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Abstract: Olive orchard intensification has transformed an originally drought-resilient tree crop into a
competing water user in semi-arid regions. In our study, we used remote sensing to evaluate whether
intensive olive plantations have increased between 2010 and 2020, contributing to the current risk of
aquifer depletion in the Saïss plain in Morocco. We developed an unsupervised approach based on
the principles of hierarchical clustering and used for each year of analysis two images (5 m pixel size)
from the PlanetLabs archive. We first calculated area-based accuracy metrics for 2020 with reference
data, reaching a user’s accuracy of 0.95 and a producer’s accuracy of 0.89. For 2010, we verified
results among different plot size ranges using available 2010 Google Earth Imagery, reaching high
accuracy among the 50 largest plots (correct classification rate, CCR, of 0.94 in 2010 and 0.92 in 2020)
and lower accuracies among smaller plot sizes. This study allowed us to map super-intensive olive
plantations, thereby addressing an important factor in the groundwater economy of many semi-arid
regions. Besides the expected increase in plantation size and the emergence of new plantations, our
study revealed that some plantations were also given up, despite the political framework encouraging
the opposite.

Keywords: super high-density olive plantations; land use land cover mapping; Google Earth Engine;
unsupervised classification; hierarchical divisive clustering; remote sensing

1. Introduction

Olive trees are a drought-tolerant [1] species of high economic importance, tradition-
ally grown in the Mediterranean Region, where 95 percent of global olive cultivation is
located [2]. Over the last three decades, super-high density (SHD) planting systems have
been taking over the olive sector worldwide, since their smaller varietal sizes and tree-
to-tree distances allow for the complete mechanization of pruning and harvest processes,
lowering production costs in the long term and increasing yields [3]. However, olive trees
also suffer under increasing droughts and higher temperatures [4], and the recommended
climate change adaptation would consist of increasing spacing between trees [5]. Besides
contrarily reducing tree-to-tree distance, an increasing number of plantations are also
adopting (often backup) irrigation measures that are strongly encouraged by governmental
subsidies on drip irrigation [6]. Hereby, the limited water resources of many drought-prone
areas dedicated to olive cultivation risk being more quickly exploited and in extreme cases
depleted, increasing the environmental risk of desertification but also affecting the local
population dependent on such water resources [7–9].

Over the last ten years, Moroccan olive production has more than doubled, placing
the country among the five main producers worldwide [2]. This development has been
strongly encouraged by a national strategy called the Green Morocco Plan (GMP) [10],
in which important subsidies were allocated to efficient irrigation systems [11] and in
the conversion to arboriculture [12]. Over 30 percent of olive cultivation occurs in the
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Fès and Meknès Region (FMR) [13]. Here, the Saïss plain, a very fertile area of economic
importance, is one of the regions with the most intensive use of groundwater in Morocco [8].
It is a source that will be depleted within the coming 25 years [14], as a 100 Mm3 deficit is
registered yearly [15]. A spatio-temporal assessment of SHD olive plantations can thus help
evaluate the impact of olive orchard intensification on local water resources. For this, using
remote sensing (RS) data and methods can be a cost and time-efficient approach for large-
scale mapping.

Among RS studies on tree crop mapping, the use of different spatial resolutions of
satellite imagery has had varying levels of success depending on the tree spacing and tree
crown size that were mapped [16,17]. Sparsely planted orchards are mostly mapped using
object-based image analysis (OBIA) on very high spatial resolution (VHR) imagery [18,19].
However, VHR data have high acquisition costs [20] and high computational power require-
ments [21]. For homogeneous and intensive orchards, some studies achieved promising
results using 10 m spatial resolution [17,22].

The adoption of multi-temporal approaches in land use and land cover (LULC) classi-
fication studies allows for capturing crop-specific phenology patterns and helps increase
classification accuracies. However, the trade-offs between spatial and temporal resolu-
tion concerning commercial high spatial resolution data remain. The high acquisition
costs of such imagery often limit the feasibility of their application, especially in less-
developed countries [23].

Besides spatial and temporal resolution, spectral resolution also plays a crucial role in
discriminating crop types. Spectral properties of leaves can provide information about their
physical and chemical composition. There are many factors that influence a leaf’s optical
properties, such as the structure of the epidermis, waxes, and the cutin [24]. Evergreen
leaves, for example, have lower reflectance in the infrared wavelengths than deciduous
leaves [25]. Given these characteristics, different vegetation indices (VIs), which reflect the
relationship between combinations of spectral bands, have been developed through the
years and allow for determining the greenness of vegetation and their water content, and
thus, they have different capacities for tree crop discrimination based on their leaves and
planting characteristics.

The most widely used VI in crop classification studies is the Normalized Difference
Vegetation Index (NDVI) [26,27]. However, it possesses limitations such as soil background
brightness [28] and saturation [29–31]. The Modified Soil Adjustment Vegetation Index
(MSAVI-2) [32] allows one to simultaneously increase the vegetation signal while decreasing
the soil-induced variations, thus minimizing the influences of soil on vegetation spectra.
Specifically, studies on tree crop classification, such as [33], concluded that NDVI performs
worse on the discrimination of tree types than of annual crops. Furthermore, due to the
high similarity amongst temporal reflectance profiles of fruit trees, recent work shifted
from VI- to full-band-based multi-temporal approaches that consider the entire spectral
resolution available in the image data set [34].

In the case of olive trees, their evergreen phenology presents a discriminatory ad-
vantage against deciduous trees and other land use classes with high seasonal variability.
The lack of seasonal changes in olive trees’ phenology makes the use of multi-temporal
data redundant. As [16] concluded, multi-temporal datasets did not improve accuracy in
olive detection itself, but rather, they improved the classification accuracy of surrounding
classes, reducing misclassification errors. We thus argue that, for olive orchard detection,
the use of two images per year allows us to eliminate surrounding ground classes with
changing phenology. This would further ease the use of higher spatial resolution with
lower temporal availability or associated with high acquisition costs.

In LULC studies, besides both higher data availability and accessibility, increasing
computational capacity has allowed for the development and adoption of machine learning
algorithms (MLAs). MLAs can be subcategorized into supervised methods, which consist
of training a classifying algorithm using reference data [35,36], and unsupervised meth-
ods. While supervised approaches are preferred due to their higher robustness and preci-
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sion [37], when no labelled data is available, as in the present study, unsupervised methods
are required.

Unsupervised methods recognize unclassified data without any prior knowledge
of LULC types, with an interpreter assigning a class to each cluster of pixels via visual
interpretation [38]. They group pixels based on the similarity of their values into clusters
or spectral classes [37]. There is the possibility of applying the clustering algorithm in a
hierarchical form, either divisive or agglomerative, starting with a large cluster, which is
iteratively subdivided, or many clusters that are iteratively merged [35,39]. k-means [40,41]
is one of the simplest and most well-known clustering algorithms and is often used in RS
studies [42,43].

In this regard, the overall objective of this study was to develop a two-step classifica-
tion approach using k-means and high-resolution satellite data to enable a spatio-temporal
assessment of olive orchard intensification in the Saïss Plain (Morocco). Specifically,
we aimed:

(i) To map the extent of SHD olive plantations in the Saïss plain;
(ii) To assess the development of this planting pattern from the implementation of the

GMP in 2010 until 2020.

Given the limited availability of HR imagery and the lack of reference data over the
past years, we developed an unsupervised approach for single-class detection, which uses
the advantage of olive trees’ evergreen phenology and the semi-arid climatic conditions in
the study area. We hereby aimed to prove that super-intensive olive plantations are a suit-
able crop for mapping with satellite imagery of low temporal resolution and unsupervised
classification techniques. This can be valuable when reference data is scarce and image
availability is low or acquisition costs are high.

2. Materials and Methods
2.1. Study Area

Located at 583 m above sea level between the cities of Fès and Meknès in Northern
Morocco, the Saïss plain has a semi-continental Mediterranean climate, with moderate
winters and hot dry summers [44]. Local rainfall is about 400 mm per year, which mainly
occurs during winter. However, the proximity to the Middle Atlas Mountains, where
rainfall can reach up to 800 mm [45], provides the Saïss Plain with additional river discharge
that also feeds the underlying aquifers, making it a very fertile region [46,47].

As a result of the liberalization and privatization of the Moroccan agricultural sec-
tor [48] the Saïss plain’s main characteristic is structural duality caused by the coexistence
of smallholder family farms together with an increasing share of large-scale investor-led
farming systems [49]. Besides large-scale intensive agriculture, [50] reported that the in-
troduction of olive orchards substituting cereal crops has pushed some farmers in the
Saïss area to exploit the rows between the trees with annual crops. This creates a highly
heterogeneous agricultural landscape.

Based on regional crop statistics, 65 percent of all tree crops and almost 95 percent of
evergreen tree crops cultivated in Morocco are olive (1,098,000 ha), which includes the FMR,
where the Saïss plain is located, the leading producer [13,51]. The second most cultivated
evergreen tree crops are citrus trees, which represent about 5 percent nationally [13].
However, the main citrus cultivation sites are not in the FMR [51]. This allows us to assume
that most evergreen tree crops in the study area are olive.

The Saïss aquifer has an approximate extent of 220,000 ha and provides drinking water
to the main urban areas of the region with around 6 million inhabitants and is used for
irrigated agriculture [47], which takes place on around 40,000 ha. The extent of the aquifer
was used for study area definition, adding a buffer of 1.3 km to reduce contour irregularities,
obtaining a total extent of 241,390 ha. The availability of Planet data delimitated the study
area within this area to an extent of 133,377 ha (Figure 1).
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2.7. Change Detection Analysis 

Finally, we used the results from both years as inputs for the change detection anal-

ysis. For this, the digital number (DN) value of a pixel from 2010 was subtracted from the 

DN value of the same pixel in 2020 [63,64], resulting in pixels with new orchards (DN = 

1), no change (DN = 0), and orchards given up to other land uses (DN = −1).  

 

  
(a) (b) 

Figure 1. Overview of the study area: (a) administrative boundaries of Morocco and location of the
FMR and the Saïss aquifer; (b) elevation and shaded topography (illumination coming from west
at 45◦ altitude) in the Saïss area; (c) false color image ([R, G, B] = [NIR, R, G]) from a PlanetScope
mosaic from August 2020, showing the extent of the study area defined by the intersection of
available imagery and a 1300 m buffer around the Saïss aquifer. Sources: [52,53] for (a), [54,55] for (b),
and [53,55,56] and Copernicus Sentinel (2020) data for (c).

2.2. Methods Overview

The method we developed consists of applying a hierarchical divisive clustering and
masking technique on HR PlanetScope and RapidEye images (one for the dry and one for
the rainy season) alternately. First, we preprocessed RapidEye (RE) and PlanetScope (PS)
images, generating one rainy and one dry season composite for each year. Then, we applied
a k-means clustering and a masking sequence alternatingly on 2020 satellite imagery to
extract intensive olive plantations. We collected reference data using a self-programmed
NDVI-time series inspector tool and by using bi-temporal photointerpretation in Google
Earth Engine (GEE) and Google Earth, respectively. We performed area-based accuracy
assessment using reference data in 2020 for 12 different LULC classes, which allowed us
to optimize the clustering and masking sequence. We then applied the best performing
parameter settings from 2020 tests on 2010 HR imagery to map the olive plantation extent
and subsequently evaluate the main changes in intensive olive plantations between 2010
and 2020. Additionally, we sample-wise verified 2010 and 2020 results among different plot
size ranges from the detected olive orchards (Figure 2).
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Figure 2. Workflow overview.

2.3. Image Sources and Pre-Processing

Through PlanetLabs’ Education and Research Program [57], we freely acquired and
used a limited quota of HR imagery of 3 and 5 m pixel size, dating back to 2009. While open-
source satellite alternatives, such as 10 m resolution Sentinel-1 and -2 data, have unlimited
access and more spectral bands, they only date back to 2015 and 2017, respectively. Likewise,
Landsat, which is the longest-running enterprise for Earth Observation with high temporal
availability, was not suitable for our research purpose due to its 30 m pixel size. Thus, we
used two seasonally representative images of RapidEye (RE, 5 m pixel size) and PlanetScope
(PS, 3 m) for each year of analysis (2010 and 2020, respectively). The images corresponding
to the rainy season were from January 2011 and 2020, and those for the dry season were
from August 2010 and 2020. There are different formats of imagery available, such as the
PlanetScope Analytic Ortho Scene Product (L3B) and the RapidEye Ortho Tile Product
(L3A), that are recommended for land cover mapping since they are orthorectified, scaled
to Surface Reflectance, and projected to a cartographic projection [56]. Thus, we used these
products herein (Table 1):

Table 1. PlanetScope and RapidEye properties and data acquired.

Description PlanetScope (L3B) RapidEye (L3A)

Covering period 2015—today 2009–2020
Number of satellites 120 approx. 5

Image capture capacity 150 million km2/day >6 million km2/day

Blue 455–515 nm 440–510 nm
Green 500–590 nm 520–590 nm
Red 590–670 nm 630–685 nm

Red edge – 690–730 nm
Near infrared (NIR) 780–860 nm 760–850 nm

Pixel size 3 m 5 m

Acquired data 5 January 2020
29 August 2020

3 August 2010
15 January 2011
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All images were merged and clipped in QGIS to the defined extent and uploaded into
GEE. Further, we resampled PS data to 5 metres and normalized RE data to PS data using
the following formula based on [58]:

Inew =
I −Min

Max−Min
(Maxnew −Minnew) + Minnew (1)

where for each band of the RE image, I is the original pixel value; Inew is the normalized
pixel value; Max and Min are the maximum and minimum pixel values of the RE image,
respectively; Maxnew and Minnew are the maximum and minimum pixel values of the
corresponding band of PS imagery.

While mapping tree crops usually benefits from using full-band composites instead of
merely conducting VI-based classifications [33], the comparatively low spectral resolution
of PS and RE images (Table 1) and the nature of the here-developed approach invite opting
for a VI-based approach. Based on the limited possibilities and the success of other studies
in semi-arid areas [59], we calculated MSAVI-2 and NDVI from the preprocessed imagery
to compare their performance in the study area (Table 2).

Table 2. Vegetation indices analyzed in this study.

Index Abbreviation Name Formula

NDVI [27] Normalized difference
Vegetation index

NIR−Red
NIR+Red

MSAVI-2 [32] Modified soil Adjustment
vegetation Index 2

(2∗NIR+1−
√
(2∗NIR+1)2−8∗(NIR−Red)

2

2.4. Reference Data Collection and Crop Separability

For cluster validation and method evaluation and improvement, we collected refer-
ence data for 2020. The aim was to detect whether the method also captured other land
use classes as commission errors. Due to the prevailing travel restrictions connected to the
COVID SAR-19 pandemic while we conducted this study, we could not perform reference
data collection in situ. For this reason, an NDVI time series inspector tool was developed in
GEE (https://rebeccanavarrokhoury.users.earthengine.app/view/referencedatacollector,
accessed on 21 October 2022) (Figure 3), which allowed for obtaining NDVI time-series in-
formation per click on a selected pixel and collecting reference data for approach validation.
The satellite data used for this task were 10 m Sentinel-2 (S2) L2A imagery. We filtered S2
time series (TS) available for NDVI-profiling based on cloud cover (5 percent) and applied
a cloud mask the imagery using the cloud mask band. Then, we calculated NDVI from the
pre-processed S2 imagery and used it for time series plots.

The NDVI time series inspector tool allowed for categorizing annual crops into spring,
winter, summer, and double cropping, based on the time of highest NDVI values (Figure 4).

However, the 10 m pixel size of Sentinel-2 imagery was not suitable for NDVI time
series calculation on orchards because it was biased by soil background reflectance. For
tree crops, we thus used the photointerpretation of Google Earth imagery using the time
slider function to visually discriminate deciduous from evergreen trees, which, based on
crop statistics [13,51], were assumed to be olive trees (Figure 5).

https://rebeccanavarrokhoury.users.earthengine.app/view/referencedatacollector
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S2 NDVI TS and harmonic fit based on GEE’s implementation example [60]. Per click time-series
information allowed for categorizing annual crops into ”winter”, ”spring”, ”summer” and “double
cropping”. Based on Copernicus Sentinel data (2020).
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Collecting training data via photointerpretation revealed that different planting forms
based on tree-to-tree distances are present in the study area. The olive class was, thus,
subdivided into three classes: traditional, intensive, and super-intensive olive plantations
(Table 3, Figure 6). We use the terms super-intensive and SHD in this work interchangeably.
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Planting Pattern Tree-to-Tree Distance (m) Row-to-Row Distance (m)

Traditional 10 10
Intensive 3–6 6

Super-intensive 1–2 4
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Figure 6. VHR images showing varying tree-to-tree and row-to-row distances within different
orchard management types: (a) traditional, (b) intensive, (c) and super-intensive or SHD. Source:
Google Earth Images 2022.

Based on these criteria, we defined the 12 LULC classes and collected the correspond-
ing reference data in the self-developed GEE app with the following listed areas (Table 4).

We plotted monthly NDVI time series and frequency distributions per land-use class
computed from the Sentinel-2 data from all sites to visualize land use class separability
(Figure 7).
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Table 4. Land use class definitions based on the highest NDVI month (annual crops) and bi-temporal
photointerpretation (orchards) and per class areas sampled.

Land Use Class Area of Collected Reference Data (ha)

Evergreen orchards (traditional) 103
Evergreen orchards (intensive) 293

Evergreen orchards (super-intensive) 628
Deciduous orchards (all types) 525

Greenhouses 87
Winter crops 159
Spring crops 245

Summer crops/double cropping 38
Shrubland 766

Other vegetation (riparian mainly) 6
Bare land 163

Impervious ground 58
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From Figure 7, we can see that deciduous orchards (Figure 7d) had very similar
temporal profiles to evergreen olive orchards (Figure 7a,b). The visual examination of
multi-temporal VHR Google imagery showed that this was often caused by intercropping
practices or natural grass growth during the winter months, which biased the reflectance
profile (see Figure 8). Riparian vegetation also showed high NDVI values throughout the
year (Figure 7f).
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To further investigate crop separability, we plotted values in selected wavelengths
for six crop classes (Figure 9). In the visible range (S2 bands blue, green, and red in
July 2020), all samples except bare land had similar values, especially in the green range.
Riparian vegetation and deciduous orchards had almost identical values in the visible
range. Deciduous orchards had the highest NIR values, followed by riparian vegetation
and summer crops. Olive orchards had lower NIR values, which agrees with findings from
the literature [25] and further proves the high accuracy of the sampling approach based on
photointerpretation. SHD olive orchards had higher NIR values than traditional orchards
due to mixed pixels in the latter; however, both converged in the SWIR wavelengths. The
analysis of the spectral signatures thus confirmed our assumption that infrared values
allow for the discrimination of land use classes with similar reflectance values in the
visible range.
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Figure 9. Spectral signatures of selected crops collected from the image interpretation of NDVI
Sentinel-2 classes reveal larger differences in NIR and SWIR wavelengths than in the visible range
during July.

We later used the collected reference data to evaluate and improve the unsupervised
method applied on 2020 imagery, described in the following sections.

2.5. Unsupervised Classification
2.5.1. Cluster and Masking Sequence

The k-means clustering algorithm locates cluster centers evenly distributed in the data
space and uses a distance measure in an iterative procedure to associate each data point
to the nearest, statistically similar cluster center. Then, cluster centroids are moved to the
average of their class values until the smallest possible distance is reached [39].

The here-developed unsupervised approach was based on the principles of hierarchical
divisive clustering and only requires the use of two images per year, which are alternatingly
clustered and masked as follows (Figure 10).
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Figure 10. Hierarchical divisive clustering and masking steps used to extract SHD olive plan-
tations using a two-cluster k-means algorithm on two HR seasonally representative processed
satellite images.

The developed approach consists of several consecutive steps: (i) First, a two-cluster k-
means algorithm was applied to a dry season composite of the tested VI (NDVI or MSAVI-2)
for 2020 on Planet Scope imagery and later for 2010 on RapidEye data. This first step allows
for the differentiation of non-vegetated from vegetated areas during summer (August)
which is a dry season in the study area. The mean VI of each cluster was computed and used
to automatically assign the cluster with the highest VI mean to the vegetated cluster, and
the lower VI mean to the unvegetated clusters. The non-vegetated areas in the study region
include rainfed annual crops, built-up areas, and natural vegetation, such as shrubs. The
vegetated cluster includes deciduous orchards, summer annual crops, and (mainly SHD)
olive plantations. Most traditionally planted olive orchards with large spaces between trees
and rows were included in the non-vegetated area because of predominant soil reflectance
in the 5 m pixel of the image composite. The vegetated cluster was then used to mask the
winter season composite (January). Then, (ii) a second two-cluster k-means algorithm was
applied on the masked winter image, dividing it again into vegetated and non-vegetated
areas for the winter season. The non-vegetated areas are now deciduous trees and annual
summer crops that were harvested. The remaining vegetated areas in the final cluster are
expected be olive orchards of high-density planting patterns (with no or very low soil
reflectance between trees).

First attempts revealed high commission errors in this final olive cluster. These
were mainly caused by undercropping practices during the winter months on deciduous
orchards, which made them have high VI values also on the winter composite. Based on the
findings from Section 2.4, we added a (iii) third clustering step using the NIR band of the
summer imagery to re-cluster the remaining orchards contained in the second step cluster
into deciduous and evergreen tree crops. Here, the cluster with the lower NIR mean was
automatically assigned to the olive classes, and the higher was assigned to the remaining
commission errors (deciduous orchards and riparian vegetation). This third step aimed to
remove the remaining non-olive classes during the peak vegetation period of deciduous
and riparian vegetation (see Figure 11).



Remote Sens. 2023, 15, 50 13 of 24Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 24 
 

 

 

Figure 11. The three-step clustering and masking sequence that reduced commission errors with the 

dry season NIR band in a third masking step. 

2.5.2. Area-Based Accuracy Assessment for 2020 

The collected reference data (Section 2.4) were used to assess the accuracy of the final 

SHD olive cluster. In GEE, we calculated the area where the cluster result overlapped dif-

ferent land use classes. Since the approach was a single class approach, only the user’s 

and producer’s accuracy for the target class (SHD olive plantations) were calculated, from 

which omission and commission errors relative to the 12 LULC types from the reference 

data were estimated. 

For user’s accuracy (𝑈𝑖), the proportion of the area mapped as olive within the refer-

ence class olive (𝑝𝑖𝑖) and the total area mapped as olive (𝑝𝑖) were used:  

𝑈𝑖 = 𝑝𝑖𝑖/𝑝𝑖  (2) 

For producer’s accuracy (𝑃𝑗), we used the area proportion of the reference class olive 

that was mapped as olive (𝑝𝑗𝑗) and the total area of the reference class olive (𝑝𝑗), as follows: 

𝑃𝑗 =  𝑝𝑗𝑗/𝑝𝑗 (3) 

Commission errors could be attributed to the different land use classes, using 

𝐶𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =  𝑝𝑖ℎ/𝑝ℎ (4) 

where 𝑝𝑖ℎ is the mapped olive area within a non-olive reference class, and 𝑝ℎ is the total 

area of the non-olive reference class in question.  

Omission errors were calculated using the producer’s accuracy complementary 

measure: 

𝑂𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =  1 − 𝑝𝑗𝑗/𝑝𝑗 (5) 

For intercomparability, we combined both metrics within the F-score [61]: 

Figure 11. The three-step clustering and masking sequence that reduced commission errors with the
dry season NIR band in a third masking step.

2.5.2. Area-Based Accuracy Assessment for 2020

The collected reference data (Section 2.4) were used to assess the accuracy of the final
SHD olive cluster. In GEE, we calculated the area where the cluster result overlapped
different land use classes. Since the approach was a single class approach, only the user’s
and producer’s accuracy for the target class (SHD olive plantations) were calculated, from
which omission and commission errors relative to the 12 LULC types from the reference
data were estimated.

For user’s accuracy (Ui), the proportion of the area mapped as olive within the refer-
ence class olive (pii) and the total area mapped as olive (pi) were used:

Ui = pii/pi (2)

For producer’s accuracy (Pj), we used the area proportion of the reference class olive
that was mapped as olive (pjj) and the total area of the reference class olive (pj), as follows:

Pj = pjj/pj (3)

Commission errors could be attributed to the different land use classes, using

Commission = pih/ph (4)

where pih is the mapped olive area within a non-olive reference class, and ph is the total
area of the non-olive reference class in question.

Omission errors were calculated using the producer’s accuracy complementary measure:

Omission = 1− pjj/pj (5)
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For intercomparability, we combined both metrics within the F-score [61]:

Fscore = 2× Ui × Pi
Ui + Pi

(6)

2.5.3. Count-Based Binary Accuracy Assessment for 2010 and 2020

Additionally, for 2010 and 2020, we sample-wise verified results among different plot
size ranges with VHR Google Earth Imagery. For this, we verified the 50 largest plots, the
50 smallest plots, and 50 plots around the median area for being or not being tree crop
plantations. We calculated the correct classification rate (CCR) for each batch as the sum of
the number of correctly classified plots divided by the sample size n (n = 50):

CCR =
∑n

i=1 δ(yi, ŷi)

n
(7)

where yi is the real ground class observed on VHR Google Earth Imagery, ŷi is the vector of
predicted class labels, and δ is an indicator variable such that δ(yi, ŷi) = 1 if yi = ŷi and
zero otherwise.

2.6. Post-Processing

To reduce commission errors from small erroneous pixels or road trees included in
the cluster, we “sieved” the data in QGIS (version Białowieża) using the GDAL Sieve
function [62]. The sieving tool removes smaller polygons below a defined threshold and
replaces them with the pixel value of the largest neighbor polygon. This allowed for the
removal of a large share of single trees that did not belong to large plantations. At the same
time, speckled areas within super-intensive plantations caused by plantation heterogeneity
were closed and homogenized.

2.7. Change Detection Analysis

Finally, we used the results from both years as inputs for the change detection analysis.
For this, the digital number (DN) value of a pixel from 2010 was subtracted from the DN
value of the same pixel in 2020 [63,64], resulting in pixels with new orchards (DN = 1), no
change (DN = 0), and orchards given up to other land uses (DN = −1).

3. Results
3.1. Planting Patterns in 2010 and 2020

The accuracy assessment revealed that a large share of intensive olive plantations
(~65 percent of the reference data) was included in the final cluster. Main areas of super-
intensive and intensive olive plantations were found in the central part of the plain and
the region nearby Meknès in 2010. This distribution prevailed also in 2020, with new
plantations appearing also in the East near Fès and the Southwest (see Figure 12).

The total area detected in 2010 was 6267 ha and in 2020, 6785 ha. The minor increase
in area can be attributed (i) to changes from smaller plot sizes to large-scale plantations,
and (ii) based on the sample-based accuracy assessment (see Section 3.3.2), also to greater
commission errors in 2010, especially among smaller plot sizes.
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Figure 12. Spatial distribution of the detected olive cluster in the Saïss plain in 2010 (a) and 2020 (b).

3.2. Change Detection Analysis

Algebra-based change detection was performed as described in Section 2.7, and it
revealed that, from the 6267 ha in 2010, only 1470 ha remained in 2020 (“No change”), and
4797 ha were given up since then (“Converted to other land uses”). There were 5315 ha of
“new” olive plantations in 2020, mainly in the form of large-scale plantations (Figure 13).
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Figure 13. Land-use change of detected olive plantations between 2010 and 2020.

VHR Google Earth imagery was also used to sample-wise observe which land use
classes had occurred. The land-use change from SHD olive to other classes (here labelled
as “losses”) was due to conversions to annual crops or bare land, which, as later fieldwork
revealed, was often the previous land preparation for urbanization purposes (Figure 14).
Most of the areas converted to olive plantations (here labelled as “new orchards”), were
originally mostly annual crops (Figure 15a).
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Figure 15. Land use changes from annual crops in 2010 (a) to SHD olive plantations in 2020 (b), and
from SHD olive plantations in 2020 (c) to annual crops in 2011 (d). Source: Google Earth Images 2020.

3.3. Accuracy Assessment
3.3.1. Area-Based Accuracy Assessment for 2020: NDVI vs. MSAVI-2

The differences between using NDVI and MSAVI-2 were subtle, with the former
reaching higher UA than the latter (see Table 5) due to MSAVI-2′s capacity to reduce soil
reflectance, which caused higher commission errors among traditional and intensive olive
plantations (see Table 6). Both indices reached an F-Score of 0.78 when including a third
step with the NIR band.
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Table 5. Accuracy assessment and comparison of MSAVI-2 and NDVI, with and without third (NIR)
cluster and masking step.

MSAVI-2 NDVI

2-Steps +NIR 2-Steps +NIR

Producer’s accuracy 0.95 0.94 0.93 0.92
User’s accuracy 0.49 0.67 0.52 0.68
F-Score 0.65 0.78 0.66 0.78

Table 6. Commission errors when using MSAVI-2 and NDVI composites, with and without the third
(NIR) cluster and masking step.

MSAVI-2 Composites NDVI Composites

2-Steps +NIR 2-Steps +NIR

Evergreen orchards (traditional) 0.36 0.29 0.24 0.20
Evergreen orchards (intensive) 0.81 0.73 0.71 0.66
Deciduous orchards (all types) 0.57 0.08 0.52 0.09
Greenhouses 0.30 0.05 0.24 0.04
Winter crops 0.02 0.01 0.01 0.01
Spring crops 0.01 0.01 0.01 0.00
Summer crops/double cropping 0.08 0.04 0.05 0.02
Shrubland 0.00 0.00 0.00 0.00
Other vegetation (riparian mainly) 0.98 0.13 0.96 0.14
Bare land 0.00 0.00 0.00 0.00
Impervious ground 0.00 0.00 0.00 0.00

The last clustering step that used the NIR band considerably reduced errors of com-
mission from riparian vegetation (by 0.85 and 0.82) and deciduous orchards (by 0.49 and
0.43) for MSAVI-2 and NDVI, respectively. Commission errors from traditional orchards
were around 30 percent for MSAVI-2 and 20 percent for NDVI, which were due to the large
tree crown size typical among such planting patterns and which were captured by the
5 m pixel size. Additionally, the effect of MSAVI-2 on soil background reflectance increased
commission errors. Around 70 percent of intensive olive plantations were mapped by our
approach as well, which was due to the larger tree crown sizes and the narrower rows
compared to traditional orchards.

Super-intensive olive plantations were less affected by soil background reflectance due
to their narrow planting patterns, thus using NDVI or MSAVI-2 would not considerably
change the PA. For mapping SHD olive plantations, using NDVI is better than MSAVI-2.
Additionally, since 70 percent of the reference intensive olive class were captured by our
approach, we merged both classes. Thus, the approach we developed was rather suitable
for intensive olive mapping in general. Once merged, an F-Score of 0.89 was reached by
MSAVI-2 and 0.87 by NDVI (see Table 7).

Table 7. User’s and producer’s accuracies and F-Score after merging classes.

MSAVI-2 + NIR NDVI + NIR

Producer’s accuracy 0.87 0.84
User’s accuracy 0.91 0.91
F-Score 0.89 0.87

To further improve accuracy, we removed erroneous pixels using the GDAL Sieve
function in QGIS (version Białowieża), for which we tested different thresholds from 10 to
1000 and found that the best tradeoff was reached using a threshold of 500 pixels. Then,
we vectorized the sieved layer and calculated per-plot-size statistics. This allowed us
to remove a large share of single trees from traditional olive plantations. At the same
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time, speckled areas within super-intensive plantations caused by plantation heterogeneity
were closed and homogenized (Figure 16), further improving area-based accuracy (see
Tables 8 and 9).
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Figure 16. Post-processing the clustered area using the GDAL Sieve tool [62] in QGIS (version
Białowieża) with a threshold of 500 px: (a) the raw result from the clustering sequence (NDVI + NIR);
(b) the sieved data.

Table 8. Commission errors after “sieving” at a 500-pixel threshold using NDVI and MSAVI-2.

Commission Errors

Land Use Class “Sieved” MSAVI-2 + NIR “Sieved” NDVI + NIR

Evergreen orchards (traditional) 0.16 0.06
Evergreen orchards (intensive) 0.75 0.65
Deciduous orchards (all types) 0.04 0.06
Greenhouses 0.02 0.01
Winter crops 0.01 0.01
Spring crops 0.00 0.00
Summer crops / double cropping 0.00 0.00
Shrubland 0.00 0.00
Other vegetation (riparian mainly) 0.07 0.08
Bare land 0.00 0.00
Impervious ground 0.00 0.00

Table 9. Producer’s and user’s accuracy and F-Score of “sieved” cluster, before and after merging
intensive and super-intensive olive plantations.

Super-intensive olive plantations only

“Sieved” MSAVI + NIR “Sieved” NDVI + NIR

Producer’s accuracy 0.95 0.93
User’s accuracy 0.69 0.72
F-Score 0.80 0.81

Intensive and super-intensive olive plantations merged

“Sieved” MSAVI + NIR “Sieved” NDVI + NIR

Producer’s accuracy 0.89 0.84
User’s accuracy 0.95 0.95
F-Score 0.92 0.89

The best results were reached when merging intensive and super-intensive olive
classes and using the MSAVI + NIR set. The difference in the NDVI+NIR set was due to
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commission errors in the land use classes intensive and traditional olive plantations, which
were 10 percent higher in the MSAVI than in the NDVI set. We considered it better to have
a lower number of traditional olive plantations in the final cluster than to have a higher
number of intensive plantations included, and thus we decided that the NDVI set was most
representative for our purposes.

3.3.2. Sample-Wise Verification and Comparison of 2010 and 2020

We applied the NDVI-based sequence on 2010 normalized RE imagery and assigned
clusters automatically, as we also did for 2020, and verified them using VHR Google Earth
imagery available for the year of analysis. After sieving and vectorizing, we sample-wise
verified plots among different plot sizes, which included the 50 largest, the 50 smallest, and
50 around the median size. Available Google Earth Imagery for 2010 and 2020 revealed
that all large plantations mapped were correct in both years, reaching a high number of
true positives and a correct classification rate (CCR) of 0.96 and 0.92 in 2010 and 2020,
respectively (Table 10). In the smaller plot size range, results from 2010 performed worse
than those for 2020 (reaching a CCR of 0.4 and 0.76, respectively), and most commission
errors took place on smaller fields with annual crops. Intensive irrigated annual cropping
was among the main classification errors.

Table 10. CCR and total area of each sampled batch.

2010 2020

Plantations CCR Total Area (ha) CCR Total Area (ha)

Smallest 50 0.4 65 0.76 66
Median 50 0.36 124 0.68 141
Largest 50 0.96 1956 0.92 3081

4. Discussion
4.1. Methodological Achievements and Shortcomings

In our work, super-intensive and intensive olive plantations were successfully mapped
in a highly heterogeneous study area in Morocco. For this, we implemented an unsuper-
vised classification approach based on the principles of hierarchical clustering, which
allowed us to detect SHD and intensive olive plantations on 5 m resolution imagery.
Hereby, two frequent cost-related problems in remote sensing were addressed: (i) while in
most land use analyses the cost- and time-intensive gathering of reference data is necessary,
e.g., to train supervised classification algorithms, in our approach no labelled data were
required; (ii) the design of the clustering and masking sequence and the phenological
characteristics of the target crop allowed us to use a very low temporal resolution, requiring
only two images per year of analysis. This can be especially advantageous to reducing
acquisition costs when using commercial imagery of higher spatial resolution.

Compared to supervised approaches, which can map intra-class variability, our
method could only detect dense and vigorous olive plantations, including mainly super-
intensive, but also a large share of intensive, and some traditional olive plantations. Younger
plantations with smaller tree crown sizes could not be detected or led to unmapped areas
within the same plantation. However, this is a problem that other studies using supervised
classification for tree crop mapping with high-resolution data of 3 m pixel size, such as [16],
also faced during their analyses. On the other hand, high commission errors were scored
on intensive olive plantations due to their similar reflectance values, something that su-
pervised classification may overcome by training the classifying algorithm on different
planting intensities as separate land use classes.

Previous work on tree crop mapping, specifically on olive trees, found that using
multi-temporal information would not improve olive detection accuracy itself, but rather
improve the accuracy of other crop classes, and hereby overall accuracy [16]. Additionally,
the difficulty of mapping perennial crops merely based on their phenological profiles was
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already discussed in [17] and [34], who found that using all reflectance bands helped
discriminate different tree crop types. Our study confirmed these findings, since using
the low temporal resolution of only two images per year and making use of the NIR band
allowed us to reach a remarkably high accuracy in detecting olive plantations. However,
limitations of NIR wavelengths were found in the discrimination between some annual
crops and olive plantations, which confirms previous findings from the crop separability
analysis conducted in Section 2.4 (Figure 9).

Based on previous studies on semi-arid environments, we tested different indices
(NDVI vs. MSAVI-2) to see whether they helped improve mapping on sites with higher soil
background reflectance. While MSAVI-2 successfully reduced soil background reflectance,
to map super-intensive olive plantations, which are less affected by this phenomenon, we
found that NDVI performed better, and using MSAVI-2 led to higher commission errors
among traditional olive orchards.

Our sample-wise verification of 2010 results using VHR Google Earth Imagery revealed
that a higher number of smaller plots of annual crops were misclassified in 2010 than in
2020, and that main commission errors in 2020 results were deciduous tree plantations. This
may confirm the expected shift from cereal-based agriculture in 2010 towards arboriculture
in 2020, incentivized by the GMP. Hereby, k-means cluster centers may also have shifted,
creating such a difference among commission errors, both qualitatively and quantitatively.
While applying the GDAL sieving tool removed most of the smaller misclassified spots
in both years and improved accuracy, further research may investigate whether other
unsupervised clustering methods are more appropriate for our proposed approach.

As opposed to most studies on olive mapping, which were mostly performed on
homogeneous environments with a low diversity of surrounding ground classes [19], our
study succeeded in extracting olive plantations, mostly of super-intensive and to a great
extent also of intensive planting patterns, on a very heterogeneous ground. However, it
should be noted that no other evergreen tree crops are known to be cultivated in the study
area. Thus, for replicability, this approach needs to be adapted if other evergreen tree crops
are also present.

4.2. Implications for Agricultural Management and Policy Monitoring in the Study Region

This study addressed a subject that is currently affecting the olive sector not only
in Morocco but also globally and will be of growing concern in times of climate change.
Although irrigated olive cultivation can be an important carbon sink and can fight erosion
while improving the profitability of the sector, the limited water resources of many drought-
prone areas dedicated to olive cultivation may be also exploited and depleted more quickly,
presenting not only an environmental risk but also affecting the local population who
depend on such water resources.

Mapping super-intensive olive plantations can help locate important actors in the
olive oil sector. However, although our study successfully mapped the extent and evolution
of an important actor of the groundwater economy in the Saïss plain, we found that super-
intensive olive plantations only represent a share of different land uses in the study area
and that other actors also need to be addressed to improve water resource management.

Finally, our approach was helpful to analyze policy-induced land use change in the
study area. It revealed that the average plantation size increased between 2010 and 2020,
reflecting large agribusinesses taking over the sector to the detriment of smaller family
farms and medium-size investors. Another remarkable finding was the detection of several
larger SHD olive farms that were given up, despite the encouragement of the GMP to adopt
intensive forms of arboriculture, especially olive trees. The reasons behind this can be
attributed to the short lifecycle of SHD olive plantations. Other contributing factors, such
as access to water or better revenues from other crops, should also be considered and could
be further investigated.
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5. Conclusions

Detecting super-intensive olive plantations may help to quantify the potential risks to
local water resource management to address stakeholders and implement climate-smart
agriculture technologies when needed.

While the use of remote sensing data and methods for mapping olive and tree crops
has long been challenged by high spatial resolution requirements, we found that map-
ping super-intensive olive plantations comes with advantages compared to other tree
crops and planting patterns. Using 5 m resolution allowed us to map all super-intensive
olive plantations in the study area, except for areas with younger trees with smaller tree
crown sizes.

Furthermore, the olive’s evergreen nature allowed us to use a reduced number of
images per year. Especially when the aim was to extract super-intensive olive plantations
within a single-class classification approach, as was the case in our study, we concluded that
two satellite images were enough to suppress all other surrounding land use classes with
higher variability in their phenology. This was made possible by using an unsupervised
approach, which also allowed us to overcome the challenge of gathering labelled data,
usually necessary for supervised classification methods.

The approach we developed, based on the principles of hierarchical clustering, con-
sisted of applying a two-cluster k-means algorithm alternatingly on one image from the
dry season and one from the winter season, extracting the vegetated cluster and creating
a mask that was applied on the subsequent image to cluster. Using the NIR band was
crucial to refine results and remove commission errors such as deciduous orchards with
undercropping practices during the winter season, confirming findings from previous
studies on tree crop mapping. In addition, we also concluded that NDVI was better to
map SHD olive plantations than MSAVI-2, since they are less affected by soil background
reflectance than other orchards of lower tree density.

Finally, this study leaves three open questions that may be addressed by future
research: (i) while the performance of the approach we developed was quite promising,
sample-wise verification of 2010 results revealed a larger share of commission errors among
annual crops, suggesting that k-means may not be the best clustering algorithm for the
proposed method, which further research may investigate; (ii) our study revealed that
water-intensive SHD olive plantations, among other forms of land use, are a major player
in the groundwater economy of the Saïss plain; however, further research is required to
investigate which other land use classes are putting the Saïss aquifer at risk of depletion;
(iii) lastly, our results showed that, despite the considerable commission errors among
the small-sized plots in 2010, there was also a considerable number of larger plantations
that appeared to have been given up and converted to other land uses. Future research
may investigate the reasons for some areas converting from arboriculture to annual crops,
despite the political framework encouraging the opposite.

We further would like to encourage interested researchers to test our approach in
other areas with Sentinel-2 data using our GEE Olive Detection App for super-intensive
olive plantation mapping: https://rebeccanavarrokhoury.users.earthengine.app/view/
olivedetectionapp (accessed on 21 October 2022).
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