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Brain asymmetry is a cornerstone in the development of higher-level cognition, but it is unclear whether and how it differs in males
and females. Asymmetry has been investigated using the laterality index, which compares homologous regions as pairwise weighted
differences between the left and the right hemisphere. However, if asymmetry differences between males and females are global
instead of pairwise, involving proportions between multiple brain areas, novel methodological tools are needed to evaluate them. Here,
we used the Amsterdam Open MRI collection to investigate sexual dimorphism in brain asymmetry by comparing laterality index
with the distance index, which is a global measure of differences within and across hemispheres, and with the subtraction index,
which compares pairwise raw values in the left and right hemisphere. Machine learning models, robustness tests, and group analyses
of cortical volume, area, thickness, and mean curvature revealed that, of the three indices, distance index was the most successful
biomarker of sexual dimorphism. These findings suggest that left–right asymmetry in males and females involves global coherence
rather than pairwise contrasts. Further studies are needed to investigate the biological basis of local and global asymmetry based on
growth patterns under genetic, hormonal, and environmental factors.

Key words: brain asymmetry; coherence; distance index; laterality; sexual dimorphism.

Introduction
Brain asymmetry develops before birth (Rajagopalan et al. 2011),
with specific range and distribution patterns across males and
females still a matter of debate (Gilmore et al. 2007; Guo et al.
2016; Lehtola et al. 2019; Ruigrok et al. 2014). Overall, a series
of growth mechanisms are in place (Debat and Peronnet 2013;
Lander 2011; Rao et al. 2002; Waddington 1959) for achieving a
specific “target size” for body and its component parts (Tanner
1963), including catch up growth in children after malnutrition
or sickness (Boersma and Wit 1997; Prader, Tanner, von Harnack
1963; Tanner 1963). Moreover, the size of bilateral body parts such
as arms or legs is subject to contralateral regulation (for a review
of current debates, see Genikhovich and Technau 2017), such
that growth on one side of the body would signal growth on the
other side (Roselló-Díez et al. 2018). In sum, both systemic growth
retardation and direct left–right communication are driving body
symmetry (Busse et al. 2018; Fischerauer et al. 2013) by overriding
genetic and environmental variation (Grimes 2019). Neverthe-
less, certain asymmetries survive, for example at the brain level,
including intra-hemispheric gray matter volume (Esteves et al.
2019), cortical thickness (Kong et al. 2018), surface area, and gyri-
fication (Chiarello et al. 2016). The main role of these asymmetries
would be to support high-level cognition including episodic mem-
ory (Habib et al. 2003), emotion identification (Brunoni et al. 2016),
face processing (Zhen et al. 2015), and language (de Courten-My-
ers 1999; Good et al. 2001; Shapleske et al. 1999).

Whether brain asymmetries are distinct in males and
females is far from clear. Moreover, it is unclear what type of

asymmetries are specific to (young) adult male and female brains,
and current evidence based on weighted pairwise differences
remains inconsistent. For example, measurements for the
“planum temporale,” which subserves language, sometimes
supports stronger leftward lateralization in males (Guadalupe
et al. 2015), and sometimes stronger leftward lateralization in
females (Ruigrok et al. 2014). Overall, few, if any, significant
differences are left standing between sexes after controlling
for total intracranial volume (cf. review by Sanchis-Segura et al.
2019). Current methods for computing brain asymmetry may be
responsible for the stalemate, as they fail to capture potentially
different types of structural differences. The “laterality index” (LI)
helps determine, for instance, whether the left planum temporale
is larger than the right, without considering the impact of other
brain areas or underlying growth differences of brain structures
in males and females.

Here, we investigated sexual dimorphism in brain asymmetry
by comparing the performance of three structural indices measur-
ing distinct qualitative differences between the left and the right
hemisphere. We used the Amsterdam Open MRI collection (Snoek
et al. 2020) to compute absolute values of the pairwise laterality
index for each subject and for each of the 34 regions of interest
(ROIs) in the Desikan–Tourville atlas (Desikan et al. 2006). Second,
we computed a “subtraction index” (SI) as absolute values of raw
pairwise differences between left and the right regions for each
of the 34 ROIs. Third, we computed a global “distance index” (DI)
by correlating two series of differences—between each ROI and all
other ROIs in the left hemisphere, and between each homologous
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ROI and all other ROIs in the right hemisphere, as described
under “Materials and Methods”. We repeated the computation of
DI, LI, and SI for several gray matter measures, namely cortical
volume, area, thickness, and mean curvature, and evaluated their
performance using machine learning and robustness analyses
drawing on image-quality metrics.

Each index captures specific growth patterns that may depend
on proportion, scaling, and/or size regulation of the two hemi-
spheres and their constituent parts. Therefore, an investigation of
their capacity to distinguish males from females would help iden-
tify which brain growth patterns are ecologically valid. Indeed, the
rules governing form and proportion are fundamental to the evo-
lution and development of biological organisms and account for
body size growth, interaction among specific tissues, and inherent
positional identity of constituent parts (Harris et al. 2021). We
therefore expect these rules to also be relevant to hemispheric
asymmetry patterns in humans, which remain un(der)explored.
Several hypotheses can be put forward on which asymmetry
indices could successfully capture sexual dimorphism in cortical
asymmetry. First, the laterality index, which relies on weighted
pairwise differences, might outperform DI and SI if the 34 brain
regions had similar growth rates and proportions across hemi-
spheres in males and females, but with decreased scaling in
females, which would require activation of coordinated scaling
of growth hormone, growth factors, and thyroid hormone (Harris
et al. 2021). Second, the subtraction index, which relies on overall
size differences, might outperform DI and LI if the 34 brain regions
involved differences in target size across hemispheres for males
and females, whether or not regions maintain similar proportions
to the right and to the left, as long as metrics are overall different
across the sexes (e.g. higher values for males compared with
females). Third, the distance index, which relies on global coher-
ence within and across hemispheres, might outperform LI and SI if
it were sensitive to hemisphere target size, to interactions among
ROIs within each hemisphere, as well as to inherent positional
identity of each region, such that effective signaling between
ipsilateral and contralateral regions could occur.

A certain overlap in performance can be expected among the
three indices, as they all involve differences in asymmetry mag-
nitude between males and females. However, we do not expect
conflicting results for sexual dimorphism among indices or cor-
tical measures such that higher metrics are elicited for males,
for instance, under random combinations of index and measures,
which would question the reliability of (some) indices to capture
differences between males and females. Details on how each
index were computed as well as on further analyses are presented
below.

Materials and methods
Participants
A total of 928 healthy participants are included in the freely
available ID1000 dataset of the Amsterdam Open MRI collection
(https://openneuro.org/datasets/ds003097) following standard
ethics procedures. We analyzed structural (T1-weighted) scans
for a subset of 826 right-handed individuals (396 males and 430
females), for whom detailed information is available from Snoek
and colleagues (https://doi.org/10.1101/2020.06.16.155317).

MRI data acquisition and preprocessing
Neuroimaging data were acquired on a 3 T Philips Intera scan-
ner (Philips, Best, the Netherlands). T1-weighted high-resolution
anatomical scans (3D MPRAGE) were collected with the following

parameters: 1 × 1 × 1 voxel size, TR/TE = 8.1/3.7 ms, FOV = 160 ×
256 × 256 mm3, Flip angle = 8◦. Cortical reconstruction, volumetric
segmentation, and parcellation using the Desikan-Killiany atlas
(Desikan et al. 2006) were performed with the Freesurfer 6.0.1
image analysis suite, which is documented (Dale, Fischl, and
Sereno, 1999) and can be download online (http://surfer.nmr.mgh.
harvard.edu/). Brain surface was reconstructed using the same
version of FreeSurver and brain mask estimated by reconciling
ANTs and FreeSurfer segmentations of cortical gray-matter spe-
cific to Mindboggle (Klein et al. 2017). Spatial normalization to
the ICBM 152 Nonlinear Asymmetrical template version 2009c
(Fonov et al. 2009) was performed using nonlinear registration
with ANTs v2.1.0 (Avants et al. 2008) and using T1w volume as
well as template. T1w segmentation was done using fast FSL v5.0.9
(Zhang, Brady, and Smith 2001)..

Asymmetry indices
We computed three asymmetry indices using Matlab 2022a
(Mathworks 2022) based on raw values for 34 regions following
the Desikan–Tourville atlas (Desikan et al. 2006) across several
gray matter measures: volume, surface area, thickness, and mean
curvature (henceforth “curvature”). We derived the distance
index as detailed in equation (1). To obtain a DI value for one
region (DIi), we first computed a vector of absolute differences
between that region in the left hemisphere and the other regions
ipsilaterally, and then a vector of absolute differences between
the same region contralaterally and the other regions in the right
hemisphere. After correlating the two vectors, we computed a
Pearson correlation coefficient, which we subtracted from 1 to
derive DI as the absolute value for that ROI. The higher the DI,
the greater the asymmetry (i.e. difference in magnitude between
hemispheres) for that region. Conversely, the lower the DI, the
smaller the cortical asymmetry. By repeating the computation,
we obtained a 34-dimension vector that we compared across two
groups of participants (e.g. males and females) in a paired-sample
t-test:

DIi = 1 −

∣∣∣∣∣∣∣∣

∑(
ai,Left − VectorLeft

) (
ai,Right − VectorRight

)
√∑(

ai,Left − VectorLeft

)2 ∑(
ai,Right − VectorRight

)2

∣∣∣∣∣∣∣∣
(1)

where

VectorLeft = [∣∣ai,Left − ai+1,Left

∣∣ · · · ∣∣ai,Left − an,Left

∣∣]

VectorRight =
[ ∣∣ai,Right − ai+1,Right

∣∣ · · · ∣∣ai,Right − an,Right

∣∣ ]

For the laterality index for a particular region (LIi), we
computed a modified formula of the classic laterality index, as
detailed in equation (2), by subtracting the value of that region in
the left hemisphere from its counterpart in the right hemisphere
before dividing this number by the sum of the two. In a last step,
we derived absolute values to obtain the LI for each region. In
doing so, we estimated the magnitude of the left–right asymmetry
rather than the sign of this difference, as we were not interested
which hemisphere was larger than the other. We obtained a series
of positive differences, one per ROI, which we further compared
between males and females:

LIi =
∣∣∣∣ai,Left − ai,Right

ai,Left + ai,Right

∣∣∣∣ (2)
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To compute the subtraction index for a particular region (SIi),
we derived the difference between the raw value of that region
and their counterpart in the contralateral hemisphere before
deriving the absolute value of this difference, as detailed in equa-
tion (3). Again, we aimed to measure the magnitude of the left–
right difference instead of the sign of a particular value. Impor-
tantly, unlike DI, both LI and SI derive pairwise differences for
each region and do not factor in other regions when estimating
the asymmetry of a single region. The distinction to be made
between LI and SI is that only the former involves proportion-
al/weighted left–right differences, whereas the latter simply mea-
sures raw left–right differences. In sum, the three indices provide
asymmetry estimates for homologous ROIs across hemispheres
in the form of positive differences in magnitude, to be compared
between males and females:

SIi = ∣∣ai,Left − ai,Right

∣∣ (3)

Binary classification models
All statistical analyses were carried out in the statistical envi-
ronment R, version 2022 July 2 (R Core Team 2012) using version
6.0–94 of the Classification and Regression Training (“caret”) pack-
age for machine learning (Kuhn 2008). We set a unique random
seed before building models for each index and for each cortical
measure, then split the data into a training set (80%) and a test
set (20%). A Random Forest classifier (Breiman 2001) was run for
each index and measure including values for all 34 ROIs plus age
as predictors. Random Forest is a popular supervised machine
learning algorithm that generates and combines multiple decision
trees that are trained on different parts of a given set, thereby
providing clear advantages over other machine learning methods,
such as optimized prediction accuracy and overfitting. Reliability
is built into Random Forest models as “bagging,” which involves
aggregation and bootstrapping. To further enhance reliability, we
applied 10-fold grid leave-one-out cross-validation over test data.

A confusion matrix and associated statistics (i.e. model
accuracy, Cohen’s Kappa, and P-values) was computed for each
index and for each cortical measure (i.e. area, volume, thickness,
and curvature) to better evaluate the algorithms. A confusion
matrix was derived for each model as a 2 × 2 table that
summarizes the percentage of correctly and incorrectly classified
males and females. The “Cross-Validation for Model Selection”
(cvms) package in R (Jeyaraman et al. 2019, https://cran.r-project.
org/package=cvms) was used to visualize the confusion matrices.
Model accuracy specifies how many correct predictions (i.e. true
positives and true negatives) the classification model will make
over 100 participants. However, even when accuracy is high, it
must be interpreted together with Cohen’s Kappa, which corrects
for the likelihood that accuracy values might occur accidentally
by taking into account both true positives and false positives.
The rule of thumb is that Kappa coefficients lower than zero
indicate worse-than-chance classification performance, over 0.20
fair performance, over 0.40 good performance, and over 0.60 up
to 1 very good classification performance (Fleiss 1981). However,
interpreting Kappa values is highly dependent on the research
question and may be inadequate when marginals are similar for
predicted and target groups (Delgado and Tibau 2019). Accuracy
values must also exceed the “no information rate” (NIR), which is
the accuracy obtained by always predicting the majority class. The
model should thus yield a significant p-value between accuracy
and NIR. Further, Random Forest allows us to estimate the relative
importance of model predictors that is, the 34 cortical regions

plus age. We plotted the six highest ranking predictors on cortical
surface maps (cf. Mowinckel and Vidal-Pineiro 2019) for each
index and for each cortical measure.

Robustness and reliability analyses
The quality of magnetic resonance (MR) images may depend on
operator errors, patient movement, equipment performance, as
well as by contrast and brightness as indexed by T1-weighted
(T1w) sequences. Image-quality metrics are typically not included
in brain imaging studies, but failure to control for data quality
was shown to bias estimates of lifespan brain development (Rosen
et al. 2018; Zuo et al. 2017) and age (Power et al. 2012; Roalf et al.
2016). Evidence of negligible impact of image-quality metrics on
index values would support index robustness. Indeed, analyses
are robust when they do not vary strongly with external parame-
ters (e.g. image quality), and they are reliable when they do not
vary across repeated testing of the same sample (Jansen et al.
2006). In our study, reliability is part of the Random Forest algo-
rithm, which involves bootstrapping as well as cross validation.
In addition, obtaining similar result patterns for indices across
several cortical measures, namely volume, area, thickness, and
mean curvature, would further support index reliability.

The AOMIC database provides five of the 14 fully automated
image-quality metrics described by Esteban and colleagues (Este-
ban et al. 2017). The five metrics are based on specific artifacts,
structural image quality, and information theory. Measures target-
ing specific artifacts are the intensity nonuniformity metric (INU)
and the white matter to maximum intensity ration (WM2MAX).
The former describes the inhomogeneity of the magnetic field,
with values around 1.0 indicating less motion and smaller bias in
the magnetic field. The latter measures median intensity of white
matter over 95% of full intensity distribution and captures arti-
facts generated by carotid vessels and fat. Values between 0.6 and
0.8 indicate ideal white matter brightness. Structural image qual-
ity measures evaluate the impact of noise and include the coef-
ficient of joint variation (CJV) of white and gray matter and the
contrast-to-noise ratio (CNR). The former is an objective function
for optimizing INU correction algorithms (Ganzetti et al. 2016a),
with higher values indicating head motion and important INU
artifacts. The latter evaluates the degree of separation between
gray matter and white matter, with higher values indicating better
tissue separation. Finally, information theory measures evaluate
the spatial distribution of information. In particular, the entropy-
focus criterion (EFC) estimates ghosting and blurring caused by
head motion; hence, lower values are preferable (Atkinson et al.
1997).

To evaluate the impact of image-quality metrics on the robust-
ness of the three asymmetry indices, we selected two equal
subsamples for each metric and for each group, as follows. First,
data were organized in lower and upper levels for each image-
quality metric, and 80 participants (approx. 20%) were selected
for each level, while matching the metrics values across males
and females. As a rule, the first and the last 80 participants and
corresponding index values were selected for each metric. EFC
was an exception, as values were highly homogeneous in females
compared with males, and therefore upper and lower groups
could only be delineated by strongly polarizing the samples. As
a result, two groups of only 35 participants each were selected.
In a last step, paired-sample t-tests were run between males and
females index values across the 34 ROIs for each metric and for
each level. Several outcomes are possible, bearing in mind that
some image-quality metrics are better when higher (e.g. CNR,
INU), whereas others are better when lower (i.e. CJV, EFC). First,
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differences between males and females could be significant only
for the preferred level, which would indicate that a particular
index, either DI, LI, or SI, is sensitive to image quality metrics.
Second, analyses of asymmetry indices for males and females
could be significant for both upper and lower metrics levels, in
which case the index is a robust biomarker of sexual dimorphism.
Third, there may be no significant differences for a given index
between males and females for associated lower or upper image-
metrics, which would indicate that the index is not a robust
biomarker or brain asymmetry.

Group analyses and correlations with
males/females
Group analyses as paired t-tests between males and females for
each index and for each cortical measure were performed, whose
results could support the output of binary classification models.
Pearson correlations between sex and whole-brain index values
were computed, allowing for an informal comparison of asymme-
try indices and their potential to distinguish males from females
across cortical measures. For each ROI, we computed index values
(separately for DI, LI, and SI) across subjects and correlated them
with males/females (coded as “0” and “1,” respectively) before
averaging over correlation coefficients for that particular region
and for each index. In a last step, we obtained a grand average
over all 34 ROI for each index and represented the three values in
graphical format. Another informal analysis was performed over
raw ROI values for each hemisphere, to determine the potential of
each hemisphere alone to provide cues for binary classification.
As before, correlations with males/females were averaged for
each ROI and for each hemisphere, followed by a grand average
computed for each hemisphere and cortical measure before rep-
resenting values in graphical format.

Results
Random Forest binary classification
The trained model was tested on the test dataset to obtain single-
subject predictions in the form of accuracy percentages and
counts of correct and incorrect classification. Figure 1 illustrates
a series of 2 × 2 confusion matrices summarizing the outcomes of
Random Forest models, one for each index and cortical measure.
The following associated statistics are reported underneath each
matrix: accuracy (“Acc”), P-value when comparing accuracy with
no-information rate, and Cohen’s Kappa. By combining target (raw)
values over two columns and predicted values over two rows,
four quadrants are defined, as follows: correct classification over
the upper left and lower right quadrants (true positives for cases
where males are predicted to be males and true negatives for
cases where females are predicted to be females) and incor-
rect classification over the upper right and lower left quadrants
(false positives in cases where females are predicted to be males
and false negatives in cases where males are predicted to be
females). Each quadrant in a matrix includes several numbers,
starting with the overall percentage in the middle and overall
count underneath. Column percentages are given at the bottom
of each quadrant: if we consider the first matrix summarizing
binary classifications for DI volume, of all the observations where
Target is male, 59.5% were predicted to be male and 40.5% were
predicted to be female. Row percentages are given to the right
of the quadrants: if we consider the upper quadrants, of all the
observations where Prediction is male, 61% of them were actually
male, while 39% were female.

The color intensity of the quadrants corresponds to counts,
from deeper oranges (higher counts) to pale oranges (lower
counts). Highly accurate classifications are therefore cases where
the upper left—lower right diagonal is intensely colored, which
was true for DI volume, area, and curvature, for LI area and
curvature, and for SI volume and area. Accuracy levels exceeded
50% except for SI curvature, with DI scoring the highest for area,
thickness, and curvature. Cohen’s Kappa values were above 20%
only for DI volume area, and thickness, for LI volume and area,
and for SI volume and area. As for p-values, they were significant
for DI volume, area, and curvature, for LI area, and for SI volume
and area, indicating that LI underperformed compared with the
other two indices. DI curvature also featured reasonable statistics
(56% accuracy and P = 0.004, despite a lower Kappa value of 0.13),
whereas binary classifications based on cortical thickness fared
poorly across indices.

Brain maps of lateral and medial surfaces above each confu-
sion matrix in Fig. 1 present the six ROIs whose variance con-
tributed to binary classification the most. Color intensity goes
from light blue (highest rank) to dark blue (lowest rank). If we
exclude thickness, for which classification was poor, we may
conclude that successful classification relies mostly on prefrontal
and temporal areas, as well as on the temporo-parietal junction,
with slight variations across indices. Of the ROIs with highest
differences in DI asymmetry between males and females, we
singled out the rostral anterior cingulate for volume and area and
the rostral middle frontal for mean curvature. For LI and SI, the
inferior parietal ranked highly for volume and area, and even for
mean curvature for LI. These areas are among those previously
associated with male–female differences (i.e. Gomez et al. 2019;
Lotze et al. 2019; Sowell et al. 2007), but their relevance to brain
asymmetry was not established.

An important goal of the AOMIC database was to provide a
homogeneous sample size and, therefore, only individuals in their
early twenties were recruited. This goal was met, as we included
“age” as a predictor of sex, alongside the 34 ROIs but found it
among the lowest ranked predictors in the output of all models.

Robustness analysis: Impact of image quality
metrics on index values
Figure 2(A) summarizes five image-quality metrics (CJV, CNR, EFC,
INU, and WM2MAX) associated with the 826 right-handed male
and female participants in the AOMIC dataset. Overall, image
quality was similar or even better compared with other large
datasets, for example ABIDE (Di Martino et al. 2014). However,
the values were different in males and females, which could bias
the analysis of associated indices. To preclude biases when eval-
uating the impact of image quality metrics on index values, two
subsamples were selected for each index and for each measure,
corresponding with upper and lower image-quality levels. For
each set of 34 ROIs at upper and lower levels, paired sample t-
tests were run between males and females. Associated p-values
were designated in Fig. 2(C) with “∗” if less than 0.001, with “x” if
less than 0.05 but higher than 0.001, and with “ns” if higher than
0.05.

Distance index scores were significantly higher in males com-
pared with females for each cortical measure (volume, area,
thickness, and curvature) across both lower and upper CJV and
EFC, across lower and upper CNR and WM2MAX except for thick-
ness, where differences were significant only for lower CNR, and
finally for lower INU except volume. The results of t-test between
males and females for the laterality index were significant only
for a quarter of all t-tests run, namely for lower CJV area and
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Fig. 1. Performance of binary classification models. Each 2 × 2 confusion matrix corresponds to a specific measure (volume, area, thickness, or curvature)
and index (DI, LI, or SI) with accuracy, p-value relative to no-information rate, and Cohen’s Kappa given underneath. True positive, false positive, false
negative, and true negative quadrants in each matrix include overall percentage and count in the middle. Column percentages are given at the bottom
and row percentages to the right in each quadrant. Six regions of interest are displayed on lateral and medial cortical maps, ranking from most important
(lightest) to least important (darkest) for each model.

curvature, upper CNR area and curvature, lower EFC volume,
lower INU curvature, and upper WM2MAX area and curvature.
Overall, asymmetry was again higher in males compared with
females. Unlike DI scores, LI scores followed the optimal level
of image-quality that is, they were significant if associated with
lower CJV and EFC, as well as with higher CNR and INU. As for
the subtraction index, scores were not significantly different for
males and females across the board, suggesting low robustness
for this index.

Group analyses and correlations with
males/females
As seen in Fig. 3(A), correlation coefficients with males/females
were similar for the left and the right hemisphere. Paired t-tests
between them for each cortical measures were not significant,

showing that neither hemisphere provides robust cues for binary
classification. Figure 3(B) summarizes whole brain averages for
males and females across indices for surface area, cortical vol-
ume, thickness, and mean curvature. Overall, index values in
these group analyses were higher for males than for females.
For DI, P-values were highly significant (under 0.001) across all
cortical measures. For LI, P-values were highly significant only for
volume, they were significant (under 0.05 but over 0.001) for area
and thickness, and non-significant for mean curvature. For SI,
P-values were highly significant for volume and area, significant
for thickness, and non-significant for mean curvature.

The analyses contrasting males and females revealed that DI
yielded the best outcomes, followed by SI, and then by LI. These
results are confirmed by correlation analyses, as seen in Fig. 3(C),
which presents an informal comparison of Pearson correlation
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Fig. 2. Image-quality metrics and their impact on asymmetry indices DI, LI, and SI. Average metric values (CJV, CNR, EFC, INU, and WM2MAX) are given
for males and females in the full sample (all 826 right-handed participants) and in two subsamples corresponding to upper and lower metric levels
(A). Average index values corresponding to upper and lower image-quality levels are given for males and females for cortical measures—volume, area,
thickness, and curvature (B). Significance levels of t-tests between males and females are marked as “∗” if less than 0.001, as “x” if less than 0.05 but
higher than 0.001, and as “ns” if higher than 0.05. Note that SI scores are all “ns.”

coefficients for each asymmetry index and males/females across
cortical measures. Higher values indicate better classification
performance. Overall, DI (light orange) has associated the highest
coefficients, especially for mean curvature, with SI (mid-orange)
a good second, especially for average volume and surface area.
Of the three, LI (deep orange) yielded the lowest coefficients and
therefore the poorest classification.

Discussion
We provided evidence that brain asymmetry is globally differ-
ent in males and females, with the distance index being the
most suitable methodological tool for evaluating these differ-
ences. Machine learning and robustness analyses contrasted the
distance index with the laterality index and the subtraction index,
which are based on local pairwise differences between brain
regions, in their ability to distinguish males from females. Ran-
dom Forest models performed overall better in terms of accuracy,

non-randomness, and Cohen’s Kappa for DI volume, area, and cur-
vature compared with SI and especially to LI, which fared poorly.
Interestingly, binary classification failed for cortical thickness
across indices, suggesting the existence of regional differences in
thickness that cannot be captured by whole-brain analyses.

For each index, t-test results between males and females were
significant, especially for the distance index. Moreover, unlike DI
values, LI and SI values did not differ significantly in males and
females for mean curvature—incidentally, DI correlation coef-
ficients with males/females were highest for mean curvature.
When investigating index robustness in upper and lower subsam-
ples corresponding to highest and lowest image-quality metrics,
DI yielded the highest percentage of significant t-tests (80%) in
group analyses of males versus females. LI scores were significant
in only 25% of the tests, and SI scores were not significant.
Moreover, informal correlation analyses between sex and index
measures illustrated in Fig. 3(C) underscore the robustness of DI
as a global coherence index for encoding sexual dimorphism.
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Fig. 3. Group analyses and correlations of males/females with index values. Pearson correlation coefficients are given for sex versus raw values in the
left and right hemisphere over aggregated regions of interest for all cortical measures—volume, area, thickness, and curvature (A). Significance levels
of paired t-tests between male and female index values for cortical measures are marked as “∗,” “x,” and “ns” if less than 0.001, less than 0.05 but higher
than 0.001, and higher than 0.05, respectively (B). Pearson correlation coefficients for sex versus each asymmetry index across cortical measures (C).

When looking at raw cortical measures, correlation coefficients
with sex did not differ between the left and the right hemi-
sphere, suggesting that neither of them alone encodes cues for
binary classification. In contrast, it is the combined magnitude
of proportions between regions across hemispheres that appears
to be a useful metric, which suggests that specific growth rules
are at work ensuring cortical asymmetry differences in males
and females. The fact that DI was a better biomarker of sexual
dimorphism compared with LI or SI suggests that individual ROIs
have different target sizes in non-random ways that is, they
must be proportional to ROIs in the opposite hemisphere, which
highlights a complex pattern of contralateral growth regulations
across left and right side (Genikhovich and Technau 2017). In other
words, asymmetry must have evolved in humans not as weighted

pairwise differences between the left and the right hemisphere,
which would simply involve scaling, but as globally coherent rela-
tionships relying on hemisphere target size, interactions among
ROIs within each hemisphere, and inherent positional identity of
each region to ensure effective signaling between ipsilateral and
contralateral regions.

In the early mammalian cortex, neurogenesis ensures the
growth of neural precursor cells (Eriksson et al. 1998) via
contralateral signaling. Importantly, neurogenesis continues
to ensure plasticity of selected regions in the adult brain (for
reviews, see Kolb and Whishaw 1989; Plowman and Kleim 2010),
especially following injury (Shohayeb 2018). Indeed, extensive
changes in adult animals occur after brain damage that highlights
the plasticity of uninjured networks. When stimulated, injury
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ipsilateral regions elicited both ipsilateral and contralateral
motor responses (Murphy and Corbett 2009; Ueno et al. 2012),
underscoring the importance of a continuous dialog between
hemispheres. An important issue is whether contralateral
signaling and neurogenesis are dependent on the properties of the
corpus callosum, which links the two hemispheres. Early studies
support the hypothesis that callosal axonal fibers mostly connect
homotopic cortical areas, yet recent studies provide evidence
that interhemispheric callosal connections are heterotopic for
the most part, and are strongly involved in brain networks across
hemispheres (Swanson et al. 2017; Szczupak et al. 2022). Even
more remarkably, interhemispheric connectivity was found in
mammals with or without a corpus callosum, which helps define
a timeline of interhemispheric communications such that a gray
matter connectome must precede callosal growth (Suarez et al.
2018). Nevertheless, abnormalities of gray as well as white matter
have been reported in neurodevelopmental disorders including
schizophrenia (Bilder et al. 1994; Honea et al. 2005; Steinmann
et al. 2021), autism (Hazlett et al. 2005; Herbert et al. 2005),
stuttering (Foundas et al. 2003), and Tourette syndrome (Hong
et al. 2002), supporting a key role for the callosum in brain
function. These findings lay bare the field of future conjectures on
the origins of brain asymmetry, which develops both via signaling
and across white matter bundles in the corpus callosum through
global reorganization instead of pairwise connections across
hemispheres.

Sexual dimorphism in the structure of gray and white mat-
ter is well documented in literature. Cerebral asymmetry pat-
terns in neonates are opposite to that of older children and
adults, suggesting that adult patterns arise before birth and per-
sist throughout postnatal brain development, driven by genetics
as well by experience (Gilmore et al. 2007). Cortical asymmetry
can be observed as early as 22 weeks of gestation (Chi et al. 1977;
Hering-Hanit et al. 2001), being more leftward in males (Kivilevitch
et al. 2010) and predominantly rightward in premature males and
females (Dubois et al. 2008; Lin et al. 2012). In the adult brain,
asymmetries include the right hemisphere being larger than the
left, mainly due to more white matter on the right, and fronto-
occipital asymmetry with larger right prefrontal cortex compared
with the left and larger left occipital cortex compared with the
right (Nopoulos et al. 2000; Toga and Thompson 2003). White
matter continues to increase in volume throughout life (Lenroot
et al. 2007; Giedd et al. 1999; Sowell et al. 2002), but gray matter
reaches a peak around 10 years of age, slightly earlier in females
for temporal and frontal lobes (Tanaka et al. 2012). Although
males have larger brain volumes and surface areas compared
with females, cortical thickness is greater in females (Ritchie et al.
2018).

There is greater variance in males compared with females for
volume and surface area, suggesting that individual differences
are more important in males (Giedd et al. 1996). However, asym-
metry patterns appear to be systematic and predictable rather
than random, as witness good DI performance, which suggests
that mere variance or individual differences cannot explain away
the sexual dimorphism of cortical asymmetries. Growth rates
triggered by genetic and hormonal factors are more likely candi-
dates, as they impact cortical growth across the lifespan (McEwen
and Milner, 2017 Korol 2004; Sisk and Zehr 2005), have associ-
ated effects on cognition and mental illness, and account for
increased variability of male brains via genomic imprinting (Dulac
and Christopher 2013), mitochondrial DNA mutations passed on
maternally (Gemmell et al. 2004), X chromosome effects (Craig
et al. 2009)), and further mechanisms protecting females from

damaging consequences of genetic mutations (Robinson et al.
2013). Moreover, testosterone and/or estradiol in males increase
the number of calcium-binding proteins, which are known to
prevent neuronal death, thus resulting in males having a greater
number of neurons than females (Segovia et al. 1999).

To summarize, we found DI to be a robust biomarker of cortical
asymmetry. Of the three indices, it captured best whole brain dif-
ferences between the sexes, with female brains being structurally
more coherent than male brains. Importantly, the whole brain size
may remain unchanged, while degree of coherence may differ.
Also, reduced lateralization does not entail higher coherence, and,
conversely, highly lateralized structures need not be less coherent,
since an interaction among ROIs within each hemisphere may
or may not occur. Sexual dimorphism in brain structure appears
to draw on the rules governing form and proportion, which are
fundamental for the development of biological organisms (Harris
et al. 2021). However, there are currently no advanced reports
on the impact of genetic, epigenetic, and hormonal factors on
distinct types of brain asymmetry in males versus females. More-
over, our findings cannot distinguish the effects of developmental
processes from the effects of genetic hardwiring of proportion
parameters as they converge toward global differences in brain
asymmetry between young adult males and females. Further
studies are needed, in the future, to explore the biological basis
of various types of asymmetries in the human brain.
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