
Exploring Spline Based Models in
glmmTMB

Flexibility and Performance of Non-Parametric Models with
Regularization

Erlend Myhre & Håvard Kolve

Supervisor: Hans J. Skaug

Master’s Thesis
Mathematical Institute, University of Bergen

June 2024



Abstract

In recent times the R-package glmmTMB has been extended to facilitate spline re-
gression. In this thesis we implement spline based smoothers in glmmTMB-models and
compare them to generalized additive models from mgcv and other R-packages. Initially,
we compare outputs with the default mgcv gam function, and find slight discrepancies.
We explain this as the consequence of a necessary re-parameterization step, which we
show is equivalent to the results given by other mixed model frameworks, such as gamm4.
Across 7 different data sets, and 15 different models, we demonstrate that splines of-
fer an advantage in many scenarios compared to simpler regression models. We show
that glmmTMB as a modelling framework becomes a versatile choice for spline regression,
with the additional dispersion and zero-inflation modelling capacity, while remaining
user friendly. Lastly, we offer a proof of concept for a method of fitting spline models
using Ridge regularization for smoothing, with generalized cross validation for choosing
the smoothing parameter. The method greatly reduces the time to train and predict the
models, and can offer stronger predictions when faced with multi-collinearity and/or
strong smoothing is needed.

2



Acknowledgements

We want to first and foremost would like to thank Professor Hans J. Skaug
for providing us with an exciting and challenging topic for our thesis. Fur-
thermore his technical insight and experience has been invaluable to our pro-
gression.
Our gratitude also extends to the University of Bergen and the Department of
Mathematics for providing us the opportunity to learn and apply important
scientific methods during our studies of Actuarial Data Analytics.

We would also like to extend our gratitude to Ben Bolker, whom over the
duration of our work on this thesis, has continually developed the package
and fixed many of the issues we encountered early on. This has made the
data analysis part of our work in particular, much easier.

Finally, we would like to thank our friends and family for their continuous
support during the writing of this thesis.

Useful Links

Below is a list of some useful links to download the necessary software and
Github pages for our models, and for following the ongoing development of
the glmmTMB package.

• Download R and Rstudio
• Github: Our Repository, Myhre (2024)
• Github: glmmTMB Discussion

3

https://posit.co/download/rstudio-desktop/
https://github.com/AllInCade/MasterProject
https://github.com/glmmTMB/glmmTMB/issues/928


Tools and Aids

ChatGPT

The fairly recent advent of readily available and powerful AI-based tools has
sparked much debate in academia (and others fields) with respect to academic
integrity and ethics. We will not discuss this debate in general here, but make
full disclosure of our use of these tools.

In the process of writing this thesis, we have used ChatGPT from OpenAI
(2024) for several purposes throughout the project, particularly:

• Feedback and explanations.
• Debugging and optimizing code.
• Generating skeleton and pseudo code for functions.
• Data cleaning, plotting and visualizations.
• Generating suggestions for paragraphs.
• Generating templates for LaTeX tables etc.

While useful, the output is generally generic, vague and imprecise. To
ensure the academic integrity and value of the content within the thesis, we
have thoroughly re-formulated and specified any parts which have been partly
based on an initial suggestion from ChatGPT. In summary we have carefully
ensured that we have:

• Described any interpretations in our own words to make sure we convey
our actual beliefs, understanding, and thoughts on any given subject or
result.

• Read, re-formulated according to our own understanding, and appropri-
ately cited credible peer reviewed sources for all theoretical content.

• Generated our own models, code and visualizations, though parts may be
suggestions from ChatGPT.

• Verified any information we have used.

We believe that we have used AI tools and aids responsibly, and that this
thesis is a genuine product of our own ideas, due diligence, understanding,
and combined effort of more than a thousand hours of dedicated work.

4

https://openai.com/chatgpt/


Contents

Acknowledgements 3

Tools and Aids 4

Introduction 11

1 Regression Models 13
1.1 Linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.1 Fixed Effects . . . . . . . . . . . . . . . . . . . . . . . 14
1.2 Linear Mixed Models . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1 Random Effects . . . . . . . . . . . . . . . . . . . . . . 15
1.2.2 Covariance Structure . . . . . . . . . . . . . . . . . . . 16
1.2.3 Maximum Likelihood . . . . . . . . . . . . . . . . . . . 17
1.2.4 Restricted Maximum Likelihood (REML) . . . . . . . . 18

1.3 Generalized Linear Models (GLMs) . . . . . . . . . . . . . . . 19
1.4 Generalized Linear Mixed Models (GLMMs) . . . . . . . . . . 19
1.5 Generalized Additive Models (GAMs) . . . . . . . . . . . . . . 20

2 Smoothers 20
2.1 Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Basis functions and different types of splines . . . . . . 22
2.2 Decomposition into ’Fixed’ and ’Random’ Parts . . . . . . . . 24

2.2.1 Cubic Regression Splines . . . . . . . . . . . . . . . . . 24
2.2.2 Cubic Smoothing Splines . . . . . . . . . . . . . . . . . 25
2.2.3 Implications for Implementing Smooth Terms in glmmTMB 25

2.3 Penalized Regression . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 Penalization and Regularization . . . . . . . . . . . . . 27
2.3.2 Penalty Terms and Quadratic Programming . . . . . . 28

2.4 Integrated Squared Second Derivative Penalty . . . . . . . . . 29
2.4.1 Relationship between Integral Expression and Matrix

Formulation of ISSD Penalty . . . . . . . . . . . . . . . 30
2.5 Ridge Penalty . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 Relationship between Integral Expression and Matrix
Formulation of Ridge Penalty . . . . . . . . . . . . . . 32

5



2.6 Strategies for Choosing Smoothing Parameter . . . . . . . . . 33
2.6.1 K-Fold Cross-Validation . . . . . . . . . . . . . . . . . 33
2.6.2 Generalized Cross-Validation . . . . . . . . . . . . . . . 34
2.6.3 Maximum Likelihood (ML) and Restricted Maximum

Likelihood (REML) . . . . . . . . . . . . . . . . . . . . 35
2.6.4 Limitations of Generalized Cross-Validation . . . . . . 35
2.6.5 Alternative Approaches . . . . . . . . . . . . . . . . . . 36

2.7 Overview of Forms of Smoothers . . . . . . . . . . . . . . . . . 38
2.7.1 Isotropic Smoothers . . . . . . . . . . . . . . . . . . . . 38
2.7.2 Scale Invariant Smoothers . . . . . . . . . . . . . . . . 38
2.7.3 Tensor Product Smoothers . . . . . . . . . . . . . . . . 39

2.8 Quadratically Penalized Smoothers & Gaussian Random Fields 39

3 R packages ’mgcv’ and ’glmmTMB’ 41
3.1 mgcv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 Simple Example . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Smooth Construction in mgcv . . . . . . . . . . . . . . . . . . 42
3.3 glmmTMB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Simple Example . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Template Model Builder . . . . . . . . . . . . . . . . . . . . . 45
3.5 Automatic Differentiation . . . . . . . . . . . . . . . . . . . . 46

3.5.1 Principles of AD . . . . . . . . . . . . . . . . . . . . . 46
3.5.2 Modes of AD . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.3 Computational Efficiency . . . . . . . . . . . . . . . . . 47

3.6 Laplace Approximation in TMB for GLMMs . . . . . . . . . . 47
3.6.1 Inner Optimization Problem . . . . . . . . . . . . . . . 48
3.6.2 Outer Optimization Problem . . . . . . . . . . . . . . . 48
3.6.3 Computational Considerations . . . . . . . . . . . . . . 48

3.7 Model construction and estimation in glmmTMB . . . . . . . 49
3.7.1 Fixed Effects Estimation . . . . . . . . . . . . . . . . . 49
3.7.2 Random Effects Estimation . . . . . . . . . . . . . . . 49
3.7.3 Covariance Matrix Estimation . . . . . . . . . . . . . . 50

4 Implementing Smooth Terms in glmmTMB with mgcv ma-
chinery 50

6



4.1 Smooth Construction using smoothCon . . . . . . . . . . . . . 51
4.2 Re-parameterizing Using smooth2random . . . . . . . . . . . . 52

4.2.1 Natural Parameterization in GAMs . . . . . . . . . . . 53
4.2.2 Re-Parameterized Formulation for Mixed Models . . . 53
4.2.3 Re-Parameterization by smooth2random . . . . . . . . 54

4.3 How s() can be presented in glmmTMB . . . . . . . . . . . . 56
4.4 Basis functions in glmmTMB . . . . . . . . . . . . . . . . . 57

4.4.1 Proposition for bs="cs" and bs="cc" . . . . . . . . . 57
4.5 Complexities of Tensor Product Splines . . . . . . . . . . . . . 58

4.5.1 Tensor Product Construction of Smooths in GAMs . . 58
4.6 Encountering Model Convergence Issues . . . . . . . . . . . . 61

4.6.1 Optimizers in R and TMB . . . . . . . . . . . . . . . . . 61

5 Researching Improvements for s() in glmmTMB 63
5.1 Empirical results for glmmTMB, gamm4 and mgcv:gamm 63
5.2 Optimizing basis functions . . . . . . . . . . . . . . . . . . . . 63

5.2.1 Presentation of models . . . . . . . . . . . . . . . . . . 63
5.2.2 Comparison . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Data Analysis with Spline Regression 66
6.1 No Free Lunch . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3 General Analysis Approach . . . . . . . . . . . . . . . . . . . . 68
6.4 Choice of Performance Metrics . . . . . . . . . . . . . . . . . . 70

6.4.1 Time Series and Forecasting Models . . . . . . . . . . . 71
6.5 Financial Data . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.5.1 Log Return I . . . . . . . . . . . . . . . . . . . . . . . 72
6.5.2 Model Selection . . . . . . . . . . . . . . . . . . . . . . 75
6.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.6 Log Return II . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.6.1 Merged Datasets . . . . . . . . . . . . . . . . . . . . . 76
6.6.2 Model Selection . . . . . . . . . . . . . . . . . . . . . . 77
6.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.7 Bank Failures Count . . . . . . . . . . . . . . . . . . . . . . . 81
6.7.1 Counts of Bank Failures . . . . . . . . . . . . . . . . . 81

7



6.7.2 Model Selection . . . . . . . . . . . . . . . . . . . . . . 82
6.7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.8 Bank Failures and Estimated Loss . . . . . . . . . . . . . . . . 86
6.8.1 Model selection . . . . . . . . . . . . . . . . . . . . . . 86
6.8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.9 Hot and Cold Deviations Classifier . . . . . . . . . . . . . . . 90
6.9.1 Model Selection - Classifier . . . . . . . . . . . . . . . . 92
6.9.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.10 Temperature Anomalies: Gaussian Models . . . . . . . . . . . 94
6.10.1 Model Selection . . . . . . . . . . . . . . . . . . . . . . 94
6.10.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.11 Wind Speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.11.1 Model Selection . . . . . . . . . . . . . . . . . . . . . . 98
6.11.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.12 Wind Speeds II . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.12.1 Model Selection . . . . . . . . . . . . . . . . . . . . . . 100
6.12.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.13 Claim Severity . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.13.1 Model Selection . . . . . . . . . . . . . . . . . . . . . . 103
6.13.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.14 Claim Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.14.1 Model Selection . . . . . . . . . . . . . . . . . . . . . . 109
6.14.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.15 Face Value of Insurance Policies . . . . . . . . . . . . . . . . . 112
6.15.1 Model Selection . . . . . . . . . . . . . . . . . . . . . . 113
6.15.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.16 Death Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.16.1 Model Selection . . . . . . . . . . . . . . . . . . . . . . 117
6.16.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.17 Death Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.17.1 Model Selection . . . . . . . . . . . . . . . . . . . . . . 123
6.17.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7 Ridge Models in glmmTMB 127
7.1 Regularization Effects . . . . . . . . . . . . . . . . . . . . . . 128

8



7.2 Comparing Implicitly vs Explicitly Penalized Models . . . . . 130
7.3 Implementing Ridge Regularized GAMs . . . . . . . . . . . . . 131

7.3.1 Smooths as Fixed Effects . . . . . . . . . . . . . . . . . 131
7.3.2 Implementing a Ridge Penalty . . . . . . . . . . . . . . 132
7.3.3 Smoothness Selection . . . . . . . . . . . . . . . . . . . 136
7.3.4 Training and Validating Models . . . . . . . . . . . . . 138

7.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.4.1 Bank Failure Estimated Loss . . . . . . . . . . . . . . . 139
7.4.2 Log Return III . . . . . . . . . . . . . . . . . . . . . . 140
7.4.3 Face Value . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.5 Time Complexity Analysis . . . . . . . . . . . . . . . . . . . . 145
7.5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8 Discussion 147
8.1 Results of Interest . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.2 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . 149

A Notation 152

B Distribution Families 152
B.1 Exponential Families . . . . . . . . . . . . . . . . . . . . . . . 153
B.2 Gaussian (Normal) . . . . . . . . . . . . . . . . . . . . . . . . 154
B.3 Tweedie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
B.4 Negative Binomial . . . . . . . . . . . . . . . . . . . . . . . . 156
B.5 Beta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

C Topics in Statistical Modelling 159
C.1 Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . 159
C.2 Feature Importance and Model Selection . . . . . . . . . . . . 160
C.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 161
C.4 Time Series Analysis . . . . . . . . . . . . . . . . . . . . . . . 161
C.5 Large Data and Smooth Modeling Challenges . . . . . . . . . 168

D Vector and Matrix Algebra 173
D.1 Vector and Matrix Multiplication . . . . . . . . . . . . . . . . 173
D.2 Properties of Matrices . . . . . . . . . . . . . . . . . . . . . . 175

9



E R Code 179
E.1 Penalty Matrix (S) and Scale Matrix (A) . . . . . . . . . . . . 179
E.2 Prediction Matrices . . . . . . . . . . . . . . . . . . . . . . . . 180

10



Introduction

Splines are a powerful tool in statistical modeling. They extend the flexibility
of traditional linear models by allowing for non-linear relationships between
the variable of interest and the variable(s) which we expect to explain and
predict the it. Our goal through this thesis is to show that splines can be
used effectively in the glmmTMB framework, and to demonstrate the overall
flexibility of the package. It turns out that splines can be incorporated quite
directly into mixed-effect models, due to their mathematical similarity to ran-
dom effects. Splines are most commonly used in generalized additive models
(GAMs) within statistical modeling. There exists extensive theory and doc-
umentation on GAMs, particularly by Simon Wood (Wood, 2017) within the
R programming language.

The glmmTMB (Brooks et al., 2017) package is designed for fitting mixed
effect models, but does not currently support the use of splines, which limits
its ability to model non-linear relationships. However, there is current and
ongoing work being done by the developers (Ben Bolker in particular) of the
glmmTMB package to implement such functionality. In this thesis we will use
and test the developing glmmTMB framework in order to compare it against
other mixed modelling frameworks which already have mgcv machinery im-
plemented. Additionally, we will inspect the underlying methods and code
being used to try and find and suggest possible solutions to potential problems
and/or improvements in general. Finally, we will try manually implementing
splines in glmmTMB and experiment with using a Ridge penalty to more effec-
tively regularize models, in order to determine if an option for using a Ridge
penalty could (or should) be implemented in glmmTMB at some point in time.

To motivate our thesis and work further, a paper published by Wallisch
et al. (2022) states the need for easy-to-implement advanced statistical mod-
els with comprehensible documentation and guidance for users of all levels.
This paper aims to provide both technical explanations and practical guidance
with many examples for modelling complex data using advanced statistical
methods like spline regression. Similarly financial institutions like insurance
companies and hedge funds are also focusing their resources into data driven

11

https://pubmed.ncbi.nlm.nih.gov/35073384/


decision making and pricing.

A glmmTMB-model with random effects, dispersion and zero-inflation sub-
models, a diverse family of distribution families to choose from, and a user
friendly interface, is already a strong offering in this direction. Adding more
capability for non-linear modelling, as incorporated from the tried and tested
mgcv machinery, the package can be a go-to alternative for many non-experts
for modelling and analyzing a wide variety of data. Where packages like
r-inla and brms provide user friendly interfaces for complex and hierar-
chical models in a Bayesian framework, glmmTMB can serve a similar role in
frequentist settings, which is generally more suitable to non-experts.

The paper begins with a comprehensive overview of the relevant theoretical
aspects, starting from the basics of linear models and progressing to GLMMs
and GAMs. The main body of the thesis deals with splines (smoothers) and
implementing spline regression models for analysis of real datasets in glmmTMB.
The final chapters are dedicated to exploring how a Ridge penalty can provide
an alternative form of regularization for GAM(M)s, in a computationally
efficient way.

12

https://github.com/glmmTMB/glmmTMB
https://www.r-inla.org/
https://paul-buerkner.github.io/brms/


1 Regression Models

In the field of statistical modeling, there is a well known trade-off between
simplicity and accuracy. In machine learning contexts this is usually referred
to as the "bias-variance tradeoff". In essence, bias refers to the complexity of
the assumptions of the model. High bias means the model makes very strong
assumptions and the cost of flexibility, and potentially accuracy. High vari-
ance means high complexity, and thus low bias. We’ll start off on the high
bias - low variance, and progressively move into more complex models.

Regression models are one of the primary tools in statistical analysis and
modelling, offering an easily implemented approach for exploring and quanti-
fying the relationships between variables. At their core, these models provide
a way to investigate how one dependent variable changes in response to one
or more independent variables, which allows for predicting/forecasting, infer-
ence, and decision-making.

Regression models range from simple linear regression, flexible generalized
and mixed models, and adaptable non-parametric approaches like generalized
additive models. These frameworks facilitate modelling for a wide variety
of phenomena across many fields, like natural sciences, finance and social
sciences. Regression analysis is one of the predominant tools for statisticians
and researchers in most data driven endeavours. The theory of this chapter
is primarily based on the book "Generalized Additive Models" Wood (2017).

1.1 Linear models

Linear models are the simplest and most common among statistical models.
In essence, they make a simple assumption: the relationship between the
response and predictor variable(s) can be expressed as a linear function. This
simplicity makes for ease of interpretation and computation, which is the
linear model approach is such a powerful tool in statistics.
The simplest form of a linear model is simple linear regression, which models
the relationship between a single predictor variable X and a response variable
Y , Wood (2017, p. 2). Formally, a model for the relationship between X and

13



Y can be expressed as

y = β0 + β1x + ε (1.1)

where,

• y is the response (dependent) variable.
• x is the predictor (independent) variable.
• β is the unknown parameter coefficient.
• ϵ is an independent random variable with mean 0 and constant variance

σ2.

The parameters β0 and β1 are estimated using the method of ordinary
least squares (OLS), which minimizes the sum of the squared residuals (the
differences between the observed and predicted values of Y ).
Regression models are often described and expressed in their vector notation,
due to their natural implementation in computers. Using this notation we
have

y = XT β + ϵi. (1.2)

Multiple linear regression extends the simple linear regression model to
include more than one predictor variable. Mathematically we have

y = β0 + β1x1 + . . . + βkxk + ϵ = XT
i β + ϵi for i = 0, 1, . . . , k. (1.3)

1.1.1 Fixed Effects

In the context of regression models, one inevitably comes across many perhaps
unfamiliar terms. One of these terms might be "fixed effects". Fixed effects in
linear mixed models refer to the consistent impact of predictors across levels
of a grouping variable. They estimate the average effect of predictors on the
response variable. For instance, in a study on student performance, a fixed
effect might quantify the impact of a specific teaching method across different
schools.

14



The fixed effect parameters β are usually estimated using maximum like-
lihood (ML) methods. The likelihood function is given by:

L(β|y, X) = f(y1, y2 . . . yn|Xβ, σ2). (1.4)

Fixed effects are easy to interpret and computationally efficient to estimate.
However, they assume a constant effect across all levels of a grouping variable
and do not capture unexplained variability within these levels, which are
normally addressed through the "random effects", which we’ll come to very
soon.

1.2 Linear Mixed Models

Linear Mixed Models (LMMs) extend the framework of traditional linear
models by using both fixed and random effects. This allows for the modeling
of complex data structures, such as clustered or longitudinal data, where ob-
servations are not independent.

1.2.1 Random Effects

We’ll try to explain intuitively with an example what random effects are and
do. In many real-world scenarios, data is often collected in a hierarchical
or nested structure. For example, students within the same class may share
similar characteristics, and classes within the same school may also have simi-
larities. LMMs allow us to model this structure by including both fixed effects,
which are common to the entire population, and random effects, which cap-
ture the variability within these clusters.

The general form of an LMM can be represented as in Wood (2017, p. 61):

y = Xβ + Zu + ϵ, (1.5)

where

• X and Z are the design matrices for the fixed and random effects, respec-
tively (n × p and n × q).

• β is the vector of fixed effects (p × 1).

15



• u is the vector of random effects (q × 1).

The random effects u are assumed to follow a multivariate normal distri-
bution with mean zero and covariance matrix G, i.e., u ∼ N (0, G). Similarly,
the error term ϵ is assumed to be normally distributed with mean zero and
covariance matrix R, i.e., ϵ ∼ N (0, R).

LMMs provide a flexible framework for analyzing complex data structures,
offering more accurate parameter estimates and standard errors compared to
traditional linear models in the presence of correlation or clustering.

The random effects in linear mixed models account for variations not ex-
plained by fixed effects, often arising from hierarchical or grouped data struc-
tures. For instance, in a study on student performance across schools, random
effects can model variation attributable to individual schools.

1.2.2 Covariance Structure

As we saw in 1.5 the random effects u are assumed to follow a multivariate
normal distribution This assumption simplifies the likelihood function for
easier parameter estimation and provides a basis for statistical inference.

While Gaussian random effects are convenient, they may not suit all data
types, necessitating diagnostic checks for validation. The covariance matrix
G is often structured to mirror the data’s hierarchical nature. For example,
with data grouped by schools, G might be a block-diagonal matrix, with each
block representing a school.

The covariance matrix G is represented as:

G =


σ2

1 σ12 · · · σ1n

σ21 σ2
2 · · · σ2n

... ... . . . ...
σn1 σn2 · · · σ2

n

 , (1.6)

where diagonal entries represent variances of individual random effects, and
off-diagonal entries represent covariances.

Model parameters, including random effects, are usually estimated using
ML or restricted maximum likelihood (REML) methods. The likelihood func-

16



tion for both fixed and random effects is given by:

L(β, u, σ2, G|y) =
∫

f(y|β, u, σ2)f(u|G)du, (1.7)

where f(y|β, u, σ2) is the likelihood of the data given fixed and random ef-
fects, and f(u|G) is the likelihood of the random effects given their covariance
structure.

Random effects are useful for capturing the varying influence from different
levels (values) of categorical predictors. They can also be useful in reducing
parameter counts in such hierarchical data. However, the normality assump-
tion for random effects may not always be valid, and the computational com-
plexity can increase with large or complex data structures. Computational
techniques can be deployed to efficiently fit mixed models. We will touch on
some of those in sections 3.5 and 3.6.

1.2.3 Maximum Likelihood

Before moving on, we should get explain method of Maximum Likelihood
(ML). For our purposes it’s used estimate the parameters of a statistical
model. The idea is, if not the most intuitive, at least quite simple: Given
some set of observed data and assuming a particular model that describes
the underlying distribution of the data, ML tries to find the parameters that
make the observed data most probable. In practice, this means finding the
parameters that maximize the likelihood function, which measures how likely
the observed data is under a given parameterization.

L(θ | X) =
n∏

i=1
f(xi | θ), (1.8)

where X = {x1, x2, . . . , xn} is the set of data points that we believe come
from some distribution parameterized by θ. The likelihood function L(θ | X)
is the joint probability (density) of all observations under the distribution.
Here, f(xi | θ) denotes the probability density function (mass function for
discrete distributions), given the parameters θ.

The goal of Maximum Likelihood Estimation is to find the parameter val-
ues θ̂ that maximize the likelihood function:

17



θ̂ = arg max
θ

L(θ | X). (1.9)

In practice we usually work with the log-likelihood function l, which is
simply the logarithm of the likelihood function, i.e l = log(L), The reason
for this is that the logarithm function has the nice properties that it is both
monotonic and that it turns multiplication (products) into addition (sums).
So when when we want to maximize l by taking it’s derivative and setting it
equal to zero, we don’t have to contend with the chain rule.

1.2.4 Restricted Maximum Likelihood (REML)

Unlike ordinary maximum likelihood (ML), which may produce biased vari-
ance component estimates, REML avoids this by maximizing a modified like-
lihood function that integrates out the fixed effects:

LREML(θ) =
∫

L(θ, β)dβ, (1.10)

This results in unbiased variance component estimates, which is particularly
advantageous for small samples or complex random effects structures.

Additionally, REML can be used for comparing nested models with iden-
tical fixed effects but different random effects structures. Methods such as
likelihood ratio tests or information criteria like AIC or BIC can be employed
for this purpose.

The REML criterion focuses on maximizing the likelihood of the residuals
rather than the full data. The REML log-likelihood is expressed as:

ℓREML(θ) = −1
2 log |V|− 1

2 log |XT V−1X|− 1
2(y−Xβ̂)T V−1(y−Xβ̂), (1.11)

where V = ZGZT +R is the total covariance matrix, with θ representing the
parameters to be estimated. β̂ is the estimate of β obtained from fitting the
model by ignoring the random effects (i.e., treating Zu as part of the error
term). Note: The Laplace approximation used for REML is exact in this
linear case.

18



It is noteworthy that while β appears in the expression, the REML ap-
proach effectively partitions (integrates) out the fixed effects from the vari-
ance component estimation. This ensures unbiased estimates of the variance
components, addressing the bias inherent in the ordinary ML estimates, by
accounting for the information already used.

In the next sections, we will extend these linear models to include non-
linear relationships and grouped or hierarchical data, leading us to the gener-
alized linear mixed models and generalized additive models that are the focus
of this thesis.

1.3 Generalized Linear Models (GLMs)

Generalized Linear Models extend linear models by allowing for response vari-
ables that have (error) distributions other than a normal distribution. GLMs
are useful for modeling binary outcomes, counts, and other types of response
variables that do not fit the assumptions of normality, (Dobson, 2002). Math-
ematically we have

g(E[y]) = Xβ, (1.12)
where:

• g(·) is a link function that relates the linear predictor to the mean (E) of
the response variable.

• y is the response, which is assumed follows a distribution from an expo-
nential family (most commonly used distributions belong to an exponential
family).

1.4 Generalized Linear Mixed Models (GLMMs)

GLMMs further extend GLMs by incorporating random effects, making them
suitable for clustered or longitudinal data where observations are not inde-
pendent. This is essentially the same kind of extension we saw from linear
models to linear mixed models.

g(E[y]) = Xβ + Zu, (1.13)

19



where:

• Z and u represent the design matrix and vector of random effects, respec-
tively.

• Other terms are as defined in the GLM section.

Similar to LMMs, the random effects here are usually assumed to follow a
multivariate normal distribution. GLMMs combines the flexibility of GLMs
with respect to distributions, and the ability to effectively capture and model
variation in hierarchical data like LMMs, into a single framework.

1.5 Generalized Additive Models (GAMs)

GAMs extend GLMs by including non-parametric functions, such as splines,
allowing for more flexibility in modeling non-linear relationships between pre-
dictors and the response variable. They inherit the "generalized" part by
allowing for a variety of distribution families and link functions.

Formulation:
g(E[y]) =

p∑
i=1

fi(xi), (1.14)

where:

• fi(·) are smooth functions of the predictor variables.
• Other terms are as defined in the GLM section.

GAMs are particularly powerful for exploring and visualizing the shape of
the relationship between predictors and the response variable. They are often
fitted using techniques like backfitting and penalized regression splines.

Note: We can extend GAMs to include random effects as well (i.e GAMMs),
similarly to how we did with linear models and GLMs.

2 Smoothers

Smoothers are a class of techniques used in statistical modeling to capture
complex, nonlinear relationships between variables. Unlike traditional linear
models that assume a specific functional form for the relationship between
predictors and the response variable, smoothers provide more flexibility by

20



fitting a curve to the data points. This curve can adapt to the local behavior
of the data and provide better understanding of underlying patterns.

Common types of smoothers include spline-based methods, kernel smoothers,
and local regression techniques. We will be dealing with spline-based smoothers,
which are widely used in generalized additive models (GAMs), where they can
be combined with linear terms to create hybrid models that capture both lin-
ear and nonlinear effects, while remaining interpretable. The contents in this
chapter is relies heavily on the material from "Elements of Statistical Learn-
ing" (Hastie et al., 2009) and "Generalized Additive Models" Wood (2017).

2.1 Splines

Splines are piecewise-defined polynomial functions used for approximating
complex functional forms, which becomes useful in capturing nonlinear rela-
tionships between variables, (Hastie et al., 2009, Chapter 5.2). The general
idea is to divide the range of the predictor variable into intervals and fit a
low-degree polynomial within each interval. The points where these intervals
are "joined" are known as knots.

Some of the advantages using splines offer, is the ability to approximate a
wide range of functional forms. They also ensure smooth transitions between
intervals while providing local control, as changing the function value at one
point affects only a limited portion of the spline.

The use of splines involve a trade-off between flexibility and overfitting -
controlled partially by the number and location of knots, which can be opti-
mized using cross-validation techniques. However, a direct regularization on
the models ’wigglyness’ or size of coefficients is needed. This is what’s known
as penalized regression, which we will come back to.

As splines are such an important aspect of our thesis, let’s formalize some
of the concepts discussed above:

1. Piecewise Polynomial: A function f(x) is a piecewise polynomial of
degree k if it is represented by different polynomial functions Pi(x) of

21



degree k in each interval [xi, xi+1).

f(x) = Pi(x), x ∈ [xi, xi+1) (2.1)

2. Knots: The points xi where the function changes from one polynomial
to another are called knots.

3. Spline: A spline of degree k is a piecewise polynomial function of degree
k that is k − 1 times continuously differentiable across the knots.

2.1.1 Basis functions and different types of splines

Basis functions are important for constructing more complex curves (splines)
that can capture non-linear patterns in the data. These functions, usually
polynomials, are pieced together at specific points called knots to form a
smooth curve. The choice of basis functions and the location of knots can
significantly affect the flexibility and smoothness of the resulting spline. A
key benefit of using splines is that they provide a local representation of the
data, which means changes in one region of the data do not necessarily affect
the entire curve. This local control makes splines very adaptable to more lo-
cal shapes and patterns, which in turn can allow for more accurate modeling
where such patterns exist.

Some common types of splines include:

1. Linear Splines: Linear pieces between knots.

f(x) = β0 + β1x +
k∑

i=1
βi+1(x − κi)+, (2.2)

where x is the scalar predictor, κi are the knots, and β are coefficients.
(x − κi)+ denotes x where any value of x less than or equal to the knot
κi the function evaluates to 0.
Attributes: Linear splines are the simplest and most direct approach to
modeling non-linear data, offering an intuitive method for approximating
complex functions. This simplicity makes linear splines great for appli-
cations requiring a straightforward yet flexible modeling solution. Unlike
higher-order splines, linear splines do not ensure smooth transitions at

22



knots, which can be both a limitation and an advantage, depending on
the application.

2. Cubic Splines: Cubic polynomials between knots for smooth transi-
tions.

f(x) = β0 + β1x + β2x
2 + β3x

3 +
k∑

i=1
βi+3(x − κi)3

+ (2.3)

where κi represent the knots, and (x − κi)3
+ denotes the truncated power

basis.
Attributes: Cubic splines are defined by piecewise cubic polynomials
between knots and are continuous up to the second derivative, provid-
ing smooth transitions. This allows for modeling of data with naturally
smooth curves, avoiding abrupt changes (in slope and curvature, the first
and second derivatives). They have flexible boundary conditions, mak-
ing them adaptable to natural or clamped ends to suit specific modeling
needs.

Note: There are several different spline types that use cubic polynomi-
als, like cubic regression splines and smoothing cubic splines, which have
different characteristics.

3. B-Splines: Piecewise polynomials of degree p over k knots.

f(x) =
k∑

i=0
βiBi,p(x), (2.4)

with Bi,p(x) as the B-spline basis functions, βi as coefficients, and n is
the number of basis functions.
Attributes: B-splines are prized for their local control, allowing precise
adjustments with minimal global impact, and their continuity, where the
degree dictates smoothness across segments. They ensure stable model-
ing through non-negative basis functions and partition of unity, guaran-
teeing curves remain within the convex hull of control points. Notably,
B-splines offer numerical stability and are efficiently computed via the
De Boor algorithm.

23



4. Thin Plate Regression Splines (TPRS): TPRS combines linear
terms with radial basis functions for spatial modeling in multi-dimensional
spaces. The TPRS model for two-dimensional predictors can be written
as:

f(u, v) = β0 + β1u + β2v +
k∑

i=1
αiϕ(∥(u, v) − (κui, κvi)∥), (2.5)

where ϕ(r) = r2 log(r) is the radial basis function, αi are coefficients for
the radial basis functions, β0, β1, β2 are linear term coefficients, and ϵ is
the error term. u and v represent the two-dimensional vector predictors.
Attributes: Even though TPRS are traditionally used for multi-dimensional
spatial analysis, they are also effective in one-dimensional settings, which
will be our primary usage in this thesis, although we will also demon-
strate bi-variate applications. The flexibility from the radial basis func-
tions makes them very flexible, which is likely why they are the default
choice in mgcv.

2.2 Decomposition into ’Fixed’ and ’Random’ Parts

The mgcv machinery can decompose splines (smooth terms) into fixed (Xf)
and random (Xr) components. Now we’ll compare cubic regression splines
with cubic smoothing splines to demonstrate their differences in decomposi-
tion.

2.2.1 Cubic Regression Splines

Defined as piece-wise cubic polynomials between knots, cubic regression splines
for k knots are expressed as:

f(x) = β0 + β1x +
k∑

i=1
βi+1(x − κi)3

+, (2.6)

where the fixed part of the model includes β0 and β1x, and the random part
consists of the subsequent terms. In an mgcv smooth term with 10 degrees
of freedom (k=10), Xf is a matrix with 2 columns (β0 and β1x), and the Xr
matrix contains 8 columns for the non-linear spline components.

24



2.2.2 Cubic Smoothing Splines

Cubic smoothing splines minimize the following expression, Hastie et al.
(2009, p 151):

n∑
i=1

(yi − f(xi))2 + λ
∫

f(′′t)2 dt, (2.7)

where the equation includes observed data points yi, and predictor values
xi. Unlike cubic regression splines, cubic smoothing splines do not naturally
decompose into fixed and random components, resulting in the entire basis
function acting as a random effect. That is, the smooth terms will have a
n × 10 matrix of basis coefficients to capture the relationship between the
smooth term (predictor) and the response variable.

2.2.3 Implications for Implementing Smooth Terms in glmmTMB

The decomposition properties of spline types directly impact their imple-
mentation in generalized linear mixed models (GLMMs) using the glmmTMB
package in R.

• Cubic Regression Splines (bs="cr"): Both Xf and Xr matrices are
generated. Xf captures (unpenalized) linear and constant terms, while Xr
includes penalized cubic terms between knots, aligning well with the mixed
model framework.

• Cubic Smoothing Splines (bs="cs"): Only a Xr matrix is produced
due to the lack of a distinct fixed-random division, leading to the whole
predictive part of the model being treated as random effect in the model
(i.e no explicit linear or constant term).

The presence or absence of Xf and Xr terms in the decomposition into fixed
and random effects components can depend on the specific constraints and
penalties associated with the spline type. Cubic smoothing splines (bs="cs")
are so smooth that they do not naturally decompose into Xf and Xr terms.
Splines with clear fixed-random decomposition integrate smoothly into mixed
models, while those without such divisions may require additional modifica-
tion for fitting within this framework.

25



Table 1: Compatibility of Spline Types with smoothCon in mgcv

Spline bs Xf Xr Penalty
Cubic Regression "cr" ✓ ✓ Integrated square 2nd derivative
Cyclical Cubic "cc" ✓(1) ✓ Integrated square 2nd derivative
Cubic Smoothing "cs" × ✓ Integrated square 2nd derivative
Thin Plate Regression "tp" ✓ ✓ Integrated square 2nd derivative
P-splines "ps" ✓ ✓ 1st or 2nd order difference
Two-dimensional Tensor Product "t2" ✓ ✓ Depends on component splines
Shrinkage Smooth "fs" ✓ ✓ Multiple possible
Adaptive "ad" ✓ ✓ Multiple possible
Random Effect "re" × ✓ None (Random intercept)

2.3 Penalized Regression

The default basis in mgcv is the TPRS smooth, which we have already seen in
it’s mathematical representation. In mgcv and in spline regression generally,
these splines are subject to a penalty to control their variance/flexibility to
prevent overfitting. In more specific notation, the penalized version of Thin
Plate Regression Splines as constructed by mgcv can be written as

f(x) =
n∑

i=1
αiϕ(∥x − xi∥) + λ

∫
[f ′′(x)]2dx, (2.8)

where

• f(x) represents the spline function.
• x is a vector of predictors.
• αi are the coefficients for the radial basis functions.
• ϕ is the radial basis function, which for TPS are of the form r2 log(r).
• xi are the points in the input space where the basis functions are centered.
• λ is a smoothing parameter that controls the trade-off between fidelity to

the data and smoothness of the spline.
• The integral term ∫ [f ′′(x)]2dx represents the penalty applied to the spline’s

second derivative, encouraging smoothness.

Note: The radial basis function (RBF) is well suited in modeling complex,
non-linear relationships. It originates from the study of the bending of thin
elastic plates. r represents the distance from a center point, and the function’s

26



value increases with r. This increasing nature allows the RBF to effectively
capture varying degrees of non-linearity depending on the distance from the
center. The inclusion of the logarithmic term alongside the quadratic term
adds a level of flexibility not present in simpler polynomial models.

The smoothing parameter λ is automatically estimated from the data, us-
ing a form of cross-validation scheme on prediction error or based on maximum
likelihood.

• A higher λ value results in a smoother spline, which may underfit the data.
• A lower λ value allows for more flexibility in the spline, fitting the data

more closely but with a risk of overfitting.

2.3.1 Penalization and Regularization

Before delving deeper, it’s worth highlighting the importance of penaliza-
tion (or more generally regularization) in statistical modeling, particularly
in complex frameworks such as spline regression. More than a mere tech-
nicality, regularization is essential for balancing the bias-variance trade-off,
which is important for a model’s generalization to new data. By incorporat-
ing a penalty term into the loss function, regularization effectively constrains
model coefficients, towards simplicity and interpretability, especially in sce-
narios with many predictors or multicollinearity. In spline regression, the
necessity of penalization is increased due to the flexibility of splines, which
can easily lead to overfitting. Penalization tempers this flexibility, enabling
the model to capture essential data trends while remaining robust against
noise. This is often done by penalizing the spline’s second derivatives, thus
promoting a smooth, continuous curve, or penalizing the the magnitude of
the coefficients.

Type Penalty Form Common Usage
Ridge J(β) = ∑p

j=1 β2
j (L2-norm) Multicollinearity, high-dimensionality

Lasso J(β) = ∑p
j=1 |βj| (L1-norm) Variable selection, sparsity

Elastic Net J(β) = α
∑p

j=1 β2
j + (1 − α)∑p

j=1 |βj| Balancing Ridge and Lasso
ISSD J(f) =

∫
[f ′′(x)]2dx Smoothness in spline regression

Table 2: Common Forms of Penalized Regression and Their Typical Usage

27



2.3.2 Penalty Terms and Quadratic Programming

In our study of smooths, we will be using and comparing quadratic penalty
terms. Quadratic forms are particularly well suited for use in computational
software for a multitude of reasons. Quadratic programming, which involves
optimizing a quadratic objective function subject to linear constraints, is a
fundamental technique in this context. The quadratic penalty terms we use
are a specific application of quadratic programming principles.

The Quadratic Form: A quadratic penalty term typically takes the form of
a quadratic function, such as λ(Xλ)2, where λ is a regularization parameter,
X is a matrix of predictors, and β is a vector of coefficients. The quadratic
nature of the penalty term ensures that the optimization problem remains
convex, allowing efficient and stable solutions.

Convexity in the Quadratic Penalty Forms: We examine two common quadratic
penalty forms: the integrated squared second derivative and the Ridge penalty.
The integrated squared second derivative, essential in spline regression, is ex-
pressed in matrix form as βT Sβ, with S being a positive semi-definite matrix.
The Ridge penalty, used in Ridge regression, is represented as βT (λI)β. Both
forms are quadratic and convex, ensuring unique and stable optimal solutions.

Benefits in Computational Software: Quadratic programming is highly advan-
tageous in computational software due to its tractability and efficiency. Some
of the key benefits are:

• Unique Optimal Solutions: The convexity of quadratic functions guar-
antees unique optimal solutions, making the algorithms used for optimiza-
tion predictable and reliable.

• Efficient Algorithms: Algorithms for solving quadratic programming
problems, such as interior-point methods, are well-developed and can effi-
ciently handle large-scale problems.

• Stability and Robustness: Quadratic forms offer stability in the opti-
mization process, reducing the risks of numerical issues that can arise with
more complex, non-convex optimization problems.

28



Application in Smooth Modeling: In the context of smooth modeling, quadratic
penalty terms help control the wigglyness or complexity of the smooth func-
tion. By adjusting the regularization parameter λ, we can balance the smooth-
ness of the model against its fit to the data, a key aspect in preventing over-
fitting and ensuring model generalizability. This approach combines com-
putational efficiency with the ability to effectively manage the complexity
of the model, making it an ideal choice for a variety of statistical modeling
applications.

Feature Advantage in Statistical Modeling Software
Computational Tractability Quadratic forms have a simple, convex shape that makes

optimization algorithms more efficient and predictable.
Simplicity in Derivation Their derivatives are linear, simplifying the calculations

required in gradient-based optimization methods and ac-
celerating convergence.

Closed-Form Solutions Often allow for direct solutions to optimization prob-
lems, particularly in linear models, enhancing computa-
tional efficiency.

Stability and Predictability Contribute to the stability and reliability of optimiza-
tion routines, especially with noisy or sparse data.

Balance in Regularization Offer a balanced approach to regularization (like in
Ridge Regression), penalizing coefficient magnitude
without forcing coefficients to zero.

Table 3: Advantages of Quadratic Penalty Terms in Statistical Modeling Software

2.4 Integrated Squared Second Derivative Penalty

The Integrated Squared Second Derivative penalty, often used in spline smooth-
ing, focuses on the curvature of the smooth function. It is defined as:

PISSD(f) = λ
∫

[f ′′(x)]2 dx. (2.9)

This penalty term constrains the curvature (’Wigglyness’) of the function
by penalizing the square of its second derivative. By penalizing the second
derivative, it effectively limits how rapidly the function can change direction,
ensuring a smoother transition and avoiding overfitting to the data.

29



2.4.1 Relationship between Integral Expression and Matrix Formulation of ISSD
Penalty

The integral form represents the theoretical penalty of the curvature of the
spline, while in computational implementation we need a matrix form which
provides a practical computational approach.

Spline Representation

Consider a spline function f(x) represented as a linear combination of k basis
functions Bj(x):

f(x) =
k∑

j=1
βjBj(x), (2.10)

with coefficients βj.

Matrix Formulation

The second derivative of f(x) in terms of the basis functions is:

f ′′(x) =
k∑

j=1
βjB

′′
j (x). (2.11)

Substituting into the integral, the ISSD penalty becomes:
∫

[f ′′(x)]2 dx =
∫  k∑

j=1
βjB

′′
j (x)

2

dx. (2.12)

Expanding and discretizing this integral leads to the construction of the
penalty matrix S, where each element Sij is defined by:

Sij =
∫

B′′
i (x)B′′

j (x) dx. (2.13)

The quadratic form of the ISSD penalty in matrix notation is then:

βT Sβ =
k∑

i=1

k∑
j=1

βiSijβj, (2.14)

which is a discrete approximation of the continuous integral penalty, rep-
resenting the total curvature penalty across all interactions of the basis func-
tions’ second derivatives.

30



Figure 1: Conceptual illustration of ISSD Regularization: This figure shows the spline approx-
imation of the function f(x) = sin(x)+sin(5x), a wiggly function, to be interpreted as a highly
noisy dataset. The spline here is created using Python’s ’scipy.interpolate.UnivariateSpline’
with B-spline basis functions. The plot illustrates the effect of ISSD regularization on a
spline model approximating this function. The ISSD penalty, expressed as βT Sβ, penalizes
the curvature, leading to smoother model fits as the lambda values increase (1, 10, 25, and
50). This visualization demonstrates how ISSD regularization in statistical modeling can
effectively smooth out excessive fluctuations, hence avoiding overfitting by not adhering too
closely to the ’noise’ in the data, as represented by the oscillations in f . The transition from
less to more smoothing showcases the role of curvature penalization in achieving a balance
between data representation and model simplicity.

2.5 Ridge Penalty

The Ridge penalty, often used in the context of linear regression, could also be
applicable to the smoothing of functions. Mathematically, the Ridge penalty
for a smooth function f is defined as:

PRidge(f) = λ
∫

[f(x)]2 dx. (2.15)

The Ridge penalty aims to constrain the function f by penalizing its mag-
nitude. This approach will make the function stay closer to zero, which will
effectively control its variance. It can be thought of as applying a "shrinkage"

31



effect to the function. By penalizing the square of the function, it discourages
large values of f , leading to a smoother and less flexible function.

2.5.1 Relationship between Integral Expression and Matrix Formulation of Ridge
Penalty

Similarly to the ISSD case, we have the theoretical integral representation
and a computational matrix formulation.
In regression models, the function f(x) is typically represented as a linear
combination of predictor variables x with coefficients β:

f(x) = βT x. (2.16)

The Ridge penalty in regression analysis directly penalizes the squared coef-
ficients, leading to the matrix form:

λβT Iβ, (2.17)

where I is the identity matrix. This form effectively squares and sums each
coefficient, mirroring the integral form’s penalization of the function’s mag-
nitude.

Connection Between Forms

The matrix form λβT Iβ is a discrete approximation of the continuous integral
form λ

∫ [f(x)]2 dx when f(x) is represented in a regression context. The
identity matrix I ensures that each coefficient is squared and added, akin to
integrating the square of the function over its domain.

Note: λβT Iβ may be written equivalently as λ∥β∥2.

32



Figure 2: Conceptual Illustration of Ridge Regularization: This figure shows the same spline
approximation of the function f(x) = sin(x) + sin(5x), again interpreted as a highly noisy
dataset. Here Ridge penalties (λ∥β∥2) with increasing lambda values 1e−5, 1e−4, 1e−3, and
5e−2 are applied. We see a clear transition from wiggly to smoother fits which illustrates the
Ridge regularization’s effect: controlling complexity and avoiding overfitting by not capturing
excessive ’noise’ (analogous to the wiggles in f). We will come back to further analyze the
efficacy of Ridge regularization in the final chapter of the paper.

2.6 Strategies for Choosing Smoothing Parameter

The selection of the appropriate value of the smoothing parameter λ in spline
regression models is an important step to make sure an optimal balance be-
tween model complexity and data fitting is present. Different strategies can
be employed to choose the optimal λ, each with its specific mathematical
framework and practical considerations. The primary goal is to minimize
overfitting while retaining the model’s predictive accuracy.

2.6.1 K-Fold Cross-Validation

K-Fold Cross-Validation is a resampling technique used to evaluate the model’s
performance. The dataset is divided into K equal-sized subsets. For each
round of validation, K − 1 subsets are used to train the model, and the re-
maining subset is used as a test set to evaluate model performance. The

33



process is repeated K times, with each subset used exactly once as the test
set. The λ value is chosen based on the average error across all K tests.
Mathematically, the optimal λ minimizes the Cross-Validation error, defined
as:

CV (λ) = 1
K

K∑
k=1

MSEk(λ), (2.18)

where MSEk(λ) is the Mean Squared Error for the k-th fold. Intuitively,
this method assesses the model’s ability to generalize to unseen data, so that
the chosen λ does not tailor the model excessively to the specificities of the
training dataset.

2.6.2 Generalized Cross-Validation

Generalized Cross-Validation (GCV) is a computationally efficient approxi-
mation of Leave-One-Out Cross-Validation, particularly beneficial for large
datasets. GCV estimates the model’s predictive performance without the
need to repeatedly re-fit the model for each datum.

We can formulate GCV as follows:

GCV (λ) =
∑n

i=1(yi − ŷi(λ))2

(1 − tr(A(λ))
n )2

, (2.19)

where yi are the observed data points, ŷi(λ) are the predicted values un-
der smoothing parameter λ, n is the number of observations, and tr(A(λ)) is
the trace of the influence matrix A (for the chosen λ). This formulation is
particularly relevant in spline regression, where the influence matrix plays a
central role with respect to the GCV score Wood (2017) (p.171).

We can implement this in glmmTMB by considering the effective degrees of
freedom, edfλ, for a given λ.

GCV (λ) =
∑n

i=1(yi − ŷi(λ))2

(1 − edfλ

n )2 , (2.20)

In both cases, the optimal λ is the one that minimizes GCV (λ). GCV ad-
justs the mean squared error by a penalty that increases with model complex-

34



ity, thus favoring smoother, more generalizable models. The computational
over efficiency over LOO-CV comes from computing the trace of the mean of
Aii i.e tr(A/n) rather than for all Aii, (Wood, 2017).

Note: In binomial spline regression models, where the response variable
is binary, Generalized Cross-Validation (GCV) requires special consideration.
The binary nature of the response and the use of link functions necessitate a
modified approach to calculating residuals and assessing model fit. GCV in
this context relies on a deviance-based measure rather than the traditional
sum of squared residuals.

2.6.3 Maximum Likelihood (ML) and Restricted Maximum Likelihood (REML)

In addition to K-Fold Cross-Validation and GCV, Maximum Likelihood (ML)
and Restricted Maximum Likelihood (REML) are robust methods for select-
ing the smoothing parameter.

Both ML and REML offer a more robust approach to smoothness selection
compared to GCV with respect to overfitting. They inherently account for
the model’s complexity, making them particularly effective in scenarios where
the response variable’s relationship with predictors is complex and nonlinear.

2.6.4 Limitations of Generalized Cross-Validation

While GCV is a widely used and computationally efficient method for se-
lecting the smoothing parameter in spline models, it has certain limitations
and is known to undersmooth in many cases, especially when paired with
curvature-based regularization (Wood (2017), p. 266).

• Sensitivity to Model Complexity: GCV can be overly sensitive to
the model’s complexity. In models with high-dimensional data or complex
underlying structures, GCV might underestimate the required smoothness,
leading to undersmoothing.

• Flat GCV Profiles: For certain datasets, especially those with curvature-
based penalties like in thin plate splines, the GCV criterion can have a flat

35



profile. This flatness makes it difficult to discern the optimal value of λ,
as small changes in λ do not significantly affect the GCV score.

• Random Variability and Overfitting: The random variability in the
data can lead GCV to favor models that are too flexible, capturing noise
rather than the underlying trend. This is particularly problematic in
curvature-based penalties, where the flexibility to fit local features can
result in excessively wiggly fits.

2.6.5 Alternative Approaches

The selection of an optimal smoothing parameter can also be effectively
guided by the Corrected Akaike Information Criterion (AICc) and visual
inspection of the model fit. AICc, an extension of the traditional AIC, is
particularly suited for smaller sample sizes or models with a large number
of parameters. It not only accounts for the goodness of fit but also includes
a penalty for the number of parameters, thus discouraging overfitting. The
correction in AICc can become important in spline models where the effective
degrees of freedom can be substantial. When using AICc, the preferred model
is the one with the lowest AICc value, balancing model complexity against the
risk of overfitting. Complementing this quantitative measure, visual inspec-
tion of the fitted spline curves against the data provides an intuitive and direct
assessment of the model’s adequacy. Domain knowledge of the distribution of
the data and behaviour of the phenomena can inform how much or how many
times you expect the predictive functional to bend. Examining residual plots
and the smoothness of the fitted curves to ensure they capture the underlying
data pattern without introducing artificial oscillations or ignoring significant
trends is also an important step. Combining AICc with visual diagnostics
offers a robust strategy for selecting the smoothing parameter, aligning sta-
tistical rigor with practical model interpretation and validation.

36



Figure 3: Conceptual Illustration of Ridge and ISSD Penalty Effects.
Left: A conceptual visualization of a Ridge penalty effect on coefficients, shown as a series

of ellipsoids in a three-dimensional parameter space. Each ellipsoid corresponds to a
different regularization strength, demonstrating the constriction of the coefficient

magnitudes as λ increases. Right: A two-dimensional parameter space with curvature (2nd
order derivative) on the third axis to show the ISSD penalty’s smoothing effect. The

surfaces illustrate the reduction in curvature, with higher λ values leading to smoother,
more flattened shapes. This figure aims to provide a visual representation of the differences

in the two penalty approaches: Ridge directly penalizes coefficient magnitudes to limit
overfitting, while ISSD gives model smoothness by penalizing curvature, rather than

directly constraining parameter estimates. The visuals aren’t direct comparisons, but show
the influence of each penalty in a multidimensional parameter context.

37



Ridge Penalty Characteristics ISSD Penalty Characteristics
Preferred for data with multicollinearity Suited for data with a naturally smooth

underlying structure
Effective in high-dimensional settings
where the number of predictors is high

Ideal for evenly distributed data without
abrupt changes

Uniformly shrinks coefficients, addressing
overfitting effectively

Smooths the function by penalizing high
curvature, leading to a locally adaptive fit

Less sensitive to outliers, providing stable
solutions

Can adapt to a specific level of smooth-
ness, beneficial for data with consistent
variability

Handles global structure in the data, mak-
ing it suitable for complex models with
multiple predictors

Preserves the interpretability of the model
by maintaining the functional form

Table 4: Comparison of data and model characteristics that are conducive to the use of Ridge
versus ISSD penalties in regularization.

2.7 Overview of Forms of Smoothers

Generally we’ll be dealing with three forms of smoothers: Isotropic, scale-
invariant and tensor-product bases.

2.7.1 Isotropic Smoothers

Isotropic smoothers are uniform in all directions of the predictor space, ideal
for spatial data or variables with similar scales.

Characteristics:
• Uniform treatment of all input space directions.
• Optimal for data where directionality is irrelevant, such as circular or spher-

ical data.
• Common in two-dimensional smoothing, like geographic data modeling.

Example: Thin Plate Regression Splines (TPRS) are examples of isotropic
smoothers. These are often used in modeling geographic locations where lat-
itude and longitude influence the response variable similarly.

2.7.2 Scale Invariant Smoothers

These smoothers adjust to the data scale, useful when predictors have different
units or scales.

38



Characteristics:

• Adapts to the scale of each predictor.
• Suitable for datasets with varied predictor scales or units.
• Common in models with mixed-type data, like financial datasets.

Example: Adaptive Splines, which can adjust the degree of smoothing
based on the scale of predictors, are an implementation of scale invariant
smoothers. They can be effective in economic data where variables like income
and interest rates may have different scales.

2.7.3 Tensor Product Smoothers

Designed for multidimensional smoothing, these smoothers combine univari-
ate smoothers to allow predictor interactions.

Characteristics:

• Facilitate modeling interactions between two or more predictors.
• Create multidimensional smoothing surfaces by combining lower-dimensional

smoothers.
• Ideal for scenarios where interaction effects are important, such as in en-

vironmental models.

Example: Tensor Product Splines can be used in cases where interac-
tion effects between predictors, like temperature and humidity, could reveal
additional information in climate modeling.

2.8 Quadratically Penalized Smoothers & Gaussian Random Fields

Understanding the relationship between quadratically penalized smoothers
and Gaussian random fields is key in leveraging the smooth construction
machinery of mgcv, to random effects in glmmTMB. Recalling from sections
1.2.1 and 2.3.1 we can summarize the concepts:

Quadratically Penalized Smoothers Quadratically penalized smoothers mini-
mize the residual sum of squares with an added quadratic penalty for excessive
curve wiggles, i.e we minimize the expression:

39



minimize
 n∑

i=1
(yi − f(xi))2 + λ

∫
[f ′′(x)]2dx

 . (2.21)

Gaussian Random Effects Gaussian random effects in mixed models address
correlation or non-constant variance within data groups, assuming these ef-
fects follow a normal distribution;

y = Xβ + Zu + ϵ, u ∼ N (0, G). (2.22)

Deriving an "Equivalence" of Smoothers and Random Effects The equivalence
of these two, seemingly quite different and distinct concepts, lies in the inter-
pretation of the quadratic penalty and Gaussian random effects. We want to
show that

uT G−1u corresponds to λ
∫

[f ′′(x)]2dx. (2.23)
In this relationship, the penalized smoother is viewed as a mixed model

with basis coefficients u as random effects and the covariance matrix G de-
termined by the penalty term.

The derivation of the mathematical duality can be summarized in the
following steps, as shown by Wood (2017):

1. Consider the LMM with Gaussian random effects in 2.22 with the likeli-
hood function:

L(β, u|y) = f(y|Xβ + Zu). (2.24)

2. A GAM with a quadratic penalty is expressed as:
β̂ = arg min

β

{
− log L(β|y) + λβT Sβ

}
, (2.25)

where S is the penalty matrix.

3. The penalized log-likelihood for the GAM can be compared to the LMM
log-likelihood:

−1
2(y−Xβ−Zu)T (y−Xβ−Zu)−1

2uT G−1u and −log L(β|y)+λβT Sβ.

(2.26)

40



By appropriate choices of G and S, specifically setting G−1 = λS, we
observe a correspondence between the random effects in a mixed model
smoothers in a GAM. The precision matrix (G−1) of the random effects
in a LMM is directly proportional to the penalty matrix (S) in a GAM,
adjusted by the smoothing parameter λ.
We can summarize the correspondence we’ve derived as follows:

• In LMMs, the random effects are regularized by their covariance ma-
trix, G, which determines their spread and correlation structure. The
inverse of this matrix, G−1, is important in constraining these effects
during model fitting.

• In GAMs, smooth terms are regularized by a penalty to avoid overfit-
ting, with the strength and structure of this penalization defined by
λ and the penalty matrix S.

This result is the foundation for understanding the relationship between
mixed modeling and smoothing methods. The mathematical similarity be-
tween the two models provides the potential for estimating smooths in mixed
model frameworks, and vice versa.

3 R packages ’mgcv’ and ’glmmTMB’

3.1 mgcv

The mgcv package, developed primarily by Simon Wood, is a highly optimized
and powerful framework for fitting GAMs. It’s become the benchmark and
standard framework in R for these models due to its flexibility, efficiency,
and the range of functionalities it offers. Its extensive infrastructure and
many utility functions for developers, makes it an obvious choice for smooth
construction for use in glmmTMB. Some of it’s key features include:
• Comprehensive GAM Support: mgcv is optimized for fitting many

forms of GAMs, including models with complex smoothing structures and
interactions between predictors.

• Robust Smoothing Parameter Selection: The package automates the
selection of smoothing parameters using methods like Generalized Cross-
Validation (GCV).

41



• Advanced Smoothing Techniques: It supports many types of smoothers
(via choices of basis functions), allowing for great flexibility while modeling.

• Model Diagnostics and Visualization: It includes many tools for
model checking, plotting and diagnostics.

• Extensions to GLMMs: Importantly it also has utility (smooth2random)
to extend its capabilities to GLMMs, making it capable of estimating ran-
dom hierarchical or clustered data, and transforming smooths to random
effect representation.

3.1.1 Simple Example

To help get an idea of how mgcv look and work, we’ll present a simple exam-
ple of one, and provide short explanations for what’s going on. Note: the s()
functions calls the smoothCon function, which is a wrapper for smooth.construct.
More detail can be found in the Appendix and in mgcv documentation.

1 library (mgcv)
2 data(mtcars)
3 g1 <- gam(mpg ~ s(hp , k = 30, bs = "tp") + s(wt),
4 data = mtcars)

• hp: The predictor variable.
• k: The maximum degrees of freedom to use for representing the smooth

term.
• bs: The type of basis to use for the smooth term. Common choices include

"tp" for thin plate splines and "cr" for cubic regression splines.

3.2 Smooth Construction in mgcv

Smooth construction is the process in mgcv package which creates the ac-
tual smooth object (smoother), according to the basis function type and any
other arguments specified. The internal function mgcv::smooth.construct
handles the construction of the smooth. This function is usually called by the
wrapper function smoothCon() which is interfaced on the surface level by the
user with the s(), te() or t2() functions.

The Role of smooth.construct:

42

https://cran.r-project.org/web/packages/mgcv/mgcv.pdf


• Custom Smooth Creation: This function builds smooth terms using
specified basis functions and smoothing parameters, and is the central in-
ternal function for translating smooth specifications into usable smooth
objects in GAMs.

• Versatile Basis Functions: It supports many different basis functions,
such as cubic regression splines and thin plate splines, enabling diverse
data modeling.

• Smoothing Parameter Estimation: smooth.construct automates the
estimation of smoothing parameters, balancing model fit and smoothness
to prevent overfitting.
The smoothCon:

• Simplification and Accessibility: smoothCon is a wrapper function for
smooth.construct which creates smooths in the mgcv framework. I offers
an intuitive interface for users, and it handles technical details, making
smooth specification more accessible.

• Integration with GAM Fitting: This wrapper ensures compatibility of
smooth objects with mgcv’s model fitting functions, enhancing ease of use
and applicability across various data types.
In our manually specified models which uses a Ridge penalty, we use the

smoothCon function to generate our smooth objects. An example of how a
smooth object is created and re-parameterized is shown below. More detailed
code for the implementation is in the Appendix and on Github.

1 sm_tmpd <- mgcv :: smoothCon (s(tmpd , bs = "cs"),
2 absorb.cons = TRUE , data = chicago )[[1]]
3 re_tmpd <- mgcv :: smooth2random(sm_tmpd , "", type

= 2)

• The tmpd variable is used to construct a smooth term using the smoothCon
function.

• The resulting smooth object, sm_tmpd, comes from the specification s(tmpd,
bs = "cs").

• Setting absorb.cons = TRUE means identifiability constraints are absorbed
into the penalized basis function matrix of the smooth, requiring an ad-
justment of the basis functions.

43

https://github.com/AllInCade/MasterProject/tree/main


• The smooth2random function is then used to re-parameterize this smooth
object so that it can be represented as a random effect, making it suitable
for estimation within a mixed modeling framework.

• The choice of the basis type argument (bs = "...") determines the struc-
ture of the smooth object, which includes:
– A penalized matrix of basis function coefficients, represented as random

effects.
– Unpenalized coefficients of the intercept and linear term components,

represented and fitted as fixed effects,(the null space of the smooth ob-
ject).

3.3 glmmTMB

The glmmTMB (Brooks et al., 2017) package in R specializes in fitting gener-
alized linear mixed models (GLMMs). One of its main strengths is its ease
of use combined with quite advanced capabilities for zero-inflation, hurdle
models, and more. ’TMB’ stands for Template Model Builder, which refers
to its use of efficient maximum likelihood estimation techniques.

Key Features of glmmTMB:

• Diverse Distribution Support: Handles a variety of distributions in-
cluding Poisson, negative binomial, gaussian, and beta.

• Zero-Inflation and Hurdle Models: Provides functionalities for zero-
inflated and hurdle models, particularly useful for count data with excess
zeros.

• Complex Random Effects: Supports complicated random effects struc-
tures, including nested and crossed effects.

• Dispersion Models: Ability to include covariates as dispersion parame-
ters.

• Conditional Models: Facilitates conditional modeling with spatial or
temporal auto-correlation structures.

3.3.1 Simple Example

Below is a simple example of how a glmmTMB can look, with some short ex-
planations of the different parts of the model.

44



1 library ( glmmTMB )
2 data(" Salamanders ")
3 fit <- glmmTMB (count ~ spp + (1|site),
4 disp =~ site ,
5 zi = ~1,
6 family = nbinom1(link="log"), data = Salamanders )

• Fixed Effect: spp - A predictor variable included as a fixed effect.
• Random Effect: (1|site) - Includes a random effect (intercept) for each

‘site‘. This accounts for random variation between different sites, capturing
unobserved heterogeneity.

• Zero-Inflation Formula: zi = 1 - Specifies a zero-inflation part of the
model. This lets’s us model a separate process generating excess zeros in
the count data, which is not explained by the main model components.

• Dispersion Formula: disp = site - Specifies a separate dispersion
model. Allows us to model additional dispersion (variance) as a function
of the site variable..

• Distribution of Response: family = nbinom1(link = "log") - The
response variable is modeled using a negative binomial distribution (with
a log-link), common for count data which shows overdispersion.

3.4 Template Model Builder

TMB is a high-performance tool for fitting statistical models. It uses max-
imum likelihood estimation based on Laplace approximation. A key com-
putational component of TMB is automatic differentiation, imported from
CppAD. It is written in C++ for computational efficiency and is interfaced with
R through the TMB package. TMB is very efficient at computing and esti-
mating random effects, and as a result is well-suited for complex hierarchical
models, such as generalized linear mixed models.

TMB is designed to handle a wide variety of models in general, but in
glmmTMB we will be working with GLMMs of the form described in 1.4:

y = Xβ + Zu + ϵ, u ∼ N(0, G), ϵ ∼ N(0, R), (3.1)

45



Here is an overview of some of the core features of TMB;

• Programming Language: Written in C++ for flexibility and perfor-
mance.

• Derivative Calculation: Computes first and second-order derivatives of
likelihood or any C++ written function.

• R Integration: Objective functions callable from R, enabling parameter
estimation.

• Laplace Approximation: Applies Laplace approximation to function
arguments for marginal likelihood.

• Standard Deviation via Delta Method: Calculates standard devia-
tions for parameters or derived parameters.

• Data Processing: Handles pre and post-processing of data in R.
• Software Foundation: Based on CppAD and Eigen (C++ libraries for

Automatic Differentiation and matrix operations).

3.5 Automatic Differentiation

Automatic Differentiation (AD) is a computational technique used for effi-
ciently and accurately calculating derivatives of functions. Unlike numerical
differentiation which approximates derivatives using finite differences, and
symbolic differentiation which computes derivatives analytically, AD decom-
poses functions into a sequence of elementary operations and applies the chain
rule to these operations.

3.5.1 Principles of AD

AD operates on the premise that any computational function, regardless of
complexity, can be broken down into elementary operations such as addition,
multiplication, and elementary functions like sin, exp, and log (Wikipedia
contributors, 2024). These operations form the computational graph, where
each node represents an elementary operation, and edges represent the flow
of operands. AD then traverses this graph to compute derivatives.

46



3.5.2 Modes of AD

There are primarily two modes of AD, called forward accumulation and back-
ward accumulation. The terms forward mode and reverse mode are perhaps
more used in machine learning contexts.

• Forward Accumulation: In this mode, derivatives are propagated along-
side the computation from inputs to outputs. It is efficient for functions
with few inputs and many outputs. An example of one such application is
sensitivity analysis which aims to analyze how a small change in one input
variable affects multiple output variables.

• Reverse Accumulation: Here, derivatives are propagated backward from
outputs to inputs, which is computationally advantageous for functions
with many inputs and few outputs. A special case of backward accu-
mulation, called back-propagation, is widely used in machine learning for
gradient descent optimization. Particularly, deep neural networks (like
convolutional neural networks) heavily rely on back propagation to update
the loss function w.r.t to the weights of the network.

3.5.3 Computational Efficiency

The primary advantage of AD over other differentiation methods is its com-
putational efficiency and accuracy. AD computes derivatives up to machine
precision, avoiding the pitfalls of round-off errors and numerical instability
that are common in numerical differentiation. Furthermore, the avoidance of
symbolic manipulation, as seen in symbolic differentiation, makes AD more
scalable and suitable for large-scale problems.

3.6 Laplace Approximation in TMB for GLMMs

TMB allows for complex model fitting, and is proven highly effective in fit-
ting GLMMs. The Laplace approximation in this context involves a nested
optimization procedure comprising an inner and an outer problem.

47



3.6.1 Inner Optimization Problem

The inner problem involves optimizing the conditional distribution of the
random effects given the fixed effects. Mathematically, this can be expressed
as finding the mode (which is also the mean for Gaussians) of the random
effects (u) distribution, conditional on the current estimate of fixed effects
(β). This optimization can be represented as:

û = arg max
u

log p(u|β, y, X, Z). (3.2)
Gradient-based methods, computed by AD, are often employed to effi-

ciently find these conditional modes.

3.6.2 Outer Optimization Problem

The outer optimization problem is to maximize the marginal likelihood of the
fixed effects. This is done by integrating out the random effects using the
Laplace approximation. The marginal likelihood, after applying the Laplace
method centered at û, is approximated as:

log p(y|β, X, Z) ≈ −1
2 log |G+ZT R−1Z|−1

2(y−Xβ−Zû)T R−1(y−Xβ−Zû).
(3.3)

Optimization of the fixed effects (β) is then performed via gradient-based
methods, leveraging the derivatives of the marginal likelihood with respect to
β, calculated using AD.

3.6.3 Computational Considerations

This nested structure of iterated optimizations can become computationally
burdensome. Each evaluation of the marginal likelihood for a new set of fixed
effects (β) requires a re-optimization of the random effects (u). This itera-
tive process, especially in high-dimensional settings, consumes considerable
computational resources, much due to repeated calculations of gradients and
Hessians.

Note: The exact technical details of the Laplace Approximation scheme
in TMB can be found in the source material Kristensen et al. (2016), as it

48



goes beyond the scope of this project.

3.7 Model construction and estimation in glmmTMB

In glmmTMB, a generalized linear mixed model is constructed and estimated
using the Template Model Builder (TMB) framework. An overview (omit-
ting the technical details) of the fitting process is given below. A model is
represented as:

g(E[Y ]) = Xβ + Zu + ε, (3.4)
where g is the link function, E[Y ] is the expected value of the response

variable Y , X and Z are design matrices for fixed and random effects, respec-
tively, β and u are vectors of fixed and random effect coefficients, and ε is
the error term.

3.7.1 Fixed Effects Estimation

Fixed effects in glmmTMB are represented by the matrix X and the coefficient
vector β. The matrix X is constructed from the observed data and includes
an intercept and covariates. The Maximum Likelihood Estimation procedure
(in TMB) is used to estimate β, maximizing the likelihood function of the
observed data given the model.

Design Matrix for Fixed Effects

X =


1 x11 x12 · · · x1p

1 x21 x22 · · · x2p
... ... ... . . . ...
1 xn1 xn2 · · · xnp

 (3.5)

3.7.2 Random Effects Estimation

Random effects are accounted for by the matrix Z and the random effects
vector u. The random effects are estimated by TMB using a combination
of MLE and the Laplace approximation. As described earlier,the Laplace
approximation simplifies the integral in the likelihood computation, which is
especially important for models with complex random effect structures.

49



Design Matrix for Random Effects

Z =


z11 z12 · · · z1q

z21 z22 · · · z2q
... ... . . . ...

zn1 zn2 · · · znq

 (3.6)

3.7.3 Covariance Matrix Estimation

The covariance matrix G for the random effects is also estimated using MLE,
as part of the overall model fitting process. This matrix describes the vari-
ances and covariances of the random effects, capturing their underlying struc-
ture.

Covariance Matrix

G =


σ11 σ12 · · · σ1q

σ21 σ22 · · · σ2q
... ... . . . ...

σq1 σq2 · · · σqq

 (3.7)

The estimation of the model in glmmTMB using TMBs MLE and Laplace
approximation techniques ensures efficient and robust fitting, especially for
complex models with multiple fixed and random effects.

4 Implementing Smooth Terms in glmmTMB with mgcv
machinery

The mathematical similarity between quadratically penalized smoothers in
GAMs and Gaussian random effects in mixed models allows for the estimation
of smooth terms as "type 2 random effects". This is leveraged in statistical
modelling software to provide flexible and efficient ways to fit generalized
additive models using mixed model frameworks. The process of implementing
this in glmmTMB is detailed below, and relies heavily on the work of Wood
(2017) and mgcv. The technical implementation in the code base is work in
progress, primarily done by Ben Bolker.

50



4.1 Smooth Construction using smoothCon

Start: Specify smooth

Determine basis type

Absorbing Identifiability constraints

Construct penalty matrix

Select knots

Decompose into fixed and random effects

End: Return smooth components

Figure 4: Schematic overview of the smoothCon function from mgcv.

The smoothCon function in mgcv is a core utility designed to process smooth
specifications in generalized additive models (GAMs). It essentially sets up
the necessary matrices and information for representing and estimating the
smooth components in the model. Here’s an overview of its operation:

1. Input Specification: The function takes in a smooth specification, which
consists of a combination of a predictor variable, a basis type (bs argu-
ment), and other options like the number of knots (k argument).

2. Determine Basis Type: Based on the bs argument, smoothCon deter-
mines the type of basis functions to use. This choice influences the flexi-
bility and shape of the smooth term. Common basis types include cubic
splines (cr), thin plate splines (tp), and P-splines (ps), among others.

51



3. Absorbing Identifiability constraints: absorbs.cons=TRUE ensures
that the smooth terms are uniquely distinguishable and not confounded
with other model components, like the intercept. The process employs QR
decomposition, a mathematical method for transforming the basis func-
tions such that they become orthogonal to the space of the constraints
(e.g., the intercept). This orthogonality is essential because it prevents the
overlap of effects between the smooth terms and the intercept, ensuring
that each component of the model contributes distinctly to the explana-
tion of the data.

4. Construct Penalty Matrix: One of the fundamental aspects of GAMs
is the application of a penalty to the smooth terms to avoid overfitting.
smoothCon constructs a penalty matrix appropriate for the chosen basis
type. The penalty targets the "wiggly" (curvature) parts of the smooth to
ensure a balance between fit and smoothness.

5. Select Knots: Knots are specific points in the data range where the
spline functions can change direction. smoothCon selects appropriate knot
locations based on the data and the specified number of knots (k argument).

6. Decompose into Fixed and Random Effects: For certain applications,
especially when using GAMs in mixed model frameworks, the smooth terms
can be decomposed into fixed and random effects components. smoothCon
provides the necessary decomposition, allowing the smooth to be used in
packages like gamm4.

7. Output: The function returns a list containing various components rep-
resenting the smooth, including the basis functions, penalty matrices, and
other relevant information.

4.2 Re-parameterizing Using smooth2random

Duality of Gaussian Random Effects and Penalized Smooths Recall the equiv-
alence we derived between Gaussian random effects and penalized smooths in
section 2.8. Random effects in mixed models can be conceptualized and es-
timated as smooths, leveraging the flexibility of smooth modeling to capture
complex random effects structures. Conversely, smooth terms in GAMs can

52



be treated as random effects within a mixed model framework. In practical
implementation this duality hinges on appropriate (re-)parameterization, al-
lowing smooth terms to be integrated as random effects and vice versa. The
transformation involves adjustments in the model matrix and the penalty
structure, enabling the seamless transition between these two interpretations
and estimation approaches.

4.2.1 Natural Parameterization in GAMs

In the context of GAMs, the natural parameterization for smooth terms in-
volves several key mathematical transformations. Given a model matrix X
and a penalty matrix S, the process is as follows:

• Perform QR decomposition of X, yielding X = QR.
• Reparameterize the penalty matrix S as R−T SR−1.
• Eigen-decompose this reparameterized penalty matrix to obtain R−T SR−1 =

UDUT , where U is an orthogonal matrix of eigenvectors, and D is a di-
agonal matrix of corresponding eigenvalues.

• This leads to a new parameter vector β′ = UT β′′, a transformed model
matrix QU, and a modified penalty matrix D.

• The penalized parameter estimates are effectively shrunken versions of the
unpenalized coefficients. The shrinkage factor is influenced by eigenvalues
and the smoothing parameter λ, reflecting the effective degrees of freedom
of the model.

4.2.2 Re-Parameterized Formulation for Mixed Models

For mixed model frameworks, smooth terms from Generalized Additive Mod-
els (GAMs) can be re-formulated to facilitate their integration. This re-
parameterization is particularly useful when estimating smooths using soft-
ware designed for generalized linear mixed models.

Consider f as the vector of the smooth evaluated at observed covariate
values. The smooth can be expressed in a mixed model form as

f = X′β′ + Zb,

where b ∼ N (0, Iσ2
b ). Then:

53



• The columns of X′ form a basis for the null space of the smoothing penalty.
• The columns of Z form a basis for its range space.

To construct X′ and Z, we partition matrix U from eigen-decomposition of
the smoothing penalty matrix into U = [U+ : U0], where U+ corresponds to
eigenvectors with positive eigenvalues, and U0 are the remaining eigenvectors.
Thus

X′ = QU0

Z = QU+D−1/2.

This framework allows the smooth to be viewed and handled as a Gaussian
random field within the mixed model structure.

4.2.3 Re-Parameterization by smooth2random

The re-parameterization described above is implemented in mgcv with the
utility function smooth2random. It transforms smooth terms in their natural
parameterization, designed for Generalized Additive Models (GAMs), to the
re-parameterized form that is compatible with mixed model frameworks.

• Eigen-Decomposition: The function starts with an eigen-decomposition
of the smooth’s penalty matrix, obtaining the eigenvalues and eigenvectors.
This corresponds to the process of deriving U and D in the natural pa-
rameterization.

• Transformation Matrices Creation: Utilizing these eigenvectors and
eigenvalues, it constructs transformation matrices, changing from the nat-
ural parameterization.

• Model Matrix Adjustment: The original model matrix X is then trans-
formed, effectively separating the penalized and unpenalized components,
corresponding to the theoretical formulation of X′ and Z in the mixed
model representation, which again correspond to the Xr (penalized) and
Xf (unpenalized/null space) matrices, respectively.

• Random Effect Form: The re-parameterized smooths are then estimated
as random effects (with a dummy grouping variable) in the mixed model.

The smooth objects pass through smooth2random introduces some differ-
ences in estimates when compared to the natural GAM parameterization, due
to the resulting basis function coefficient matrix being slightly altered.

54



Start: Input smooth

Check if smooth is fixed

Eigen-decomposition of penalty matrix

Create transformation matrices

Adjust model matrix
for mixed models

Reformat as random effect

End: Output re-parameterized smooth

Figure 5: Schematic overview of the smooth2random function from mgcv.

55



4.3 How s() can be presented in glmmTMB

While using the two functions mgcv functions discussed above, we can make
the smoothing term in a glmmTMB-model.

R Code

1 sm_tmpd <- mgcv :: smoothCon (s(tmpd), absorb.cons =
TRUE ,

2 data = chicago )[[1]]
3 re_tmpd <- mgcv :: smooth2random(sm_tmpd , "", type = 2)
4 Xf_tmpd <- re_tmpd$Xf
5 Xr_tmpd <- re_tmpd$rand[[1]]
6 chicago$ID <- factor(rep(1, nrow( chicago )))
7 ftmb1 <- glmmTMB (formula = death ~ Xf_tmpd +
8 homdiag (0 +Xr_tmpd | ID),
9 data = chicago , REML=TRUE)

Code Description

1. Identifiability Constraints and Basis Function: The code initializes
a smooth term (sm_tmpd) using mgcv::smoothCon with identifiability
constraints absorbed into the basis, applicable to the variable tmpd in
the chicago dataset.

2. Conversion to Random Effects: The smooth term is then converted
into random effects (re_tmpd) using mgcv::smooth2random, specifying
the type of conversion.

3. Extraction of Matrices: Fixed effects matrix (Xf_tmpd) and random
effects matrix (Xr_tmpd) are extracted from the converted smooth term.

4. Creating a Grouping Variable: A fake grouping variable (ID) is cre-
ated in the chicago dataset, assigning the same value to all observations
for modeling purposes.

56



5. Generalized Linear Mixed Model (GLMM): A GLMM (ftmb1) is
fitted using glmmTMB to predict death, based on fixed effects and a ran-
dom effect structure with a homogenous diagonal covariance structure,
using Restricted Maximum Likelihood for estimation.

Note: Type 1 Random Effects are akin to random intercepts in mixed
models, where each group level has its own intercept, modeled using s() with
bs = "re". Type 2 Random Effects handle more complex variations like
smooth random effects or random slopes, where each group level gets its own
smooth function, implemented using s() with a grouping factor, as in s(x,
bs="fs", m=1, by=factor).

4.4 Basis functions in glmmTMB

Table 5: Compatibility of Spline Types in glmmTMB

Spline bs Compatible Reasoning
Cubic Regression "cr" ✓
Cyclical Cubic "cc" × Only one Xf-term
Cubic Smoothing "cs" × No Xf-terms
Thin Plate Regression "tp" ✓
B-splines "bs" ✓
P-splines "ps" ✓
Two-dimensional Tensor Product "t2" ×
Two-dimensional Tensor Product "te" × Not supported by smooth2random (gamm4)
Shrinkage Smooth "fs" ✓
Adaptive "ad" × Not supported by smooth2random
Random Effect "re" × No Xf-terms

4.4.1 Proposition for bs="cs" and bs="cc"

The cyclical cubic regression spline and cubic smoothing spline do not have
these Xf terms, fixed effects, and the model will therefore not work with the
code given is section 4.3. A seemingly nice alternative would be to code the
model without the Xf terms, as all the information from these basis functions
are given in the Xr terms:

1 ftmb1 <- glmmTMB (formula = death ~

57



2 homdiag (0+Xr_tmpd | fake_group)
3 , data = chicago , REML=TRUE)

Later in the thesis we will do some comparison between this formula and
a corresponding GAMM model with basis functions of cyclical and cubic
smoothing splines to prove that it may be a solution.

4.5 Complexities of Tensor Product Splines

Smooths of tensor product splines are more complicated and challenging to
implement, due to their more complex construction and structure. One ob-
stacle is handling the splitting of the model matrix into 4 matrices, three of
which are Xr-matrices and one Xf-matrix. There is comprehensive mathe-
matical theory on which construction methods for tensor product smooths
are built (see Wood (2017)). Understanding the finer details and mechanisms
of how tensor product splines are constructed by the smooth constructor is
necessary for managing their implementation in glmmTMB.

4.5.1 Tensor Product Construction of Smooths in GAMs

Fabian Scheipl’s alternative tensor product construction in mgcv facilitates
smooth term estimation using a method which simplifies mixed modeling by
using non-overlapping penalty terms Wood (2017). This construction yields
a model with easily interpretable, rescaling-invariant smooth terms suitable
for mixed effect modeling.

We begin with a set of unconstrained marginal smooths. The next step
involves re-parameterizing each marginal so that the penalty matrix becomes
an identity matrix, with M leading diagonal entries zeroed (M being the di-
mension of the penalty null space. This step includes a linear rescaling of
parameters to equate the positive elements of the penalty matrix to 1.

We then divide each re-parameterized model matrix into columns X and
Z. X corresponds to the zero elements on the leading diagonal of the penalty,
and Z to the unit entries, leading to f = Xδ + Zb. To enhance interpretabil-
ity, it’s preferable to have the constant function explicitly present in each
marginal basis. An automatic re-parameterization method ensures this in

58



the general case. For some function g in the penalty null space, the addi-
tional penalty PN = ∑

i(g(xi) − ḡ)2 shrinks g towards a constant function, i.e
PN = δT DT Dδ, where D = X−1

1T X/n and decomposed DT D = UΩUT .

Reparameterizing such that the null space model matrix is now XU ensures
that the final column of the new model matrix is constant, assuming the
original penalty’s null space includes the constant function in its span.

For the d marginal smooths, the jth marginal has unpenalized model ma-
trix Xj and penalized model matrix Zj (with penalty I). We initialize matri-
ces γ = {X1, Z1}, or γ = {[X1], Z1} where [Xj] denotes the set of columns of
Xj, each treated as a separate matrix. The following steps are repeated for i

from 2 to d:

1. Form row-wise Kronecker products of Xi (or of all columns [Xi]) with all
elements of γ.

2. Form row-wise Kronecker products of Zi with all elements of γ.

3. Append the matrices from the previous steps to the set γ.

The model matrix, X, for the tensor product smooth is formed by ap-
pending all elements of γ columnwise. Each element of γ has an associated
identity penalty with a smoothing parameter, except for elements involving
no Zj term, which are unpenalized. The variant using [Xj] instead of Xj

ensures strict invariance with respect to linear rescaling of the covariates but
requires extra penalty terms.
Figure 6 shows a smooth function f(z) is represented with a spline using six
equidistant knots, with parameters varying smoothly along the x-axis. Each
function parameter of f(z) is then modeled as a spline of x. Scale invariance
is ensured since separate smoothness penalties are applied in both the z and
x directions. An x-direction penalty is formulated by summing ∫ [f ′′(x)]2 dx
along the defined thin black curves. Similarly for a z-direction penalty. Wood
(2020).

59



Figure 6: Tensor product smooth construction illustrated through a symmetric process in x
and z dimensions.

60



4.6 Encountering Model Convergence Issues

Issues with convergence often arise due to insufficiently cleaned data, high
model complexity, or some misalignment in the particular choice in opti-
mization routine. Understanding these convergence problems is necessary for
effective model fitting and accurate results, when such issues arise.

Convergence issues can be of various forms, each with unique characteris-
tics and implications. For instance, problems with the Hessian matrix indicate
issues with the solution’s uniqueness, while difficulties in iteration or function
optimization tends to indicate the need for algorithmic adjustments. Local
minima, extreme eigenvalues, and false convergence are other examples of
challenges that can complicate model fitting. A brief overview of optimizers
and convergence problems are given in the tables below:

4.6.1 Optimizers in R and TMB

Optimizer Environment Primary Use Cases

Nelder-Mead R Unconstrained multi-dimensional optimization
BFGS R Nonlinear optimization problems
L-BFGS-B R Bounded optimization
CG R Large-scale optimization problems
SANN R Global optimization in complex landscapes
nlm R Unconstrained optimization using Newton-type method
nlminb R Bounded/unconstrained optimization
optimx R Unified interface for various methods
Newton TMB Maximum likelihood estimates
Limited-memory BFGS TMB Large models optimization
Conjugate Gradient TMB Large-scale problems in TMB
CppAD and Ipopt TMB Complex models with automatic differentiation

Table 6: Summary of Optimization Algorithms in R and TMB

61



Model Convergence
Issue

Description Potential Solutions

Non-Positive-Definite
Hessian Matrix

Occurs when the Hessian matrix
at the solution is not positive
definite, suggesting a non-unique
solution or saddle point.

Check model specification,
simplify the model, or provide
better initial values. In cases
where REML struggles to
converge due to the model’s
complexity or data
limitations, switching to ML
might provide a more
straightforward path to
convergence.

Iteration Limit or
Objective Function
Failure

Optimization algorithm didn’t
converge within iterations or
failed to improve the objective
function.

Increase iterations and
evaluations, adjust
CONVERGE value, or try
different optimization
methods.

Inadequate Convergence
or Local Minimum

Convergence criterion might only
approximate a minimum point or
converge to a local minimum.

Use different starting values,
adjust convergence criteria, or
employ a grid search for
global minimum.

Extreme Eigenvalues or
False Convergence

Extreme eigenvalues suggest
ill-conditioning, while false
convergence indicates issues with
gradient computation or
tolerances.

Rescale data, check
multicollinearity, restart the
model with different starting
values, or use alternative
optimizers.

Discontinuities or
NA/NaN Evaluations

Discontinuities in the model or
optimizer visiting invalid
parameter spaces.

Ensure parameter estimates
lie in a continuous interval,
avoid discontinuity points,
and ensure the optimizer
leaves invalid regions.

Negative log-likelihood
is NaN at starting
parameter values

Can be a cryptic memory error
due to many and large smooth
objects.

Control the size of the smooth
by lowering the number of
knots, reduce number of
smooths or omit interactions
and/or multivariate smooths.

Table 7: Common Convergence and Model-Fitting Issues in R for Non-Linear Models and
GAMs

62



5 Researching Improvements for s() in glmmTMB

In this section we present some of the current areas we think need to be
addressed in the implementation of smooths in glmmTMB.

5.1 Empirical results for glmmTMB, gamm4 and mgcv:gamm

In this section, we will do a comparative analysis of three mixed model frame-
works - glmmTMB, gamm4, and mgcv::gamm - as applied to a dataset
(chicago) with the response variable death modeled as a function of temper-
ature (tmpd). Based on the fact that each of models use the smooth2random
function to re-parameterize the smooths for mixed effects models and all be-
ing fitted using REML (gamm4 has REML set as default), we should expect
the models to be equivalent. The R code used for model fitting is as follows:

1 glmmTMB (death ~s(tmpd), data = chicago , REML=TRUE)
2 gamm4(death~s(tmpd), data = chicago )
3 gamm(death~s(tmpd), data = chicago , method="REML")

Table 8: Comparison of AIC and Log-Likelihood for Various Models

Model AIC logLik
glmmTMB 41479.36 -20735.68
gamm4 41479.36 -20735.68
gamm 41479.36 -20735.68

5.2 Optimizing basis functions

In section 4.4.1 we presented a possible option for cubic smoothing splines
and cyclical cubic regression splines. This approach utilized a model only us-
ing the Xr terms, as all the information outputted from the smooth2random
function is represented in the random effect (basis function) matrix.

5.2.1 Presentation of models

We introduce three distinct models developed using the glmmTMB function.
Each model employs different smoothing techniques and structural composi-

63



tions, tailored to the analysis of mortality data in the Chicago dataset. The
models are presented as follows:

• Model 1 (ftmb1): This model incorporates both fixed and random ef-
fects. The formula used is:

1 ftmb1 <- glmmTMB (death ~ Xf_tmpd +
2 homdiag (0 + Xr_tmpd | fake_group),

data = chicago ,
3 REML = TRUE)
4

It combines a linear term for temperature (Xf_tmpd) with a random smooth
term (Xr_tmpd) grouped by fake_group, the same way a smoothing func-
tion on the temperature would do, as the default basis function is TPRS.

• Model 2 (ftmb1cs): This model focuses solely on the random smooth
term using cubic splines ("cs") for smoothing as all the information is in
the Xr matrix:

1 ftmb1cs <- glmmTMB (formula = death ~
2 homdiag (0 + Xr_tmpdcs | fake_group),
3 data = chicago , REML = TRUE)
4

Here, Xr_tmpdcs represents the cubic spline transformation of the temper-
ature data.

• Model 3 (ftmb1cc): Similar to Model 2, this model uses cyclic cubic
splines (CC) for the random smooth term:

1 ftmb1cc <- glmmTMB (formula = death ~
2 homdiag (0 + Xr_tmpdcc | fake_group),
3 data = chicago , REML = TRUE)
4

The term Xr_tmpdcc denotes the cyclic cubic spline transformation applied
to the temperature data.

While the common and most straightforward way of using smooth predic-
tors in regression models in mgcv and packages leveraging its smooth con-
structing machinery is simply using the default settings (that should use a

64



flexible smoother with enough degrees of freedom to fit almost any curve),
there are situations where we might want to specify a particular basis function
type and it’s maximum degrees of freedom.

Some smoothers are more susceptible to overfitting and carry a heavier
computational burden than others. The default smoother for mgcv is TPRS,
which is highly flexible but also computationally intensive for growing data set
sizes. It’s computational complexity is of the order O(n3), which means that
for very large data sets, the memory requirement and the computational time
becomes very high. The complexity of computing thin plate splines is appar-
ent from it’s mathematical structure which we recall from 2.1.1. Hence for
large data sets we may want to employ more efficient smoothers. A more de-
tailed and technical explanation of the computational complexity of smoothers
is outlined in the Appendix C.5.

5.2.2 Comparison

From 5.1 we now know that using smooths in glmmTMB is exactly equiva-
lent with gamm from the mgcv-package, so we will use the same formulas as
mgcv:gamm-models and compare the two. These models are also fitted with
REML.

AIC and LogLik

Model LogLik AIC
mgcv -20735.68 41479.36
ftmb1 -20735.68 41479.36
mgcv (cs) -20738.91 41483.81
ftmb1cs -20738.91 41483.81
mgcv (cc) -20739.39 41484.78
ftmb1cc -20739.39 41484.78

Table 9: Comparative Analysis of Model Log-Likelihood and AIC

Based on these observations, we can say that our proposition is fair, and a
solution to the problem is adding our formula in the underlying code behind
the smoothing function in glmmTMB for the basis functions cs and cc.

65



Note: This also works for the basis function re.
Additional note:
To replicate the output Bolker gets we have to use REML in our models,

as he has described in his R-markdown file smooths. It is stated that this
should be done to avoid convergence failure, however, when we have done
our research we have encountered a lot of convergence issues using REML,
especially of the form non-positive-definite hessian matrix.
When changing the models to only using ML fit, this problem went away,
and we developed some good models. On the other hand, we also encoun-
tered some opposite examples, where the ML fit gave convergence failure,
but REML worked fine. These are issues we have not solved yet and require
further research.

6 Data Analysis with Spline Regression

Spline regression models are applicable across many different fields, including
biological sciences, meteorology, physics, social sciences and engineering. In
this thesis we’ll analyze on financial time series, insurance data, and large
weather data, as they bear relevance to the field of actuarial science. Financial
time series data can be highly useful for understanding market dynamics
and risk, which is essential for financial planning and investment strategies.
Insurance data is at the core of actuarial science, where accurate risk modeling
is key to premium setting and risk management. Lastly, large weather data
is becoming more relevant in actuarial work, due to the growing impact of
extreme weather events which affect risk calculations and insurance models.

6.1 No Free Lunch

There is a well known theorem in machine learning and optimization, often
referred to as the "No Free Lunch theorem" or "NFL theorem". There exists
a number of "no free lunch" (NFL) theorems, many of which are presented
in Wolpert and Macready (1997). They establish that "for any algorithm,
any elevated performance over one class of problems is offset by performance
over another class". We will not present or explain the specific theorems in
any technicality, but the concept applies widely in modelling, and is highly

66

https://github.com/glmmTMB/glmmTMB/blob/master/notes/smooths.rmd


relevant for this thesis. Very broadly speaking, the meaning of "no free lunch"
for our purposes here, can be summarized by the following points (Raschka,
2018).

1. There is no single universally best model or optimization algorithm.

2. A strong model for a specific task may fail for tasks or data where it’s
assumptions are not met.

3. We choose the best model through selection and validation.

4. A wide variety of different modelling frameworks to choose from increases
the probability of obtaining a performant model.

With this in mind, it’s clear that we don’t expect spline based models to
outperform any and all other models across different data sets in this thesis.
It suffices to show that in some cases, the addition of this capability can pro-
duce better models compared to other modelling frameworks or model types.
Expanding the modelling capability of the glmmTMB package will provide the
user a better chance at arriving at a stronger model.

6.2 Datasets

Below is a table of the datasets which we will analyze in this paper, and
information about how / where to find and access them. The datasets have
been selected on the following criteria:

• Contains at least one continuous (or approximately continuous) numeric
variable to be modelled as a spline.

• Is free and publicly available for use.

• Contains enough observations that models can be split into training, vali-
dation and test sets, without risking levels of factor variables to mismatch
between the data splits.

• Is of some interest and/or relevance to current domains for data modelling.

67



Dataset Models Used Access

Gamestop Log Return I (6.5.1), Log Return II (6.6) quantmod R
Bank Failures Fail Count (6.7), Cost (6.8) Download
Temperature Classifier (6.9), °F from Mean (6.10) Download
Wind Data Wind Speed (6.11), Storm Count (6.12) Download
Insurance Data Claim Severity (6.13), Claim Count (6.14) GLMsData
Insurance Data 2 Face Values (6.15) CASDatasets
Mortality Death Count (6.16), Death Rate (6.17) Website

Table 10: Full R-code for all models found in our Github repository.

6.3 General Analysis Approach

The basic approach to our analysis begins with an initial phase of loading
and processing the data, where we clean, format, and engineer features as
needed. Following this preparatory stage, we employ a dual strategy to as-
sess the significance of predictors. Initially, a Random Forest model is utilized
for a preliminary feature importance analysis, providing insights into which
variables might be impactful. Concurrently, or as a complementary step,
a stepwise regression approach via Generalized Linear Models (GLM) with
an AIC-based selection criterion (stepAIC) is employed to refine our under-
standing of predictor significance. This dual method allows us to identify
a robust set of variables that warrant further investigation. Subsequently,
the analysis moves into model selection, where we fit and compare various
models using the gamm4 and glmmTMB packages, experimenting with different
model formulations, dispersion formulas, and distributions to best capture
the underlying patterns in the data. Performance measurement via RMSE on
validation data through k-fold cross-validation follows, ensuring the models’
predictive accuracy and generalizability. Finally, a re-training of the chosen
model formulations on combined training and validation datasets, followed
by predictions on the test set. Finally, we evaluate the model’s performance
using RMSE, accompanied by plotting predictions against actual values get
a visual understanding of the model fit and predictability.

68

https://cran.r-project.org/web/packages/quantmod/index.html
https://banks.data.fdic.gov/explore/failures?aggReport=detail&displayFields=NAME%2CCERT%2CFIN%2CCITYST%2CFAILDATE%2CSAVR%2CRESTYPE%2CCOST%2CRESTYPE1%2CCHCLASS1%2CQBFDEP%2CQBFASSET&endFailYear=2024&sortField=CERT&sortOrder=asc&startFailYear=1975
https://data.world/carlvlewis/u-s-weather-outliers-1964
https://portal.edirepository.org/nis/mapbrowse?packageid=knb-lter-sbc.159.1
https://cran.r-project.org/web/packages/GLMsData/index.html
http://cas.uqam.ca/
https://www.mortality.org/Home/Index
https://github.com/AllInCade/MasterProject


Start

Load and Process Data

Perform Predictor Significance Analysis

Model Selection (Comparison)

Measure Performance (RMSE) by Cross-Valdation

Retrain, Predict, Measure RMSE, Plot Predictions

End

Figure 7: Analysis approach

This schematic illustrates the general workflow in our data analyses from
initial data loading and pre-processing, through feature importance analysis
and model selection, to performance evaluation using k-fold cross-validation,
and final model training and validation including visualization of predictions.

Before we move on: The first model will be walked through quite thor-
oughly in a step-by-step manner, to demonstrate the general approach and
techniques we have used for the data analysis in this thesis. Subsequent
models and analysis will be focus on demonstrating briefly the nature of the
data, the challenges and complexities in modelling it, and the comparing the
results obtained. The primary objective of the data analysis in this thesis
is to demonstrate the viability of spline regression in typical data sets, and

69



to determine if glmmTMB can be a good choice for specifying GAMMs with
it’s easy to use and flexible features like sub-models for dispersion and zero
inflation, as well as a rich family of easily specified distributions.
Disclaimer: We are not experts in every (or any) of the domains of these
particular analyses, and our models are not necessarily the most appropriate
for the data. But as is mentioned in the introduction, one of the aspects of
our analyses is to investigate to which degree easy inclusion of zero inflation,
dispersion and specialized distributions can help non-experts develop better
models.

6.4 Choice of Performance Metrics

We have found that for these complex models, the effectiveness of AIC as
a metric for model performance is limited to guiding model tweaking in the
experimental phase, particularly in the selection and refinement of model
formulations and the combinations of explanatory variables in linear models
(comparing nested models). Generally, in our experience, AIC has not been
a good indicator of model performance, but rather to the contrary, lower
AIC scores have in many cases resulted in overfitting, which we have seen
manifested by larger prediction error on unseen data.

RMSE for Model Performance Evaluation. Given the limitations of AIC in
assessing model performance, we have opted for the use of RMSE as the pri-
mary metric for evaluating the effectiveness of models. RMSE offers a direct
measure of a model’s predictive accuracy by quantifying the average magni-
tude of the prediction errors across cross-validation folds and on unseen test
data. This metric is quite useful, as it is directly interpretable in the con-
text of the response variable’s units, providing direct insights into the model’s
predictive capabilities. Ideally we would use true test data external to the
original data set, however, this is usually hard to obtain. Instead we opt for
the typical approach of splitting the full datasets into training, validation and
test sets. The models are rigorously evaluated through cross-validation (on
the validation set) to aid model selection by assessment of their predictive
power. Finally, the selected models are re-trained on the full data (excluding
the test set) and evaluated by the RMSE of the predictions on the test data.

70



This follows the standard and recommended practices outlines source here.
Note: For binary outcomes (logistic regression) we use the F1 score as our
performance metric. Ideally we should perform further statistical tests on the
results to determine whether the differences observed are statistically signifi-
cant, or could be explained by chance. We will be taking a more "practical"
approach and interpret the results based on the models and results as a whole.

Visual Assessment and Further Considerations. In addition to RMSE, we try
to provide informative plots and visuals comparisons. These offer an intuitive
view and understanding of the model’s predictive accuracy and highlight ar-
eas where improvements may be necessary. We will mainly provide loess
regression lines and density plots of predictions vs actual values.

6.4.1 Time Series and Forecasting Models

Before our first analysis, we’ll provide a bit of background on time series fore-
casting. Predicting financial trends is not easy, and for accurate results one is
reliant on accessing as much information as possible, in order to maximize the
probability of identifying patterns which are true signals in the midst of all
the noise. Jim Simons, mathematician and Founder of one of the most suc-
cessful hedge funds ever, Renaissance, says in this interview that ”We take in
terabytes of data a day”. Specifically, the firm possesses a research database
expanding by more than 40 terabytes a day, 50,000 processing cores with 150
gigabits per second of global connectivity (Renaissance Technologies LLC,
2024).

We have made substantial efforts into ensuring that we have been care-
ful and methodical in our data splitting, and have used appropriate cross-
validation techniques, such as rolling or expanding windows with walk forward
validation methods. We also make sure that any incorporation of engineered
variables are done such as to minimize the risk of look-ahead bias or infor-
mation leakage in the models. This we achieve by making sure our models
have no access to information from future observations (or any information
which would not have been available in a realistic forecasting setting), Such
variables are only calculated from training data, and predicted/forecasted to

71

https://english-online.hr/materials/42d8c0fe0de3cd0


the test data. Since, by definition, (random) variables can not be known
ahead of time, we lag time specific variables appropriately. Further details
can be found in C.4 and full R code on GitHub.

Note: Real Time Trading models are becoming increasingly utilized in fi-
nance and trading institutions, like high frequency trading hedge funds. They
employ highly sophisticated models, but rely on the concepts of time series
analysis fundamentally, just at an extreme level, where latency reduction and
run time optimization are of upmost importance (models are often run on
"bare metal" implementations, i.e directly on hardware).

6.5 Financial Data

Many financial markets are characterized by inherent volatility and complex,
non-linear dynamics. In such circumstances, flexible spline models can be a
viable choice in modelling and predicting the behaviour of the market.

That being said, stock prices and markets can be (and are) influenced by a
all sorts of factors which are (practically) impossible to include (and predict),
and are thus are inherently unpredictable, particularly on a day-to-day basis.
This is actually a fundamental properties of well-behaved markets under the
"Efficient Market Hypothesis". The assumptions the EMH are not met in the
real world markets however, and there are techniques and methods that allow
us to identify trends and patterns, which can be used to predict future trends
with some degree of accuracy (but with significant uncertainty).

This figure illustrates a general outline of the sequential steps involved in
our analyses in simple terms.

6.5.1 Log Return I

For this analysis we’ll fit a linear model and a GAM, using the glmmTMB pack-
age. We will be modelling the log-returns of the "big five indicators" of the
global economy, which are the following: Dow Jones Industrial (DJI), S&P
500 (GSPC), Nasdaq 100 (NDX), HANG SENG Index (HSI) and the FTSE
100 (FTSE). The primary objective is to investigate the differences between
a spline based model and a linear model on this type of data. Although log

72

https://github.com/AllInCade/MasterProject


Start

Load and Process Data

Data Splitting (Preserve Temporal Structure)

Model Building

Model Evaluation On Training, and Validation Data

Forecasting (Test Data)

End

Figure 8: Model Flow

73



returns are designed to linearize and normalize the data, other assumptions
of a linear model may not be met.

We import up-to-date data from Yahoo Finance using the Quantmod pack-
age for R. We filter select data from 2014-01-01 and up to the latest available
date, which is typically one trading day prior to the current date, in this case
late march / early April.

The final two models are as specified below

1 lm(log_ret~ time + volume + close_open_ratio +
2 rsi_20 + sma_20 + hist_vol_20 +
3 trend + seasonal
4 trend ,
5 data = current_train_data)
6

7 glmmTMB (log_ret ~ s(time) + s(volume) +
8 s(close_open_ratio) +
9 s(rsi_20) + s(sma_20) + s(hist_vol_20) +

10 s(trend),
11 disp =~ month ,
12 data = current_train_data ,
13 family = gaussian(link = " identity "),
14 REML = TRUE)

Data Preparation and Engineering

After the loading the data we perform the necessary pre-processing steps en-
suring that the variables are formatted correctly. We define a time variable
by ordering the data frame by the time series object index. We’ll also define a
month and day of week variable, as there may be some seasonal and week-day
based patterns.

The data is split into training and validation sets, while preserving the
temporal structure (maintaining chronological order).

74



We use tools form the TTR package to engineer relative strength index
(RSI), simple moving average (SMA) and historical volatility (runSD) vari-
ables for our analysis. Additionally, we do a time series decomposition to
extract trend and seasonal components. This engineering is performed care-
fully to avoid any look-ahead or information leakage. The variables are lagged
by one observation, so that the model only has information available which
can be known in a realistic setting. Example code in C.4.

6.5.2 Model Selection

Since we’re accessing just the data included in the quantmod time series ob-
ject for the particular symbol, our model is quite limited. We have made sure
no information has been available to the model which couldn’t have accessed
ahead of time in a real world scenario. Volume, close to open ratios, the
time series components and the market indicators RSI, SMA and historical
volatility may provide sufficient information for the model to predict with
reasonable efficiency the main body of the target distribution, but the larger
values (big market swings / movements) are nearly entirely missed. This is
not surprising, as the information available to the model should account for
the typical trading and periodic patterns seen in financial data, but large
swings are usually the result of external factors like market sentiments, com-
modity prices, geopolitical uncertainty (wars etc), real-estate crisis, central
bank failures, pandemics or political / financial policy changes, which we
have not included for our analysis.

6.5.3 Results

By the results we obtained here, it’s clear that we are lacking information
(data) to accurately predict future log returns, and although we have in-
corporated engineered variables to manage autocorrelation, a GARCH or
ARIMA(X) model is likely more suitable for this type of data. For these
quite simple and naive models, there doesn’t seem to be any advantage in us-
ing smooth terms as opposed to linear terms in the predictor set. In the next
section we’ll try construct a better model in a more thought-out analysis.

75



Table 11: Model Evaluation Results

Model Symbol Avg. validation RMSE
Linear DJI 0.0097
GAM DJI 0.0089
Linear GSPC 0.0108
GAM GSPC 0.0109
Linear NDX 0.0138
GAM NDX 0.0151
Linear HSI 0.0145
GAM HSI 0.0147
Linear FTSE 0.0087
GAM FTSE 0.0076

6.6 Log Return II

Since we’ve established that predicting log returns (and financial assets in
general) is quite difficult, and may require access to more data than is typi-
cally easily available, we will now try to create a model using more data than
in the previous attempt, and potentially in a more clever way.

Since on any given day, Japan gets to wake up before Europe, the Japanese
market opens and closes before the European one(s). And particularly since
the Japanese market closes before the European ones open, and our data is
recorded daily at closing, we can try and use the information from today’s
movements in the Japanese market to inform us and predict the movements
in the European ones for that day.

6.6.1 Merged Datasets

We import the data from the Nikkei 225 Index (N225) and try to predict the
log return of the Euronext 100 Index (N100) by forecasting the log return
of the Nikkei 225 of that day. Ideally we would use much more data than
this, but, while joining and merging multiple time series objects and vast data
tables, lagging each appropriately etc, is doable, it’s quite a lot of work and
it’s beyond the scope of our analysis here.

We merge the N225 and N100 data, and make sure the N100 data is lagged
by 1 observation so it only contains information available before time t. The

76



N225 data does not need to be lagged, since its information at time t (current
day) is available before time = t for the response variable N100.log_return.
That is, current day information from the Japanese market is available before
the European market opens and thus we can use it. Due to the limited amount
of extra information, and the inherent unpredictability of daily swings, we
shouldn’t expect more than marginal improvements. That is not say that if
given enough information, utilized in a sufficiently intelligent way, we couldn’t
increase the accuracy of our predictions. Usually it’s hard to deduce the best
model simply from theoretical foundations, and one has to resort to simply
just trying lot’s of different configurations and see which works best for any
given task.

6.6.2 Model Selection

As before we calculate indicators like RSI, SMA and historical volatility. We
set a forecasting horizon of one day, since we are simulating a situation where
we make predictions about the log return for the N100 index for the current
day, before it opens. We’ll compare linear models vs GAMs, with and without
N225 data. The length of time for the indicators are experimented with. Af-
ter performing a feature importance analysis we identify the most significant
predictor, such as the previous days’ N100’s log return, today’s N225 log re-
turn, the RSI of each index, among a few others. After some experimentation
we arrive at the following models:

Only N100 data
1

2 lm(log_ret ~ time +
3 N100_RSI_lag +
4 N100_trend +
5 N100_log_ret_lag ,
6 data = train_data)
7

8 glmmTMB (log_ret ~ s(time) +
9 N100_log_ret_lag +

10 s(N100_RSI_lag) +

77



11 s(N100_trend),
12 disp =~ 1,
13 data = train_data ,
14 family = gaussian(),
15 REML = TRUE)

Combined N100 and N225 data

1 lm(log_ret ~ time +
2 N100_RSI_lag + N100_trend +
3 N100_log_ret_lag + N225_RSI +
4 N225_log_ret ,
5 data = train_data)
6

7 glmmTMB (log_ret ~ s(time) +
8 N100_log_ret_lag +
9 s(N100_RSI_lag) + N225_log_ret +

10 s(N100_trend) + s(N225_RSI),
11 disp =~ N100. Adjusted_lag ,
12 data = train_data ,
13 family = gaussian(),
14 REML = TRUE)

6.6.3 Results

The table below contains the average RMSE of 1 day forward forecasts on
the log returns of the Euronext 100 Index. The data is collected from 2020-
01-01 to 2024-04-01. There is a 4:1 train to validation set ratio. All the
market indicators are calculated on a 20 day basis (4 weeks). The method of
validation is an expanding windows cross validation, which resembles a daily
accumulation of information.

78



Table 12: Average RMSE for Different Models and Data Sets

Model Merged Data Average RMSE
Linear no 0.0055
GAM no 0.0054
Linear Yes 0.0056
GAM Yes 0.0052

79



RMSE over folds (days) (lower is better).

Loess regression line predicted vs actuals.

Figure 9: Test Data Performance for Log Returns.

We observe consistent improvements with using smooth terms and includ-

80



ing more data. A dispersion sub model slightly reduced the RMSE score as
well for the GAM. The choice of training period and split ratio is somewhat
arbitrary, and we would ideally cross validate over, or sample from, a large
variety of time periods and data splits. For a more general model, we would
ideally test the performance on more symbols as well. But in conclusion we
do obtain much better results with this more sophisticated model, compared
to the previous attempt in 6.5.1.

6.7 Bank Failures Count

Note: For this and all the following models in this chapter, we will primar-
ily compare glmmTMB against gamm4 for GAM(M) models, or against linear
models. We’ve already established that for simple Gaussian GAMs, the two
frameworks tend to produce the same outputs. Due to differences in optimiza-
tions routines. numerical procedures, parameterizations of package specific
distribution families and so on, we shouldn’t expect all types of models to be
exactly equal.

Bank Failure Data This dataset comprises records of bank failures, compiled
by The Federal Deposit Insurance Corporation (FDIC). We’ll use it to analyze
the factors influencing these financial institutions’ stability. Each entry in the
dataset represents a unique incident of bank failure, identified by a unique
identifier (ID), spanning from 1975 to 2024 (you can choose the time period
on the site). The dataset includes several key variables, and you can find all
the details here.

6.7.1 Counts of Bank Failures

We’ll begin with a model designed to analyze bank failures. The data is of
the type event log - a record of occurrences where each entry signifies an event
of interest, in this case, a bank failure. We engineer our response variable,
FailuresCount, to count the number of bank failures observed on days when
at least one failure is recorded. That is, we’re making a counting model.
When working with count data models we have to be mindful of the mean-
variance relationship. Most straight forward count models assume a Poisson

81

https://banks.data.fdic.gov/explore/failures?aggReport=detail&displayFields=NAME%2CCERT%2CFIN%2CCITYST%2CFAILDATE%2CSAVR%2CRESTYPE%2CCOST%2CRESTYPE1%2CCHCLASS1%2CQBFDEP%2CQBFASSET&endFailYear=2024&sortField=CERT&sortOrder=asc&startFailYear=1975


distribution, which has the property that the variance is equal to the mean.
In many situations this is not actually the case. We’ll investigate this in the
model selection phase.

6.7.2 Model Selection

First we compare a simple Poisson model:
1 glmmTMB ( FailuresCount ~ s(TIME) + (1|STATE),
2 data = bank_data_full ,
3 family = poisson ,
4 REML = TRUE)
5

6

7 gamm4( FailuresCount ~ s(TIME),
8 random = ~(1 | STATE),
9 data = bank_data_full ,

10 family = poisson ,
11 REML = TRUE)

We’ll outline some of the basic pre-processing steps we’ve performed. Full
code on Github.

• FAILDATE formatted by as.date (m, d, Y).
• Create the FailuresCount variable by aggregate(ID FAILDATE), which

counts how many banks failed on a given day (recall there are no zero count
entries in the data by definition).

• TIME variable is created from the FAILDATE variable.
• CTIYST is split into separate CITY and STATE variables by strsplit on

comma delimiter.
• Create WEEKDAY variable from FAILDATE and wday().

The two Poisson models are very approximately equal. A dispersion test
shows that there is significant overdispersion. And a quick check of the mean
and variance of the response variable confirms this as well, with the mean
being about 7.9 and the variance 156. This suggests the mean-variance rela-
tionship is likely quadratic in nature, rather than linear, hence we’ll use the

82

https://github.com/AllInCade/MasterProject


nbinom2 distribution for the glmmTMB model. For the gamm4 model we’ll use
the negbin family with lower values for theta. We continue to add random
effects that are significant in explaining the FailuresCount, and finally we
fit a dispersion sub model to the glmmTMB model.

Through some testing we arrive at the following best performing models
for each framework

1 glmmTMB ( FailuresCount ~ s(TIME) + s(YEAR) +
2 s(MONTH) + (1|STATE) +
3 (1|SAVR) + (1| CHCLASS 1) +
4 (1| RESTYPE 1),
5 dispformula =~ RESTYPE + WEEKDAY ,
6 data = train_fold ,
7 family = nbinom2(link=" inverse "),
8 REML = TRUE)
9

10 gamm4( FailuresCount ~ s(TIME) + s(YEAR) + s(MONTH),
11 random =~ (1|STATE) + (1|SAVR) +
12 (1| CHCLASS 1) + (1| WEEKDAY ) +
13 (1| RESTYPE ),
14 data = train_fold ,
15 family = negbin(theta=2),
16 REML = TRUE)

6.7.3 Results

As evident by the RMSE scores, the glmmTMB framework performed best here.
It’s likely possible to get similar results using gamm4, but we attribute the more
successful model fit here to the ease of implementing a dispersion sub model
and the nbinom2 parameterization of the negative binomial distribution, as
these are the only (other than optimization routines) differences between the
models. Efforts were made to equalize the models w.r.t to the optimizer
and start values, but we had difficulties managing the control options in
gamm4, which seem less flexible than in glmmTMB. From figure 10 the glmmTMB
model outperforms the gamm4 one, which fails almost entirely to predict the
higher range of values. We can see that while the glmmTMB model does a

83



decent job in predicting the higher values, it also suffers from some degree of
underestimation. It’s reasonable to expect that predicting large scale bank
failure events requires more information than what is available in the data we
have at hand.

Table 13: Model Evaluation Results

Model Cross Validation RMSE Test Data RMSE
gamm4 10.607 11.560
glmmTMB 7.915 7.404

84



Predicted values vs actual values plotted and smoothed by loess regression.

Predicted vs Actual Densities

Figure 10: Test Data Performance Bank Failures.

85



6.8 Bank Failures and Estimated Loss

Using the same dataset as above, we’ll try predicting the COST (estimated
loss) of a given bank failure. We’ll assume a Gaussian model is an appropriate
starting point, despite the fact that this type of data often has heavier tails
than a normal distribution. It’s probably safe to assume that total assets
and total deposits are highly correlated with the estimated loss. Due to
the extreme range of magnitudes in these three numeric variables (COST,
QBFASSET, QBFDEP), some scaling or transformation is likely needed to
help normalizing the distribution and ensure numerical stability, specially for
the smooths. There are some negative values in the COST variable, which we
won’t consider or try to explain here, so we’ll filter the data to only contain
non-negative values for the response. This means means we can use a standard
log + 1 transformation to the response, and the two other aforementioned
numeric variables. Again, the details can found on Github. Note:It’s worth
investigating how closely assets and deposits are correlated with each other
(collinearity). Inspecting the dataset we can see that they are on average
quite close, but there is a lot of apparent randomness in the assets to deposits
relationship, so it doesn’t seem to be a significant problem. However, in the
second part of the paper, we will try Ridge regularized models, which are
known to handle multicollinearity well.

6.8.1 Model selection

We begin with a simple formula to compare a linear model vs a GAM:
1 glmmTMB (log_COST ~ TIME + log_DEPOSIT +
2 log_ASSET ,
3 data = bank_data)
4

5 glmmTMB (log_COST ~ s(TIME) + s(log_ASSET) +
6 s(log_DEPOSIT ),
7 data = bank_data ,
8 family = gaussian(link = " identity "

),
9 REML = TRUE)

86

https://github.com/AllInCade/MasterProject


An AIC comparison shows favorable results for the GAM with 11360
(GAM) vs 11548 (LM).

Further experimenting with model formulas lead us to the following GAMMs:

1 glmmTMB (log_COST ~ s(TIME) + s(log_ASSET) +
2 s(log_DEPOSIT )
3 + (1|YEAR) + (1|STATE) +
4 (1| CHCLASS 1),
5 dispformula =~ SAVR + RESTYPE ,
6 data = train_data ,
7 family = gaussian ,
8 REML = TRUE)
9

10 gamm4(log_COST ~ s(TIME) + s(log_ASSET) +
11 s(log_DEPOSIT ),
12 random =~ (1|YEAR) + (1|STATE) +
13 (1| CHCLASS 1),
14 data = train_data ,
15 family = gaussian(),
16 REML = TRUE)

As you can see the two models are equal except for the dispersion submodel
included in the glmmTMB model. One thing to note when using random effects
in models and predictions in cross validation, is that there may be test folds
which do not contain any of entries of a particular level present in the training
data. This can be handled by setting "allow.new.levels=TRUE" in glmmTMB.
For the final model, we used a student’s t distribution to try and capture
more of the extreme values (further from the mean). This yielded a slight
improvement over a Gaussian distribution.

87



6.8.2 Results

Table 14: Model Evaluation Results

Model Cross Validation RMSE Test Data RMSE
gamm4 1.381 1.206
glmmTMB 1.363 1.172

88



Predicted values vs actual values plotted and smoothed by loess regression.

Predicted vs Actual Densities

Figure 11: Test Data Performance Log Cost.

89



As the RMSE scores and the visuals show, the inclusion of a dispersion sub
model and student’s t distribution helped the glmmTMB model predict the
extreme values slightly better.

6.9 Hot and Cold Deviations Classifier

The Weather Anomalies dataset comprehensively documents temperature de-
viations from historical norms from 1964 to 2013, utilizing data from various
weather stations. This dataset merges raw observations from the National
Oceanic and Atmospheric Administration (NOAA) with enhanced metrics
derived from Enigma’s weather analyses. In figure 12 we highlight coastal
regions’ warmer deviations and continental areas’ cooler deviations. This
pattern, known as continentality, features more significant temperature fluc-
tuations—warmer summers and colder winters—inland compared to the mod-
erated temperatures near coastlines, influenced by more stable ocean temper-
atures.

90



Figure 12: Heatmap of Average Temperature Anomalies in the United States.

This analysis has several aspects to it which make it challenging. The
data spans extensive time periods and geographical area. These temporal and
spatial structures must be handled appropriately. With data from numerous
weather stations expanding rapidly over time, we limit our analysis to 1990
- 2010 data from 249 stations, selected one per 2x2 latitude/longitude grid,
to manageably capture seasonal trends and geographical representation while
staying within our available computational resources.

We applied a time series decomposition using base R tools, with a 365-day
frequency to extract seasonal, trend, and residual components from the data.
For the spatial dimension, we combined latitude and longitude information
to define points for a K-nearest neighbors (KNN) algorithm, to determine
spatial weights. These weights were used for generating a spatial lag variable
to account for the spatial auto-correlation in temperature anomalies.

A visualization of the dataset reveals a bimodal distribution in the degrees

91



from mean variable, which represents hot and cold anomalies. Our two-stage
analytical approach consisted of:

• Employing a logistic regression classifier to distinguish between hot and
cold anomalies.

• Utilizing Gaussian models to quantify the extent of temperature deviations
within each category.

6.9.1 Model Selection - Classifier

The classifier is designed to address both temporal and spatial autocorrela-
tion, capturing the inherent dynamics and patterns in weather data to ensure
accurate and context-sensitive predictions.

Figure 13: Bimodal distribution of the degrees from mean variable, suggesting two distinct
normal distributions.

1 glmmTMB (hot_cold_indicator ~ s(time) + (1|month) +
2 s(max_temp)*s(min_temp) +

92



3 s( latitude ) * s( longitude ) +
4 s(trend) + s( spatial_lag) +
5 s( seasonal ),
6 data = train_data ,
7 family = binomial(link="logit"),
8 REML = TRUE)

6.9.2 Results

A 5-fold cross-validation gave an average F1 score of 0.978. This score is
higher than the test data score below, likely due to the final model having a
several of the smooths specified with a reduced number of knots.

Figure 14: Test Data Predictions Confusion Matrix demonstrating balanced accuracy, preci-
sion, and recall.

93



Metric Value
Accuracy 0.981
No Information Rate 0.645
Sensitivity (Recall) 0.957
Specificity 0.994
Precision (Pos Pred Value) 0.989
Neg Pred Value 0.977
Balanced Accuracy 0.976
F1 Score 0.972

Table 15: Performance metrics of the classification model show high accuracy and balanced
accuracy (0.977), confirming effective prediction for both anomaly categories. An F1 score
of 0.972 underscores a robust balance between precision and recall. Significant improvement
over a no-information rate of 0.645 and a Kappa score of 0.958 indicate the model’s reliability
and substantial predictive advantage.

Since we haven’t used any capabilities here that aren’t in the gamm tool-
box, the results are essentially the same, and therefore we have omitted the
performance metrics and plots from the gamm model.

6.10 Temperature Anomalies: Gaussian Models

Our approach is to use two Gaussian models to separately address hot and
cold temperature anomalies. This will make it easier to capture the bi-modal
distribution, by modelling each mode separately. We can’t think of any way
to specify a a single regression model in these frameworks with the kind
of mean-variance relationship of the degrees from mean data. Additionally,
Gaussian models are usually efficient and robust to fit, and are less prone to
convergence issues.

6.10.1 Model Selection

We use the same approach as in the classifier to handle the spatial and tem-
poral structures. The predictor set is largely similar for these models, but we
now use the type variable to model the dispersion, which slightly enhanced
our ability to more accurately model the tails of the distribution, although
capturing their full extent remains challenging.

1 glmmTMB (dfm ~ s(time) +

94



2 s(max_temp) * s(min_temp) +
3 s(longitude , latitude ) +
4 s(trend) + s( spatial_lag),
5 disp =~ type ,
6 family = gaussian(),
7 data = combined_data_hot ,
8 REML = TRUE)
9

10 glmmTMB (dfm ~ s(time)
11 s(max_temp) * s(min_temp) +
12 s(longitude , latitude ) +
13 s(trend) + s( spatial_lag),
14 disp =~ type ,
15 family = gaussian(),
16 data = combined_data_cold ,
17 REML = TRUE)

6.10.2 Results

As we’ve already come to know, more training data really helps predictions for
this data, as the seasonal aspects and longer term cyclical climate processes
are likely quite important in accurately accounting for temperature devia-
tions. Even at 20 years of data there is still some sensitivity (albeit much
less) to specific characteristics of the validation and test sets. For instance
the average RMSE for the combined models on an expanding windows cross
validation was significantly lower (better) than on the test set.

Model RMSE
No Dispersion Adjustment NA
Default Dispersion (1) 3.03
Dispersion Adjusted by Type 2.64

Table 16: Test data performance: Adjusting the dispersion formula produced different out-
comes, as one might expect. Setting dispersion to zero forces variance into the random effects,
which is an interesting ability, but which in this case caused convergence issues. The best
performance was achieved with the dispersion modelled by type.

95



Loess-smoothed plot comparing predicted versus actual values.

Density plot of predicted versus actual values.

Figure 15: Performance on Test Data for Temperature: These visualizations highlight the
models’ effectiveness in capturing the core distribution while noting challenges with extreme
values.

96



6.11 Wind Speeds

This data set contains wind speeds and other meteorological parameters col-
lected from 54 weather stations on the west coast of USA. The data goes back
to 1981 and contains at the time of our download of the data observations up
to 2023. The data originates from three sources: Santa Barbara County Air
Pollution Control District, California Department of Water Resources, and
National Data Buoy Center. The latter source provides water temperature
observations. The dataset contains hourly observations.

To determine the most influential factors affecting wind speed (spd), we
lagged variables, since we are dealing with time series data, and then used a
Random Forest feature importance analysis and. The analysis identified key
variables that significantly predict the response variable spd (wind speed).
These variables include:

• spdlag: The speed of the wind measured in meters per second one hour
prior.

• Time: Continuous variable which takes value 1 at the first observation
and increments by 1 for each subsequent observation.

• Utau, Vtau: Wind stress in U and V directions.
• Abar: Atmospheric pressure in mBar.
• Atmp: Air temperature in Celsius.
• Wtmp: Water temperature in Celsius.

Note: spdlag is the only variable explicitly named with the lag suffix,
but all of the predictor variables are lagged (an equal amount).

The calculation of wind stress (τ) uses the formula τo = CD · ρ · V 2
10, where

CD represents the drag coefficient, ρ denotes the air density, and V10 is the
wind speed at a 10-meter altitude.

For the analysis, the dataset was filtered to include all observations from
2021. The models will predict/forecast the wind speed one hour forward in
time. We will select out one weather station which has complete information
(no NAs) for all variables and no missing observations. Weather station 46078
(Albatross Bank) fits into this category, so we’ll choose it.

97



6.11.1 Model Selection

Our analysis of wind speeds will aim to investigate:

1. If a GAM more accurately captures complex and non-linear physical phe-
nomena like wind, compared to linear models.

2. How flexibility in dispersion modelling can help with predicting extreme
values of a distribution.

We hypothesize that combination of Uτ and Vτ would be captured well by
a bivariate TPRS spline smooth. These bivariate smoothers do however come
at a significant computational cost.

Note: Parallelization and distributed methods can alleviate temporal bur-
den, at the cost of memory overhead and increased hardware/compute cost.

The model and training set sizes are slightly altered between the 1 hour
and 24 hour forecasting models. Specifically we use 3 months of training data
for the 1 hour forecasting model, and 9 months for the 24 hour model. This
might seem somewhat arbitrary, but the reason behind it is that the doing
the 1 hour model results in very many iterations through cross validation
loop. We use a 90-10 split training to validation for the 1 hour mode, and a
80-20 split for the 24 hour model. It’s also reasonable to assume it takes more
training data to achieve good predictions with a farther forecasting horizon.

1 lm(spd ~ time + spd_lag +
2 abar + Atmp + Wtmp + Utau + Vtau ,
3 data = train_data)
4

5 glmmTMB (spd ~ s(time) + s(spd_lag) +
6 s(Utau , Vtau) + Atmp + Wtmp + s(abar),
7 disp =~ 1,
8 data = train_data ,
9 family = gaussian)

98



6.11.2 Results

The results are slightly in favour of the GAM, with a RMSE score of 0.924
against 0.928 for the linear model.

Figure 16: Loess regression line of predictions vs actual values for the 1 hour models.

99



Figure 17: Loess regression line of predictions vs actual values for the 24 hour models.

6.12 Wind Speeds II

Ideally, for this data set, we would create a sophisticated model capable of
concurrent/global spatiotemporal predictions. However, that would be well
beyond the scope of this paper. Instead we’ll pick up where we left off above,
see which improvements we can make on the first model, by including addi-
tional engineered variables and extending the forecasting horizon. For this
analysis we’ll compare glmmTMB against gamm4 again, to investigate the benefit
of a dispersion submodel for this data set.

6.12.1 Model Selection

Based on the previous model, we select the following models.
1 gamm4(spd ~ s(time) + spd_lag1 +
2 Atmp + R24 + abar ,
3 data = train_data ,
4 family = gaussian ,
5 REML = TRUE)

100



Loess-smoothed plot comparing predicted versus actual values.

6

7 glmmTMB (spd ~ s(time) + spd_lag1 +
8 Wtmp + Atmp + R24 + abar ,
9 disp =~ spd_lag2,

10 data = train_data ,
11 family = gaussian ,
12 REML = TRUE)

Here we’ve engineered a few new variables, including R24 and spd_lag2
which represent a rolling 24 hour average, which we will include.

6.12.2 Results

From the plots and the RMSE scores we see that the dispersion model helps
the prediction accuracy by a little bit, enough that it’s significant given how
little effort it takes to include it.

Model Average RMSE

gamm4 Model 1.142982
glmmTMB Model 1.135019

Table 17: Comparison of Average RMSE for gamm4 and glmmTMB Models

101



6.13 Claim Severity

In the next two sections we will introduce the Swedish Motor Insurance
dataset, which is a part of the GLMsData package. The dataset includes
third-party motor insurance claims in Sweden for the year 1977. This dataset
stands as a foundational resource for statistical analysis in actuarial science,
specifically aimed towards understanding the risk factors influencing insur-
ance claims within the Swedish motor insurance sector. We chose this par-
ticular dataset as it is used in the original research of Tweedie distribution
within insurance by Jørgensen and de Souza (1994).

The dataset is structured as a data frame containing 2182 observations
across 7 variables. These variables offer a view of the claims process, in-
corporating aspects such as distance travelled, geographical zones, no-claim
bonuses, vehicle make, number of insured policy-years, claims count, and total
payment value in Swedish kroner, all described beneath;

• Kilometres: Categorized into five levels, this variable signifies the annual
distance covered by the insured vehicle.

• Zone: This denotes the geographical zone, ranging from urban centers like
Stockholm to rural areas and Gotland.

• Bonus: Represents the no-claim bonus, quantified as the number of years
plus one since the last claim.

• Make: Identifies the vehicle’s make, with levels indicating common car
models and a category for all other models.

• Insured: The count of insured policy-years.
• Claims: The number of claims filed.
• Payment: The total value of claims payments.

Claim Severity

Claim severity refers to the average cost of claims over a period or for a certain
category of claims. It is a measure used by insurance companies to under-
stand the level of risk associated with insuring a particular group, policy, or
coverage type. As we do not have our own severity variable in our data set,
we will refer to a proposal modeling our payment-variable using the claim

102



counts as an offset function for modeling the claim severity.

While modeling the payment-variable gives good results using the Tweedie
distribution, a severity variable would not model quite as good with the same
distribution. It is also not normal including the zero counts when modeling
severity. We therefore decided to make a classifier first for dividing the dataset
into subsets where the claim count was zero or over zero, and model the
severity afterwards using the subset containing non-zero counts.

6.13.1 Model Selection

The model being used as a classifier includes the number of insured as a spline,
with a random effect on the zone variable;

1 motorins$HasClaim <-
2 ifelse( motorins$Claims > 0, 1, 0)
3

4

5

6 classifier <- glmmTMB ( HasClaim ~ s( Insured )+(1|Zone),
7 family = binomial(link = "logit"),
8 data = train_data)

The variables were chosen as they were significant and caused a lower AIC,
considering our work on unseen data we also needed another performance
metric. We therefore ran a confusion matrix for the model, with the two
following tables showing our results. The accuracy of 91 percent gives a fairly
decent result based on the two explanatory variables we have chosen.

Prediction \Reference 0 1
0 53 16
1 20 347

Table 18: Confusion Matrix for Claims

103



Metric Value

Accuracy 0.9174
No Information Rate 0.8326
Sensitivity 0.7260
Specificity 0.9559
Pos Pred Value 0.7681
Neg Pred Value 0.9455
Prevalence 0.1674
Detection Rate 0.1216
Detection Prevalence 0.1583
Balanced Accuracy 0.8410

Table 19: Model Performance Metrics for the claim classifier

104



Gamma and lognormal distribution are often used to model claim sever-
ity. However, the mgcv-package does not include the lognormal distribution,
where as glmmTMB has it included as a family function. We therefore tried
the gamma distribution for the gamm4-model and the lognormal distribution
for the glmmTMB-model, along with significantly tested explanatory variables.
The lognormal distribution modelled well on seen data but did not work well
during testing on unseen data. We therefore concluded with using the gamma
distribution for both models.

We used the insured-variable as a spline also in this model, with bonus as
an additional explanatory variable. To show the flexibility with the glmmTMB-
package we also tried implementing variables in the dispersion sub-model.
Adding the kilometres-variable as a dispersion parameter showed some im-
provements.

Using the proposition from Tiwari (2020) our main takeaway is using
counts as an offset. This is presented by generalized linear model theory.
The generalized linear model (GLM) is set up as follows:

Claim cost
Claim count = exp(f(X)) (6.1)

When taking natural logarithms on both sides, we get:

log
( Claim cost

Claim count

)
= f(X)

Where “log” is the link function and f(X) is a linear combination of the
selected predictive variables, the logarithms can be expanded as:

log(Claim cost) − log(Claim count) = f(X)

This can be further simplified by isolating the claim cost on one side, resulting
in the final form which includes the offset term:

log(Claim cost) = f(X) + log(Claim count)

Using the amount of claims as an offset gives us the following models;

105



1

2 full_model_glmmTMB <- glmmTMB ( Payment~
3 s( Insured )+Bonus+
4 offset(log(Claims)),
5 disp=~Kilometres ,
6 family = Gamma(link="log"),
7 data = full_train_data)
8

9 full_model_gamm <-gamm4( Payment~
10 s( Insured )+Bonus+
11 offset(log(Claims)),
12 family = Gamma(link="log"),
13 data = full_train_data)

6.13.2 Results

Table 20: Model Evaluation Results

Model Cross Validation RMSE Test Data RMSE
gamm4 125504.9 114604.3
glmmTMB 124278.5 107440.1

106



Loess-smoothed plot comparing predicted versus actual values.

Predicted vs Actual Densities. Scaled down for visualization purposes.

Figure 18: Test data Performance for Claim Severity

107



From these visuals we can see that both models have rather good performance
on unseen data. The RMSE, being rather large given the high values of
payment values, but both are less than the mean of the values, meaning the
model could be seen as fairly good. We see that the difference in predictions
is as the values get higher, reflecting the dispersion parameter we have added
to the glmmTMB-model.

108



6.14 Claim Counts

We will also use the same data set to model claim counts or claim frequency
in insurance. Predicting claim frequency is important for insurers to manage
risks effectively, ensuring financial stability with enough reserve setting, and
tailor pricing strategies accurately. It facilitates customer segmentation, aid-
ing in the development of customized insurance products and ensuring com-
petitive pricing. Accurate predictions will help insurers comply with regula-
tory requirements, maintaining solvency and industry standing. Essentially,
it supports the operational and strategic decisions of insurance companies,
enhancing their ability to serve customers while managing their risk exposure
efficiently. As actuarial students both claim frequency and claim severity are
important variables to be able to model.

6.14.1 Model Selection

Using an already well known data set meant that we had access to the R-
documentation linked with the data found in 6.2. Here it was said that the
number of claims had a Poisson distribution, however, we thought it could be
appropriate to model the claims with the Tweedie distribution instead, as the
data seemingly could follow such a distribution as well as the Poisson. Testing
with both Poisson and Negative Binomial distribution, both with and with-
out zero-inflation, they did neither have better AIC nor RMSE compared to
the model using the Tweedie distribution. This might be because of the large
values of counts we are modeling, as the distribution is right-skewed and have
heavy tails. The Poisson distribution does not account for much skewness
under the assumption that mean should be equal to the variance. The Neg-
ative Binomial distribution should work better for this type of scenario, but
in our case we have a very large range. Most data sets with claim counts has
probably a range from one to ten, whilst our variable has many observations
ranging all the way to 3000 because of large groupings. This range makes us
think we can treat the variable as continuous, having a gamma distribution
for the non-zero positive values, and therefore modeling the variable with the
Tweedie distribution.

For our research with claim counts we thought of the continuous variable

109



Insured as a spline covariate. After researching we also found Bonus to be
a significant explanatory variable, and using Zone as a random effect also
provided better results. Running the following code gives fairly equal models,
but not quite identical, which may have something to do round-off induced
discrepancy in the power constant ξ.

1 glmmTMB_model <-glmmTMB (Claims~s( Insured )+Bonus
2 +(1|Zone),
3 data=motorins ,
4 family = tweedie ())
5

6 xi <-family_params( glmmTMB_model)
7

8

9 gamm4_model <- gamm4(Claims~s( Insured )+Bonus ,
10 random=~(1|Zone),
11 data=motorins ,
12 family = Tweedie (p=xi))

Looking into the additional functions that can be provided with glmmTMB
we saw an improvement adding the number of kilometres travelled to the
dispersion formula. Our final model would then look like this;

1 glmmTMB_model <-glmmTMB (Claims~s( Insured )+Bonus
2 +(1|Zone),
3 disp=~Kilometres ,
4 data=motorins ,
5 family = tweedie ())

6.14.2 Results

Table 21: Model Evaluation Results

Model Cross Validation RMSE Test Data RMSE
gamm4 76.69 102.77
glmmTMB 60.78 72.55

110



Loess-smoothed plot comparing predicted versus actual values.

Predicted vs Actual Densities. Scaled down for visualization purposes.

Figure 19: Test data Performance for Claim Counts

111



From the performance on test data we can see that the there are a lot of
zeroes to be accounted for in our modeling. Both models predict these values
fairly similar, but as the value increases, the glmmTMB-model‘s prediction is
quite significantly better. Using Kilometres as a dispersion parameter seems
to have made the model a better fit for the higher values and therefore has
decreased the RMSE. Scaling the density plot to 200 counts gives us a bet-
ter visualization on the lower values, where the glmmTMB model handles the
prediction pretty well compared to gamm4.

6.15 Face Value of Insurance Policies

The ustermlife dataset is sourced from the Survey of Consumer Finances
(SCF), representing a nationally representative sample of U.S. households.
It includes data from 500 households with positive incomes, surveyed in the
year 2004. In this section we will try to model the Face value that was payed
to customers within the period, however, we found it difficult to get a proper
model using splines for these variables. Later we will try to interpret the
Ridge penalty instead in search for improvements.

The variables in the dataset included Gender, Age, Education level and in-
come to name a few. We tested different models with the continuous variables
in splines, intuitively the Income and Age variables. Due to the extreme values
of both the Face values and Income variables we also tried different methods
of scaling and outlier-detecting to improve our models without much success.
The thought of using logistic regression to predict and split the dataset into
zero values and positive values for the Face variable also crossed our mind,
but for this dataset we were determined to make the best model using the
Tweedie distribution. We have pre-processed the data set and excluded the
largest Face values, setting a maximum value at 500 000. Recall from 6.1 that
by the no free lunch theorem, the performance of the model is contingent on
the underlying assumptions being sufficiently met, so although the model
performs well over a certain range of values, it may fail to do so completely
outside of this range. Here the very large values would need a separate model,
or a different approach altogether. There may be other factors to explain very
large values which are discernible from the available data. The NFL theorem

112



is not an excuse for a model not performing well, it simply implies that in
order to obtain a strong model, one might need to explore many different ap-
proaches and models, and not expect one particular method to always work
best for any given task. Often poor models are simply the result of poor data
quality, or insufficient sample size for high-variance outcomes.

6.15.1 Model Selection

For the model selection we tried multiple parameters as explanatory variables.
Education was probably the most significant predictor when modeling face
value, however, when using the variable along with splines on income and age
we encountered convergence issues and decided to not keep Education for our
research.

Furthermore, we found the better model using a log-version of Income and
Total Income as spline variables. The inclusion of Total Income did not have
much effect, but to illustrate our Ridge model later in the thesis we chose
to include both of the variables. We encountered convergence issues in this
model as well in the glmmTMB-model, with no help of using start parameters we
chose to include gender as a random effect which seemingly fixed our problem
making the model run smoothly.

1

2 gamm4(Face~s(Income_log)
3 +s( TotIncome_log),
4 family= Tweedie (p=xi),
5 data = full_train_data)
6

7

8 glmmTMB (Face~s(Income_log)+s( TotIncome_log)
9 +(1|Gender),

10 family = tweedie (),
11 data = full_train_data)

113



6.15.2 Results

Table 22: Model Evaluation Results

Model Cross Validation RMSE Test Data RMSE
gamm4 NA 77423.05
glmmTMB NA 79053.56

114



Loess-smoothed plot comparing predicted versus actual values.

Predicted vs Actual Densities.

Figure 20: Performance on Test Data for Face values

115



From the plot we can see that both models have issues covering the larger val-
ues, including any dispersion parameter resulted in the R session was aborted
and a fatal error was discovered. Although we had good reason to believe
that using Tweedie distribution would help the model cover the zero-values,
both models seemingly have trouble modeling these. We will therefore later
try to use the same model with Ridge penalty to see if we could have some
improvements.

When we tried to model the cross validation RMSE we also encountered
some problems with the gamm4-model, the error stated Downdated VtV is
not positive definite, which is an error commonly encountered when
there are highly correlated predictors in the model, which in our case seems
like a fair proposition. Given that the Ridge penalty accounts for multi-
collinearity we hope that we can show improvements for the model when
using Ridge later on in the thesis.

6.16 Death Counts

Mortality data is an important aspect of actuarial science, particularly in the
fields of life insurance and pension planning. Our data is collected from the
Human Mortality Database (HMD) website and provides a detailed overview
of mortality trends within a population, offering insights into the probabilities
of death across different demographics. We have chosen to use an existing
data set found in de Jong and Heller (2008, p. 17) which includes data for
Sweden from 1951 through to 2005. This example has previous been used
illustrating the improvement of negative binomial distribution by de Jong
and Heller (2008, p. 91-94) and later Grindheim (2023) has researched the
opportunity of using dispersion parameters. We will now check how splines
can improve the same model, combining them with dispersion parameters,
and simultaneously compare our glmmTMB-model with a gamm4-model.

Composition of Mortality Data

The specific variables included in our dataset includes 5865 observations of
the following variables:

• Year: The calendar year for which the data is recorded, allowing for tem-

116



poral analysis of mortality trends.
• Age: The age of individuals, facilitating age-specific mortality rate calcu-

lations.
• Male and Female Deaths: The number of deaths recorded separately

for males and females, providing gender-specific mortality insights.
• Exposure at Risk: The total number of individuals (male and female)

at risk of dying within the year,(HMD have their own estimation formula
for the parameter).

• Death Rates: Calculated separately for males and females, these rates
offer a direct measure of mortality risk at different ages, relating the deaths
to the people at risk.

We will firstly like to explore some count models where we use number of
deaths as a response variable. Modeling with death count could enable effec-
tive pandemic management and assess environmental impacts on mortality.
Such models are important while identifying risk factors, guiding resource
allocation, and implementing preventive measures. Ultimately the modeling
gives understanding and predicting within mortality trends which we hope to
take advantage of.

6.16.1 Model Selection

We first start using our data to make a poisson model for our model, but
we quickly found out there was overdispersion in the model using a disper-
sion test. Therefore our choice fell on a negative binomial model, specifically
glmmTMBs nbinom2() family function, as could be expected based on the pre-
vious research. As we ran our glmmTMB-model, we found the fitting dispersion
parameter to use for our gamm4-model, ensuring that the models are identical
before we start adding the functions exclusively found in glmmTMB.

The previous research has consisted of age and year as the explanatory
variable. We want to see how the spline function operates so our primary
model consists of the spline function regarding these two variables. We also
used the logarithm of the exposure at risk as an offset, as previous research
also have done;

117



1 glmmTMB (Male_death ~
2 s(Age) +s(Year),
3 offset=log(Male_Exp),
4 family = nbinom2(),
5 data = swedish_mortality )
6

7

8 gamm4(Male_death ~
9 s(Age) + s(Year)

10 + offset(log(Male_Exp)),
11 family = negbin(theta=10.2),
12 data = swedish_mortality )

From here we continued to test with different parameters in the dispersion
and zero-inflation sub-models to improve our model. There were not many
variables fitting the zero-inflation narrative, so we focused mainly on fitting
parameters to the dispersion model. Adding age as a dispersion variable
seemed like a good place to start, and it resulted in both better AIC and rmse.
However, including year on the same sub model did not give any significant
changes. As in previous research we also use the nbinom2-family as there
seem to be a more quadratic relationship between the mean and variance of
the death count, with mean being 419,2 and variance 270617.7. This means
that the finished model we will use for training can be written;

1 glmmTMB (Male_death~
2 s(Age) +s(Year),
3 offset=log(Male_Exp),
4 disp=~Age ,
5 family = nbinom2(),
6 data = train_data)

We will firstly compare this model to a linear model without splines to
check if the spline component indeed gives better results, so we will compare
the model above to the following model;

1 glmmTMB (Male_death~
2 Age +Year ,
3 offset=log(Male_Exp),

118



4 disp=~Age ,
5 family = nbinom2(),
6 data = train_data)

Note: In Grindheim (2023) there was also used polynomial covariates as
both explanatory variables in expectation and dispersion model. This caused
a much better AIC with larger degrees of polynomial in both Age and Year
for both submodels. Comparing this to our model with splines we checked
how the relationship between AIC and RMSE behave. We have experienced
multiple times that the AIC does not always account for the complexity in
models, and therefore does not recognise overfitting. These models are also
an example where the AIC might not be the performance metrics, and the
RMSE should be used to see if the model works well on unseen data.

Model AIC Average RMSE
Splines 32631.73 58.62
Linear 37871.05 79.30
Poly 29714.41 82.00

Table 23: AIC and Average CV RMSE comparison for Polynomial-model

6.16.2 Results

Table 24: Model Evaluation Results

Model Cross Validation RMSE Test Data RMSE
linmod 79.30 79.28
glmmTMB 58.62 60.30

119



Loess-smoothed plot comparing predicted versus actual values.

Predicted vs Actual Densities.

Figure 21: Performance on Test Data for Death Count - Linear vs Splines

120



From the comparison with and without spline components we see that the
accuracy increases, with the RMSE being lower for the blue glmmTMB-model.
From the plots we see that there is a wider spread from the actual values with
the linear model, predicting higher values continuously with the actual value
increases. Considering this we will move on with comparing the model with
spline components in a gamm4-model.

Table 25: Model Evaluation Results

Model Cross Validation RMSE Test Data RMSE
gamm4 90.70 92.38
glmmTMB 58.62 60.30

121



Loess-smoothed plot comparing predicted versus actual values.

Predicted vs Actual Densities.

Figure 22: Performance on Test Data for Death Count

122



We see that from the inclusion of the dispersion parameter age our glmmTMB-
model covers the larger values much better than our gamm4-model. We can
also see that the gamm4-model covers the zero value slightly better, but as the
rmse shows, the glmmTMB-model performs better overall.

Having the variable age as a dispersion parameter is the advantage that
makes glmmTMB the better model in this instance. The nbinom2 family in
glmmTMB will automatically find the dispersion parameter while the negbin
family needs manually input which is also a feature that makes glmmTMB the
more user friendly model.

6.17 Death Rates

The death rates described in the data set are the death count divided by
the amount of people observed exposed and at risk. For modeling of this
percentage we thought it would be a good pre-processing measure to include
only the data where the rate is in the finite interval between zero and one.
This would reduce the data set by about 2,5 percent to 5725 observations,
and we could now use the beta distribution often used for percentages. One
of the downsides of this though might be the use of the death count as a
zero-inflation parameter. As we do not use the death counts as a parameter
we will include it as a random effect after grouping the counts to different
levels in a new variable.

6.17.1 Model Selection

We are using this example to show the flexibility of family distributions in
glmmTMB compared to a gamm4-model. Where as glmmTMB have implemented
the beta distribution as a family, our best shot at making a model in gamm4
would be to use a logit-transformation to be able to model with a gaussian
distribution. We of course later back-transform the prediction so it is com-
parable with our other model. We tried various dispersion parameters that
made for a good AIC, but the rmse did not show a good performance. Us-
ing age as a dispersion parameter caused convergence issues for this response
variable, but even though using a scaled age-variable helped, it did not prove
to become a better model.
Instead we made our own variable for the level of deaths that we could use as

123



a random effect. Dividing the counts into 5 levels made for a slightly better
model looking at the performance measures. Since we could not compare the
models as usual we compared to a normal gamm-model at first, which was
identical to our glmmTMB-model before we added random effects.

5 gamm4(q_male_logit~ s(Age) + s(Year),
6 random=~(1|death_count_group),
7 family=gaussian(),
8 data = swedish_mortality 1)
9

10

11 glmmTMB (q_male ~ s(Year) + s(Age)
12 + (1|death_count_group),
13 family=beta_family(link = "logit"),
14 data = swedish_mortality 1)

6.17.2 Results

Table 26: Model Evaluation Results

Model Cross Validation RMSE Test Data RMSE
gamm4 0.0619 0.0668
glmmTMB 0.0365 0.0417

124



Loess-smoothed plot comparing predicted versus actual values.

Predicted vs Actual Densities.

Figure 23: Performance on Test Data for Death Rate

125



We can see that our back-transformed gamm4-model predicted heavily in the
lower values and did not provide enough information at the tail of the density.
Even though the glmmTMB-model did not cover all of the lower values, it had
a lot better information of the tail of the distribution, as we can also tell from
the rmse.

Our glmmTMB-model performs pretty good until the values of around 0.6.
This could be explained by the small proportion of values we have between
0.5 and one. Unlike when modeling with death counts we did not have good
enough variables to account for the extreme values.
However, our main goal for predicting the death rate was including the beta
distribution, as it is implemented in glmmTMB but not in gamm4 and gamm. So,
even though our results were better than using a back-transformed gaussian
distribution, we would like to emphasize the flexibility glmmTMB gives us and
its user-friendly setup not found in comparable packages.

126



7 Ridge Models in glmmTMB

As we’ve come to learn, in mgcv and other frameworks whose smooth func-
tionality relies on its machinery, the default approach is an Integrated Squared
Second Derivative (ISSD) penalty, combined with Generalized Cross-Validation
(GCV) for the selection of the smoothing parameter, and Maximum Likeli-
hood Estimation (MLE) for model fitting. This combination, while standard,
has shown a tendency to undersmooth (overfit) for complex models (Wood,
2017). Although using REML for model fitting instead of MLE can greatly
alleviate this problem, it brings additional computational burden and may
still be insufficient for high-dimensional models with multiple smooth predic-
tors where multicollinearity is also a potential consideration.

We propose that a Ridge approach could be used to robustly protect
against undersmoothing a d collinearity in these circumstances, due its ef-
fective global penalization directly on parameter coefficients. More specifi-
cally we hypothesise that a specific combination of smoother, regularization,
smoothness selection and model fitting routine can provide a comparatively
computationally efficient method for fitting well-regularized spline regression
models in glmmTMB. This combination of steps is shortly summarized as:

1. Construct a smooth object from cubic smoothing splines.

2. Covert the smoother to a random effect representation.

3. Specify the smooth object (basis function matrix Xr) as a fixed effect.

4. Use GCV for smoothness (λ) selection.

5. Fit the model using MLE.

It’s a primary goal in most modern analytic software to offer robust and
flexible frameworks that don’t require deep domain knowledge or technical
modeling expertise from the user. Automatic regularization is a requirement
for ease of use by reducing the need for intricate decisions based on domain
understanding or the intricacies of the data. The current frameworks (which
rely on mgcv machinery) have options and control over the regularization, but

127



it’s primarily rather advanced options related to the properties of the penalty
matrix and structure of covariance matrices. Additionally, the actual regu-
larization method is constrained to penalization of excess curvature (ISSD).
Adding (implementing) an option for an automatic Ridge penalty will further
increase the flexibility of the glmmTMB package. The Ridge approach can be
a superior alternative for predictive analytics, like forecasting models, where
the end goal is often about achieving the highest prediction accuracy possible
with reasonably good computational efficiency, even if it means sacrificing
some level of interpretability and local control. More user friendly options
provide a better platform for non-expert users to effectively train and test a
wider range of models, and thus an increased likelihood of obtaining a good
model for the particular task at hand.

7.1 Regularization Effects

We’ve discussed much about regularization and penalties in complex mod-
els on the theoretical level in 2.3.1. We should provide a simple example
to demonstrate how penalization impacts accuracy and overfitting in spline
regression models in practice.

As we’ve mentioned in chapter 2, overfitting prevention is usually addressed
through two primary approaches: implicit regularization and explicit pe-
nalization. The following table outlines the key characteristics of these ap-
proaches:

128



Implicit/Local Control Regulariza-
tion

Explicit Penalization

Variable selection: A basic form of im-
plicit regularization is choosing to only in-
clude the variables which explain the ma-
jority of the variance and contribute most
to the models predictive power

Penalization of Wigglyness/Curva-
ture: A penalty on the curvature (second
derivative) of the spline, such as the Inte-
grated Squared Second Derivative (ISSD),
ensures a smoother curve by discouraging
excessive bending.

Number and location of Knots: The
number of knots directly affects the
spline’s flexibility. An appropriate num-
ber balances flexibility and overfitting.
Strategic placement of knots in areas
with more data variation can improve the
model’s fit without increasing its complex-
ity unnecessarily.

Penalization of Coefficient Size
(Ridge Penalty): A quadratic penalty
(like Ridge) on the spline coefficients
prevents overfitting by constraining their
magnitude, leading to a more robust
model.

Basis Functions: An optimal choice
of basis functions, like TPRS or cubic
smoothing splines, (which have different
degrees of inherit wigglyness / smooth-
ness), can strike a balance between flex-
ibility and smoothness.

Penalization of Variance (PCR): In-
directly penalize variance (complexity) by
focusing on the principal components that
explain the most of the variance in the
predictors. Often used for support vector
machines (SVM)

Table 27: Comparison of Implicit/Local Control Regularization and Explicit Penalization in
Spline Regression

The combination of implicit/local control regularization and explicit pe-
nalization offers a compounded approach to model regularization. This dual
strategy enhances the model’s ability to balance complexity and overfitting.
Implicit regularization, achieved through selecting knots and basis functions,
establishes the foundational structure of the model, moderating its flexibil-
ity. Explicit penalization then complements this by targeting residual issues of
excessive curvature or unduly large coefficients that may persist even after im-
plicit regularization. By integrating these methods, we effectively compound
their effects, ensuring a more nuanced control over the model. This synergy
not only captures the data’s underlying trends more accurately but also en-
hances the model’s robustness and generalizability, particularly in complex
statistical scenarios.

129



7.2 Comparing Implicitly vs Explicitly Penalized Models

Here we’ll compare four different models all fitted on the same simulated
data where the predictor is a linear function of the predictor plus a random
noise term. We should expect the three models which initially have very
much flexibility (thin plate splines with 50 degrees of freedom) to overfit
the data severely if they are not subject to regularization. The model using
cubic smoothing splines and only 5 degrees of freedom in the spline should
inherently have much less flexibility, but may still overfit compared to a linear
model.

1 tmb1 <- death ~ s(tmpd , k = 50), data = train_data)
2 tmb2 <- death ~ homdiag (Xr_tmpd_tmb2|ID), data =

train_data)
3 tmb3 <- death ~ 1 + Xr_tmpd_tmb3, data = train_data)
4 tmb4 <- death ~ 1 + Xr_tmpd_tmb4, data = train_data)

• tmb1: Standard implementation in glmmTMB. Rigorous implementation,
which is equivalent to gamm4. Smoother and penalty matrix as in mgcv::gamm.
Explicit ISSD penalty applied.

• tmb2: Manual method using the s2rPred function and a manually specified
homdiag structure. The spline has k = 50, bs="tp". This method also
explicitly applies the ISSD penalty similarly to the example above.

• tmb3: Simply fitting the random basis function matrix of the smooth term
as a fixed effect (k = 50, bs = "tp"). No explicit or implicit regularization.

• tmb4: Similar to the above, but with more carefully chosen knot and ba-
sis function selection choices. The smooth has k = 5, bs="cs". This
smoother is implicitly regularized, with no explicit penalty applied.
From figure 24 we can see that clearly the unpenalized model, tmb3, is

not performing well on the test data, showing clear overfitting. There are
certainly some differences between the other models as well, which would be
become more apparent on different data, however, here they all stay quite
close to the true trend in the data, which is a straight line, which is the key
takeaway from this example.

130



Figure 24: Predicted vs actuals values on unseen test data of tmb1, tmb2, tmb3 and tmb4.

7.3 Implementing Ridge Regularized GAMs

7.3.1 Smooths as Fixed Effects

We’ve already at length analyzed and presented how smooths can be dual
to random effects in 2.8 and later in 4.2. In the following models we will as
mentioned in 7 estimate the smooths as fixed effects. The specific method is
as follows:

1. Construct a smooth using cubic smoothing spline basis functions. Xr
basis function matrix contains smooth entirely.

2. We re-parameterize and define the smoother variable Xr_time by extract-
ing the random component, which in the case of the cubic smoothing
spline, is the entire smooth object generated by mgcv.

3. We fit the model with the smooth estimated as a fixed effect.

Example code:
1 sm_time <- mgcv :: smoothCon (s(time , bs="cs"),
2 absorb.cons = TRUE , data = fit_data)[[1]]

131



3 re_time <- mgcv :: smooth2random(sm_time , "", type = 2)
4 pred_matrix_time <- s2rPred(sm_time , re_time ,
5 data = fit_data)
6 fit_data$Xr_time <- pred_matrix_time$rand[[1]]
7 gam <- glmmTMB (log_ret ~ Xr_time , data = fit_data)

The idea here is that for smooths constructed from a cubic smoothing
spline, has no null space, and hence "random" part, the Xr basis function
matrix contains the entire smooth. Estimating the smooth as a fixed effect
greatly enhances the efficiency and still captures the information from the
smooth object, which can flexibly adapt to non-linearity in the data. However,
recalling from the example in 7.1, this smooth is now not subjected to any
explicit penalty, and is highly likely to overfit. This is why we will impose a
Ridge penalty on the model globally, which is the next step.

7.3.2 Implementing a Ridge Penalty

We will implement a Ridge penalty for (all) the smoother(s) to make sure
our model becomes smooth and robust to overfitting. This is done through a
series of steps:

1. Implement a function calculate_n_knots to calculate the number of
knots for smooth terms based on their rank or dimensionality.

2. Define augment_design_matrix and augment_response functions to
augment the design matrix and response vector, respectively, incorpo-
rating the Ridge penalty via an augmented matrix construction.

3. Implement augment_data to augment data with penalized smooth terms,
preparing it for model fitting with glmmTMB.

The essential operation of the Ridge penalty is done in the augmentation
functions, which in simple terms append rows at the bottom of the model
matrices. The rows are constructed by taking the square root of the smoothing
parameter λ and multiplying it by the identity matrix of equal rank. For a
design matrix this corresponds to

Augmented Xr =
 Xr√

λ · I

 (7.1)

132



Example code for a slightly more involved implementation with paralleliza-
tion and multiple covariates:

1

2

3 covariates <- c("time", "volume", " seasonal ", "trend"
)

4

5 calculate_n_knots <- function (smooth_term) {
6 if (!is.null(smooth_term[["rank"]])) {
7 # For tensor product smooths , use the first

element of 'rank '
8 return(smooth_term[["rank"]][1])
9 } else {

10 return(smooth_term[["bs.dim"]] - smooth_term[["
null.space.dim"]])

11 }
12 }
13

14 generate_smooth_terms <- function (covariate , data , bs
= "tp", k) {

15 # Ensure that k is provided
16 if (is.null(k)) stop("The 'k' argument 'number of

knots ' must be provided .")
17 formula_str <- paste0("s(", covariate , ", bs='", bs

, "', k=", k, " ")
18 sm_formula <- eval(parse(text = formula_str))
19 sm <- mgcv :: smoothCon (sm_formula , data = data ,

absorb.cons=TRUE)[[1]]
20 re <- mgcv :: smooth2random(sm , "", type = 2)
21 pred_matrix <- s2rPred(sm , re , data = data)
22

23 # Return the necessary components
24 list(Xf = pred_matrix$Xf , Xr = pred_matrix$rand[[1]

], n_knots = calculate_n_knots(sm))

133



25 }
26 results <- future_map(covariates , ~generate_smooth_

terms(.x, data = fit_data , bs = "cs", k = 5))
27

28 for (i in seq_along( covariates )) {
29 covariate <- covariates [i]
30 fit_data[[paste0("Xf_", covariate )]] <- results [[i]

]$Xf
31 fit_data[[paste0("Xr_", covariate )]] <- results [[i]

]$Xr
32 fit_data[[paste0("n_knots_", covariate )]] <-

results [[i]]$n_knots
33 }
34 n_knots_list <- setNames (lapply(results , `[[`, "n_

knots"), covariates )
35

36 augment_design_matrix <- function (Xr , lambda) {
37 if (is.null(Xr) || nrow(Xr) == 0 || ncol(Xr) == 0)

{
38 stop("Input matrix Xr is NULL or empty")
39 }
40 tryCatch ({
41 augmented_matrix <- rbind(Xr , sqrt(lambda) * diag

(ncol(Xr)))
42 if (is.null( augmented_matrix) || nrow( augmented_

matrix) == 0) {
43 stop(" Augmented matrix is NULL or empty after

applying ridge penalty ")
44 }
45 }, error = function (e) {
46 stop(paste("Error in augment_design_matrix: ", e$

message ))
47 })
48

134



49 return( augmented_matrix)
50 }
51

52 augment_response <- function (y, augmented_length) {
53 c(y, rep(0, augmented_length - length(y)))
54 }
55

56 augment_data <- function (data , lambda , n_knots_list)
{

57 augmented_matrices <- list()
58

59 for (name in names(n_knots_list)) {
60 xr_var <- data[[paste0("Xr_", name)]]
61 if (is.null(xr_var)) {
62 stop(paste0(" Variable ", paste0("Xr_", name),
63 " is NULL"))
64 }
65 augmented_matrix <- augment_design_matrix(xr_var ,
66 lambda)
67 augmented_matrices [[name]] <- augmented_matrix
68 }
69

70 y_augmented <- augment_response(data$log_ret ,
71 max(sapply( augmented_matrices , nrow)))
72

73 augmented_data <- data.frame(log_ret = y_augmented )
74 # Ensure correct response variable name
75 for (name in names(n_knots_list)) {
76 augmented_matrix <- augmented_matrices [[name]]
77 augmented_data[[paste0("Xr_", name)]] <- I(

augmented_matrix)
78 }
79 return( augmented_data)
80 }

135



7.3.3 Smoothness Selection

The next step is to find the appropriate strength for the Ridge penalty, that
smooths the model sufficiently that the model doesn’t overfit the data, but
also doesn’t oversmooth the model such that it is unable to capture non-linear
patterns when present.

Our method for doing this is by generalized cross validation (GCV). Recall
from 2.6.2 that GCV is an efficient method for this purpose. We implement
GCV by the following steps:

1. Define the function gcv_lambda to compute a Generalized Cross-Validation
score for a given lambda, using a glmmTMB model fit on the augmented
data.

2. The function cross_validate_lambda_with_early_stopping performs
cross-validation over a range of lambda values to find the optimal lambda,
using early stopping to prevent overfitting and decrease time usage.

3. Augment the data (to be used for the model fitting) using the optimal
lambda identified through cross-validation, applying Ridge penalization
to the smooth terms.

Example code (continuation of the code in 7.3.2)
1

2 gcv_lambda <- function (lambda , n_knots_list , data) {
3 augmented_data <- augment_data(data , lambda , n_

knots_list)
4

5 gcv_model <- glmmTMB (log_ret ~ 1 + Xr_time + Xr_
volume + Xr_trend + Xr_seasonal ,

6 data = augmented_data , family = gaussian(link="
identity "))

7

8 log_ likelihood <- logLik(gcv_model)
9 edf <- attr(log_likelihood , "df")

10 deviance_val <- deviance(gcv_model)

136



11 N <- nrow( augmented_data)
12 gcv_score <- deviance_val / ((1 - edf/N)^2)
13 return(gcv_score)
14 }
15

16 cross_validate_lambda_with_early_stopping <- function
(data , lambda_values , n_knots_list , early_stopping
_rounds = 5) {

17 require(future.apply)
18 plan(multisession , workers = 5)
19 best_score <- Inf
20 scores <- numeric(length(lambda_values))
21 no_ improvement _count <- 0
22

23 for (i in seq_along(lambda_values)) {
24 lambda <- lambda_values[i]
25 score <- gcv_lambda(lambda , n_knots_list , data)
26 scores[i] <- score
27

28 if (score < best_score) {
29 best_score <- score
30 no_ improvement _count <- 0
31 } else {
32 no_ improvement _count <- no_ improvement _count +

1
33 if (no_ improvement _count >= early_stopping_

rounds) {
34 message ( sprintf ("Early stopping after %d

iterations ", i))
35 break
36 }
37 }
38 }
39

137



40 scores <- scores[1:i] # Truncate the scores vector
to actual number of iterations

41 lambda_values_truncated <- lambda_values[1:i] #
Truncate lambda values to match the scores length

42

43 list( optimal_lambda = lambda_values[which.min(
scores)], gcv_scores = scores , lambda_values =
lambda_values_truncated )

44 }
45

46 plan( sequential )
47 gc()
48 options(future.seed = TRUE , future.rng. onMisuse ="

ignore")
49

50 lambda_values <- seq(0.00001, 1, by = 0.05)
51 cv_results <- cross_validate_lambda_with_early_

stopping (fit_data , lambda_values , n_knots_list ,
early_stopping_rounds = 5)

52 optimal_lambda <- cv_results$optimal_lambda
53 gcv_values <- cv_results$gcv_scores
54 lambda_values_used <- cv_results$lambda_values
55

56 fit_data_augmented <- augment_data(fit_data , optimal_
lambda , n_knots_list)

7.3.4 Training and Validating Models

From this point training, validating and testing the models are done simi-
larly to the standard models. We split the data and define a few functions
to facilitate model specifications, cross validation and extracting results. We
use parallelization for most of the heavy computations for performance, so we
have to be careful to restart the backend and free up memory after each ma-
jor parallelized task. For large models, the memory requirement can escalate
quickly with parallelized processes, so adjust the number of cores to be used

138



accordingly. Full R program files for each model is available at GitHub.

Note: Our R code to perform these steps and fit the Ridge models are
just working examples intended for a proof of concept. Efficient and stable
implementation into the source code of glmmTMB is beyond our abilities, and
the scope of the thesis.

7.4 Data Analysis

Revisiting a few of the datasets and models from chapter 8, we will now
compare Ridge regularized models vs the standard method. We’ll measure
the RMSE and the time usage for each of the models and compare.

7.4.1 Bank Failure Estimated Loss

Recall the analysis in 6.8 where we analyzed the estimated loss associated with
bank failures. Here we analyze the data set again on the log transformed cost
variable.

We deploy the ridge regularization as described in earlier in the chapter,
and formulate the following models. Note:The generalized cross validation
process for selecting the smoothing parameter took 5 seconds. However, it’s
only performed once, and can be optimized far more than it currently is, by
using only a subset of the data.

1 manual_formula <- formula(log_COST ~ 1 + Xr_TIME +
2 Xr_log_ASSET + Xr_DEP_ASS_RATIO +
3 Xr_CERT + Xr_FIN + Xr_log_DEPOSIT )
4 manual_family <- gaussian(link = " identity ")
5

6 auto_model <- formula(log_COST ~ s(TIME) +
7 s(log_ASSET) + s(log_DEPOSIT ) +
8 s(DEP_ASS_RATIO) + s(CERT) + s(FIN))
9 auto_family <- gaussian(link = " identity ")

The results are quite favorable for the ridge models, as seen in the table
and plot below.

139

https://github.com/AllInCade/MasterProjecthttps://github.com/AllInCade/MasterProject


Model RMSE Training Time (s) Prediction Time (s)

ManualModel 1.559 0.85 0.27
AutoModel 4.996 23.90 2.17

Table 28: Bank Failure: Comparison of RMSE, Training Time, and Prediction Time for
ManualModel and AutoModel

Figure 25: Test Data Predictions vs Actuals with loess smoothing for Bank Failures

Explaining the differences in performance is easy with respect to the time
usage, but more subtle and difficult to diagnose when it comes to the accuracy
aspect. It’s worth mentioning that the GCV chose a large λ value for this
data, so that the ISSD regularized (auto) model is undersmoothed is likely
the cause. We also observe that there is collinearity between the ASSET and
DEPOSIT variables, which is likely handled better by the ridge penalty.

7.4.2 Log Return III

Now we re-visit the data from 6.5 and a slightly simpler version of the models
from 6.6. We’ll fit the model using smoothers for all the predictors we in-

140



clude. We we perform some analysis using a random forest and glmnet lasso
regression to identify the best predictors. We arrive at these models:

1 manual_model <- formula(N100_log_return ~ 1 +
2 Xr_time + Xr_N100_RSI_lag +
3 Xr_N225_log_return)
4 manual_family <- gaussian(link = " identity ")
5

6 auto_model <- formula(N100_log_return ~ s(time) +
7 s(N100_RSI_lag) + s(N225_log_return))
8 auto_family <- gaussian(link = " identity ")

By the results we see that both models struggle to fit very accurately, but
as we noted previously, predicting this type of data is inherently difficult and
requires a lot of data and sophistication. That being said, the ridge model
once again outperforms the default model.

141



Model RMSE Training Time (s) Prediction Time (s)

ManualModel 0.012 0.36 0.05
AutoModel 0.030 3.16 0.25

Table 29: Log Return: Comparison of RMSE, Training Time, and Prediction Time for
ManualModel and AutoModel

Figure 26: Test Data Predictions vs Actuals With Loess Smoothing for Log Returns

We see a clear tendency that the ridge penalty constrains the parameter
coefficient magnitudes to smooth the model more strongly than the curvature
penalty from the default model does, which here results in better predictions.

7.4.3 Face Value

In section 6.15 we encountered a data set with many extreme-valued variables.
Using Face Value as a response variable seemed to be a problem for our
modeling, with some zero values and a wide spread of positive values. We
tried using the Tweedie distribution to account for these attributes with no
luck, so we will now use gaussian to model as well to account for convergence
issues. We will therefore try to use the Ridge penalty in search of a better

142



model. The two explanatory variables were seemingly collinear, a problem the
Ridge penalty should be better at handling, so we have the following models;

1 manual_model_formula <- formula(Face ~ 1 +
2 Xr_Income_log+Xr_TotIncome_log ,
3 data = augmented_data)
4 manual_model_family <- gaussian(link=" identity ")
5

6 auto_model_formula <- formula(Face ~ s(Income_log)+
7 s( TotIncome_log),
8 data = augmented_data)
9 auto_model_family <- gaussian(link=" identity ")

We can see by the results below that the models still seem to fit quite
badly to the Face value, but looking at the performance metric there is a
slight advantage for the Ridge penalty, possibly indicating that it handles the
collinearity between the two explanatory variables better. The fact that the
models largely fail to capture and predict the response is probably due to the
data set not being good enough, i.e there just isn’t enough good information
to discern a strong and consistent pattern.

143



Model RMSE Training Time (s) Prediction Time (s)

ManualModel 81296.8 0.430 0.04
AutoModel 81795.3 1.08 0.08

Table 30: Face Value: Comparison of RMSE, Training Time, and Prediction Time for Man-
ualModel and AutoModel

Figure 27: Test Data Predictions vs Actuals With Loess Smoothing For Face Value.

We can see by the time that Ridge has an advantage also for smaller but
extreme-valued data sets, while giving approximately the same results. In
this case we can probably conclude with the problem being the data set, as
we do not have enough information in our explanatory variables to predict
the response. The two variables were the most important features when
conducting a random forest and still did not perform good. In conclusion,
this is clearly not the best example for the utilization of the penalty, but by

144



the "No Free Lunch theorem" we also wanted to include an example showing
that there is not always a best model.

7.5 Time Complexity Analysis

It’s useful to get an estimate for how large the difference in performance
(with respect to time usage) is between the models, and how they scale with
data set size. Below is an analysis performed on the ’log return III’ model
using the same data, but filtered on import by the from= "yyyy-mm-dd" to
regulate the size of the data set. We’ve used data up to 2024-01-01, and from
01-01 for 2002, 2006, 2010, 2014, 2018, 2020, and 2022. There are on average
252 trading days per year, so the number of observations are given somewhat
approximately (less than 1% off for all data sets). The training and prediction
sets are split 80:20 respectively. Note: The time for initial GCV process is
not included in this data, which obviously skews the results. However, the
GCV process is only performed once for a given model, doesn’t take much
time, and can be optimized much further.

Data

Model n Training Time (s) Prediction Time (s)
Ridge 1000 0.36 0.05
Auto 1000 3.16 0.25
Ridge 1500 0.44 0.08
Auto 1500 4.6 0.41
Ridge 2500 0.55 0.13
Auto 2500 9.5 0.9
Ridge 3500 0.65 0.16
Auto 3500 11.7 1.21
Ridge 4500 0.8 0.19
Auto 4500 14.5 1.52
Ridge 5500 0.87 0.23
Auto 5500 19.6 1.9

Table 31: Training and Prediction Times for Ridge and Auto models

145



Analysis

Assuming a power law relationship, we have

Ttrain(n) = ktrain · na

Tpredict(n) = kpredict · nb.

7.5.1 Results

Computing the parameters using the minpack.lm package in R gives the fol-
lowing:

Training
Ttrain, Ridge(n) ≈ 0.045 · n0.43 = O(n0.43)

Ttrain, Auto(n) ≈ 0.0037 · n1.64 = O(n1.64)
Prediction

Tpredict, Ridge(n) ≈ 0.005 · n0.68 = O(n0.68)

Tpredict, Auto(n) ≈ 0.0005 · n1.33 = O(n1.33)

The scaling S for each model is

Strain(n) = Ttrain, Auto(n)
Ttrain, Ridge(n) = 0.0037 · n1.64

0.045 · n0.43 = 0.0822 · n1.21 = O(n1.21)

For prediction:

Spredict(n) = Tpredict, Auto(n)
Tpredict, Ridge(n) = 0.0005 · n1.33

0.005 · n0.68 = 0.1 · n0.65 = O(n0.65)

It’s clear by these results that the Ridge method, for this model, on this
data, is vastly more efficient both in training and prediction. The difference is
greatest for training, but is also highly significant for prediction. The scaling,

146



or speedup factors, 1.21 for training and 0.65 for prediction, indicate clearly
that for larger data sets, the relative difference in time consumption could
be enormous. However, we should be careful with extrapolating power laws
arbitrarily.

8 Discussion

8.1 Results of Interest

Our work on this project has been very valuable and instructive, to ourselves
in particular, but we have also obtained some interesting results, which we
will present and discuss below.

Cubic Smoothing Spline Basis Functions Cubic smoothing splines don’t work
in the current (1.1.9) glmmTMB-package. Section 4.4.1 contains a proposition
for an implementation method. Extending the spline options in glmmTMB
to include cubic smoothing splines brings it more in line with other packages
which rely on the same mgcv utilities. Implementing the changes to fix this big
is fairly trivial, and there is no reason not to do it. More spline types to choose
from provides more flexibility which is a general benefit. An implementation
of our method as an option in the package would make the basis functions
"cs" and "cc" work in glmmTMB, evidently making the package more "easy-
to-use".

Smoother Parameterization The mgcv::gam function uses the "natural" pa-
rameterization for smooths, and all mixed model framework discussed in
this paper (glmmTMB, gamm4, gamm etc.) use mgcv::smooth2random to re-
parameterize the smooth object (4.2). This re-formulation an re-structuring
of the smooth results in a (slightly) different optimization problem (fitting
the model in simple terms) which in turn yield different solutions, ultimately
producing slightly different models. This implies that the most appropriate
frameworks for testing and comparing the glmmTMB models outputs should be
the aforementioned mixed modelling frameworks, e.g gamm4, rather than the
mgcv::gam models. When comparing glmmTMB to gamm4 models, we see that

147



the models are approximately the same, and where the differences so minor
and likely due to differences in optimization routines.

Performance Metrics for Non-Linear Models When dealing with predictive
models, specially complex and flexible ones, it’s imperative to test and eval-
uate them appropriately. We have seen that using in-sample evaluation tech-
niques, such as AIC or BIC, is generally not the most effective. Out of sample
evaluation is needed, and various cross validation techniques need to be used
to reliably and appropriately obtain measures of model performance. Ideally
true test sets should be used to evaluate the model’s ability to generalize, but
most of the time we are limited to holding out a portion of the data reserved
solely for testing. An example to demonstrate this point is the model by
Grindheim (2023) in 6.16 which uses a high degree polynomial model with-
out regularization. This approach will minimize the in-sample performance
metrics such as AIC, but will result in overfitting when the model attempts
to predict on unseen data.

Utility of Smooths in glmmTMB The addition of smooth term functionality ex-
tends the capabilities of glmmTMB. This improvement is powerful when used
together with the package’s dispersion and zero-inflation formulas, as well as
its support for diverse family functions. With smoothers, glmmTMB can now
more effectively and in a more user-friendly way handle non-linear relation-
ships and complex variance structures in the data. For example, smooth terms
can be applied to model non-linear effects of continuous predictors, while si-
multaneously addressing issues like heteroscedasticity or overdispersion with
the dispersion formula. The ability to use different family functions, such
as the beta family we used in 6.17 or binomial family for logistic regression
from 6.9, alongside these improved modeling capabilities, allows glmmTMB to
be very flexible with a user friendly interface / syntax. In short, smooth terms
improve the capacity to capture and explain variability in data sets where re-
lationships between dependent and independent variables are non-linear more
easily in glmmTMB.

148



Performance of Ridge Models We observe a clear tendency in our analyses
that our implementation of Ridge regularized models outperform the default
implementation using ISSD penalty and random effect estimation. Certainly
the increased computational efficiency is a significant advantage, and we hy-
pothesize that in some (perhaps most) cases the stronger smoothing effect of
the Ridge penalty more effectively balances the bias-variance trade-off than
the standard implementation using ISSD penalties. A very significant de-
crease in the time usage for fitting and predicting models can be very desirable
for multiple reasons, such as increased productivity during model selection
and testing, and for real time models with short forecasting horizons. The
difference in time usage between the methods increases superlinearly with
data set size, which obviously has implications for enterprise scale data anal-
ysis. We therefore feel that an implementation of Ridge penalty as an option
alongside ISSD penalties could be a worthwhile endeavour.

8.2 Further Research

There is always more to be done, and here are some of the subjects which we
have not been able to investigate in this thesis.

Model convergence issues: In our research with splines in glmmTMB we have
encountered some convergence issues. There have been a few instances where
there were convergence problems in glmmTMB, but not in gamm4, seemingly
making it a framework problem. We have mostly worked around the issues
when encountering them, such as simplification of the model or data set.
We have not found the concrete answer to why these issues arise so further
research is encouraged when optimizing splines in glmmTMB. Systematizing
and generalizing problems related to model convergence can be difficult and
time consuming, but there exists some documentation and guidance on these
issues for glmmTMB here by Brooks et al. (2024).

More Testing: Although we have produced several models across different
domains there is definitively room for more testing of the use of splines in
glmmTMB. We have not included the use of the zero-inflation submodel along
with multiple family distributions such as Conway-Maxwell Poisson in our

149

https://cran.r-project.org/web/packages/glmmTMB/vignettes/troubleshooting.html


research. Analysis containing these features could be useful for testing, mak-
ing sure modeling using splines could be used for all parts of the glmmTMB-
framework.

Our observations so far with fitting ridge regularized models shows promise,
but much more testing is needed to reinforce the hypothesis with robust ev-
idence, show that the method applies in general, and thus can be justified.
Implementing and integrating the method into the glmmTMB framework is
likely a medium-to-large sized job.

Ridge Method In our ridge models, the GCV function we have used for
smoothness selection seems to works quite well in terms of selecting the ap-
propriate value, but could and should be optimized in terms of computation,
as it’s currently run on the full data, rather than a subset of the data, which
would yield similar results most of the time.

Our current implementation of these models is quite complicated and will
obviously need to be wrapped up into nice user friendly functions, with all
the messy things happening automatically behind the curtains. This, as men-
tioned, is likely a pretty big job.

The use of parallel computing could be implemented for generating the
smooth terms in parallel, and also for more efficiently performing the GCV
process to select a smoothing parameter, so that this can be done very quickly
on the fly for a potential official implementation.

Comparing our Ridge models to external, well tested and efficiently im-
planted frameworks and models such as XGBoost in Python. In our (and
many others) experience, XGBoost tends to be a strong benchmark to mea-
sure against for quite general purpose regression tasks. We will likely perform
these comparisons, but they won’t be part of the thesis due to deadlines.

150



List of Figures

1 Conceptual illustration of ISSD Regularization . . . . . . . . . 31
2 Conceptual Illustration of Ridge Regularization . . . . . . . . 33
3 Conceptual Illustration of Ridge and ISSD Penalty Effects. . . 37
4 Schematic overview of the smoothCon function from mgcv. . . 51
5 Schematic overview of the smooth2random function from mgcv. 55
6 Tensor product smooth construction illustrated through a sym-

metric process in x and z dimensions. . . . . . . . . . . . . . . 60
7 Analysis approach . . . . . . . . . . . . . . . . . . . . . . . . . 69
8 Model Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
9 Test Data Performance for Log Returns. . . . . . . . . . . . . 80
10 Test Data Performance Bank Failures. . . . . . . . . . . . . . 85
11 Test Data Performance Log Cost. . . . . . . . . . . . . . . . . 89
12 Heatmap of Average Temperature Anomalies in the United

States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
13 Bimodal distribution of the degrees from mean variable, sug-

gesting two distinct normal distributions. . . . . . . . . . . . . 92
14 Test Data Predictions Confusion Matrix demonstrating bal-

anced accuracy, precision, and recall. . . . . . . . . . . . . . . 93
15 Performance on Test Data for Temperature: These visualiza-

tions highlight the models’ effectiveness in capturing the core
distribution while noting challenges with extreme values. . . . 96

16 Loess regression line of predictions vs actual values for the 1
hour models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

17 Loess regression line of predictions vs actual values for the 24
hour models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

18 Test data Performance for Claim Severity . . . . . . . . . . . . 107
19 Test data Performance for Claim Counts . . . . . . . . . . . . 111
20 Performance on Test Data for Face values . . . . . . . . . . . 115
21 Performance on Test Data for Death Count - Linear vs Splines 120
22 Performance on Test Data for Death Count . . . . . . . . . . 122
23 Performance on Test Data for Death Rate . . . . . . . . . . . 125
24 Predicted vs actuals values on unseen test data of tmb1, tmb2,

tmb3 and tmb4. . . . . . . . . . . . . . . . . . . . . . . . . . . 131

151



25 Test Data Predictions vs Actuals with loess smoothing for
Bank Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

26 Test Data Predictions vs Actuals With Loess Smoothing for
Log Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

27 Test Data Predictions vs Actuals With Loess Smoothing For
Face Value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A Notation

In this document, the following notation conventions are used:

• X: Used to denote a matrix X.
• y: Represents a vector y.
• log: Refers to the natural logarithm.
• E: Denotes the expectation.
• β̂: Indicates an estimation of β.
• f ′′(x): Represents the second order derivative of function f with respect

to x.
• arg minx f(x): Defined as the set of values of x for which the minimum of

f(x) is attained.
• A⊗B: Denotes the Kronecker product (matrix direct product) of matrices

A and B.
• MSE: Mean Squared Error, defined as the average of the squares of the

errors or deviations—that is, the difference between the estimator and
what is estimated.

• Cov(X, Y ): Denotes the covariance between variables X and Y .
• Volatility: In finance, volatility refers to the degree of variation of a trading

price series over time as measured by the standard deviation of logarithmic
returns.

B Distribution Families

The choice of distribution family is the assumed relationship between the
mean of the response variable and the linear predictors via the link func-
tion. GLMs and GAMs extend the assumptions beyond those of linear regres-

152



sion, and allow non-Gaussian distributions for the response variable. Some
of the basic distribution families include Binomial for binary data, Poisson
for counts, and Gamma for positive continuous data. This allows modeling
of diverse data types by approximately matching the correct mean-variance
relationship of the response. Generalized model frameworks also have the
added flexibility of choosing a link function, which linearizes the relationship
between the expected value of the response variable’s and the predictors. The
link function also provides range matching.

B.1 Exponential Families

Exponential families are a broad class of probability distributions character-
ized by being able to be expressed in a canonical form, (Dobson, 2002). The
canonical form is given by:

f(y|θ) = h(y) exp(η(θ)⊤T (y) − A(θ)), (B.1)

where y represents the outcome, θ the parameter vector, T (y) a sufficient
statistic for θ, η(θ) the natural parameter, A(θ) the log-partition function,
and h(y) a scaling function that represents a change of measure. Exponential
families are very useful in statistical modeling because they encompass many
common distributions and have desirable properties, such as the existence
of sufficient statistics. Examples of distributions within this family include
the Normal, Exponential, and Poisson distributions. Their flexibility and
theoretical foundation make exponential families widely used in statistical
inference and regression modeling. The theory of exponential families and
maximum likelihood estimation is deep, and this is a simple overview.

153



Table 32: Membership of Common Distributions in the Exponential Family. n denotes the
number of trials and r denotes the number of failures

Distribution Exponential Family

Gaussian (Normal) ✓
Binomial (with known n) ✓
Poisson ✓
Negative Binomial (with known r) ✓
Gamma ✓
Tweedie ✓
Beta ✓
Student’s t ×
Pareto (with known minimum) ✓
Cauchy ×
Lognormal ✓
Uniform (unbounded) ×

B.2 Gaussian (Normal)

The Gaussian (normal) distribution is characterized by it’s mean µ and vari-
ance σ2. It’s the most common distribution in regression models for continu-
ous responses. Its probability density function is defined as;

f(y|µ, σ2) = 1√
2πσ2

exp
−(y − µ)2

2σ2

 , (B.2)

which is utilized when modeling the conditional mean of the response as a
function of predictors.

Exponential Family The Gaussian distribution belongs to an exponential
family, and can be expressed in canonical form:

f(y|θ, ϕ) = exp
yθ − b(θ)

a(ϕ) + c(y, ϕ)
 , (B.3)

where θ = µ, ϕ = σ2, with functions a(ϕ) = ϕ, b(θ) = θ2

2 , and c(y, ϕ) =
−1

2 log(2πϕ)− y2

2ϕ . This facilitates the use of linear predictors and link functions
in GAM(M)s.

154



B.3 Tweedie

Named after Maurice Tweedie and developed by Bent Jørgensen in several
articles, including Jørgensen and de Souza (1994). The Tweedie distribution is
particularly useful in statistical modeling and analysis within insurance. The
Tweedie models supported by the glmmTMB package are compound Poisson-
Gamma mixture models. That is, the outcome has a positive probability of
taking on zero values, but is otherwise continuous.

The variance of the Tweedie distribution is defined by a specific relationship
between the mean and variance, characterized by the power parameter ξ
(often denoted as p in literature). This relationship is expressed as:

Var(Y ) = ϕ · µξ, (B.4)

where:

• ϕ (phi) is the dispersion parameter, which measures the spread or variabil-
ity in the distribution.

• ξ (xi), also known as the power parameter or p, determines the specific
type of Tweedie distribution and the relationship between the mean and
variance. Using the power parameter between one and two will give a
compound Poisson-Gamma distribution

The power parameter ξ differentiates various members within the family
of Tweedie distributions. For example:

• When ξ = 0, the distribution is normal.
• When ξ = 1, it represents Poisson-like variance.
• When ξ = 2, it indicates gamma-like variance.
• When ξ = 3, it leads to inverse Gaussian-like variance.

The Tweedie distribution is noted for its ability to model data that can
have different types of variance-mean relationships, which makes it a flexi-
ble choice for various statistical modeling scenarios, especially in generalized
linear models.

155



B.4 Negative Binomial

The Negative Binomial (NB) model is extensively used for count data where
overdispersion (relative to the Poisson distribution) is present. That is, it is
appropriate in scenarios where the variance of the count data is larger than
the mean. The probability mass function of the NB distribution is given by;

P (X = k) =
k + r − 1

k

( θ

1 + θ

)k ( 1
1 + θ

)r

, (B.5)

where k is the number of successes, r is the number of failures until the
experiment is stopped, and θ is the success probability in each experiment.

The NB model can be parameterized in terms of µ and ϕ, which controls
the degree of overdispersion;

µ = rθ

1 − θ
, and ϕ = 1

r
. (B.6)

This reparameterization facilitates the interpretation of the model param-
eters in terms of the data mean and variance.

The Negative Binomial model has several key qualities that can make it a
useful tool for statistical analysis of count data:

• Flexibility: The inclusion of a dispersion parameter allows the NB model
to take into account overdispersed data, making it more flexible than the
Poisson model for a wide range of count data.

• Interpretability: Parameters of the NB model can be directly related to
the mean and variance of the data, which gives better interpretation and
inference.

• Application: It is widely used in fields such as ecology, epidemiology, and
social sciences, where count data with overdispersion are common.

The glmmTMB package in R supports two parameterizations for the Negative
Binomial distribution: nbinom1 and nbinom2. These parameterizations offer
flexibility in modeling count data, particularly in handling overdispersion.

156



The nbinom1 parameterization expresses the variance as a linear function
of the mean. Specifically, the variance is modeled as;

Var(Y ) = µ + ϕµ. (B.7)

This parameterization is useful when the overdispersion in the data in-
creases proportionally with the mean. The nbinom1 model is typically used
when the relationship between the mean and variance is believed to be linear.

The nbinom2 parameterization, on the other hand, models the variance as
a quadratic function of the mean. The variance equation is given by;

Var(Y ) = µ + ϕµ2. (B.8)

This is particularly well-suited for situations where the variance grows at a
rate proportional to the square of the mean, indicating a non-linear relation-
ship between mean and variance. This makes nbinom2 a more flexible choice
for a wider range of overdispersed count data.
The gamm4 uses the negbin family function also found in mgcv. The negbin
family requires the specification of a dispersion parameter, often denoted as
theta, which controls the degree of overdispersion, (a higher value of theta
indicates less overdispersion). As we can see glmmTMB will have have more
flexibility and is more user friendly than gamm4 when modeling with the neg-
ative binomial distribution.

B.5 Beta

The Beta distribution is a continuous probability distribution that represents
probabilities and proportions whose outcomes lie within the interval (0, 1),
(Gupta, 2011). It is parameterized by two positive shape parameters, α and
β, which influence the shape of the distribution. The probability density
function (PDF) of the Beta distribution is given by;

f(x; α, β) = xα−1(1 − x)β−1

B(α, β) , (B.9)

where 0 ≤ x ≤ 1, α, β > 0, and B(α, β) is the Beta function, a normalization
constant to ensure that the area under the PDF integrates to 1. The Beta

157



function is defined as:

B(α, β) =
∫ 1

0
tα−1(1 − t)β−1dt. (B.10)

The Beta distribution have several key properties, including the flexibility
in shape. Depending on the values of α and β, the Beta distribution can take
on various shapes, including uniform, J-shaped, U-shaped, and bell-shaped
distributions. This flexibility makes it particularly useful for modeling diverse
phenomena. For example, in our modeling of death rates our distribution had
many values near zero leading to a high β value.

There are no beta distributions supported by gamm4, but using the glmmTMB-
package, the beta_family can be employed. This is particularly useful for
data bounded between 0 and 1, where the Beta distribution provides a flexible
way to model the dependent variable.

Using the Beta distribution for modeling proportions or rates in glmmTMB
offers several advantages, increasing the flexibility of statistical models:

• Dealing with Boundaries: Traditional linear models may predict values
outside the interval [0, 1] for proportional data. The Beta distribution,
being naturally bounded between 0 and 1, ensures that model predictions
are always within the feasible range.

• Modeling Variance Independently: The Beta distribution allows for
the modeling of the mean and variance of the data independently. This
is particularly useful in cases where the variance of the proportion is not
constant but depends on the mean.

• Flexibility in Link Functions: The glmmTMB implementation of the
Beta distribution supports various link functions, such as logit, probit,
and cloglog, providing flexibility in how the linear predictor is related to
the mean of the distribution.

In conclusion, the integration of the Beta distribution within glmmTMB sig-
nificantly enhances the ability to model data that are inherently proportions
or rates, offering a sophisticated approach to addressing the unique chal-
lenges posed by such data. By leveraging the Beta distribution’s flexibility
and bounded nature, researchers can produce more accurate and interpretable
models for their proportional data analysis needs.

158



C Topics in Statistical Modelling

Here is a short and simple summary of some topics in statistical modelling
relevant to this particular thesis.

C.1 Exploratory Data Analysis

Exploratory Data Analysis (EDA) is an important initial stage in the data
analysis process. The goal is to gain insights into the data’s main characteris-
tics through visual and quantitative methods. Typical steps in EDA include:

• Summarizing statistics: Descriptive statistics to summarize the central
tendency, dispersion, and shape of a dataset’s distribution (mean, variance,
skewness).

• Visuals: Using plots and graphics to understand trends, patterns, and
outliers; common examples include histograms, box plots, scatter plots,
and heat maps.

• Correlation analysis: Examining the relationships between variables by
calculating correlation coefficients and/or cross-tabulations. This helps in
formulating hypotheses and selecting appropriate models.

• Assessing assumptions: Checking assumptions required by statistical
modeling techniques (normality, homoscedasticity, and independence).

Cleaning and Pre-processing Data cleaning and pre-processing are essential
steps in the pipeline of statistical modeling (and machine learning). These
processes involve preparing the raw data for analysis and model building by
ensuring its quality and suitability. Common tasks include:

• Handling missing values: Imputing missing data or removing instances
with missing values to prevent biases and errors in model training.

• Normalization and scaling: Adjusting the scales of features to a stan-
dard range, such as 0 to 1 or −1 to 1. Required for models that are sensitive
to the magnitude of input values, like gradient descent-based algorithms.

• Removing outliers: Identifying and eliminating outlier values that can
skew the results and lead to poor model performance.

159



• Variable selection and extraction: Reducing the dimensionality of the
data by selecting relevant variables/features or extracting new ones that
effectively capture the essential information.

C.2 Feature Importance and Model Selection

Selecting a good model is out of many possible requires an analysis of which
data predict the response best.

Random Forests Random Forests are an ensemble learning method used for
classification and regression that operate by constructing a multitude of deci-
sion trees at training time. For classification tasks, the output of the Random
Forest is the class selected by most trees. In regression, it is the average pre-
diction of the individual trees. This method is very effective in its ability
to rank the importance of variables, handling missing data, and maintaining
accuracy even when a large proportion of the data is missing. This makes it
a good choice for identifying which variables are most predictive for the task.

k-Nearest Neighbour The k-Nearest Neighbour (k-NN) algorithm is a simple,
easy-to-implement supervised machine learning algorithm that can be used
for both classification and regression. It uses feature similarity to choose the
k closest data points in the feature space and makes predictions based on a
majority vote (classification) or average (regression) of the nearest neighbours.
k-NN is effective where the decision boundary is very irregular, but requires
a meaningful distance function/metric to assess similarity. It can be sensitive
to the scale of the data and the choice of the parameter k.

Lasso Regression for Feature Importance Lasso regression (Least Absolute
Shrinkage and Selection Operator) can be highly effective in both variable
selection and regularization, crucial for identifying significant predictors. By
imposing a penalty proportional to the absolute value of the regression coef-
ficients, Lasso effectively reduces some coefficients to zero, thus highlighting
the importance of features with non-zero coefficients under optimal condi-
tions determined by the tuning parameter λ. This parameter selection, often

160



optimized through cross-validation, ensures that the retained features signifi-
cantly impact the model’s predictive accuracy, making Lasso an indispensable
tool for creating interpretable and efficient statistical models.

C.3 Performance Evaluation

In-Sample Evaluation In-sample evaluation measures the performance of a
model using the same dataset that was employed for training. This method
provides immediate feedback on how well the model fits the training data.
Common metrics are R-squared and AIC. It is primarily useful for initial
model diagnosis and iterative model tuning during the development phase.

Out-of-Sample Evaluation Out-of-sample evaluation tests the model on data
that was not used during the model’s training phase. This is crucial for
assessing the model’s ability to generalize. The true test of its predictive
power. Common techniques include using a validation dataset or performing
cross-validation. Metrics like RMSE and MAE are common for regression,
while accuracy and F1 are common for classification. Ideally true external
test data is used to obtain an unbiased measure of the model’s ability to
generalize.

C.4 Time Series Analysis

Time Series Analysis has become an important branch of statistical modeling.
It involves analyzing data points collected or recorded at successive equally
spaced points in time. It’s relevant to fields such as economics, weather
forecasting, and stock market analysis, where understanding trends, cycles,
and seasonal variations is essential. Time series models, like AutoRegres-
sive Integrated Moving Average (ARIMA) and Generalized AutoRegressive
Conditional Heteroskedasticity (GARCH) are designed to account for auto-
correlations within the time series data. We can use these types of modelling
frameworks as a step to inform our more traditional regression models to
enhance them.

161



Auto-Correlation Auto-correlation refers to the correlation of a time series
with its own past and future values. Mathematically, the auto-correlation
function ACF for a time series {Xt} is defined as:

ACF (τ) = Cov(Xt, Xt−τ)√
Var(Xt) × Var(Xt−τ)

where τ is the time lag, and Cov and Var are the covariance and variance,
respectively.

Auto-correlation is particularly prevalent in financial time series data for
several reasons:

• Market Trends: Financial markets tend to show trends that persist over
time, which in turn leads to (positive) auto-correlation.

• Seasonality: Many financial instruments have seasonal patterns, e.g in-
creased retail stock prices before holidays, which also introduces auto-
correlation.

• Liquidity Constraints: For some instruments and markets, trading re-
strictions or liquidity constraints can delay transactions/trades, causing a
lagged effect and thus auto-correlation.

• Information Diffusion: Information takes time to propagate through
the market, leading to a gradual adjustment of prices in response to new
information being observed and acted on, and hence auto-correlation.

The presence of auto-correlation in financial time series data has important
implications:

• Modeling: Traditional models like ordinary least squares (OLS) regres-
sion assume no auto-correlation; thus, specialized models like ARIMA or
GARCH may be more appropriate.

• Risk Assessment: Auto-correlation can affect the volatility and pre-
dictability of financial instruments, which can influence risk assessments.

• Trading Strategies: Understanding auto-correlation can help in develop-
ing more effective trading strategies, such as momentum or mean-reversion
strategies.

162



Detection and Treatment Auto-correlation is commonly detected using sta-
tistical tests like the Durbin-Watson test or by examining the ACF and Partial
Auto-Correlation Function (PACF) plots. Once detected, it can be treated or
modeled using techniques like differencing, or by using models that explicitly
account for auto-correlation, such as ARIMA or GARCH models.

• Differencing: Transforming the series to a stationary one by differencing
data points with their previous values.

• ARIMA models: Integrating autoregressive (AR) and moving average (MA)
components to model the time series effectively.

• Lagged variables: Including past values as predictors in the regression
model.

ARIMA Models ARIMA is short AutoRegressive Integrated Moving Aver-
age, which is a class of models that capture various standard temporal struc-
tures in time series data. The model is typically denoted as ARIMA(p, d, q),
where p is the order of the AutoRegressive (AR) term, d is the number of
differencing required to make the time series stationary, and q is the order of
the Moving Average (MA) term.

Mathematically, an ARIMA model is expressed as:

ϕ(B)(1 − B)dXt = θ(B)Zt, (C.1)
where ϕ(B) and θ(B) are the AR and MA polynomials in the backshift

operator B, Xt is the time series, and Zt is white noise. ARIMA models are
effective for modeling a wide range of time series behaviors, including trends
and auto-correlation, and are particularly useful for forecasting and anomaly
detection, for example in financial data.

Extensions of ARIMA SARIMA, or Seasonal ARIMA, extends the ARIMA
model by explicitly accounting for seasonality in time series data. SARIMA
models are denoted as ARIMA(p, d, q)(P, D, Q)s, where P , D, and Q are the
seasonal orders of the AR, differencing, and MA components, respectively,
and s represents the length of the seasonal cycle. The seasonal differencing
involves subtracting the value from a previous season, thereby stabilizing the
mean of a seasonal time series. .

163



ARIMAX, or ARIMA with eXogenous variables, is an extension of the
ARIMA model that incorporates external or independent variables. This is
useful when the time series is thought to be influenced by factors outside of
its own past values.

Preservation of Temporal Structure in Analysis The integrity of time series
data is tied to its temporal structure, which records the sequential interde-
pendence of observations. Maintaining this order is pivotal when modeling
financial time series, where patterns and trends across time are of primary in-
terest. We will deploy several appropriate techniques to ensure the temporal
structure is maintained.

In time series cross validation it’s imperative that the validation folds are
always comprised of entries immediately following the training folds, and
that future observations aren’t used to predict backwards. Techniques like
"rolling windows" or "expanding windows" are common and effective ways of
implementing CV in time series models. Below is an example of a simple
implementation we used to cross-validate our logistic regression classifier for
hot and cold temperature deviations.

15 # Expanding Windows Cross Validation
16 n_folds <- 5
17 min_initial_obs <- floor(0.7 * train_size)
18 rsmaining_obs <- train_size - min_initial_obs
19 adjusted_fold_size <- floor( rsmaining_obs / (n_folds

- 1))
20

21 Linear_rmse_values <- c()
22 GAM_rmse_values <- c()
23

24 pb <- progress_bar$new(
25 format = " Folding [: bar] : percent :etas",
26 total = n_folds , clear = FALSE , width = 30
27 )
28

164



29 for (i in 1:n_folds) {
30 if (i == 1) {
31 current_train_end <- min_initial_obs
32 } else {
33 current_train_end <- min_initial_obs + (i - 1) *

adjusted_fold_size
34 }
35

36 current_train_data <- train_data[1: current_train_
end , ]

37

38 # Initialize final_valid_index at the start to
ensure it 's always defined

39 final_valid_index <- min(train_size , current_train_
end + adjusted_fold_size)

40

41 # Dynamically calculate features for current_train_
data

42 current_train_data$sma_2 <- EMA( current_train_data$
close , n = 2)

43 current_train_data$rsi_2 <- RSI( current_train_data$
close , n = 2)

44 current_train_data$hist_vol_2 <- runSD( current_
train_data$log_ret , n = 2, sample = FALSE)

45

46 if (i < n_folds) {
47 current_valid_data <- train_data[( current_train_

end + 1):( current_train_end + adjusted_fold_size),
]

48 } else {
49 current_valid_data <- train_data[( current_train_

end + 1):final_valid_index , ]
50 }
51

165



52 # This line now correctly accesses final_valid_
index since it 's always defined

53 full_data_for_features <- train_data[1:final_valid_
index , ]

54 full_sma_2 <- EMA(full_data_for_features$close , n =
2)

55 full_rsi_2 <- RSI(full_data_for_features$close , n =
2)

56 full_hist_vol_2 <- runSD(full_data_for_features$log
_ret , n = 2, sample = FALSE)

57

58 # Assign dynamically calculated features to
validation data

59 current_valid_data$sma_2 <- full_sma_2[( current_
train_end + 1):length(full_sma_2)]

60 current_valid_data$rsi_2 <- full_rsi_2[( current_
train_end + 1):length(full_rsi_2)]

61 current_valid_data$hist_vol_2 <- full_hist_vol_2[(
current_train_end + 1):length(full_hist_vol_2)]

62

63 # Recalculate features dynamically for current_
train_data

64 ts_data <- ts( current_train_data$log_ret , frequency
= 20) # Adjust frequency as needed

65 decomposed <- stl(ts_data , s.window = " periodic ",
robust = TRUE)

66 current_train_data$seasonal <- decomposed$time.
series[, " seasonal "]

67 current_train_data$trend <- decomposed$time.series[
, "trend"]

68

69 # Forecast for the length of the current validation
set

70 trend_forecast <- forecast ( current_train_data$trend

166



, h = nrow( current_valid_data))
71 seasonal_forecast <- forecast ( current_train_data$

seasonal , h = nrow( current_valid_data))
72 # Add forecasted trend values to current_train_data

and current_valid_data
73 current_valid_data$trend <- trend_forecast$mean
74 current_valid_data$seasonal <- seasonal_forecast$

mean
75

76 # Ensure all data are complete without NAs
77 current_train_data <- na.omit( current_train_data)
78 current_valid_data <- na.omit( current_valid_data)
79

80 Linear_cv <- lm(log_ret ~ time + volume + close_
open_ratio +

81 sma_2 + rsi_2 + hist_vol_2 +
82 trend ,
83 data = current_train_data)
84

85 GAM_cv <- glmmTMB (log_ret ~ s(time) + s(volume) +
86 s(close_open_ratio) + s(rsi_2)

+ s(sma_2) + s(hist_vol_2) +
87 s(trend),
88 disp =~ 1,
89 data = current_train_data ,
90 family = gaussian(link = "

identity "),
91 REML = TRUE)
92

93 Linear_ predictions <- predict(Linear_cv , current_
valid_data , type=" response ")

94 GAM_ predictions <- predict(GAM_cv , current_valid_
data , type=" response ", allow.new.levels = TRUE)

95

167



96 Linear_rmse <- calculate_rmse( current_valid_data$
log_ret , Linear_ predictions )

97 GAM_rmse <- calculate_rmse( current_valid_data$log_
ret , GAM_ predictions )

98

99 Linear_rmse_values <- c(Linear_rmse_values , Linear_
rmse)

100 GAM_rmse_values <- c(GAM_rmse_values , GAM_rmse)
101

102 cat( sprintf ("Fold %d: Linear Model RMSE = %f, GAM
Model RMSE = %f\n", i, Linear_rmse , GAM_rmse))

103 pb$tick()
104 }

C.5 Large Data and Smooth Modeling Challenges

Large datasets in the context of GAM(M)s present challenges and necessitate
trade-offs. They provide great value and deep insights and predictive capabil-
ities,and span many domains like healthcare, weather and finance. However,
vast data sets, especially when dealing with smoothers in statistical mod-
eling, present computational challenges. The scalability of computational
models becomes important as data size increases. For spline regression and
GAMs, the relationship between dataset size and computational demand is
often nonlinear. As highlighted by Wood (2017) in the context of GAMs, the
computational complexity involved in fitting smooth terms can scale superlin-
early or exponentially with data size. This results in substantial increases in
CPU cycles and memory requirement, which ultimately translates to higher
cost, either in the form of increasing hardware capabilities, or the amount of
computation used through cloud computing services.

The computational complexity of smoothers in GAMs In GAM frameworks,
the choice of smoother is influential for computational efficiency during model
fitting. Spline-based smoothers, such as Thin Plate Regression Splines (TPRS)

168



and Cubic Regression Splines, offer considerable flexibility for modeling com-
plex nonlinear relationships but can differ significantly in their computational
demands. Generally they range from O(n2) to O(n3), with n representing the
number of data points. The computational complexities largely stem from the
mathematical formulations of the smoothers, involving the construction and
manipulation of the smoother matrix, and operations like inversion or decom-
position.

TPRS smoothers have high computational complexity, and tend to scale
as O(n3). The high complexity is a result of the global smoothing approach,
which requires computing Euclidean distances between all pairs of points,
which involves square root calculations that are computationally intensive.
The r2 log(r) basis function used in TPRS, where r is the Euclidean distance,
further adds to the computational burden due to the inclusion of logarithmic
operations. These steps result in a dense and large smoother matrix, requiring
many complex matrix operations for model fitting .

Cubic Regression Splines are more computationally efficient, usually with
complexity around O(n2). This efficiency is achieved through the use of piece-
wise cubic polynomials that allow for localized smoothing, limiting the com-
putational expense to simpler arithmetic operations and resulting in a sparser
and smaller smoother matrix. The localized nature of these smoothers signifi-
cantly reduces the computational burden by avoiding the complex calculations
required for global smoothers like TPRS.

Penalized B-splines (P-splines) are an even more computationally efficient
option, with a complexity nearing O(n). The efficiency of P-splines stems
from the use of a B-spline basis combined with a difference penalty on the
coefficients, simplifying the computational demands. Unlike TPRS, which
necessitate dense matrix operations due to their global smoothing and the
mathematical complexity of their basis functions, P-splines benefit from a
more straightforward computational framework.

The computational complexities of these smoothers can be summarized as
follows:

1. Thin Plate Regression Splines (TPRS):

• Complexity: O(n3)

169



• Driven by global smoothing, Euclidean distance computations involv-
ing square roots, and the r2 log(r) formulation.

2. Cubic Regression Splines:

• Complexity: O(n2)
• Benefit from localized smoothing and simpler cubic polynomial calcu-

lations.

3. Penalized B-splines (P-splines):

• Complexity: Close to O(n)
• Leverage a straightforward computational approach with a B-spline

basis and a difference penalty.

Impact of Mathematical Formulations:
The specific mathematical formulations of smoothers significantly influence

their computational complexities. TPRS, with their reliance on Euclidean dis-
tances and the r2 log(r) basis, results in higher computational demands due
to the intensive nature of square root and logarithmic operations, as well as
the global consideration of data points. In contrast, the simpler arithmetic
operations underpinning Cubic Regression Splines and the streamlined ap-
proach of P-splines offer notable computational efficiency for model fitting in
GAMs.

Strategies for Effective Modeling

• Data Preprocessing: Techniques such as dimensionality reduction, sam-
pling, and data cleaning can significantly reduce the size of the dataset
without substantial loss of information, making it more manageable for
personal computers.

• Algorithm Optimization: Choosing algorithms with lower complexity or
optimizing existing algorithms to be more efficient can mitigate the ef-
fects of non-linear scaling. For example, using approximation algorithms
or algorithms with linear time complexity can be more suitable for large
datasets.

170



• Parallelization: Utilizing the multi-core architecture of modern CPUs through
parallelization can significantly reduce computation time. Techniques like
multithreading or using parallel processing libraries allow for distributing
the workload across multiple cores.

Another strategy is stratified sampling, which offers an effective method
of reducing memory requirements. It works by dividing the population into
homogeneous subgroups (strata) and sampling from each, the dataset size
can be significantly reduced without compromising representativeness. This
reduction in size directly lowers memory requirements for data processing,
enabling the fitting of complex models on limited-resource systems.

In conclusion, while modeling large datasets on personal computers is
challenging due to hardware limitations and the non-linear scaling of model
complexity, strategies like data pre-processing, algorithm optimization, par-
allelization, and memory saving steps like reducing the maximum degrees of
freedom or clever sampling strategies like stratifying provide viable pathways
to effectively manage and analyze large datasets.

Parallelization and Optimization Parallelization in statistical models and com-
puting have generated a shift in the way data analysis is performed in a
multi-core and distributed computing environment. Traditionally, computa-
tional tasks in statistics are performed sequentially, but parallelization breaks
these tasks into smaller, independent sub-components that can be executed
concurrently. This approach can be highly beneficial for statistical modeling,
where processes such as simulations, bootstrapping, or cross-validation are
inherently repetitive and can be parallelized effectively.

Parallelization in R using furrr and future Packages

Implementing efficient parallelization in R has become much easier throughthe
furrr and future packages. These offer a streamlined and simple approach
to parallel computing, to allow R users to efficiently leverage the power of
multi-core processors and distributed computing systems, to reduce compu-

171



tational times.

One good example of the efficacy of parallelization, is k-fold cross-validation.
Here we can theoretically (and practically) enhance computational efficiency
significantly. Consider a k-fold cross-validation process computed in paral-
lel across k processors. In principle, if each fold is processed independently
and simultaneously, the computational time T could be reduced by a factor
close to k, assuming perfect parallelization. This ideal speedup S can be
represented as:

S = 1
(1 − p) + p

k

where p represents the parallelizable fraction of the task. In the case of
k-fold cross-validation, p is approximately 1, as each fold is independently
processed. This result comes from Amdahl’s Law, which provides a theoretical
limit on the maximum improvement to an overall system’s processing speed
when only part of the system is improved, Amdahl (1967).

In practice, the implementation of parallelization often results in less than
the theoretical maximum speedup due to various overheads. These overheads
can significantly impact the efficiency of parallel computing systems, even
in highly parallellizable tasks like graphics rendering on GPUs, which can
leverage thousands of cores. Key points include:
• Data Distribution Overhead (Tdata): Time required to distribute data

among processors.
• Synchronization Overhead (Tsync): Time needed for coordinating the

parallel tasks, ensuring they operate in concert.
• Communication Overhead (Tcomm): Time for inter-process communi-

cation. In distributed computing environments, this can be particularly
significant.

• CPU Orchestration: Despite the parallel nature of tasks and the exten-
sive use of GPU cores, the CPU is still required to orchestrate the overall
process, adding to the overhead.

• Memory Limitations: With high levels of parallelization, systems may
encounter memory limitations, running out of memory when trying to ex-
ecute everything simultaneously.

172



• Law of Diminishing Returns: According to Gustafson’s Law, increasing
the number of processors yields diminishing returns due to the fixed size
of the sequential portion of the task, impacting the overall efficiency of
parallelization.

Thus, the actual speedup Sactual is often less than ideal, represented as:

Sactual = T

T/k + Tdata + Tsync + Tcomm

where T is the original computation time, and k is the number of processors.
The overheads are also influenced by the dataset size and the architecture of
the computing environment.

D Vector and Matrix Algebra

Statistical modelling, and numerical analysis in general relies heavily on the
vector and matrix algebra. This is often also referred to as linear algebra.

D.1 Vector and Matrix Multiplication

Vector multiplication: Often referred to as the dot product. It multiplies
two vectors to produce a scalar. Given two vectors, a = [a1, a2, . . . , an] and
b = [b1, b2, . . . , bn], where n represents the dimension of the vectors, the dot
product is given by:

a · b =
n∑

i=1
aibi = a1b1 + a2b2 + . . . + anbn

Matrix multiplication involves multiplying two matrices, A and B, to pro-
duce the resulting matrix, C. The number of columns in A must equal the
number of rows in B for the multiplication to be possible. If A is an m × n
matrix and B is an n × p matrix, then C will be an m × p matrix.

Calculation: The element cij of matrix C is calculated by taking the dot
product of the ith row of matrix A and the jth column of matrix B:

cij =
n∑

k=1
aikbkj

173



where 1 ≤ i ≤ m and 1 ≤ j ≤ p.
Vector Multiplication Example:
Given vectors a = [1, 2] and b = [3, 4],

a · b = (1)(3) + (2)(4) = 3 + 8 = 11
Matrix Multiplication Example:

Let A =
 1 2

3 4

 and B =
 5 6

7 8

,
C = AB will be computed as:

C =
 (1)(5) + (2)(7) (1)(6) + (2)(8)

(3)(5) + (4)(7) (3)(6) + (4)(8)

 =
 19 22

43 50



Tensors and Kronecker Products A tensor is a generalized matrix representing
a multi-dimensional array of numerical values. Vectors are in essence first-
order tensors and matrices are second-order tensors. Tensors can extend into
any number of dimensions, denoted as orders or ranks.

Notation: A tensor of order N is denoted as T ∈ Ri1×i2×...×iN , where each
in represents the dimension of the tensor along the n-th axis.

Operations: Tensor operations include addition, scalar multiplication,
and tensor multiplication. Tensor multiplication can be complex and is de-
fined in several ways, including the tensor product, the Hadamard product,
and contraction over indices, and is beyond the scope of this framework.

The Kronecker product is an operation on two matrices that results in a
block matrix. It is particularly useful in tensor representations and higher-
dimensional array constructions. In GAMs, tensor product splines are often
constructed through Kronecker products.

Definition: Given two matrices A of size m × n and B of size p × q, their
Kronecker product, denoted by A ⊗ B, is a mp × nq matrix constructed as
follows:

A ⊗ B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

... ... . . . ...
am1B am2B · · · amnB


174



Properties:

• Associativity: (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C)
• Distributivity over addition: A ⊗ (B + C) = A ⊗ B + A ⊗ C
• Mixed product property: (A ⊗ B) · (C ⊗ D) = (AC) ⊗ (BD), given that

the products AC and BD are defined.

D.2 Properties of Matrices

Some fundamental properties of matrices that are important in computational
fields.

Invertibility: A square matrix A of size n × n is said to be invertible
(or non-singular) if there exists another matrix A−1 such that:

AA−1 = A−1A = In

where In is the n × n identity matrix. A matrix is invertible if and only if
(det(A) ̸= 0) and if it does not have linearly dependent rows or columns.

Positive Definiteness: A square matrix A is positive definite if for
any non-zero column vector x, the scalar xT Ax is positive:

xT Ax > 0
Positive definiteness is highly useful in optimization and numerical analy-

sis, indicating that a matrix forms a convex bowl shape when used to define
a quadratic form. This ensures that solutions to optimization problems are
minimums rather than maxima or saddle points.

Diagonality: Matrix A is diagonal if all its entries outside the main
diagonal are zero. That is, Aij = 0 for all i ̸= j. Diagonal matrices are
denoted as:

A = diag(a1, a2, . . . , an)
where ai are the diagonal elements. Diagonal matrices are invertible if and

only if all diagonal elements are non-zero. They are very nice to work with,
as their inverse, determinant, and powers can be computed directly from the
diagonal elements.

Symmetry: A matrix A is symmetric if it is equal to its transpose:

175



A = AT

Symmetric matrices are important in many areas of mathematics and
physics because their eigenvalues are real and eigenvectors are orthogonal,
which simplifies many problems.

Orthogonality: A square matrix Q is orthogonal if its transpose is also
its inverse:

QT Q = QQT = In

Orthogonal matrices represent rotations or reflections and have the prop-
erty that they preserve the dot product, and thus also lengths and angles of
vectors.

Eigenvectors and Eigenvalues Eigenvectors and eigenvalues are fundamental
concepts in linear algebra. They provide ways to understand the properties
of linear transformations represented by matrices.

Definition: Given a square matrix A of size n × n, a non-zero vector v
in Rn is called an eigenvector of A if it satisfies the linear transformation
equation:

Av = λv

where λ is the eigenvalue associated with the eigenvector. Av represents
the transformation of v by A, and λv represents the scaling of v by λ. The
equation says that the transformation of v by A results in a vector that is
parallel to v, scaled by a factor of λ.

Characteristic Equation: To find the eigenvalues of A, we solve the
characteristic equation:

det(A − λI) = 0

where I is the identity matrix of size n × n. Solving this equation for λ
gives the eigenvalues of A. Once the eigenvalues are known, eigenvectors can
be found by solving the equation (A − λI)v = 0 for each eigenvalue λ.

176



• The sum of the eigenvalues of A equals the trace of A (the sum of the
diagonal elements).

• The product of the eigenvalues equals the determinant of A.
• Eigenvectors corresponding to distinct eigenvalues are linearly indepen-

dent.

Eigenvectors and eigenvalues are used in various applications including:

• Diagonalization of matrices.
• Analysis of linear dynamical systems.
• Principal component analysis in statistics and machine

Matrix Decompositions Cholesky Decomposition: The Cholesky decom-
position is a matrix factorization technique that breaks down a Hermitian,
positive-definite matrix into the product of a lower triangular matrix and
the conjugate transpose. It’s mainly used for numerical solutions of linear
equations, optimization, and Monte Carlo simulations.

Given a Hermitian, positive-definite matrix A, the Cholesky decomposition
is:

A = LL∗

where L is a lower triangular matrix with real and positive diagonal entries,
and L∗ denotes the conjugate transpose of L. If A is real, then L∗ is simply
the transpose of L, denoted LT .

Computation: The elements of L are calculated through a series of steps
iterating over the rows and columns of A. For the first row of L, l11 = √

a11,
and for i > 1, li1 = ai1

l11
. Following elements are computed by subtracting the

dot product of the previous elements in the rows and then dividing by the
diagonal element. The process repeats until all elements of L are found.

Applications: Cholesky decomposition is efficient for solving systems of
linear equations Ax = b when A is symmetric and positive definite. It re-
duces computational complexity and improves numerical stability compared
to standard Gaussian elimination methods.

177



QR Decomposition: QR decomposition partitions a matrix into a prod-
uct of an orthogonal matrix and an upper triangular matrix. It is often used
in solving linear least squares problems, eigenvalue problems, and for the
implementation of QR algorithm for finding eigenvalues and eigenvectors.

Given a matrix A of size m × n, QR decomposition represents A as:

A = QR

where Q is an m × m orthogonal matrix (i.e., QT Q = QQT = I), and R is
an m × n upper triangular matrix. If m ≥ n, R will have a shape of n × n in
its upper part and zeros elsewhere.

Computation: There are several methods to compute the QR decom-
position, including the Gram-Schmidt process, Householder reflections, and
Givens rotations. The choice of method depends on the specifics of the prob-
lem and domain.

QR decomposition is highly applicable in solving linear least squares prob-
lems, where the goal is to minimize the difference between the observed values
and those predicted by a linear model. It is also a fundamental technique fir
finding the eigenvalues and eigenvectors of a matrix.

Pseudo-Inverse Matrices The Moore-Penrose pseudo-inverse of a matrix
A, denoted A+, is defined as the matrix that satisfies the following four con-
ditions:

1. AA+A = A

2. A+AA+ = A+

3. (AA+)⊤ = AA+

4. (A+A)⊤ = A+A

This definition is valid for any matrix A, including non-square and rank-
deficient matrices.

The pseudo-inverse is extensively used in parameter estimation, where
X = A+B minimizes the error in predictions. Common examples of uses are
linear regression and singular value decomposition, to handle non-invertible

178



covariance matrices and optimize loss functions. The efficiency and robust-
ness of these matrices in computational applications make them very useful
in statistical modelling.

Sparse Matrices A sparse matrix is a matrix in which most of the elements
are zero. Formally, a matrix A is considered sparse if the number of non-zero
elements is significantly smaller than the total number of elements, leading
to storage and computational efficiencies. We can denote this as:

density(A) = number of non-zero elements
total number of elements , where density(A) ≪ 1.

Sparse matrices are highly relevant in large-scale numerical computations
as they reduce the memory usage and computational complexity. Efficient
algorithms utilizing sparse matrix representations are used in various appli-
cations. Examples include systems of linear equations, large networks (graph
theory), and storage of large-scale data structures.

E R Code

Below are R code snippets of relevant functions and methods we have used
and referenced in the thesis. Complete R files are available on GitHub.

E.1 Penalty Matrix (S) and Scale Matrix (A)

Given a penalty matrix S for a smooth term, the smoothness penalty is
Penalty = bT Sb, with b as basis function coefficients. mgcv::smooth2random
facilitates transformation to a random effect using matrix A and diagonal
matrix D, defined as bfit = A−1boriginal. Consequently, S and A relate as
S = (A−1)T A−1.

105 # Smooth Term Setup
106 sm <- mgcv :: smoothCon (s(x), data=as.data.frame(x))[[1

]]
107

108 # Extracting S Matrix
109 S <- sm$S[[1]][-(9:10), -(9:10)]

179

https://github.com/AllInCade/MasterProject


110

111 # Random Effect Transformation
112 re <- mgcv :: smooth2random(sm , "", type=2)
113 A <- (re$trans.U %*% diag(re$trans.D))[-(9:10),-(9:10

)]
114 S_check <- t(solve(A)) %*% solve(A)

1. Smooth Term Setup: Initialize a penalized spline setup using mgcv::smoothCon.

2. Extracting S Matrix: Extract the penalty matrix S from the smooth
object. Modify S as needed.

3. Random Effect Transformation: Use mgcv::smooth2random to re-
paramterize the smooth to a random effect representation. This step
also involves taking the matrix A from the transformation provided by
smooth2random, and then confirming that indeed S = (A−1)T A−1 holds
true.

E.2 Prediction Matrices

115 s2rPred <- function (sm , re , data) { X <- PredictMat (
sm , data)

116 # Get prediction matrix for new data
117 # Transform to random effect parameterization
118 if (!is.null(re$trans.U)) X <- X %*% re$trans.U
119 X <- t(t(X) * re$trans.D)
120 # Re -order columns according to random effect re -

ordering
121 X[, re$rind] <- X[, re$pen.ind != 0]
122 # Re -order penalization index in the same way
123 pen.ind <- re$pen.ind; pen.ind[re$rind] <- pen.ind[

pen.ind > 0]
124 # Start return object
125 r <- list(rand = list(), Xf = X[, which(re$pen.ind

== 0),
126 drop = FALSE])

180



127 # Loop over random effect matrices
128 for (i in 1:length(re$rand)) {
129 r$rand[[i]] <- X[, which(pen.ind == i), drop =

FALSE]
130 attr(r$rand[[i]], "s.label") <- attr(re$rand[[i]]

, "s.label")
131 }
132 names(r$rand) <- names(re$rand)
133 r
134 }

181



References

Amdahl, G. M. (1967). Validity of the single processor approach to achiev-
ing large scale computing capabilities. In AFIPS conference proceedings,
volume 30, pages 483–485. ACM.

Brooks, M., Kristiansen, T. B., et al. (2017). glmmTMB Balances Speed
and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed
Modeling. The R Journal, 9.

Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg,
C. W., Nielsen, A., Skaug, H. J., Maechler, M., and Bolker, B. M. (2024).
glmmtmb: Troubleshooting. Accessed: 2024-05-27.

de Jong, P. and Heller, G. Z. (2008). Generalized Linear Models for Insur-
ance Data. International Series on Actuarial Science. Cambridge University
Press.

Dobson, A. J. (2002). An introduction to generalized linear models. Chapman
& Hall/CRC texts in statistical science series. Chapman & Hall/CRC, Boca
Raton, 2nd edition.

Grindheim, B. (2023). Modellering av overdispersjon i populasjonsdata. Mas-
ter’s thesis, The University of Bergen. Accessed: 2023-05-09.

Gupta, A. K. (2011). Beta Distribution, pages 144–145. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statisti-
cal Learning: Data Mining, Inference, and Prediction. Springer, New York,
2nd edition.

Jørgensen, B. and de Souza, M. (1994). Fitting Tweedie’s compound Poisson
model to insurance claims data. Scandinavian Actuarial Journal, pages
69–93.

Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., and Bell, B. M. (2016).
Tmb: Automatic differentiation and laplace approximation. Journal of
Statistical Software, 70(5).

182



Myhre (2024). Masterproject. Accessed: 2024-05-27.

OpenAI (2024). ChatGPT - AI Language Model. Accessed: [2023 - 2024].

Raschka, S. (2018). Model Evaluation, Model Selection, and Algorithm Se-
lection in Machine Learning.

Renaissance Technologies LLC (2024). About - renaissance technologies.
https://www.rentec.com/Home.action?about=true. Accessed: 2024-04-
05.

Tiwari, A. (2020). Modeling Insurance Claim Severity: An illustrative guide
to model insurance claim severity using generalized linear models in Python
& R. The Startup. Published on March 30, 2020.

Wallisch, C., Bach, P., Hafermann, L., Klein, N., Sauerbrei, W., Steyer-
berg, E., Heinze, G., and Rauch, G. (2022). Review of guidance papers
on regression modeling in statistical series of medical journals. PLoS One,
17(1):e0262918.

Wikipedia contributors (2024). Automatic differentiation — Wikipedia,
the free encyclopedia. https://en.wikipedia.org/wiki/Automatic_
differentiation. Accessed: 2024-03-23.

Wolpert, D. and Macready, W. (1997). No free lunch theorems for optimiza-
tion. IEEE Transactions on Evolutionary Computation, 1(1):67–82.

Wood, S. (2017). Generalized Additive Models: An Introduction with R. Chap-
man and Hall/CRC, 2nd edition.

Wood, S. N. (2020). Inference and computation with generalized additive
models and their extensions. TEST, 29(2):307–339.

183

https://www.rentec.com/Home.action?about=true
https://en.wikipedia.org/wiki/Automatic_differentiation
https://en.wikipedia.org/wiki/Automatic_differentiation

	Acknowledgements
	Tools and Aids
	Introduction
	Regression Models
	Linear models
	Fixed Effects

	Linear Mixed Models
	Random Effects
	Covariance Structure
	Maximum Likelihood
	Restricted Maximum Likelihood (REML)

	Generalized Linear Models (GLMs)
	Generalized Linear Mixed Models (GLMMs)
	Generalized Additive Models (GAMs)

	Smoothers
	Splines
	Basis functions and different types of splines

	Decomposition into 'Fixed' and 'Random' Parts
	Cubic Regression Splines
	Cubic Smoothing Splines
	Implications for Implementing Smooth Terms in glmmTMB

	Penalized Regression
	Penalization and Regularization
	Penalty Terms and Quadratic Programming

	Integrated Squared Second Derivative Penalty
	Relationship between Integral Expression and Matrix Formulation of ISSD Penalty

	Ridge Penalty
	Relationship between Integral Expression and Matrix Formulation of Ridge Penalty

	Strategies for Choosing Smoothing Parameter
	K-Fold Cross-Validation
	Generalized Cross-Validation
	Maximum Likelihood (ML) and Restricted Maximum Likelihood (REML)
	Limitations of Generalized Cross-Validation
	Alternative Approaches

	Overview of Forms of Smoothers
	Isotropic Smoothers
	Scale Invariant Smoothers
	Tensor Product Smoothers

	Quadratically Penalized Smoothers & Gaussian Random Fields

	R packages 'mgcv' and 'glmmTMB'
	mgcv
	Simple Example

	Smooth Construction in mgcv
	glmmTMB
	Simple Example

	Template Model Builder
	Automatic Differentiation
	Principles of AD
	Modes of AD
	Computational Efficiency

	Laplace Approximation in TMB for GLMMs
	Inner Optimization Problem
	Outer Optimization Problem
	Computational Considerations

	Model construction and estimation in glmmTMB
	Fixed Effects Estimation
	Random Effects Estimation
	Covariance Matrix Estimation


	Implementing Smooth Terms in glmmTMB with mgcv machinery
	Smooth Construction using smoothCon
	Re-parameterizing Using smooth2random
	Natural Parameterization in GAMs
	Re-Parameterized Formulation for Mixed Models
	Re-Parameterization by smooth2random

	How s() can be presented in glmmTMB
	Basis functions in glmmTMB
	Proposition for bs="cs" and bs="cc"

	Complexities of Tensor Product Splines
	Tensor Product Construction of Smooths in GAMs

	Encountering Model Convergence Issues
	Optimizers in R and TMB


	Researching Improvements for s() in glmmTMB
	Empirical results for glmmTMB, gamm4 and mgcv:gamm
	Optimizing basis functions
	Presentation of models
	Comparison


	Data Analysis with Spline Regression
	No Free Lunch
	Datasets
	General Analysis Approach
	Choice of Performance Metrics
	Time Series and Forecasting Models

	Financial Data
	Log Return I
	Model Selection
	Results

	Log Return II
	Merged Datasets
	Model Selection
	Results

	Bank Failures Count
	Counts of Bank Failures
	Model Selection
	Results

	Bank Failures and Estimated Loss
	Model selection
	Results

	Hot and Cold Deviations Classifier
	Model Selection - Classifier
	Results

	Temperature Anomalies: Gaussian Models
	Model Selection
	Results

	Wind Speeds
	Model Selection
	Results

	Wind Speeds II
	Model Selection
	Results

	Claim Severity
	Model Selection
	Results

	Claim Counts
	Model Selection
	Results

	Face Value of Insurance Policies
	Model Selection
	Results

	Death Counts
	Model Selection
	Results

	Death Rates
	Model Selection
	Results


	Ridge Models in glmmTMB
	Regularization Effects
	Comparing Implicitly vs Explicitly Penalized Models
	Implementing Ridge Regularized GAMs
	Smooths as Fixed Effects
	Implementing a Ridge Penalty
	Smoothness Selection
	Training and Validating Models

	Data Analysis
	Bank Failure Estimated Loss
	Log Return III
	Face Value

	Time Complexity Analysis
	Results


	Discussion
	Results of Interest
	Further Research

	Notation
	Distribution Families
	Exponential Families
	Gaussian (Normal)
	Tweedie 
	Negative Binomial
	Beta

	Topics in Statistical Modelling
	Exploratory Data Analysis
	Feature Importance and Model Selection
	Performance Evaluation
	Time Series Analysis
	Large Data and Smooth Modeling Challenges

	Vector and Matrix Algebra
	Vector and Matrix Multiplication
	Properties of Matrices

	R Code
	Penalty Matrix (S) and Scale Matrix (A)
	Prediction Matrices


