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Abstract. Knowledge bases have been extensively used to represent and
reason about static domain knowledge. In this work, we show how to en-
force domain knowledge about dynamic processes to guide executions
at runtime. To do so, we map the execution trace to a knowledge base
and require that this mapped knowledge base is always consistent with
the domain knowledge. This means that we treat the consistency with
domain knowledge as an invariant of the execution trace. This way, the
domain knowledge guides the execution by determining the next possi-
ble steps, i.e., by exploring which steps are possible and rejecting those
resulting in an inconsistent knowledge base. Using this invariant directly
at runtime can be computationally heavy, as it requires to check the con-
sistency of a large logical theory. Thus, we provide a transformation that
generates a system which is able to perform the check only on the past
events up to now, by evaluating a smaller formula. This transformation
is transparent to domain users, who can interact with the transformed
system in terms of the domain knowledge, e.g., to query computation
results. Furthermore, we discuss different mapping strategies.

1 Introduction

Knowledge bases (KBs) are logic-based representations of both data and do-
main knowledge, for which there exists a rich toolset to query data and reason
about data semantically, i.e., in terms of the domain knowledge. This enables
domain users to interact with modern IT systems [39] without being exposed to
implementation details, as well as to make their domain knowledge available for
software applications. KBs are the foundation of many modern innovation drivers
and key technologies: Applications range from Digital Twin engineering [31], over
industry standards in robotics [23] to expert systems, e.g., in medicine [38].

The success story of KBs, however, is so far based on the use of domain
knowledge about static data. The connection to transition systems and pro-
grams beyond Prolog-style logic programming has just begun to be explored.
This is mainly triggered by tool support for developing applications that use
KBs [7,13,28], in a type-safe way [29,32].

In this work, we investigate how one can use domain knowledge about dy-
namic processes and formalize knowledge about the order of computations to
be performed. More concretely, we describe a runtime enforcement technique to
use domain knowledge to guide the selection of rules in a transition system, for
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example to simulate behavior with respect to domain knowledge, a scenario that
we use as a guiding example in this article, or to enforce compliance of business
process models with respect to restrictions arising from the domain [41].

Approach. At the core, our approach considers the execution trace of a run, i.e.,
the sequence of rule applications, as a KB itself. As such, it can be combined with
the KB that expresses the domain knowledge of dynamic processes (DKDP). The
DKDP expresses knowledge about (partial) executions such that the execution
trace must be consistent with it before and after every rule application. For
example, in a simulation system for geology, the DKDP may express that a
certain rock layer A is above a certain rock layer B and, thus, the event to
deposit a layer must occur for B, before it occurs for A. Consistency with the
DKDP forms a domain invariant for the trace of a system, i.e., a trace property.

To trigger a transition rule, we use a hypothetical execution step: the execu-
tion trace is extended with a potential event and the consistency of the extended
trace against the DKDP is checked. However using this consistency invariant di-
rectly at run time can be computationally heavy, as it requires to check the con-
sistency of a large logical theory. Thus, we give a transformation that removes
the need for a hypothetical execution step and instead results in a transition
system that evaluates a transformed condition on (1) the existing trace and (2)
the parameters of the potentially extended event. This condition does not re-
quire domain-specific reasoning anymore. This transformation removes the need
for hypothetical execution steps and DKDP can be used to guide any transition
system, including languages based on structural operational semantics. For ex-
ample, it is then possible to express the invariant checking as a guard for the rule
that deposits layers (e.g., only deposit A if layer B has been deposited already).

It is crucial that this system is usable for both the domain user (who possesses
the domain knowledge) and the programmer (that has to program the interac-
tion with the domain knowledge), a requirement explicitly stressed by Corea et
al. [16] for the use of ontologies in business process models. We, thus, carefully
designed our framework to increase its usability: First, the reasoning (in the
geology example above, from spatial properties of layers to temporal properties
of events) is completely performed in the domain and needs not be handled by
the transition system. I.e., the programmer must not perform reasoning over the
KB in the program itself. Second, the DKDP is expressed over domain events,
as the domain users do not have knowledge about implementation details, such
as the state organization. Furthermore, the formalization of the DKDP should
not be affected by the underlying implementation details such that the DKDP
can be reused. The DKDP can reuse the aforementioned industry standards
and established ontologies, as well as modeling languages and techniques from
ontology engineering [17], such as OWL [42], which are established for domain
modeling and more suitable for this task than correctness-focused temporal log-
ics such as LTL [35]: The domain users must not be an expert in programming
or verification to contribute to the system.

The transformation that replaces the need for a hypothetical execution step
with a transition system evaluating a transformed condition is also transparent
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to the domain users. We say a transformed guarded rule is applicable if it would
not violate consistency w.r.t. the DKDP. Lastly, we provide the domain users
possibilities to query the final result, i.e., the KB of the final execution trace, and
to explore possible simulations using the defined DKDP. Note that the mapping
from trace to KB must not necessarily be designed manually: various (semi-)
automatic mapping design strategies are discussed in the paper.

Contributions and Structure. Our main contributions are (1) a system that en-
forces domain knowledge to guide a transition system at runtime, and (2) a proce-
dure that transforms such a transition system that uses consistency with domain
knowledge as an invariant into a transition system using first-order guards over
past events in a transparent way. We give preliminaries in Sec. 2 and present
our running example in Sec. 3. We formalize our approach in Sec. 4 and give
the transformation in Sec. 5, before we discuss (semi-)automatically generated
mappings in Sec. 6. We discuss the mappings in Sec. 7 and related work in Sec. 8.
Lastly, Sec. 9 concludes.

2 Preliminaries

We give some technical preliminaries for knowledge bases as well as transition
systems, as far as they are needed for our runtime enforcement technique.

Definition 1 (Domain Knowledge of Dynamic Processes). Domain knowl-
edge of dynamic processes (DKDP) is the knowledge about events and changes.

Example 1 (DKDP in Geology). DKDP describes knowledge about some tem-
poral properties in a domain. In geology, for example, this may be the knowledge
that a deposition of some geological layers in Cretaceous should happen after a
deposition in Jurassic, because the Cretaceous is after the Jurassic. This can be
deduced from, e.g., fossils found in the layers.

A description logic (DL) is a decidable fragment of first-order logic with
suitable expressive power for knowledge representation [3]. We do not commit to
any specific DL here, but require that for the chosen DL it is decidable to check
consistency of a KB, which we define next. A knowledge base is a collection of DL
axioms, over individuals (corresponding to first-order logic constants), concepts,
also called classes (corresponding to first-order logic unary predicates) and roles,
also called properties (corresponding to first-order logic binary predicates).

Definition 2 (Knowledge Base). A knowledge base (KB) K = (R, T ,A) is a
triple of three sets of DL axioms, where the ABox A contains assertions over in-
dividuals, the TBox T contains axioms over concepts, and the RBox R contains
axioms over roles. A KB is consistent if no contradiction follows from it.

KBs can be seen as first-order logic theories, so we refrain from introducing
them fully formally and introduce them by examples throughout the article. The
Manchester syntax [25] is used for DL formulas in examples to emphasize that
they model knowledge, but we treat them as first-order logic formulas otherwise.
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Example 2. Continuing Exp. 1, the following axiom, expressing that Jurassic is
before Cretaceous, is expressed by the following ABox axiom, where Jurassic

and Cretaceous are individuals, while before is a role.

before(Jurassic, Cretaceous)

The following TBox axioms express that every layer with Stegosaurus fossils
has been deposited during the Jurassic. The first two axioms define the concepts
StegoLayer (the class of things having the value Stegosaurus as their contains
role) and JurassicLayer (the class of things having the value Jurassic as their
during role). The last axiom says that the class of things having the value
Stegosaurus as their contains role is a subclass of JurassicLayer. 3 The bold
literals are keywords, the literals StegoLayer, JurassicLayer denote concept-
s/classes, the literals contains, during denote roles/properties and the literals
Stegosaurus, Jurassic denote individuals.

StegoLayer EquivalentTo contains value Stegosaurus

JurassicLayer EquivalentTo during value Jurassic

StegoLayer SubClassOf JurassicLayer

The following RBox axioms express two constraints: The first line states that
both below and before roles are asymmetric. The second line states that if a
deposition is from an age before the age of another deposition, then it is below
that deposition. Formally, the axiom expresses that the concatenation of the
following three roles (a) the during role, (b) the before role, and (c) the inverse
of the during role, is the sub-property of the below role. I.e., given an individual
a, every individual b reachable from a following the chain during, before and
the inverse of during, is also reachable by just below.

Asy(below) Asy(before)
during o before o inverse(during) SubPropertyOf below

Knowledge based guiding can be applied to any transition system to leverage
domain knowledge during execution. States are not the focus of our work, and
neither is the exact form of the rules that specify the transition between states.
For our purposes, it suffices to define states as terms, i.e., finite trees where each
node is labeled with a name from a finite set of term symbols, and transition
rules as transformations between schematic terms. State guards can be added
but are omitted for brevity’s sake.

Definition 3 (Terms and Substitutions). Let ΣT be a finite set of term
labels and ΣV a disjoint set of term variables. A term t is a finite tree, where
each inner node is a term label and each leaf is either a term label or a term
variable. The set of term variables in a term t is denoted Σ(t). We denote the
set of all terms with T . A substitution σ is a map from term variables to terms
without term variables. The application of a substitution σ to a term t, with the
usual semantics, is denoted tσ. In particular, if t contains no term variables,
then tσ = t.
3 The first-order equivalent is ∀x. contains(x, Stegosaurus) → during(x, Jurassic)
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Rewrite rules map one term to another by unifying a subterm with the head
term. The matched subterm is then rewritten by applying the substitution to
the body term. Normally one would have additional conditions on the transition
rules, but these are not necessary to present semantical guiding.

Definition 4 (Term Rewriting Systems). A transition rule in the term
rewriting system has the form

thead
r−→ tbody

Where r is the name of the rule, and thead, tbody ∈ T are the head and body terms.
A rule matches on a term t with Σ(t) = ∅, if there is a subterm ts of t,

such that thead = tsσ, for a suitable substitution σ. A rule produces a term t′,
by matching on subterm ts with substitution σ, and generating t′ by replacing
ts in t by tsσ

′, where σ′ is equal to σ for all v ∈ Σ(tbody) ∩ Σ(thead) and maps
v ∈ Σ(thead) \Σ(tbody) to fresh term symbols. For production, we write

t
r,σ′

−−→ t′

3 A Scenario for Knowledge Based Guiding

To illustrate our approach, we continue with geology, namely with a simulator
for deposition and erosion of geological layers. Such a simulator is used, e.g., for
hydrocarbon exploration [20]. It contains domain knowledge about the type of
fossils and the corresponding geological age, and connects spatial information
about deposition layers with temporal information about their deposition. We
started a formalization of the DKDP in Ex. 2 and expand it below.

The core challenge is that the simulator must make sure that it does not
violate domain properties. This means that it cannot deposit a layer containing
fossils from the Jurassic after depositing a layer containing fossils from the Cre-
taceous. This information is given by the domain users as an invariant, i.e., as
knowledge that the execution must be consistent with at all times.

Programming with Knowledge Bases. Our model of computation is a set of
rewrite rules on some transition structure. The sequence of rule applications,
denoted events, forms the trace. DKDP constrains the extension of the trace.
This realizes a clear separation of concerns between declarative data modelling
and imperative programming with, in our case, transitions.

Example 3. Let us assume 4 rules: a rule deposit that deposits a layer without
fossils, a rule depositStego that deposits a layer with Stegosaurus fossils, an
analogous rule depositTRex that deposits a layer with Tyrannosaurus fossils,
and a rule erode that removes the top layer of the deposition. One example re-
duction sequence, for some terms ti and with substitutions omitted, is as follows:

t0
depositStego−−−−−−−−→ t1

erode−−−→ t2
depositTRex−−−−−−−→ t3
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contains contains

StegosaurusTyrannosaurus

layer1 layer2

contains

before

during

below

JurassicCretaceous 

contains

during

layer1 layer2below

StegosaurusTyrannosaurus

before JurassicCretaceous 

Fig. 1. Left: KB as generated. Right: Inferred KB to detect inconsistency.

which describes the rule application of depositStego on term t0 following by
the rule application of erode on term t1 and then depositTRex on term t2.

In the domain KB, we add an axiom expressing that the geological layer
containing Stegosaurus fossils is deposited during the Jurassic, and that the geo-
logical layer containing Tyrannosaurus fossils is deposited during the Cretaceous.

Consider that rule depositStego may trigger on term t3.

. . . t2
depositTRex−−−−−−−→ t3

depositStego−−−−−−−−→
?

This would violate the domain knowledge, as we can derive a situation, where a
layer with Tyrannosaurus fossils is below a layer with Stegosaurus fossils, imply-
ing that the Cretaceous is before the Jurassic. This contradiction is captured by
the knowledge base in Fig. 1. The domain knowledge DKDP should prevent this
rule application at t3 to happen. To achieve this, i.e., enforce domain knowledge
at runtime, we must connect the trace with the KB. Specifically, we represent
the trace as a KB itself, i.e., instead of operating on a KB, we record the events
and generate a KB from a trace using a mapping.

For example, consider the left KB in Fig. 1. The upper part is (a part of)
our DKDP about geological ages, while the lower part is the KB mapped from
the trace. Together they form a KB. In the knowledge base of this example, we
add one layer that contains Stegosaurus fossils for each depositStego event and
analogously for depositTRex events. We also add the below relation between
two layers, if their events are ordered. So, if we would execute depositStego

after depositTRex, there would be two layers in the KB as shown in Fig. 1, with
corresponding fossils, connected using the below relation. On the right, the KB
is shown with the additional knowledge following from its axioms. In particular,
we can deduce that layer2 must be below layer1 using the axioms from Sec. 2.
This, in turn, makes the overall KB inconsistent, as below must be asymmetric.

We stress that consistency of the execution with the DKDP is a trace prop-
erty, it is reasoning about the events that happen regardless of the current state.
In our example, consider the situation, where the next event after t3 rule erode

triggers again, and then we consider rule depositStego. I.e., the following con-
tinuation of the trace
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. . . t2
depositTRex−−−−−−−→ t3

erode−−−→ t4
depositStego−−−−−−−−→

?

We still consider the layer with the Tyrannosaurus fossils in our KB, despite
its erosion. Firstly, because the layer may potentially have had an effect on
the execution before being removed, and, secondly, because its deposition also
models implicit information. It expresses the current geological era of the system,
which cannot be reverted: at t3 the system is in the Cretaceous, and while the
depositStego models an action in the Jurassic – the trace would not represent
a semantically sensible execution if the depositStego rule would be executed.

Fig. 2 illustrates the runtime enforcement of domain knowledge on traces in
a more general setting. The execution itself is a reduction sequence over some
terms t, where each rule application emits some event ev, e.g., name of the
applied rule and matched subterms. A mapping µ is used to generate a KB from
the trace. The knowledge base then contains (a) the DKDP, pictured as the
shaded box, (b) the mapping of the trace so far, pictured as the unshaded box
with solid frame, and (c) the potential next event, pictured as the dashed box.
Additionally, new connections may be inferred.

The mapping from a trace to a KB matches the system formalized by the do-
main knowledge to the system used for programming, it is the interface between
domain experts and the programmer. Indeed, the mapping allows the domain
users to investigate program executions without being exposed to the implemen-
tation details. Given a fixed execution, the mapping can be applied to allow the
domain users to query its results (in form of the trace) using domain vocabulary.

From the program’s point of view, it defines an invariant over the trace, which
must always hold: consistency with domain knowledge. While this saves the
domain users from learning about the implementation, it poses two challenges to
the programmer: first, the mapping must be developed additionally to the rules,
and second, the invariant is not specific to the rules. The extended trace caused by
the execution of one single event, must be checked against the full DKDP, which
is not specific to any transition event. Instead of this computationally costly
operation, we provide an alternative. For example, to ensure consistency when
executing the rule depositStego, it suffices to evaluate the following formula
on the past trace tr to check that depositTRex has not been executed yet:
∀i ≤ |tr |. tr [i] 6 .= ev(depositTRex). The condition of a rule is specific to the
corresponding transition action, instead of a general condition on all the rules.

After defining runtime enforcement of domain knowledge formally, we will
return to these challenges and (a) discuss different mapping strategies, and es-
pecially the (semi-)automatic generation of mappings and (b) give a system that,
for a big class of mappings, also derives local conditions.

4 Knowledge Guided Transition Systems

We now introduce runtime enforcement using KBs. To this end, we define the
mapping of traces to KBs formally and give the transition system that uses this
lifting for consistency checking. First, we define the notion of traces.
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DKDPMapping of
current trace

Mapping of
extended trace

Fig. 2. Runtime enforcement of knowledge bases on traces.

Definition 5 (Execution Traces). An event ev for a rule r and a substitution
σ has the form ev(r, σ), which we write asev(r, v1 : t1, . . . , vn : tn), where vi : ti
are the pairs in σ. To record the sequence of an execution, we use traces. A trace
is a finite sequence of events, where each event records the applied rule and the
corresponding substitutions, if there are any.

Example 4. The trace of the rule application in Ex. 3 is as follows, for suit-
able substitutions that all store the deposited or eroded layer in the variable v.〈

ev
(
depositStego, v : layer0

)
, ev
(
erode, v : layer0

)
, ev
(
depositTRex, v : layer1

)〉
To connect executions with knowledge bases, we define mappings that trans-

form traces into knowledge bases, given a fixed vocabulary Σ.

Definition 6 (Mappings). A Σ-mapping µ is a function from traces to knowl-
edge bases over vocabulary Σ.

The mapping is given by the user, who has to respect the signature of the
KB formalizing the used domain knowledge. While we are not specific in the
structure of the mapping in general, we introduce the notion of a first-order
matching mapping, which allow for optimization and automatization.

Definition 7 (First-Order Matching Mapping). A first-order matching
mapping µ is defined by a set {ϕ1 7→N1

ax 1, . . . , ϕn 7→Nn
axn}, where each

element has a first-order logic formula ϕi as its guard, a set of individuals Ni
and some set ax i of KB axioms as its body. We write ax i(N) to emphasize that
a set of individuals N occur in ax i(N).

The mapping is applied to a trace tr by adding all those bodies whose guard
evaluates to true and replacing all members of N in ax1 by fresh individual
names:

µ(tr) =

 ⋃
tr|=ϕi

ax i(N)

 [N fresh]

Where A[N fresh] substitutes all individuals in N with fresh names in A.

Example 5. Consider the following first-order matching mapping µ, for some
role/property P and individuals A, B and C. The function rule(ev) extracts the
rule name from the given event ev .{

∃i. rule(tr [i])
.
= r1 7→∅ P(A, B), ∃i. rule(tr [i])

.
= r2 7→∅ P(B, A),

∃i. rule(tr [i])
.
= r3 7→∅ P(A, C), ∃i. rule(tr [i])

.
= r4 7→∅ P(C, A)

}
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Its application to a trace 〈ev(r1), ev(r1), ev(r2)〉 is the set {P(A, B), P(B, A)}.

First-order matching mapping can also be applied to our running example.

Example 6. We continue with the trace from Ex. 4, extended with another event
ev(depositStego, v : layer2). We check whether adding an event to the trace
would result in a consistent KB by actually extending the trace for analysis. We
call this a hypothetical execution step.

The following mapping, which must be provided by the user adds the spatial
information about layers w.r.t. the fossils found within. The first-order logic
formula at the guard of the mapping expresses that an event of depositTRex

is found before the event of depositStego in the trace. Note that the given
set of axioms from the mapping faithfully describes the event structure of the
trace, i.e., the mapping could produce axioms which will cause inconsistency
w.r.t. the domain knowledge: Together with the DKDP, we can see that the
trace is mapped to an inconsistent knowledge base by adding 5 axioms. Note
that we do not generate one layer for each deposition event during simulation,
but only two specific ones, Layer(l1) and Layer(l2) in this case, for the relevant
information. One can extend mapping rules for the different cases (for instance,
depositStego before depositTRex, only depositTRex events, etc.), or use a
different mapping mechanism, which we discuss further in Sec. 6.

∃l1, l2. ∃i1, i2.
tr [i1]

.
= ev

(
depositTRex, v : l1

)
∧ tr [i2]

.
= ev

(
depositStego, v : l2

)
∧ i1 < i2

7→l1,l2{
Layer(l1), contains(l1, Tyrannosaurus),

Layer(l2), contains(l2, Stegosaurus), below(l1, l2)
}

We stress again that we are interested in trace properties, a layer may still
have had effects on the state despite being completely removed at one point (by
an erode event). Thus, we must consider the deposition event of a layer to check
the trace against the domain knowledge.

The guided transition systems extends the mapping of a basic transition
system, by additionally ensuring that the trace after executing the rule would
be mapped to a consistent knowledge base. This treats the domain knowledge
as an invariant that is enforced, i.e., a transition is only allowed if it indeed
preserves the invariant.

Definition 8 (Guided Transition System). Given a set of rules R, a map-
ping µ and a knowledge base K, the guided semantics is defined as a transition
system between pairs of terms t and traces tr . For each rule r ∈ R, we have one
guided rule (for consistency, cf. Def. 2):

t
r,σ−−→ t′ ev = ev(r, σ) µ(tr ◦ ev) ∪ K is consistent

(kb)

(t, tr)
r−→ (t′, tr ◦ ev)
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The set of traces generated by a rewrite system R from a starting term t0 is
denoted H(R, µ,K, t0). Execution always starts with the empty trace.

5 Well-Formedness and Optimization

The transition rule in Def. 8 uses the knowledge base directly to check consis-
tency, and while this enables to integrate domain knowledge into the system
directly, it also poses challenges from a practical point of view. First, the condi-
tion of the rule application is not specific to the change of the trace, and must
check the consistency of the whole knowledge base, which can be computation-
ally heavy. Second, the consistency check is performed at every step, for every
potential rule application. Third, the trace must be mapped whenever it is ex-
tended. Which means the same mapping computation that has been performed
in the previous step may be executed all over again.

To overcome these challenges, we provide a system that reduces consistency
checking by using well-formedness guards, which only require to evaluate an
expression over the trace without accessing the knowledge base. These guards
are transparent to the domain users, the system behaves the same as with the
consistency checks of the knowledge base. At its core, we use well-formedness
predicates, which characterize the relation of domain knowledge and mappings.

Definition 9 (Well-Formedness). A first-order predicate wf of a trace tr is
a well-formedness predicate for some mapping µ and some knowledge base K, if
the following holds:

∀tr . wf (tr) ⇐⇒ µ(tr) ∪ K is consistent

Using this definition we can slightly rewrite the rule of Def. 8: For every
starting term t0, the set of generated traces is the same if the rule of Def. 8 is
replaced by the following one

t
r,σ−−→ t′ ev = ev(r, σ) wf (tr ◦ ev)

(wf)

(t, tr)
r−→ (t′, tr ◦ ev)

For first-order matching mappings, we can generate the well-formedness pred-
icate by testing all possible extensions of the knowledge base upfront and defining
the guards of those sets that are causing inconsistency as non-well-formed.

Theorem 1. Let µ be a first-order matching mapping for some knowledge base
K. Let Ax = {ax 1, . . . , axn} be the set of all bodies in µ. Let Incons be the set
of all subsets of Ax, such that for each A ∈ Incons,

⋃
a∈A a ∪ K is inconsistent.

Let guardA be the set of guards corresponding to each body in A. The following
predicate wf µ is a well-formedness predicate for µ and K.

wf µ = ¬
∨

A∈Incons

∧
ϕ∈guardA

ϕ
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Example 7. We continue with Ex. 5. Consider a knowledge base K expressing
that role P is asymmetric. The knowledge base becomes inconsistent if the first
two or the last two axioms from µ are added to the knowledge base. Thus, the
generated well-formedness predicate wf is the following

wf µ(tr) ≡ ¬
((

(∃i. rule(tr [i])
.
= r1) ∧ (∃i. rule(tr [i])

.
= r2)

)
∨(

(∃i. rule(tr [i])
.
= r3) ∧ (∃i. rule(tr [i])

.
= r4)

))
The above procedure has exponential complexity in the number of branches

of the mapping. But as the superset of an inconsistent set is also inconsistent, it is
not necessary to generate all the subsets. I.e., it suffices to consider the following
set of minimal inconsistencies instead, which can be computed by testing for
inconsistencies based on the sets ordered by ⊂.

min-Incons = {A | A ∈ Incons ∧ ∀A′ ∈ Incons. A′ 6= A→ A′ 6⊂ A}

If well-formedness is defined inductively, then we can give an even more
specific transformation. The well-formedness predicate is inductive, if it checks
well-formedness for each trace and its last event is equivalent to the evalution
of a formula over the trace, which is specific to the event. If this is the case,
then each rule, which dictates the event, can have an own, highly specialized
well-formedness guard, which further enhances efficiency.

Definition 10 (Inductive Well-Formedness). A well-formedness predicate
wf is inductive 4 for some set of rules R if there is a set of predicates wf r for
all rules r ∈ R, such that wf can be written as an inductive definition:

wf (〈〉) ≡ true

wf (tr ◦ ev) ≡ wf (tr) ∧
∧
r∈R

(
(rule(ev)

.
= r)→ wf r(tr, ev)

)
in which wf r(tr, ev) is the local well-formedness predicate specifically for rule
r with the condition rule(ev)

.
= r. The predicate wf r forms the guard for rule

r. Every well-formedness predicate is equivalent to an inductive well-formedness
predicate by setting wf r(tr, ev) = wf (tr ◦ ev), but we aim to give more specific
predicates per rule.

Example 8. Finishing our geological system, we can give local well-formedness
predicates for all rules. For example, we can define a specific guard for rule
depositStego expressing that the deposition of a layer containing Stegosaurus
fossil is not allowed if there is already a deposition of a layer containing Tyran-
nosaurus fossils captured in the trace tr up to now. Compare with the approach
that the whole knowledge base needs to be checked, this proposed solution using

4 Our well-formedness predicates are inspired by the ones used in verification of concur-
rent systems, where they characterize traces w.r.t. a specific concurrency model [21].
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inductive well-formedness simplifies the complexity of analysis significantly. For
instance, the rule for deposition does not need to concern with the ordering of
the geological age.

wf deposit
(
tr, ev(deposit, v : l)

)
≡ wf erode

(
tr, ev(erode, v : l)

)
≡ true

wf depositTRex
(
tr, ev(depositTRex, v : l)

)
≡ true

wf depositStego
(
tr, ev(depositStego, v : l)

)
≡ ∀i ≤ |tr|. rule(tr [i]) 6 .= depositTRex

Definition 11 (Transition System using Well-Formedness). Let wf be an
inductive well-formedness predicate for a set of rules R, some mapping µ, some
knowledge base K. We define the transformed guarded transition system with the
following rule for each r ∈ R.

t
r,σ−−→ t′ ev = ev(r, σ) wf r(tr, ev)

(wf-r)

(t, tr)
r−→ (t′, tr ◦ ev)

The set of traces generated by this transition system from a starting term t0
is denoted G(R,wf , t0). Execution always starts with the empty trace.

Note that (a) we do use a specific well-formedness predicate per rule, and that
(b) we do not extend the trace tr in the premise as the rules in Def. 8 and Def. 9.

Theorem 2. Let wf be an inductive well-formedness predicate for a set of rules
R, some mapping µ, some knowledge base K. The guided system of Def. 8 and
Def. 11 generate the same traces: ∀t. H

(
R, µ,K, t

)
= G

(
R,wf , t

)
We can also define determinism as terms of the inductive well-formedness.

An inductive well-formedness predicate wf is deterministic, if for each trace tr
and event ev, only one possible local well-formedness predicate wf r(tr , ev) holds.

Proposition 1 (Deterministic Well-Formedness). An inductive well-
formedness predicate wf with local well-formedness predicates {wf r}r∈R is
deterministic, if

∀tr. ∀ev .
∧
r∈R

(
wf r(tr, ev)→

∧
r′∈R
r′ 6=r

¬wf r′(tr, ev)
)

For deterministic predicates, only one trace is generated:
∣∣G(R,wf , t

)∣∣ = 1.

When the programmer designs the mapping, the focus is on mapping enough
information to achieve inconsistency, to ensure that certain transition steps are
not performed. If the same mapping is to be used to retrieve results from the
computation, e.g., to query over the final trace, this may be insufficient. Next,
we discuss mappings that preserve more, or all information from the trace.
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6 (Semi-)Automatically Generated Mappings

The mappings we discussed so far require to be defined completely by the pro-
grammer and are used to extract a certain correct information from a trace,
which is sufficient to enforce domain invariants at runtime. In this section, we
introduce mappings which can be constructed (semi-)automatically to simplify
the usage of domain invariants: The transducing mappings and direct mappings
leverage the structure of the trace directly. A transducing mapping is constructed
semi-automatically. It applies some manually defined mapping to each event and
automatically connects every pair of consecutive events in a trace using the next

role in KB. A direct mapping relates each event with its parameters and is con-
structed fully automatically. Both kinds of mappings are not only easier to use
for the programmer, they can also be used by the domain users to access the
results of the computation in terms of the domain.

A transducing mapping is semi-automatic in the sense that part of the map-
ping is pre-defined, and the programmer must only define a part of it, namely
the mapping from a single event to a KB.

Formally, a transducing mapping consists of a function ι that generates
unique individual names5 per event and a user-defined function ε that maps
every event to a KB.

Definition 12 (Transducing Mapping). Let ι an injective function from nat-
ural numbers to individuals, and ε be a function from events to KBs. Let next be
an asymmetric role. Given a trace tr, a transducing mapping δnextι,ε (tr) is defined
as follows. For simplicity, we annotate the index i of an event in tr directly.

δnextι,ε (〈〉) = ∅ δnextι,ε (〈evi〉) = ε(evi)

δnextι,ε (〈evi, evj〉 ◦ tr) = ε(evi) ∪ {next(ι(i), ι(j))} ∪ δnextι,ε (〈evj〉 ◦ tr)

in which the ◦ operator concatenates two traces. This approach is less demanding
than to design an arbitrary mapping, as the structure of the sequence between
each pair of consecutive events is taken care of by the next role and ι is trivial
in most cases: one can just generate a fresh node with the number as part of its
individual symbol. The programmer only has to provide a function ε for events.

Example 9. Our geology example can be reformulated with the following user-
defined function εgeo . Let ιgeo map every natural number i to the symbol layeri:

εgeo(evi(depositStego, v : l))={contains(ιgeo(i), Stegosaurus), Layer(ιgeo(i))}
εgeo(evi(depositTRex, v : l))={contains(ιgeo(i), Tyrannosaurus), Layer(ιgeo(i))}

εgeo(evi(deposit, v : l))={contains(ιgeo(i), Nothing), Layer(ιgeo(i))}
εgeo(evi(erode))=∅

Note that the function ιgeo(i) is used to generate new symbols for each event,
which are then declared to be geological layers by the axiom Layer(ιgeo(i)). It

5 If using the Resource Description Framework (RDF) [43] for the knowledge base,
one requires fresh unique resource identifiers (URI).
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generalizes the set of fresh names from first-order matching mappings in Def. 7.
Based on this function definition, the example in Sec. 3 can be performed using
the transducing mapping δbelowιgeo ,εgeo . The connections between each pair of consec-
utive events in a trace, i.e., a layer is below another layer, is derived from the
axioms in the domain knowledge and is added as additional axioms to the KB.

So far, the mappings of the trace to some information in terms of a specific
domain are defined by the programmer. To further enhance the automation of the
mapping construction, we give a direct mapping, that captures all information
of a trace in a KB. More technically, the direct mapping directly expresses the
trace structure using a special vocabulary, which captures domain knowledge
about traces themselves and is independent from any application domain. We
first define the domain knowledge about trace structure.

Definition 13 (Knowledge Base for Traces). The knowledge base for traces
contains the concept Event modeling events, the concept Match modeling one pair
of variable and its matching terms, and the concept Term for terms. Furthermore,
the functional property appliesRule connects events to rule names (as strings),
the property match that connects the individuals for events with the individuals
for matches (i.e., an event with the pairs v : t of a variable and the term as-
signed to this variable), the property var that connects matches and variables
(as strings), and term that connects matches and terms.

We remind that KBs only support binary predicates and we cannot avoid
formalizing the concept of a match, which connects three parts: event, variable
and term. The direct mapping lessens the workload for the programmer further:
it requires no additional input and can be done fully automatically. It is a pre-
defined mapping for all programs and is defined by instantiating a transducing
mapping using the next role and pre-defined functions εdirect and ιdirect for ε
and ι. Also, we must generate additional fresh individuals for the matches. The
formal definition of the pre-defined functions for the direct mapping is as follows.

Definition 14 (Direct Mapping). The direct mapping is defined as a trans-
ducing mapping δnextιdirect ,εdirect

, where the function ιdirect maps every natural number
i to an individual ei. The individuals matchi j uniquely identify a match inside
a trace for the jth variable of the ith event, and we regard variables as strings
containing their names. Function εdirect is defined as follows:

εdirect (evi(r, v1 : t1, . . . , vn, tn)) =

{Event(ιdirect (i)), appliesRule(ιdirect (i), r)}∪⋃
j≤n

(
{match(ιdirect (i), matchi j), var(matchi j, vj), term(matchi j, η(tj)} ∪ δ(tj)

)
where δ(tj) deterministically generates the axioms for the tree structure of the
term tj according to Def. 3 and η(tj) returns the individual of the head of tj.
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The properties match, var and term connect each event with its parameters.
For example, the match v : layer0 of the first event in Ex. 4, generates

match(e1, match0 1), var(match0 1, “v”), term(match0 1, layer0)

where e1 is the representation of the event and match0 1 is the representation
of the match in the KB. The complete direct mapping is given in the following
example.

Example 10. The direct mapping of Ex. 4 is as follows. We apply the εdirect
function to all three events, where each event has one parameter.{
Event(e1), Event(e2), Event(e3), Next(e1, e2), Next(e2, e3), appliesRule(e1, “depositStego”),

appliesRule(e2, “erode”), appliesRule(e3, “depositTRex”), match(e1, m1), var(m1, “v”),

term(m1, layer0), match(e2, m2), var(m2, “v”), term(m2, layer0), match(e3, m3),

var(m3, “v”), term(m3, layer1)
}

7 Discussion

Querying and Stability. The mapping can be used by the domain users to interact
with the system. For one, it can be used to retrieve the result of the computation
using the vocabulary of a domain. For example, the following SPARQL [44] query
retrieves all depositions generated during the Jurassic:

SELECT ?l WHERE {?l a Layer. ?l during Jurassic}

Indeed, one of the main advantages of knowledge bases is that they enable
ontology-based data access [46]: uniform data access in terms of a given do-
main. Another possibility is to use justifications [5]. Justifications are minimal
sets of axioms responsible for entailments over a knowledge base, e.g., to find
out why it is inconsistent. They are able to explain, during an interaction, why
certain steps are not possible.

The programmers do not need to design a complete knowledge base – for
many domains knowledge bases are available, for example in form of indus-
trial standards [26,23]. For more specific knowledge bases, clear design principles
based on experiences in ontology engineering are available [17]. Note that these
KBs are stable and do rarely change. Our system requires a static domain knowl-
edge, as changes in the DKDP can invalidate traces during execution without
executing a rule, which is, thus, not a limitation if one uses stable ontologies.

The direct mapping uses a fixed vocabulary, but one can formulate the con-
nection to the domain knowledge by using additional axioms. In Ex. 10, one can
declare every event to be a layer. The axiom for depositStego is as follows.

appliesRule value “depositStego” SubClassOf contains value Stegosaurus

The exact mapping strategy is application-specific – for example, to remove
information erode must be handled through additional axioms as well, for exam-
ple by adding a special concept RemovedLayer that is defined as all layers that
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Fig. 3. Runtime comparison.

are matched on by some erode event. We next discuss some of the considerations
when choosing the style of mapping, and the limitations of each.

There are, thus, two styles to connect trace and domain knowledge: One
can add axioms connecting the vocabulary of traces with the vocabulary of the
DKDP (direct mapping), or one can translate the trace into the vocabulary of
the DKDP (first-order matching mapping, transducing mappings).

The two styles require different skills from the programmer to interact with
the domain knowledge: The first style requires to express a trace as part of
the domain as a set of ABox axioms, while the second one requires to connect
general traces to the domain using TBox axioms. Thus, the second style operates
on a higher level of abstraction and we conjuncture that such mappings may
require more interaction with the domain expert and a deeper knowledge about
knowledge graphs. However, the same insights needed to define the TBox axioms,
are also needed to define the guards of a first-order matching mapping.

Naming Schemes. The transducing mappings and the first-order matching map-
ping have different naming schemes. A transducing mapping, and thus, a direct
mapping, generate a new name per event, while the first-order matching map-
ping generates a fixed number of new names per rule: A transducing mapping
can extract quite extensive knowledge from a trace, with the direct mapping
giving a complete representation of it in a KB. As discussed, this requires the
user to define general axioms. A first-order matching mapping must work with
less names, and extract less knowledge from a trace. Its design requires to choose
the right amount of abstraction to detect inconsistencies.

Evaluation. To evaluate whether the proposed system indeed gives a perfor-
mance increase, we have implemented the running example6 as follows: The
system generates all traces up to length n, using three different transition sys-
tems: (a) The guided system (Def. 8) using the transducing mapping of Ex. 9.
For reasoning, we use the Apache Jena framework [2]. (b) The guarded system
(Def. 11) that uses a native implementation of the well-formedness predicate, and
(c) the guarded system that uses the Z3 SMT solver [18] to check the first-order
logic guards. The results are shown in Fig. 3.As we can see, the native imple-
mentation of the guarded systems is near instant for n ≤ 7, while the guided

6 https://github.com/Edkamb/KnowEnforce We slightly modified the example and
replaced the asymmetry axioms by an equivalent formalization to fit the example
into the fragment supported by the Jena OWL reasoner.
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system needs more than 409s for n = 7 and shows the expected blow-up due to
the N2ExpTime-completeness of reasoning in the logic underlying OWL [30]. The
guarded system based on SMT similarly shows a non-linear behavior, but scales
better then the guided system. For the evaluation, we ran each system for every
n three times and averaged the numbers, using a Ubuntu 21.04 machine with an
i7-8565U CPU and 32GB RAM. As we can see, the guarded system allows for an
implementation that does not rely on an external, general-purpose reasoners to
evaluate the guards and increases the scalability of the system, while the guided
system does not scale even for small system and KBs.

8 Related Work

Runtime enforcement is a vast research field, for a recent overview we refer to the
work of Falcone and Pinisetty [22], and give the related work for combinations
of ontologies/knowledge bases and transitions systems in the following.

Concerning the combination of ontologies/knowledge bases and business pro-
cess modeling, Corea et al. [16] point out that current approaches lack the foun-
dation to annotate and develop ontologies together with business process rules.
Our approach focuses explicitly on automating the mapping, or support devel-
opers in its development in a specific context, thus satisfying requirement 1 and
7 in their gap analysis for ontology-based business process modelling. Note that
most work in this domain uses ontologies for the process model itself, similar
to the ontology we give in Def. 13 and Def. 13 (e.g., Rietzke et al. [36]) or the
current state (e.g., Corea and Delfmann [15]), not the trace. We refer to the
survey of Corea et al. for a detailed overview.

Compared with existing simulators of hydrocarbon exploration [20,47], which
formalized the domain knowledge of geological processes directly in the transition
rules, we propose a general framework to formalize the domain knowledge in a
knowledge base which is independent from the term rewriting system. This clear
separation of concerns makes it easier for domain users to use the knowledge
base for simulation without having the ability to program.

Tight interactions between programming languages, or transition systems,
beyond logical programming and knowledge bases have recently received increas-
ing research attention. The focus of the work of Leinberger [29,32] is the type
safety of loading RDF data from knowledge bases into programming languages.
Kamburjan et al. [28] semantically lift states for operations on the KB represen-
tation of the state, but are not able to access the trace. In logic programming,
a concurrent extension of Golog [33] is extended to verify CTL properties with
description logic assertions by Zarrieß and Claßen [48].

Cauli at al. [12] use knowledge bases to reason about the security properties of
deployment configuration in the cloud, a high level representation of the overall
system. As for traces, Pattipati et al. [34] introduce a debugger for C programs
that operates on logs, i.e., special Traces. Their system operates post-execution
and cannot guide the system. Al Haider et al. [1] use a similar technique to
investigate logged traces of a program.
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In runtime verification, knowledge bases has been investigated by Baader
and Lippmann [6] in ALC-LTL, which uses the description logic ALC instead
of propositional variables inside of LTL. An overview over further temporaliza-
tions of description logics can be found in the work of Baader et al. [4]. Runtime
enforcement has been using to temporal properties over traces since its begin-
nings [37], but, as a recent survey by Falcone and Pinisetty [22] points out,
mainly for security/safety or usage control of libraries. In contrast, our work
requires the enforcement to do any meaningful computation and uses a different
way to express constraints than prior work: consistency with knowledge bases.

DatalogMTL extends Datalog with MTL operators [9,45] to enable ontology-
based data access about sequences using inference rules. The ontology is ex-
pressed in these rules, i.e., it is not declarative but an additional programming
layer, which we deem unpractical for domain users from non-computing domains.
DatalogMTL has been used for queries [10] but not for runtime enforcement.

Traces have been explored from a logical perspective mainly in the style of
CTL∗, TLA and similar temporal logics. More recently, interest in more expres-
sive temporal properties over traces of programming languages for verification
using more complex approaches has risen and led to symbolic traces [11,19],
integration of LTL and dynamic logics for Java-like languages [8] and trace lan-
guages based on type systems [27]. These approaches have in common that they
aim for more expressive power and are geared towards better usability for pro-
grammers and simple verification calculi. They are only used for verification, not
at runtime, and do not connect to formalized domain knowledge.

The guided system can be seen as a meta-computation, as put forward by
Clavel et al. [14] for rewrite logics, which do not discuss the use of consistency as
a meta-computation and instead program such meta computations explicitly.

9 Conclusion

We present a framework to use domain knowledge about dynamic processes to
guide the execution of generic transition systems through runtime enforcement.
We give a transformation to use of rule specific guards instead of using the do-
main knowledge directly as a consistency invariant over knowledge bases. The
transformation is transparent and the domain user can interact with the system
without being aware of the transformation or implementation details. To reduce
the working load on the programmer, we discuss semi-automatic design of map-
pings using transducing approaches and a pre-defined direct mapping. We also
discuss further alternatives, such as additional axioms on the events, and the
use of local well-formedness predicates for certain classes of mappings.

Future Work. We plan to investigate how our system can interact with knowledge
base evolution [24], a more declarative approach for changes in knowledge bases,
as well as other approaches to modeling sequences in knowledge bases [40].
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