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Abstract:We study the families of measures on Carnot groups that have vanishing p-module, which we call
Mp-exceptional families. We found necessary and sufficient Conditions for the family of intrinsic Lipschitz
surfaces passing through a common point to be Mp-exceptional for ≥p 1. We describe a wide class of
Mp-exceptional intrinsic Lipschitz surfaces for ( )∈ ∞p 0, .
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1 Introduction and motivation

“Negligible” sets appear customarily in measure theory and stochastic theory, as the sets of measure zero,
as well as the sets of vanishing p-capacity when dealing with regularity issues for solutions of partial
differential equations, and as thin and polar sets in potential theory. Sets of a family of measures having the
so-called Mp-module zero belong to this category of negligible or exceptional subsets of families of mea-
sures, see definitions in Section 3.

The notion of a module of a family of curves “or in another terminology extremal length” originated in
the theory of complex analytic functions as a conformal invariant [2], and later was widely used for the
quasiconformal analysis and extremal problems of functional spaces [3,9,31,34,44,47]. Fuglede in his
seminal paper [21] proposed to extend the notion of module from families of curves to families of measures.
He characterised the completion, with respect to L p norm, of some functional classes by using a family of
surfaces having vanishing Mp-module. He also described some classes of systems of measures with van-
ishing module and related it to the potential theory. In spite of the fact that the definition of the module of a
family of measures is given for an arbitrary measure space, most of the applications in [21]were done for�n.

The development of the analysis on metric measure spaces inspired us to look for examples of inter-
esting systems of measures in a more general setting than the Euclidean space. Several studies have been
carried out on this context [10,11,27,40,41]. However, most of the preceding works were dealing with
families of curves. Our main interest focuses on families of (suitably defined) intrinsic surfaces on Carnot
groups [17,20,46].

Carnot groups are connected, simply connected, nilpotent Lie groups and are one of the most popular
examples of metric measure spaces. Being endowed with a rich structure of translations and dilations
makes the Carnot groups akin to Euclidean spaces. Euclidean spaces are commutative Carnot groups

Bruno Franchi: Department of Mathematics, University of Bologna, Piazza di Porta S. Donato, 5, 40126 Bologna, Italy,
e-mail: bruno.franchi@unibo.it



* Corresponding author: Irina Markina, Department of Mathematics, University of Bergen, P.O. Box 7803, Bergen N-5020,
Norway, e-mail: irina.markina@uib.no

Analysis and Geometry in Metric Spaces 2023; 11: 20220148

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.

https://doi.org/10.1515/agms-2022-0148
mailto:bruno.franchi@unibo.it
mailto:irina.markina@uib.no


and, more precisely, the only commutative Carnot groups. The simplest but, at the same time, non-trivial
instance of non-Abelian Carnot groups is provided by Heisenberg groups H n.

Carnot groups possess an intrinsic metric, the so-called Carnot-Carathéodory metric (cc-distance), see
for instance, [12,16,24]. It is also well-known that non-commutative Carnot groups, endowed with the
cc-distance, are not Riemannian manifolds because the cc-distance makes them not locally Lipschitz
equivalent to a Riemannian manifold at any scale [39]. Carnot groups are particular instances of the so-
called sub-Riemannian manifolds.

Although Carnot groups are analytic manifolds, the study of measures supported on submanifolds (for
instance the Hausdorff measures associated with their cc-distance) cannot be reduced to the well-estab-
lished theory for submanifolds of Euclidean spaces, since it has been clear for a long time that considering
Euclidean regular submanifolds, even in Heisenberg groups, may be both too general and too restrictive,
see [25] for a striking example related to the second instance. Through this article, we shall rely on the
theory of intrinsic submanifolds in Carnot groups that has been recently developed by making use of the
notion of intrinsic graphs, see e.g. [17,19,20]. A discussion of different alternatives leading to this notion can
be found e.g. in [20], together with the main properties of the most relevant instances, the so-called intrinsic
Lipschitz graphs. Let us sketch this construction, restricting ourselves to stress the difficulties arising when
we want to extend the theory of p-modules from the Euclidean setting to Carnot groups. For deep algebraic
reasons, due to the non-commutativity of the group, the most flexible notion of submanifold of a Carnot
group is the counterpart of the Euclidean notion of a graph of a function. However, the notion of intrinsic
graph is not a straightforward translation of the corresponding Euclidean notion, since Carnot groups not
always can be expressed as a direct product of subgroups. Because of that, we argue as follows: an intrinsic
graph inside � is associated with a decomposition of � as a product � � �= ⋅ of two homogeneous
complementary subgroups �, � , see Section 3.4.1. Then the intrinsic (left) graph of �→f : Ω , where Ω
is an open subset of �, is the set

( ) { ( ) }= ⋅ ∈f g f g ggraph : Ω .

Another deep peculiarity of Carnot groups is the poor structure of the isometry group preserving the
grading structure of their Lie algebras. The isometry of a Carnot group is a composition of translations
and elements of the group automorphisms, see [26, Theorem1.2]. A Carnot group is said to be rigid
if the space of maps preserving the horizontal distribution is finite dimensional. For instance, H -type Lie
groups having dimension of the centre greater than two are rigid [33, Theorem, page 705]. A wider class of
two-step Carnot groups introduced in [29] contains a non-rigid subclass, see [32, Theorem 3], where some
other examples of non-rigid Carnot groups can be found by making use of the Tanaka prolongation
approach.

The main results of the present work are formulated in Theorem 3.31, Section 3.5.1, where we show
that quite a wide class of families of intrinsic Lipschitz surfaces (sets which are locally intrinsic
Lipschitz graphs of the same “metric dimension”) has vanishing p-module for ( )∈p 0, 1 . We did not reach
the full generality as in the Euclidean space due to the complex structure of decompositions of an arbitrary
Carnot groups into the product of two homogeneous non-isomorphic subgroups, see, for instance [5,23].
Another result, contained in Theorem 3.32, Section 3.5.2, is the sufficient condition for a family of surfaces
passing through a common point to be Mp-exceptional. In order to find a necessary condition we construct a
family of intrinsic Lipschitz graphs passing through one point by making use of the orthogonal Grass-
mannians on some specific two-step Carnot groups, see Section 4. The construction of the orthogonal
Grassmannians and the study of measures on them have an independent interest. Examples of exceptional
families of measures that are not related to intrinsic Lipschitz graphs are contained in Examples 3.5 and 3.9
in Section 3.3.

We are trying to keep the article as accessible as possible for a wider audience.
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2 Carnot groups

In this section, we establish notation and collect the basic notions concerning Carnot groups and their Lie
algebras.

2.1 General definition of Carnot groups

A Carnot group� is a connected, simply connected Lie group whose Lie algebra g of the left-invariant vector
fields is a graded stratified nilpotent Lie algebra of step l, i.e. the Lie algebra g satisfies:

g g g g g g[ ] { }= ⊕ = =

=
+ +

, , , 0 .
k

l
k k k l1 1 1 1

We denote by g( )= ∑
=

N dimk
l

k1 the topological dimension of �. The number g( )= ∑
=

Q k dimk
l

k1 is called the
homogeneous dimension of the group �. Since g is nilpotent, the exponential map g �→exp: is a global
diffeomorphism.

One can identify the group � with g� ≅
N by making use of exponential coordinates of the first kind by

the following procedure. We fix a basis

g( )… … … … =X X X X X X d, , , , , , , , , , dim ,l l k kd d d11 1 21 2 1 l1 2 (2.1)

of the Lie algebra g which is adapted to the stratification. If �∈g and g∈V are such that

( )
⎛

⎝
⎜

⎞

⎠
⎟∑∑= =

= =

g V x Xexp exp ,
k

l

j
kj kj

d

1 1

k

then (with a slight abuse of notations) we associate with the point �∈g a point �∈x N having the
following coordinates:

( )= … … … … =g x x x x x x x, , , , , , , , , .l ld d d11 1 21 2 1 l1 2 (2.2)

Thus, the identity �∈e is identified with the origin in �N and the inverse −g 1 with −x.
The stratification g g= ⊕

=k
l

k1 of g induces the one-parameter family { } >δλ λ 0 of automorphisms of g, where
each g g→δ :λ is defined as

g( ) ≔ ∈ >δ X λ X X λ, for all and 0.λ
k

k

The exponential map allows us to transfer these automorphisms of g to a family of automorphisms of the Lie
group �: � ��

→δ :λ , so-called intrinsic dilations, defined as

�
≔ ∘ ∘ >

−δ δ λexp exp , for all 0.λ λ
1

We keep denoting by � �→δ :λ the intrinsic dilations, if no confusion arises.
In coordinates (2.2), the group automorphism � �→δ :λ , >λ 0, is written as

( )

( )

= … … … …

= … … … …

δ g δ x x x x x x

λx λx λ x λ x λ x λ x

, , , , , , , , ,

, , , , , , , , , .

λ λ l l

l
l

l
l

d d d

d d d

11 1 21 2 1

11 1
2

21
2

2 1

l

l

1 2

1 2

(2.3)

The group product on �, written in coordinates (2.2), has the form

�( )⋅ = + + ∈�x y x y x y x y, , for all , ,N (2.4)

where � � �( )= … × →� � �, , :N
N N N

1 and each �k is a homogeneous polynomial with respect to group
dilations, see, for instance [16, Propositions 2.1 and 2.2]. When the grading structure is not important, we
will use the one-index notation

… …X X x x, , , , ,N N1 1

Exceptional families of measures on Carnot groups  3



for basis (2.1) of the Lie algebra g and for coordinates (2.2) on�. The basis vectors of the Lie algebra g viewed
as left invariant vector fields Xj, = …j N1, , , on � have polynomial coefficients and take the form in the
coordinate frame:

( )∑= ∂ + ∂ = …

>

X q x j N, for 1, , ,j j
i j

N

i j i, (2.5)

where ( ) ( )∣=
∂

∂
=

�q x x y,i j y y, 0
i

j
. The vector fields Xj, = …j d1, , 1, are called horizontal and they are homoge-

neous of degree 1 with respect to the group dilation. Their span at �∈q is called the horizontal vector
space � �⊂H Tq q .

2.2 Distance functions

In the present article, we use the following distance functions on a Carnot group � identified with �N

through exponential coordinates (2.2).
(D1) The standard Euclidean distance dE which is associated with the Euclidean norm ‖ ‖x E:

( ) ( )= ∑ − = ‖ − ‖
=

d x y x y x y,E i
N

i i E1
2 .

However, such a distance is neither left-invariant under group translations nor 1-homogeneous with
respect to group dilations. Thus, let us introduce further distances (not Lipschitz equivalent to dE) enjoying
these properties.

Definition 2.1. Let � be a Carnot group. A homogeneous norm ‖⋅‖ is a continuous function
� [ )‖⋅‖ → +∞: 0, such that

�

�

( )

‖ ‖ = =

‖ ‖ = ‖ ‖ ‖ ‖ = ‖ ‖ ∈ >

‖ ⋅ ‖ ≤ ‖ ‖ + ‖ ‖ ∈

−

p p
p p δ p λ p p λ

p q p q p q

0 if and only if 0;
, for all and 0;

for all , .
λ

1 (2.6)

Remark 2.2. A homogeneous norm ‖⋅‖ induces a homogeneous left invariant distance in � as follows:

�( ) ( )≔ ⋅ ≔ ‖ ⋅ ‖ ∈
− −d p q d q p q p p q, , 0 for all , .1 1 (2.7)

(D2) On any Carnot group � there exists a homogeneous norm �‖⋅‖ that is smooth away of the origin, see
[43, Page 638]. It induces the distance � �( ) ≔ ‖ ⋅ ‖

−d x y y x, 1 on �.
(D3) We also use the homogeneous norm ‖⋅‖H :

{ }‖ ‖ = ‖ ‖ ‖ ‖ … ‖ ‖
/ /x ε ε εx x xmax , , , ,H E E l l E

l
1 1 2 2

1 2 1

where g( )= … ∈x xx , ,k k k kd1 k , ‖⋅‖E is the Euclidean norm, making the adapted basis (1) orthonormal.
The suitable constants …ε ε, , l1 are positive, see [16, Theorem 5.1]. The induced distance is

( ) ≔ ‖ ⋅ ‖
−d x y y x,H H

1 .
(D4) The Carnot-Carathéodory distance ( )d x y,cc which is induced by an Euclidean scalar product g⟨⋅ ⋅⟩, 1 on

g1, making the horizontal vector fields Xj, = …j d1, , 1, orthonormal [1,24].

The distances defined in (D2)–(D4) are Lipschitz equivalent, since they are invariant under the left
translation on � and are homogeneous functions of degree 1 with respect to dilation (2.3). We denote by dρ

any of the distances mentioned in (D2)–(D4). Then the above observation and [12, Corollaries 5.15.1 and
5.15.2] imply:

Proposition 2.3. Let � be a Carnot group of step l. Then
(i) a set �⊂A is dρ-bounded if and only if it is dE-bounded;
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(ii) for any bounded set �⊂A there is >C 0A such that

( ) ( ) ( )≤ ≤ ∈
− /C d x y d x y C d x y x y A, , , , , ;A E ρ A E

l1 1

(iii) the topologies induced by dρ and dE coincide.

2.3 Measures on Carnot groups

The push forward of the N -dimensional Lebesgue measure �N on �N to the group � under the exponential
map is the Haar measure �g on the group�. Hence, if � �⊂ ≅E N is measurable, then ( ) ( )⋅ = ⋅ =� �x E E xN N

( )� EN for all �∈x . Moreover, if >λ 0, then ( ( )) ( )=� �δ E λ EN
λ

Q N .
Recall the definition of the Hausdorffmeasure in a metric space ( )X ρ, . For all sets ⊆E E X, i , closed balls

( )B x r,ρ i i , real numbers [ )∈ ∞m 0, , and >δ 0 one writes

( )
⎧

⎨
⎩

( ) ( )
⎫

⎬
⎭

( )
⎧

⎨
⎩

( ) ( ) ( ( ))
⎫

⎬
⎭

∑

∑

≔ ⊂ ∪ ≤

≔ ⊂ ∪ ≤

�

�

E E E E E δ

E E E B x r B x r δ

inf diam : , diam ,

inf diam : , , diam , ,

ρ δ
i

i
i

i i

ρ δ
i

i
i

ρ i i ρ i i

m m

m m

,

,

where we assume ( ) =Ediam 1i
0 for ≠ ∅Ei , and ( ) ( )∅ = ∅ =� � 0ρ δ ρ δ

m m
, , . For all ⊆E X and [ )∈ ∞m 0, the m

-Hausdorff measure ( )� Eρ
m and the spherical m-Hausdorff measure ( )� Eρ

m are defined, respectively, as

( ) ( ) ( ) ( )= =
→ →

� � � �E E E Elim , lim .ρ
δ

ρ δ ρ
δ

ρ δ
m m m m

0
,

0
,

Both � ρ
m and � ρ

m are Borel regular measures.
When � is a Carnot group considered as a metric space �( )d, ρ , where dρ is one of the distances

( ) ( )−D D1 4 , we denote by � d
m

ρ and �d
m

ρ the m-dimensional Hausdorff and spherical Hausdorff measures

associated with the distance dρ, respectively. The measures � d
m

ρ and ′
�d

m
ρ , where dρ and ′dρ are the distance

functions of types ( ) ( )−D D2 4 , satisfy

( ) ( ) ( ) ( ) ( ) ( )≤ ≤ ≤ ≤
′ ′

� � � � � �c E E C E k E E K E, ,d d d d d d
m m m m m m

ρ ρ ρ ρ ρ ρ

for some positive constants c k C K, , , and a set �⊂E . The same is true if we interchange � d
m

ρ and �d
m

ρ.
Finally,

�( ) ( ) ( )≤ ≤ ⊂� � �c E E C E E˜ ˜ , ,d
Q N

d
Q

ρ ρ (2.8)

for some positive constants c C˜, ˜, the homogeneous dimension Q, and the topological dimension N of the
Carnot group.

2.4 H-type Lie groups

One of the core examples for the present article will be H -type Lie groups that are particular examples
of two-step Carnot groups. Consider a real Lie algebra g �( [ ] )⋅ ⋅ ⟨⋅ ⋅⟩, , , , with the underlying vector space
g g g= ⊕1 2, where the decomposition is orthogonal with respect to the inner product �⟨⋅ ⋅⟩, , and g2 is
the centre of the Lie algebra g. The inner product space g �( )⟨⋅ ⋅⟩, ,2 , where �⟨⋅ ⋅⟩, is the restriction of the
scalar product to the subspace g g⊂2 , generates the Clifford algebra g �( )⟨⋅ ⋅⟩Cl , ,2 . The Clifford algebra

g �( )⟨⋅ ⋅⟩Cl , ,2 admits a representation on the vector space g1:

g g�( ) ( )⟨⋅ ⋅⟩ →J : Cl , , End .2 1
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We use the notation Jz, g∈z 2, for the value of the map J restricted to the vector space g g �( )⊂ ⟨⋅ ⋅⟩Cl , ,2 2 .
From the definition of the Clifford algebra we have

gg�= −⟨ ⟩ ∈J z z z, Id , .z
2

21 (2.9)

The Lie algebra g �( [ ] )⋅ ⋅ ⟨⋅ ⋅⟩, , , , is called H -type if

g g� �[ ]⟨ ⟩ = ⟨ ⟩ ∈ ∈J u v z u v z u v, , , , , , .z 2 1 (2.10)
An H -type Lie group is a connected simply connected Lie group whose Lie algebra is an H -type Lie algebra
g �( [ ] )⋅ ⋅ ⟨⋅ ⋅⟩, , , , .

2.4.1 The Heisenberg group

The nth Heisenberg group H n is diffeomorphic to � +n2 1 and is the simplest example of H -type Lie group. Its
( )+n2 1 -dimensional Lie algebrah�

n has one-dimensional centreh2. Leth1 be the n2 -dimensional orthogonal
complement to h2 with respect to an inner product ⟨⋅ ⋅⟩, on h�

n . We choose an orthonormal basis

h h… …X X Y Y ε, , , , , for and for ,n n1 1 1 2 (2.11)

satisfying the commutation relations

[ ] [ ] [ ]= = =X Y δ ε X X Y Y, , , , 0.j i ji j i j i (2.12)

Then the map Jε defined in (2.10) satisfies

h ( ) ( )= − = = −J J X Y J Y XId , , .ε ε i i ε i i
2

1

3 Module of a family of measures

We start explaining the notion of a p-module of a system of measures that Fuglede introduced in
his celebrated paper [21]. Let M( )X m, , be an abstract measure space with a fixed basic measure

M [ ]→ +∞m : 0, defined on a σ-algebra M of subsets of X . We denote by M the system of all measures
on X , whose domains of definition contain M.

With an arbitrary subset E of the system of measures M we associate a class of functions that we call
admissible for E and denote by ( )EAdm . Namely,

�( )
⎧

⎨
⎩

⎫

⎬
⎭

∫= → - ≥ ≥ ∈f X f m f f μ μE EAdm : : is measurable , 0, and d 1, for all .
X

Definition 3.1. For < < ∞p0 , the module ( )M Ep of a system of measures E is defined as

( )
( )
∫=

∈

M f mE inf d ,p
f

X

p
EAdm

interpreted as +∞ if ( ) = ∅EAdm .

The reader can find the fundamental properties of the p-module of measures in [21, Chapter 1].
A system of measures ⊂E M can be associated with the set where the measures are supported [31,45].
(I) Consider, for instance, a family of rectifiable curves �{ [ ] }= →γ a bΓ : ,γ γ

n and the associated system
of measures

⎧

⎨
⎩

⎛

⎝

⎞

⎠
(∣ ∣)

⎫

⎬
⎭

= = ∈�
γ
t

γ γE Var d
d

: Γ .d
1

E
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Here ( )Var γ
t

d
d is the total variation of the vector-valued Radon measure γ

t
d
d
, which coincides with the

Hausdorff measure (∣ ∣)� γd
1

E
of the locus ∣ ∣γ of the curve ∈γ Γ.

If we consider a subfamily �{ [ ] }= → ⊂
∼ γ a bΓ ˜ : ˜ , ˜ Γγ γ

n of absolutely continuous curves, then the corre-
sponding measures can be calculated by

⎛

⎝

⎞

⎠

( )

∣ ∣

∫ ∫= = ∈
∼

�
γ
t

γ t
t

t γVar d ˜
d

d ˜
d

d d , ˜ Γ.
a

b

γ

d

˜

1

γ

γ

E

˜

˜

(II) A family of locally Lipschitz k-dimensional surfaces in �n. Each surface locally is the image of an
open set of �k under a Lipschitz map f . In this case, a surface measure locally coincides with

∣ ( )∣=σ J f t td , d . Here, ( )J f t, is the Jacobian of f for the points �∈t k, where the Jacobian ( )J f t, is defined.
The corresponding family of measures is supported on these Lipschitz k-dimensional surfaces.

(III) A family of countable � d
k

E
-rectifiable subsets in �n, where we understand the rectifiability in the

sense of [14]. The system of measures consists of k-dimentional Hausdorff measures � d
k

E
, associated with

the family of countable � d
k

E
-rectifiable sets.

3.1 Exceptional families of measures

A system ⊂E M0 is called Mp-exceptional, if ( ) =M E 0p 0 . A statement concerning measures ∈μ M is said to
hold Mp-almost everywhere if it fails to hold for an Mp-exceptional system E0. The question that we are
interested in is to study Mp-exceptional sets of measures on Carnot groups. Let us remind that a point-set

⊂ XE0 in a measure space ( )X m, has vanishing measure: ( ) =m E 00 if and only if there is a function
( )∈f L X m,p such that ( ) = +∞f x for all ∈x E0. A generalisation of this fact to a system of measures

⊂E M0 is given by Fuglede.

Theorem 3.2. [21, Theorem 2] A system of measures ⊂E M0 is Mp-exceptional if and only if there exists a non-
negative function ( )∈f L X m,p such that

∫ = +∞ ∈f μ for every μ Ed .
X

0

Remark 3.3. By Theorem 3.2, it is easy to see that a family of curves in �n that are not locally rectifiable is a
Mp-exceptional set for ≥p 1.

3.2 Exceptional family of curves on Carnot groups

Recall the definition of horizontal subbundle � �⊂H T from Section 2.1. We say that a function �→f I: ,
�⊂I is dρ-Lipschitz continuous if it is Lipschitz continuous between metric spaces ( )I d, E and �( )d, ρ .

Definition 3.4. A continuous curve �→γ I: , �⊂I , is called horizontal if it is dE-Lipschitz continuous and
the tangent vector ( )γ t˙ belongs to �( )Hγ t for almost all ∈t I .

We mention a well-known example of an Mp-exceptional family of curves on a Carnot group.

Example 3.5. We define { }≔ ∟ ∈� γ γM , Γd
1

ρ , where

�{ [ ] }≔ → -γ dΓ : 0, 1 is a Lipschitz continuous curve ,E

Exceptional families of measures on Carnot groups  7



and

�{ [ ] } { }≔ → ≔ ∟ ∈�γ γ γMΓ : 0, 1 is a horizontal curve , , Γ .H H d H
1

ρ

We claim that ⧹ - >M pM M is exceptional for all 0.H p By Theorem 3.2, it is enough to find a nonnegative
function � �( )∈f L g,p such that

∫ = ∞�f d
γ

d
1

ρ

for all ∈ ⧹γ Γ ΓH . Without loss of generality we can assume that the loci of curves ∈γ Γ are contained in a
compact set �⊂K . Then the function

( )
⎧

⎨
⎩

=
∈

∉
f x x K

x K
1, if ,
0, if ,

belongs to �( )�L ,p N . Assume now, by contrary, that there is ∈ ⧹γ Γ ΓH such that ( )∫ = < ∞� �f γd
γ d d

1 1
ρ ρ

. We

will show that ∈γ ΓH , yielding a contradiction. The proof is more or less standard, but we prefer to give
complete arguments. By the property of module of a minorised family of curves, see [45, Theorem 6.4] we
can assume that the curve γ is injective. Since ([ ])γ 0, 1 is a closed and connected set, by [4, Theorem 4.4.8]
we can write

⎜ ⎟([ ]) ⎛

⎝
([ ])⎞

⎠
= ⋃ ⋃

=

∞

γ γ γ0, 1 0, 1 .
k

k0
1

(3.1)

Here γ0 is a Borel set such that ( ) =� γ 0d
1

0ρ and [ ] ([ ])→γ γ: 0, 1 0, 1k are dρ-Lipschitz continuous functions.
Note also that

( ) ( ) ( ) ( )≤ ⇒ ≤ ≤� �d x y Cd x y γ γ, , 0E ρ d d
1 1

E ρ (3.2)

and that ( )−γ γ1
0 has zero Lebesgue measure in [ ]0, 1 . Indeed (3.2) implies that ( ) =� γ 0.d

1
0E

Thus, we can
apply the area formula of [4, Theorem 3.3.1] for ( ) [ ]≔ ⊂

−A γ γ 0, 10
1

0 :

( )
( )

( ) ( ( )) ( )∫ ∫= = =
−� � �A γ s

s
s γ y yd

d
d card d 0.

A γ

d
1

0
1 1 1

E

0 0

(3.3)

Since both � and � are Carnot groups, by Pansu-Rademacher theorem, all γk’s are Pansu differentiable

in a set [ ]⧹A0, 1 1 with ( ) =� A 01
1 . For any �∈k , let us denote by ( )d γ tP k the Pansu differential at a point

[ ]∈ ⧹t A0, 1 1. Set now ≔ ∪A A A0 1. Arguing as in the proof of [19, Theorem 3.5 (2)] the Euclidean tangent
space to γ at a point ( )γ t , [ ]∈ ⧹t A0, 1 , coincides with �( )( )d γ τP k if k τ, are such that ( ) ( )=γ t γ τk . Since d γP k is
a group homomorphism between � and �, it maps � into the first (horizontal) layer of �, so that

�( ) ( )∈γ t H˙ γ t , yielding a contradiction.

Remark 3.6. By [4, Theorem 4.2.1] and [4, Remark 4.1.3], we can always assume that if [ ]∈ ⧹t A0, 1 then
∣ ( )∣ =γ t˙ 1. Thus, if ( ) ( )=γ t γ τk , and

( ) ( ) ( ( ))∑=

=

γ τ u τ X γ τ ,k
j

j j k

d

1
1

1

then ‖ ‖ ≤∞u CL , where C is independent of τ. Thus, in the definition of ΓH we can replace “horizontal” by
“admissible,” see [1].

3.3 Exceptional families of Radon measures on Carnot groups

Definition 3.7. If μ is a measure on a metric space ( )X ρ, , and >h 0, then the values
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( )
( ( ))

( )
( ( ))

= =
∗

→

∗

→

μ x
μ B x r

r
μ x

μ B x r
r

Θ , liminf
,

, and Θ , limsup
,

,h
r

ρ
h

h

r

ρ
h0

,

0

are called the lower and upper h-density of μ at the point ∈x X , respectively. We say that measure μ has
h-density ( )μ xΘ ,h if

( ) ( ) ( )< = = < ∞
∗

∗μ x μ x μ x0 Θ , Θ , Θ , .h h h,

Lemma 3.8. Let a Carnot group� of topological dimension N and homogeneous dimension Q be endowed with
a distance function dρ of type (D2)–(D4). Let μ be a Radon measure on �. If h-density ( )μ xΘ ,h is defined for

< <h Q1 and μ-almost every �∈x , then � �( ) ( )⋅ ∈μ L gΘ , ,h p for any >p 0.

Proof. Recall the relation � �g ~ N . We note that the map ( )→x μ xΘ ,h is Borel measurable, see e.g. [42,
Remark 3.1] and ( ) >μ xΘ , 0h for μ-a.e. �∈x . Let us show that

��({ ( ) })∈ > =x μ xg ; Θ , 0 0.h (3.4)

Fix >R 0 and assume by contradiction that

��( ( ) { ( ) })∩ ∈ > >B e R x μ xg , ; Θ , 0 0.d
h

ρ

We have

� �� �( ( ) { ( ) }) ⎛

⎝
( ) ( ) ⎞

⎠
{ }∩ ∈ > = ∩ ∈ >

→∞

B e R x μ x B e R x μ x
k

g g, ; Θ , 0 lim , ; Θ , 1 .d
h

k
d

d
ρ ρ

Denote �( ) { ( ) }= ∩ ∈ >E B e R x μ x, ; Θ ,k d
h

k
1

ρ . Then there exists �∈k such that �( )< < ∞Eg0 k . Thus, by
[4, Theorem 2.4.3],

( ) ( ) ( )( )≤ ≤ < ∞� E kω μ E kωμ B e R, ,d
h

k k dρ ρ (3.5)

where ω is a normalisation constant. On the other hand, the equivalence (2.8) implies that ( ) = ∞� Ed
h

kρ

contradicting (3.5). Letting → ∞R we obtain (3.4). This accomplishes the proof. □

Example 3.9. Consider the Heisenberg group H 1 endowed with a distance function dρ of type ( ) ( )−D D2 4 . Let
M be the set of all Radon measures μ on H 1 satisfying

( )
( )( )

≔ > - ∈
→

μ x
μ B x r

r
μ x HΘ , lim

,
0 for a.e. .

r

d1
0

1ρ (3.6)

We let ⊂M M0 to be the measures for which there exists a countable family of Lipschitz maps →A HΦ :i i
1,

�⊂Ai , such that

( ( ))⧹⋃ =μ H AΦ 0.
i

i i
1

We want to show that ⧹M M0 is Mp-exceptional for >p 0. By Theorem 3.2 and Lemma 3.8, it is enough to
show that

( ) ( )∫ = ∞ ∈ ⧹μ x μ x μ M MΘ , d if .
H

1
0

1

Suppose by contradiction that the above integral is finite for a given measure ∈μ M. Then ( ) < ∞μ xΘ ,1 for
μ-a.e. ∈x H 1. Then applying [7, Theorem 1.3], which is an analogue of one-dimensional Preiss’ theorem for
H 1, we obtain that ∈μ M0. This is a contradiction.

Example 3.10. In this example, we refer to the definition of a tangent measure ( )μ xTan ,h in [28, Chapter
14]. Consider a Carnot group � as a metric space �( )d, ρ where dρ is one of the distance functions ( ) ( )−D D2 4 .
For < <h Q1 denote by M the set of all Radon measures μ on � such that

Exceptional families of measures on Carnot groups  9



(i) ( ) >
∗

μ xΘ , 0h for μ-a.e. �∈x ;

(ii) �( ) ( ){ }⊂ ∟�μ x λ xTan ,h d
h

ρ , where �( )x is a complemented homogeneous subgroup in �.

We let ⊂M M0 to be a family of Radon measures such that there exists a countable family { ( )≔ ϕΓ graph ;i i
}= …i 1, 2, of compact intrinsic Lipschitz graphs of metric dimension h, see Section 3.4.1, which are

intrinsically differentiable almost everywhere, see [20], and such that

�( )⧹⋃ =

=

∞

μ Γ 0.
i

i
1

Then we claim that ⧹M M0 is Mp-exceptional family of measures. By the methods of Lemma 3.8, one can
prove that � �( ) ( )⋅ ∈

∗ μ L gΘ , ,h p, for any >p 0. Thus, it is enough to show that

�

( ) ( )∫ = ∞ ∈ ⧹
∗ μ x μ x μ M MΘ , d ifh,

0

by Theorem 3.2. Suppose by contradiction that the above integral is finite for a measure ∈ ⧹μ M M0. Then
( ) < ∞
∗ μ xΘ ,h, for μ-a.e. �∈x and therefore [6, Theorem 1.5], see also [8], implies that ∈μ M0, which is a

contradiction.

3.4 Families of surfaces on Carnot groups

In this section, we aim to define families of surfaces that will be of our interest.

3.4.1 Intrinsic Lipschitz surfaces on the Carnot groups

In this section, we recall the definition of intrinsic Lipschitz graphs, i.e. graphs of intrinsic Lipschitz functions,
see [18,20]. Then we give a definition of an intrinsic Lipschitz surface. A subgroup � of a Carnot group � is
called a homogeneous subgroup if� is a homogeneous group with respect to the dilation δλ defined in (2.3).
Let us assume that � is decomposed into complementary homogeneous subgroups: � � �= ⋅ , � �∩ = e,
and let �P and �P be the canonical projections: � �� →P : and � �� →P : defined by the identity

� �⋅ ≡q q qP P for �∈q . The projections define intrinsic cones:

�� � � � � � � �( ) { ∣ } ( ) ( )= ∈ ‖ ‖ ≤ ‖ ‖ = ⋅C e β p p β p C q β q C e βP P, , , , ,, , ,

where >β 0 is called the opening of the cone � �( )C q β,, and q is the vertex.

Definition 3.11. The graph of a function �→f : Ω , where Ω is an open set of �, is the set

� � � �( ) { ( ) ∣ }= ⋅ ∈ = ⋅ ∈ ⊂f q f q qgraph Ω .

A function �→f : Ω , �⊂Ω , is an intrinsic Lipschitz function in Ω with the Lipschitz constant >L 0 if

� �( ) ( ) { } ( )/ ∩ = ∈C p L f p p f, 1 graph for all graph .,

An intrinsic Lipschitz graph is the graph of an intrinsic Lipschitz function.

Left translations of intrinsic Lipschitz graphs are still intrinsic Lipschitz graphs. Following [20, Lemma
2.12], we set

� �( ) {∥ ∥ ∥ ∥ ∥ ∥ }≔ + =c mh m h, inf : 1 .0 (3.7)

Remark 3.12. We emphasise that there is a subtle difference in the notions of a Lipschitz function between
metric spaces and that of intrinsic Lipschitz function within a Carnot group. We refer the reader to [20].
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Definition 3.13. The topological dimension dt of a (sub)group is the dimension of its Lie algebra. The metric
dimension m of a Borel set �⊂U is its Hausdorff dimension, with respect to the Hausdorffmeasure � dρ (or
�dρ) for a distance function dρ of type (D2)–(D4). We say that � is a ( )d m,t -subgroup of � if � is a

homogeneous subgroup of � with topological dimension dt and metric dimension m. We say that
( )fgraph is intrinsic ( )d m,t -Lipschitz grapf if �→f : Ω , �⊂Ω , is an intrinsic Lipschitz function and

� is a ( )d m,t -subgroup of �.

The metric dimension m of a homogeneous subgroup is an integer usually larger than its topological
dimension dt, see [30] and coincides with the homogeneous dimension, defined in Section 2.1.

Definition 3.14. Suppose ≤ ≤ −Nd1 1t and ≤ ≤ −Qm1 1. A non-empty subset �⊂S is called an intrinsic
( )d m,t -Lipschitz surface (or manifold in the graph representation) in � if to every point ∈x S there
correspond an open neighbourhood �( ) ⊂U x , a decomposition � � �= ⋅ , and an open set �⊂Ω
such that

• ∈x U ;
• � is a ( )d m,t -subgroup of �;
• there exists an intrinsic Lipschitz map �→f : Ω such that ( ) ( )∩ = ∩S U f U xgraph .

3.4.2 Measures on the intrinsic Lipschitz graphs and surfaces

We suppose that �( )� � d, , ,N
ρ is a Carnot group with the Borel σ-algebra � , the Lebesgue measure �N ,

which is identified with the Haar measure �g , and a distance function dρ of types ( )−D D2 4 . We assume that
� � �= ⋅ . The following result provides the existence of a Borel measure on an intrinsic Lipschitz graph.

Theorem 3.15. [20, Theorem 3.9] Let S be an intrinsic ( )d m,t -Lipschitz graph on a Carnot group �( )d, ρ .
Suppose ( )=S fgraph is defined by a decomposition � � �= ⋅ and an intrinsic L-Lipschitz function

�→f : Ω in the domain �⊂Ω . Then there are positive constants c c,0 depending on the decomposition
� � �= ⋅ such that

� �
� �⎛

⎝

( ) ⎞
⎠

( ) ( )( )( )
⋅

+

≤ ∩ ≤ ⋅ +�
c

L
R S B x R c L R

1
, 1d d

d
m

m m m0
ρ ρ

m (3.8)

for all points ∈x S and >R 0. In particular, the Hausdorff dimension of S with respect to dρ equals the
homogeneous dimension of the group �.

Let � � �= ⋅ be a decomposition of � into complementary homogeneous subgroups. If �⊂Ω is an
open set and �→f : Ω is an intrinsic Lipschitz function, then one can define a map �→Φ : Ωf by

( ) ( )= ⋅m m f mΦf , ∈m Ω, which parametrises the intrinsic Lipschitz graph of f . We define two measures

( ) ( )( ) ( ( ) )= ∟ = ∩� �σ A f A f Agraph graphS d d
m m (3.9)

and

� � �( ) ((( ) ) )( ) ( ( )) ( ( ( ) ))= = = ∩♯

− −μ A A A f Ag g gΦ Φ Φ graphf f f
1 1 (3.10)

for any Borel measurable subset �⊂A . Both measures σS and μ are concentrated on the set �( ) ⊂fgraph .

Theorem 3.16. For the measuresσS and μ defined in (3.9) and (3.10) there are positive constantsC1 andC2 such
that

( ) ( ) ( )≤ ≤C σ A μ A C σ AS S1 2 (3.11)

for any Borel measurable set �⊂A .

Exceptional families of measures on Carnot groups  11



Proof. Note that if �⊂A , then by definition

� � �( ) ( ( ( ) )) ( ( ( ) ))= ∩ = ∩
−μ A f A f Ag g PΦ graph graph .f

1 (3.12)

Let �( ) ⊂B x R,dρ be a ball centred at ( )∈x fgraph . Then, by [20, Formula (44)],

� � �( ) ( ) ( ) ( )( ) ( ) ( )⊂ ∩ ⊂B x cR f B x R B x RP P P, graph , , ,d d dρ ρ ρ

where � �( )
=

⋅

+
c c

L1
0 . Moreover, it was shown in [20, Lemma 2.20] that

� � �( ( ( ))) ( )( )= =B x R c R c B eg P g, , , 1 .d d
m

1 1ρ ρ

It implies

� �( ( ( ) ( ))) ( )( )≤ ∩ = ≤c c R f B x R μ B x R c Rg P graph , ,d d
m m m

1 1ρ ρ (3.13)

by (3.12) and the definition of the measure μ. Passing to the upper and lower limits in (3.13) we obtain

( ) ( )( ) ( )
≤ ≤ ≤

→ →

c c
μ B x R

R
μ B x R

R
climinf

,
limsup

,
.

R

d

R

dm
m m1

0 0
1

ρ ρ (3.14)

Therefore, arguing as in [14, Section 2.10.19], we can write (3.13) as

( ) ( )≤ ≤ ≤
∗

∗c c μ x μ x c˜ Θ , Θ , ˜m m m
1

,
1 (3.15)

for any ( )∈x fgraph . Again by [14, Section 2.10.19] it follows that

( ) ( ) ( )≤ ≤� �c c U μ U c U˜ ˜ 2d d
m m m m

1 1ρ ρ (3.16)

for any Borel measurable set �⊂U . As a setU we take ( )≔ ∩U A fgraph for a Borel set �⊂A . By (3.16)we
obtain

( ) ( ) ( ) ( ) ( ) ( )= ≤ = ≤ =� �C σ A C U μ U μ A C U C σ A ,S d d S
m m

1 1 2 2ρ ρ

where ≔C c c˜ m
1 1 and ≔C c̃ 2m

2 1 . □

Corollary 3.17. Let ( )=S fgraph be an intrinsic ( )d m,t -Lipschitz graph in a Carnot group �( )d, ρ , and let
�→Φ : Ωf be the map defined by ( ) ( )= ⋅m m f mΦf ,which parametrises S. For the measure σS defined above

and any Borel non-negative function h on � one has

�

�

�

( ) ( ) ( )( ) ( ) ( ) ( )∫ ∫ ∫≤ ∘ ≤C h y σ y h x x C h y σ ygd Φ d d .S f S1

Ω

2 (3.17)

Proof.We recall a result from [28, Theorem 1.19]. Let X andY be two separable metric spaces, →X YΦ : a
Borel map, ν a Borel measure on X , and h is a Borel non-negative function on Y . Then

( ) ( )( ) ( )( ) ( )∫ ∫= ∘♯h y d ν y h x ν xΦ Φ d .
Y X

We apply the result for the surface locally parametrised by an intrinsic Lipschitz graph of f , taking
�= ⊂X Ω , �=Y , =Φ Φf , �=ν g . Then (3.17) follows. □

Remark 3.18. We stress that if S is an intrinsic ( )d m,t -Lipschitz surface, then according to Definition 3.14,
the constant � �( )c ,0 in (3.17) depends on S and therefore we can write � �( ) ( )≕c c S,0 0 when we consider
this constant on a surface S.

If in Corollary 3.17 we track the definition of the constants C C,1 2, then we see that they depend (up to
geometric constants) only on the decomposition � �⋅ and the Lipschitz constant L. So, we can say that
C C,1 2 depend on S and we write ( )C S1 , ( )C S2 .
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3.4.3 Examples of families of surfaces on Carnot groups

Example 3.19. ( )1, 1 -intrinsic Lipschitz surfaces. Let � ( )= tXexpX , �∈t , g∈X 1 be a one-dimensional
commutative subgroup and �X a complementary to �X subgroup. Let � �→ϕ :X X X be a Lipschitz map.
The family

g� �{ }= → ∈ϕ XΦ : :X X X 1

is a family of ( )1, 1 -intrinsic Lipschitz surfaces, that is a family of horizontal curves.

Example 3.20. A family of parametrised intrinsic Lipschitz graphs. Let � and � be complementary sub-
groups and �→f : Ω , �⊂Ω , be an intrinsic Lipschitz function with ( )=S fgraph . We define

� ( ) ( )→ ≔ /f δ f m δ f δ m: Ω : .λ λ λ λ λ1

Then ( )=S fgraphλ λ is a family of intrinsic Lipschitz graphs, parametrised by >λ 0 and it coincides
with δ Sλ .

We also consider

� � ��{ ( ) }→ = ∈ ∈ ∈ ⊆
−f m q m q EP: Ω , Ω : Ω ,q q q

1

defined by

� �( ) ( ( )) ( ( ))= ⋅
− − −f m q m f q mP P .q

1 1 1

Then

� �( ) {( ( )) }= = ⋅ ∈ ∈ ⊂ →S f m f m m q E fgraph : Ω , , : Ωq q q q q q

is a family of intrinsic Lipschitz graphs parametrised by �∈ ⊂q E and it coincides with ( )⋅ =q S L Sq . The
details about the properties of Sλ and Sq are given in [20, Theorem 3.2].

Particularly, if �∈ =q E , then �( ) =−q m mP 1 , �( ) =− −q m qP 1 1. It implies =Ω Ωq , and the family
( ) ( )= ⋅f m q f mq is a family of graphs shifted along the subgroup � .

Example 3.21. Let �( )∈� Aut be a grading preserving automorphism. Let � �→f : be an (intrinsic)
Lipschitz function with ( )=S fgraph . We define � �( ) ( )→� ��f : by ( ) ( )( )=

−� ��f m f m .1 Then

�( ) {( ( )) ( )}= = ⋅ ∈ �� � �S f m f m mgraph :

is a family of (intrinsic) Lipschitz graphs and it coincides with ( )� S . Indeed, let ( ( ))⋅ ∈m f m S, then

( ) ( ( )) ( ( )) ( ( )) ( ( )) ( ( ))∋ ⋅ = ⋅ = ⋅ = ′⋅ ′ = ′⋅ ′ ∈
− −� � � � � � � � � � � �S m f m m f m m f m m f m m f m S .1 1

If �( )∈� Aut preserves the homogeneous norm, then an intrinsic L-Lipschitz graph is transformed to
an intrinsic L-Lipschitz graph.

3.5 Exceptional families of intrinsic Lipschitz surfaces

3.5.1 Exceptional families for p0 1< <

Denote by ( )Σ d m,t a family of intrinsic ( )d m,t -Lipschitz surfaces in �. With each surface ( )
∈S Σ d m,t we

associate a measure σS as in Section 3.4.2. Let ( )
⊂Σ Σ d m,t be a subfamily and E the system of measures

σS, ∈S Σ, associated with Σ. Then ( ) ( )=M M EΣp p denotes the p-module of the family of measures E as well
as the family of the surfaces Σ.

Note that in [21, page 187] it was shown that if < <p0 1, then any system of Lipschitz k-dimensional
surfaces Σ which intersects the cube
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�{ ∣∣ ∣ }= ∈ < = …x x a l nCube , 1, ,a
n

l

has vanishing p-module for any >a 0. It leads to the fact that ( ) =M Σ 0p , ( )∈p 0, 1 , by the monotonicity of
p-module. We will study an analogue situation on the Carnot groups.

Suppose � � �= ⋅ is a decomposition of � and denote by m and g the Lie algebras of the Lie groups �

and �, respectively. Let us fix a weak Malcev basis � �
{ }… …+W W W W, , , , , Nd d1 1t t for g through m, see [13,

Theorem 1.1.13]. We define the following coordinate maps

� �

� �

� � � �

�
� �

�

( )

( )

( )

( ) ( )

( ) ( )

( ) ( )

→ = … ↦ ⋅…⋅

→ = … ↦ ⋅…⋅

→ ⧹ = … ↦ ⋅ ⋅…⋅

−
+ + +

−
+ + +

T ζ ζ ζ ζ W ζ W

T s s s s W s W

T s s s s W s W

: : , , exp exp ,

: : , , exp exp ,

: : , , exp exp .

N
N N N

N
N N N

d
d d d

d
d d d

d
d d d

1 1 1

1 1 1

1 1 1

t
t t t

t
t t t

t
t t t

We define the natural projection on the right coset space by

� � � �→ ⧹ ↦ ⋅π g g: : . (3.18)

The group � acts on the right on the coset space � �⧹ by

� � � � � � �( ) ( )⧹ × → ⧹ ⋅ ↦ ⋅g g gg: , ˜ ˜ .

Since � � �= ⋅ , the coset space is “parametrised” by the elements of � in the following sense
� � �⋅ = ⋅ = ⋅g mh h. Moreover, � � �⋅ = ⋅ = ⋅gg mhmh h˜ ˜ ˜ ˜̃, where h̃̃ is not necessarily hh̃. In the fol-
lowing proposition, we formulate a Fubini-type theorem related to the right quotient space � �⧹ .

Proposition 3.22. [13, Lemma 1.2.13][37, Theorem 15.24] The map �= ∘T π T is a diffeomorphism and the
push forward measure � � ( )=⧹ #

−�Tg N dt is a right�-invariant measure on the coset space� �⧹ , [13, Theorem
1.2.12]. Moreover, the right invariant measure �g on � and the measure � �⧹g on � �⧹ are related by

�

�

� �

� �

�

�( ) ( )∫ ∫ ∫=

⧹

⧹g mgg g gϰ d d ϰ d (3.19)

for any continuous function ϰ with a compact support.

By making use of the Vitali covering lemma, we consider a countable family of Euclidean balls
� �( ){ }⊂ ∈B ξ r j, ,j

dt such that

� �{ ( ) }

( )

∈

/

B ξ r j
B ξ r

• , , is an open covering of ;
• the balls , 5 are disjoint .

j

j

dt

(3.20)

In particular, if a finite family of balls B { ( ) ( )}= …B ξ r B ξ r, 3 , , , 3j jK1
has nonempty intersection, then

B# ≤ 30dt. Indeed, suppose for the sake of simplicity that B { ( ) ( )}= …B ξ r B ξ r, 3 , , , 3K1 are such that
( )∈ ∩

=
ζ B ξ r, 3i

K
i0 1 . By triangle inequality ( ) ( )∪ ⊂

=
B ξ r B ξ r, 3 , 6i

K
i1 1 . Since { ( ) ( )}/ … /B ξ r B ξ r, 5 , , , 5K1 is a disjoint

family in ( )B ξ r, 61 we obtain

B( ) ( ) ∣ ( )∣ ( ) ( ( ))( ( )) ⋅ # = ∪ / ≤ =

=

r B ξ r B ξ r r Bvol B 0,1
5

, 5 , 6 6 vol 0, 1 .
i

K
i

t
d

d
d

1 1t
t

Let now ( ( ))∈
∞ψ C B r0, 30 be a cutoff function of the ball ( )B r0, 2 and set

( ) ( ) ∣ ∣ ( )∑≔ = − −
− −ϕ ζ ϕ ζ ξ ζ ψ ξ ζ2 ,r

i

i
i i

1 (3.21)

where ξj are centres of the balls in family (3.20).

Lemma 3.23. For any >r 0 and < < p0 1 we have �( )∈ϕ Lr
p dt .

Proof. If ζ is fixed, then ( )− >ψ ξ ζ 0i if and only if ( )∈ζ B ξ r, 3i , which is possible for at most 30dt values of i.
Thus, if < <p0 1, then
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⎜ ⎟∣ ( )∣
⎛

⎝

∣ ∣ ( )
⎞

⎠

∣ ∣ ( )∑ ∑≤ − − ≤ − −
− − − −ϕ ζ ξ ζ ψ ξ ζ C ξ ζ ψ ξ ζ2 2 ,r

p

i

i
i i

p

p
i

ip
i

p p
i

1

so that

� �

( ) ∣ ∣ ( )

∣ ∣ ∣ ∣

( ) ( )

∫ ∫

∫ ∫

∑

∑ ∑

≤ − −

≤ − = < ∞

− −

− − − −

ϕ ζ C ξ ζ ψ ξ ζ ζ

C ξ ζ ζ C ζ ζ

2 d

2 d 2 d .

r
p

p
i

ip
i

p p
i

p
i

ip

B ξ r

i
p

p
i

ip

B r

p

,3 0,3i

dt dt

□

Lemma 3.24. Let us fix the Vitali covering as in (3.20) by balls of a radius r. Then for any ( )∈x B ξ r,i the
function ϕr defined in (3.21) satisfies

( )

( )

∫ = ∞ϕ ζ ζd .
B x r

r

,
(3.22)

Proof. We have ( ) ( )⊂B x r B ξ r, , 2i by the triangle inequality and ( )∈x B ξ r,i . Then for ( )∈ζ B x r, we obtain

( ) ∣ ∣ ( ) ∣ ∣≥ − − = −
− − − −ϕ ζ ξ ζ ψ ξ ζ ξ ζ2 2 .r

i
i i

i
i

1 1

It implies

( ) ∣ ∣ ∣ ∣

( ) ( ) ( )

∫ ∫ ∫≥ − ≥ − = ∞
− − − −ϕ ζ ζ ξ ζ ζ ξ ζ ζd 2 d 2 d ,

B x r

r

B x r

i
i

B ξ r

i
i

, ,

1

, ˜

1

i

for some ( )∈r r˜ 0, . □

A Carnot group � can admit various decompositions � � �= ⋅ into homogeneous non-isomorphic
subgroups of the same topological dt and Hausdorff m dimensions. The full description of decompositions
� � �= ⋅ into homogeneous non-isomorphic subgroups is far from being well understood. The difficulty of
a classification of decompositions originates in the classification of nilpotent Lie algebras. In dimension 6,
there are only finitely many non-isomorphic Carnot algebras, whereas in dimension 7 there are uncountably
many non-isomorphic Carnot algebras, see [23]. The latter result allows us to construct 8-dimensional
Carnot algebra, which contains uncountably many non-isomorphic Carnot sub-algebras of dimension 7,
see [5]. Moreover, this 7-dimensional homogeneous sub-algebras are complemented by 1-dimensional
Abelian homogeneous sub-algebras. That is why, we restrict ourself to the following cases. The first one
when there are finitely many decompositions � � �= ⋅α α α, = …α l1, 2, , into non-isomorphic pairs
� �⋅α α. The second case when each pair � �⋅α α belongs to an orbit of the action of grading preserving
isometries of �. In this case, we have decomposition into finitely many pairs, such that each pair is a
representative in the equivalence class.

It is enough to consider surfaces belonging to an open bounded set �⊂� , for instance a ball. Let Σ be a
system of Lipschitz surfaces with some specific property, which will be specified in theorems below, and let

{ }≔ = ∟ ∈�σ S SE ; ΣS d
m

ρ

be the system of the associated measures in �( )d, ρ . Then we denote by �Σ the system of the Lipschitz
surfaces ∩ �S , ∈S Σ, and by �E the family of associated measures. If we show that ( ) =�M E 0p , then it
will imply that the system of measures E is exceptional by [21, Theorem 3 (b)].

We start from the family of a most simple nature, that is a family of graphs parametrised over a single
decomposition� � �= ⋅ . Thenwe consider multiple decompositions andmore complicate families of surfaces.

Theorem 3.25. Let � � �= ⋅ be a decomposition of �, and let Σ be a family of intrinsic ( )d m,t -Lipschitz
graphs over � and �Σ the family of ( )d m,t -Lipschitz graphs in a bounded open set �⊂� . Then the system

�E is Mp-exceptional for ( )∈p 0, 1 .
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Proof. By definition, for any ∈ �S Σ there exists an intrinsic Lipschitz function �→f : ΩS S , such that
• ΩS is an open subset of �;
• ( )=S fgraph S , i.e. ( )=S Φ ΩS S , where ( ) ( )= ⋅m m f mΦS S , ∈m ΩS;
If >R N, 0 we denote by ( ) ⊂� �R NΣ , Σ the family of graphs such that

• the open set � ( )− −
�T ΦS

1 1 contains an Euclidean ball �( ) ⊂B ζ R,S
dt;

• the associated measures = ∟�σ SS d
m

ρ , according to (3.17), satisfy

�( )( ) ( ) ( ) ( )

( )

∫ ∫∘ ≤

∩
−

� �

h x x N h y σ ygΦ d d .S

S

S

ΦS
1

We fix R and N and denote ( )� R NE , the family of associated measures to ( )� R NΣ , . To show that

( ( )) =�M R NE , 0p it is enough to find � �( )∈F L g,p such that
�
∫ = ∞F σd S for all ( )∈ �σ R NE ,S , see

Theorem 3.2. We set

�� � [ ]= ∘ ∘ → ∞
−F ϕ T Π : 0, ,R

1 (3.23)

where �Π is the projection over� associated with� � �= ⋅ , as in [20, Formula (28)], andϕR is the function
defined in (3.21) for =r R.

Step 1: we claim that � �( )∈F L g,p . Since �⊂ ⊂� K for some compact set K , it is enough to show

that � �( )= ∈F χ F L g,K K
p . If we put ( )≔K π K˜ , then � �⊂ /K̃ is compact by the continuity of π and

( ) ( ( ))≤χ g χ π gK K̃ , since, if ∈g K , then ( ) ∈π g K̃ .

We apply (3.19) with = Fϰ K
p and obtain

�

�

� �

� �

�

�

� �

� �

�

� � �

� �

� �

�

� �

�

� �

�

∣ ∣ ( ) ( ) ∣ ∣ ( ) ( )

( )∣ ( )∣ ( )

( ( )) ∣ ( )∣ ( )

( ) ∣ ( )∣ ( )

( ) ∣ ∣ ( ) ( )

∫ ∫ ∫

∫ ∫

∫ ∫

∫

∫

=

= ∘ ∘

≤ ∘

= ∘

= < ∞

⧹

⧹

⧹

⧹

−

⧹

⧹

−

−

�

F g g F mg m

χ mg ϕ T m m

χ π g ϕ T m m

c K ϕ T m m

c K ϕ ζ ζ

g g g

g g

g g

g

d d d

d Π d

d d

˜ d

˜ d .

K
p

K
p

K R
p

K R
p

R
p

R
p d

1

˜
1

1

dt

t

Step 2: we claim that∫ = ∞F σd
S S for any ( )∈ �σ R NE ,S . Assume that ( )∈ �S R NΣ , is the graph of a

Lipschitz function �→f : ΩS S . We denote by ( ) ( )≔ ⋅m m f mΦS S , ∈m ΩS, the parametrisation of S asso-
ciated with fS. We stress that �( )( )∘ =m mΠ ΦS . By Corollary 3.17 with =N C2, and (3.23) we have:

�

� � �

� �

�

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

∫ ∫

∫

∫

∫

∫

≥ ∘

= ∘ ∘ ∘

= ∘

=

≥

∩

−

−

−

−

−

− −

� �

�

�

�

N F σ F m

ϕ T m

ϕ T m

ϕ ζ ζ

ϕ ζ ζ

g

g

g

d Φ d

Π Φ d

d

d

d .

S

S S

R S

R

T

R

B ζ R

R

Φ

Φ

1

Φ

1

Φ

,

S

S

S

S

S

1

1

1

1 1
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By the Vitali covering lemma, there exists ξi such that ( )∈ζ B ξ R,S i . Thus, we apply Lemma 3.24 to show that
the integral on the right hand diverges.

Step 3: we claim that ( ) =�M Σ 0p . From Steps 1 and 2 we conclude that ( ( )) =�M R NΣ , 0p for any

>R N, 0. We set =R M
1 for �∈M . Then

� �

⎛
⎝

⎞
⎠

= ⋃ ⋃

∈ ∈

� � M
NΣ Σ 1 , .

N M

We conclude by [21, Theorem 3 (b)] that ( ) =�M Σ 0p . □

Corollary 3.26. Let � � �= ⋅ be a decomposition of � and let Σ be a family of intrinsic ( )d m,t -Lipschitz
surfaces, such that locally each surface is represented by an intrinsic Lipschitz graph over �. Let �Σ be the
family of Lipschitz surfaces in a bounded open set �⊂� . Then the system �E is Mp-exceptional for ( )∈p 0, 1 .

In the next step, we assume that the family of graphs is parametrised over a decomposition � � �= ⋅

that belongs to the orbit of a subgroup �( )⊂K Iso preserving the decomposition. Here we denote by �( )Iso
the group of grading preserving isometries of �.

Theorem 3.27. Let � � �= ⋅ , and K a subgroup of the group of isometries �( )Iso preserving the decom-
position. Let Σ be a family of intrinsic ( )d m,t -Lipschitz graphs over the orbit �( )K and { }= ∩ ∈�� S SΣ : Σ .
Then the system of measures �E is Mp-exceptional for ( )∈p 0, 1 .

Proof. By definition, for any ∈ �S Σ there exists an intrinsic Lipschitz function �→f̂ : Ω̂ ˆS S , where Ω̂S is an

open set in the group �̂ such that � � � �( )⋅ ∈ ⋅K ˆ ˆ . Then there is an isometric diffeomorphism ∈k K such

that � � � �( )⋅ = ⋅k ˆ ˆ . We write

�= ∘ ∘ →
−f k f kˆ : Ω ,S S S

1

where ΩS is an open subset in �, such that ( ) =k Ω̂ ΩS S. Thus, for any ∈ �S Σ there exists an intrinsic
Lipschitz function �→f : ΩS S , such that

• ΩS is an open subset of �;
• ( )=S fgraph S , i.e. ( )=S Φ ΩS S , where

( ) ( ( )) ( ) ( ( ( )))= ⋅ = ⋅ ∘ ∘ ∈
−m k m f m k m k f k k m mΦ ˆ ˆ ˆ ˆ ˆ ˆ , Ω .S S S S

1

We define � �( )∈F L g,p as in (3.23) and argue as in Theorem 3.25. □

Corollary 3.28. Let � � �= ⋅ and �( )⊂K Iso . Let Σ be a family of intrinsic ( )d m,t -Lipschitz surfaces, such
that locally each surface is represented by an intrinsic Lipschitz graph over an element of the orbit �( )K as in
Theorem 3.27. Then �E is Mp-exceptional for ( )∈p 0, 1 .

Now we assume that the group � can be written as � � �= ⋅α α for finitely many = …α l1, 2, , and �α
being ( )d m,t -homogeneous non-isomorphic subgroups for all α. Under this assumption we state the
following result.

Theorem 3.29. Let Σ be a family of intrinsic ( )d m,t -Lipschitz graphs where each graph is parametrised over
one of the decompositions � � �= ⋅α α, = …α l1, 2, , . Let = ∩ �� SΣ , ∈S Σ, and �⊂� be an open set.
Then ( ) =�M E 0p for ( )∈p 0, 1 .

Proof. We use the notation � � �= ⋅α α α, = …α l1, 2, , and � � �= ×…×
l

l1 . We define the selection map
( ) =χ g m hα α α, �∈mα α, �∈hα α. It can be considered as a composition of the map
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� � � �

( )

→ = × …×

↦ …

P
g m h m h

:
, ,

l
l

l l

1

1 1

followed by the projection on α-slot. Then we define

� �( ) ( )∑= ∘ ∘ ∘

=

−F g ϕ T χ gΠ .
α

l

r α
1

1
α α α (3.24)

Then as in Theorem 3.25 we show that � �( )∈F L g,p . Moreover, if ( )∈ �S R NΣ , is the graph of a Lipschitz
function �( ) →f : ΩS α S α, for some = …α l1, , , where ( )Ωα S is an open set in �α, then ( ) ( )≔ ⋅m m f mΦS α α S α
the parametrisation of S associated with fS. Then

�( ) ( )

( ) (( ) )

∫ ∫ ∫≥ ∘ ≥ = ∞

∩
−

� �

N F σ F m ϕ ζ ζgd Φ d d ,
S

S S α

B ζ r

r α α

Φ ,S

α

α S α

α
1

as in the proof of Theorem 3.25. □

Corollary 3.30. Let us assume that � can be decomposed in finitely many ways � � �= ⋅α α, = …α l1, 2, , ,
with non-isomorphic subgroups �α.

Let Σ be a family of intrinsic ( )d m,t -Lipschitz surfaces, such that locally each surface is represented by an
intrinsic ( )d m,t -Lipschitz graph over one of the groups�α as in Theorem 3.29. Then ( ) =�M E 0p for ( )∈p 0, 1 .

The last result in this section is a combination of Theorems 3.27 and 3.29.

Theorem 3.31. Let Σ be a family of intrinsic ( )d m,t -Lipschitz surfaces where each graph is parametrised over
one of the decompositions � � �= ⋅α α, = …α l1, 2, , .Moreover, any term� �⋅α α is an element in the orbit of
a subgroup �( )⊂K Isoα preserving the decomposition � �⋅α α.

Let = ∩ �� SΣ , ∈S Σ, and �⊂� be an open set. Then ( ) =�M E 0p for ( )∈p 0, 1 .

Proof. We define function � �( )∈F L g,p as in (3.24). Moreover, for any point ∈ ∩ �q S there is a neigh-
bourhood V , such that for ∩ ∩�S V there exists an intrinsic Lipschitz function �( ) →f̂ : Ω̂ ˆS S α α, where

�( ) ⊂Ω̂ ˆS α α such that � � � �( )⋅ ∈ ⋅K ˆ ˆα α α α α . By choosing an isometry ∈k Kα α we find an intrinsic Lipschitz
function �( ) →f : ΩS S α α, such that

• ( )ΩS α is an open subset of �α, (( ) ) ( )=k Ω̂ Ωα S α S α;
• ( )∩ ∩ =�S V fgraph S , i.e. (( ) )=S Φ ΩS S α , where

( ) ( ) ( ( ( ))) ( ) ( )= ⋅ ∘ ∘ ∈ ∈
−m k m k f k k m m mΦ ˆ ˆ ˆ , Ω , ˆ Ω̂ .S α α S α α S α S α

1

Then we proceed in the same way as in Theorem 3.25 and show that

( )

( )

∫ ∫≥ = ∞

∩ ∩�

N F σ ϕ ζ ζd d .
S V

S

B ζ R

R

,S

□

3.5.2 Exceptional families for p 1≥

Fuglede proved that the system of k-dimensional Lipschitz surfaces in �n which pass through a given point
is Mp-exceptional if and only if ≤kp n [21]. Here we show the sufficient part of the analogous statement for
Carnot groups.

Theorem 3.32. Let ( )
⊂Σ Σ d m,t be a collection of intrinsic ( )d m,t -Lipschitz graphs. Suppose that all the graphs

∈S Σ contain a common point �∈g0 . Then for ≤p Qm we have ( ) =M Σ 0p .
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Proof. Let ( )
⊂Σ Σ d m,t be a collection of intrinsic ( )d m,t -Lipschitz graphs containing a common point

�∈g0 . We can assume that �= ∈g e0 by the translation invariance of measures and the fact that the
translation of an intrinsic Lipschitz graph is still an intrinsic Lipschitz graph, see [20, Theorem 3.2]. We need

to find a non-negative measurable function � �→F : such that
�

�∫ < ∞F gdp , but ∫ = ∞F σd
S S for

any ∈S Σ.
Let ‖⋅‖ be a homogeneous norm on �, for instance one of the types ( ) ( )−D D2 4 and let dρ be a metric

associated with the norm ‖⋅‖. We set

( )
⎧

⎨
⎩

=
‖ ‖ ‖ ‖ <

‖ ‖ ≥
<

−

F g
g g

g
p Qm

, if 1,
0, if 1,

.
m

(3.25)

Then � �( )∈F L g,p since

∣ ∣

( )

∫ ∫= < ∞
− + −�F ω r drd

B e

p N p Qm

,1 0

1

1

dρ

for − + >p Qm 0, where ω is a suitable constant depending only on ‖⋅‖, see, e.g. [15, Proposition 1.15].
Consider intersections ( )∩S B e,d

1
2ρ j , �∈j . We divide the ball ( )B e, 1dρ into the spherical rings

( ) ( )= ⧹
+

R B e B e, ,j d d
1
2

1
2ρ j ρ j 1 . In each ring Rj we choose a point ( )∈ ∩ ∂

+
p S B e,j d

3
2ρ j 2 , then ( ) ⊂+

B p R,d j j
1

2ρ j 3 .

We observe that ( )
≥ ‖ ‖ >

+ −g2 2j jm m m1 for ∈g Rj. Then

( ) ( )

( )

∫ ∫ ∫

( )

∑

∑ ∑

∑

≥ ‖ ‖ = ‖ ‖

> ∩ > ∩

≥ = ∞

∩

−

∩

−

− −

− −

� �

F σ g σ g σ

R S B p S

c

d d d

2 2 , 2

2 2 2 .

S

S

B e S

S
j R S

S

j

j
d j

j

j
d d j

j

j

j j

m m

m m m m

m m m

,1

3

1
3

dρ j

ρ ρ ρ

If =p Qm , then we need to change the function F to

⎜ ⎟

( )

⎧

⎨

⎪

⎩
⎪

⎛

⎝

⎞

⎠=
‖ ‖

‖ ‖

‖ ‖ <

‖ ‖ ≥

−

−

F g
g

g
g

g

ln 2 , if 1,

0, if 1.

α
m

(3.26)

If we choose ⎡
⎣

⎤
⎦

∈α , 1Q
m , then � �( )∈F L g,p and ( )∫ = ∞F g σd

S S . Indeed,

�∣ ∣ ⎛
⎝

⎞
⎠

( )

∫ ∫ ∫= = < ∞
− + −

−

∞

−F ω r
r

r ω t tgd ln 2 d d
B

p p Q
αp

αpm

0,1 0

1

1

ln2dρ

if >αp 1 or equivalently >α Q
m . From the other side,

⎜ ⎟
⎛

⎝

⎞

⎠

( ) ( )

( ) ( )

∫ ∫

( )∑

∑

≥ ‖ ‖

‖ ‖

> ∩

≥ + = ∞

∩

−

−

+ − − −

− − −

�

F σ g
g

σ

B p S

c j

d ln 2 d

2 ln2 , 2

2 ln2 2

S

S

R S

α

S

j

j j α
d d j

j

α

j

α

m

m m

m

2 3

1
3

j

ρ ρ

for <α 1. □

Corollary 3.33. Let ( )
⊂Σ Σ d m,t be a collection of intrinsic ( )d m,t -Lipschitz surfaces. Suppose that all the

surfaces  ∈S Σ contain a common point �∈g0 . Then for ≤p Qm we have ( ) =M Σ 0p .
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Proof. We assume that =g e0 and, as in Theorem 3.32, consider the function � �( )∈F L g,p for ≤p Qm . To

show that  ∫ = ∞F σd
S S , we fix a surface  ∈S Σ and a neighbourhood U of e, such that = ∩S S U is an

intrinsic Lipschitz graph. Then we argue as in Theorem 3.32. □

In the following sections, we study Mp-exceptional sets of intrinsic Lipschitz surfaces passing through a
common point when >p Qm . We will make special constructions of intrinsic Lipschitz surfaces that will
reveal the situation of being Mp-exceptional. The first step to the construction is the study of an analogue of
a Grassmann manifold on special type of Carnot groups.

4 Orthogonal Grassmannians

In this section, we construct orthogonal Grassmannians of Lie subalgebras on specially chosen H-type Lie
algebras. We start from the overview of Grassmannians of k-plains of n-dimensional Euclidean space,
reminding that they are orbits under the action (modulo the isotropy subgroup) of the isometry group

( )O n of the Euclidean space, see Section 4.1. In order to make a proper construction of the Grassmannian of
subalgebras we first remind in Section 4.2 the structure of the isometry group Iso of H-type algebras. Then
we make construction of orthogonal Grassmannians of subalgebras and study their properties in Sec-
tion 4.3.

4.1 Overview over the Grassmannians in n�

4.1.1 Definition of the groups nO( ), nU( ), and nSp( )

The orthogonal group ( )nO in �n, endowed with the standard Euclidean inner product �⟨⋅ ⋅⟩, , is

� � � �( ) { }= → ⟨ ⟩ = ⟨ ⟩n A Av Av v vO : : , , .n n

The unitary group ( )nU acting in 	n, endowed with the standard Hermitian inner product 	⟨⋅ ⋅⟩, , is defined
analogously by

	 	 	 	( ) { }= → ⟨ ⟩ = ⟨ ⟩n A Av Av v vU : : , , .n n

Finally, the quaternion unitary group (or compact symplectic group) ( )nSp acting in right quaternion space

n is defined by


 
 
 
( ) { }= → ⟨ ⟩ = ⟨ ⟩n A Av Av v vSp : : , , ,n n

where 
⟨⋅ ⋅⟩, is a quaternion Hermitian product in 
n, see, for instance [38].
Let us write � for the division algebras �, 	, or 
 and �( )nU , for the groups ( )nO , ( )nU , and ( )nSp ,

respectively. We let k be an integer satisfying < ≤k n0 . The Grassmann manifold or Grassmannian
�( )kGr , n is defined as the set of k-dimensional vector subspaces in �n:

� �( ) { }= -k V kGr , is a dimensional vector subspace of .n n

Note that the vector space 
n is defined as the right vector space with respect to the right multiplication by
scalars from 
. The same agreement is done for the subspaces 
⊂V n.

The group �( )nU , acts transitively on the set �( )kGr , n via

� �{ ( )}= ∈ ∈ ∈A.V Av v V A n: , U , .n

Fix a plain �( )∈V kˆ Gr , n . Let �{ ( ) }= ∈ =K A n A V VU , : . ˆ ˆV̂ be the isotropy group of V̂ . It follows that the
Grassmannian �( )kGr , n admits the structure of a compact manifold [48] given by

� �( ) ( )= /k n KGr , U , ,n
V̂
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where KV̂ is isomorphic to � �( ) ( )× −k n kU , U , . Note that there is a diffeomorphism � �( ) ( )≅− kGr Gr ,n k
n n

mapping any �( )∈ −V Grn k
n to its orthogonal complements �( )∈

⊥V Grk
n .

4.1.2 Measure on the Grassmannians

Let us remind the definition of a measure on the Grassmannian �( )Grk
n . The continuous map

� �( ) ( )→ψ n: U , Gr ,k
n

which is the composition of the projection map to the quotient and the diffeomorphism giving the manifold
structure to �( )Grk

n is used to push forward a measure from �( )nU , to �( )Grk
n . We take for granted that the

group �( )nU , carries bi-invariant normalised measure λ:

�( ) ( ) ( ) ( ( ))= = =λ AU λ UA λ U λ n, U , 1,

for any Borel set �( )⊂U nU , and any isometry �( )∈A nU , . The measure μ on the Borel sets �( )⊂Ω Grk
n is

defined as a push forward of λ:

�( ) ( )( ) ( ( )) { ( ) }= = = ∈ = ∈
♯

−μ ψ λ λ ψ λ A n V A VΩ Ω Ω U , : . ˆ Ω .1

It can be verified that μ is normalised and it is �( )nU , -invariant. The converse is also true: a normalised
�( )nU , -invariant measure on the homogeneous space �( )Grk

n is a push forward of the normalised Haar
measure from �( )nU , , see for instance [28].

Note that an ( )−n 1 -dimensional sphere ( )S R0, in �n can be considered as a particular case of the
Grassmannian �( )−Grn

n
1 . If we denote by �( )Kx an isotropy group of a point ( )∈x S R0, under the action of

( )nO , then the following manifolds are diffeomorphic

� �( ) ( ) ( ) ( )/−S R n K0, ~ Gr ~ O .n
n

x1

The push forward of the normalised measure λ on ( )nO to ( )S R0, coincides with the normalised surface
measure on ( )S R0, , see [28, Theorem 3.7].

4.2 Isometry groups of special H-type Lie algebras

Before we make the construction of orthogonal Grassmannians on some special H -type Lie algebras, we
describe the group of isometries of these Lie algebras.

Recall the definition of an H-type Lie algebra h h h �( [ ] )= ⊗ ⋅ ⋅ ⟨⋅ ⋅⟩, , , ,1 2 from Section 2.4. The group of
isometries h( )Iso of H -type Lie algebras were studied in [35,36]. It was shown that

h h h h( ) ( ) ( ) ( ) ( ){ }= ∈ × = ∈A C A J A J zIso , O O : for any .t
z C z1 2 2t

The group h( )Iso is isogenous to the product of the Pin group h �( )⟨⋅ ⋅⟩Pin , ,2 of the Clifford algebra
h �( )⟨⋅ ⋅⟩Cl , ,2 and a classical group � . The latter means that there is a surjective morphism

h h h h��( ) ( ) ( ) ( )

( ) ( ) ( ( ))

⟨⋅ ⋅⟩ × → ⊂ ×

= ↦ = ∘

ϕ
θ α A ϕ θ J A κ α

: Pin , , Iso O O
, , ,α

2 1 2 (4.1)

with a finite kernel of order 2 or 4. Here

h h�( ) ( )⟨⋅ ⋅⟩ →κ : Pin , , O2 2 (4.2)

is the double cover of the orthogonal group defined by

h h �( ) ( )= ∈ ∈ ⟨⋅ ⋅⟩
−κ α v αvα v α, , Pin , , .1

2 2

Wewill not give the full description of the group of isometries, but rather concentrate on the cases when the
restriction h h( )∣Iso 1 on h1 acts transitively on the spheres h( ) ∈S r0, 1 and the vector space h1, considered a
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Clifford module, is not irreducible. Only in these cases the construction of the Grassmannian on the Lie
algebra h is not trivial. Thus, we will consider the following H -type Lie algebras:
RH: The Heisenberg algebra h �� �( [ ] )= ⋅ ⋅ ⟨⋅ ⋅⟩

+ , , , ,n n2 1 , >n 1 with h h h � �� = ⊕ ≅ ⊗
n

1 2
2 ;

CH: The complex Heisenberg algebra h �	 �( [ ] )= ⋅ ⋅ ⟨⋅ ⋅⟩
+ , , , ,n n4 2 , >n 1 with h h h � �	 = ⊕ ≅ ⊗

n
1 2

4 2;

QH: The quaternion Heisenberg algebra h �
 �( [ ] )= ⋅ ⋅ ⟨⋅ ⋅⟩
+ , , , ,n n4 3 , >n 1 with h h h � �
 = ⊕ ≅ ⊗

n
1 2

4 3.

The commutators in all the cases are defined by (2.10) and the scalar products are the standard Euclidean
products making the direct sums orthogonal. The names real, complex, and quaternion are attached to the
names of the algebras by the following reasons. For the Lie algebra h�

n , the group of real symplectic
transformations �( )nSp , is a subgroup of automorphisms, leaving the centre h2 of the Lie algebra h�

n

invariant. The centre h h�⊂
n

2 is isomorphic to �. For the Lie algebra h	
n , the group of complex symplectic

transformations 	( )nSp 2 , is a subgroup of the Lie algebra automorphisms, leaving the centre invariant and
alsoh	

n is isomorphic to the complexification ofh�
n . The centreh h	⊂

n
2 is isomorphic to	 . Forh


n the group of

quaternion unitary transformations ( )nSp is a subgroup of the Lie algebra automorphisms, leaving the
centre invariant. The centre h2 of h


n is isomorphic to the space of pure imaginary quaternions.
Now we describe the isometry groups in each case.

4.2.1 The isometry group Iso h�( )

For the convenience of the forthcoming calculations we slightly change the notation of Section 2.4.1. We
write h h h� = ⊕1 2 and denote

… …X X X X X X, , , , , , , ,n n11 12 1 21 22 2

the orthonormal basis forh1. Let h �∈ ≅ε 2 , �⟨ ⟩ =ε ε, 1 be the basis vector ofh2. The commutation relations are

[ ] [ ] [ ] [ ]= = = =X X δ ε X X X X X ε, , , , , 0l m lm p q r s kl1 2 1 1 2 2

for indices l m p q r s, , , , , running in { }… n1, , , and =k 1, 2.
The vector space h �≅

n
1

2 carries natural almost complex structure given by the action of Jε, h∈ε 2.
Therefore, the spaceh �≅

n
1

2 can be considered as a complex vector spaceh 	≅
n

1 , where the multiplication
by a complex number 	∈α is defined by ( )= + = +αv a ib v av bJ vε , h∈v 1. The maximal compact subgroup
� �( ) ( )= ⊂n nU Sp 2 , is an isometry on h �≅

n
1

2 . The corresponding Hermitian form 	∣⟨ ⟩. . on h 	≅
n

1 is
defined by making use of the real scalar product �⟨⋅ ⋅⟩, by the following

	 � �∣⟨ ⟩ = ⟨ ⟩ − ⟨ ⟩u v u v i J u v, , .ε (4.3)

The imaginary part of the Hermitian product (4.3) defines the symplectic form h h �× →ω : 1 1 , that is
compatible with the real inner product on h1. Namely

� �( ) [ ]= ⟨ ⟩ = ⟨ ⟩ω u v J u v u v ε, , , , ,ε (4.4)

which implies �( ) ( ) ( )= = ⟨ ⟩ω J u J v ω u v ω u J v u v, , , , ,ε ε ε .
We use the basis described in Section 2.4.1 and give the coordinates to h�

n . Consider the product of two
spheres on h � �� ≅ ×

n n2 centred at the origin

h h� � �( ) ( ) ( ) { } { }= × = ∈ ⟨ ⟩ = × ∈ ⟨ ⟩ =
−� r r S r S r v v v r z z z r0, , 0, 0, : , , , .n

1 2
2 1

1
0

2 1 1
2

2 2
2 (4.5)

Lemma 4.1. The group h�( )Iso n acts transitively on �( )� r r0, ,1 2 .

Proof. The map h( ) ( )∈κ ε O 2 , defined in (4.2), acts either as a reflection with respect to the origin of h2 or as
the identity, since h �≅2 . Let �( ) ( ) ( )− ∈ �x z x z r r, , , 0, ,1 2 1 2 . Then we find a map h�( ( )) ( )∘ ∈J A κ ε, Isoε

n that
maps the point ( )x z,1 to ( ) ( ( ) )− = ∘x z J Ax κ ε z, ,ε3 1 , ( )∈A nU . Since the subgroup hh �( ) ( )( )× ⊂nU Id Iso n

2

acts transitively on ( )−S r0,n2 1
1 we can find the transformation mapping ( )−x z,3 to ( )−x z,2 . □
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At the end, we recall that the basis of left invariant vector fields on the Heisenberg group �H n is

=
∂

∂

−
∂

∂

=
∂

∂

+
∂

∂

X
x

x
ε

X
x

x
ε2

,
2

,k
k

k
k

k

k
1

1

2

1
2

2

1

2
(4.6)

for = …k n1, , .

4.2.2 Isometry groups of H-type Lie algebra nh	

Let h h� 	≅ ⊂
n n

1
4 be the horizontal subspace and h h� 	≅ ⊂

n
2

2 be the vertical subspace. Then
h ��( ) ( )⟨⋅ ⋅⟩ ≅Cl , , Cl2

2 contains two elements ε ε,1 2 such that

� � �= = − ⟨ ⟩ = ⟨ ⟩ = ⟨ ⟩ =ε ε ε ε ε ε ε ε1, , , 1, , 0,1
2

2
2

1 1 2 2 1 2

and moreover =ε ε ε3 1 2 satisfies = −ε 13
2 .

We first consider the case =n 1, that is h h� 	≅ ⊂1
4 1 . The maps h h→J :ε 1 1i , =i 1, 2, are orthogonal

transformations. A convenient orthonormal basis for h1 can be constructed by the following. We choose a
vector h∈v 1, such that �⟨ ⟩ =v v, 1 and define the orthonormal vectors

= = = =X v X J v X J v X J J v, , , .ε ε ε ε1 2 3 41 2 2 1 (4.7)

The commutation relations according to (2.10) are

[ ] [ ] [ ] [ ]= − = = =X X X X ε X X X X ε, , , , , .1 2 3 4 1 1 3 2 4 2 (4.8)

We show now that h	
1 is the complexified Lie algebra of h�

1 . Let =X X J X, ε1 2 1 be an orthonormal basis of
h h�⊂1

1 and h �{ }= εspan2 is the centre of the Lie algebra h�
1 . Then the complexification h h		

= ⊗1 1 of the
vector space h h�⊂1

1 can be described as any of the following direct sums:

h	
� �

� �

	

{ } { }

{ } { }

{ }

= = + ⊕ = −

= ⊕

=

Z X iX Z X iX
X X iX iX
X X

span span ¯
span , span ,
span , .

1 1 2 1 2

1 2 1 2

1 2

(4.9)

The Lie bracket on h	
1 is a complex linear Lie bracket on h1:

[ ] [ ] [ ] [ ]= − = = =X X iX iX ε X iX iX X iε, , , , , .1 2 1 2 1 2 1 2 (4.10)

Thus, the centre h	
2 of the complexified Heisenberg algebra is given by

h	
	 �{ } { }= =ε ε iεspan span , .2 (4.11)

Recall that the real Heisenberg algebra has the complex structure h h→J :ε 1 1 defined by =J X Xε 1 2,
= −J X Xε 2 1. We extend Jε to h	

1 by linearity, meaning that ( ) ( )=J iu iJ uε ε for �{ }∈u X Xspan ,1 2 . We define
another complex structure

h h	 	
→ = =J J X iX J X iX: : , .iε iε iε1 1 1 2 2 1

It is easy to check that = −J J J Jε iε iε ε. Note that if we denote

= =

= = = = = =

ε ε ε iε
X X X J X X iX J X X iX J J X

, ,
, , , ,ε ε ε ε

1 2

1 1 2 1 3 2 1 4 1 11 2 2 1

(4.12)

then we recover basis (4.7) and commutation relations (4.8) of h	
1 .

We show now that the horizontal space h h	⊂1
1 of the complexified Heisenberg algebra is a complex

symplectic space. The real symplectic form ω defined in (4.4) can be extended to the complex symplectic
form h h 		

× →ω : 1 1 , h h	⊂1
1 , by

	( ) ( ) ( ) ( ( ) ( ))+ + = + + +ω u iv x iy ω u x ω v y i ω v x ω y u, , , , , . (4.13)

Here we consider h h	⊂1
1 as a complex space (4.9). Then 	ω satisfies
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	 	( ) ( )= −ω z z ω z z, , ,1 2 2 1

	 	 	 	( ) ( ) ( ) ( )= =ω αz z αω z z ω z αz αω z z, , , , ¯ , .1 2 1 2 1 2 1 2

The symplectic basis =X X J X, ε1 2 11 over � for the real symplectic vector space h h�⊂1
1 is the symplectic basis

over 	 for the complex symplectic vector space h h	⊂1
1 .

The multidimensional algebra h	
n as a vector space is the Cartesian product

h h h h	
	 	 	( ) ( )= ×…× × ,n

n1 1 1 2 (4.14)

where h	
1 is defined in (4.9) and h	

2 is defined in (4.11). The commutation relations are given by (4.10), if the
vectors belong to the same slot h	( )k1 in the Cartesian product (4.21) and zero otherwise. The real scalar
product �⟨⋅ ⋅⟩, is extended to the Cartesian product (4.21) by making the different slots orthogonal. The
multidimensional algebra h	

n has real topological dimension +n4 2 and the Hausdorff dimension +n4 4.
The corresponding left invariant vector fields on the complexified Heisenberg group 	H n are

=
∂

∂

−
∂

∂

−
∂

∂

=
∂

∂

+
∂

∂

−
∂

∂

=
∂

∂

+
∂

∂

+
∂

∂

=
∂

∂

−
∂

∂

+
∂

∂

= …

X
x

x
ε

x
ε

X
x

x
ε

x
ε

X
x

x
ε

x
ε

X
x

x
ε

x
ε

k n

2 2
,

2 2
,

2 2
,

2 2
,

1, , .

k
k

k k

k
k

k k

k
k

k k

k
k

k k

1
1

2

1

3

2

2
2

1

1

4

2

3
3

4

1

1

2

4
4

3

1

2

2

(4.15)

The subgroup � ( )≅ nSp of the isometry group h	( )Iso n preserves the quaternion Hermitian product


∣⟨ ⟩. . on h h	⊂
n

1 , defined by


 � � � �∣⟨ ⟩ = ⟨ ⟩ − ⟨ ⟩ − ⟨ ⟩ − ⟨ ⟩z w z w i J z w j J z w k J J z w, , , , .ε ε ε ε1 2 2 1 (4.16)

The group � ( )≅ nSp acts transitively on the unit sphere h 	⊂ ≅
−S n n4 1

1
2 , where h h	⊂

n
1 .

4.2.3 Isometry groups of H-type Lie algebra nh


Since h h� 
≅ ⊂
3

2
1 , there are three linearly independent length one elements � �( )∈ ⟨⋅ ⋅⟩ε Cl , ,i

3 , =i 1, 2, 3,
satisfying the quaternion relations

= = = = −ε ε ε ε ε ε 1.1
2

3
2

3
2

1 2 3 (4.17)

We introduce a quaternion structure on h h� 
≅ ⊂
4

1
1 by defining the multiplication by a quaternion number


= + + + ∈q a ib jc kd as follows:

h( )= + + + = + + + ∈qv a ib jc kd v av bJ v cJ v dJ v v, .ε ε ε 11 2 3

The quaternion Hermitian product is


 � � � �∣⟨ ⟩ = ⟨ ⟩ − ⟨ ⟩ − ⟨ ⟩ − ⟨ ⟩u v u v i J u v j J u v k J u v, , , , .ε ε ε1 2 3 (4.18)

To construct an orthonormal basis we choose h∈v 1 with �⟨ ⟩ =v v, 1 and set

= = = =X v X J v X J v X J v, , , .ε ε ε1 2 3 41 2 3 (4.19)

The commutation relations are

[ ] [ ] [ ] [ ] [ ] [ ]= − = = = = − =X X X X ε X X X X ε X X X X ε, , , , , , , , .1 2 3 4 1 1 3 2 4 2 1 4 2 3 3 (4.20)

The space h h� 	{ }= ⊂X X X Xspan , , ,1 1 2 3 4
1 is isomorphic and isometric to the one-dimensional quaternion

space endowed by the quaternion Hermitian product (4.18).
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We note the relation betweenh	
1 andh


1 . Due to (4.17), the action of Jε3 can be expressed as =J J Jε ε ε3 1 2 and

therefore the spaceh h
⊂1
1 can be considered as a complex symplectic space with respect to 	ω in (4.13). In

addition to that we add a real symplectic form �( ) = ⟨ ⟩ω u v J u v, ,ε3 3 .
The multidimensional algebra h


n as a vector space is the Cartesian product

h h h h
 ( ) ( )= ×…× × .n
n1 1 1 2 (4.21)

The commutation relations are given by (4.20), if the vectors belong to the same slot h( )k1 in the Cartesian
product (4.21) and zero otherwise. The multidimensional algebra h


n has real topological dimension +n4 3
and the Hausdorff dimension +n4 6. We note that the Cliffordmodule h h( ) ( )×…× n1 1 1 in this case is assumed
to be isotypic, which corresponds to the fact that the product J J Jε ε ε1 2 3 acts as minus identity on every slot h( )k1 .
The subgroup � ( )≅ nSp of the isometry group h
( )Iso n preserves the quaternion Hermitian product on
h h
⊂

n
1 , defined in (4.18). The corresponding basis of left invariant vector fields on the group 
H n is
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∂
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∂

∂
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∂
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∂

∂
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∂
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∂
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∂
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∂
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∂

∂
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ε
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ε
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ε

X
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x
ε
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ε

x
ε

X
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ε

x
ε

x
ε

k n

2 2 2

2 2 2
,

2 2 2
,

2 2 2
.

1, , .

k
k

k k k

k
k

k k k

k
k

k k k

k
k

k k k

1
1
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1

3

2
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3

2
2

1

1

4

2
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1

2

2

3

4
4

3

1

2

2

1

3

(4.22)

We use the bases (4.7) and (4.19) to identify h	
n with � �×

n4 2 and h

n with � �×

n4 3. Define the product of
spheres

h h h

h

	 	

	 	

( ) {( ) ( ) ( ) }

( ) ( ) ( )

= ∈ ∈ ⊂ ∈ ⊂

≅ × ⊂

−

−

�

�

r r x z x S r z S r
S r S r r r

0, , , : 0, , 0,
0, 0, , 0, ,

n n

n n
1 2

4 1
1 1

1
2 2

4 1
1

1
2 1 2

and

h h h

h


 



 


( ) {( ) ( ) ( ) }

( ) ( ) ( )

= ∈ ∈ ⊂ ∈ ⊂

≅ × ⊂

−

−

�

�

r r x z x S r z S r
S r S r r r

0, , , : 0, , 0,
0, 0, , 0, , .

n n

n n
1 2

4 1
1 1

2
2 2

4 1
1

2
2 1 2

Lemma 4.2. The groups of isometries h	( )Iso n and h
( )Iso n act transitively on the respective products of spheres

	( )� r r0, ,1 2 and 
( )� r r0, ,1 2 .

4.3 Grassmannians on special H-type Lie algebras

We will construct orthogonal Grassmannians on the H-type Lie algebras mentioned in Section 4.2. In these
cases, the isometry groups act transitively on the spheres �( )� r r0, ,1 2 , � � 	= , , or 
. This allows us to define
the measure on the Grassmannians. Moreover, the transitive action permits us to realise the Grassmannians as
orbit spaces under the action of the isometry groups. Note that the spaces �n, 	n, and 
n are Abelian algebras
with respect to the summation. Any k-dimensional vector subspaceV is a subalgebra that has ( )−n k -dimen-
sional orthogonal complement that is also a subalgebra. This property is not trivial for the non-commutative
subalgebras and therefore we restrict ourself to the consideration of orthogonally complemented Grassmannians.

4.3.1 Orthogonally complemented Grassmannians

A subalgebra h�⊂V n is called homogeneous if it is invariant under the action of dilation (2.3). In the following
definition, we use the inner product from the definition of H -type Lie algebra h h h �( [ ] )= ⊕ ⋅ ⋅ ⟨⋅ ⋅⟩, , , ,1 2 .
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Definition 4.3. We say that a homogeneous subalgebra h�⊂V n is an orthogonally complemented homo-
geneous subalgebra of h�

n if the orthogonal complement ⊥V is a homogeneous subalgebra of h�
n .

Lemma 4.4. Let h�⊂V n be an orthogonally complemented homogeneous subalgebra. Then:
(i) In the case h�

n for � � �= , we have
(i-1) if � ≤V ndim , then h⊂V 1 (and hence V is commutative);
(i-2) if � >V ndim , then h ⊂ V2 .

(ii) In the case h	
n we have

(ii-1) if � ≤V ndim 2 , then h⊂V 1 (and hence V is commutative);
(ii-2) if � >V ndim 2 , then h ⊂ V2 .

Proof. We start from the case h�
n . We sketch the construction of the orthogonally complemented homo-

geneous subalgebras. The horizontal vector space h1 is a symplectic vector space with the symplectic form

(4.4), see Section 4.2.1. Let h⊂W 1 be a vector space of dimension h� �( ) ( )= ≥ =d W ndim dim1
2 1 . It was

shown in [19, Lemma 3.26] that there is a vector space h′ ⊂W 1 such that h′ ⊕ =W W 1 and ( ) =ω v w, 0 for all
∈ ′v w W, . The relation between the symplectic form and the commutation relation in (4.4) shows that ′W is

a commutative subalgebra of h1. We choose an orthonormal basis { }… ′e e, , d1 , ( )′ = ′ ≤d W ndim for ′W and
extend it to an orthonormal basis

{ }… … = … =′ ′+e e e e f J e f J e, , , , , , , ,d d n ε n ε n1 1 1 1

for h1. We denote

{ } { }= ′ ′ = … = … = ⊕′+V W V e e f J e f J e ε, span , , , , , span .d n ε n ε n1 1 1

Then it is easy to see that ⊕ ′V V are orthogonally complemented subalgebras, satisfying hypothesis of
Lemma 4.4. Note that the construction above gives all possible complementary subalgebras by exchanging
the role of V and ′V .

We turn toh	
n and will considerh h	⊂

n
1 as a complex symplectic space with the complex symplectic form

	ω . We have h	( ) = ndim 21 and n is even. We can show that for any W such that 	( ) ≥W ndim there is a
vector space h′ ⊂W 1 satisfying h′ ⊕ =W W 1 and 	( ) =ω v w, 0 for all ∈ ′v w W, . The arguments are the same
as at the beginning of the proof, since the arguments do not depend on the choice of the fields � or 	, but
only on the construction of the basis.

Thus, by the construction, the vector space ′W is a complex isotropic vector space with respect to the

complex symplectic form 	ω with 	 ′ ≤W ndim . It contains the isotropic subspace ′W̃ with respect to the real

symplectic formω and the complex span of ′W̃ coincides with ′W . The vector space ′W̃ is a commutative real
subalgebra and its complexification ′W will be a commutative complex subalgebra of the complex
Heisenberg algebra h	

n . By making use of notation (4.12) we conclude that � ′ ≤W ndim 2 , and ′W is a

commutative subalgebra of h	
1 considered as a real Lie algebra.

We consider two cases: � ′ = ≤W k ndim 2 and � ′ = >W k ndim 2 . Let � ′ = ≤W k ndim 2 . We find a real
commutative orthonormal basis { }…e e, , k1 2 for ′W and extend it to an orthonormal basis { }…e e, , n1 . Then
we denote = ′V W and set

� �{ }{ }′ = … = … ⊕+V e e J e J e J J e i n ε εspan , , , , , ; 1, , span , .k n ε i ε i ε ε i2 1 1 21 2 2 1

In the case � ′ = >W k ndim 2 , we choose orthonormal vectors { }…e e, , n1 in ′W and extend them to the
orthonormal basis

{ }… …e e J J e J J e, , , , ,n ε ε ε ε n1 12 1 2 1

of the maximal commutative subalgebra of h	
1 . Without loss of generality we can assume that

{ }… … + =e e J J e J J e n p k, , , , , , 2n ε ε ε ε p1 12 1 2 1

is an orthonormal basis for ′W . Now we denote = ′V W and set
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� �{ }{ }′ = = … … ⊕+V J e J e i n J J e J J e ε εspan , ; 1, , , , , span , .ε i ε i ε ε p ε ε n1 1 21 2 2 1 2 1

We recall that

� � � �⟨ ⟩ = −⟨ ⟩ = ⟨ ⟩ ⟨ ⟩ =e J J e J e J e ε ε e e, , , , 0i ε ε i ε i ε i i i1 21 2 1 2

because of the orthogonality of vectors ε ε,1 2. Also �⟨ ⟩ =e J J e, 0i ε ε j1 2 for ≠i j because of the orthogonal
decomposition (4.21).

The last case concerns with h�
n . We start from lower dimensional subalgebra h�

1 . We choose a vector

h h�∈ ⊂v 1
1 with �⟨ ⟩ =v v, 1 and define an orthonormal basis of the real Heisenberg algebra

= =X v X J v ε, , .ε1 2 11

We use ε2 and construct the symplectic complex space h	
1 as in the previous case. Then the constructed

multidimensional complexified Heisenberg algebra satisfies the commutation relations of the first line in
(4.20). As in the previous case, we find a space ′W such that 	( ) =ω u v, 0 for all ∈ ′u v W, . Since ′W is a
complex vector space it has even real dimension �( )′ = ≤W k ndim 2 2 and therefore we can define an
additional real symplectic form on ′W (considered ′W as a real vector space) by

�( ) = ⟨ ⟩ ∈ ′ω u u J u u u u W, , , , .ε3 1 2 1 2 1 23

Then, we set ( )′ = ′ ∩ ′V W L W , where ( )′L W is the Lagrangian subspace of the real symplectic space
( )′W ω, 3 , that is a maximal isotropic subspace of ( )′W ω, 3 . We obtain �( ) = ≤ ≤V p k ndim and it is by
construction a commutative subspace of h�

1 . Now we choose an orthonormal basis { }…e e, , p1 for V and
complement it to an orthonormal basis

{ }… …+e e e e, , , , , .p p n1 1 (4.23)

In the last step, we extend (4.23) to an orthonormal basis of h h�⊂
n

1 by

{ }… … =e e J e J e, , , , , ; ł 1, 2, 3 .n ε ε n1 1l l

We have obtained the orthogonally complemented subalgebras

h�{ }′ = … … = ⊕+V V e e J e J e, span , , , , , ; ł 1, 2, 3p n ε ε n1 1 2l l

satisfying the statement of Lemma 4.4. □

Theorem 4.5. The group h�( )Iso n acts transitively on the family of orthogonally complemented subalgebras of
h�

n , i.e. ifV and ′V are subalgebras of the same dimension that have orthogonal subalgebras ⊥V and ′
⊥V , then

there exists h�( )∈	 Iso n such that

( ) ( )′ = ′ =
⊥ ⊥	 	V V V V, .

Proof. We start from h�
n . Suppose first that � �= = ′ ≤k V V ndim dim . Then bothV and ′V are commutative

by Lemma 4.4. Let { }…z z, , k1 and { }′ … ′z z, , k1 be orthonormal bases of the corresponding V and ′V with
respect to the scalar product �⟨⋅ ⋅⟩, . Since both of the bases belong to the isotropic space of the real
symplectic form ω in (4.4), then the bases are orthonormal with respect to the Hermitian scalar product
(4.3), that is

	 �∣ ( )⟨ ⟩ = ⟨ ⟩ − =z z z z iω z z, , 0,i j i j i j (4.24)

and the same holds for { }′ … ′z z, , k1 .
By the Gram-Schmidt procedure for Hermitian scalar products the orthonormal families { }…z z, , k1 and

{ }′ … ′z z, , k1 can be extended to orthonormal bases { }= … …+
 z z z z, , , , ,k k n1 1 and { }′ = ′ … ′ ′ … ′
+


 z z z z, , , , ,k k n1 1
of h h�⊂

n
1 . Then h1 spanned over 	 by 
 and also by ′
 is an n-dimensional complex space. We can find

( )∈A nU such that ( ) = ′A z zj j . Then hh �( )= × ∈	 A Id Iso n
2 and ( ) = ′A V V . Since

	 �( ) ( ) ( ) ( )= ∩ ∩n n n nU O 2 GL , Sp 2 , ,
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we conclude that ( )∈A nO 2 and ( )∈ +	 nO 2 1 , and therefore ( ) = ′⊥ ⊥
	 V V . This completes the proof of the

assertion when ≤k n.
Suppose now >k n and let V and ′V be two orthogonally complemented subalgebras of h�

n . The asser-
tion follows by the previous arguments applied to the orthogonal complements ⊥V and ′

⊥V .
Consider the Lie algebra h	

n . The complex dimension of h h	⊂
n

1 is equal to n2 . Let V and ′V be ortho-
gonally complemented subalgebras of complex dimension ≤k n. By the construction in Lemma 4.4 the
bases of V or ′V will also be orthonormal bases with respect to the quaternion Hermitian product (4.16).
Then we extend the bases of V and ′V to bases of h h	⊂

n
1 and apply the Gram-Schmidt procedure to make

the bases orthonormal with respect to the quaternion Hermitian product. Noting that
	( ) ( ) ( )≅ ∩n n nSp Sp 2 , U 2 , we obtain that the bases will be orthogonal with respect to the original real

scalar product and therefore will preserve the orthogonally complemented subalgebras. We finish the proof
as in the previous case.

The last case is the Lie algebrah

n . In this case, we use the similar arguments noting that an orthonormal

basis (with respect to �⟨⋅ ⋅⟩, ) for a commutative subalgebra V will be orthogonal with respect to the
quaternion Hermitian form (4.18). Therefore, the basis can be extended to an orthonormal basis for h


n

with respect to the quaternion Hermitian form (4.18). The group ( )nSp acts transitively on a set of such kind
of extended bases for h


n , preserving the orthogonality. □

Definition 4.6. The set h�( )kGr , n , h� �≤ ≤k1 dim n of orthogonally complemented homogeneous subalge-
bras of the same topological dimension k is called the Grassmannian of the Heisenberg algebra h�

n .

According to (4.1) we can write h�( )∈	 Iso n as h h( ) ( ) ( )= ⊂ ×	 � �, O O1 2 . If = ⊗V H T , h⊂H 1,
h⊂T 2, is an orthogonally complemented subalgebra then the action of h�( )Iso n on h�( )kGr , n is given by

= ×	 � �V H T. . . . (4.25)

Theorem 4.5 immediately implies the corollary.

Corollary 4.7. The Grassmannian h�( )kGr , n is the orbit of the action of the isometry group h�( )Iso n issued from

an orthogonally complemented homogeneous k-dimensional subalgebra h�⊂V̂ n .

Example 4.8. Consider the Heisenberg algebrah�
2 with the basis (2.11) and the commutation relations (2.12).

We write �{ }=V X Xˆ span , .1 2 The space V̂ is a commutative subalgebra of h�
2 orthogonally complemented by

the commutative subalgebra �{ }=V Y Y εspan , ,1 2 . The isometry group h�( )Iso 2 is given by (4.1)with� ( )= U 2 .

The orbit of the isometry group h�( )Iso 2 acting on V̂ is the Grassmannian h�( )Gr 2, 2 . The planes in this Grass-
mannian intersect in one point and it is analogue of the Grassmann manifold of 2-dimensional planes in

h h� �≅ ⊂
4

1
2 . The orbit of the isometry group h�( )Iso 2 acting on the complementary subalgebra V is the

Grassmannian h�( )Gr 3, 2 . The planes in h�( )Gr 3, 2 intersect in the straight line coincidingwith the centre ofh�
2 .

In the following example, we show that the complementary subalgebras can both contain the elements
of the centre and be both commutative.

Example 4.9. Let us consider the Lie algebrah	
1 with the basis (4.7) and the commutation relations (4.8). We

set

� 	 �{ } { } { }= = ⊕V X X ε X εˆ span , , span span .1 4 1 1 1

It is a commutative subalgebra of h	 that is orthogonally complemented by the commutative subalgebra

�{ }=V X X εspan , ,2 3 2 . The isometry group h	( )Iso 1 is given by (4.1) with � 	( ) ( ) ( )= = ∩Sp 1 Sp 2, U 2 . The
orbit of the isometry group h	( )Iso 1 acting on V̂ is the Grassmannian h	( )Gr 3, 1 . The planes in h	( )Gr 3, 1

intersect in one point.
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4.3.2 Grassmannians kGr , nh�( ) as quotient spaces

Let us fix an orthogonally complemented subalgebra h�⊂V̂ n and write

h�( ) { ( ) }= ∈ =	 	K V V Vˆ Iso : . ˆ ˆn

for the isotropy group of V̂ . The canonical projection

h h� �( ) ( ) ( )→ /K VΠ : Iso Iso ˆn n (4.26)

is a continuous map. The action of h�( )Iso n on h�( )kGr , n is transitive, by Lemma 9. We identify the left cosets
from h�( ) ( )/K VIso ˆn with elements in h�( )kGr , n by

h h� �( ) ( ) ( )

( )

/ →

↦ =	 	

K V k
K V V V

Γ : Iso ˆ Gr ,
. ˆ . ˆ .

n n
(4.27)

The map Γ is a diffeomorphism, see [48, Theorem 3.62].

4.3.3 Measure on the Grassmannians kGr , nh�( )

The groups h( )⟨⋅ ⋅⟩Pin , ,2 , h h�⊂
n

2 and � from Section 4.2 are compact Lie groups and therefore they
carry normalised Haar measures that we will denote by λPin and �λ , respectively. We also will
denote �= ×λ λ λPin the normalised product measure on the space h� �( )= ⟨⋅ ⋅⟩ ×Pin , ,2 . The map

h� �( )→ϕ : Iso n from (4.1) mapping h� �( ) ( ) ( )∈ → = = ∈	 � �θ ϕ θ , Iso n is continuous surjective map
that makes possible to push forward the measure λ to h�( )Iso n . Then the map = ∘ ∘ ϕΨ Γ Π , where Π and Γ
are defined in (4.26) and (4.27), respectively, allows us to push forward the normalised Haar measure λ from
� to h�( )kGr , n . We say that a set h�( )⊂ kΩ Gr , n is measurable if �( ) ⊂−Ψ Ω1 is measurable with respect to the
measure λ. The measure μ on h�( )kGr , n is defined by

�( ) ( )( ) ( ( )) { ( ) }= = = ∈ = = ∈♯
− 	μ λ λ λ θ V ϕ θ V VΩ Ψ Ω Ψ Ω : . ˆ . ˆ Ω ,1

for any measurable h�( )⊂ kΩ Gr , n . We express the push forward in the integral form

h ��

( ) ( ) ( ( ) ) ( )

( )

∫ ∫=f V μ V f ϕ θ V λ θd . ˆ d
kGr , n

(4.28)

for any measurable function f on the Grassmannian.

4.3.4 The groups Iso nh�( ) and the product of spheres

According to Lemmas 4.1 and 4.2, the groups h�( )Iso n act transitively on the product of two spheres

h h h� �( ) ( ) ( )= × ⊂ ⊕ ⊂� r r S r S r0, , 0, 0, ,h v n
1 2 1 2 1 2

with

h�( ) { ( ) }= = ∈ ‖ ‖ =S r g x x r0, , 0 : ,h n
E1 1

h�( ) { ( ) }= = ∈ ‖ ‖ =S r g t t r0, 0, : .v n
E2 2

The group h�( )Iso n acts on �( )� r r0, ,1 2 by the following

h� �( ) ( ) ( ) ( ) ( ) ( )= = ∈ ∈	 � � 	 � � �y w y w y w r r. , , for any , Iso , , 0, , .n
1 2

We fix �( ) ( )∈ �x t r r, 0, ,1 2 and define the isotropy subgroups
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h

h

�

�

{ ( ) ( ) ( ) ( )}

{ ( ) ( ) ( ) ( )}

( )

( )

= ∈ = =

= ∈ = =

	 	 � � �

	 	 � � �

K x t x t x t
K x t x t x t

Iso : . , , , ,
Iso : . , , , .

x t
h n

x t
v n

,

,
(4.29)

We can realise both spheres as homogeneous spaces under the action of the respective groups, see [48,
Theorem 3.62]. Namely, we write

h h� �( ) ( ) ( ) ( ) ( )( ) ( )→ / × ≅ ×K K S r S rΠ : Iso Iso 0, 0, .n n
x t
h

x t
v h v

, , 1 2

We will use the projections

h h� �( ) ( ) ( ) ( )→ →S r S rΠ : Iso 0, , Π : Iso 0, .h n h v n v
1 2

The map ϕ from (4.1) is continuous and surjective. It allows us to define the push forward measures

�( ) ( )= ∘ = ∘♯ ♯μ ϕ λ μ ϕ λΠ and Π .h h v v
Pin

Lemma 4.10. The measures μh and μv are normalised measures on the spheres ( )S r0,h
1 and ( )S r0,v

2 ,
respectively. Moreover,

�

( ) ( ) ( ) ( ( ) ( )) ( )

( ) ( )

∫ ∫ ∫=μ w f y w μ y f ϕ θ x t λ θd , d . , d
S r

v

S r

h

0, 0,v h2 1

for any measurable function f on � ( )S r r0, ,1 2 and the isotropy point ( )x t, from (4.29).

Proof. The transitive action of the isometry group on ( )S r0,h
1 and ( )S r0,v

2 ensures that the measures μh and
μv are uniformly distributed on the respective spheres. Therefore, they are the spherical measures up to
constants, see [28].

Let ( )⊂C S r0,h h
1 , ( )⊂C S r0,v v

2 be measurable sets and let �⊂C be its preimage under the
map ( )∘ = ∘ ∘ϕ ϕ ϕΠ Π , Πh v from (4.1). We write h �( ) ( )= ∈ ⟨ ⟩ ×θ α A, Pin , ., .2 and ( ) ( )= =ϕ θ ϕ α A,

h�( ) ( )∈� �, Iso n , where = ∘� J Aα and ( )=� κ α then

�

�

�

�

( ( ) ( )) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

{ ( ( ) ) } { ( ) }

{ ( ( ) ) }

( )

{ ( ) }

∫ ∫ ∫

∫ ∫

∫ ∫

=

=

=

∈ ∈ ∈ ∘ ∈

∈ ∈ ∈ ∈

� �

� �

f ϕ θ x t λ θ λ α f x t λ A

λ f x t λ A

c μ w f y w μ y

. , d d . , . d

d . , . d

d , d .

C α κ α t C A J A x C

α κ α t C

α

A A x C

C

v

C

h

Pin: .

Pin

: .

Pin: .

Pin

: .

v α h

v h

v h

In the third line, we used the fact that the group � is already acts transitively on the spheres ( )S r0,h
1 and

therefore the push forward measure ( )= ∘ ♯μ ϕ λΠh h
Pin is up to a constant the Hausdorff spherical measure

of ( )S r0,h
1 due to the fact that both measures will be uniformly distributed on ( )S r0,h

1 . □

Remark 4.11. Consider the subgroup hh� �( )× ⊂Id Iso n
2 . Since h� × Id 2 leaves the centre h2 invariant we

can define the action of � only on the horizontal slot of coordinates. Since the group � acts transitively on
the spheres ( )S r0,h , the sphere ( )S r0,h passing through the point h∈x 1 with ‖ ‖ =x rE is a homogeneous
manifold realised as a quotient of � by a subgroup fixing x. Then the integral form of the push forward of a

measure λ̃ from � is the following

�

( ) ( ) ( ) ( ) ( )

( )

∫ ∫= ∈� �f y μ y f x λ x S rd d ˜ , 0, ,
S r

h h

0,h
(4.30)

for any measurable function f on ( )S r0,h .
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5 Integral formula on “special” H-type algebras

5.1 Overview of the formula in n�

For the Grassmann manifolds in the Euclidean space the following formula is known [22]. Let �( )∈V kGr , n

and

( ) ( ) ( )∫=F V f x σ xd ,
V

where f is a non-negative measurable function in �n and σ is the k-dimensional Lebesgue measure on the
plane V . Then

� �

( ) ( )
( ( ))

( ( ))
( )

( )

∫ ∫= ‖ ‖

−

−

−F V μ V m S
m S

x f x xd 0, 1
0, 1

d ,
k

k

n E
k n

Gr ,

1

1
n n

(5.1)

where μ is a normalised invariant under the rotational group measure on the Grassmann manifold,
( ( ))−m S 0, 1k 1 is the measure of the unit sphere �( ) ⊂−S 0, 1k k1 , xd is the Lebesgue measure on �n, and

‖ ‖x E is the Euclidean norm of x. Our aim is finding an analogous expression for the three types of the
Heisenberg algebras mentioned in Section 4.2.

5.2 Formula for special H-type Lie algebras

We start from the case of orthogonally complemented Grassmannians h�( )kGr , n which elements consist of
the commutative subalgebras and do not include elements of the centre. We call them shortly "horizontal"
Grassmannians. In this case, we recover formula (5.1).

5.2.1 Formula for the “horizontal” Grassmannians

We consider both manifolds h�( )kGr , n and h�( )‖ ‖ ⊂S x0,h n as homogeneous subspaces under the action of
the subgroup h� �( )× ⊂Id Iso n . Here ‖ ‖x is the Euclidean, or Hermitian norm on h h�⊂

n
1 , according to � .

Let h�( )kGr , n be the Grassmannian consisting of orthogonally complemented commutative subalgebras
that do not contain elements of the centre. In this case, the topological and homogeneous dimensions of

h�( )∈V kGr , n coincide and we denote them by = = km dt . Let also �k denote k-dimensional Lebesgue
measure on a generic plain h�( )∈V kGr , n with h⊂V 1, h h�⊂

n
1 . Set

h( ) ( ) ( )∫= ∈ ⊂�F V f y y y Vd , .
V

k
1 (5.2)

Here h �→f : 1 is a non-negative measurable function.

Theorem 5.1. The formula

h h h� �

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

∫ ∫ ∫ ∫= = ‖ ‖
−� �F V μ V μ V f y y C z f z zd d d d

k k V

k k m m

Gr , Gr ,n n
1

1 1

holds for any measurable non-negative function h �→f : 1 and an orthogonally complemented Grassmannian
h�( )kGr , n of commutative subalgebras that do not contain elements of the centre ofh�

n .Here �m1, h�( )=m dim1 1 is
the Lebesgue measure on h h�⊂

n
1 and >C 0 is a constant.
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Proof. Note first that =V A V. ˆ for any h�( )∈V kGr , n and some �∈A . Therefore,

( ) ( ) ( ) ( ) ( ) ( )∫ ∫= = =� �F V F A V f y y f Ax x. ˆ d d
A V

k

V

k

. ˆ ˆ

h h

�

�

�

� �

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

∫ ∫

∫

∫ ∫

∫ ∫

=

=

=

=

�

�

F V μ V F A V μ A V

F A V λ A

λ A f Ax x

x f Ax λ A

d . ˆ d . ˆ

. ˆ d

d d

d d

k k

V

k

V

k

Gr , Gr ,

ˆ

ˆ

n n

(5.3)

by (4.28). □

Let us consider the last integral, where ∈x V̂ will also be considered as a point on the sphere

h( )‖ ‖ ⊂ ⊂S x V0, ˆh
1. For that ( )∈ ‖ ‖x S x0,h we can consider ( )‖ ‖S x0,h as a homogeneous manifold under

the action of � with the isotropy group that fixes x. We denote that sphere by ( )‖ ‖S x0,h x, , emphasising the
fixed point on the sphere. Then we use the push forward μh of the normalised measure λ from � to

( )‖ ‖S x0,h x, and obtain

�

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

∫ ∫ ∫= = ‖ ‖

‖ ‖

−�f Ax λ A f z μ z C f x ξ ξd d ˜ d ,
S x

h

S

m

0, 0,1

1

h x h,

1 (5.4)

where ( )−� ξd m 11 is the surface measure on the unit sphere ( )S 0, 1h . In the last step, we used the following
calculations

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

( )

∫ ∫

∫

∫

= ‖ ‖ ‖ ‖ ‖ ‖

= ‖ ‖ ‖ ‖ ‖ ‖

= ‖ ‖

‖ ‖ ‖ ‖

−

− − −

−

�

�

f z μ z c x f x ξ S x ξ

C x x f x ξ ξ

C f x ξ ξ

d d

d

d ,

S x

h

S x

m

S

m m m

S

m

0, 0,

1

0,1

1 1 1

0,1

1

h x h x

h

h

, ,

1

1 1 1

1

where ( )‖ ‖S x ξd is the surface measure on the sphere ( )‖ ‖S x0,h x, , ∈x V̂ . Substituting integral (5.4) into (5.3),
we obtain (for = ‖ ‖ρ x )

h

  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( )

( )

∫ ∫ ∫ ∫ ∫

∫ ∫

∫

‖ ‖ = ‖ ‖

=

= ‖ ‖

−

∞

− − −

∞

− − − − −

−

−

� � � �

�

�

x f x ξ ξ ρ ρ ζ f x ξ ξ

C ρ ρ f ρξ ρ ξ

C z f z z

d d d d d

ˆ d d

ˆ d .

V

k

S

m k

S

k

S

m

k m

S

m m

k m m

ˆ 0,1

1

0

1

0,1

1

constant

0,1

1

0

1 1

0,1

1 1

h k h

h

1

1

1

1 1 1

1

1 1

(5.5)

32  Bruno Franchi and Irina Markina



5.2.2 Formula for the “vertical” Grassmannians

Let h�( )kGr , n be a Grassmannian, where a typical orthogonally complemented subalgebra h�( )∈V kGr , n

contains a non-trivial part of the centre of h�
n . Let = ⊕V V Vˆ ˆ ˆh v, { }≠V̂ 0v be an orthogonally complemented

subalgebra, such that h h�⊂ ⊂V̂h
n

1 and h h�⊂ ⊂V̂v
n

2 . We write ( )=k Vdim ˆv h , ( )=k Vdim ˆv v for the topological

dimensions of the vector spaces V̂h and V̂v. Thus, = = +k V k kdim ˆ h v is the topological dimension of

orthogonally complemented subalgebra V̂ . A generic element h�( )∈V kGr , n is the image of V̂ under the
action of h�( )Iso n . We write h�( ) ( )∈ ∈x t V k, Gr , n . Let

( ) ( ) ( )∫= �F V f x t x t, d , ,
V

k

where h �� →f : n is a measurable non-negative function and �k, �( )=k Vdim is the Lebesgue measure on
V . We denote h�( )=m dim1 1 , h�( )=m dim2 2 , the topological dimensions of the horizontal h1 and vertical h2
layers of h h h� = ⊕

n
1 2. Thus, = +N m m1 2 is the topological dimension of the Lie algebra h�

n . Moreover, �m1

and �m2 are the respective Lebesgue measures on the vector spaces h1 and h2.

Theorem 5.2. The formula

h h

� �

� �

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

∫ ∫ ∫

∫

=

= ‖ ‖ ‖ ‖

×

− −

�

� �

F V μ V μ V f x t x t

C x t f x t x t

d d , d ,

, d d

k k V

k

k m k m m m

Gr , Gr ,n n

m m

h v

1 2

1 2 1 2

holds for any measurable non-negative function h �� →f : n and an orthogonally complemented Grassmannian
h�( )kGr , n of subalgebras that contain a nontrivial element of the centre of h�

n . Here >C 0 is a constant.

Proof. The isometry group h�( )Iso n does not act transitively on the spheres with respect to any of the metrics
( ) ( )−D D2 4 . This fact does not allow us to obtain a uniformly distributed measure on a sub-Riemannian
sphere by pushing forward the measure from the isometry group h�( )Iso n . Nevertheless, the transitive action
of h�( )Iso n on the product of spheres allows us to prove Lemma 4.10. In the product of the integrals

�

( ( ) ( )) ( ) ( ) ( ) ( )

( ) ( )

∫ ∫ ∫=f ϕ θ x t λ θ μ w f y w μ y. , d d , d
S r

v

S r

h

0, 0,v h2 1

(5.6)

the measures μd v and μd h are the normalised measures on the spheres ( )S r0,v
2 and ( )S r0,h

1 , respectively.
We can use successive independent dilations in the vertical and horizontal variables and write the right-
hand side of (5.6) as a product of integrals with respect to the Hausdorff measures on the unit spheres

( ) ( ) ( )

( ) ( )

∫ ∫
− −� �C η f r ξ r η ξd , d .

S

m

S

m

0,1

1

0,1

2 1
1

v h

2 1 (5.7)

Furthermore, by making use of the polar coordinates in each of the vector spaces V̂h and V̂v we obtain
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h

kh

h v
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v
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t

1 1

We recall that the measure ( )μ V on h�( )kGr , n is the push forward of the measure ( )λ θ from the group � . It
allows us to write
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It finishes the proof. □

5.3 Application of the integral formula

Let � be one of the special Heisenberg-type Lie groups of the topological dimension N and the homo-
geneous dimension Q with the Lie algebra h�

n , such that h�( ) = mdim 1 1.

Corollary 5.3. Let ( )
⊂Σ Σ d m,t be a collection of intrinsic ( )d m,t -Lipschitz graphs on �. Suppose that all the

graphs ∈S Σ contain a common point �∈g0 . Then for ≤p Qm , >p 1, we have ( ) =M Σ 0p . In the case =d mt

if >p mdt 1, then there is a family Σ of intrinsic Lipschitz graphs such that ( ) ≠M Σ 0p .

Proof. The proof of the statement that ≤p Qm implies ( ) =M Σ 0p is the proof of Theorem 3.32. To show the
statement in the opposite direction, we consider the Grassmannian h�( )kGr , n consisting of orthogonally
complemented commutative subalgebras that do not contain elements of the centre. In this case, the
topological and homogeneous dimensions of h�( )∈V kGr , n coincides, that is = = km dt .

Consider ( )= ∩S V B 0, 1h , where h�( )∈V kGr , n and h( ) ⊂B 0, 1h
1 is the Euclidean unit ball and assume

by contrary that ( ) =M Σ 0p , where

h�{ ( ) ( )}= = ∩ ∈S V B V kΣ 0, 1 , Gr , .h n

Let h( )∈ �f L ,p m
1 1 , h�( )=m dim1 1 . Then from Theorem 5.1 and the Hölder inequality for + = 1p q

1 1 we obtain

h h

h
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1 1

n h h
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t t
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Then since >p mdt 1 the last integral is finite. It implies

( ) ( )

( )

∫ < ∞

∩

�f y yd
V B

d

0,1h

t (5.8)

for μ-almost all ( )= ∩ ∈S V B 0, 1 Σh , which contradicts the assumption ( ) =M Σ 0p . □

For the following corollary, we assume that h�( )kGr , n is a Grassmannian, where a typical orthogonally
complemented subalgebra h�( )∈V kGr , n contains a non-trivial part of the centre of h�

n . In this case, neces-
sarily <d mt . Let = ⊕V V Vh v where { }≠V 0v , be an orthogonally complemented subalgebra, such that

h h�⊂ ⊂Vh
n

1 and h h�⊂ ⊂Vv
n

2 . We write �( )=k Vdimh h , �( )=k Vdimv v , = = +k k kd h vt , for the topological
dimensions of the vector spacesVh andVv, and h�( )=m dim1 1 , h�( )=m dim2 2 , the topological dimensions of
the horizontal and the vertical layers of h�

n .
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Corollary 5.4. Let ( )
⊂Σ Σ d m,t be a collection of intrinsic ( )d m,t -Lipschitz graphs. Suppose that all the graphs

∈S Σ contain a common point �∈g0 . Then for ≤p Qm , >p 1, we have ( ) =M Σ 0p . In the case <d mt , if
>pk mh 1, >pk mv 2, then there is a family Σ of intrinsic Lipschitz graphs such that ( ) ≠M Σ 0p .

Proof.We argue as in the proof of Corollary 5.4. Consider ( ( ) ( ))= ∩ ×S V B B0, 1 0, 1h v , where h�( )∈V kGr , n

and h( ) ∈B 0, 1h
1, h( ) ∈B 0, 1v

2 are the Euclidean unit balls. Assume that ( ) =M Σ 0p , where

h�{ ( ( ) ( )) ( )}= = ∩ × ∈S V B B V kΣ 0, 1 0, 1 , Gr , .h v n

Let h�( )∈ �f L ,p n N , h� �( )=N dim n . Then from Theorem 5.2 and the Hölder inequality for + = 1p q
1 1 we obtain

h

h

h
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2 1
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1
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2
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Since >pk mh 1 and >pk mv 2, then ( ) ( )∫ < ∞�f x t x t, d ,
V

k for μ-almost all plains ∈S Σ, which contradicts to
the assumption ( ) =M Σ 0p . □

Remark 5.5. Two conditions

> >pk m pk mandh v1 2

imply

( ) ( )+ = > + = + = > + =p k k p m m N p k k p m m Qd m, 2 2 .h v h vt 1 2 1 2

In general >p Qm , >p 1, does not imply both conditions >pk mh 1 and >pk mv 2 despite that the second
one for h�

n and h

n is always fulfilled for the Grassmannians h�( )kGr , n where a typical orthogonally com-

plemented subalgebraV contains a non-trivial part of the centre. In both cases h�
n and h


n the subalgebraV
necessarily contains the entire centre, and therefore =k mv 2. From the other side we note that the Lipschitz
surfaces meet each other not only at one point but at the entire centre.

In the case of h	
n and = ⊕V V Vh v with �( )=k Vdimh h and �( )= =k Vdim 1v v we obtain that

( )= + > = + ⇒ > + − ≥ ≤p p k Q m pk m p m pm 2 4 4 2 if 2h h1 1 1

but

= > = >pk p m p2 if 2,v 2

Thus, even if the Lipschitz surfaces intersect in one point, our example does not give the answer to the
question: is there an example on a Carnot group that is not �n where the condition ≤p Qm with <d mt is
necessary for the system of Lipschitz surfaces intersecting in one point to be Mp-exceptional?
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