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Neurodevelopmental disorders (NDDs) impact multiple aspects of an individual's functioning, including social
interactions, communication, and behaviors. The underlying biological mechanisms of NDDs are not yet fully un-
derstood, and pharmacological treatments have been limited in their effectiveness, in part due to the complex
nature of these disorders and the heterogeneity of symptoms across individuals.
Identifying genetic loci associated with NDDs can help in understanding biological mechanisms and potentially
lead to the development of new treatments. However, the polygenic nature of these complex disorders has
made identifying new treatment targets from genome-wide association studies (GWAS) challenging.
Recent advances in the fields of big data and high-throughput tools have provided radically new insights into the
underlying biological mechanism of NDDs. This paper reviews various big data approaches, including classical
and more recent techniques like deep learning, which can identify potential treatment targets from GWAS and
other omics data, with a particular emphasis on NDDs.We also emphasize the increasing importance of explain-
able and causal machine learning (ML)methods that can aid in identifying genes,molecular pathways, andmore
complex biological processes that may be future targets of intervention in these disorders.
We conclude that these new developments in genetics andML hold promise for advancing our understanding of
NDDs and identifying novel treatment targets.

© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Psychiatric disorders affect 20–25% of the population in any given
year (Vos et al., 2017) and >50% of the general population in middle-
and high-income countries will suffer from at least one such disorder
during their lives (Steel et al., 2014). Anxiety, depression and substance
use disorders (SUDs) are the most prevalent psychiatric disorders in
adults, while anxiety and neurodevelopmental disorders (NDDs) such
as attention deficit hyperactivity disorder (ADHD) are common in
children (Kessler & Wang, 2008).

NDDs typicallymanifest early in development, often before the child
enters grade school, and are characterized by developmental deficits
that impair personal, social, academic, or occupational functioning
(Association, A. P, 2022). According to current psychiatric classification,
the NDDs include ADHD, as well as intellectual-, communication- and
autism spectrum disorder (ASD), specific learning disorders, motor dis-
orders, tic disorders and other neurodevelopmental disorders
(Association, A. P, 2022). The NDDs have variable clinical presentations,
a range of severities and often coexist (are comorbid with) other NDDs,
as well as other psychiatric disorders. Different NDDs share genetic and
environmental risk factors and share some genomic causes. Except for
ADHD, where stimulant therapy was discovered in 1937, other NDDs
have no effective pharmacological treatments for their core symptoms.

There are many explanations for this lack of progress, including the
complex and heterogeneous biology and lack of valid animal models
for NDDs. Furthermore, current classification systems of neuropsychiat-
ric disorders (NPDs), as described in the Diagnostic and Statistical Man-
ual of Mental Disorders (DSM) and International Classification of
Disease (ICD) diagnostic manuals, are mainly based on tradition and
practical utility, not on underlying biology. Current diagnostic entities
probably include conditions with different underlying biology and po-
tentially treatable targets.

Furthermore, recent clinical, epidemiological, and biomarker studies
(including genetics and brain imaging studies) have reported strong bi-
ological relationships between conditions that previously were consid-
ered to be distinct diagnostic categories within clinical psychiatry or
neurology (Radonjić et al., 2021; Smoller, 2019). For instance, genetic
variants affecting human ion channels are associated with several rare
and common disorders within neurology and psychiatry, as well as car-
diology and endocrinology (Alam, Svalastoga, Martinez, Glennon, &
Haavik, 2023). Together, these shortcomings have impeded the devel-
opment of new, effective treatments. Recently there has been more op-
timism in this field, partially due to increased mechanistic insights and
the introduction of new research tools. The limitations of traditional di-
agnostic systems triggered an intensive search for new, biologically in-
formed classifications of mental disorders, including the Research
Domain Criteria (Sanislow, Ferrante, Pacheco, Rudorfer, & Morris,
2019). Probably, the most significant advances introduced in this field
have been in the use of big data, especially in genomics and new high-
throughput tools to analyze such data.

Twin, family, and molecular genetic studies have demonstrated a
strong genetic contribution to all common NDDs (Smoller, 2019). For
example, ADHDandASDhave reported heritability estimates of approx-
imately 74% and 83%, respectively (Faraone & Larsson, 2019; Sandin
et al., 2017). Most NDDs are polygenic disorders, with both common
and rare genetic variation contributing to their etiology. Genome-wide
association (GWA) studies (GWAS) conducted by the Psychiatric Geno-
mics Consortium (PGC) and others have revealed strongly associated
genetic loci for NDDs, as well as other common psychiatric disorders,
such as major depression, bipolar disorder and schizophrenia
(Smoller, 2019). For instance, recent meta-analyses found 27 indepen-
dent risk loci for ADHD (Demontis et al., 2023), 12 loci for ASD (Grove
et al., 2019), 64 loci for bipolar disorder (Mullins et al., 2021) and 287
for schizophrenia (Trubetskoy et al., 2022).

Those loci are typically enriched for genes expressed in brain cells
and genes linked to the mechanisms of drugs used to treat psychiatric
2

disorders, aswell as drugs in other drug classes, opening up possibilities
for drug repurposing (Wu et al., 2019).

Especially during the past decade, many large genetic studies and
other biomarker investigations have provided new insights into genetic
risk factors underlying common psychiatric disorders. For instance, in
July 2022 theGWAS central webpage listed>70million associations be-
tween 3.3 million unique SNPs and 1451 unique MeSH/disease/pheno-
type descriptions. Altogether, these impressive results have clearly
demonstrated that genetic risk factors for psychiatric disorders are not
confined to discrete categories as defined in diagnostic manuals. In a
large study of psychiatric genetics (232,964 cases and 494,162 controls
across eight disorders), 109 distinct genetic loci were associated with at
least two psychiatric disorders. These included 23 loci with pleiotropic
effects on four or more disorders and 11 loci with antagonistic effects
on several disorders. Several of the identified risk loci contain genes
encoding proteins recently implicated inmultiple NPDs, such as calcium
channel subunits and proteins involved in glutamatergic neurotrans-
mission as well as completely unexplored, potentially druggable pro-
teins and pathways (Lee et al., 2019). More recently, it has been
shown that rare protein coding variants also contribute strongly to com-
mon NPDs and that many of these protein coding variants, as well as
common variants, fall into biological pathways shared across multiple
disorders (Lal et al., 2020; Satterstrom et al., 2019).

Drug discovery and development are complex processes that have
applied various automated procedures for screening candidate drugs
and analyzing large data sets. More recently, artificial intelligence (AI),
in particular machine learning (ML) algorithms have been adopted by
the pharmaceutical industry and academic laboratories involved in
drug discovery and development. The use of ML in target identification
and validation, compound screening and lead discovery, as well as pre-
clinical and clinical studies has been subject to recent reviews and com-
mentaries (Dara, Dhamercherla, Jadav, Babu, & Ahsan, 2022;
Vamathevan et al., 2019).

Herewe reviewboth classical andmoremodern (e.g., deep learning)
“big data” approaches to find potential treatment targets from GWAS
and related omics data, with a particular focus on NDDs. We highlight
the emergence of explainable and causal ML methods to identify
genes, molecular pathways, and higher-order biological processes im-
plicated in disease. Together, these approaches have the potential to
dramatically improve our ability to discover new treatments for
human diseases.

2. Genome guided target identification

Many complex diseases are caused in part by alterations of DNA se-
quences. Drug targets that are supported by human genetic evidence
are more likely to lead to approved drugs (King, Davis, & Degner,
2019; Nelson et al., 2015). This has been shown for common variants
in common disorders, as well as for rare Mendelian diseases (King
et al., 2019). Thus, it appears logical to use genetic data to explore the
underlying biology and search for druggable targets for NPDs and
other complex disorders. However, so far this approach has not been
very successful. This failure has many explanations, including the poly-
genic nature of complex conditions and the fact that the genomic loci
causing a disorder can be different from treatment response.

There are hundreds or thousands of common genetic variants that
increase the risk for any complex disorder, with each variant typically
contributing only a small risk. For example, Demontis et al. estimated
that ≥7000 common variants contribute to the polygenic risk for
ADHD (Demontis et al., 2023). As the vast majority of such risk variants
of common disorders are located in noncoding regulatory regions
(Shendure, Findlay, & Snyder, 2019), it is often challenging to identify
the specific genes, biological pathways and cells affected by these vari-
ants.

Most earlier studies have lacked the resources to interpret the func-
tional roles of genetic variants associated with NPDs and other complex
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conditions. However, this situation is now changing dramatically. As
more functional annotations of the genome in specific tissues
(e.g., ENCODE (de Souza, 2012), PsychENCODE (Consortium⁎, P, 2018),
the Allen Brain Atlas (Shen, Overly, & Jones, 2012), the Brainnetome
(Jiang, 2013), GTEx (Lonsdale et al., 2013), PGC (Sullivan et al., 2018)
etc.) as well as information on rare variants (i.e., exome sequencing in
thousands of individuals) become available, fine mapping tools
(e.g., Summary based Mendelian Randomization (SMR), HEterogeneity
In Dependent Instrument (HEIDI) (Wu et al., 2019) and sc-linker
(Jagadeesh et al., 2022)) to prioritize genes and cell typeswith common
variant association signals have been developed. Such fine mapping
tools use the publicly available summary statistics of GWAS (thus, no
ethically sensitive individual level genetic data is needed). They can in-
terpret the global enrichment of association signals within NPD-
associated genes, pinpointing genes with specific functions and, thus,
relevant for drug discovery. Fine mapping also aids in identifying
disorder-specific drug targets. For example, one can leverage the speci-
ficity of rare variant signals in one disorder (e.g., schizophrenia (SCZ)) to
interpret loci with common variants associated with multiple NPDs.

Genome-guided target identification for selection and prioritization
of drug targets typically includes (i) discovering coincident genetic var-
iants associated with both disease risk and other quantitative traits
(e.g., brain imaging phenotypes); (ii) finding the causal genes responsi-
ble for these coincident associations anddetermining thedirection of ef-
fects; and (iii) refining of the causal relationships and collecting further
evidence for the significant role of the therapeutic target in the disease
process, based on the available biological information and new focused
experiments (Fig. 1).

As already mentioned, large-scale GWASs organized by PGC and
others have revealed promising candidate genes or pathways for com-
mon NPDs for further study along this genome-guided target identifica-
tion pipeline. Although available sample sizes have so far been limiting
the success of GWASs and sequencing efforts for many childhood onset
conditions, includingmost NDDs, these conditions can also benefit from
the successful genetic studies of other psychiatric disorders that show
genetic overlapwithNDDs (Lee et al., 2019). Thus, information obtained
for one diagnostic category may also be relevant for other (comorbid)
conditions. Below follows a brief review of findings from recent
GWASs on NDDs and other relevant NPDs.

A genome-wide association meta-analysis of 20,183 individuals di-
agnosed with ADHD and 35,191 controls and found 12 independent ge-
nomewide significant loci (Demontis et al., 2019). Later, they increased
the sample size to 38,691 cases with ADHD and 186,843 controls and
identified 27 loci with 76 potential risk genes. These hits were enriched
among genes expressed in early brain development (Demontis et al.,
2023). Although none of the known pharmacological targets of drugs
used to treat ADHD were among the top hits, several of the implicated
risk genes were considered to be druggable, also suggesting that
existing drugs might be repurposed for ADHD treatment (Hegvik
et al., 2021).

The Autism Spectrum Disorder Group of the PGC conducted a meta-
analysis and replication study of 16,539 individualswith ASD and a total
of 157,234 controls (Consortium, T. A. S. D. W. G. of T. P. G, 2017). They
identified a genome-wide significant locus (rs1409313-T) at 10q24.32
which contains several genes including PITX3, a transcription factor,
and CUEDC2, a cell cycle regulator. Similarly, Grove et al. (Grove et al.,
2019) conducted ameta-GWASof 18,381ASD cases and 27,969 controls
from a unique Danish population resource. The study identified 5
genome-wide-significant loci. Moreover, 7 additional loci were identi-
fied by utilizing the GWAS results from three phenotypes with signifi-
cantly overlapping genetic architectures (schizophrenia, major
depression, and educational attainment).

A large-scale GWAS using the data from 41,917 cases of bipolar dis-
order and 371,549 controls of European ancestry identified 64 associ-
ated genomic loci (Mullins et al., 2021). The study found significant
signal enrichment in genes encoding targets of antipsychotics, calcium
3

channel blocker, antiepileptic and anesthetics. Furthermore, the study
integrated expression quantitative trait locus (eQTL) data and identified
15 genes strongly associated to bipolar disorder via gene expression,
encoding druggable targets such as HTR6, MCHR1, DCLK3 and FURIN.

Schizophrenia has been subject to multiple GWAS, with gradually
increasing sample sizes and number of genome wide significant hits.
In one of the largest genetic studies on schizophrenia a two-stage
GWAS of 76,775 cases and 243,649 controls was conducted
(Trubetskoy et al., 2022). They identified common variant associations
at 287 distinct genomic loci. Further analysis showed that the fine-
mapped candidates were enriched for genes associated with rare dis-
ruptive coding variants, including the glutamate receptor subunit
GRIN2A and transcription factor SP4.

The standardized methods and data output format from molecular
genetic studies has allowed for combination of multiple data sets and
comparison of findings across different sites and disorders. The Cross-
Disorder Group of the PGC analyzed data from 33,332 cases and
27,888 controls and identified four risk loci that have shared effects on
fivemajor psychiatric disorders, including autismspectrumdisorder, at-
tention deficit hyperactivity disorder, bipolar disorder, major depres-
sive disorder, and schizophrenia (Consortium, C.-D. G. of the P. G,
2013). These loci include regions on chromosomes 3p21 and 10q24,
and SNPs within two L-type voltage-gated calcium channel subunits,
CACNA1C and CACNB2. The cross-disorder group conducted a larger
study in 2019 on data from 232,964 cases and 494,162 controls across
eight psychiatric disorders i.e., 3 disorders (anorexia nervosa,
obsessive-compulsive disorder, Tourette syndrome) in addition to the
five disorders from the previous study (Lee et al., 2019). The study iden-
tified 109 loci associated with at least two of the eight psychiatric disor-
ders; 23 of these loci were shown to have pleiotropic effects on four or
more disorders and 11 loci showed antagonistic effects on multiple dis-
orders. The identified pleiotropic loci are located within genes that
show heightened expression in the brain and play important roles in
neurodevelopmental processes.

Further exploitation of these genetic loci and candidate genes for
drug discovery has been challenging because identification of genes in
GWAS are traditionally based on physical proximity to the genetic asso-
ciation signal, and therefore no direct causal effect of the gene on the
disease is established. However, by integrating summary data from
GWAS and studies examining the effect of genetic variants on gene or
protein expression levels in specific cells types, some of these limita-
tions can be addressed (Jagadeesh et al., 2022; Reay & Cairns, 2021;
Zhu et al., 2016).

Colocalization analysis is a statistical method used to determine
whethermultiple genetic variants associatedwith different traits are lo-
cated in the same region of the genome. It is used to identify potential
causal genes and pathways that may be involved in disease develop-
ment by comparing the patterns of association between the genetic var-
iants and the traits of interest. If the variants show a high degree of
correlation with each other and with the traits, it suggests that they
are likely affecting the same biological process. On the other hand, if
the patterns of association are different between the variants and the
traits, it suggests that they are affecting different pathways.

A probabilistic method eCAVIAR (eQTL and GWAS Causal Variant
Identification in Associated Regions) has been proposed for estimating
the posterior probability that a same genetic variant is causal for both
GWAS and eQTL study (Hormozdiari et al., 2016). eCAVIAR can account
for more than one causal variant in a given genomic locus. Moreover, it
can use summary statistics without the need of the individual genotype
data.

In a recent study (Wallace, 2021), it was shown that the Sum of
Single Effects (SuSiE) regression framework can be used for
colocalization analysis to evaluate evidence for association at multi-
ple genetic variants simultaneously, while separating the statistical
support for each variant based on the causal signal being examined.
SuSiE can identify clusters of genetic variants that are likely to share



Fig. 1. Genetically driven identification of therapeutic targets. (A) Identification of common genetic associations between disease risk and quantitative trait such as brain imaging pheno-
type (B) Inferring the causal genes and pathways responsible for the shared association usingMendelian Randomization. (C) Gatheringmore evidence for a therapeutic target's crucial role
in relation to the disorder.
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a common causal signal and thus are more likely to be involved in the
same biological pathway or mechanism underlying the traits of inter-
est. This approach can improve the accuracy of identifying the causal
variants involved in complex diseases and can help in the identifica-
tion of novel therapeutic targets.

Similarly, ColocQuiaL pipeline has been proposed to provide a
framework for performing the colocalization analyses (Chen et al.,
2022) and the sc-linker pipeline for integrating single-cell RNA-
sequencing, epigenomic SNP-to-gene maps and GWAS summary
4

statistics to infer cell types and processes involved in disease
(Jagadeesh et al., 2022).

Mendelian Randomization (MR) is a statistical technique that uses
genetic variants that are associated with both the exposure
(e.g., expression of a candidate gene in a relevant tissue) and out-
come of interest (e.g., disease risk) as instrumental variables (IV) to
estimate the causal effect of the exposure on the outcome (Davey
Smith & Hemani, 2014; Davies, Holmes, & Smith, 2018; Ebrahim &
Davey Smith, 2008; Evans & Davey Smith, 2015). MR assumes that
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the genetic variants are associated with the exposure of interest, that
they do not affect the outcome through any pathway other than the
exposure, and that they are not associated with any confounding var-
iables that might bias the estimates of the causal effect (Fig. 1B).
When these assumptions are valid, the causal effect of the exposure
on the outcome can be estimated by regressing the outcome on the
genetically predicted values of the exposure.

Applications of MR for identifying candidate drug targets for NPDs
have begun to appear. In a recent study (Liu et al., 2022),MR analysis in-
tegrated GWAS and brain-derived transcriptome and proteome data of
1263 actionable proteins; 25 potential drug targets for schizophrenia,
bipolar disorder, depression and ADHD were identified. Similarly,
(Wingo et al., 2021) identified 19 genes as causal factors for depression
by integrating GWAS results with human brain proteomes.

AlthoughMR can provide evidence that a candidate GWAS gene has
a causal effect on disease, it is still limited by being focused on a single
locus and single candidate gene at a time. To gain a more holistic per-
spective, including to identify downstream pathways affected by
GWAS genes, more data-intensive ML approaches are required.

3. Machine learning primer

Machine learning is a field of study that aims to develop algorithms
that can learn patterns and relationships from data. There are twomain
Fig. 2. (A) Illustration of a typical ML process using genetic data to identify underlying patterns
predict a phenotype such as disease status.

5

types of ML: supervised and unsupervised. In supervised learning, the
algorithm is trained on labeled data, that is, data from both the inputs
(predictors) and outputs, to predict the outputs from the input, while
in unsupervised learning, the algorithm is only provided with inputs
and must find patterns or relationships within the data without the
use of labeled outputs.

The typical ML process begins with collecting data and dividing it
into three subsets: training, validation, and test data. The algorithm is
then trained using the training data, and the validation data is used to
fine-tune the model and improve its performance. After training the
ML model, its performance is evaluated using the unseen test data
(Fig. 2A). Careful preprocessing of the data is essential to avoid “data
leakage”, that is, accidental transfer of information from the training to
the validation and test data (e.g., when variables are standardized
prior to splitting the data) (Kaufman, Rosset, Perlich, & Stitelman,
2012). Data leakage has been documented as affecting many genomic
ML studies (Barnett, Zhang-James, & Faraone, 2022).

A model is a mathematical representation of a problem or relation-
ship in the data. ML models are created by training algorithms on data
and then used to make predictions or decisions. Feature extraction or
feature selection is a crucial step in the ML process. A feature is an attri-
bute or characteristic of the data that the algorithmuses tomake predic-
tions or decisions. The loss function is a measure of howwell themodel
is performing, used to guide the training process, for instance a
. (B) Illustration of typical deep neural network (DNN) architecture using genotype data to



Table 1
Glossary of some machine learning algorithms.

Linear Regression: A simple algorithm for performing regression, where the relationship between the independent and dependent variables is modeled as a linear function.
Logistic Regression: A type of regression algorithm used for binary classification problems, where the goal is to predict a binary outcome (e.g., yes/no, true/false).
Decision Trees: An algorithm that creates a tree-like model of decisions and their possible consequences, used for both classification and regression tasks.
Random Forest: An ensemble learning method that operates by constructing multiple decision trees and aggregating their results to make a final prediction.
Naive Bayes: A probabilistic algorithm used for classification, based on Bayes' Theorem, which assumes independence between features.
k-Nearest Neighbors (k−NN): A non-parametric, instance-based algorithm for classification and regression, where the prediction for a given data point is based on its
k-nearest neighbors.

Support Vector Machines (SVMs): A type of algorithm for classification and regression analysis, which seeks to find the best boundary (hyperplane) to separate data into
classes by maximizing the margin between the classes.

Convolutional Neural Networks (ConvNets or CNNs): A type of deep neural network architecture commonly used in computer vision tasks, that uses convolutional layers to
scan and analyze local features in images.

Graph Neural Networks (GNNs): A class of deep learning models designed to process and learn from data represented in graph structures.
Recurrent Neural Networks (RNNs): A type of neural network specialized in processing sequential data, where the output at each step is influenced by previous computations.
Principal Component Analysis (PCA): A dimensionality reduction technique that seeks to find the principal components, or directions of maximum variance, in the data.
k-Means Clustering: An unsupervised learning algorithm for grouping data into clusters based on similarity.
Bayesian Networks: probabilistic graphical models for representing relationships between variables and making predictions based on available data.
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likelihood function that expresses how probable it is to observe the
training data given the current model parameters.

TraditionalMLmethods such as linear regression, random forests, sup-
port vector machines etc. (Table 1) rely on the use of domain knowledge
to transform features from the rawdata beforemodel training. A simple
example is transforming genotypes into polygenic risk scores or gene
set polygenic risk scores (Barnett et al., 2022).

Neural network-based ML models can eliminate the need for
handcrafting features by translating the data into compact intermediate
representations. Artificial neural networks (ANNs) are inspired by the
structure and function of the human brain and consist of interconnected
nodes or “neurons”. ANNs with multiple hidden layers, allowing for
end-to-end training on large datasets, can learn and make predictions
or decisions, mimicking the way the human brain works. Neural net-
work models with more than two hidden layers are typically referred
to as “deep neural networks (DNNs)” (Fig. 2B). Neural network models
such as convolutional neural networks (CNNs), recursive neural net-
works (RNNs) and graph neural networks (GNN) are different variants
of DNN architectures. Some of the common DNN architectures are
briefly summarized in Table 1.

However, trainingmachine learningmodels is challenging due to is-
sues such as overfitting, where themodel fits too closely to the training
data and is not able to generalize well to new, unseen data, or
underfitting, where the model is too simple and does not fit the data
well enough, leading to poor performance on the training data. Regular-
ization is a technique used to prevent overfitting by adding a model
complexity penalty term to the loss function or using dropout (ran-
domly disabling neurons in a neural network) during training.

4. Applications of machine learning in drug discovery

Many ML methods have been developed for analyzing the rapidly
growing amounts of human genetic data (currently including millions
of individuals) (Lal et al., 2020; Pardiñas et al., 2018). These methods
can explore patterns across traditional diagnostic and genome-wide as-
sociation boundaries to find shared and unique signatures of their biol-
ogy and previously unknown therapeutic targets and link this
information with existing therapeutic targets and ligand libraries
(Hegvik et al., 2021).

In drug discovery studies for schizophrenia, AI/ML methods have
been used for tasks including drug target identification (Hsu & Wang,
2017; Yang et al., 2019), developing quantitative structure–activity rela-
tionship (QSAR) models (Marunnan et al., 2017), monitoring dosing
compliance (Bain et al., 2017), predicting G protein-coupled receptors
(GPCRs) targeting compounds (Yang et al., 2019), and drug reposition-
ing (Zhao & So, 2018). For example, in (Yang et al., 2019) an SVM-RFE
(recursive feature elimination)-based feature selection and classifica-
tion method was used to identify a biomarker signature for presynaptic
6

dopamine overactivity, which may be responsible for schizophrenia.
SVM classifiers have also been useful for predicting QSAR models of
the GABA (gamma aminobutyric acid) uptake inhibitor drugs that are
helpful in the treatment of schizophrenia (Marunnan et al., 2017). In ad-
dition, SVMs trained on drug-response expression profiles from the
Connectivity Map (Lamb et al., 2006) showed better performance com-
pared to otherMLmethods for predicting drug repositioning candidates
for SCZ (Zhao & So, 2018).

AI/ML based methods have also been used in drug discovery studies
for ASD. For example, an improved performance in drug response pre-
diction of ASD patients was observed using cluster analysis
(i.e., affinity propagation and k-medoids) of clinical data (i.e., signs
and biomarkers) (Obara et al., 2018). In (Ekins et al., 2019), a Bayesian
ML model was trained on high-throughput screening data, and it re-
vealed a repurposing potential of nicardipine or other dihydropyridine
calcium channel antagonists for the treatment of Pitt Hopkins syn-
drome, a rare genetic disorder exhibiting features of ASD. Moreover,
ML algorithms have been successful for predicting the functional effects
of variants in voltage-based sodium and calcium ion channels, that have
been known to be associatedwith ASD, schizophrenia and developmen-
tal encephalopathy (Heyne et al., 2020). Here, ML models were trained
on sequence- and structure-based features to predict the gain or loss of
function effects of potential pathogenic missense variants in ion chan-
nels and exome-wide data was used for result validation.

Drug discovery research for NDDs can potentially benefit from ML-
based drug discoveries for other disorders, including NPDs. Recently,
(Pan et al., 2023) developed a deep learning-based prediction frame-
work (AI-DrugNet) for identifying drug repurposing opportunities for
Alzheimer's disease (AD). The authors first built a network of drug-
target pairs (DTP) based on multiple features related to the drugs and
targets. They then incorporated additional information about the rela-
tionships between drugs and targets both within and outside of DTPs
and trained a model to predict synergistic drug combinations.

In (Luo et al., 2017), the authors propose a computational pipeline
called DTINet for predicting novel drug-target interactions. DTINet
uses a heterogeneous network that integrates diverse drug-related in-
formation and focuses on learning a low-dimensional vector represen-
tation of features to accurately explain the topological properties of
individual nodes in the network, and then uses these representations
for predicting new drug-target interactions. Similarly, deepDR
(https://github.com/ChengF-Lab/deepDR) is a network-based deep
learning approach for in silico drug repurposing. The approach inte-
grates ten different networks, including those related to drugs, diseases,
targets, side-effects, and drug-drug interactions (Zeng et al., 2019). The
deepDR approach uses a multi-modal deep autoencoder to learn a low-
dimensional representation of drugs and with clinically reported
drug-disease pairs from these interaction networks to infer new target
diseases for drugs originally approved for other diseases. The authors

https://github.com/ChengF-Lab/deepDR


Table 2
Studies on machine learning algorithms for various NDDs and tasks.

Study Disorder ML algorithm Task

Hsu & Wang, 2017 SCZ SVM Pathogenesis, biomarker detection, drug target discovery
Yang et al., 2019 SCZ SVM Identification of target genes
Marunnan et al., 2017 SCZ and

depression/anxiety
disorder

SVM Prediction of QSAR models

Zhao & So, 2018 SCZ SVM, RF, GBM, logistic regression, DNN Drug discovery or repositioning based on drug expression profile
Obara et al., 2018 ASD Clustering algorithms (affinity

propagation, k-medoids)
Drug response prediction

Ekins et al., 2019 ASD Bayesian machine learning Drug repurposing
Heyne et al., 2020 Multiple GBM, RF, SVM, logistic regression Predicting functional effects of variants in voltage-based sodium

and calcium ion channels
Liu et al., 2018 Kernel machine regression Predicting the neurodevelopmental toxicity of compounds
Wang et al., 2018 Multiple DNN Identification of key genes and pathways associated with the

disorder
Nguyen, Jin, & Wang, 2021 SCZ DNN Prioritize variants, genes and regulatory linkages
Pan et al., 2023 AD GNN Identification of potential repurposed drug therapies for AD
Luo et al., 2017 Drug-target interaction prediction and drug repositioning
Zeng et al., 2019 AD, PD DAE Drug-target interaction prediction and drug repositioning
Altae-Tran, Ramsundar, Pappu, &
Pande, 2017

One-shot learning, Long short-term
memory (LSTM)

Drug discovery with less data

SCZ: Schizophrenia, ASD: Autism spectrum disorder, AD: Alzheimer's disease, PD: Parkinson's disease, SVM: Support vector machines, RF: Random forests, GBM: Gradient boosting ma-
chines, DNN: Deep neural networks, GNN: Graph neural network, DAE: Deep auto encoder.
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found that deepDR outperforms DTINet and other conventional ML
methods for this task (Zeng et al., 2019).

Deep learningmethods often require large amounts of training data,
but the lack of publicly available datasets oftenmakes it difficult to train
suchmodels. To address this issue, (Altae-Tran et al., 2017) showed that
one-shot learning (anML approach that can learn froma single example
or a few instances of a class) significantly lowers the amounts of data re-
quired for making meaningful predictions in drug discovery applica-
tions. The model is part of DeepChem, an open-source framework for
deep-learning in drug discovery (https://github.com/deepchem/
deepchem). Table 2 lists some of the selected studies where machine
learning approaches have been used with regards to various NDDs
and tasks.

5. Applications of machine learning in identifying causal mecha-
nisms

While ML has been applied at several stages of the drug discovery
and repurposing pipelines as illustrated above, it is not straightforward
to connect these approaches directly to GWAS-based candidate genes,
because these genes may not code for druggable proteins. Hence it is
important to also apply ML to map causal molecular pathways, net-
works, and processes downstream of GWAS candidate genes to identify
potential treatment targets.

One type of ML model that has emerged in this context is the “gray
box” (as opposed to black box) neural network whose structure is par-
tially defined by prior biological knowledge. For instance, a Deep Struc-
tured Phenotype Network (DSPN) is an artificial neural network (ANN)
model for predicting psychiatric phenotypes from genetic variation and
gene expression data (Wang et al., 2018). Unlike conventional ANNs
where the input data is progressively integrated and processed through
hidden layers of artificial neurons in a feedforwardmanner, DSPN iden-
tifies artificial neurons with genes, and embeds a gene regulatory net-
work (GRN) of known transcription factor - target interactions for the
brain in the ANN connections. In addition to an improved predictive
performance, by tracing important paths in the ANN structure, the
model is also able to highlight key genes and pathways associated
with the disorder, including immunological, synaptic and metabolic
pathways (Wang et al., 2018).

Similarly, a deep neural network model (called Varmole) has been
proposed, based on a “biological DropConnect”mechanism for prioritiz-
ingdisease risk variants and genes (Nguyen et al., 2021). DropConnect is
7

an effective regularization technique for deep neural networks which is
based on a random selection of weight connections between the two
consecutive layers of the network. Instead of this random selection,
the proposedmodel uses GRNs and eQTLs as prior biological knowledge
for selecting the connections, hence the term biological DropConnect.
Again, this allows to attribute biological mechanisms to model
predictions (Fig. 3).

In a slightly different context, a similar approach called a Visible
Neural Network (VNN) has been developed to predict the response of
cancer cell lines to drug treatment and, simultaneously, learn biological
mechanisms underlying the drug response (Kuenzi et al., 2020). VNNs
are artificial neural networkswhere the hidden layers and their connec-
tions aremodeled after the hierarchical structure of biological processes
in the Gene Ontology database.

ConventionalML algorithms rely on correlations in the data formak-
ing accurate predictions. However, in many cases, these correlations do
not represent true causal relationships between the variables but may
be attributed to confounding variables. Thus, a parallel line of research
has sought to expand the use of Mendelian randomization from
pairwise analyses between exposure and outcome variables to the re-
construction of large-scale models of causal molecular networks from
multi-omics data. These models take the form of Bayesian networks, a
type of probabilistic ML models that provide convenient means of ex-
pressing prior knowledge about a system, facilitate compact representa-
tions of statistical dependences and independences among large
numbers of variables, and allow efficient inferences from observational
data (Koller & Friedman, 2009; Pearl, 2009). Causal Bayesian network
models linking genetic risk variants to gene networks and phenotypes
have provided numerous insights into candidate targets and causal
mechanisms underlying complex diseases.

For instance, using genotype and liver gene expression data, causal
genes at risk loci for type 1 diabetes, coronary artery disease, and plasma
low-density lipoprotein cholesterol levels were identified (Schadt et al.,
2008). Using genomic, transcriptomic, and proteomic data from post-
mortem samples from four brain regions of late-onset Alzheimer's dis-
ease cases and nondemented individuals, the genes TYROBP (Zhang
et al., 2013) and VGF (Beckmann et al., 2018)were identified as key reg-
ulators in multiple AD causal networks and experimentally validated in
mouse models. In a study by Talukdar et al., coronary artery disease
(CAD) causal Bayesian gene networks were identified by utilizing geno-
mic and transcriptomic data obtained from seven vascular and meta-
bolic tissues of individuals with CAD who underwent surgical

https://github.com/deepchem/deepchem
https://github.com/deepchem/deepchem


Fig. 3. Illustration of Varmole as proposedby (Nguyen et al., 2021). Themodel takes genotype and gene expression data as input. Thefirst layer utilizes prior biological knowledge based on
eQTL and GRNs. The trainedmodel is interpretable and can reveal information about important inputs and important pathwayswith regards to output prediction (figure reproduced from
Nguyen et al., 2021) under Creative Commons Non-Commercial Attribution License.
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intervention (Talukdar et al., 2016). These networks were found to be
replicable in corresponding tissues of the Hybrid Mouse Diversity
Panel. A similar approach could also be applied to target identification
in NDDs, where increasingly larger data sets containing genomic, tran-
scriptomic, and proteomic data are also becoming available (see below).

Despite these successes, it should be noted that Bayesian network
reconstruction from high-dimensional data is a challenging task
(Wang, Audenaert, & Michoel, 2019). Although it has been found that
edge-to-edge reproducibility is strongly dependent on sample size,
identification of more highly connected central regulators (“key driver
genes”) in Bayesian networks can be carried out with high confidence
across a range of sample sizes (Cohain et al., 2017).

Such key driver genes directly suggest candidate genes for follow-
up. For instance, additional analysis in the context of protein interaction
and pharmacological databases can be used to identify established and
novel druggable targets and target tissues (Lempiäinen et al., 2018).

Further advances are expected by integrating the principles of causal
inference and Bayesian networks with neural networks and other ML
methods, and this is an important area of current research in
Table 3
Overview of selected NDD-related consortia.

Consortium No. of
samples

Data type

Psychiatric Genomics Consortium (PGC) ∼900,000 Genomic D
CNV data,

Brain eQTL Alamnac (Braineac) 134 Gene expr
Genotype-Tissue Expression (GTEx) Consortium (v7) 80 to 154 Gene expr

genotype
CommonMind Consortium ∼1000 Genotype

and eQTL
BrainSeq ∼2000 Genotype

data
PsychENCODE Consortium ∼2000 Transcript

gene ex- p
modificati

Simons Foundation Autism Research Initiative (SFARI) ∼400,000 Phenotyp
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computational biology (Lecca, 2021) and the field of ML more broadly
(Peters, Janzing, & Schölkopf, 2017).

6. Selected data resources

ML approaches rely heavily on availability of large amount of good
quality labeled data. Therefore, public data resources play a vital role
in creating better models. Several large population based research re-
sources, such as the UK Biobank (UKBB) Database and The Norwegian
Mother, Father and Child Cohort Study (MoBa), as well as diagnosis
specific clinical data bases are available for researchers in this field.
A brief summary of selected clinical data resources related to the
NDDs is shown in Table 3. The description of each of the resource is
as follows:

6.1. Psychiatric Genomics Consortium (PGC)

The Psychiatric Genomics Consortium (PGC) (Sullivan et al., 2018) is
a large-scale collaborative initiative for deciphering the genomic basis of
Website

ata including GWAS, sequencing data,
and more

https://www.med.unc.edu/pgc/

ession data http://www.braineac.org/
ession and
data

https://gtexportal.org/home/

, RNA-seq
data

https://www.synapse.org/#!Synapse:
syn2759792/wiki/

, RNA sequence and DNA methylation https://eqtl.brainseq.org/

omic and Epigenomic Data measuring
ression levels and epigenetic
ons

https://resource.psychencode.org/

ic and Genomic data https://www.sfari.org/resource/spark/

https://www.med.unc.edu/pgc/
http://www.braineac.org/
https://gtexportal.org/home/
https://www.synapse.org/#!Synapse:syn2759792/wiki/
https://www.synapse.org/#!Synapse:syn2759792/wiki/
https://eqtl.brainseq.org/
https://resource.psychencode.org/
https://www.sfari.org/resource/spark/
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psychiatric disorders. PGC has so far revealed the cryptic genetic and bi-
ological basis of number of psychiatric diseases by evaluating common
single-nucleotide polymorphisms (SNPs), rare variants, gene sets and
pathways, and other genetic variations. The PGC was started in 2007
for facilitating large-scale genetic analyses for fivemajor psychiatric dis-
orders (ADHD, autism, bipolar disorder, major depressive disorder and
schizophrenia) and has since expanded to many more diagnostic cate-
gories and traits. >800 scientists from >40 countries are currently par-
ticipating in the consortium. One of the major contributions of PGC has
been assembly of many of the large-scale GWAS in psychiatry and iden-
tification of number of loci associated with psychiatric disorders.

The summary statistics from genomic analyses of different psychiat-
ric disorders are publicly available to download from PGC website.

6.2. Brain eQTL resources

6.2.1. UK Brain Expression Consortium (UKBEC)
UKBEC was launched with the aim to study the regulation and alter-

native splicing of gene expression inmultiple tissues from human brain.
A part of the data and its results are freely available at Braineac - The
Brain eQTL Almanac webpage (https://braineac.org). As of now the
data set consists of data from 10 regions obtained from 134 control in-
dividuals (frontal cortex, temporal cortex, occipital cortex, hippocam-
pus, thalamus, putamen, substantia nigra, medulla, cerebellum, and
white matter, + mean expression across all 10 regions).

6.2.2. Genotype-Tissue Expression (GTEx) consortium
The GTEx project (Lonsdale et al., 2013) (https://gtexportal.org/

home/datasets) started in 2010with themotive to build a catalog of ge-
netic effects on gene expression on large number of human tissues to re-
veal the biological mechanisms of genetic associations with complex
disease and traits and for improving our understanding of regulatory
genetic variation.

The GTEx v7 dataset consists of eQTL data obtained from 80 to 154
samples from 13 brain tissues (cerebellum, caudate, cortex, nucleus ac-
cumbens, cerebellar hemisphere, frontal cortex, putamen, hippocam-
pus, anterior cingulate cortex, hypothalamus, amygdala, spinal cord,
and substantia nigra).

6.2.3. CommonMind consortium
The CommonMind Consortium (Consortium, C. M, et al., 2017) pro-

vides and extensive public resources of processed and quality controlled
data with the aim to provide researchers with a resource for applying
novel methods and perform integrative analyses. The CommonMind
Consortium has generated functional genomic data from multiple re-
gions from 1000 postmortem brain samples from donors with Schizo-
phrenia, Bipolar disease and individuals with no neuropsychiatric
disorders. The data is collected from dorsolateral prefrontal cortex
(DLPFC), anterior cingulate cortex (ACC), and superior temporal gyrus
(STG) tissues in the brain.

6.2.4. BrainSeq
BrainSeq (Schubert et al., 2015), A Human Brain Genomics Consor-

tium is an initiative launched by the Lieber Institute for Brain Develop-
ment (LIBD) with pharmaceutical industry partners (Astellas Pharma,
AstraZeneca, Eli Lilly and Company, F. Hoffmann-La Roche, Johnson
and Johnson, Lundbeck and Pfizer). The aim of the consortium is to
make use of the emerging genetic knowledge of psychiatric disorders
and technical advances for the analysis of gene expression in brain tis-
sue. It includes data from several human postmortem neuropsychiatric
disease and control samples. Amajor aim of BrainSeq is to generate and
analyze neurogenomics data (including genotype, RNA sequence and
DNA methylation data). The BrainSeq Phase I tissue cohort consists of
746 postmortem samples obtained from the dorsolateral prefrontal cor-
tex (DLPFC) of patients suffering from schizophrenia, mood disorders
9

and other major NPDs. Phase II samples were obtained from mid-
hippocampus of 200 patients with schizophrenia and 300 controls.

6.3. PsychENCODE consortium

The PsychENCODE Consortium (Jourdon, Scuderi, Capauto, Abyzov,
& Vaccarino, 2021) was launched to improve our understanding of the
underlying molecular mechanisms of the strong genetic associations
that have been discovered for a number of psychiatric disorders. The
PsychENCODE includes data from the adult brains across 1866 individ-
uals. PsychENCODE has generated datasets including bulk tran-
scriptome, chromatin, genotype, and Hi-C datasets and single-cell
transcriptomic data from 32,000 cells for major brain regions. It has
been shown that embedding the gene regulatory network that links
the GWAS variants to genes into an interpretable deep learning model
improves disease prediction by 6-fold versus polygenic risk scores
(Wang et al., 2018). The deep learning model also helped in the identi-
fication of key genes and pathways in psychiatric disorders.

7. Conclusion

NDDs typically affect normal brain development and functions dur-
ing childhood and impair many aspects of life, including social interac-
tions, communication, productivity, self-regulation and other
behaviors. Most NDDs are caused by the accumulation of multiple ge-
netic and environmental risk factors. In addition to sporadic cases, rare
Mendelian forms of these disorders are caused by the highly penetrant
rare risk variants. Early identification and intervention can be critical in
helping individuals with these disorders reach their full potential and
lead fulfilling lives. So far, pharmacological treatments for NDDs have
been of limited value, due to theirmoderate efficacy and risk for adverse
events. For some disorders, such as ASD, no effective drug treatments
have been found yet. This lack of effective pharmacological treatments
for NDDs can be attributed to various factors, including their complexity
and heterogeneity of symptoms across individuals. As, the underlying
neural mechanisms of NDDs are not yet fully understood, it is challeng-
ing to develop drugs that target specific aspects of the disorder. How-
ever, the introduction of new high-throughput tools for big data
‘omics have provided better insights into the underlying biological
mechanisms of NDDs.

A possible way to explore the underlying biology of complex disor-
ders like NDDs is to use genetic data. Genes expressed in brain cells
play a crucial role in the development and function of the nervous sys-
tem, and alterations in these genes contribute to the development of
NDDs. Identifying genetic loci associated with NDDs that encompass
these genes can help in understanding biological mechanisms, and po-
tentially lead to the development of new treatments that target these
mechanisms. Large-scale GWASs have identified many genetic loci as-
sociated with NDDs, but due to the polygenic nature of these complex
disorders, identifying new treatment targets from GWASs has not
been very successful. However, the increased availability of information
on rare variants and functional annotations of the genomehas helped in
the development of fine mapping tools that can be used to prioritize
genes with common variant association. One important discovery
fromGWASs of NDDs and other NPDs is that they show a strong genetic
overlap. Thus, genetic findings in one conditionmay be relevant for sev-
eral disorders across traditional diagnostic boundaries and genetic find-
ings in traits and conditions with large samples sizes may be used to
leverage findings in conditions with fewer available samples.

GWASs alone does not discover causal variants for disease. It only
implicates genomic loci that harbor such variants. The discovery of
causal variants can be addressed by integrating GWAS data with data
on the effects of genetic variants on gene and protein expression in rel-
evant tissues and cell types through colocalization and MR analyses.
However, these analyses only focus on a single genetic locus and a single
candidate gene at a time.

https://braineac.org
https://gtexportal.org/home/datasets
https://gtexportal.org/home/datasets
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Here we have reviewed recent developments using data-intensive
ML approaches that can provide a more comprehensive understanding
and identification of downstream pathways by analyzing large-scale
human genetic data. Despite the increased use of ML methods, there is
still much room for further research in this field. An important recent
development is the emergence of more interpretable deep neural net-
workmodels like the recently proposed Deep Structure Phenotype Net-
work (DSPN) and Varmole, which incorporate prior biological
knowledge and provide additional insights into the biological processes
underlying these disorders by identifying key genes and pathways. We
anticipate that such models will gain further prominence in the coming
years.

Traditional ML approaches are mainly reliant on correlations in the
data. However, often these correlations are due to the confounding var-
iables and hence do not represent true causal relationship between the
variables. A promising avenue to address this issue is the use of causal
Bayesian network models that link genetic risk variants to gene net-
works and phenotypes. We expect that the integration of traditional
and deep ML methods with the principles of causal inference in the
coming years will play an important role in revealing mechanisms un-
derlying NDDs and providing further insights into candidate targets.
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