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Abstract
Ghost reflections from the free surface distort the source signature and generate notches

in the seismic amplitude spectrum. For this reason, removing ghost reflections is

essential to improve the bandwidth and signal-to-noise ratio of seismic data. We have

developed a novel approach that involves training a convolutional neural network to

remove source and receiver ghosts from marine dual-component data. High-quality

training data is essential for the network to produce accurate predictions on real data.

We have used the demigration of a stacked depth-migrated image to create training

shot gathers. Demigrated pressure and vertical velocity data are used to train the net-

work. We apply the trained network on real pressure and vertical velocity data with

ghosts. The network’s output may be either source deghosting and receiver deghost-

ing, or both. We test our method on synthetic Marmousi and real North Sea data with

dual-component streamers. The method is compared with conventional dual-component

deghosting using the summation of pressure and vertical velocity. Results show that the

method can accurately remove the ghosts with only minor errors in synthetic data. Based

on a decimation test, the method is less affected by spatially aliased data than a conven-

tional method, which could benefit data with high frequencies and/or large receiver or

cable separations. On real data, the results show consistency with conventional deghost-

ing, both within and outside the training area. This indicates that the method is a viable

alternative to conventional methods on real data.

K E Y W O R D S
data processing, modelling, multi-component, noise, seismics, signal processing

INTRODUCTION

A seismic ghost is a reflection of seismic waves from the sea

surface. The sea surface pressure-wave reflection coefficient

is close to −1, meaning that the ghost has the opposite polar-

ity with almost the same amplitude as the up-going waves.

Towed streamer acquisitions generate three ghosts, one from

the source side, one from the receiver side, and finally, a ghost

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original
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from both the source and receiver side, as shown in Figure 1.

Because of the extra distance the ghosts travel, they arrive at

the receiver with a slight time delay relative to the primary.

The ghosts elongate and distort the seismic signal and its

frequency spectrum. Both the pressure and particle velocity

measurements contain ghosts. However, pressure and particle

velocity data have the opposite receiver ghost polarity relative

to the primary polarity (Figure 1b,c). This is due to the fact
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DEGHOSTING DUAL-COMPONENT DATA 69

F I G U R E 1 (a) Illustration showing four different ray paths from a source to a receiver where the black, blue, red and green ray paths

correspond to the primary, source ghost, receiver ghost and source-receiver ghost, respectively. (b) Measurement of pressure. (c) Measurement of

particle velocity. (d) The amplitude spectrum illustrating notches for the pressure and velocity data. The receiver ghost arrives later and has a lower

notch frequency than the source ghost because it is located deeper than the source. Source: Adopted from de Jonge, Vinje, Zhao et al. (2022).

that pressure measurements do not differentiate between up-

and down-going wavefields arriving at the receiver, whereas

particle velocity is a vector, measuring opposite polarities in

up- and down-going wavefields. In the pressure amplitude

spectrum, there are ghost notches (Figure 1d) at frequencies

given by (Aytun, 1999)

𝑓𝑃
𝑛

=
||||𝑛 𝑣W
2Δ𝑧cos (𝛼)

|||| , 𝑛 = 0, 1,… , (1)

where 𝑣𝑊 , Δ𝑧 and 𝛼 are the water velocity, source or receiver

depth and incidence angle (positive downwards, Figure 1),

respectively. The amplitude spectrum of the vertical particle

velocity (Vz) has receiver notches (Figure 1d) at frequencies

given by (Carlson et al., 2007)

𝑓𝑉
𝑛

=
|||| 𝑣W
2Δ𝑧cos (𝛼)

(1
2
+ 𝑛

)|||| , 𝑛 = 0, 1,… . (2)

The receiver notch frequencies are different for hydrophone

and particle velocity data because the primary reflection and

its receiver ghost have opposite polarities in pressure data

but the same polarities in particle velocity data (Figure 1b,c).

However, on the source side, both pressure and particle veloc-

ity have the same notch frequency described by Equation (1).

This is because the primary reflection and its source ghost are

recorded with opposite polarities in both pressure and particle

velocity data. Increasing the source or receiver depth results

in a larger time separation of the primary and ghost arrivals

and, consequently, a lower frequency notch. Ghost notches are

problematic because they attenuate some frequencies, which

reduce the temporal resolution (Carlson et al., 2007; Ham-

mond, 1962; Schneider et al., 1964). Usually, the ghosts are

removed during processing to improve the bandwidth, resolu-

tion and signal-to-noise ratio. Deghosting is also beneficial for

seismic inversion and geological interpretation (Song et al.,

2015).

Historically, the ghost problem in seismic acquisition was

solved by localizing the sources and receivers at shallow

depths, usually between 5 and 9 m, to push the notch above

the usable frequency range. More recently, other acquisition

methods were proposed, such as slant streamers (Bearnth

& Moore, 1989), variable-depth streamers (Soubaras &

Dowle, 2010), over-under streamers (Hill et al., 2006) and

multi-component streamers (Carlson et al., 2007). Slant and

variable-depth streamers aim to attenuate the receiver ghost

using the notch-diversity along the streamer. Over-under
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70 de JONGE ET AL.

F I G U R E 2 Illustrates the deghosting using demigration-based supervised learning (DEGDEM) workflow with dual-component data used in

this paper. Source: Adopted from de Jonge, Vinje, Zhao et al. (2022).

streamers have different ghost notches. Consequently, com-

bining the data from these two streamers can help fill the

receiver ghost notches. The dual-component streamer con-

tains both hydrophones and geophones measuring pressure

and Vz. As shown in Figure 1, ghost notches in the hydrophone

data correspond to ghost peaks in the vertical geophone data.

This complementary amplitude behaviour makes these data

well suited for receiver deghosting, which means instead of

towing shallow and relying on hydrophone-only recordings,

we can tow deeper and use vertical geophone energy to fill

in the hydrophone notches. Towing deeper has the advan-

tage of reducing swell noise (Tenghamn & Dhelie, 2009).

In this paper, we will focus on receiver deghosting using

dual-component (pressure and Vz) measurements.

A central problem with the dual-component streamers is

that Vz data can be noisy at low frequencies to the extent

that it can be difficult to incorporate them in conventional

deghosting approaches (Mellier & Tellier, 2018; Peng et al.,

2014; Poole & Cooper, 2018). Therefore, the low-frequency

deghosting relies heavily on the hydrophone data.

For hydrophone-only data, the simplest deghosting method

uses the far-field source signature and deterministic decon-

volution (Jovanovich et al., 1983), assuming vertical ray

paths. Recently, more advanced deghosting methods have

been developed, such as frequency–slowness domain inver-

sion (Zhang et al., 2018), 𝜏 − 𝑝 domain inversion (King &

Poole, 2015; Masoomzadeh & Woodburn, 2013; Poole, 2013;

Poole & Cooper, 2018; Rickett et al., 2014), inverse Fourier

transform deghosting (Amundsen & Zhou, 2013), space-

domain deghosting based on Green’s functions (Amundsen,

Zhou, et al., 2013; Amundsen, Weglein, et al., 2013) or

joint deconvolution of a migration and a mirror migration

(Soubaras, 2010).

For dual-component data, the conventional approach is to

sum the pressure and Vz data, after an obliquity correction on

the Vz data to correct for the fact that it records particle veloc-

ity only in the vertical direction (Tenghamn & Dhelie, 2009).

As mentioned above, low-frequency noise on Vz data can con-

taminate this sum, so normally, only pressure data is used

in the deghosting of the lowest frequencies. As opposed to
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DEGHOSTING DUAL-COMPONENT DATA 71

F I G U R E 3 Pressure and Vz with ghosts are the input of the

network. Pressure without ghosts is the output. The demigrated

pressure data without ghosts is used to calculate the deghosting error

and update the weight of the network using backpropagation.

the pressure and Vz (P–Vz) sum, a hydrophone-only deghost-

ing requires knowledge of the water-surface reflectivity and

source and receiver locations. Note, however, that some meth-

ods still use pressure and Vz data also for the low frequencies

but avoid contamination of Vz noise, such as Telling and

Grion (2022), who used an inversion-based approach with

a hybrid operator in frequency and space, and Poole and

Cooper (2018), who used an inversion-based approach in

the 𝜏 − 𝑝 domain. However, like many multi-component

deghosting methods, both approaches use a weighting

scheme to reduce the influence of the Vz data for lower

frequencies.

Machine learning and, more specifically, artificial neural

networks have recently been used for various processing steps

such as swell noise attenuation (Zhao et al., 2019), debubbling

(de Jonge, Vinje, Poole, et al., 2022), seismic inference noise

attenuation (Sun et al., 2019; Sun & Hou, 2022) and interpo-

lation (Greiner et al., 2019; Hlebnikov et al., 2022). Several

papers have also described the use of neural networks for

deghosting (Almuteri & Sava, 2021; de Jonge, Vinje, Zhao,

et al., 2022; Peng et al., 2021; Vrolijk & Blacquiere, 2020).

However, none of these methods used multi-component data

for deghosting. de Jonge, Vinje, Zhao et al. (2022) used dem-

igration to create realistic pressure data with and without

ghosts to train a convolutional neural network. The method

was called deghosting using demigration-based supervised

learning (DEGDEM) and used a neural network to deghost

real seismic pressure data.

This paper aims to expand the DEGDEM method to also

include Vz data during training and prediction in contrast

to the paper by de Jonge, Vinje, Zhao et al. (2022). Most

importantly, we want to improve deghosting at low frequen-

cies exhibiting substantial Vz noise. However, this requires

training data with both pressure and Vz generated by demi-

gration. Below we describe how we produce Vz data using

demigration and train the network using pressure and Vz data.

Dual-component DEGDEM is tested on synthetic Marmousi

data and real data from the Northern North Sea. We compare

our results with conventional dual-component deghosting as

used in the seismic industry. In this paper, the term ‘con-

F I G U R E 4 An illustration showing the basic concept of

constant-offset migration and demigration. The ray paths and two-way

traveltime are calculated from S and R to all depth points. Migration is

a mapping from the data domain (a) to the depth domain (b), and

demigration is the reverse process.

F I G U R E 5 Illustration of how the source, receiver and mirror

positions are used to create four different datasets. Equations (9) or (10)

and these four datasets can be used to create data with source and

receiver ghosts. Source: Adopted from de Jonge, Vinje, Zhao et al.

(2022).

ventional deghosting’ refers to 𝜏 − 𝑝 domain inversion-based

pressure-only deghosting at low frequencies and P–Vz sum at

high frequencies.

METHODOLOGY

Convolutional neural networks

This paper uses a convolutional neural network (CNN) with

a U-net structure (Ronneberger et al., 2015). A CNN uses
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72 de JONGE ET AL.

F I G U R E 6 Common-channel gathers showing (a) demigration of pressure data with ghosts using Equation (9) and (b) demigration of Vz data

with ghosts using Equation (10). A zoom is used in both figures focusing on a single event where arrows highlight the primary (black), source ghost

(red), receiver ghost (green) and source-receiver ghost (white). The Vz data is scaled with −𝛒𝐯𝐰 for illustration purposes.

convolutions in contrast to a dense neural network that uses

matrix multiplications. As a result, the CNN has sparse

interactions between neurons in the network that make the

network more efficient. The kernel size determines the num-

ber of interactions of neurons from one layer to the next. The

U-net structure uses an encoder to down-sample the number

of pixels and a decoder to up-sample the number of pixels. The

U-net also contains skip connections that copy feature maps

from one layer to another. Pooling operations down-sample

the size of the feature maps by using some functions to sum-

marize subregions (e.g. max. pooling and average pooling).

Transposed convolution up-samples the size of the feature

maps and is an operation that goes in the opposite direction of

a standard convolution. Dumoulin and Visin (2018) showed

examples of transposed convolution and pooling functions. In

contrast to CNNs without down-sampling or up-sampling, the

U-net structure is beneficial because of the increased recep-

tive field due to the down- and up-sampling (Lucas et al.,

2018). In addition, down- and up-sampling makes it more

efficient.

A few other papers have also used the U-net structure

for pressure-only deghosting with high-quality results (de

Jonge, Vinje, Zhao, et al., 2022; Peng et al., 2021; Vrolijk &

Blacquière, 2021). In our case, we are confident that a U-net

structure will also give good results on dual-component data.

The exact structure used in our paper is also shown in the

paper by de Jonge, Vinje, Poole et al. (2022) and de Jonge,

Vinje, Zhao et al. (2022), which is similar to the original U-

net by Ronneberger et al. (2015) but with more down- and

up-sampling layers. That said, the goal of this paper is not to

find the optimal network structure but to develop a new CNN

based training method for deghosting dual-component data.

Deghosting using demigration-based
supervised learning workflow

This research is an extension of the work done by de Jonge,

Vinje, Zhao et al. (2022) on pressure-only deghosting. In the

following section, we review the basic features of that method.

The approach is called deghosting using demigration-based

supervised learning (DEGDEM) and involves generating syn-

thetic shot gathers using Kirchhoff demigration (Santos et al.,

2000a) from a seismic image. We create the seismic image

in our workflow by migrating seismic data, usually with

pre-stack depth migration (PSDM). Kirchhoff migration and

demigration are reverse processes (Santos et al., 2000b). As

a result, the demigrated data will resemble the seismic data

before migration. This is described in more detail in the

‘Modelling demigrated dual-component data’ section.

Using demigrated data to train the network has two main

advantages first, the training data resembles the recorded

seismic data, and second, it is possible to generate training

data with no ghosts. The workflow is shown in Figure 2

and is a modification of the workflow shown in de Jonge,

Vinje, Zhao et al. (2022) as it includes dual-component

data. After recording the data (Figure 2 R1), it usually goes

through a standard processing flow with multiple steps. These

processing steps include denoising, deblending, debubbling,

designature, deghosting and demultiple, followed by binning,

interpolation, regularization, migration and stacking to pro-

duce a PSDM image. We use the PSDM image and a smooth

PSDM velocity model for the demigration (Figure 2 M1, M2

and M3) to create shot gathers containing pressure (Figure 2

S2 and S3) and vertical particle velocity (Vz) (Figure 2 S1)

data with and without ghosts. We train a CNN using these shot
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DEGHOSTING DUAL-COMPONENT DATA 73

gathers. Figure 3 illustrates how we train the network. Pres-

sure and Vz data with ghosts (Figure 3 T1 and T2) are the input

to the network. Pressure data without ghosts is the desired out-

put of the network. During training, demigrated pressure data

without ghosts (Figure 3 T3) is used to update the weights

of the network using back-propagation. Thousands to tens of

thousands of shot gathers are used to train the network. This

trained network is later used on real pressure and Vz data with

ghosts to predict pressure data without ghosts.

The shot and receiver positions from the real marine acqui-

sition were used when creating the training data. It is possible

to apply the network (to predict deghosted data) to data from

the same area from which the training data was created. Alter-

natively, it is possible to use a small portion of an area to

create training data and apply the network to the entire area. de

Jonge, Vinje, Zhao et al. (2022) showed on synthetic and real

data that the deghosting quality is still high even if the train-

ing and prediction areas are not the same. They also showed

that the deghosting required to create the PSDM image for

demigration does not have to be optimal for the network to

perform well. In addition, DEGDEM is quite robust to errors

in sea-surface reflection coefficients and swell waves. In the-

ory, it is possible to train a neural network on data from one

survey geometry and apply it to another, but de Jonge, Vinje,

Zhao et al. (2022) did not explore this. It is believed that sim-

ilar geology is an advantage when applying the network to

another area.

Modelling demigrated dual-component data

Kirchhoff demigration was used to produce pressure data for

training. Kirchhoff demigration can produce synthesized seis-

mograms shown by Santos et al. (2000a). True-amplitude

Kirchhoff demigration and true-amplitude Kirchhoff migra-

tion are considered reverse processes (Santos et al., 2000b).

The Kirchhoff constant-offset migration integral for any

migration domain point (𝐱, 𝑧) can be represented by (Bleis-

tein, 1987; Santos et al., 2000a)

IM (𝐱, 𝑧) = − 1
2𝜋 ∫ ∫ 𝑑2𝜉𝑊M (𝜉, 𝐱, 𝑧) 𝜕𝐷 (𝜉, 𝑡)

𝜕𝑡
|𝑡 = 𝜏(𝜉,𝐱,𝑧),

(3)

where IM(𝐱, 𝑧) is the migrated data, 𝑊M(𝜉, 𝐱, 𝑧) is the true-

amplitude migration weight function, and 𝐷(𝜉, 𝑡) is a trace in

the data domain for a given surface location 𝜉 = (𝜉𝑥 , 𝜉𝑦). The

two-way traveltime 𝜏(𝜉, 𝐱, 𝑧), shown in Figure 4, is calculated

by ray tracing from constant-offset sources 𝑆(𝜉) and receivers

𝑅(𝜉) down to a fixed migration domain point (𝐱, 𝑧). Equa-

tion (3) integrates traces along 𝜏(𝜉, 𝐱, 𝑧) in the data domain.

Figure 4 shows how we integrate data in the data domain and

map it to a point (𝐱, 𝑧) in the migration domain (Bleistein

et al., 2001; Schleicher et al., 2007). Kirchhoff demigration

involves a weighted mapping process from the depth migrated

image to the seismic data. The Kirchhoff demigration integral

is (adopted from Santos et al., 2000a; Tygel et al., 1996) as

follows:

𝑃 (𝜉, 𝑡) = 1
2𝜋 ∫ ∫ 𝑑2𝐱𝑊D (𝐱, 𝜉, 𝑡) 𝜕IM (𝐱, 𝑧)

𝜕𝑧
|𝑧 = 𝜁(𝐱,𝜉,𝑡),

(4)

where 𝑃 (𝜉, 𝑡) is the demigrated data, 𝑊D(𝐱, 𝜉, 𝑡) is the true-

amplitude data weight function, IM(𝐱, 𝑧) is data in the

migrated domain, and 𝜁 (𝐱, 𝜉, 𝑡) is the depth of the lateral posi-

tion x in the data domain corresponding to the time point 𝑡

of the trace in location 𝜉 in the data domain. For a constant

𝑡, 𝜁 (𝐱, 𝜉, 𝑡) forms an isochron surface in the depth domain as

shown in Figure 4.

We now turn to the problem of demigration to Vz data.

We have not seen anyone attempting to do this in the liter-

ature. As mentioned above, the demigration in Equation (4)

integrates the migrated data along isochron surfaces and

maps to a point (𝜉, 𝑡) in the data domain. The output of

Equation (4) is pressure data as the input data to migra-

tion, shown in Equation (3), is pressure data and these are

reverse functions. This means that each of the traces in

the integrand in Equation (4) is also pressure data. So we

will need to scale the pressure data in the integrand appro-

priately before integrating to convert from pressure to Vz.

Tenghamn and Dhelie (2009) defined the obliquity filter

as

𝐹
(
𝜔, 𝑘𝑧

)
= 𝜌𝜔

𝑘𝑧
, (5)

where 𝜌 is the water density, 𝜔 is the angular frequency, and

𝑘𝑧 is the vertical wavenumber. The obliquity filter is used to

scale Vz data such that the up-going wavefields of pressure

and Vz have equal magnitude and the opposite polarity to the

down-going wavefield. This filter is used before pressure, and

Vz data are summed together to remove the receiver ghost.

More information about this filter is given in the next section.

We want to use the inverse obliquity filter, 1∕𝐹 , to convert

pressure to Vz. The vertical wavenumber, kz, can be expressed

as

𝑘𝑧 =
𝜔 cos (𝜃)

𝑣W
, (6)

where 𝜃 is the incidence angle at the receiver (Figure 4),

and 𝑣W is the water velocity. As can be seen from Figure 4,

the incidence angle 𝜃 is 𝜋 for a wave travelling verti-

cally upwards. If we insert Equation (6) into the inverse of

Equation (5), we obtain

1
𝐹

= cos (𝜃)
𝜌𝑣W

. (7)
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74 de JONGE ET AL.

F I G U R E 7 An example of an obliquity filter (left) and a finite-difference (FD)-modelled shot gather from the Marmousi model (right) in the

frequency–wavenumber (FK) amplitude domain. The black stippled line indicates when 𝐤𝐳 = 0.

F I G U R E 8 (a) An example of mechanical Vz noise on a real shot gather. (b) The same Vz shot gather, but with a low-cut filter (20 Hz) applied.

We include the inverse obliquity filter from Equation (4)

into Equation (7) to have Vz as the output of demigration:

𝑉𝑧 (𝜉, 𝑡) = 1
2𝜋 ∫ ∫ 𝑑2𝐱𝑊D (𝐱, 𝜉, 𝑡) cos (𝜃)

𝑣W𝜌

𝜕IM (𝐱, 𝑧)
𝜕𝑧

|𝑧 = 𝜁(𝐱,𝜉,𝑡). (8)

In the further derivation of the demigrations for machine

learning described below, we use Equations (4) and (8) to

generate demigrated pressure and Vz data, respectively.
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DEGHOSTING DUAL-COMPONENT DATA 75

F I G U R E 9 Illustration of how real Vz noise and clean demigrated Vz data are combined to create demigrated noisy Vz data. The amplitude

spectrum shows that most of the added Vz noise can be found below ∼30 Hz.

As we use an angle-muted and stacked PSDM image, we

cannot get back exactly to the original seismic data before

migration when we apply demigration. However, the demi-

grated training data looks realistic, which is beneficial when

training the neural network. We also need a velocity model,

which generally would be the same model used for migration.

Figure 5 illustrates how we create four datasets, which can

be combined to generate pressure data with ghosts using the

following equation (de Jonge, Vinje, Zhao, et al., 2022):

𝐷𝑃
𝑖

(
𝑥𝑗, 𝑡𝑘

)
= 𝑃𝑖

(
𝑥𝑗, 𝑡𝑘

)
+ 𝑟𝑃 SG

𝑖

(
𝑥𝑗, 𝑡𝑘

)
+ 𝑟𝑃 RG

𝑖

(
𝑥𝑗, 𝑡𝑘

)
+𝑟2𝑃 SRG

𝑖

(
𝑥𝑗, 𝑡𝑘

)
, (9)

where𝑃𝑖(𝑥𝑗, 𝑡𝑘) is the demigrated data, shown in Equation (4),

using the actual source and receiver positions, 𝑃 SG
𝑖

(𝑥𝑗, 𝑡𝑘) is

the data using the mirror source location, 𝑃 RG
𝑖

(𝑥𝑗, 𝑡𝑘) is the

data using the mirror receiver location, and 𝑃 SRG
𝑖

(𝑥𝑗, 𝑡𝑘) is

the data using both the mirror source and receiver locations.

Here, 𝑥𝑗 is the offset, 𝑡𝑘 is the time, and 𝑟 is the sea surface

reflection coefficient, usually close to −1. The source and

receiver mirror locations are the mirror positions above the

sea surface shown in Figure 5. To produce the Vz data with

ghosts, we modify Equation (9) using Vz demigrated data,

shown in Equation (8) and reversing the polarity of the Vz
receiver ghost:

𝐷
𝑉𝑧
𝑖

(
𝑥𝑗, 𝑡𝑘

)
= 𝑉𝑧,𝑖

(
𝑥𝑗, 𝑡𝑘

)
+ 𝑟𝑉 SG

𝑧,𝑖

(
𝑥𝑗, 𝑡𝑘

)
−𝑟𝑉 RG

𝑧,𝑖

(
𝑥𝑗, 𝑡𝑘

)
− 𝑟2𝑉 SRG

𝑧,𝑖

(
𝑥𝑗, 𝑡𝑘

)
. (10)

We scale Vz data with ghosts by 𝜌𝑣𝑤 before using it as

training and prediction data. This scale is used such that pres-

sure and Vz have the same amplitude range. Figure 6 shows

the demigrated pressure and Vz data in a common-channel

gather.

Pressure and Vz summation

The Vz data with ghosts will have a different receiver and

source-receiver ghost polarity to the pressure data. Con-

ventionally, pressure and Vz data are summed (P–Vz sum)

together to get the up-going pressure using the following

equation (Tenghamn & Dhelie, 2009):
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76 de JONGE ET AL.

F I G U R E 1 0 Illustration showing the acquisition geometry used to create the synthetic finite-difference (FD) data from above the ship (a) and

from the side of the ship (b).

F I G U R E 1 1 Illustrates the deghosting using demigration-based supervised learning (DEGDEM) workflow with dual-component data used on

synthetic data from the Marmousi model. Source: Adopted from de Jonge, Vinje, Zhao et al. (2022).
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DEGHOSTING DUAL-COMPONENT DATA 77

F I G U R E 1 2 Receiver deghosting in common-channel gather (receiver 10): (a) Vz data with ‘raw’ noise and ghosts; (b) low-cut (20 Hz)

filtered Vz data with ghosts; (c) pressure data with ghosts; (d) deghosting using demigration-based supervised learning (DEGDEM) using both

pressure and low-cut filtered Vz data as input; (e) amplitude spectrum of pressure with ghosts, low-cut filtered Vz data with ghosts, DEGDEM, the

ground-truth and DEGDEM error.

𝑃UP = 1
2

(
𝑃 − 𝐹𝑉𝑧

)
, (11)

where the obliquity or scaling filter, 𝐹 , is given by Equa-
tion (5). We have chosen a polarity convention for the Vz data

such that the up-going wavefields of pressure and Vz data

have an opposite polarity (Figure 1) which is why we use

a negative sign in Equation (11) to remove the down-going

wavefield. The vertical wavenumber, 𝑘𝑧, in Equation (5),

is estimated from the in-line wavenumber, 𝑘𝑥, using the

following equation:

𝑘𝑧 =

√(
𝜔

𝑣𝑤

)2
− 𝑘2

𝑥
. (12)
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78 de JONGE ET AL.

F I G U R E 1 3 Amplitude spectrum of the receiver deghosting

error (common-channel gather– receiver 10). Four different results are

shown: (1) pressure-only deghosting using demigration-based

supervised learning (DEGDEM), (2) pressure and ‘raw’ Vz DEGDEM,

(3) pressure and low-cut filtered Vz DEGDEM and (4) conventional

deghosting.

The in-line wavenumber, 𝑘𝑥, is usually sampled by

receivers every 12.5 m along the seismic streamer. An

example of a normalized obliquity filter and a finite-

difference-modelled shot gather from the Marmousi model in

the frequency–wavenumber amplitude domain are shown in

Figure 7. As we approach 𝑘𝑧 = 0, meaning horizontal trav-

elling waves, the obliquity filter amplitude tends to infinity.

Therefore, it is necessary to mute the filter before the ampli-

tude becomes too big. The Vz data shown in Figure 7 becomes

aliased as we go beyond the Nyquist wavenumber, and we

observe wavenumber wrap-around due to spatial aliasing. As

a result, scaling aliased data with the obliquity filter will not

be correct.

It is also possible to create a 3D obliquity filter,

𝐹 (𝜔, 𝑘𝑥, 𝑘𝑦). However, the cable separation is often large

compared to the in-line receiver separation, which results in

sparse data in the crossline direction. Too sparse data will

lead to aliasing in the wavenumber domain in the crossline

direction.

A problem with Vz data is the low-frequency mechanical

tow noise measured during acquisition (Carlson et al., 2007;

Tenghamn & Dhelie, 2009). Figure 8 shows an example of

Vz noise on a shot gather. On raw data, the amplitude of the

noise will not increase with time. However, as we have used

a 𝑡2 gain correction, it appears to increase in this figure. A

low-cut filter is often used (e.g. at 20 Hz) on the Vz data

to avoid propagating noise onto the P–Vz sum. As a result,

we might not use Vz data below a specific frequency (e.g.

20 Hz). Conventionally, we use a hydrophone-only deghost-

ing method below a specific frequency. In this paper, we use a

𝜏 − 𝑝 inversion-based deghosting method by Poole (2013) for

the low frequencies and P–Vz sum for the highs. In this paper,

this is called conventional deghosting.

Using Vz noise in training data

In our training process, Vz noise is essential because we expect

it, or part of it, to be present in the real data. To find suitable

Vz noise for our training, we directly use part of the real Vz
data containing low-frequency Vz noise but no signal. This

signal-free data can be data at the end of the sail line where

no source is fired. Alternatively, we can use data before the

first arrival on the shot gathers. The low-frequency noise is

then added to the Vz training data, as shown in Figure 9. It is

clear from Figure 9 that the amplitude of the noise decreases

with increasing frequency and is almost absent above 30 Hz.

RESULTS

This section looks at both synthetic data and real data. The

synthetic data will verify if the deghosting using demigration-

based supervised learning (DEGDEM) method works and

understand the problems and advantages under controlled cir-

cumstances. Real data can show if the method gives good

results on one example from the Northern Viking Graben

(NVG) area in the North Sea.

Synthetic data

We used the P-wave velocities and densities of the elastic

Marmousi2 model (Martin et al., 2006) and acoustic finite-

difference (FD) to model input data. Figure 10 shows the

survey configuration used. The shot and receiver spacings are

6.25 and 12.5 m, respectively. The offset to the first receiver is

147 m. The offset to the last receiver is 3884.5 m. The receiver

number increases as we move away from the vessel. We mod-

ified the workflow in Figure 2 for our synthetic tests (shown

in Figure 11). The FD-modelled data without ghosts was

migrated for different offset classes. These pre-stack depth

migration (PSDM) offset classes were then stacked together to

create one PSDM image. This PSDM image, a smooth veloc-

ity model (shown in de Jonge, Vinje, Zhao, et al., 2022), and

Kirchhoff demigration create shot gathers without ghosts and

with ghosts for pressure (Figure 11 S2 and S3) and vertical

particle velocity (Vz) (Figure 11 S1) data. We trained a convo-

lutional neural network (CNN) with these shot gathers and use

the CNN on FD data with ghosts (Figure 11 R1 and R2). As

mentioned in the ‘Methodology’ section, the training Vz data

(Figure 11 S1) contained mechanical Vz noise from real data.

The FD Vz data (Figure 11 R1) also contains real Vz noise.

However, we use Vz noise extracted from different parts of
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DEGHOSTING DUAL-COMPONENT DATA 79

F I G U R E 1 4 (a) and (b) Vz shot gathers with 12.5 and 50 m receiver separation, respectively. (c) and (d) Frequency–wavenumber (FK)

amplitude spectra of the shot gathers for 12.5 and 50 m receiver separation, respectively.

F I G U R E 1 5 (a) Illustration of typical receiver positions in a 3D marine seismic acquisition. (b) A 2D shot gather with 12.5 m receiver

separation. (c) A 2D shot gather with 50 m receiver separation.
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80 de JONGE ET AL.

F I G U R E 1 6 Deghosting error in common-channel gathers: (a) deghosting using demigration-based supervised learning (DEGDEM) error for

receiver 3; (b) DEGDEM error for receiver 10; (c) conventional deghosting error for receiver 3; (d) conventional deghosting error for receiver 10; (e)

and (f) amplitude spectrum for receivers 3 and 10, respectively, showing pressure with ghosts, Vz with ghosts, DEGDEM error, conventional

deghosting error and 12.5 m DEGDEM error.

the survey for the training and prediction data. Using the same

noise in training and prediction could give a biased result.

We test two different training approaches: (1) Training data

contains pressure data and ‘raw’ Vz data. We then train a

neural network using this training data. After training, we

test the network on FD modelled data that contains pressure

data and ‘raw’ Vz data. (2) Training data contains pressure

data and Vz data with a low-cut filter at 20 Hz to remove

most of the Vz noise. We then train a neural network using

these training data. After training, we test the network on FD
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DEGHOSTING DUAL-COMPONENT DATA 81

F I G U R E 1 7 Illustration showing the acquisition geometry used by the Northern Viking Graben (NVG) survey from above the ship (a) and

from the side of the ship (b).

modelled data that contains pressure data and low-cut filtered

Vz data. The Vz noise amplitude is similar to what we would

expect on real data. Figure 12 shows the receiver deghosting

results on a common-channel gather (receiver 10) using pres-

sure and low-cut filtered Vz data as input to the network (i.e.

approach 2). Notice that we remove most of the Vz noise with

a low-cut filter at 20 Hz (Figure 12a,b). The DEGDEM error

is negligible, shown in the amplitude spectrum in Figure 12.

The receiver deghosting results using approaches 1 and 2 are

indistinguishable when displayed as common-channel gath-

ers. Therefore, we have not shown the DEGDEM results using

Vz data without a low-cut filter (i.e. approach 1) in Figure 12.

We also compare dual-component DEGDEM (using

approach 1 or 2) with pressure-only DEGDEM and con-

ventional dual-component deghosting. In the conventional

approach, we combined the pressure and Vz (P–Vz) sum and

low-frequency deghosting at 33 Hz, which was the optimal

combination. Figure 13 shows the results of the amplitude

spectrum of the error. Using Vz data with a low-cut filter

as input to DEGDEM gives a better result than the ‘raw’

Vz data. Dual-component DEGDEM improves the results

significantly for all frequencies compared to pressure-only

DEGDEM. Conventional deghosting is generally better than

dual-component DEGDEM above 50 Hz and worse below

50 Hz, but both errors are small. The Vz noise contamina-

tion is most likely the reason why DEGDEM has less error

compared to P–Vz sum below 50 Hz. In addition, conven-

tional deghosting is better than pressure-only DEGDEM for

all frequencies.

Figure 14S shows a shot gather with a 12.5 m receiver

spacing, typical for many towed streamer datasets; the cor-

responding frequency–wavenumber (FK) spectrum is given

in Figure 14c. Even though many recording systems include

either analogue or digital arrays to reduce spatial aliasing,

strongly dipping energy may still be aliased at higher frequen-

cies, evident in Figure 14c above 60 Hz. This may result in

some inaccuracies when applying the obliquity filter in the

FK domain. In the crossline direction, the cable separation is

usually between 50 and 100 m. This large spacing, along with

a lack of any receiver array, makes the crossline aliasing prob-

lem even more challenging. Figure 14b shows the data from

Figure 14a after decimation to a 50 m spacing. Figure 14d

shows the corresponding FK domain, where we can see the

energy has now become aliased at 15 Hz, a frequency four

times lower than the 12.5 m spacing case. The black lines in

Figure 14c indicate the Nyquist wavenumber for 50 m cable

separation. For this reason, the obliquity correction is chal-

lenging in the crossline direction and will be the focus of the

following synthetic example.

In our first synthetic test, we used training and prediction

of data with a 12.5 m receiver spacing (Figure 15b). As an

experiment, we removed every fourth receiver such that the

receiver separation was 50 m (Figure 15c). We then trained

a network on this sparse data and applied it to sparse predic-

tion data. The conventional deghosting method was applied to

sparse data to see how it could cope with a significant amount

of energy being aliased. Due to the severe aliasing, we used

a simple P–Vz sum without the obliquity filter for the con-

ventional route. Figure 16 shows the results for DEGDEM

and conventional deghosting in common-channel gathers for

receivers 3 and 10. Data from receiver 3 contains mostly non-

aliased energy, whereas data from receiver 10 contains more
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82 de JONGE ET AL.

F I G U R E 1 8 Real Northern Viking Graben (NVG) data shown as CMP stacks for the central cable. This data was used as input for deghosting

using demigration-based supervised learning (DEGDEM) and conventional deghosting: (a) Vz data with ghosts and a low-cut filter and (b) pressure

data with ghosts. The area to the left of the dashed red line is used to create training and validation data.

aliased energy. The results show that conventional deghost-

ing works well for receiver 3 but struggles for receiver 10.

However, DEGDEM performs well for both receivers 3 and

10. Figure 16 also shows the DEGDEM results using 12.5 m

data. The difference between DEGDEM trained on 12.5 or

50 m receiver spacing data is small compared to the dif-

ference between DEGDEM and conventional deghosting on

aliased data. Current practices may include dealiasing input

data through the use of interpolation, applying the obliquity

correction in a sparse transform domain, or making assump-

tions about the kinematic behaviour of events (e.g. hyperbolic

moveout). It is beyond the scope of the paper to examine these

options on real data.

Real data – Northern Viking Graben dataset

The real data used in this paper is from a survey in the NVG

area in the Northern North Sea off the western coast of Nor-

way. Between 2020 and 2022, 26,000 km2 of East–West data

was acquired to provide a dual-azimuth survey of NVG (CGG,

2022). The survey used a multi-component streamer with a

constant depth of 18 m. Figure 17 shows the survey geometry.

Before the final processing flow of this data, a fast-track

processing flow was completed to produce a PSDM image.

In the fast track, several processing steps were expedited to

allow a preliminary evaluation of a migrated image. Conse-

quently, the data and processing steps (including deghosting)

are not optimized as fully as in the final processing flow. The

PSDM image and a smooth velocity model acquired from the

fast track cover a smaller area than the whole acquisition area.

We used the PSDM image to create pressure and Vz data using

demigration. We trained the neural network on pressure and

low-cut filtered Vz data and applied it to real pressure and

low-cut filtered Vz data before deghosting (Figure 18). We

used the area to the left of the dashed red line in Figure 18

to create training and validation data. Next, we tested the

trained network on all the data shown in Figure 18. The neural

network input window size is 3.2 s. In addition, we compared

our method with conventional dual-component deghosting

used in the final processing flow as quality control. We com-

bined source and receiver deghosting for both DEGDEM and

conventional deghosting. The results are shown in different

domains (common midpoint [CMP] stacks, common-channel

gathers and shot gathers) for both the outer and central cables.

Figures 19 and 20 show CMP stacks for the outer and central

cables, respectively. Figures 21 and 22 show common-channel

gathers. Shot gathers are shown in Figure 23. Finally, we show

frequency panels of CMP stacks in Figure 24. Both DEGDEM

and conventional deghosting show similar results. How-

ever, some differences at the lower frequencies (0–10 Hz),

around the first receiver notch (∼42 Hz) and on the higher
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DEGHOSTING DUAL-COMPONENT DATA 83

F I G U R E 1 9 Source and receiver deghosting on the outer cable are shown as CMP stacks. (a) and (b) P–Vz deghosting using

demigration-based supervised learning (DEGDEM) and conventional deghosting, respectively, with pressure and low-cut filtered Vz data as input. (c)

Difference between conventional deghosting and P–Vz DEGDEM. (d) Amplitude spectrum showing pressure with ghosts, low-cut filtered Vz with

ghosts, DEGDEM and conventional deghosting.

frequencies (above 70 Hz) are shown in the amplitude spec-

tra. The frequency panels between 0 and 10 Hz (Figure 24a)

also show noticeable differences which are reviewed further

in the ‘Discussion’ section.

When we include the network training process, DEG-

DEM is approximately 2.3 times slower in time using the

same resources compared to conventional deghosting when

deghosting the sail line used here. Both methods are running

on 4 node GPU’s. This includes creating demigrated train-

ing data, training the neural network and deghosting the data.

However, if we use the already trained network to predict the

ghost-free data, it is approximately 125 times faster in time

when using the same resources than conventional deghosting

which makes DEGDEM suited for large data volumes. This
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84 de JONGE ET AL.

F I G U R E 2 0 Source and receiver deghosting on the central cable are shown as CMP stacks. Descriptions of (a)–(d) are given in Figure 19.

method would also be useful when, for example, a dataset

area is extended from 1 year to the next, or for new vintages

of data for 4D seismic. However, if the acquisition geom-

etry is different from the current one (i.e. different source

and receiver depths), we cannot use the same trained net-

work. In this case, we have to create demigrated training

data that matches the new vintage and train a new neural

network.

DISCUSSION

de Jonge, Vinje, Zhao et al. (2022) compared pressure-

only deghosting using demigration-based supervised learning

(DEGDEM) with conventional 𝜏 − 𝑝 pressure-only deghost-

ing by Poole (2013); both showed similar results on synthetic

data. They carried out various tests on synthetic data, such as

including multiples in the prediction data but not the training
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DEGHOSTING DUAL-COMPONENT DATA 85

F I G U R E 2 1 Source and receiver deghosting on the outer cable are shown as common-channel gathers (receiver 10). Descriptions of (a)–(d)

are given in Figure 19.

data. In addition, they added residual ghost noise to the pre-

stack depth migration (PSDM) image to simulate the case of

sub-optimal initial deghosting. Even though DEGDEM was

trained on data from the PSDM image with a residual ghost, it

improved the initial deghosting significantly. They tested the

effects of swell waves and changing the sea-surface reflection

coefficient used in the training and prediction data. The swell

waves and sea-surface reflection coefficient tests indicated

that DEGDEM was more robust than inversion/modelling-

based conventional deghosting. The robustness of this method

could be an advantage on real data where, for example, we

could have swell waves or incomplete control of the receiver

positions and the sea surface reflection coefficient. The results

from de Jonge, Vinje, Zhao et al. (2022) should also be

relevant to the dual-component DEGDEM method shown

here.
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F I G U R E 2 2 Source and receiver deghosting on the central cable are shown as common-channel gathers (receiver 10). Descriptions of (a)–(d)

are given in Figure 19.

One drawback of DEGDEM is that we depend on a PSDM

or a reflectivity image to create the training data. However, in

a standard modern processing project, the workflow shown in

Figure 2, from the ‘raw’ data to the PSDM image, is usually

repeated iteratively to create ever better images. Therefore,

a PSDM image should be available at an early stage in

most processing projects. In addition, DEGDEM is not the

only method dependent on a PSDM image. Some demulti-

ple methods (e.g. Brittan et al., 2011; Martin et al., 2011)

or some velocity-building methods (e.g. Chang et al., 1996)

also require a PSDM image. It is also possible to use a PSDM

image from another acquisition. Conventional modelling or

inversion-based methods often require comprehensive test-

ing. However, they are not dependent on a PSDM image and
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DEGHOSTING DUAL-COMPONENT DATA 87

F I G U R E 2 3 Source and receiver deghosting on the outer and central cables are shown as shot gathers. (a)–(c) P–Vz deghosting using

demigration-based supervised learning (DEGDEM), conventional deghosting and difference for the outer cable, respectively. (e)–(g) P–Vz
DEGDEM, conventional deghosting and difference for the central cable, respectively. (d) and (h) Amplitude spectrums showing pressure with

ghosts, low-cut filtered Vz with ghosts, DEGDEM and conventional deghosting for the outer and central cable, respectively.

are not affected by changing geology. An advantage of our

method is that it is easy to use, robust, and can give good

results.

Another drawback of DEGDEM is that demigration is not

able to create refractions or multiples. The results from de

Jonge, Vinje, Zhao et al. (2022) show that despite multiples

not being in the training data, the network was able to deghost

multiples. While multiples behave similarly to primary reflec-

tions, refractions behave differently, and for this reason, our

neural network struggled more to deghost them compared to

multiples.

Peng et al. (2021) showed that it is possible to create

training data directly from data after conventional deghost-

ing (pre-stack). One issue with this method is that the trained

neural network will most likely never improve the deghosting

as it will reproduce the weaknesses of conventional deghost-

ing. The main advantage of their method is that it can reduce

the computation cost by training a network on a small part of

a survey and applying it to the rest of the survey or another

survey. However, our method can use the same strategy dur-

ing training to reduce the cost. In addition, our method has

the possibility of improving the deghosting (de Jonge, Vinje,

Zhao, et al., 2022).

It is also possible to use time demigration instead of depth

demigration to generate training data. Time migration is less

computationally expensive than depth migration, and prelim-

inary time-domain images are often available relatively early

in the processing sequence (Iversen et al., 2012). It should also

be possible to use reverse time migration (RTM) to produce

a seismic image and then use demigration to create training

data. It is unclear if using RTM instead of Kirchhoff migra-

tion before demigration influences the final results. However,

it should be mentioned that demigration is a reverse process

to Kirchhoff migration. Therefore, demigration from Kirch-

hoff migrated images will be more similar to the data before

migration.

In the following paragraphs, we will discuss the results and

conclusion on the synthetic and real-data tests.

The dual-component DEGDEM results on synthetic data

are encouraging. Figure 12c,d shows that DEGDEM removed
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88 de JONGE ET AL.

F I G U R E 2 4 Source and receiver deghosting on the central cable are shown as CMP stacks in frequency panels. (1) P–Vz deghosting using

demigration-based supervised learning (DEGDEM) deghosting and (2) conventional deghosting. Subparts (a)–(d) are frequencies 0–10, 10–20,

20–40 and 40–125 Hz, respectively.

the ghosts effectively. In Figure 12E, we have almost identical

amplitude spectra for the ground-truth and dual-component

DEGDEM. In addition, Figure 13 shows that dual-component

DEGDEM is better than pressure-only DEGDEM, with an

improvement between ∼5 and 15 dB for all frequencies.

Conventional deghosting gave good results, especially above

50 Hz. However, below 50 Hz, dual-component DEGDEM

gave a smaller error at most frequencies. Based on our

results, we could use the pressure and vertical particle velocity

(P–Vz) sum for the higher frequencies (e.g. above 50 Hz)

and DEGDEM on the lower frequencies (e.g. below 50 Hz)

for the optimal result. We speculate that it might be easier

for a neural network to separate ghosts in this synthetic data

compared to real data because of the ‘spiky’ nature of the

synthetic data.

Figure 16 illustrates that on synthetic data, DEGDEM was

not significantly affected by spatially aliased data compared to

conventional deghosting. This result indicates that DEGDEM

could have an advantage on sparse data where we have prob-

lems using an obliquity filter on the Vz data. DEGDEM could

also have an advantage on 3D data with wide cable separa-

tion. For example, if we used 3D data as input to the network

using all cables (one cable for each channel), we would have

sparse data in the crossline direction. However, testing this is

outside the scope of this paper. It is worth mentioning that

there are some ways of dealing with aliased or sparse data.

Streamers usually have anti-alias filters that prevent some

aliased energy. It is also possible to interpolate traces in the in-

line or crossline direction (Gulunay, 2003; Wang et al., 2019)

before using the P–Vz sum. An alternative way to estimate

the crossline wavenumber and the obliquity factor is to use

a 1D velocity model to construct hyperbolic wavefronts. The

differential of these wavefronts can be used to estimate the

incidence angle and, consequently, the crossline wavenumber.

Our results show that dual-component DEGDEM was

able to deghost real 3D data. We compared DEGDEM with

conventional dual-component deghosting to quality control

our results. DEGDEM and conventional deghosting gave

 13652478, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1365-2478.13407 by U

N
IV

E
R

SIT
Y

 O
F B

E
R

G
E

N
, W

iley O
nline L

ibrary on [05/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



DEGHOSTING DUAL-COMPONENT DATA 89

F I G U R E 2 5 Source and receiver deghosting on the central cable

are shown as CMP stacks from 0 to 10 Hz: (a) scaled P–Vz deghosting

using demigration-based supervised learning (DEGDEM) deghosting

and (b) conventional deghosting.

similar results for both source and receiver deghosting,

as shown in Figures 19–24. However, we observe dif-

ferences in the lower frequencies (0–10 Hz), around the

first receiver notch (∼42 Hz) and on the higher frequen-

cies (above 70 Hz). The biggest difference seems to be

below 5 Hz. Figure 24a,d shows a difference in the ampli-

tude of the low frequencies. At higher frequencies, the

waveforms are more similar. To investigate the low fre-

quency difference further, we scaled the amplitude of the

DEGDEM result slightly to match the amplitude of con-

ventional deghosting. Figure 25 shows both DEGDEM and

conventional deghosting with the same amplitude on the

low frequencies. We can observe that the waveforms are

similar apart from three places where we observe some

inconsistencies marked with arrows. The red arrows

indicate places where conventional deghosting seems to have

a more coherent signal, and the blue arrows indicate places

where DEGDEM seems to have a more coherent signal.

Conventional deghosting may over-boost the amplitude on

the low-frequencies and/or DEGDEM may suppress them. It

is unclear why we observe a difference in amplitude on the

low frequencies, and this is a subject of future research. These

results give us confidence that dual-component DEGDEM

works on real data with good results. We used only part of

the area from Figure 18 to create training data. However, the

data quality inside and outside the training area is the same.

DEGDEM is computationally inexpensive if a trained

neural network is available. However, creating demigrated

training data and training a neural network carries a sig-

nificant computational cost. It is possible to train a neural

network on a smaller area and apply the trained network to

the rest of the survey, making this method quite efficient.

DEGDEM is approximately 2.3 times slower in time using

the same resources than conventional deghosting when we

include demigration, training and prediction. In this calcula-

tion, we include the real data results along the sail-line shown

in this paper for all guns and cables. However, if the network

is already trained, it is approximately 125 times faster in time

than conventional deghosting. Computation time depends on

the parameters used for conventional deghosting, demigration

and the neural network.

CONCLUSION

In this paper, we demonstrate that dual-component deghost-

ing using demigration-based supervised learning (DEGDEM)

can remove ghosts. Tests on synthetic data show that using

DEGDEM with dual-component data improves deghosting

compared to using only pressure data. In addition, DEGDEM

improved deghosting below 50 Hz on synthetic data compared

to conventional deghosting. We also tested our method on spa-

tially aliased synthetic data and the results indicate that the

DEGDEM is less affected by aliasing compared to conven-

tional deghosting. This is an indication that DEGDEM could

be beneficial on sparse data.

We used DEGDEM on real data from the North Sea and

compared our method with conventional deghosting. Our

results show that both methods can remove the ghosts and are

similar in quality for most frequencies. These results are an

indication that DEGDEM works well on real data. In addi-

tion, a pre-trained DEGDEM will be up to a couple of orders

of magnitude faster than the conventional deghosting.
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