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Abstract—In this work we propose a family of Fq-linear low-
rank parity check (LRPC) codes based on a bilinear product
over Fm

q defined by a generic 3-tensor over Fq . A particular
choice of this tensor corresponds to the classical Fqm -linear
LRPC codes; and other tensors yield Fq-linear codes, which,
with some caveats, can be efficiently decoded with the same idea
of decoding LRPC codes. The proposed codes contribute to the
diversity of rank metric codes for cryptographic applications,
particularly for the cases where attacks utilize Fqm -linearity to
reduce decoding complexity.

Index Terms—Algebraic coding theory, rank metric codes,
network coding, cryptography

I. INTRODUCTION

Rank metric codes play an important role in coding theory
[1], [2] and have found a variety of applications in networking
[3] and cryptography [4]–[7]. One desirable property of rank
metric codes for cryptography is the hardness of the syndrome
decoding problem. The decoding of a random Fq-linear rank
metric code is proven to be NP-complete [8], and for the Fqm -
linear case, the syndrome decoding can be probabilistically
reduced to an NP-complete problem [9]. So far the best-known
attacks for solving the rank syndrome decoding problem have
an exponential complexity which is quadratic in the parame-
ters. This allows for significantly smaller key sizes in crypto-
graphic schemes based on rank metric codes, when compared
to those with codes in the Hamming metric. Recent years
have seen a resurgence of interest in rank-based cryptography.
Researchers have proposed various rank-based cryptographic
schemes, including RankSign [5], identity-based encryption
[10], ROLLO [6], the signature scheme Durandal [7], etc. On
the other hand, recent developments of cryptanalytic attacks
against rank-based cryptography also challenged parameters
of schemes based on Fqm -linear rank metric codes. The early
GPT cryptosystem [4] and its variants based on Gabidulin
codes are vulnerable to algebraic attacks by Overbeck [11].
For the decoding problem with Fqm -linear rank metric codes,
Ourivsky and Johansson [12] exploited the Fqm -linear struc-
ture to reduce the decoding complexity. Very recently, refined
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attacks using the same model were proposed in a series of
papers [13]–[15], which challenged the security parameters
of several schemes based on low-rank parity check (LRPC)
codes [16] without a significant structure.

In the theory of rank metric codes, it is of great interest
to study codes with efficient decoding, which is vital for
their applications. As for cryptographic applications, another
requirement is that the codes should not exhibit a significant
algebraic structure, which is difficult to mask securely. Moti-
vated by recent developments of algebraic attacks [13]–[15]
on the decoding problem for Fqm -linear rank metric codes
and relevant cryptographic schemes, in this paper we propose
a family of Fq-linear rank metric codes, which have no
significant algebraic structure and can be efficiently decoded.
For efficient decoding of the proposed codes, we introduce
a bilinear product over Fm

q , which is based on a generic 3-
tensor T over Fq . The bilinear product has the property that
the product of elements in two subspaces of small dimensions
r, d lies in a subspace with dimension upper bounded by rd.
This property allows for an efficient probabilistic decoding
algorithm similar to that of LRPC codes. It can be shown that
the LRPC codes [16] correspond to a particular choice of the
tensor T , and that there exist other choices of T that produce
Fq-linear codes and allow for a compact public key as well.
Due to the space limitation, in this work we omit proofs and
examples, which are included in the full version of the paper.

II. PRELIMINARIES

In this section we will introduce basic notations and auxil-
iary results for subsequent sections.

To avoid heavy notation we use [n] to indicate the set
{1, . . . , n}. We denote by Fq the finite field with q elements,
where q is a power of a prime number. The vector space Fn

q

is the set of all the n-tuples over Fq while Fm×n
q is the set

of all the m × n matrices over the same field. Vectors will
be indicated by lower bold case. Given a vector v, its i-th
component will be indicated as vi. Matrices will be indicated
by uppercase letters. Given a matrix A its i, j-th entry will be
denoted by ai,j . For a given set S in Fm

q or in Fqm we call the
Fq-linear space generated by the elements of S the support of
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Figure 1: Slices of 3-tensors

S, denoted by ⟨S⟩Fq . Similarly, for a vector v ∈ Fqm and a
matrix M the notation ⟨v⟩Fq

and ⟨M⟩Fq
will denote the Fq-

linear space generated by the entries of v and M . We will
call these two subspaces the support of v and the support of
M .

A. 3-tensors over Fq

In this paper elements in Fn1×n2×n3
q will be termed 3-

tensors and will be also denoted by upper-case letters. Given a
3-tensor T ∈ Fn1×n2×n3

q we will indicate with ti,j,k its i, j, k-
th entry. Algebraically a 3-tensor T can be expressed as a vec-
tor of n3 matrices Ti of size n1×n2, i.e., T = (T1, . . . , Tn3

).
A 3-tensor can be visualized as a rectangular cuboid (a closed
box with six rectangular faces) of size n1 × n2 × n3 in a
system of three coordinates as displayed in Figure 1, where the
first index indicates the vertical axis, the second indicates the
horizontal axis and the third indicates the axis perpendicular
to the paper. Given a 3-tensor T , one obtains a matrix of size
n2×n3 when fixing the 1st index of T to a certain value i for
1 ≤ i ≤ n1. Likewise, one obtains a matrix of size n1 × n3

when fixing the 2nd index and a matrix of size n1×n2 when
fixing the 3rd index. We will denote by Ti,∗,∗, T∗,j,∗, T∗,∗,k
the matrices derived by fixing the 1st, 2nd and 3rd index of T
to i, j and k, respectively. In Figure 1 we show 3 examples
of this notation over a tensor T ∈ F2×3×4

q . More concretely,
T2,∗,∗ is the matrix by fixing the 1st index of T to 2, T∗,3,∗ is
the matrix by fixing the 2nd index of T to 3 and T∗,∗,2 is the
matrix by fixing the 2rd index of T to 2.

Multiplications over Fm
q associated with 3-tensors will be a

core feature in the proposed generalized LRPC codes. Below
we shall introduce multiplications between 3-tensors and
vectors with respect to indices 1, 2 and 3, which, in a visual-
ized manner, can be interpreted as directional multiplications.
Given a 3-tensor T ∈ Fn1×n2×n3

q , vectors x ∈ Fn1
q , y ∈ Fn2

q ,
z ∈ Fn3

q , we define the vertical multiplication between T and
x, denoted by, Tx,∗,∗, as the linear combination of T w.r.t x
along the vertical direction, that is Tx,∗,∗ =

∑n1

i=1 xiTi,∗,∗ is
a n2×n3 matrix, where the j, k-th entry of Tx,∗,∗ is given by∑n1

i=1 xiti,j,k. Similarly, the horizontal multiplication between
T and y will be defined as T∗,y,∗ =

∑n1

j=1 yjT∗,j,∗ and the
perpendicular multiplication between T and z will be defined
as T∗,∗,z =

∑n1

k=1 zkT∗,∗,k. Let ei ∈ Fn1
q denote the i-th

element of the standard base of Fn1
q . (i.e. the vector of length

n1 which is 1 in its j-th position and 0 elsewhere). The
vertical multiplication between T and ei is Tei,∗,∗ = Ti,∗,∗.
Similarly the horizontal and the perpendicular multiplication
with the standard vectors ej of length n2 and ek of length n3

is T∗,ej ,∗ = T∗,j,∗ and T∗,∗,ek
= T∗,∗,k.

Suppose we want to multiply the matrix T∗,y,∗ with the
vector x along its first index. We can extend the notation
introduced above indicating as Tx,y,∗ = xT∗,y,∗ Similarly
T∗,y,z = T∗,y,∗z

⊺ and Tx,y,z = (xT∗,y,∗)z
⊺. While Tx,y,∗

and T∗,y,z are vectors respectively in Fn3
q and Fn1

q , we have
that Tx,y,z is just an element of Fq.

B. Matrix rank metric codes

The column support of a matrix M ∈ Fm×n
q is the vector

space Colsp(M) ⊆ Fm
q generated by the columns of M . The

rank of a matrix can be equivalently interpreted as the dimen-
sion of its column support and will be denoted by Rank(M) =

dim(Colsp(M)). The rank distance between two matrices
A,B ∈ Fm×n

q is then given by dR(A,B) = Rank(A − B).
Equipped with this distance, a subset C ⊆ Fm×n

q is called
a matrix (rank metric) code if it is an Fq-linear subspace
of Fm×n

q . The minimum rank distance of a matrix code
C is given by dR(C) = min{Rank(U) | 0 ̸= U ∈ C}. In
the context of rank metric codes, for m ≥ n the Singleton
bound is given as |C| ≤ qm(n−dR+1) and a code achieving the
Singleton bound is said to be maximum rank distance code
(MRD). Let C be an Fq-linear matrix rank metric code of
dimension k, namely, there are G1, . . . , Gk ∈ Fm×n

q linearly
independent matrices that generate this code. We can define a
3-tensor generator G ∈ Fm×n×k

q given by G = (G1, . . . , Gk).

Using the notation we introduced for 3-tensors, the code C can
be expressed as C = {G∗,∗,x | x ∈ Fk

q}.
Given two matrices A,B ∈ Fm×n

q the trace inner product
of A,B is defined as Tr(AB⊺) =

∑
i,j ai,jbi,j ∈ Fq . With

this notion of inner product, we can define the dual of a
k-dimensional linear code C ⊆ Fm×n

q as C⊥ = {X ∈
Fm×n
q |Tr(XC⊺) = 0,∀C ∈ C}. The code C⊥ can be

seen as the solution of a system of k linear equations in
mn unknowns, therefore its dimension is lower bounded by
mn − k. The 3-tensor generator of C⊥ will be a 3-tensor
H ∈ Fm×n×(mn−k)

q and will be called a parity-check tensor
of C. The party-check tensor H of a code C gives a tool
to quickly determine whether a matrix A ∈ Fm×n

q belongs
to C. Indeed we have that A ∈ C iff Tr(H∗,∗,iA

⊺) = 0

for all i ∈ [mn − k]. The vector s ∈ Fmn−k
q such that

si = Tr(H∗,∗,iA
⊺) is called the syndrome of A. With

this notion of syndrome we can express the rank syndrome
decoding (RSD) problem for the matrix codes as follows.

Definition 1 (RSD Problem). Given a 3-tensor parity-check
H ∈ Fm×n×(nm−k)

q of an Fq-linear matrix code C ⊆ Fm×n
q ,



a syndrome s ∈ Fnm−k
q and a small integer r, find a matrix

E ∈ Fm×n
q such that (Tr(EH⊺

1 ), . . . ,Tr(EH⊺
nm−k)) = s and

Rank(E) ≤ r.

Suppose a code C has minimum distance dR(C) = d. If
we receive a matrix Y = X + E where X ∈ C and E is
an error of small rank-weight < d

2 , one can recover X by
solving the RSD problem. More concertely, one can compute
the syndrome of Y , since (Tr(Y H⊺

1 ), . . . ,Tr(Y H⊺
nm−k)) =

0+(Tr(EH⊺
1 ), . . . ,Tr(EH⊺

nm−k)). Solving the RSD problem
gives us E, from which we get the correct matrix X = Y −E.

III. GENERALIZED LRPC CODES

In this section we will propose a family of Fq-linear matrix
codes that generalizes the LRPC codes introduced in [16],
[17]. It will be shown that the proposed codes include both
the classical Fqm -linear LRPC codes and a large number of
matrix codes that are only Fq-linear. For efficiently decoding
the proposed generalized LRPC codes, we will introduce a
T -product over Fm

q which plays the same role as the standard
product over Fqm .

A. T-product over Fm
q

The product over Fqm has two properties that are exploited
in the decoding algorithm of the LRPC codes. The first
property is that, for two given subspaces H, E ⊆ Fqm of
dimension d and r, the set HE = {he | h ∈ H, e ∈ E}
is contained in a space of dimension upper bounded by rd.
In particular if H = ⟨h1, . . . , hd⟩Fq , E = ⟨e1, . . . , er⟩Fq , then
HE ⊆ ⟨hiej | (i, j) ∈ [d] × [r]⟩Fq

= ⟨EH⟩Fq
. If the support

of a parity check matrix and the support of the error are
contained in two small subspaces H and E then, the support
of the syndrome will be contained in ⟨HE⟩Fq of dimension
upper bounded by rd. The second property of the standard
product of Fqm is the multiplicative inverse. Observe that for
any 0 ̸= h ∈ H the subspace E ⊆ h−1(H.E). Intersecting
such spaces, with a good probability, it is possible to recover
the error space E .

The vector space Fm
q does not have a product by default.

For generalizing the LRPC codes, we will introduce a product
over Fm

q satisfying the two properties discussed above.

Definition 2 (invertible bilinear product). The binary opera-
tion ⋆ : Fm

q × Fm
q → Fm

q is an invertible bilinear product if
it satisfies the following two properties. For a,b, c ∈ Fm

q ,

• (bilinear) (µa + νb) ⋆ c = µ(a ⋆ c) + ν(b ⋆ c) and
a ⋆ (µb+ νc) = µ(a ⋆ b) + ν(a ⋆ c) for any µ, ν ∈ Fq.

• (invertible) Given a ⋆ b = c, for all b ̸= 0 the value of
a such that a ⋆ b = c is unique. So, the function invb
such that invb(c) = a is well defined.

Let B = (β1, . . . , βm) be a base of Fqm over Fq . For a ∈
Fqm we define ϕB(a) ∈ Fm

q the vector of the coordinates

of a with respect to B, i.e., a = (β1, . . . , βm)ϕB(a)
⊺. The

function ϕB induces an isomorphism between Fqm and Fm
q .

An example of an invertible bilinear product is obtained by
the composition of the standard product over Fqm with ϕB .
Explicitly, the product is defined as a ⋆ b = ϕB(ab) where
a = ϕ−1

B (a), b = ϕ−1
B (b) ∈ Fqm . The first property comes

from the bi-linearity of the product in a field. For the second
property, the function invb we are looking for is just the ⋆-
product by ϕB(b

−1). That is (a ⋆ b) ⋆ ϕB(b
−1) = a. While

in this case the product ⋆ inherits the commutativity by the
field structure of Fqm , in general it is not always possible to
express the function invb as a right or left ⋆-multiplication by
an element of Fqm . Below we discuss some properties of the
bilinear product which will be used for decoding.

Proposition 1. Let ⋆ be an invertible bilinear product. Let
A = ⟨α1, . . . ,αr⟩Fq ,B = ⟨β1, . . . ,βd⟩Fq ⊆ Fm

q be two
linear subspaces of dimension r and d such that rd ≤ m.
Consider A ⋆ B = {a ⋆ b | a ∈ A,b ∈ B}, then
dim(⟨A ⋆ B⟩Fq

) ≤ rd. Moreover, for 0 ̸= b ∈ B we have

A ⊆ invb(⟨A ⋆ B⟩Fq ) = {invb(c) | c ∈ ⟨A ⋆ B⟩Fq}.

Notice that invertibility of the product ⋆ is not necessary
for the statement dim(⟨A ⋆ B⟩Fq

) ≤ dim(A) dim(B).
We have seen that the composition of the standard product

over Fqm and an isomorphism ϕB is an invertible bilinear
product, which is essentially the product used in classical
LRPC codes. Below we introduce a more generalized product
based on a generic 3-tensor T .

Definition 3 (T -product). Let T be a 3-tensor in Fm×m×m
q .

For a,b ∈ Fm
q we define the T -product between a and b as

a ·T b := aT∗,b,∗ = Ta,∗,∗b
⊺ = Ta,b,∗.

The k-th component of c = a ·T b = Ta,b,∗ is given by

ck =

m∑
i=1

m∑
j=1

ti,j,kaibj .

While the T -product is bilinear for any tensor T in
Fm×m×m
q , being invertible, in general, is not granted.
We already discussed how we can interpret a 3-tensor as the

generator of a matrix linear code. Studying the code generated
by the tensor T will give us a necessary and sufficient
condition to establish if, for a given tensor T , its associated
T -product is invertible or not. In particular all known finite
presemifields can be used to generate invertible T -products.
This connection, in a similar context, was explored in [18,
Theorem 3] and previously in [19, Theorem 4.4.1].

Theorem 1. A tensor T ∈ Fm×m×m
q defines an invertible

product iff {T∗,i,∗ ∈ Fm×m
q } is a base of an MRD code of

dimension m. Equivalently iff

Rank(T∗,b,∗) = m, ∀b ∈ Fm
q \ {0}.



The T -product can be used also to define an inner product
between matrices in Fm×n

q .

Definition 4 (T -inner product). Let A,B ∈ Fm×n
q two

matrices, we denote by ai,bi the i-th column of A and B.
For a 3-tensor T ∈ Fm×m×m

q , the T -inner product of A and
B is defined as

A ·T B =
∑
i∈[n]

ai ·T bi ∈ Fm
q .

The vector A ·T B ∈ Fm
q can be rewritten using the trace

function component by component as

(A ·T B)k = Tr(A⊺T∗,∗,kB) = Tr(T∗,∗,kBA⊺).

It can be shown that the T -inner product between two
matrices in Fm×n

q , for a certain tensor, coincides with the
standard inner product between two vectors in Fn

qm .

B. Generalized LRPC codes

The subspace generated by k Fqm -linearly independent
vectors in Fn

qm has dimension k over Fqm and km over
Fq . Similarly, using the T -product we can expand a code
generated by k linearly independent matrices in Fm×n

q to a
code of dimension upper-bounded by km as follows.

Definition 5 (T -expanded code). Let C = ⟨Gj | j ∈ [k]⟩Fq
⊆

Fm×n
q be a matrix code of dimension k and T be a 3-tensor

in Fm×m×m
q . The T -expanded code of C is defined as

CT = ⟨T∗,∗,iGj | (i, j) ∈ [m]× [k]⟩Fq .

The dimension of CT will be at most km.

We are ready to introduce the main topic of this paper.

Definition 6 (Generalized LRPC codes). Let T be a 3-tensor
in Fm×m×m

q and let the matrices H1, . . . ,Hn−k ∈ Fm×n
q

satisfy the following two properties:

1. there exists a subspace B ⊆ Fm
q such that Colsp(Hi) ⊆

B,∀i ∈ [n− k] and dim(B) = d < m.
2. there exists a base b1, . . . ,bd ∈ Fm

q of B such that
T∗,bi,∗ is of full rank for all i ∈ [d].

The following matrix code

C = {C ∈ Fm×n
q | Tr(T∗,∗,iHjC

⊺) = 0,∀(i, j) ∈ [m]×[n−k]}

is called a generalized LRPC code. Equivalently, let H =

⟨Hi | i ∈ [n− k]⟩Fq
, the code C is the dual of HT given by

HT = ⟨T∗,∗,iHj | (i, j) ∈ [m]× [n− k]⟩Fq .

Note that the right product ·T in general is not necessarily
invertible for all the elements of Fm

q . Hence the second
condition needs to be verified. For the special product ·T
given in Definition 2, which satisfy Proposition 1, the second
condition is trivially satisfied by any base of any subspace B.

Starting from the basis B of Fqm over Fq , we can build a
tensor T such that its associated T -product is a·T b = ϕB(ab).
This specific T yields the classical LRPC codes. Meanwhile,
there are a number of tensors T in Fm×m×m

q which result
in codes inequivalent to the classical LRPC codes. It can
be also shown that, starting from matrices H1, . . . ,Hn−k as
in Definition 6, when two tensors T and U satisfy certain
relation, the resulting generalized LRPC codes H⊥

T and H⊥
U

might be identical or isomorphic.

IV. DECODING OF GENERALIZED LRPC CODES

The decoding algorithm used for classical LRPC codes
can be easily adapted to the generalized version. As in the
case of classical LRPC codes the decoding algorithm will be
probabilistic.

Let C ⊆ Fm×n
q be a generalized LRPC code of

dimension mk. From Definition 6, there exists a code
H = ⟨H1, . . . ,Hn−k⟩Fq

, where Colsp(Hi) ⊆ B =

⟨b1, . . . ,bd⟩Fq ,∀i ∈ [n − k] and a 3-tensor T ∈ Fm×m×m
q

such that (HT )
⊥ = C. Moreover Definition 6 ensures us that

T∗,bi,∗ ∈ Fm×m
q is invertible for all bi.

A. Decoding Procedure

Suppose we receive the message Y = C +E where C ∈ C
and E ∈ Fm×n

q is a matrix of low rank r. We can divide
the decoding process into two steps. In the first step we will
recover the column support of E. In this way we will be able
to write E = FX where F = (f1, . . . , fr) ∈ Fm×r

q such that
Colsp(F ) = Colsp(E) = ⟨f1, . . . , fr⟩Fq and X ∈ Fr×n

q is a
matrix of nr unknowns. In the second step we will solve a
linear system in these nr unknowns.

Step 1. For C ∈ C, from the definition we have that C ·T
Hi = 0,∀i ∈ [n − k]. Therefore Y ·T Hi = (C + E) ·T
Hi = E ·T Hi = si. Each column of E belongs to a subspace
E = ⟨f1, . . . , fr⟩Fq

. Each column hi,j of Hi belongs to B =

⟨b1, . . . ,bd⟩Fq
. We denote by ej the j-th column of E, since

the T -product is bilinear, from Proposition 1 we have

si = E ·T Hi =
∑
j∈[n]

ej ·T hi,j ∈ ⟨E ·T B⟩Fq
,∀i ∈ [n−k] (1)

where dim(⟨E ·T B⟩Fq ) ≤ rd. Letting S = (s1, . . . , sn−k) we
will have Colsp(S) ⊆ ⟨E ·T B⟩Fq

, where the equality holds
with a a good probability if (n− k) ≥ rd.

To recover E = Colsp(E) we can exploit the knowledge of
a base of B over which the T -product is invertible. The space
⟨E ·T B⟩Fq

can be expressed as

⟨E ·T B⟩Fq
= ⟨fi ·T bj⟩Fq

= ⟨fiT∗,bj ,∗ | (i, j) ∈ [r]× [d]⟩Fq
.

Notice that E ⊆ ⟨E ·T B⟩Fq (T∗,bj ,∗)
−1 for all bj . Therefore

we have
E ⊆

⋂
j∈[d]

⟨E ·T B⟩Fq (T∗,bj ,∗)
−1. (2)



With a high probability the equality will hold and we will be
able to recover E .

Step 2 Assuming that the first step was successful, we
obtained f1, . . . , fr which generates E . We can collect them
in a matrix F = (f1, . . . , fr) ∈ Fm×r

q and express the error as
E = FX , where X ∈ Fr×n

q . Consider si = E ·T Hi, from
Definition 4 its j-th component si,j = Tr(T∗,∗,jHiE

⊺) =

Tr(T∗,∗,jHiX
⊺F ⊺). For each si,j we get a linear equation

in the nr variables contained in X . In total we will have
(n − k)m such linear equations in nr variables. It turns out
that these equations are not linearly independent. We can get
at most (n− k)rd linearly independent equations. The space
⟨E ·T B⟩Fq is generated by the rd vectors zk,l = fk ·T bl =

fkT∗,bl,∗ ∈ Fm
q , let Z = {zk,l | (k, l) ∈ [r]× [d]} denote this

set of generators. Each vector si = E ·T Hi ∈ ⟨E ·T B⟩Fq
can

be expanded as

si =

r∑
k=1

d∑
l=1

ηi,k,lzk,l, (3)

where ηi,k,l ∈ Fq are the coordinates of si with respect to the
set of generator Z. Another way to express si is given by

si = E ·T Hi =

n∑
j=1

ej ·T hi,j =

n∑
j=1

ejT∗,hi,j ,∗, (4)

where ej is the j-th column of E and hi,j is the j-th column
of the matrix Hi. We have that ej =

∑r
k=1 xk,jfk and hi,j =∑d

l=1 µi,j,lbl, notice that T∗,hi,j ,∗ =
∑d

l=1 µi,j,lT∗,bl,∗. Sub-
stituting in (4) we obtain

si =

n,r,d∑
j,k,l=1

xk,jµi,j,l(fkT∗,bl,∗) =

n,r,d∑
j,k,l=1

xk,jµi,j,lzk,l. (5)

From (3) and (5) we get the system of (n− k)rd equations
n∑

j=1

xk,jµi,j,l = ηi,k,l, (i, k, l) ∈ [n− k]× [r]× [d]. (6)

Finally, as in the case of classical LRPC codes, we have nr

unknowns and (n − k)rd equations, if n ≤ (n − k)d and at
least nr of the equations in (6) are linearly independent, the
system has a unique solution. If the system (6) has only nr−a

linearly independent equations the algorithm will give a list
of qa possible solutions.

B. Success probability

Similarly to the classical LRPC codes the algorithm for
decoding generalized LRPC codes is not deterministic. In Step
1 we have that Colsp(S) ⊆ ⟨E ·T B⟩Fq

. The space ⟨E ·T B⟩Fq

has dimension upper-bounded by rd. It could happen that,
even if n − k ≥ rd, the space Colsp(S) is strictly contained
in ⟨E ·T B⟩Fq

. Heuristically we can assume that the columns of
S are vectors uniformly sampled from ⟨E ·T B⟩Fq

. Under this
assumption, the probability that a set of size n−k ≥ rd whose

⟨qm, n, k, d, r⟩ Product Space Recovery Error Recovery
⟨224, 24, 5, 4, 3⟩ 99 99

⟨220, 20, 5, 4, 3⟩ 86 85

⟨219, 19, 5, 4, 3⟩ 76 75

⟨217, 24, 5, 4, 3⟩ 100 93

⟨212, 15, 5, 2, 3⟩ 93 83

⟨1313, 15, 5, 2, 4⟩ 100 98

Table 1: Success rate of decoding Generalized LRPC codes

elements are extracted uniformly form a space ⟨E ·T B⟩Fq
of

dimension rd spans the whole space ⟨E ·T B⟩Fq is given by
[16]

P (Colsp(S) = ⟨E ·T B⟩Fq
) = 1− qrd−(n−k).

Notice that, in the case dim(⟨E ·T B⟩Fq
) = s < rd, this

probability improves to 1 − qs−(n−k). The assumption that
dim(⟨E ·T B⟩Fq ) = rd is a worst case scenario.

Similarly to the classical LRPC codes, the second reason of
failure in Step 1 is given by the probability that the intersec-
tion of ⟨E ·TB⟩Fq (T∗,bi,∗)

−1 is not equal to E . This probability
can be approximated by the probability that d subspaces
R1, . . . ,Rd ⊆ Fm

q of dimension rd, each containing the same
subspace E of dimension r, intersect in something bigger than
E . Assuming R1, . . . ,Rd are independently randomly chosen,
the probability of their intersection to be bigger than E is
given by q−(d−1)(m−rd−r) [6]. Considering these two possible
reasons of failure, the success probability for Step 1 will be
lower bounded by 1−(qrd−(n−k)+q−(d−1)(m−rd−r)). Notice
that, in the case E ⊊

⋂
i∈[d]⟨E ·T B⟩Fq (T∗,bi,∗)

−1, it could
still be possible to correct uniquely the error in some cases.
Suppose r < r′ = dim(

⋂
i∈[d]⟨E ·T B⟩Fq

(T∗,bi,∗)
−1, the linear

system in Step 2 will have nr′ unknowns and (n − k)rd

equations. If nr′ ≤ (n − k)rd it will be still possible to
uniquely recover the correct error.

We run a test in Magma for 100 randomized trials for
different sets of parameters, the success rate for each set of
parameters are listed in Table 1. The numerical results in Table
1 appear to be in line with our heuristic analysis.

V. CONCLUSION

In this work we extend the important class of LRPC codes
which have been used in different cryptographic schemes in
recent years. Thanks to the bilinear product defined based on
a 3-tensor over Fq , the proposed Fq-linear matrix codes allow
for efficient decoding, which opens for potential applications
of the codes. In addition, starting from the same set of matrices
H1, . . . Hn−k having all of their columns in a small subspace,
it is possible to define many different codes depending on the
choice of the tensor T . It is also interesting to investigate the
relation between the codes defined by different tensors.



REFERENCES

[1] E. Gabidulin, Rank Codes. TUM.University Press, 2021. [Online].
Available: https://mediatum.ub.tum.de/doc/1601193/1601193.pdf

[2] H. Bartz, L. Holzbaur, H. Liu, S. Puchinger, J. Renner, and
A. Wachter-Zeh, “Rank-metric codes and their applications,” 2022.
[Online]. Available: https://arxiv.org/abs/2203.12384

[3] R. Koetter and F. R. Kschischang, “Coding for errors and erasures in
random network coding,” IEEE Transactions on Information Theory,
vol. 54, no. 8, pp. 3579–3591, 2008.

[4] E. M. Gabidulin, A. V. Paramonov, and O. V. Tretjakov, “Ideals over a
non-commutative ring and their application in cryptology,” in Advances
in Cryptology – EUROCRYPT’91, D. W. Davies, Ed. Springer, 1991,
pp. 482–489.

[5] P. Gaborit, O. Ruatta, J. Schrek, and G. Zémor, “Ranksign: an efficient
signature algorithm based on the rank metric,” in Post-Quantum Cryp-
tography, M. Mosca, Ed. Springer International Publishing, 2014, pp.
88–107.

[6] C. A. Melchor, N. Aragon, M. Bardet, S. Bettaieb, L. Bidoux, O. Blazy,
J.-C. Deneuville, P. Gaborit, A. Hauteville, A. Otmani, O. Ruatta, J.-P.
Tillich, and G. Zémor, “ROLLO (merger of Rank-Ouroboros, LAKE
and LOCKER),” in Second round submission to the NIST post-quantum
cryptography call, April, 2020.

[7] N. Aragon, O. Blazy, P. Gaborit, A. Hauteville, and G. Zémor, Duran-
dal: A Rank Metric Based Signature Scheme. Springer, 04 2019, pp.
728–758.

[8] N. T. Courtois, “Efficient zero-knowledge authentication based on a
linear algebra problem minrank,” 2001, https://eprint.iacr.org/2001/058.
[Online]. Available: https://eprint.iacr.org/2001/058

[9] P. Gaborit and G. Zémor, “On the hardness of the decoding and the
minimum distance problems for rank codes,” IEEE Transactions on
Information Theory, vol. 62, no. 12, pp. 7245–7252, 2016.

[10] P. Gaborit, A. Hauteville, D. H. Phan, and J.-P. Tillich, “Identity-based
encryption from codes with rank metric,” in Advances in Cryptology –
CRYPTO 2017, J. Katz and H. Shacham, Eds. Springer International
Publishing, 2017, pp. 194–224.

[11] R. Overbeck, “Structural attacks for public key cryptosystems based on
gabidulin codes,” Journal of Cryptology, vol. 21, pp. 280–301, 04 2008.

[12] A. V. Ourivski and T. Johansson, “New technique for decoding codes in
the rank metric and its cryptography applications,” Probl. Inf. Transm.,
vol. 38, no. 3, pp. 237–246, 2002.

[13] M. Bardet, P. Briaud, M. Bros, P. Gaborit, V. Neiger, O. Ruatta, and J.-P.
Tillich, “An algebraic attack on rank metric code-based cryptosystems,”
10 2019.

[14] M. Bardet, M. Bros, D. Cabarcas, P. Gaborit, R. Perlner, D. Smith-
Tone, J.-P. Tillich, and J. Verbel, “Algebraic attacks for solving the rank
decoding and minrank problems without gröbner basis,” arXiv preprint
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