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A Bayesian Lasso based sparse learning model

Ingvild M. Helgøy and Yushu Li 

Department of Mathematics, University of Bergen, Bergen, Norway 

ABSTRACT 
The Bayesian Lasso is constructed in the linear regression framework and 
applies the Gibbs sampling to estimate the regression parameters. This 
paper develops a new sparse learning model, named the Bayesian Lasso 
Sparse (BLS) model, that takes the hierarchical model formulation of the 
Bayesian Lasso. The main difference from the original Bayesian Lasso lies in 
the estimation procedure; the BLS uses a learning algorithm based on the 
type-II maximum likelihood procedure. Opposed to the Bayesian Lasso, the 
BLS provides sparse estimates of the regression parameters. The BLS is also 
derived for nonlinear supervised learning problems by introducing kernel 
functions. We compare the BLS model to the well known Relevance Vector 
Machine, the Fast Laplace, the Bayesian Lasso, and the Lasso, on both 
simulated and real data. The numerical results show that the BLS is sparse 
and precise, especially when dealing with noisy and irregular dataset.
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1. Introduction

The Lasso of Tibshirani (1996) is a state-of-the-art method for solving linear regression problems. 
It performs both estimation and variable selection since some of the estimated coefficients can be 
set to zero during the estimation procedure. It is known that the Lasso estimate corresponds to a 
Bayesian posterior mode estimate where the priors for the coefficients are identical and independ
ent Laplace distributions (Tibshirani 1996; Hastie et al. 2009). Motivated by the connection 
between the Lasso and the Laplace prior in the Bayesian framework, Park and Casella (2008) 
introduced a fully Bayesian model of the Lasso. The Bayesian Lasso by Park and Casella (2008) 
uses a Laplace prior conditioned on the variance of the random noise, while the approximation 
of the posterior thereafter is obtained by using the Gibbs sampler. Park and Casella (2008) argued 
that the prior conditioned on the variance is important because it guarantees a unimodal poster
ior. On the other hand, using the unconditional Laplace prior from the Lasso, the posterior can 
easily have more than one mode which may slow down convergence of the Gibbs sampler and 
produce less concise point estimates. A limitation of the Bayesian Lasso is that it is not a sparse 
model because none of the estimated coefficient parameters from the Gibbs sampling will be set 
exactly to zero. Hence, the Bayesian Lasso does not perform variable selection by default. 
However, Park and Casella (2008) suggest to use the corresponding credible intervals to guide 
variable selection, but this requires choosing appropriate threshold values. Other similar methods 
that attempt to overcome the problem of sparsity includes a Bayesian Elastic net method pro
posed by Li and Lin (2010), and the Bayesian adaptive Lasso by Leng, Tran, and Nott (2014) that 
uses an adaptive penalty parameter which promotes sparsity. Both these methods utilize the 
Gibbs sampler to approximate the posterior distribution. Hahn and Carvalho (2015) review the 
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relationship between variable selection priors and shrinkage priors and present an overview of 
several Bayesian model selection methods.

The last decades, kernel-based machine learning methods have gained increased interest. One 
of the more popular kernel-based methods is the Support Vector Machine (SVM) (Boser, Guyon, 
and Vapnik 1992; Vapnik, Golowich, and Smola 1996; Sch€olkopf et al. 1999), which is a sparse 
method that has proven to perform well for several different cases, see e.g. Steinwart and 
Christmann (2008). Despite its popularity, the SVM has also some known limitations. The SVM 
is purely deterministic because the SVM prediction is a point estimate. Further, Tipping (2001) 
points out that the SVM model does require that the kernel must satisfy the Mercer conditions 
(Sch€olkopf, Smola, and M€uller 1998). To overcome this issue, among others, Tipping (2001) 
presents a new method called the Relevance Vector Machine (RVM), and a faster version was 
later developed (Tipping and Faul 2003). Opposed to the SVM, the RVM is formulated in the 
Bayesian framework and the kernel does not have to satisfy the Mercer conditions. Both SVM 
and RVM can be applied to solve nonlinear regression and classification problems. They can 
both achieve sparsity in the sample domain and depend only on a subset of the kernel functions 
and associated training samples. Tipping (2001) demonstrates that the RVM is more sparse than 
the SVM, and the RVM has shown great success in solving many machine learning and pattern 
recognition problems (see, e.g. Liu et al. 2015; Kaltwang, Todorovic, and Pantic 2016; Kong et al. 
2019; Qiao et al. 2019; Liu et al. 2020). Several extensions of the RVM model can be found in the 
literature (see, e.g. Schmolck and Everson 2007; Ji, Xue, and Carin 2008; Mohsenzadeh, 
Sheikhzadeh, and Nazari 2016; Tien Bui et al. 2018; Agrawal, Muchahary, and Tripathi 2019). 
The RVM has inspired a variety of similar Bayesian methods, including the Fast Laplace (FLAP) 
by Babacan, Molina, and Katsaggelos (2010), which has mainly been applied in the field of com
pressive sensing for signal reconstruction. In the derivation of the FLAP, Babacan, Molina, and 
Katsaggelos (2010) show how the variance can be estimated in the optimization procedure. 
However, in the numerical results they use a fixed value for the variance because of unstable esti
mates when the method was used on compressive sensing datasets. In general, sparse Bayesian 
methods, like the RVM, are frequently used in the field of compressive sensing (see, e.g. Zhou, 
Liu, and Fang 2015; Huang et al. 2014; Yu et al. 2016; Liu et al. 2018).

This paper presents an adaptation of the Bayesian Lasso by Park and Casella (2008) to the ker
nel-based framework such that general nonlinear problems can be solved and sparsity in sample 
domain is achieved. We call this new model the Bayesian Lasso Sparse (BLS) model. Instead of 
using the Gibbs sampler in Park and Casella (2008) to estimate the parameters, we adapt the 
marginal likelihood maximization method (also known as type-II maximum likelihood) from the 
RVM (Tipping and Faul 2003). The BLS assigns individual weight parameters to each input sam
ple and the hierarchical structure from Park and Casella (2008) is utilized in the BLS model 
which results in an “automatic relevance determination” (ARD) conditional prior (MacKay 1992) 
for the weight parameters. We will show that this approach leads to a sparse solution in the sam
ple domain. In addition, we provide an analysis of how the variance of the random noise affects 
the hyperparameter estimation by using the conditional prior for the weight parameters. We con
duct a comprehensive simulation study to compare the performance of the BLS with the fast 
RVM of Tipping and Faul (2003) and the FLAP of Babacan, Molina, and Katsaggelos (2010). We 
also include the version of the FLAP model that estimate the variance to test its performance on 
non-linear regression data.

This paper also adjusts the BLS to achieve sparsity in the variable domain in the linear regres
sion framework, where the Bayesian Lasso by Park and Casella (2008) is developed. When apply
ing these modifications to the BLS we obtain a variable selection method that behaves like the 
original Lasso. The difference between the BLS in the linear regression framework and the 
Bayesian Lasso by Park and Casella (2008) lies at the estimation procedure. The type-II maximum 
likelihood estimation results in a sparse model for the BLS where the most important variables 
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have been selected, while the Gibbs sampling in the Bayesian Lasso will in general not produce a 
sparse model but instead suggest to use credible intervals that can guide variable selection. 
Simulation studies are used to investigate the sparsity of the BLS in variable domain, and com
pare it to the Bayesian Lasso and the original Lasso.

The remainder of the paper is divided into the following sections: Sec. 2 contains a detailed 
description of the BLS, including a fast optimization algorithm and theoretical derivation of the 
variance related threshold for the hyperparameters. Section 3 presents results from simulation 
studies and compares the BLS with other kernel-based learning methods where sparsity is 
achieved in the sample domain. Section 4 shows how the BLS can be used for variable selection, 
and concluding remarks are given in Sec. 5.

2. The Bayesian Lasso Sparse model

After a general description of supervised learning, this section explains in detail the hierarchical 
structure of the BLS and its kernel framework. In addition, we specify the type-II maximum like
lihood method, as well as an analysis of how the variance of the random noise can affect the 
sparsity. Inference and prediction by using the BLS model will be briefly described at the end of 
this section.

2.1. Supervised learning

Supervised learning contains a set of training data xi, yif g
N
i¼1, where xi 2 RD is a D-dimensional 

input vector and yi 2 R is the corresponding scalar target value. Based on the training data, we 
aim at estimating a function f ðxÞ that can model the underlying relationship between the input 
covariate xi and the target observation yi. A common assumption is that f ðxÞ can be represented 
by a set of M linearly independent basis vectors, /m :

f ðxÞ ¼ w0 þ
XM

m¼1
wm/mðxÞ, (1) 

where w ¼ ðw0, w1, :::, wMÞ
> is a vector of weight parameters.

We assume that the observed targets, yi, are samples of the function f ðxÞ with added noise 
which follows a Gaussian distribution. To relate the targets to the input, we first create a design 
matrix, U, from the basis vectors as

U ¼ 1, /1, :::, /M½ �, /m ¼ ð/mðx1Þ, :::, /mðxNÞÞ
>, m ¼ 1, :::, M:

Let � ¼ ð�1, :::, �NÞ
> be the standard Gaussian distributed noise vector, we then have:

y ¼ Uwþ �, � � Nð0, r2INÞ, (2) 

where y ¼ ðy1, :::, yNÞ
>, r2 is the variance of the error terms that are normally distributed and IN 

is the N�N identity matrix.

2.2. Model specification and parameter estimation

The first step to construct the BLS model is to define the basis functions in Equation (1). In the 
BLS, the basis functions are defined by M¼N kernel functions /mðxÞ ¼ Kðx, xmÞ; m ¼ 1, :::, N:
The kernel function Kð�, �Þ is centered at each of the training input vectors. Thus, each basis func
tion /mðxÞ corresponds to one training input vector xm: The Gaussian and the polynomial kernel 
functions are the most used kernel functions for sparse learning models.

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 3



After the type of kernel function is chosen, the learning task is to estimate the weight parame
ters, w, from the training data. Similar to the Bayesian Lasso, the conditional prior on the weight 
parameters is given by

pðwjr2, kÞ ¼
YN

i¼0

ffiffiffi
k
p

2
ffiffiffiffiffi
r2
p e−

ffiffi
k
p
jwij=

ffiffiffiffi
r2
p

, k � 0, (3) 

which can be recognized as a Laplace prior conditioned on r2 and k. Further, the likelihood func
tion is derived from Equation (2) as

pðyjw, r2Þ ¼ N ðyjUw, r2Þ: (4) 

Bayesian inference is based on the posterior distribution of w given the data, pðwjy, r2, kÞ, 
which can be calculated from Equations (3, 4). However, the inclusion of the Laplace prior in 
Equation (3) makes an analytical solution intractable. We therefore proceed to use a hierarchical 
representation of the full model, similar to the Bayesian Lasso described by Park and Casella 
(2008):

Likelihood pðyjw, r2Þ ¼ N ðyjUw, r2Þ, (5) 

Hierarchicalprior pðwjs, r2Þ ¼
YN

i¼0
Nðwij0, sir

2Þ, si � 0, (6) 

Hyperprior pðsjkÞ ¼
YN

i¼0

k

2
e−ksi

2 , k � 0: (7) 

The hierarchical prior in Equation (6) can be viewed as an ARD prior where for i ¼ 0, 1, :::, N, 
there is an individual hyperparameter si associated independently with each individual weight wi. 
Equation (6) shows that when a hyperparameter is estimated to be zero in this ARD prior, it will 
force the corresponding weight parameter to be zero, and prune the input vector and the related 
sample.

The priors for k and r2 in Equations (5–7), are defined as the Gamma and inverse Gamma 
distribution, respectively:

pðkÞ ¼
ba

CðaÞ
ðkÞ

a−1e−bk, a, b � 0, (8) 

pðr2Þ ¼
dc

CðcÞ
ðr2Þ

−c−1e−d=r2
, c, d � 0: (9) 

By combining Equations (5–9) from the above hierarchical Bayesian model, we get the follow
ing joint distribution of the dataset, parameters and hyperparameters:

pðy, w, s, r2, kÞ ¼ pðyjw, r2Þpðwjs, r2ÞpðsjkÞpðkÞpðr2Þ:

Given the observed data, the following posterior over all unknowns can be found:

pðw, s, r2, kjyÞ ¼
pðy, w, s, r2, kÞ

pðyÞ
: (10) 

When the posterior distribution in Equation (10) is available, an expression of the predictive 
distribution for the output y� can be obtained as
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pðy�jyÞ ¼
ð

pðy�jw, r2Þpðw, s, r2, kjyÞdwdsdr2dk: (11) 

However, neither the posterior in Equation (10) nor the predictive distribution in Equation 
(11) can be computed analytically as the normalizing integral pðyÞ ¼

Ð
pðy, w, s, r2, kÞdwdsdr2dk 

is intractable. Instead, the BLS model applies the type-II maximum likelihood estimation from 
Tipping and Faul (2003) to approximate the predictive distribution in Equation (11).

As the posterior in Equation (10) can not be found directly from Bayes’ rule, we use the 
decomposition:

pðw, s, r2, kjyÞ ¼ pðwjy, s, r2, kÞpðs, r2, kjyÞ: (12) 

The distribution pðwjy, s, r2, kÞ on the right hand side of Equation (12), is a Gaussian distribu
tion with the following mean vector and covariance matrix:

l ¼ r−2RUTy,
R ¼ r−2UTUþ K−1½ �

−1, 

where K ¼ diagðsir
2Þ:

To estimate s, we search for the local maximum of pðs, r2, kjyÞ in Equation (12) with respect 
to the individual hyperparameters si by using the type-II maximum likelihood procedure. To find 
the maximum, we use pðs, r2, kjyÞ ¼ pðy, s, r2, kÞ=pðyÞ / pðy, s, r2, kÞ, and maximize the follow
ing joint distribution pðy, s, r2, kÞ to get the type-II maximum likelihood estimation of s: This 
joint distribution can be obtained by integrating out w as

pðy, s, r2, kÞ ¼
ð

pðyjw, r2Þpðwjs, r2ÞpðsjkÞpðkÞpðr2Þdw

¼
1

2p

� �N=2

jCj−
1
2e−1

2yT C−1ypðsjkÞpðkÞpðr2Þ, 

where C ¼ ðr2IN þUKU>Þ: The log of pðy, s, r2, kÞ is given by

L ¼ −
1
2

log jCj −
1
2

yTC−1y þ N log
k

2
−

k

2

X

i
si þ a log b − log CðaÞ

þða − 1Þ log k − bkþ c log d − log CðcÞ − ðcþ 1Þ log r2 −
d
r2 :

(13) 

In the following subsection, an optimization algorithm for Equation (13) is presented, and we 
prove that the algorithm gives a sparse model because some of the si will be set to zero. Thus, 
the corresponding weights and input vectors are pruned from the model according to the con
struction of the ARD prior in Equation (6).

2.3. Fast optimization algorithm

A disadvantage of the original RVM described by Tipping (2001) is that it is computationally 
slow in the maximization of the type-II likelihood. The original RVM begins with all N basis 
functions included in the model and updates the hyperparameters iteratively. During the updates, 
some of the basis functions are pruned. However, the first few iterations require OðN3Þ computa
tions. Tipping and Faul (2003) overcome this problem by introducing a fast marginal likelihood 
maximization algorithm for sparse Bayesian models. Instead of updating the whole hyperpara
meter vector s, only a single parameter si is updated at each iteration (step 4 of Algorithm 1). 
We follow the procedure explained by Tipping and Faul (2003) and choose the si that gives the 
largest increase of the log marginal likelihood in Equation (13). This fast maximization process is 
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utilized in many sparse learning studies including the work by Babacan, Molina, and Katsaggelos 
(2010).

To find the new value of si, we first rewrite Equation (13) as:

L ¼ −
1
2

log jC−ij þ yTC−1
−i y þ k

X

j6¼i
sj

� �
þ

1
2

log
1

1þ r2sisi
þ

q2
i r

2si

1þ r2sisi
− ksi

� �

þN log
k

2
þ a log b − log CðaÞ þ ða − 1Þ log k − bkþ c log d − log CðcÞ

−ðcþ 1Þ log r2 −
d
r2 ,

(14) 

where

si ¼ /T
i C−1

−i /i, and qi ¼ /T
i C−1

−i y: (15) 

The notation C−i denotes the covariance matrix C without the inclusion of the ith basis function, 
/i: The decomposition of the covariance matrix C into C−i and the other components is 
explained in Appendix A. The log-likelihood function, L, is now decomposed into three parts; the 
first part is the likelihood where si and the corresponding /i are excluded, the second part con
tains the terms that involve si and /i, while the last part contains all terms not containing s:
From this decomposition, the maximum of L with respect to a single hyperparameter si is found 
by taking the partial derivative with respect to si and setting it equal to zero, which gives

si ¼
−si − 2kr−2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

i þ 4qkr−2
p

2ksi
, q2

i − si > kr−2,

0, otherwise:

8
><

>:
(16) 

The derivation of Equation (16) can be found in Appendix B.
After si is updated we proceed to find the k in Equation (16) that maximizes the log likeli

hood. By taking the derivative of Equation (13) with respect to k and setting it to zero we obtain

k ¼
2ðN þ a − 1Þ
P

isi þ 2b
: (17) 

Similarly, a new estimate of r2 is found. When we take the derivative of Equation (13) with 
respect to r2, we notice that r2 can be separated from the rest of the components in C such that 
C ¼ r2 ~C, where ~C is independent of r2: The updated value of r2 is then found as

r2 ¼
y>~C−1y þ 2d
N þ 2cþ 2

: (18) 

In the optimization algorithm, we also have to update the expressions for si and qi. Computing 
the values of si and qi directly from Equation (15) requires the inversion of the matrix C−i:

Instead, we follow the approach of Tipping and Faul (2003) and calculate:

si ¼
Si

1 − sir2Si
, qi ¼

Qi

1 − sir2Si
, (19) 

where,

Si ¼ r−2/>i /i − r−2/>i URU>/ir
−2, (20) 

Qi ¼ r−2/>i y − r−2/>i URU>yr−2: (21) 
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The matrices R and U contain only the basis functions that are currently included in the model. 
This computation is therefore much faster than if we had started with all N basis functions. 
Algorithm 1 summarizes the procedure.

Algorithm 1. The Bayesian Lasso Sparse (BLS) Learning Model 
1: initialize r2 to some sensible value (e.g. var(y) � 0.1) 
2: Initialize all si ¼ 0, k¼ 0 
3: while convergence criteria are not met, do 
4:  Choose a si 
5:  if q2

i − si > kr−2 and si ¼ 0 then 
6:   Add si to the model with updated si 
7:  else if q2

i − si > kr−2 and si > 0, then 
8:   Re-estimate si 
9:  else if q2

i − si < kr−2, then 
10:   Set si ¼ 0 
11:  end if 
12:  Update R and l 

13:  Update k using Equation (17)
14:  Update r2 using Equation (18)
15:  Update si and qi using Equations (19–21)
16: end while  

From Equation (16) and Algorithm 1, we see that the criteria for setting si ¼ 0 depends on 
both k and the variance term r2: We will now prove that when r2 !1 then the criteria q2

i − 
si � kr−2 will be satisfied. We can write C−i as (see Appendix A):

C−i ¼ r2I þU−iK−iU
>
−i

¼ r2eC−i, 

where U−i is the N�N design matrix where basis function i is removed, K−i is the diagonal 
matrix K where the single element si is removed, and eC−i denotes C−i where the component r2 

is excluded. Inserting this decomposition into Equation (15), si and qi can be written as

si ¼ r−2esi, qi ¼ r−2eqi, (22) 

where esi ¼ />i
eC−1

−i /i and eqi ¼ />i
eC−iy: The condition in Equation (16) says that si is set to zero 

when q2
i − si � kr−2: Inserting Equation (22) into this inequality gives

r−2eqi
2 − esi � k:

We see that as r2 !1, the inequality always holds because k � 0 and ~si � 0: Thus, the corre-
sponding si is set to zero. Therefore, in the BLS, the information of r2 is utilized to adjust the 
number of zero hyperparameters during the estimation of s: This feature makes the BLS more 
robust to noisy information that might be confused with the real signal information.

2.4. Prediction

After the convergence of the learning Algorithm 1, we end up with a set of nonzero si’s and each 
of them corresponds to a “relevance basis function” and a related “relevance input vector” from 
the training data. For a new input data, x�, we can make predictions based on the posterior of 
the weights conditioned on s and r2: The predictive distribution (11) for the output y� can be 
approximated by
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pðy�jy, s, r2Þ ¼

ð

pðy�jw, s, r2Þpðwjy, s, r2Þdw:

This distribution is Gaussian with the following predictive mean and predictive variance:

y� ¼ /ðx�Þ>l,
r�2 ¼ r2 þ /ðx�Þ>R/ðx�Þ:

where /ðx�Þ ¼ ð1, /1ðx�Þ, :::, /Nðx�ÞÞ
>
: Note that only the basis functions corresponding to the 

nonzero si’s contribute to the posterior mean vector and covariance matrix.
In practice, the predictive mean can be used as a point prediction, and the predictive variance 

can be used to construct the prediction interval.

3. BLS for nonlinear regression

In this section, we compare the BLS with the RVM (Tipping and Faul 2003) and the FLAP 
(Babacan, Molina, and Katsaggelos 2010). We use simulated datasets to be able to compare the 
estimated r2 to the true value. For all the methods, we use the Gaussian kernel Kðxi, xjÞ ¼

exp ð−r2kxi − xjkÞ, where the kernel parameter r is determined by using five-fold cross validation.
For the Gamma priors in Equations (8, 9) a common practice is to set them to zero in order 

to obtain uniform hyperpriors for k and r2: In our implementation of the BLS model we there-
fore set a ¼ b ¼ c ¼ d ¼ 0: The RVM uses the same procedure to obtain a uniform hyperprior 
for r2, but the model does not include k. In the numerical results of Babacan, Molina, and 
Katsaggelos (2010), they use a uniform hyperprior for k in the FLAP. However, they use a fixed 
value for r2: This is done due to the under-determined nature of the compressive sensing prob-
lem that they apply the method to, which makes the estimates of r2 unstable in the early itera-
tions. In the results of this paper for the FLAP, we follow the same setup as in Babacan, Molina, 
and Katsaggelos (2010) and use r−2 ¼ 0:01kyk2

2: In addition, we include a version of the FLAP 
where r2 is estimated in the same manner as the BLS and the RVM. In order to distinguish this 
approach from the original FLAP, we denote it as FLAPr in the sections below. We include the 
results of both FLAP and FLAPr because, to our awareness this is the first time the FLAP is 
tested on general nonlinear regression problems.

3.1. The Sinc function

We first consider the Sinc function, f ðxÞ ¼ sin ðxÞ=x, a benchmark function that is frequently 
used to evaluate how kernel-based learning methods perform (Vapnik, Golowich, and Smola 
1996; Tipping 2001; Schmolck and Everson 2007). We use the same procedure as Tipping (2001) 
where the model is built based on 100 training data while the error is calculated with respect to 
the true function by using 1000 test data.

Figure 1 shows the results of the four methods on datasets with standard deviation r¼ 0.05, 
0.3 and 0.7. The black dots represent the training data from the model y ¼ f ðxÞ þ � where x 2
½−10, 10�: The same data set is used for all methods to better compare them. The location of the 
nonzero weighted input vectors, often referred to as the relevance vectors, are represented by the 
red circles. The blue lines correspond to the Sinc function, f(x), while the green lines are the pre-
diction of each method applied to the test data. From Figure 1 we observe that when r ¼ 0:05, 
the approximations of all four methods perform well and almost overlap with the true function. 
When r is set to 0.3, the methods can still capture the general form of the original function, 
except at the boundaries where they produce a more rough approximation. However, when r is 
set to 0.7, the training data begin to loose the original shape of the Sinc function, and the approx-
imations of all four methods have issues capturing the Sinc function shape.
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To measure the prediction accuracy of the methods, we generate 1000 datasets for r¼ 0.05, 
0.1, 0.3, 0.5 and 0.7 and run each method on these datasets totaling 1000� 5� 4 ¼ 20000 runs. 
For each value of r, method and dataset, we calculate the root mean squared error, number of 
relevance vectors and the estimated standard deviation. Table 1 shows the average values of these 
quantities, denoted by RMSE, NOV and r̂: When the standard deviation is small (r � 0:3), it is 

Figure 1. The Sinc function (blue line) and its prediction (green line) from the data generated with r ¼ 0:05, 0:3 and 0.7 from 
bottom to top row. The red dots are the relevance vectors and the black dots are the remaining training data.

Table 1. Results of the simulation study for the Sinc function.

True value of r Method NOV (SE) RMSE (SE) r̂ (SE)

0.05 RVM 5.31 (0.01) 0.016 (0.0001) 0.049 (0.0001)
FLAP 6.77 (0.04) 0.015 (0.0001) –
FLAPr 12.30 (0.06) 0.017 (0.0001) 0.049 (0.0001)
BLS 14.01 (0.06) 0.018 (0.0001) 0.049 (0.0001)

0.1 RVM 5.18 (0.02) 0.033 (0.0002) 0.099 (0.0002)
FLAP 7.34 (0.06) 0.030 (0.0002) –
FLAPr 12.79 (0.06) 0.041 (0.0002) 0.101 (0.0002)
BLS 13.55 (0.06) 0.041 (0.0002) 0.101 (0.0002)

0.3 RVM 4.33 (0.03) 0.091 (0.0005) 0.297 (0.0007)
FLAP 9.26 (0.08) 0.091 (0.0001) –
FLAPr 5.19 (0.05) 0.096 (0.0005) 0.299 (0.0007)
BLS 5.49 (0.05) 0.098 (0.0005) 0.299 (0.0007)

0.5 RVM 3.80 (0.04) 0.138 (0.0009) 0.489 (0.0011)
FLAP 9.53 (0.09) 0.154 (0.0012) –
FLAPr 3.52 (0.04) 0.132 (0.0008) 0.413 (0.0011)
BLS 3.70 (0.03) 0.133 (0.0008) 0.491 (0.0011)

0.7 RVM 3.77 (0.04) 0.181 (0.0014) 0.679 (0.0016)
FLAP 9.66 (0.11) 0.218 (0.0017) –
FLAPr 3.47 (0.04) 0.136 (0.0009) 0.516 (0.0024)
BLS 3.08 (0.02) 0.131 (0.0014) 0.687 (0.0016)

For each value of r, 1000 datasets were generated. The average number of relevance vectors, NOV, the average root mean 
square error, RMSE, and the average of estimated noise standard deviation, r̂, are reported for each method along with the 
corresponding standard errors, SE, in the parenthesis.
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the FLAP that achieves the overall best prediction, but all four methods give good approximations 
of the true function with low RMSE. For higher standard deviations the RMSE is higher but com-
parable for all methods. We observe that the NOV of all methods except FLAP is decreasing as 
the standard deviation increases. Thus, the methods that estimate the standard deviation pick 
fewer relevance vectors when the noise is large. We also notice that the corresponding standard 
errors of the NOV for the BLS and FLAPr show the same decreasing trend when the variance 
increases. The RVM and the BLS give the most accurate estimates of the standard deviation. In 
all, Table 1 shows that the BLS performs a bit worse than the rest of the methods when the 
standard deviation is low, while it performs as well as the established methods when the standard 
deviation is large.

3.2. The Bump dataset

In this section we investigate how the methods perform on a dataset with high frequency and 
spikes. The so called Bump function from Donoho and Johnstone (1994) is used to simulate data 
with sample size N¼ 120 and different signal to noise ratios (SNR).

Figure 2 shows the predictions of the four methods when SNR ¼ 1, 3 and 10. In this figure, 
the true Bump function is represented by the blue lines and the reconstruction from the noisy 
data is the green lines. The red dots represent the relevance vectors and the black dots represent 
the remaining data samples. The same data is used for all methods to compare them. When the 
data is less noisy, with SNR ¼ 10, all four methods can capture the bump signal well, however, 
when the noise is larger, the FLAP tends to overfit the data compared to the other methods. 
When SNR ¼ 1, it is the BLS and FLAPr that capture the signal best.

As for the Sinc function, we generate 1000 random datasets for SNR ¼ 1, 2, 3, 4, 5 and 10, and 
utilize RMSE, NOV and r̂ to evaluate the four methods. The results are presented in Table 2. 

Figure 2. The Bump function (blue line) and its reconstruction (green line) from the data that are generated for different values 
of SNR ¼ 1, 3 and 10 (from top to bottom row). The red dots are the relevance vectors and the black dots are the remaining 
data.
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We observe that the predictions of the BLS have the lowest RMSE of all four methods, especially 
when the dataset is noisy (SNR � 2). The predictions of the FLAPr have a lower RMSE than 
RVM and FLAP, except for SNR ¼ 10: Table 2 also shows that the NOV for the FLAP is 
roughly twice that of the other methods. This is consistent with the indication from Figure 2 that 
FLAP might overfit the data. The NOV values for the other models are more similar, but we 
notice that the BLS is the most sparse model when the SNR is low and the dataset is noisy. The 
NOV of the methods that estimate r2 decreases as the noise of the dataset increases, similar to 
the results in Sec. 3.1.

Compared to the smooth Sinc function where all four methods gave similar results, the BLS 
shows better result, both in terms of RMSE and NOV, than the other three methods for the 
irregular and noisy Bump dataset.

4. BLS for variable selection

Sections 2 and 3 derive and test the kernel-based framework where general nonlinear regression 
problems can be solved. This section describes how the BLS can perform variable selection in 
multiple linear regression models. Consider the linear regression problem

y ¼ Xbþ �, � � Nð0, r2INÞ, 

where b ¼ ðb1, :::, bPÞ
> is a vector that holds regression coefficients, y is the response vector, and 

X is the N�P matrix of standardized variables. The learning algorithm of the BLS is generally 
the same as in Sec. 2, and the main difference is that all the U matrices will be X matrices and 
no kernel function is needed.

One of the main features of the Lasso by Tibshirani (1996) is its ability to do variable selec-
tion. On the other hand, the Bayesian Lasso by Park and Casella (2008) does not perform variable 
selection because the regression coefficients in b are estimated by the Gibbs sampling. This 

Table 2. Results of the simulation study for the Bump function.

SNR Method NOV (SE) RMSE (SE) r̂ (SE)

10 RVM 51.3 (0.20) 0.249 (0.001) 0.251 (0.001)
FLAP 91.0 (0.19) 0.279 (0.001) –
FLAPr 45.9 (0.51) 0.258 (0.001) 0.266 (0.003)
BLS 62.8 (0.15) 0.217 (0.001) 0.192 (0.001)

5 RVM 49.5 (0.21) 0.342 (0.002) 0.341 (0.002)
FLAP 85.2 (0.17) 0.415 (0.001) –
FLAPr 37.4 (0.64) 0.327 (0.001) 0.397 (0.004)
BLS 52.0 (0.33) 0.288 (0.001) 0.301 (0.002)

4 RVM 42.8 (0.18) 0.376 (0.001) 0.423 (0.001)
FLAP 91.5 (0.17) 0.464 (0.001) –
FLAPr 36.8 (0.77) 0.349 (0.001) 0.437 (0.004)
BLS 37.4 (0.31) 0.319 (0.001) 0.414 (0.002)

3 RVM 42.0 (0.18) 0.427 (0.001) 0.481 (0.002)
FLAP 90.9 (0.18) 0.538 (0.001) –
FLAPr 33.2 (0.83) 0.379 (0.002) 0.512 (0.005)
BLS 35.1 (0.49) 0.346 (0.001) 0.375 (0.003)

2 RVM 40.8 (0.18) 0.511 (0.001) 0.578 (0.002)
FLAP 89.6 (0.17) 0.662 (0.001) –
FLAPr 26.3 (0.72) 0.416 (0.002) 0.653 (0.005)
BLS 34.1 (0.44) 0.377 (0.001) 0.564 (0.004)

1 RVM 33.8 (0.17) 0.694 (0.002) 0.866 (0.003)
FLAP 84.7 (0.19) 0.929 (0.019) –
FLAPr 24.3 (1.02) 0.518 (0.005) 0.900 (0.009)
BLS 15.9 (0.15) 0.472 (0.002) 0.966 (0.003)

For each value of SNR, 1000 datasets were generated. The average number of relevance vectors, NOV, the average root mean 
square error, RMSE, and the average of estimated standard deviation, r̂, are reported for each method along with the corre
sponding standard errors, SE, in the parenthesis.
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motivates the use of the BLS where variables related to pruned coefficients will be deleted and 
sparsity is achieved in variable domain.

For the Gamma priors in Equations (8, 9), we set a ¼ b ¼ c ¼ d ¼ 0 for all the results in this 
section, similar as done in Sec. 3.

4.1. Simulated data

This sub-section compares the BLS for variable selection to the Bayesian Lasso (Park and Casella 
2008) and the Lasso (Tibshirani 1996) using simulated data. The data are simulated from

yi ¼ x>i bþ �i, i ¼ 1, :::, N, 

where �i � Nð0, r2Þ and xi 2 RD: We consider three different simulation studies where we run 
1000 simulations for each study. In Simulation 1, the number of observations, N, is much larger 
than the number of variables, D. In Simulation 2, the number of observations is slightly higher 
than the number of variables, while in Simulation 3, the number of observations is less than the 
number of variables.

For all studies we generate a training set of size 50, while the test error is calculated with 
respect to the true model by using a test set of size 100. For the Bayesian Lasso, the posterior 
means are calculated based on 15 000 samples after discarding 3000 burn-in samples. Further, the 
hyperparameters a and b in the Gamma prior for k2 is set to 0.1. For the Lasso, the tuning par-
ameter k is selected by using 10-fold cross validation.

In the first simulation study we set b ¼ ð3, 1:5, 0, 0, 2, 0, 0, 0Þ> and consider three different 
scenarios setting r ¼ 1, 3 and 5. The pairwise correlation between xi and xj, i 6¼ j, is qji−jj with 
q ¼ 0:5: A similar example was used in the original paper by Tibshirani (1996) and in several 
later studies (Leng, Lin, and Wahba 2006; Li and Lin 2010; Alhamzawi and Ali 2018).

The simulation results are reported in Table 3, where the selected frequency of the coefficients 
from the 1000 simulations are listed. As the true values of b1, b2 and b5 are nonzero, a correct 
model should select these three as the nonzero coefficients. The table shows that both the Lasso 
and the BLS selects these coefficients in all 1000 repetitions when r¼ 1, while for r¼ 3 and 5, 
the Lasso has the highest frequency. The Bayesian Lasso selects all coefficients in every repetition, 
which is as expected. Maybe more interesting, is that the BLS selects the remaining coefficients, 
whose true values are zero, less frequently than the Lasso.

Table 3 also reports the average number of nonzero coefficients (NOC) along with the average 
RMSE and corresponding standard errors. The NOC values from the Bayesian Lasso are 8 in all 
three cases, which means that none of the estimated coefficients are zero, and the NOC values 
from the BLS are closer to 3 than the NOC values of the Lasso. The BLS has the lowest RMSE 

Table 3. Results from simulation 1.

r Method b1 b2 b3 b4 b5 b6 b7 b8 NOC (SE) RMSE (SE)

1 BLS 1 1 0.32 0.28 1 0.30 0.28 0.29 4.46 (0.03) 0.296 (0.004)
BL 1 1 1 1 1 1 1 1 8 (0) 0.411 (0.004)
Lasso 1 1 0.47 0.46 1 0.47 0.41 0.47 5.27 (0.05) 0.405 (0.004)

3 BLS 1 0.97 0.26 0.29 0.99 0.25 0.22 0.23 4.20 (0.01) 0.975 (0.013)
BL 1 1 1 1 1 1 1 1 8 (0) 1.209 (0.012)
Lasso 1 0.99 0.47 0.47 0.99 0.43 0.42 0.46 5.24 (0.05) 1.182 (0.012)

5 BLS 0.99 0.77 0.23 0.21 0.84 0.19 0.14 0.14 3.51 (0.03) 1.802 (0.023)
BL 1 1 1 1 1 1 1 1 8 (0) 1.893 (0.021)
Lasso 0.99 0.87 0.42 0.47 0.93 0.43 0.41 0.42 4.94 (0.05) 1.952 (0.020)

For each value of the true standard deviation r, 1000 datasets are generated. The table reports the average results of the 
BLS, the Bayesian Lasso (BL) and the Lasso. The columns b1, :::, b8 list the selected frequency of each coefficient. The aver
age number of nonzero coefficients, NOC, the average root mean square error, RMSE, and the average of estimated standard 
deviation, r̂, are listed along with the corresponding standard errors SE.
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for all cases of r. Thus, Table 3 shows that the BLS provides on average the most sparse esti-
mated model with the lowest prediction error.

The average of the estimated values of b and the corresponding standard errors are presented 
in Table 4. All methods give similar values for the coefficients, both for the nonzero and zero 
coefficients. We observe that while Bayesian Lasso never sets a coefficient to zero, the values of 
these coefficients are close to zero.

In the second simulation study, we simulate data where the dimension P of the input variables 
is close to the sample size N. We simulate a dataset with 50 observations for the training set and 
with 40 predictors. We set

b ¼ ð3, :::, 3
|fflffl{zfflffl}5

, 3, :::, 3
|fflffl{zfflffl}5

, 3, :::, 3
|fflffl{zfflffl}5

, 0, :::, 0
|fflffl{zfflffl}25

Þ
>, 

and r¼ 1. For the variables in X we first generate Z1, Z2 and Z3 independently from N(0, 1).
Then let

xi ¼ Z1 þ ei, for i ¼ 1, :::, 5,
xi ¼ Z2 þ ei, for i ¼ 6, :::, 10,

xi ¼ Z3 þ ei, for i ¼ 11, :::, 15, 

where ei � Nð0, 0:01Þ for i ¼ 1, :::, 15: For the remaining 25 variables, i ¼ 16, :::, 40, we set xi �

Nð0, 1Þ: The results from Simulation 2 are presented in Table 5. For Simulation 2 the Lasso 
model barely obtains the lowest RMSE value before BLS. The Bayesian Lasso RMSE is signifi-
cantly higher. A correct model should select the 15 nonzero coefficients and set the remaining 25 
to zero. Table 5 also shows that the average NOC value from both the Lasso and the BLS over-
estimate the number of coefficient that are different from zero.

In Simulation 3 we simulate a training dataset with 50 observations and with 60 predictors. 
We set

b ¼ ð5, :::, 5
|fflffl{zfflffl}

10

, 3, :::, 3
|fflffl{zfflffl}

10

, 3, :::, 3
|fflffl{zfflffl}

10

, 2, :::, 2
|fflffl{zfflffl}

10

, 2, :::, 2
|fflffl{zfflffl}

10

, 0, :::, 0
|fflffl{zfflffl}

10

Þ
>
:

Table 4. The average coefficient estimates and corresponding standard errors based on 1000 datasets for simulation 1.

r Method b1 ¼ 3 b2 ¼ 1:5 b3 ¼ 0 b4 ¼ 0 b5 ¼ 2 b6 ¼ 0 b7 ¼ 0 b8 ¼ 0

1 BLS 2.987 (0.012) 1.459 (0.014) 0.013 (0.005) 0.011 (0.008) 1.964 (0.008) 0.012 (0.007) 0.002 (0.003) 0.001 (0.004)
BL 2.985 (0.009) 1.489 (0.010) 0.001 (0.007) 0.006 (0.009) 1.970 (0.009) 0.031 (0.010) −0.017 (0.009) 0.015 (0.009)
Lasso 2.940 (0.006) 1.437 (0.006) 0.030 (0.004) 0.026 (0.006) 1.889 (0.005) 0.022 (0.003) 0.003 (0.004) 0.001 (0.003)

3 BLS 2.863 (0.017) 1.238 (0.018) 0.080 (0.008) 0.101 (0.009) 1.653 (0.018) 0.071 (0.008) 0.021 (0.006) 0.006 (0.005)
BL 2.859 (0.018) 1.210 (0.017) 0.058 (0.011) 0.129 (0.013) 1.566 (0.017) 0.097 (0.013) 0.032 (0.011) 0.012 (0.015)
Lasso 2.807 (0.017) 1.295 (0.018) 0.095 (0.012) 0.060 (0.011) 1.670 (0.017) 0.051 (0.012) 0.039 (0.012) 0.029 (0.014)

5 BLS 2.584 (0.032) 0.944 (0.027) 0.142 (0.011) 0.141 (0.013) 1.142 (0.028) 0.095 (0.010) 0.019 (0.007) 0.005 (0.007)
BL 2.511 (0.019) 1.172 (0.025) 0.190 (0.012) 0.235 (0.014) 1.309 (0.025) 0.189 (0.012) 0.051 (0.008) 0.009 (0.014)
Lasso 2.598 (0.021) 1.187 (0.029) 0.109 (0.013) 0.137 (0.015) 1.441 (0.026) 0.115 (0.010) 0.026 (0.009) 0.030 (0.013)

Table 5. Result for simulation 2 and 3, where average results for 1000 datasets are reported.

Method NOC (SE) RMSE (SE)

Simulation 2 BLS 24.33 (0.094) 0.942 (0.006)
BL 40 (0) 1.553 (0.005)
Lasso 23.71 (0.180) 0.944 (0.001)

Simulation 3 BLS 47.17 (0.068) 2.331 (0.013)
BL 60 (0) 29.16 (0.071)
Lasso 49.40 (0.092) 2.884 (0.013)

The average number of nonzero coefficients, NOC, and the average root mean square error, RMSE, are listed along with the 
corresponding standard errors SE.
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Similar to Simulation 2, for each group of ten variables we generate Zi � Nð0, 1Þ and set

xi ¼ Z1 þ ei, for i ¼ 1, :::, 10, xi ¼ Z2 þ ei, for i ¼ 11, :::, 20,
xi ¼ Z3 þ ei, for i ¼ 21, :::, 30, xi ¼ Z4 þ ei, for i ¼ 31, :::, 40,
xi ¼ Z5 þ ei, for i ¼ 41, :::, 50, 

with ei � Nð0, 0:01Þ: For the remaining 10 variables we set xi � Nð0, 1Þ: From Table 5 we see 
that the BLS has the lowest average RMSE value for Simulation 3, slightly lower than the Lasso. 
The Bayesian Lasso does not perform well when P>N on this dataset, however, we have 
observed that the RMSE drastically improves when the number of samples increases.

4.2. The diabetes data

The final study uses the diabetes data presented by Efron et al. (2004). The dataset was also used 
in a study by Park and Casella (2008) to compare the performance of the Bayesian Lasso with the 
Lasso and the Ridge Regression. The response is a measure of disease progression of 442 patients 
measured by 10 variables, one year after baseline. We standardize the predictors to have zero 
mean and unit variance. Table 6 compares the estimates from the BLS, the Bayesian Lasso and 
the Lasso. For the BLS, the point estimates in b are the mean of the posterior distribution. For 
the Bayesian Lasso, we use the same settings as Park and Casella (2008) and report the posterior 
median estimates obtained by using the Gibbs sampler. The Bayesian 95% credible intervals are 
also given. The BLS estimates are within the credible intervals of the Bayesian Lasso for all coeffi-
cients. We also notice that the BLS and the Lasso set the same coefficients to zero.

To compare the prediction performance, the dataset is randomly split in two parts, 70 % of 
the data is used as a training set and the remaining 30 % is used as a test set. We carry out 1000 
repetitions and report the average test RMSE and the average number of selected coefficients 
(NOC) with corresponding standard errors (SE). For the Lasso, we used 10-fold cross-validation 
to select the value of k. The results given in Table 7 shows that for this empirical example, 
although the RMSE is more or less the same for the three methods, BLS is most sparse with low-
est number of selected variables.

5. Conclusion

In this paper a new sparse Bayesian learning method, called the Bayesian Lasso Sparse (BLS) 
method is presented. The main features of the BLS can be summarized in three points: (I) The 
developed BLS extends the Bayesian Lasso by Park and Casella (2008) to deal with general non-
linear supervised learning problems, with the help of the kernel-based framework in Tipping 
(2001) and the fast learning process in Tipping and Faul (2003). The resulting method is a sparse 
Bayesian method that is shown to achieve sparsity in the sample domain and good predictive 

Table 6. Results of the diabetes data.

Names Bayesian Lasso Bayesian CI BLS Bayesian CI Lasso

Age −3.080 (-89.91, 83.01) 0 NA 0
Sex −203.27 (-302.67, −103.68) −196.87 (-316.87, −76.87) −188.55
Bmi 523.32 (413.92, 632.28) 533.52 (391.62, 675.45) 521.18
Map 301.08 (192.61, 408.54) 304.81 (182.91, 426.71) 292.36
Tc −144.05 (-414.08, 66.37) −100.60 (-214.90, 13.70) −92.98
Ldl −18.60 (-215.22, 195.23) 0 NA 0
Hdl −164.54 (-339.62, 8.82) −221.77 (-373.67, −69.87) −220.82
Tch 90.31 (-78.20, 290.18) 0 NA 0
Ltg 506.27 (356.19, 663.89) 529.17 (373.87, 684.47) 508.26
Glu 62.18 (-31.35, 163.78) 20.69 (-30.51, 71.89) 50.20

The estimated coefficients of the variables are listed together with the corresponding 95 % Bayesian credible intervals, CI.
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properties. (II) The prior distribution of BLS is conditioned on the variance of random noise, 
and the BLS is shown to be robust to the irregular datasets and high variance. We analyze how 
the posterior estimation of the weight parameters is adjusted by the variance of the noise. (III) 
We present how the BLS can be used in multiple linear regression. The BLS can here achieve 
variable selection automatically by a pure data-driven process.

The developed BLS is compared to the well-known methods RVM, FLAP, BL, and Lasso in 
addition to FLAPr To investigate the performance of the methods, we carry out a comprehensive 
study with both simulated and real data. For the simulated datasets the methods are exposed to 
various extents of noise. For the nonlinear regression test cases included in this paper, the FLAPr 

mostly performs better than FLAP. We do not observe that the FLAPr is unstable at early itera-
tions, which was observed for the compressive sensing reported by Babacan, Molina, and 
Katsaggelos (2010). Our results show that the performance of the BLS is compatible with the 
other methods, with low test error, few relevance vectors and low bias estimation of r2: The code 
for the BLS method is available at https://github.com/imhelg/BLScode.git.
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Appendix A
In order to obtain the expression for the log likelihood in Equation (14), we decompose the 
covariance matrix in the log-likelihood in Equation (13) as:

C ¼ r2I þ
X

m6¼i
r2sm/m/T

m þ r2si/i/
T
i

¼ C−i þ r2si/i/
T
i ,

(23) 

where C−i denotes C without the inclusion of basis function i. We next use the Woodbury iden
tity on the expression for the covariance matrix in Equation (23), such that the inverse of the 
covariance matrix is written as:

C−1 ¼ C−1
−i −

C−1
−i /i/

T
i C−1

−i

r−2s−1
i þ /T

i C−1
−i /i

:

Finally we use the determinant identity to obtain the decomposition of the determinant:

jCj ¼ jC−ijj1þ r2si/
T
i C−1

−i /ij:

These last two expressions can be inserted in Equation (13), which results in Equation (14).

Appendix B
From the decomposition of the log likelihood given in Equation (14), we can find the derivative 
of L with respect to si, where the other parameters are considered as fixed.

dL
dsi
¼

1
2

−
si

r−2 þ sisi
þ

q2
i r

−2

ðr−2 þ sisiÞ
2 − k

" #

¼ −
ðs2

i j1 þ sij2 þ j3Þ

2ðr−2 þ sisiÞ
2 , 

where j1 ¼ ks2
i , j2 ¼ s2

i þ 2sikr−2 and j3 ¼ r−2ðkr−2 þ si − q2
i Þ: The numerator has a quad

ratic form while the denominator is always positive so that dL=dsi ¼ 0 is satisfied at

si ¼
−siðsi þ 2kr−2Þ6si

ffiffiffiffi
H
p

2ks2
i

, (24) 

where H ¼ ðsi þ 2kr−2Þ
2 − 4kr−2ðkr−2 − ðq2

i − siÞÞ: By analyzing the terms we see that if q2
i − 

si < kr−2, then H2 < si þ 2kr−2, and both solutions of Equation (24) are negative. Furthermore, 
since dL=dsi evaluated at si ¼ 0 is negative, the maximum occurs at si ¼ 0: In the other situation, 
when q2

i − si > kr−2, there are two real solutions of Equation (24), one negative and one positive. 
The positive solution from Equation (24) maximizes L since dL=dsi is positive when evaluated at 
si ¼ 0 and negative at si ¼ 1: The maximum of L, when holding the remaining components 
fixed, is therefore obtained at:

si ¼

−siðsi þ 2kr−2Þ þ si
ffiffiffiffi
H
p

2ks2
i

if q2
i − si > kr−2

0 otherwise:

8
><

>:

Notice that the expression for H can be simplified to H ¼ s2
i þ 4qkr−2 which results in 

Equation (16).
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