} and consider a profunctor f : N |−→N (see
Example 1.2) which is an isotone map f : N → N ∪ {∞}. Let its values be

2, 2, 4, 5, 5, 7, . . . .

In Fig. 3 the graph of f are marked with red discs . We fill in with blue circles to make a
connected “snake”, starting at position (1, 1). The graph of the dual map g = D f is given
by the blue circles by considering the vertical axis as the argument for g. The values of g are

1, 3, 3, 4, 6, 6, . . . .

Observe that for a profunctor f : N |−→N (which identifies as an isotone f : N → ̂N), then
f (1) ≥ 2 iff the dual map g = D f has g(1) = 1. Hence there are no self-dual maps f .

The profunctor f corresponds to the cut (I , F) for N × N
op (where N corresponds to the

y-axis and N
op to the (reversed) x-axis) where the up-set F is given by filling in red discs

vertically above those in the graph, see Fig. 4, and the ideal I is given by filling in blue circles
to the right of those which are present in Fig. 3.
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Fig. 3 Graph (red) and ascent (blue) of profunctor f in Example 2.5
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...

· · ·

Fig. 4 Cut (I , F) (in resp. blue, red) corresponding to the profunctor f in Example 2.5

2.2 Alexander Duality

Definition 2.6 Recall that a profunctor f : P |−→Q is an isotone f : P → ̂Q.

• For fixedq ∈ Q, the down-set Pro≤q̂(P, Q) is the set of profunctors f such that f (p) ≤ q̂
for all p.

• For fixed p ∈ P , the down-set Proim (p)<∞(P, Q) is the set of profunctors f such that
f (p) < ∞.

• The down-set Pro<∞(P, Q) is the set of profunctors f such that f (p) < ∞ for every
p ∈ P .
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Lemma 2.7 The down-sets Pro≤q̂(P, Q) and Proim (q)<∞(Q, P) are Alexander duals.

Proof That f (p) ≤ q̂ is equivalent to, letting g = D f , that p ∈ g(q). That this holds for
all p ∈ P is equivalent to g(q) = ∞. The Alexander dual down-set of Pro≤q̂(P, Q) is then
those maps g not fulfilling g(q) = ∞. ��
Corollary 2.8 If Q has a maximal element, then Pro<∞(P, Q) and Pro<∞(Q, P) are Alexan-
der dual down-sets.

Note: By symmetry of the conclusion, this holds under the weaker assumption that P or
Q has a maximal element.

Proof If q is the maximal element of Q the down-sets of Lemma 2.7 are respectively
Pro<∞(P, Q) and Pro<∞(Q, P). ��

2.3 Profiles and Co-profiles

Definition 2.9 The profile of a profunctor f : P → Q is the cut (I , F) for P where the
profile up-set F consists of all p ∈ P such that f (p) = ∞, and the profile down-set I = Fc

is the complement down-set.
The co-profile of f is the cut (J , G) for Q where J is the union of all f (p) (considered

as a down-set of Q) for p ∈ P , and G is the complement of J .

The following is immediate.

Lemma 2.10 Let f : P |−→Q be a profunctor.

a. Its profile up-set F = {p ∈ P | q f p for every q ∈ Q}.
b. Its co-profile up-set G = {q ∈ Q | ¬q f p for every p ∈ P}.

If g = D f is the dual, the co-profile of f equals the profile of g (by Lemma 2.4a).

We identify the following subsets of Pro(P, Q).

• ProL(P, Q) are the profunctors f whose profile down-set I is finite. These maps
are called large. Then f (p) = ∞ for all but a finite number of p’s.

• ProS(P, Q) are the f whose coprofile down-set J is finite. These maps are called
small. Then there is a finite down-set bounding the f (p), i.e. all f (p) ⊆ J .

• Prou(P, Q) are the f which are in neither the above, so both the profile down-set
I and co-profile down-set J are infinite.

A consequence of Lemma 2.10 is the following.

Lemma 2.11

a. The duality D switches ProL(P, Q) and ProS(Q, P) and maps Prou(P, Q) to
Prou(Q, P).

b. If P is finite, then ProL(P, Q) = Pro(P, Q).
c. If Q is finite, then ProS(P, Q) = Pro(P, Q).

Example 2.12 Consider profunctors f : N |−→N. By Example 1.2 recall̂N = N∪{∞}. Such
a map is large if f (n) = ∞ for some n. It is small if f is eventually constant, so f (n) = c
for all n ≥ n0. The maps in Prou(N, N) are the maps f : N → N which are not bounded, so
limn→∞ f (n) = ∞. We see the naturalness of considering Pro(N, N) instead of Hom(N, N):
The latter is not self-dual while the former is. Pro(N, N) has two countable dual “shores”
ProL(N, N) and ProS(N, N) and between them an uncountable self-dual “ocean” Prou(N, N).
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22 Page 12 of 30 G. Fløystad

Remark 2.13 The small profunctors ProS(N, N), which are simply boundedmaps f : N → N

are in bijection with the tame (small) increasing monoid of [14] by sending the bounded map
f to f + id − 1.

2.4 Adjunctions

Given an isotone map f : P → Q it induces a pull-back map

f ∗ : ̂Q → ̂P, (J , G) �→ ( f −1(J ), f −1(G)).

This map has a left adjoint

f ! : ̂P → ̂Q, (I , F) �→ ( f (I )↓,−)

where f (I )↓ is the smallest down-set in Q containing f (I ). There is also a right adjoint of
f ∗:

f

! : ̂P → ̂Q, (I , F) �→ (−, f (F)↑)

where f (F)↑ is the smallest up-set in Q containing f (F). All these maps are functorial in
P and Q.

2.4.1 A Variation on the Setting

There is a variation for thesemaps as follows. There is a forgetful functorU : Poset → Set by
mapping a poset to the underlying set. Composingwith the natural inclusion Set → Posetwe
get U : Poset → Poset. The inclusion i : U P → P induces the dual map i∗ : ̂P → (U P)̂.

Suppose we have an isotone map of posets

g : U P → Q.

(This instead of an isotone map f : P → Q. Note also that g is really just a map of sets
U P → U Q.) We then get composites

g

!

U (resp. g!
U ) : ̂P

i∗−→ (U P)̂
g

!

(resp. g!)−−−−−−→ ̂Q. (6)

Here g

!

U sends a cut (I , F) of P to the cut (J , G) of Q where G = g(F)↑ is the up-set of
Q generated by the g(p) for p ∈ F . Note that the above composite g

!◦ i∗ has a left adjoint
i ! ◦ g∗ (although it will not play a role for us).

Also note the following

(g!
U )op = (gop )

!

U : P̂op → Q̂op . (7)

3 The Graph, the Ascent, and Preserving the Cut

We define the two significant notions of this article, the graph and ascent of a profunctor
P |−→Q, or equivalently the right and left boundaries of the cut (I , F) for Q × Pop cor-
responding to this profunctor. Then we state several versions of the main theorem of this
article, Theorem 3.7, on preserving cuts.
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3.1 The Graph and Ascent

Definition 3.1 Denote by 0 the minimal element in Pro(P, Q). It sends every p �→ ∅,
corresponding to the cut (∅, Q). Denote by 1 the maximal element in Pro(P, Q). It sends
every p �→ Q, corresponding to the cut (Q,∅).

Recall that for a poset P then U P denotes the underlying set, considered as a discrete
poset.

Definition 3.2 Let f : P |−→Q be a profunctor. Its ascent is

� f = {(q, p) | q ∈ f (p) but q /∈ f (p′) for p′ < p} ⊆ U Q × U Pop . (8)

Its graph is

� f = {(q, p) | q minimal in the complement f (p)c} ⊆ U Q × U Pop . (9)

Example 3.3 For a profunctor f : N |−→N, see Fig. 3, then � f is the red discs, and � f is the
blue circles.

Note that � f and � f are disjoint. Also note i) �0 = ∅ and �0 = min Q × U P where
min denotes the minimal elements, ii) �1 = U Q × min P and �1 = ∅.
Remark 3.4 Their union B f = � f ∪ � f , might be called the boundary of the cut (I , F).
This union will not play a role here, but it does in [5, Section 2].

3.2 Left and Right Boundaries

We have seen that Pro(P, Q), the profunctors from P to Q, identify as (Q × Pop )̂. So a
profunctor f : P |−→Q corresponds to a cut (I , F) for Q × Pop where

I = {(q, p) | q ∈ f (p)}, F = {(q, p) | q /∈ f (p)}. (10)

Definition 3.5 If (I , F) is a cut for Q × Pop its left and right boundaries are respectively

�I = {(q, p) ∈ I | (q, p′) /∈ I for p′ < p} ⊆ U Q × U Pop

�F = {(q, p) ∈ F | (q ′, p) /∈ F for q ′ < q} ⊆ U Q × U Pop

We see immediately by (8), (9), and (10), that if f corresponds to (I , F) then � f = �I
and � f = �F .

Corollary 3.6 Given dual profunctors

f : P |−→Q, g = D f : Q |−→P.

Let (I , F) be the cut for Q × Pop associated to f , and (J , G) the cut for P × Qop associated
to g.

a. (J , G) = (Fop , I op ).
b. �G = (�I )op , �J = (�F)op .
c. �g = (� f )op , �g = (� f )op .

Proof Part a is by Lemma 2.4. Parts b and c are then immediate from a. ��
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3.3 Extending3 and 0 to the Next Level

We have looked at cuts (I , F) for Q × Pop . Proceeding to the next level, we look at cuts
(I,F) for Pro(P, Q) = (Q × Pop )̂. Elements in this latter set are cuts (I , F) for Q × Pop

partially ordered by (I , F) ≤ (I ′, F ′) if I ⊆ I ′. Thus the down-set I consists of cuts (I , F)

closed under taking cuts with smaller I ’s. Similarly the up-setF is closed under taking larger
I ’s (and so smaller F = I c’s).

We have a map

� : UPro(P, Q) → (U Q × U Pop )̂, f �→ (� f ,−) (11)

and a map

� : UPro(P, Q) → (U Q × U Pop )̂, f �→ (−, � f ). (12)

By (6) the map � induces an isotone map of posets:

�

!

U : Pro(P, Q)̂→ (U Q × U Pop )
̂

̂, (I,F) �→ (−,�(F)↑).

So the image of the cut (I,F) is the cut in the Boolean lattice (U Q × U Pop )̂whose up-set
is �(F)↑, the up-set generated by all � f for f ∈ F .

The map � induces an isotone map of posets:

�!
U : Pro(P, Q)̂→ (U Q × U Pop )

̂

̂, (I,F) �→ (�(I)↓,−).

So the image of the cut (I,F) is the cut in the Boolean lattice (U Q × U Pop )̂whose ideal
is �(I)↓, the ideal generated by the complements (see (12)) of all � f for f ∈ I,

3.4 TheMain Theorem: Preserving the Cut

In order for the left and right boundaries of a cut (I , F) to give enough information we need
to make sure that minimal elements of up-sets of P and Q exists. A poset P is well-founded
if every subset of P has a minimal element. Equivalently, any descending chain of elements

p1 ≥ p2 ≥ · · · ≥ pn ≥ · · ·
stabilizes, i.e. for some N we have pn = pN for n ≥ N .

The following theorem is a strong generalization of the results in several articles [7, 8,
10, 16], see Sect. 4 for more on this. The most significant tool in the argument is Zorn’s
lemma (which is equivalent to the axiom of choice). Note also that Pro(P, Q) is a complete
distributive lattice and so has all joins (colimits) and meets (limits).

Theorem 3.7 (Preserving the cut) Let P and Q be well-founded posets, and (I,F) a cut for
Pro(P, Q). Then (�(I)↓,�(F)↑) is a cut for the Boolean lattice (U Q × U Pop )̂. In other
words, the maps �!

U = �

!

U .

Example 3.8 Consider profunctors Hom([5], ̂[3]) where ̂[3] = [3] ∪ {∞}. Let I be the ideal
consisting of all f not taking the value ∞. The graph of such an f is shown in Fig.5. Such
a path in the rectangle U [3] × U [5]op is a right path. Let F be the complement up-set,
consisting of all g which take the value ∞ for some argument in [5]. The ascent of such a g
is also shown in Fig. 5. Such a path in the rectangle U [3] × U [5]op is an up path. Theorem
3.7 above says that given any subset S of [5] × [3], exactly one of the following holds: i. S
contains an up path, ii. the complement Sc contains a right path. An earlier observation of
this is in [12, Lemma 4.4].
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DATSYØLFRANNUG

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Fig. 5 Profunctors from [5] to [3]. A graph to the left and an (unrelated) ascent to the right

Before proving Theorem 3.7 we state two alternative formulations of this theorem.

Theorem 3.9 Let P and Q be well-founded posets, and (I,F) a cut for Pro(P, Q). The
up-set �

!

U (F) for (U Q × U Pop )̂ generated by all (� f ,−) for f ∈ F , and the up-set
(�op )

!

U (Iop ) for (U P × U Qop )̂generated by all ((� f )op ,−) for f ∈ I, are Alexander
dual up-sets. (This is the version applied in Stanley–Reisner theory, giving Alexander dual
monomial ideals, see Sect.4.)

Proof By the above Theorem 3.7, (�(I)↓)op = �!
U (I)op is the Alexander dual up-set of the

up-set �

!

U (F) = �(F)↑. Then (7) gives �!
U (I,−)op = (�op )!U (−, Iop ). ��

By Corollary 3.6 we have a commutative diagram

UPro(P, Q)
� ��

D

��

(U Q × U Pop )̂

D
��

UPro(Q, P)
� �� (U P × U Qop )̂

. (13)

In the proof below we write �P,Q and �Q,P for these horizontal maps.

Theorem 3.10 Let P and Q be well-founded posets. The following diagram commutes:

Pro(P, Q)̂
�

!

U ��

D
��

(U Q × U Pop )
̂

̂

D
��

Pro(Q, P)̂
�

!

U �� (U P × U Qop )
̂

̂

.

Proof By the commutative diagram (13), �
op
Q,P = �P,Q . Switching P and Q we have

�
op
P,Q = �Q,P . Hence (�

op
P,Q )

!

U equals (�Q,P )

!

U . By the above Theorem 3.9 (�
op
P,Q )

!

U is
the dual of (�P,Q)

!

U and so (�Q,P )

!

U is the dual of (�P,Q)

!

U . ��
Problem 3.11 Theorem 3.7 may be seen as a map

Pro(P, Q)̂→ Pro(U P, U Q)̂.

However considering the naturalmapsU P → P andU Q → Q none of the natural functorial
ways to get a map as above, gives the map �! = �

!

. For instance we can not see a natural
factorization of the above map through Pro(U P, Q)̂.
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Is there a way to understand or formulate the theorem to get a functorial construction,
which works for maps P ′ → P and Q′ → Q (or in some other way)?

Proof of Theorem 3.7 We need to show that the down-set �(I)↓ is the complement of the
up-set �(F)↑ in the Boolean lattice (U Q × U Pop )̂. ��
Part I. We first show that for any (I , F) ∈ I and (J , G) ∈ F that

�F ∩ �J �= ∅.

By Lemma 1.5 this shows that �(I)↓ and �(F)↑ are disjoint.
If (I , F) ∈ I and (J , G) ∈ F then (F ∩ J ) ⊆ Q × Pop is �= ∅ by Lemma 1.5. Let

(q0, p0) ∈ F ∩ J . Define (qi , pi ) in F ∩ J successively as follows. If there is a q < qi such
that (q, pi ) is in F , then let (qi+1, pi+1) be (q, pi ) which is automatically also in J . If there
is p < pi such that (qi , p) is also in J , then let (qi+1, pi+1) be (qi , p)which is automatically
also in F . We get chains p0 ≥ p1 ≥ · · · and q0 ≥ q1 ≥ · · · . These must stabilize and for
the stable value pair (q, p) we cannot continue the construction and then this pair will be in
�F ∩ �J .
Part II. Let S ⊆ U Q × U Pop be such that S ∩ �J �= ∅ for every (J , G) ∈ F . This means
that (Sc, S) is not in �(F)↑. We show that S ⊇ �F for some (I , F) ∈ I and so (Sc, S) is in
�(I)↓. This shows that the union of �(I)↓ and �(F)↑ is all of U Q × U Pop .

Let T consist of f ∈ Pro(P, Q) such that � f ∩ S = ∅. Clearly the minimum 0 of
Pro(P, Q) is in T , so T is non-empty. We use Zorn’s lemma to show that T has a maximal
element. So let

f1 ≤ f2 ≤ · · · ≤ fn ≤ · · · (14)

be a chain of functions in T , and f be the colimit (join) of these. We claim that � f ∩ S = ∅.
Let (q, p) ∈ � f , so q ∈ f (p) but q /∈ f (p′) for every p′ < p. Then q ∈ fi (p) for some i
and q /∈ fi (p′) since fi (p′) ⊆ f (p′). Then (q, p) ∈ � fi and so is not in S. Thus f is an
upper bound in T for the chain in (14). By Zorn’s lemma T has a maximal element f , and
take note that f must be in I, by the requirement on S.

Claim 1 � f ⊆ S.

By the second and third lines of Part II, this finishes the proof.

Proof Suppose not, so there is (q0, p0) ∈ � f \S. Recall q0 is minimal in the complement
( f (p0))c. Let

f̃ (p) =
{

f (p) ∪ {q0}, p ≥ p0,

f (p) otherwise.

This is a profunctor f̃ : P |−→Q. Let us show

� f̃ ⊆ � f ∪ {(q0, p0)}.
That (q, p) ∈ � f̃ means that q ∈ f̃ (p) and q /∈ f̃ (p′) for p′ < p.

1. If not p ≥ p0 then f̃ (p′) = f (p′) for all values p′ ≤ p. Therefore (q, p) is in � f .
2. Let p ≥ p0. Then either i. q ∈ f (p) or ii. q = q0. In case i. (q, p) ∈ � f . In case

ii, where q = q0, if p > p0 then (q0, p) would not be in � f̃ since q ∈ f̃ (p) and
q ∈ f̃ (p0). We are thus left with (q, p) = (q0, p0).

As a consequence we also have � f̃ ∩ S = ∅. But by definition of S then f̃ ∈ T . This
contradicts f being maximal in T . Therefore no such (q0, p0) could exist, and � f ⊆ S. ��
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4 Applications to Finite Posets and Stanley–Reisner Ideals

In [7] they show that letterplace ideals L([n], P) and co-letterplace ideals L(P, [n]) are
Alexander dual ideals, and this was taken considerably further in [10].

Here we define such square free ideals in the full general setting for finite posets P and
Q and cuts in Pro(P, Q). We show how the result of [7] above is a consequence. In the
following for ease of notation we denote a polynomial ring k[xU Q×U Pop ] as k[xQ×Pop ].
Definition 4.1 Let P and Q be finite posets. From the cut (I,F) for Pro(P, Q), we get the
cut (�(I)↓,�(F)↑) for (U Q × U Pop )̂.
The �-ideal. Since U Q × U Pop is simply a set, this gives a Stanley–Reisner ideal in
k[xQ×Pop ]. We denote it L�(F; P, Q), or simply L�(F). As f varies in F , it is gener-
ated by the � f (or rather the squarefree monomials

∏

(q,p)∈� f xq,p).

The �-ideal. The dual cut (�(F)↑op , �(I)↓op ) for (U P × U Qop )̂, also corresponds to
a Stanley–Reisner ideal in k[xP×Qop ]. We denote this ideal as L�(I; P, Q), or simply
L�(I). As f varies in I, it is generated by the (� f )op (or rather the squarefree monomials
∏

(p,q)∈(� f )op x p,q ).

By Theorem 3.9 above, the �-ideal and �-ideal are Alexander dual ideals.

Remark 4.2 Let Q = [n], the chain on n elements, and I ⊆ Pro<∞(P, [n]). The �-ideals
L�(F; P, [n]) are the letterplace ideals of [10] and are shown to be Cohen-Macaulay ideals.
The Alexander dual �-ideals L�(I; P, [n]) are the co-letterplace ideals in loc.cit. and thus
have linear resolutions, [19, Thm.5.56]. The above definition and Theorem 3.9 may thus be
seen as a full generalization of the setting of [10].

Remark 4.3 With the same setting as in the above remark, the�-ideals L�(F; P, [n]) define
simplicial balls by the Stanley–Reisner correspondence, [5]. Furthermore there is a very
simple description of the Stanley–Reisner ideal of their boundaries, which are simplicial
spheres. This gives the construction of an enormous amount of simplicial spheres, due to the
freedom in choosing P, [n] and I.

Corollary 2.8 has the following consequence, see also Example 3.8.

Corollary 4.4 If P or Q has a maximal element, the ideals L�(Pro<∞(P, Q)) and
L�(Pro<∞(Q, P)) are Alexander dual ideals.

Definition 4.5 Given an isotone map f : P → Q, let the graph

�i f = {( f (p), pop ) | p ∈ P} ⊆ U Q × U Pop .

This gives a map

�i : Hom(P, Q) → (U Q × U Pop )̂, f �→ (−, �i f ),

and so

�
op
i : Hom(P, Q)op → (U P × U Qop )̂, f op �→ ((�i f )op ,−),

The isotonian ideal L(P, Q) is the ideal in k[xP×Qop ] generated by the monomials
∏

(p,q)∈(�i f )op x(p,q) as f varies in Hom(P, Q). If P is the chain [n], it is called a letterplace
ideal, and if Q = [n], it is a co-letterplace ideal, [10].
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The canonical map Q → ̂Q induces an isotone map

α : Hom(P, Q) → Hom(P, ̂Q) = Pro(P, Q), g
α�→ (p �→ ĝ(p) = (−,↑ g(p))), (15)

and by Sect. 2.4

α! : Hom(P, Q)̂→ Pro(P, Q)̂. (16)

We get commutative diagrams:

UHom(P, Q)op
αop

��

�
op
i ����

���
���

���
� UPro(P, Q)op ,

�op

��
(U P × U Qop )̂

Hom(P, Q ̂)op
(αop )

!

��

(�
op
i,U )

!

����
���

���
���

Pro(P, Q ̂)op

(�
op
U )

!

=(�!
U )op

��
(U P × U Qop )

̂

̂

(17)

Note that the isotonian ideal L(P, Q) is the squarefree monomial ideal associated to the
image by (�

op
i )

!

of the cut (∅,Hom(P, Q)op ) for Hom(P, Q ̂)op .
The poset P is a forest if for every two incomparable p1 and p2 in P , there is no p ∈ P

such that p ≤ p1 and p ≤ p2. The connected components of the Hasse diagram of P are
then trees with the roots on top.

Lemma 4.6 If P is a forest, then:

a. For the map in (16), α!(Hom(P, Q)) is the down-set Pro<∞(P, Q).
b. In the diagram (17)

(�
op
i,U )

!
((∅, Hom(P, Q)op )) = (�

op
U )

!
((−, Pro<∞(P, Q)op )).

Hence L(P, Q) = L�(Pro<∞(P, Q)).

Proof By the right diagram of (17), part a above implies part b. So we do part a.We show that
if f is a profunctor in Pro<∞(P, Q), then there exists a g : P → Q such that � f ⊇ �i g.
This implies that α(g) ≥ f giving part a. It also implies part b.

1. If p is maximal in P then let q be a minimal element in the non-empty set f (p)c. Define
then g(p) = q .

2. Suppose p is notmaximal. Suppose g(p′) is defined for p′ > p, such that (g(p′), p′ op ) ∈
� f . Let p′ be the unique cover of p (since P is a forest). Then f (p) ⊆ f (p′) and so
f (p)c ⊇ f (p′)c. Given g(p′) ∈ f (p′)c. Then there will exist a minimal q in f (p)c with
q ≤ g(p′). Then define g(p) = q . This gives the map g.

��
We specialize to Q = [n] and have the consequence:

Corollary 4.7 The letterplace ideal L([n], P) and the co-letterplace ideal L(P, [n]) are
Alexander dual ideals.

Proof The ideal L(P, [n]) is L�(Pro<∞(P, [n])) since ̂[n] = [n] ∪ {∞}. Its Alexander
dual is the ideal L�(Pro<∞([n], P) by Corollary 4.4. By the above lemma this identifies as
L([n], P). ��
In [15] they fully characterize for which P and Q the isotonian ideals L(P, Q) and L(Q, P)

are Alexander dual.
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5 Topology on Pro(P,Q)

We want to get a setting where P and Q may be infinite but the ascents � f and graphs � f
are finite. Then we get �- and �-ideals in infinite-dimensional polynomial rings. This can
be achieved if we put a suitable topology on Hom(P, Q).

5.1 Defining the Topology

We define a topology on Pro(P, Q) by defining a basis of open subsets.

Definition 5.1 Given a large profunctor f in ProL(P, Q) and a small profunctor f in

ProS(P, Q). The set of profunctors f such that f ≤ f ≤ f is denoted U ( f , f ).

The following is immediate.

Lemma 5.2 Given two such sets U1 = U ( f
1
, f 1) and U2 = U ( f

2
, f 2), let f and f be the

profunctors defined by the join and meet

f = f
1
∨ f

2
, f = f 1 ∧ f 2.

Then

U1 ∩ U2 = U ( f , f ).

As a consequence the sets U ( f , f ) form the basis of a topology on Pro(P, Q). Note that
if P and Q are finite we get the discrete topology on Pro(P, Q).

Observation 5.3 a. There is a one-one correspondence between open down-sets in Pro(P, Q)

and down-sets in ProL(P, Q).
b. There is a one-one correspondence between open up-sets in Pro(P, Q) and up-sets in

ProS(P, Q).

Note also by Lemma 2.3 that the open set U ( f , f ) is mapped by the dual D to the open

set U (D f , D f ). Hence we get:

Lemma 5.4 The duality map D of Lemma 2.3 is a homeomorphism of topological spaces.

5.2 Generalities on Topology

In any topological space X there is distinguished type of open subsets: those that are the
interiors of closed subsets, called regular open sets. In fact, let op X be the poset of open
subsets of X , and clX the poset of closed subsets of X . There is a Galois correspondence:

op X
()

�
()◦

clX ,

U �→ U = closure of U , C �→ C◦ = interior of C

The fix points in op X for the Galois connection, i.e. the fix points in op X for the com-
position of closure and interior ◦, are the regular open sets. We denote these as reg X , the
open subsets which are interiors of closed subsets.
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Lemma 5.5 The map on open subsets U �→ U
c

where c denotes complement, gives an

involution reg X
i−→ reg X. Furthermore U

c = (U c)◦.

Proof Let V = U
c
. We will show that V

c = U by proving inclusion either way.

1. We get V ⊆ U c and since the latter is closed, V ⊆ U c and so V
c ⊇ U .

2. We also have U
c ⊆ V and so U ⊇ V

c
. Since U is the interior of U we get U ⊇ V

c
.

3. We now show that V is regular. Let W be an open subset of V . Then W c ⊇ V
c = U , so

W c ⊇ U = V c. Thus W ⊆ V . Hence V is the largest open subset of V , and so is the
interior.

4. Since U = V
c
we get U c = V , and so

(U c)◦ = V
◦ = V = U

c
.

��

5.3 Open and Closed Down-Sets

Lemma 5.6 Let I be a down-set in Pro(P, Q). The closure I and the interior (I)◦ are also
down-sets. By duality the analog also holds for up-sets.

Proof Let F ∈ I and let G ≤ F . We will show G is also in I. If not there is an open U (b, c)
disjoint from I with G ∈ U (b, c), so b ≤ G ≤ c.

Then F ≥ b with b small and not in I. Then F ∈ U (b, 1) with this basis open set disjoint
from I since b is not in I and I is a down-set. But then F is not in the closure of I, contrary
to assumption.

As for the interior, if F is the complement up-set of I, then by a similar argument F is a
up-set, and so the complement (F)c = I◦ is a down-set. ��

Lemma 5.7 Let I be an open down-set I. Then I is regular if and only if I\I does not
contain large maps.

Similarly an open up-set F is regular if and only if F\F does not contain small maps.

Proof We only show the first statement. Suppose I is regular. Let f in I\I be large. The
closure I is a down-set. It contains f and so the open set U (0, f ), which must then be in the
interior of I which is I. This contradicts f being in the gap. Similarly one can argue that an
f in the gap cannot be bounded, by considering the up-set F .
If I is not regular, there is some open U = U ( f , f ) ⊆ I with U �⊆ I. But then f ∈ I\I,

and so I\I contains f which is large. ��

Definition 5.8 A Dedekind cut in the poset Pro(P, Q) is a pair [I,F] where I is an regular
open down-set of Pro(P, Q) and F is its image by the involution i (so F is an regular open
up-set). The gap of the Dedekind cut is

G = Pro(P, Q)\(I ∪ F).

Corollary 5.9 Let I be an open down-set and F a disjoint open up-set. Then I and F form
a Dedekind cut if and only if the gap Pro(P, Q)\(I ∪ F) between them, does not contain
large or small maps.

123



Profunctors Between Posets and Alexander Duality Page 21 of 30 22

Remark 5.10 For the rational numbers Q the distributive lattice ̂Q consists of ±∞, the irra-
tional numbers, and the rational numbers doubled, since a rational number q gives two cuts:

(〈−∞, q), [q,+∞〉), (〈−∞, q], (q,+∞〉).
However if we have the natural topology on Q, Dedekind cuts give the real numbers together
with ±∞.

6 Profunctors Between Natural Posets

We introduce the class of natural posets as a suitable generalization of the poset of natural
numbers. We then have good criteria for when open down-sets of Pro(P, Q) are closed or
regular. We show, Theorem 6.10, that an open down-set is clopen (closed and open) if and
only if it has a finite number of maximal elements. The purpose of this section is to get in
Sect. 7 a version of Theorem 3.7 which applies to construct Alexander dual ideals in infinite-
dimensional polynomial rings. Our main application is to profunctors N |−→N, see [9], and
briefly indicated in the last Sect. 8.

6.1 Well Partially Ordered Sets

A poset P is well partially ordered if the following two conditions holds:

i. Any descending chain in P stabilizes.
ii. Any antichain in P is finite.

The following characterization of well partially ordered sets is classical, see for instance
[18].

Proposition 6.1 The following are equivalent for a poset P.

(1) P is well partially ordered.
(2) Any up-set of P is finitely generated.
(3) The ascending chain condition holds for up-sets in P, equivalently the descending chain

condition holds for ̂P.

Lemma 6.2 Let P and Q be well partially ordered sets, and f : P |−→Q an isotone map.

a. If f is large, then � f is finite.
b. If f is small, then � f is finite.

Proof a. Let f have profile (I , F). The projection of � f onto P will be contained in I since
the complement f (p)c is empty for p ∈ F . Furthermore for p ∈ I the up-set f (p)c has only
a finite set of minimal elements by the above proposition.

b. Let f have co-profile (J , G). The projection of � f onto Q is contained in J . If q ∈ J ,
the set of p ∈ P such that q ∈ f (p) is a up-set in P and so has a finite set of minimal
elements. Hence � f is finite. ��

6.2 Natural Posets

The class of well partially ordered sets is very large, it includes all well-ordered sets. For our
purposes we need an extra condition so that our posets are more like natural numbers.
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Definition 6.3 A poset P is down finite if for each p in P , the principal down-set ↓ p is
finite. A natural poset (in analogy with natural numbers) is a poset which is well partially
ordered and down finite.

Lemma 6.4 Suppose every antichain in P is finite. Then P is natural iff there exists a chain
of finite down-sets in P

I 0 ⊆ I 1 ⊆ · · · ⊆ I n ⊆ · · ·
such that ∪i≥n I n equals P.

Proof The if statement is clear. Suppose then P is natural. For p ∈ P the principal ideal ↓ p
is finite. Let the height of p, denoted �(p), be the length of the longest chain in ↓ p. Then let
I r be the set of elements of P of height ≤ r . Then I r\I r−1 is the set of elements of height
exactly r . These form an anti-chain in P and so a finite set. Hence each I r is finite. Clearly
the union of the I r is all of P . ��
Lemma 6.5 Let Q be down finite. Then for any large f in Pro(P, Q) the open set U (0, f )

is also closed.

Proof Let f have profile (I , F). Consider the set X of all pairs (p, x) where p ∈ I and x is
minimal in f (p)c. For each pair (p, x) ∈ X , let gpx be the smallest isotone map g : P → ̂Q
such that g(p) is the principal down-set ↓ x . Then gpx is a small map since ↓ x is finite.
Furthermore if h is an isotonemap such that h is not≤ f , then for at least one pair (p, x) ∈ X
we must have x ∈ h(p) and so h ≥ gpx . Then the complement

U (0, f )c = ∪(p,x)∈X U (gpx , 1).

��

6.3 Criteria for Down-Sets Being Regular Open or for Being Clopen

Let

f1 ≤ f2 ≤ f2 ≤ · · ·
be a weakly increasing set of maps in Pro(P, Q), write colim fr for their join. If the fr ’s are
a decreasing sequence we write lim fr for their meet.

Posets in our application will typically be natural posets, like finite posets and the natural
numbers N. We assume in this subsection that our posets are natural. The following seems
to provide the best way to check whether an open down-set of isotone maps is regular.

Proposition 6.6 Let P and Q be natural posets and I an open down-set in Pro(P, Q).

a. I is also closed if and only if it contains the colimit of any increasing sequence of isotone
maps in I.

b. I is regular if and only if it contains any large colimit of an increasing sequence of isotone
maps in I.

There are analogous statements for open up-sets and decreasing sequences of maps in F .

Proof a1. Suppose I is closed. Let { fi } be a weakly increasing sequence of isotone maps in
I, and f = colim fi . If f is not in I, there is an open subset U (b, c) in the complement Ic

containing f .
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Since b(p) is finite and lim fi (p) = f (p) which contains b(p), there is a number N (p)

such that fi (p) contains b(p) for i ≥ N (p).
Let T be the projection of �b on P . Since b is small, �b is finite and so is T . Let N be

the maximum of N (p) for p ∈ T . We show below that fi ≥ b for i ≥ N . But then since
fi ∈ I and I is a down-set, this gives b ∈ I, a contradiction since U (b, c) and I are disjoint.
Thus f must be in I.

To show that fi ≥ b, if the contrary were true, let q ∈ b(p)\ fi (p) for some p and let
p′ ≤ p be minimal in P with q ∈ b(p′). Then:
i. (q, p′) ∈ �b and so fi (p′) ⊇ b(p′) since i ≥ N ≥ N (p′).
ii. Since p′ ≤ p then fi (p′) ⊆ fi (p) and so q /∈ fi (p′).
But these give a contradiction, and so we must have fi ≥ b.
a2. Suppose any co-limit of an increasing sequence in I, is in I. Suppose I is not closed.
Then there is f ∈ Ic such that any open subset of f intersects I. Now there exists the
following:

(i) A sequence of finite posets in P

I 1 ⊆ I 2 ⊆ · · ·
such that ∪i I i = P .

(ii) For each p ∈ P we can find a sequence of finite posets of Q

J 1
p ⊆ J 2

p ⊆ · · ·
such that ∪ j J j

p = f (p).

Given k, define the isotone maps fk by:

fk(p) = ∪p′≤p J k
p′ when p ∈ I k, fk(p) = ∪p′∈I k ,p′≤p fk(p′) when p /∈ I k .

Then

• fk is isotone and small,
• i ≤ j implies fi ≤ f j ,
• The open subset U ( fi , 1) contains f and so intersects I. Then fi ∈ I since I is a

down-set,
• colim fi = f and so f ∈ I.

But the latter contradicts f /∈ I.
b1. Let I be regular and { fi } an increasing sequence in I, whose colimit f is large. By

part a the colimit of fi is in the closure I. Since I is regular I\I does not contain large maps
by Lemma 5.7. Hence f ∈ I.

b2. Suppose I contains large limits of increasing sequences in I. Let f be a large map
in the closure I. By the construction in a2 there is a sequence { fi } of small maps such that
f = colim fi . Each open subset U ( fi , f ) intersects I and so fi is in I. But then f is in I.
Then by Lemma 5.7, I is regular. ��
Example 6.7 Let the open down-set I of Pro(N, N) be generated by the large maps
f1, f2, f3, · · · given by

fr (n) =
{

r n ≤ r

∞ n > r

Then colimr fr is the maximal isotone map 1, which is not in I. Hence I is not regular. Also,
its closure is all of Pro(N, N).
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Example 6.8 Let the open up-set F in Pro(N, N) be generated by the small maps g1, g2, · · ·
given by

gr (n) =
{

1 n < r

2 n ≥ r
.

The limit limr gr is the minimal isotone map 0, which is not in F . Hence F is not regular.
Also, its closure is all of Pro(N, N).

Example 6.9 Let the profunctor h : N → N be given by h(i) = i . Let I be the down-set
generated by the large maps hr for r ≥ 1, and F be the up-set generated by the small maps
hr for r ≥ 0, where

hr (i) =

⎧

⎪

⎨

⎪

⎩

i i ≤ r

r i = r + 1

∞ i ≥ r + 2

, hr (i) =
{

i i ≤ r

r + 2 i ≥ r + 1
.

Then [I,F] is a Dedekind cut and the gap consists of the function h.

In the argument that follows now we use the following construction: Let I ⊆ J ⊆ P be
down-sets and f : I → ̂Q an isotone map. Then there exists a unique minimal extension
f J : J → ̂Q such that the restriction( f J )|I = f . For each p ∈ J we let

f J (p) = ∨p′∈I ,p′≤p f (p′).

Note that if f is small and I is finite, the extension f J is also small.
The following characterizes precisely when the gap is empty.

Theorem 6.10 Let P and Q be natural posets. A down-set I of Pro(P, Q) is clopen (closed
and open) if and only if I is a finite union of basis open subsets U (0, f ). Alternatively
formulated, an open down-set I is clopen if and only if it is finitely generated.

Proof The open subsets U (0, f ) are closed, by Proposition 6.6. Hence any finite union of
them is clopen. ��

Suppose now I is clopen. We will show it has only a finite number of minimal generators.
Assume the opposite, that there are infinitely many generators of I, none of which are
comparable.
1. Take a filtration of finite posets

I1 ⊆ I2 ⊆ · · · ⊆ Ir ⊆ · · ·
such that the union of the Ir ’s is P . Let T1 be the set of isotone maps F1 : I1 → ̂Q such that:

• For every f : I1 → ̂Q with f ≤ F1 and the f (p) finite down-sets in Q for p ∈ I1, there
are infinitely many of the minimal generators g of I such that the restriction g|I1 ≥ f .
Clearly T1 is non-empty: we may take F1 to be the constant map with value the empty
set.

2. Let us show that we can use Zorn’s lemma on T1. If

F1
1 ⊆ F2

1 ⊆ · · · ⊆ Fr
1 ⊆ · · ·

is a chain in T1, let F1 = colimFr
1 . We claim F1 is in T1. Let f ≤ F1 with f having

finite values. For each p, for some integer N (p) we have, since f (p) is finite, that f (p) ⊆
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F N (p)
1 (p). Let N be the maximum of the N (p) for p ∈ I1. Then f ≤ F N

1 and so there
are infinitely many minimal generators g of I with g|I1 ≥ f . This shows that Zorn’s lemma
applies. Furthermore, there is an increasing sequence { f } of such functions whose limit is F1.
Extending these f ’s to P we get an increasing sequence { f P } whose limit is the extension
F P
1 . Each f P is in I since there are minimal generators g of I with g|I1 ≥ f . Since I is

closed, by Proposition 6.6 we have F P
1 ∈ I, a fact we use in 5. below.

3. Let F1 be maximal in T1. We now show the following refined statement:

Claim 2 For each finite f ≤ F1 there are infinitely many minimal generators g such that
f ≤ g|I1 ≤ F1.

Proof Let p1, p2, . . . , pm be the elements of I1 in an order such that pi < p j implies i < j .
(This is usually called a linear extension of I1.) Supposewe have verified that for each f ≤ F1

there are infinitely many g’s such f ≤ g|I1 and with f (pi ) ≤ g(pi ) ≤ F1(pi ) for i < s. Let
Xs be the (finite) set of minimal elements of the complement F1(ps)

c. If not g(ps) ⊆ F1(ps)

then g(ps) contains some x ∈ Xs . Define the isotone F1x : I1 → ̂Q by

F1x (p) =
{

F1(p), not p ≥ ps

F1(p) ∪ {x} p ≥ ps

Since F1 is maximal, there is some fx ≤ F1x where fx has finite values, such that there are
not infinitely many g’s with fx ≤ g|I1 . Let f ′

x be the meet fx ∧ F1. Then let f ′ be the join
f ∨ (∨x∈Xs f ′

x ), an isotone with finite values. Note that f ′ ≤ F1. Then there are infinitely
many g’s such that: i) f ′ ≤ g and ii) f ′(pi ) ≤ g(pi ) ≤ F1(pi ) for i < s. But only a finite
number of g’s are larger than fx for each x in the finite set Xs . So taking away a finite number
of the g’s, none of the infinitely many rest will have g(ps) containing any x ∈ Xs . Hence for
these g(ps) ⊆ F1(ps). ��
4. Suppose we now have constructed Fj : I j → ̂Q for j = 1, · · · , r such that Fj |Ii = Fi

for each i ≤ j and the Fj are such that for each finite f : I j → ̂Q with f ≤ Fj there are
infinitely many generators g such that f ≤ g|I j ≤ Fj , and Fj is maximal such. We will
extend Fr to a function Fr+1 : Ir+1 → ̂Q. Let Tr+1 be the set of isotone F : Ir+1 → ̂Q
such that F|Ir = Fr and for each finite f ≤ F there are infinitely many g’s with g|Ir ≥ f
and Fr ≥ g|Ir ≥ f . The set Tr+1 is non-empty since it is easy to see that the extension

F Ir+1
r fulfills the condition of being in Tr+1 since Fr does so for Tr . As above Tr+1 fulfills

the condition for Zorn’s lemma and so Tr+1 has a maximal element Fr+1. As above we may
show that for each finite f ≤ Fr+1 there are infinitely many minimal generators g of I such
that Fr+1 ≥ g|Ir+1 ≥ f
5. Consider now the sequence of extensions

F P
1 ≤ F P

2 ≤ · · · ≤ F P
r ≤ · · · .

Let F = colimF P
r . Since each F P

r ∈ I (by the same reason as at the end of part 2) and I
is closed we get F ∈ I. Since I is open there exists then a large G ≥ F in I. Let I be the
finite profile down-set of G. Due to I being finite we must have Ir ⊇ I for sufficiently large
r . But there are infinitely many minimal generators g such that g|Ir ≤ Fr which again is
≤ G |Ir . But since G(p) = ∞ for p in the complement I c

r , we would have G ≥ g. This is a
contradiction since the g’s are (infinitely many) minimal generators of I.

The upshot is that there cannot be infinitely many generators of I. ��
Problem 6.11 What subsets of Prou(N, N) can be gaps?

123



22 Page 26 of 30 G. Fløystad

7 Natural Posets and Finite Type Cuts

Here we give the variant of Theorem 3.7 such that the �- and �-ideals are finitely generated
ideals in a polynomial ring. This works when P and Q are natural posets, which we assume
in this section.

By Lemma 6.2 the map � of (11) restricts to a map:

� : UProS(P, Q) → (U Q × U Pop )̂fin, f �→ (� f ,−).

Similarly the map � of (12) restricts to a map:

� : UProL(P, Q) → (U Q × U Pop )
̂fin, f �→ (−, � f ).

For a cut (I,F) for Pro(P, Q)̂let FS denote the small maps in F , and IL the large maps in
I.

By (6) the map � induces an isotone map:

�

!

U : ProS(P, Q)̂→ (U Q × U Pop )
̂

̂

fin, (−,FS) �→ (−,�(FS)↑).

The map � induces an isotone map:

�!
U : ProL(P, Q)̂→ (U Q × U Pop )

̂

̂fin, (IL ,−) �→ (�(IL)↓,−).

We have the following variation of Theorem 3.7.

Theorem 7.1 Let P and Q be natural posets and [I,F] a Dedekind cut for Pro(P, Q). Then
(�(IL)↓,�(FS)↑) is a finite type cut for the Boolean lattice (U Q × U Pop )̂.

Proof We must show 1 and 2 in Definition 1.7. We do 1 as 2 is analogous. ��
Part I. We show the implication ⇒ of 1 in Definition 1.7. This amounts to show for any
(I , F) ∈ IL and (J , G) ∈ FS that

�F ∩ �J �= ∅.

The argument for this is the same as in Part I for Theorem 3.7.
Part II. We show the implication ⇐ of 1 in Definition 1.7. Let S ⊆ U Q × U Pop be a
finite set such that S ∩ �J �= ∅ for every (J , G) ∈ FS . We show that S ⊇ �F for some
(I , F) ∈ IL .

Let I0 ⊆ P and J0 ⊆ Q be finite down-sets such that the projections of S are contained
respectively in I0 and in J0. (We know they are finite due to P and Q being down-finite.)
For a large f in Pro(P, Q) denote by �0 f the subset of � f lying above I0. Let T consist
of the large f such that:

• f (p) =
{

∞, p /∈ I0
⊆ J0, p ∈ I0

.

• �0 f ∩ S = ∅.
Clearly the minimum element of those f fulfilling the first point, also fulfills the second, so
T is non-empty. We use Zorn’s lemma to show that T has a maximal element. So let

f1 ≤ f2 ≤ · · · ≤ fn ≤ · · ·
be a chain of maps in T and let f = colim fr . We claim that �0 f ∩ S = ∅. So suppose
(q, p) ∈ � f , so q ∈ f (p) but q /∈ f (p′) for every p′ < p. Then q ∈ fi (p) for some i and
q /∈ fi (p′) since fi (p′) ⊆ f (p′). Then (q, p) ∈ � fi and so is not in S. Thus f is an upper
bound in T for the chain. By Zorn’s lemma T has a maximal element, which we denote f .
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Claim 3 f is in I.

Proof The map f is not in the gap between I and F since it is large. So if f is not in I it
must be in F . Since F is open, for B ⊇ J0 large enough fB given by

fB(p) =
{

f (p), p ∈ I0
B, p /∈ I0

,

is in F . But �0 fB ⊆ �0 f , and so � fB ∩ S = �0 fB ∩ S is the empty set, which is not so
by the requirement on S. Hence f is not in F and not in the gap, so it must be in I. ��
Claim 4 � f ⊆ S. This finishes the proof by the second line of Part II.

Proof Suppose not, so there is (q0, p0) ∈ � f \S. Recall q0 is minimal in the complement
f (p0)c. Let

f̃ (p) =
{

f (p) ∪ {q0}, p ≥ p0
f (p), otherwise.

We now claim that:

�0 f̃ ⊆ �0 f ∪ {(q0, p0)}.
That (q, p) ∈ �0 f̃ means that p ∈ I0 and q ∈ f̃ (p), and q /∈ f̃ (p′) for p′ < p.

1. If not p ≥ p0 then f̃ (p′) = f (p′) for all values p′ ≤ p. Therefore (q, p) is in �0 f .
2. Let p ≥ p0. Then either i. q ∈ f (p) or ii. q = q0. In case i. (q, p) ∈ � f . In case

ii. where q = q0, if p > p0 then (q0, p) would not be in � f̃ since q0 ∈ f̃ (p) and
q0 ∈ f̃ (p0). We are thus left with (q, p) = (q0, p0).

The upshot is that f̃ fulfills the requirements to be in T . But this contradicts f being
maximal in T . Hence no such (q0, p0) can exist, and so � f ⊆ S. ��

Wemay now define the�- and�-ideals for (infinite) natural posets P and Q. These ideals
then live in infinite-dimensional polynomial rings. These ideals will be square-freemonomial
ideals.

Definition 7.2 Let [I,F] be aDedekind cut for Pro(P, Q). Let L�(F) the ideal in k[xQ×Pop ]
generated by the monomials

∏

(q,p)∈I xq,p for (I ,−) ∈ �(FS). Let L�(I) be the ideal in

k[xP×Qop ] generated by the monomials
∏

(p,q)∈Fop x p,q for (Fop ,−) ∈ �(IL)op .

By the theorem above, these ideals are Alexander dual ideals, meaning that the monomials in
L�(F) are precisely those monomials with non-trivial common divisor with everymonomial
in L�(I), and vice versa.

8 Monomial Ideals

For the case Q = N we show that open down-sets in Pro(P, N) induce monomial ideals in
the polynomial ring k[xP ]. In particular when P = N, these monomial ideals are precisely
the class of strongly stable ideals in the infinite-dimensional polynomial ring k[xN]. The
results in Sect. 5 then enables defining a duality on a distinguished class of strongly stable
ideals, see [9].
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Given a map of sets A
α−→ B. Let Homfin(A, N0) be the maps A

u−→ N0 such that the
support {a | u(a) > 0} is a finite set. Then α induces a map

Homfin(A, N0)
α̃−→ Homfin(B, N0)

sending a map u to a map v : B → N0 where v(b) = ∑

α(a)=b u(a).

Consider the projection U P × U Qop π1−→ U P , and inclusion 2
i−→ N0 sending 0 �→ 0

and 1 �→ 1. We get a composite

Homfin(U P × U Qop , 2)
ĩ−→ Homfin(U P × U Qop , N0)

π̃1−→ Homfin(U P, N0).

Given a map τ : U P × U Qop → 2 corresponding to a finite subset T ⊆ U P × U Qop (the
arguments for which τ is non-zero), then π̃1 ◦ ĩ(τ ) is the map sending p to the cardinality of
the set of pairs (p, q) ∈ T with first coordinate p.

Note that the set Homfin(U P, N0) identifies as the set of monomials Mon(xP ) in the
variables x p for p ∈ P .

Lemma 8.1 Let Q = N. The composite λ = π̃1 ◦ ĩ ◦ �:

λ : UProS(P, N)
�−→ Homfin(U P × UN

op , 2)
π̃1◦ĩ−→ Homfin(U P, N0)

is an isomorphism.

Proof This is Proposition 4.3 in [8]. ��
We may also consider the composite γ = π̃2 ◦ ĩ ◦ �:

γ : UProL(N, P)
�−→ Homfin(UN × U Pop , 2)

π̃2◦ĩ−→ Homfin(U Pop , N0),

which is likewise an isomorphism.

Lemma 8.2 There is a commutative diagram:

UProS(P, N)

λ

�����
���

���
���

��

D

��

Homfin(U P, N0).

U ProL(N, P)op

γ op
��������������

Note that the vertical map sends a cut (I , F) to a cut (Fop , I op ).

As in (6) this extends to a commutative diagram:

ProS(P, N)̂

λ

!

����
���

���
���

�

D

��

Homfin(U P, N0)
̂.

ProL(N, P ̂)op

(γ op )i
��������������
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The up-sets in Homfin(U P, N0) identifies as the monomial ideals in k[xP ]. Recall that open
up-sets F in Pro(P, N) are in bijection with up-sets in ProS(P, N). So we get an upset FS

in the latter. By λ

!

we get a monomial ideal in k[xP ].
Application. When P = N the monomial ideals one gets are precisely the strongly stable
ideals in k[xN]. There is a one-one correspondence between open up-sets in Pro(N, N) and
strongly stable ideals in k[xN], see [9].
Definition 8.3 Given a Dedekind cut [I,F] for Pro(N, N). We get an up-set λ

!

(FS) in
Homfin(N, N0) which corresponds to a monomial ideal Iλ of k[xN]. Similarly we get a
up-set (γ op )

!

(IL,op ) in Homfin(N, N0) which corresponds to a monomial ideal Iγ of k[xN].
The ideals Iλ and Iγ are dual strongly stable ideals.

Note that this definition is reasonable.Given Iλ wecan reconstructFS and therebyF . Since
[I,F] is a Dedekind cut, we can construct I fromF and thereby determine Iγ . And of course
we may go the opposite way, from Iγ we may determine Iλ. Note also that not every strongly
stable ideal I has a dual. Only the strongly stable ideals such that the corresponding open
down-set I is regular, have duals. Versions of this duality for finite-dimensional polynomial
rings were first given in [8, Section 7] and independently by [23].
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