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ABSTRACT

Spring consecutive rainfall events (CREs) are key triggers of geological hazards in the Three Gorges Reservoir area
(TGR), China. However, previous projections of CREs based on the direct outputs of global climate models (GCMs) are
subject  to  considerable  uncertainties,  largely  caused  by  their  coarse  resolution.  This  study  applies  a  triple-nested  WRF
(Weather  Research  and  Forecasting)  model  dynamical  downscaling,  driven  by  a  GCM,  MIROC6  (Model  for
Interdisciplinary Research on Climate, version 6), to improve the historical simulation and reduce the uncertainties in the
future  projection  of  CREs  in  the  TGR.  Results  indicate  that  WRF  has  better  performances  in  reproducing  the  observed
rainfall in terms of the daily probability distribution, monthly evolution and duration of rainfall events, demonstrating the
ability of WRF in simulating CREs. Thus, the triple-nested WRF is applied to project the future changes of CREs under the
middle-of-the-road and fossil-fueled development scenarios. It is indicated that light and moderate rainfall and the duration
of  continuous  rainfall  spells  will  decrease  in  the  TGR,  leading  to  a  decrease  in  the  frequency  of  CREs.  Meanwhile,  the
duration, rainfall amount, and intensity of CREs is projected to regional increase in the central-west TGR. These results are
inconsistent with the raw projection of MIROC6. Observational diagnosis implies that CREs are mainly contributed by the
vertical  moisture  advection.  Such  a  synoptic  contribution  is  captured  well  by  WRF,  which  is  not  the  case  in  MIROC6,
indicating larger uncertainties in the CREs projected by MIROC6.
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Article Highlights:

•   Triple-nested  WRF  downscaling  can  improve  spring  simulation  of  consecutive  rainfall  events  (CREs)  in  the  Three
Gorges Reservoir area (TGR).
•  WRF projects decreased frequency of CREs in the TGR but increases in their duration, intensity and rainfall amount in
the central-west TGR.
•   The  future  decreased  frequency  of  CREs  is  attributed  to  the  weakened  upward  motion  and  the  decreased  relative
humidity over the TGR.

 

 
 

 

1.    Introduction

The Three Gorges Reservoir area (TGR) is a mountain-
ous and highly populated region located in the middle of the

 

  
※ This paper is a contribution to the special topic on Ocean, Sea

Ice and Northern Hemisphere Climate: In Remembrance of Profes-
sor Yongqi GAO’s Key Contributions.

* Corresponding authors: Shuanglin LI, Noel KEENLYSIDE
Emails: shuanglin.li@mail.iap.ac.cn, noel.keenlyside@uib.no 

 

ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 41, AUGUST 2024, 1539–1558
 
• Original Paper •

 

© The Authors [2024]. This article is published with open access at link.springer.com.
  

https://doi.org/10.1007/s00376-023-3118-2
https://doi.org/10.1007/s00376-023-3118-2
https://doi.org/10.1007/s00376-023-3118-2
https://doi.org/10.1007/s00376-023-3118-2
https://doi.org/10.1007/s00376-023-3118-2
https://doi.org/10.1007/s00376-023-3118-2
https://doi.org/10.1007/s00376-023-3118-2


Yangtze River basin, central China (Fig. 1a). It often suffers
from  geological  hazards  such  as  collapses  and  landslides,
which  block  the  rivers  running  to  the  reservoir,  reduce  the
effective storage of the reservoir and result in huge damages
to properties and lives. Consecutive rainfall events (CREs),
during which it  rains  for  one week and even longer  with a
moderate intensity, are powerful triggers for such geological
hazards  (Corominas  and Moya,  1999; Jibson,  2006; Zheng
et al.,  2020).  Therefore,  a  credible  projection  of  the  future
change in CREs is of vital importance in evaluating and miti-
gating the impacts of geological hazards in the TGR.

Rainfall  features  will  change  in  their  frequency,  dura-
tion, and intensity in a warmer climate. Of particular impor-
tance  is  the  regionalization  and  intensification  of  rainfall.
An example of this is the increased trends in rainfall amount
and intensity observed in East and Northwest China and the

decreased  trends  in  the  banded  southwest–northeast-orien-
tated region (Zhai et al.,  2005; Zhou et al.,  2016). This can
lead to changes in CREs to some extent. Zheng et al. (2020)
analysed  the  future  trend  of  CREs  in  the  TGR  using  the
global climate model (GCM) outputs of phase 5 of the Cou-
pled Model Intercomparison Project (CMIP5) and found a sig-
nificant increase in the occurrence and intensity of CREs in
spring  under  different  greenhouse  gas  emission  scenarios.
However,  the  projection  is  still  fraught  with  uncertainties:
18 out of the 20 CMIP5 models overestimated the occurrence
frequency of CREs with a mean bias of 60.8%; and models
differ significantly in terms of the trend and spatial distribu-
tion of CREs (Zheng et al., 2020).

One of  the  major  sources  of  these uncertainties  comes
from the structural differences among GCMs. Since different
GCMs  utilize  different  parameterizations  and  schemes  to
account for processes that cannot be resolved by the GCMs’
coarse grids, they often yield significant differences in their
rainfall  simulations  (Chen  et al.,  2020; Sun  and  Liang,
2020; Rastogi et al., 2022). Compared to its predecessor, the
GCMs of CMIP6 have not exhibited substantial improvement
in the simulation of rainfall at the regional scale. For exam-
ple,  the  uncertainty  range  is  not  narrowed,  and  systematic
biases  like  the  overestimated  rainfall  frequency  are  not
reduced (Jiang et al., 2020; Xin et al., 2020). As a result, uti-
lizing CMIP6 to project CREs may not provide a meaningful
improvement,  especially  in  topographically  complex  loca-
tions  like  the  TGR.  Adopting  a  dynamical  downscaling
approach based on regional climate models (RCMs) may over-
come some of these limitations to improve the projection of
CREs.

The dynamical  downscaling by RCMs can show more
realistic climatological rainfall in specified regions compared
with  GCMs,  because  it  can  compensate  for  the  errors
related to the coarse grids in GCMs. RCM downscaling has
been widely applied to simulate past and future regional cli-
mate. The higher resolution leads to a better representation
of  finer-scale  microphysical  and  resolved  convective  pro-
cesses,  as  well  as  the  effects  of  topography  and  land  sur-
face.  For  example, Yu  et al. (2015)  and Bao  et al. (2015)
found that RCM downscaling can eliminate artificial rainfall
maxima and correct overestimations of rainfall amount simu-
lated by GCMs. The deficiencies in the annual cycle and fre-
quency of rainfall in GCMs are also reduced well by RCMs
(Huang  and  Gao,  2018; Liang  et al.,  2019; Gao,  2020;
Wang et al., 2021b). Additionally, the multi-model ensemble
mean based on the Coordinated Regional Climate Downscal-
ing Experiment has been shown to provide more specific fea-
tures  and  less  uncertainties  in  future  rainfall  in  China  (Gu
et al., 2018; Li et al., 2018).

RCM  downscaling  can  correct  for  many  errors  in
GCMs,  but  it  is  not  a  panacea.  The downscaling of  RCMs
does not imply a more realistic simulation if there are large
uncertainties  in  the  boundary  conditions  of  the  driving
GCMs (Sato  and  Xue,  2013; Wang and  Kotamarthi,  2015;
Rastogi et al., 2022). On the other hand, a realistic simulation
of the present climate is a necessary but insufficient test of
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Fig.  1. (a)  Topography  of  the  TGR.  The  south  and  north
sections  are  the  Wuling  Mountains  and  the  Daba  Mountains,
and the east and west sections are Jianghan Plain and Sichuan
Basin. The red dot upstream is Chongqing City, and the purple
dot  downstream is  the  Great  Dam.  (b)  The  three  domains  for
WRF’s  downscaling:  the  outermost  domain  has  a  horizontal
resolution of 36 km (Domain1; black box); the middle domain
has a horizontal resolution of 12 km (Domain2; red box); and
the  innermost  domain  has  a  horizontal  resolution  of  4  km
(Domain3; yellow box).
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the accuracy of future climate changes shown by RCM down-
scaling, since the relation between the accuracy of a present-
day  simulation  and  future  projection  is  not  guaranteed
(Racherla  et al.,  2012; Singh  et al.,  2017; Potter  et al.,
2020). To address these two issues and to provide credibility
in downscaling results requires careful selection of realistic
driving models and identification of robust physical mecha-
nisms underlying the projected changes (Hall, 2014; Rastogi
et al.,  2022).  Additionally,  simulation  discrepancies
between the  driving model  and the  downscaling model  are
prevalent in the projected climate change. For example, Bao
et al. (2015) found that WRF downscaling exhibited an oppo-
site change in the heavy rainfall amount and intensity in the
Yangtze  River  basin  to  that  of  the  model  used  to  drive  it
(GFDL-ESM2G); Ji and Kang (2013) showed that the rainfall
rates  were  different  between  BCC_CSM1.1  and  RegCM4
downscaling  over  the  Tibetan  Plateau; Bartók  et al. (2017)
showed  a  significant  decline  in  cloudiness  for  Europe  in
future based on GCMs, while corresponding regional down-
scaling experiments showed no significant changes. These dis-
crepancies are issues that need to be focused on in downscal-
ing simulation.

Generally,  the  horizontal  grid  spacing  of  single-nest
RCMs  is  30–60  km,  which  is  largely  determined  by  the
GCM’s resolution (Gao et al., 2011; Im et al., 2015). How-
ever,  such  a  resolution  does  not  perform  well  in  the  TGR
where there is complex terrain and a prominent drop in eleva-
tion  (Strong  et al.,  2017; Wang  et al.,  2017; Huang  et al.,
2020a; Fu et al., 2023). Downscaling simulation based on a
single nest exhibits visible biases in the probability distribu-
tion of daily rainfall and fails to reproduce the spatial pattern
of  extreme  rainfall  in  mountainous  areas  of  central  China
(Bao et al., 2015; Yu et al., 2015). Thus, a much finer resolu-
tion is required, which can be obtained by the multi-nested
technique.  A double-nested RCM downscaling in  the  TGR
revealed  that  the  inner  domain  produced  rainfall  patterns
that  the  parent  domain  failed  to  capture  (Wu  et al.,  2012).
Using  WRF  (Weather  Research  and  Forecasting)  model
triple-nested  downscaling, Li  et al. (2019b)  found  that  the
inner domain exhibited a visible improvement in rainfall dis-
tribution  and  related  atmospheric  circulation  compared  to
the parent domain.

In  the  present  study,  we  utilized  a  WRF  triple-nested
dynamical  downscaling  strategy  to  project  future  CRE
changes over the TGR. To cope with the subsequent flooding
of the monsoon season, reservoir discharge in spring is neces-
sary.  As  the  water  level  drops,  the  force  exerted  by  the
water  on  the  mountain  slope  changes  and  seepage  at  the
slope’s  base  increases.  If  a  prolonged rainfall  event  occurs
at  this  time,  the  slope  is  prone  to  deformation  and  can
develop into a landslide. Thus, spring is the peak season for
CRE-induced geological hazards in the TGR, and the focus
of this study.

The remainder of this paper is organized as follows: sec-
tion 2 describes the data, models, methods and the definition
of CREs; section 3 comprehensively validates WRF’s perfor-
mance in reproducing rainfall and CREs in historical experi-

ments, gives future projections under Shared Socioeconomic
Pathway (SSP)  scenarios,  and  assesses  the  reasonability  of
the  projections;  and  finally,  a  summary  and  discussion  are
given in section 4. 

2.    Data,  models,  methods,  and  the  definition
of CREs

 

2.1.    Observational data

To  assess  the  model  performance  in  simulating  the
observed  rainfall,  a  daily  gridded  gauge  precipitation
dataset,  CN05.1,  with  a  resolution  of  0.25°  ×  0.25°,  is
employed  (Wu  and  Gao,  2013; Wu  et al.,  2017).  CN05.1
was  produced  based  on  2400  observation  stations  across
China and has been widely used (Sui et al., 2015). Consider-
ing the lack of hourly rainfall measurements in CN05.1, we
use  the  China  Meteorological  Forcing  Dataset  (CMFD)  to
evaluate the diurnal cycle. CMFD was derived from a combi-
nation of station data, reanalysis datasets and remote sensing
products,  and  has  a  3-h  temporal  resolution  and  a  0.1°  ×
0.1° spatial resolution (He et al., 2020). Due to its continuous
temporal  coverage and consistent  quality,  CMFD is  one of
the most widely used climate datasets for China (Peng et al.,
2022; Wang et al., 2022). In addition, the fifth major global
reanalysis  produced  by  ECMWF  (ERA5)  is  utilized  to
assess  the  simulation  of  atmospheric  circulation  (Hersbach
et al., 2020). 

2.2.    Models and experimental design
 

2.2.1.    Models

In this study, the RCM used is WRF version 4.0, which
was  developed  at  the  National  Center  for  Atmospheric
Research. It is a mesoscale numerical model consisting of a
numerical solver of the fully compressible Eulerian and non-
hydrostatic  equations  (Skamarock  et al.,  2019).  WRF  has
been  widely  used  in  regional  climate  studies  over  China,
and the results prove it can reproduce the main features of cli-
mate and extremes well.  Moreover,  the performance of the
interannual  variation  provided  by  WRF is  obviously  better
compared to its driving data (Sato and Xue, 2013; Yu et al.,
2015).

Although the biases in GCMs can be mitigated to some
extent through the downscaling process, they still potentially
impact the downscaling results. Thus, regional downscaling
is best driven by GCMs that reasonably simulate the region’
s climate. Considering WRF is driven by the GCM’s prognos-
tic  variables  that  are  related  to  rainfall  but  not  by  rainfall
itself, a realistic simulation of rainfall by WRF is dependent
on  the  accuracy  of  these  prognostic  boundary  conditions
(Sato and Xue, 2013; Rastogi et al.,  2022).  Hence, we first
employ 10 GCMs (at the time, the only 10 models providing
6-h  temporal-resolution  output)  and  evaluate  the  simulated
spring low-level winds (850 and 925 hPa), which are highly
correlated with spring rainfall in China (Wu et al., 2012; Li
et al.,  2019b).  The  overall  performance  of  each  model  can
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be judged using a comprehensive rating index (MR), which
provides  a  statistical  summary  between  simulations  and
ERA5, in terms of their spatial correlation coefficient, root-
mean-square  difference,  and  standard  deviation  difference.
The details  of  MR can be  found at  Li  et al.  (2016a).  From
Table 1, MIROC6 (0.59) exhibits the best MR performance
among  all  10  models,  followed  by  NorESM2-MM  (0.57)
and then GFDL-ESM4 (0.56).  In  pervious  works  (Kataoka
et al., 2020; Tian et al., 2021), MIROC6 performed better in
reproducing the seasonal progression of the East Asian mon-
soon,  which  is  consistent  with  our  results.  Therefore,
MIROC6 is used for the boundary and initial conditions of
WRF.  MIROC6  is  composed  of  three  sub-models:  atmo-
sphere,  sea  ice–ocean  and  land.  The  atmosphere  model  is
based on the Center for Climate System Research, University
of  Tokyo/National  Institute  for  Environmental  Studies
(Numaguti  et al.,  1997)  atmospheric  general  circulation
model; the sea ice–ocean model is based on the Center for Cli-
mate  System Research  Ocean  Component  model  (Hasumi,
2006); and the land surface model is based on the Minimal
Advanced  Treatments  of  Surface  Interaction  and  Runoff
model (Takata et al., 2003). The atmospheric component of
MIROC6 has a horizontal resolution of 1.4° × 1.4° (Tatebe
et al., 2019).

To  further  illustrate  the  accuracy  of  the  driving
MIROC6, we provide a basic comparison between the obser-
vations and MIROC6 (Fig. 2). In general, the spring rainfall
climatology of MIROC6 matches that of CN05.1 with a corre-
lation  of  0.64.  Additionally,  MIROC6  can  capture  the
strength and pattern of the winds well, with a correlation coef-
ficient  of  0.74  at  925  hPa  and  0.84  at  850  hPa  between
ERA5  and  MIROC6.  The  strength  and  pattern  of  water
vapor flux in MIROC6 are consistent  with those in ERA5,
with a pattern correlation coefficient of 0.88. Generally, the
spring  rainfall  and  associated  atmospheric  conditions  in
MIROC6  are  consistent  with  those  in  observations,  which
lay the  basis  for  achieving a  reliable  rainfall  simulation by
using MIROC6 to drive WRF. 

2.2.2.    Experimental design

A triple-nested downscaling simulation based on WRF
is applied in the present study. Figure 1b shows the boundary

and  model  topography  of  each  domain.  The  outermost-
domain  (Domain1)  grid  is  centered  at  (29°N,  110°E)  and
has 36 km horizontal grid spacing (with 91 × 91 horizontal
grid  points).  To  ensure  smooth  solutions,  Domain1  grid
cells of WRF closer than five cells from an outer boundary
are  relaxed  towards  MIROC6.  The  innermost-domain
(Domain3) grid has 4 km grid spacing (with 127 × 166 hori-
zontal  grid  points).  Regarding  the  vertical  coordinates,  we
configured  33 terrain-following eta  levels  from the  surface
to 50 hPa in each domain.  The initial  and lateral  boundary
conditions for Domain1 are derived from the historical simula-
tion  and  future  projection  of  MIROC6  at  6-h  intervals  for
meridional–zonal  wind,  specific  humidity,  air  temperature,
calculated geopotential height, 2-m air temperature, skin tem-
perature,  surface  pressure  and  sea  level  pressure.  Besides,
daily sea surface temperature, monthly soil moisture and tem-
perature are also provided by MIROC6.

For WRF downscaling, we use the following configura-
tion: the New Thompson microphysics scheme (Thompson
et al.,  2008);  the  Kain–Fritsch  convection  scheme  (Kain,
2004); the Noah Land Surface Model (Niu et al., 2011); the
Rapid  Radiative  Transfer  Model  longwave  radiation
scheme;  the  Dudhia  shortwave  radiation  scheme  (Dudhia,
1989);  and  the  Yonsei  University  boundary  layer  scheme
(Hong et al., 2006). Among them, the microphysics scheme
constitutes  a  key  configuration  in  rainfall  modelling.  The
New  Thompson  microphysics  scheme  includes  ice,  snow,
graupel,  and  their  associated  processes,  which  performs
well in high-resolution rainfall simulations over the complex
terrain of East Asia (Strong et al., 2017; Tiwari et al., 2018;
Huang et al., 2020b). Considering the spatial resolutions are
sufficiently  high for  the  non-hydrostatic  dynamical  core  of
the  model  to  partially  resolve  sub-mesoscale  convective
motions (Li et al., 2019a), we therefore negate the convection
parameterization of Domain3.

To save computational resource, two time-slice integra-
tions are used to represent the typical present and future cli-
mate. Here, we use the end of the 21st century as a typical
future climate to emphasize the signals of change in precipita-
tion due to warming (Feng et al., 2011). The two integrations
cover  the  period  from  24/25  February  to  1  June  during
1995–2014 and 2075–2094 (last  20 years  of  available  SSP
output of MIROC6), respectively. The first five days (24/25
February to 28/29 February) is considered as a spin-up and
is therefore not included in the subsequent analysis. The pro-
jection  outputs  of  MIROC6  forced  with  the  SSP2-4.5  and
SSP5-8.5  scenarios  are  employed.  SSP2-4.5  is  a  combined
scenario of a medium energy-intensive, socioeconomic devel-
opmental  path  with  a  rising  radiative  forcing  peaking  at
4.5 W m−2 in 2100. It is comparable to several planned emis-
sion  pathways  required  by  the  mitigation  policies  of  the
Paris climate agreement, and is therefore considered a more
preferable  scenario  compared  with  other  SSP  scenarios
(O'Neill  et al.,  2016).  SSP5-8.5 represents a combined sce-
nario of a high energy-intensive, socioeconomic developmen-
tal  pathway  with  strong  radiative  forcing,  which  peaks  at
8.5 W m−2 by 2100. Although SSP5-8.5 is the highest emis-

 

Table  1. The 10 CMIP6 models  used in  this  study and their  MR
scores.

Model ID MR Rank

ACCESS-CM2 0.51 4
CMCC-CM2-SR5 0.43 7

CMCC-ESM2 0.41 8
GFDL-CM4 0.47 6
GFDL-ESM4 0.56 3

IPSL-CM6A-LR 0.21 10
MIROC6 0.59 1

MPI-ESM1-2-HR 0.28 9
MRI-ESM2-0 0.49 5

NorESM2-MM 0.57 2
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sion scenario available in CMIP6, it still assumes emissions
well  below what  the  current  energy  mix  would  produce  in
the future (Birkinshaw et al., 2017). Based on the SSP5-8.5
scenario, we can discuss the rainfall changes under extreme
warming conditions (Wang and Kotamarthi, 2015).

A non-parametric bootstrapping approach is used to esti-
mate confidence intervals based on the following procedure.
First,  500  non-parametric  bootstrap  samples  are  generated

based  on  time  series  obtained  by  resampling  of  time  steps
from  the  original  20-year  dataset  of  regional  averages.
Then,  quantiles  are  applied  to  the  500  estimates  of  change
to obtain 90% confidence intervals (Shao et al., 2012; Hailege-
orgis et al., 2013).
 

2.3.    Analysis methods

To  understand  the  differences  in  changes  in  CREs

 

( ( (

( ( (

( ( (

( ( (

333

 

Fig.  2. The spatial  distribution of  spring (a–c)  total  rainfall  amount  (units:  mm),  (d–f)  925-hPa wind speed (units:
m s−1), (g–i) 850-hPa wind speed (units: m s−1), and (j–l) water vapor flux in the whole layer below 200 hPa [arrows;
units: kg (m−1 s−1)] and its divergence [shaded; units: 10−5 kg (m−2 s−1)] in 1995–2014 from observations, MIROC6
and WRF.
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between WRF and MIROC6, we employ a moisture budget
analysis  (Chou  et al.,  2013; Ma  et al.,  2015b; Li  et al.,
2020). The moisture budget equation is 

P = −∂t ⟨q⟩−∇ · ⟨qV⟩+E+δ , (1)

V

⟨ ⟩
−∂t ⟨q⟩

−∇ · ⟨qV⟩

where P is  precipitation;  is  wind  vector; q is  specific
humidity; E is  evaporation,  which  is  calculated  from  the
latent  heat  fluxes; δ is  a  residual  term  including  transient
eddies, contributions from model interpolation bias, and sur-
face  processes;  represents  a  vertical  mass  integration
through the troposphere (below 200 hPa);  is the time
derivative  of q,  which  implies  the  change  in  local  water
vapor storage; and  is the convergence of integrated
moisture  flux.  This  can  further  be  divided  into  two  terms
according  to  the  mass  conservation  equation:  a  horizontal
moisture  advection  term  and  a  vertical  moisture  advection
term. Therefore, Eq. (1) can be reformulated as 

P = −∂t ⟨q⟩− ⟨Vh · ∇hq⟩−
⟨
ω∂pq

⟩
+E+δ . (2)

To  understand  the  mechanisms  responsible  for  the
trend  of  change,  according  to  Eq.  (2),  the  precipitation
changes can be decomposed into 

P′ = −∂t ⟨q⟩ ′−⟨Vh · ∇hq⟩ ′−
⟨
ω∂pq

⟩′
+E′+δ′ . (3)

′

−
⟨
ω∂pq

⟩′Here, the prime symbol  represents the departure from the
historical simulation. In Eq. (3), the changes of vertical mois-

ture advection  can be further divided as follows:
 

−
⟨
ω∂pq

⟩′
= −
⟨−
ω ∂pq

′
⟩
−
⟨
ω′∂p

−
q
⟩
−
⟨
ω′∂pq

′⟩
, (4)

−
ω

ω

ω

ω

where  denotes  the  climatology  in  the  historical  simula-
tion. The first term on the right-hand side of Eq. (4) denotes
the changes in q with  unchanged, commonly called the ther-
modynamic  component  of  the  vertical  moisture  advection
term, contributed by the changes in water vapor; the second
term  denotes  the  changes  in  with q remaining  constant,
associated  with  changes  in  vertical  velocity,  which  is
induced  by  atmospheric  circulation  changes,  and  often
called the dynamic component; the third term is a nonlinear
term  that  is  induced  by  changes  in q and ,  and  is  much
smaller  than  the  other  terms  and  can  be  ignored  (Seager
et al., 2010; Li et al., 2020). Therefore, Eq. (3) can be written
as 

P′ = −∂t ⟨q⟩ ′−⟨Vh · ∇hq⟩ ′−
⟨−
ω ∂pq

′
⟩
−
⟨
ω′∂p

−
q
⟩
+E′+δ′ .

(5)

To analyse the effect of synoptic processes on precipita-
tion,  each  term  of  the  moisture  budget  is  calculated  using
the daily mean data. 

2.4.    Definition of CREs

When  the  accumulated  rainfall  amount  of  one  day  is
equal  to  or  more  than  1.0  mm  within  24  h,  the  day  is

defined as one rainy day. A CRE is set to begin if any of the
consecutive  conditions  occur,  as  described  in Zheng  et al.
(2020). To quantify the CREs, we use four indices related to
geological disasters: the occurrence frequency (OCF), rainy
days  (TRD),  rainfall  amount  (ACR),  and  rainfall  intensity
(INT) (Corominas and Moya, 1999). The OCF describes the
frequency of CREs, while the TRD and ACR are the sum of
CRE rainy days  and accumulated rainfall  amounts,  respec-
tively. INT describes the mean daily rainfall intensity during
CREs, which is not independent of ACR and TRD but equal
to ACR divided by TRD (Zheng et al., 2020).
 

3.    Results
 

3.1.    Validation of WRF dynamical downscaling
 

3.1.1.    Large-scale circulation

To illustrate  the  skill  of  WRF in  downscaling  rainfall,
we first compare WRF’s results for Domain1 with observa-
tions during 1995–2014. CN05.1 shows a spring rainfall cli-
matology that decreases from southeast coastal areas to the
northwest  (Fig.  2a).  WRF reproduces  the  spatial  pattern  of
rainfall well (Fig. 2c). The location of the rainfall maximum
in WRF is consistent with observation, indicating that WRF
tends to correct the northward bias of the rainfall maximum
in MIROC6. For example, the spatial correlation coefficient
of rainfall in Domain1 between observation and WRF down-
scaling (MIROC6) is 0.81 (0.64). Additionally, compared to
MIROC6, the root-mean-square error in WRF downscaling
is reduced by 19%.

To understand the better performance of WRF, we further
evaluate  the  simulated  spring  low-level  wind  and  water
vapor  (Wu et al.,  2012; Li  et al.,  2019b).  In  general,  WRF
reproduces the spatial distribution of level-wind throughout
East China, especially the wind vectors (Figs. 2f and i). This
can be attributed to the realistic boundary conditions provided
by  MIROC6.  Besides,  the  regional  wind  features  in  WRF
around  the  TGR  are  improved  substantially.  For  example,
the enhancement and the deflection of winds on the northwest
side  of  the  TGR  are  reproduced  well  by  WRF,  while
MIROC6  cannot  successfully  simulate  the  regional  low-
level winds surrounding the TGR (Figs. 2e vs 2d; 2h vs 2g).
Additionally, the strength and pattern of water vapor flux in
WRF downscaling are consistent with those in ERA5, with
a  pattern  correlation  coefficient  of  0.90.  WRF  exhibits  a
more  realistic  distribution  of  divergence  than  MIROC6
(Fig.  2l).  Specifically,  in  ERA5,  the  northern  boundary  of
the  water  vapor  convergence  zone  in  Southeast  China  is
located at 32°N. In MIROC6, it is located at 36°N, consistent
with the model’s northward bias of the rainfall centre. WRF
corrects the northern boundary of water vapor convergence
to about 32°N.
 

3.1.2.    Rainfall in the TGR

Figure 3a shows the monthly evolution of rainfall from
observations  and  simulations  in  the  TGR  (Domain3).  The
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two  observations  indicate  that  the  monthly  rainfall  amount
increases  during  spring.  WRF  captures  the  monthly
increases  of  rainfall,  but  has  a  similar  positive  bias  in  all
three months. However, WRF clearly reduces the overestima-
tion of rainfall in MIROC6 in March and April. The bias of
the spring seasonal mean rainfall in WRF is 20.9% relative
to CN05.1, while it is 39.8% in MIROC6.

Figure  3b compares  the  probability  distribution  of  the
daily  rainfall  amount  from  observations  and  simulations.
For  this  analysis,  data  from  all  grid  cells  are  considered.
The two observations show that the probability of the daily
rainfall  amount  decreases  as  the  daily  rainfall  amount
increases. WRF exhibits a better agreement with the observa-
tions, generally with less difference than MIROC6 from obser-
vations.  MIROC6  underestimates  the  frequency  of  very
light rainfall but overestimates the frequency of the other rain-
fall  bins,  which  is  a  common  bias  in  GCMs  (Watanabe
et al., 2010; Tian et al., 2021; Zheng et al., 2022). For rainfall
less than 1.0 mm d−1, the probability is 59.6% and 57.6% in
CN05.1  and  CMFD  respectively,  but  only  45.8%  in
MIROC6. WRF corrects the MIROC6 bias and simulates a
probability  of  61.8%,  which  is  much  more  consistent  with
observations. For rainfall between 1.0 and 30.0 mm d−1, the
bias  ratio  of  WRF  is  about −9.6%  relative  to  CN05.1,
whereas for MIROC6 it is about 33.3%. MIROC6 and WRF
both  overestimate  the  probability  of  daily  rainfall  being
greater than 30.0 mm d−1. MIROC6 overestimates the proba-
bility by 59.4% relative to CN05.1, while WRF overestimates
it  by  92.6%.  There  are  several  reasons  to  believe  that  the

higher  probability  of  daily  rainfall  exceeding  30.0  mm d−1

simulated by WRF is realistic. First, being a high-resolution
model,  WRF  can  better  resolve  the  mesoscale  topography
and convective rainfall process, which coarse-resolution mod-
els  tend  to  smooth  out  (Heikkilä  et al.,  2011; Yu  et al.,
2015). Second, the interpolation of station data to form the
observational gridded dataset causes underestimation in the
frequency  of  extremes  compared  to  the  original  station
gauges.  And  third,  the  locations  of  gauges  in  the  TGR are
mostly in valleys and lowland areas, implying a lack rainfall
measurements  on  hilltops  or  mountain  slopes  (Argüeso
et al.,  2013).  These  reasons  can  explain  why  WRF  has  a
higher  frequency  of  heavy  rainfall  than  observations  or
MIROC6.

Figure 3c gives the diurnal cycle of rainfall in the TGR.
CMFD exhibits  a  peak during overnight  hours  (0500 LST;
LST=UTC+8  hours)  and  a  trough  during  afternoon/early
evening hours (1700–2000 LST). WRF is in good agreement
with observation in terms of  the peak and trough hours,  as
well  as  giving  similar  hour-by-hour  rainfall  amounts.  In
MIROC6, meanwhile,  the simulated trough has a 1–2-hour
lag compared to CMFD, and the hourly rainfall is clearly over-
estimated. The bias of the rainfall magnitude in MIROC6 is
about two times that in WRF.

Reproducing CREs requires models that can capture the
duration of continuous rainfall spells. Figure 3d gives the fre-
quency  of  rainfall  events  of  different  duration.  For  rainfall
events  lasting  2–4  days,  the  frequencies  in  WRF  and
MIROC6 are similar to that observed, occurring about eight
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Fig. 3. (a) The monthly evolution (units: mm), (b) the daily probability distribution (%), (c) the diurnal cycle (units:
mm h−1),  and  (d)  the  frequency  of  different  durations  of  spring  rainfall.  The  results  are  for  the  period  1995–2014
from observations and model simulations over the TGR.

AUGUST 2024 ZHENG ET AL. 1545

 

  



times per spring. For rainfall events lasting 5–7 days, the fre-
quency in CN05.1 and CMFD is  1.06 and 1.34 per  spring,
respectively. In WRF, it is 1.30 per spring, which is consistent
with  CMFD.  In  contrast,  MIROC6  overestimates  the  fre-
quency as 2.01 per spring. An observed occurrence of a dura-
tion more than 8 days is rare, with 0.25 and 0.26 per spring
in CN05.1 and CMFD, respectively, and 0.31 per spring in
WRF. Meanwhile, MIROC6 shows a visible overestimation
of 0.85 per spring.

Figure 4 shows the spatial distribution of rainfall features
averaged  in  1995–2014  from  observations,  WRF  and
MIROC6. For the total rainfall amount (Figs. 4a–d), observa-
tions show a peak over the southeast TGR, decreasing north-
westward. WRF downscaling successfully reproduces the rain-
fall  pattern,  decreasing  from  southeast  to  northwest,  but  it
overestimates rainfall over the Wuling Mountains. Compared
with  WRF,  MIROC6  simulates  an  artificial  high  rainfall
area over the northeastern edge. The biases of rainfall  here
may arise from the coarse resolution and the systematic pre-

cipitation biases of MIROC6 (Zheng et al., 2020). For total
rainy days (Figs. 4e–h), observations exhibit a maximum in
the south, decreasing northward. It  is  worth noting that the
high-value  centres  between  the  two  sets  of  observations
show  differences,  which  may  lead  to  uncertainties  in  the
observed spatial pattern of CREs. WRF downscaling captures
the  observed spatial  features,  but  it  underestimates  the  fre-
quency in the southeast. MIROC6 simulates too many rainy
days, especially in the southeast. In observations, the rainfall
intensity  has  a  similar  spatial  pattern  as  the  total  rainfall
amount. The intensity distribution simulated by WRF is simi-
lar  to  observations,  with  a  spatial  correlation  coefficient
between WRF and CN05.1 (CMFD) of 0.80 (0.87).  Mean-
while,  MIROC6  simulates  an  artificial  intensity  maximum
in the northeast and has a low correlation coefficient of 0.68
(0.65) with CN05.1 (CMFD).

The spatial distribution of rainfall events lasting for dif-
ferent durations is shown in Fig. 5. There is a high frequency
of rainfall events with a duration of 2–4 days throughout the
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Fig.  4. Spatial  distributions of  spring (a–d) total  rainfall  amount (units:  mm),  (e–h) total  rainy days (units:  d),  and
(i–l) rainfall intensity (units: mm d−1) over the TGR from observations, WRF, and MIROC6 averaged in 1995–2014.
The value in the upper-right gives the regional average.
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region in WRF, consistent  with CN05.1,  with a correlation
coefficient of 0.53. Meanwhile, MIROC6 fails to reproduce
the pattern and shows no correlation with the observations.
For rainfall events with a duration of 5–7 days, observations
show  a  pattern  of  more  in  the  south  and  less  in  the  north.
WRF underestimates the frequency of rainfall in this category
in  the  southeast  because  of  the  low  number  of  rainy  days
(Fig.  4g).  The  spatial  correlation  coefficient  between
CN05.1  and  WRF  downscaling  (MIROC6)  is  0.42  (0.31).
The  two  sets  of  observations  show  obvious  discrepancies
when it comes to rainfall lasting longer than 8 days. CN05.1
has two high-value centres along the Wuling Mountains and
one  high-value  centre  over  the  southeast  plain,  whereas
CMFD only has large values in the southwest. In WRF, the
maximum  centre  appears  along  the  Wuling  Mountains,
while  in  MIROC6  the  frequency  is  overestimated  in  the
whole region.
 

3.1.3.    CREs in the TGR

Figure  6 displays  the  spatial  distribution  of  CREs  in
observations,  WRF, and MIROC6. In CN05.1,  the OCF of
CREs  is  1.67  per  spring  averaged  over  the  TGR,  with  a
higher  value  in  the  south  than  in  the  north.  The  TRD  and
ACR in CN05.1 is 17.13 days and 136.15 mm, respectively,
and  the  spatial  distribution  is  similar  to  the  OCF.  The
observed  INT  exhibits  a  high  value  in  the  southeast  and  a
low  value  in  the  northwest.  Generally,  the  distributions  of
CREs in CN05.1 and CMFD are similar, although there are
also some magnitude differences, which are due to the differ-

ent features in rainfall duration (Fig. 5).
In WRF, the spatial pattern of OCF is generally consistent

with the observations, despite an underestimation in the south-
east  corner.  The  spatial  correlation  coefficient  of  OCF
between WRF and CN05.1 is 0.54, which is higher than that
between MIROC6 and CN05.1 (0.45). Besides, the average
OCF in WRF is 1.90 per spring, which is closer to the obser-
vations  than  MIROC6.  MIROC6  obviously  overestimates
the magnitude with a value of 3.33 per spring. The spatial cor-
relation  coefficient  between  WRF  and  CN05.1  for
TRD/ACR  is  0.58/0.62,  which  is  also  better  than  that
between MIROC6 and CN05.1 (0.51/0.49). For INT, WRF
exhibits  a  southeast-to-northwest  decreasing pattern,  which
is  similar  to  CN05.1  and  CMFD,  but  the  magnitude
(9.31  mm  d−1)  is  higher  than  observed  (6.46  mm  d−1 and
7.61 mm d−1, respectively).

The above analyses demonstrate that WRF downscaling
exhibits a significant improvement in terms of reproducing
spring rainfall, as well as CREs, in the TGR. The more accu-
rate simulation of present climate provides confidence in the
credibility of future projections.
 

3.2.    Future projection
 

3.2.1.    Changes of rainfall features

Figure  7a gives  the  regionally  averaged  percentage
changes  of  future  monthly  rainfall  derived  from WRF and
MIROC6 in 2075–94 relative to 1995–2014. The spring rain-
fall  in  WRF is  projected  to  decrease  by −2.6% and −3.9%
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Fig. 5. Frequency distribution of rainfall events with a duration of (a–d) 2–4 days, (e–h) 5–7 days, and (i–l) ≥ 8 days over
the TGR from observations, WRF and MIROC6 in 1995–2014.
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Fig.  6. Spatial  distributions  of  (a,  e,  i,  m)  occurrence  frequency  (OCF),  (b,  f,  j,  n)  total  rainy  days  (TRD)  (units:  d),
(c,  g,  k,  o)  accumulated rainfall  amount (ACR) (units:  mm),  and (d,  h,  l,  p)  mean daily rainfall  intensity (INT) (units:
mm d−1) of spring CREs over the TGR from observations, WRF, and MIROC6 in 1995–2014. The value in the upper-
right gives the regional average.
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Fig. 7. The percentage changes of (a) monthly rainfall, (b) the daily rainfall probability distribution, (c) the
frequency  of  continuous  rainfall,  and  (d)  CRE  indices  over  the  TGR  in  SSP  projected  runs  (2075–94
averaged)  relative  to  historical  runs  (1995–2014  averaged)  from  WRF  and  MIROC6.  Vertical  lines  and
ranges depict the 90% bootstrap confidence intervals.

1548 PROJECTING CONSECUTIVE RAINFALL EVENTS VOLUME 41

 

  



under  SSP2-4.5  and  SSP5-8.5,  respectively,  and  the
decrease  is  mainly  contributed  by  the  decline  in  May.  In
MIROC6, meanwhile, the rainfall change is opposite to that
in  WRF,  increasing  by  11.4%  and  16.2%  under  SSP2-4.5
and SSP5-8.5, respectively.

Figure 7b displays the change in the probability distribu-
tion of the daily rainfall amount. In WRF, the probability of
rainfall less than 1 mm d−1 is expected to increase by 7.5%
and 8.6% under SSP2-4.5 and SSP5-8.5, respectively. How-
ever, rainfall between 1 and 30 mm d−1 exhibits an obvious
decline (−16.4%/−13.0% under SSP2-4.5/SSP5-8.5). As for
rainfall  above  30  mm  d−1,  the  probability  will  increase,
according to WRF. The ratio increase of the 30–50 mm bin
and >50 mm bin is 3.7%/6.9% and 7.5%/27.4% under SSP2-
4.5/SSP5-8.5,  respectively,  while  the increase under  SSP2-
4.5 is insignificant. In contrast, the change in MIROC6 is dif-
ferent from that in WRF. For rainfall  less than 10 mm d−1,
MIROC6 exhibits no clear signal, while for rainfall greater
than  20  mm  d−1 the  rainfall  frequency  is  projected  to

increase profoundly. For example, the ratio increases of the
20–30  mm  bin,  30–50  mm  bin,  and  >50  mm  bin  are
8.1%/10.8%,  48.8%/28.5%  and  70.1%/80.3%  under  SSP2-
4.5/SSP5-8.5, respectively. This is consistent with previous
studies  that  found GCMs simulate  intensified daily rainfall
in a warmer climate (Feng et al., 2011; Gu et al., 2018). It is
worth  noting  that  the  growth  of  heavy  rainfall  in  WRF  is
lower  than  that  in  MIROC6.  Previous  studies  have  also
found such a reduced rainfall change ratio when using WRF
downscaling,  and  they  suggest  that  the  change  in  WRF  is
more  reasonable  because  of  its  more  proper  representation
of  convective  rainfall  (Bao  et al.,  2015; Rastogi  et al.,
2022).

Figures 8a–d shows the spatial changes of projected rain-
fall  amount  over  the  TGR  under  two  emission  scenarios.
WRF  simulates  clear  regional  features  with  an  increase  in
the  mid-west  and a  decrease  in  the  east.  MIROC6 projects
an  increase  in  the  entire  region  with  a  maximum  over  the
southeast.  Next,  we check the  change in  rainfall  frequency
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Fig. 8. Spatial distributions of future changes (2075–94 relative to 1995–2014) of (a–d) total rainfall amount (units:
mm), (e–h) rainy days (units: d), and (i–l) rainfall intensity (units: mm d−1) over the TGR under the SSP emissions
scenarios  as  projected by WRF and MIROC6.  Shading denotes  the  ratio  0  (no change)  does  not  fall  into  the  90%
bootstrap confidence intervals range.
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and  intensity  (Figs.  8e–l),  which  is  associated  with  the
change  in  rainfall  amount.  The  rainfall  intensity  in  WRF
shows a pronounced increase in most  parts  of  the TGR. In
MIROC6, the intensity is projected to increase, especially in
the east. As for the changes in rainfall frequency, obvious dif-
ferences  are  found  between  WRF  and  MIROC6.  WRF
shows a decreased frequency in the whole region (−4.6/−5.2
days  averaged  in  the  TGR  under  SSP2-4.5/SSP5-8.5),  and
the decrease is more prominent in the southeast, while the fre-
quency  in  MIROC6  exhibits  slight  changes  by  0.01/0.84
days under SSP2-4.5/SSP5-8.5 averaged over the TGR. It is
worth  noting  that  the  change  in  frequency  in  MIROC6  is
inconsistent between the SSPs. For example, the frequency
in MIROC6 decreases in the northeast and increases in the
southwest  under  SSP2-4.5,  while  it  increases  over  almost
the  entire  region  under  SSP5-8.5  (Figs.  8g and h);  and  for
the  change  in  the  probability  distribution  of  rainfall  less
than 20 mm, the two SSPs show opposite changes in some
intervals  (Fig.  7b).  This  indicates  uncertainties  in  the
MIROC6 projections.

As WRF’s rainfall frequency decreases, the duration of
continuous  rainfall  also  decreases. Figure  7c gives  the
change in frequency of rainfall events with different durations
averaged over the TGR. For rainfall events lasting 2–4 days,
WRF  suggests  that  the  frequency  will  decrease  signifi-
cantly, while MIROC6 shows no obvious change. WRF and
MIROC6  disagree  on  the  changes  in  rainfall  durations  of
more  than  5  days:  a  significant  decrease  is  projected  by
WRF, and the longer the duration, the more pronounced the
decrease;  while  MIROC6 generally  exhibits  an  increase  in
the  frequency of  rainfall  events  lasting longer  than 5  days.
As  for  the  spatial  distribution  of  change  by  WRF  (not
shown), rainfall events lasting 2–4 days show an increase in
the  Wuling Mountains  and a  decrease  in  other  parts  of  the
TGR  under  SSP2-4.5,  while  a  decrease  is  projected  in  the
entire  region  under  SSP5-8.5.  For  rainfall  events  lasting
longer than 5 days, the frequency is projected to decrease in
most of the TGR under the two SSPs, especially in the Wuling
Mountains. 

3.2.2.    Projection of CREs

Figure  7d gives  the  projected  changes  of  CRE indices
averaged  in  the  TGR.  Overall,  the  CREs  of  WRF  show  a
reduction in OCF, TRD and ACR, and a weakening in INT,
under  SSP2-4.5.  Under  SSP5-8.5,  CREs also  decrease,  but
the  magnitude  is  weaker  than  under  SSP2-4.5.  In  contrast,
MIROC6 exhibits no change in OCF, and an opposite signal
in TRD under the two SSPs. However, ACR and INT are pro-
jected  by  MIROC6  to  increase,  despite  the  change  in  INT
being insignificant under SSP5-8.5.

Figure  9 gives  the  spatial  distribution  of  projected
CREs.  WRF  simulates  a  decrease  in  OCF  over  the  whole
region  under  the  two  SSPs  (Figs.  9a and e),  due  to  the
decreased  rainfall  frequency.  For  TRD,  WRF  projects  a
prominent  decrease  in  the  east  and  a  slight  increase  in  the
west  under  SSP2-4.5.  Under  SSP5-8.5,  WRF  exhibits  a
decrease  in  the  northwest  and  southeast,  and  a  regional

increase  in  the  central  TGR.  The  spatial  distributions  of
ACR and INT change according to both SSPs, generally fol-
lowing  those  of  TRD,  which  are  projected  to  decrease  in
most parts of the TGR, with regional increases seen in the cen-
tral-west area.

Compared  to  WRF,  the  spatial  changes  of  CREs  pro-
jected  by  MIROC6  are  quite  different.  Under  SSP2-4.5,
OCF  and  TRD  in  MIROC6  increase  in  the  southwest  and
decrease in the east of the TGR, and ACR and INT increase
in the whole region. Meanwhile, under SSP5-8.5, MIROC6
projects  an  increase  of  OCF  in  the  east  and  a  decrease  in
west.  The spatial distribution of TRD is opposite to that of
OCF,  which  indicates  the  duration  of  a  single  CRE  in  the
west  will  prolong  despite  the  decreased  occurrence.
Besides, an increase in ACR is projected by MIROC6. For
INT, there is a decrease in the central area and an increase
in the southeast. 

3.3.    Evaluation  of  the  rainfall  changes  in  WRF  and
MIROC6

Previous  studies  have  presented  many  discrepancies
between  the  driving  model  and  the  downscaling  model  in
the projected climate change (Ji and Kang, 2013; Bao et al.,
2015; Bartók  et al.,  2017).  In  the  present  study,  the  future
changes  of  CREs  projected  by  WRF  and  MIROC6  also
show differences. These differences are attributable to the dif-
ferences in the simulated rainfall frequency. In WRF, the rain-
fall  frequency  shows an  overall  decline  in  the  entire  TGR,
while MIROC6 shows no obvious change. Thus, the question
that remains to be addressed is why the projected changes in
rainfall  frequency  are  different  between  MIROC6  and
WRF. Since the changes in atmospheric variables based on
SSP2-4.5  and  SSP5-8.5  are  similar,  but  the  signal  is
stronger under SSP5-8.5, unless otherwise stated, the results
presented hereafter are for SSP5-8.5. 

3.3.1.    Moisture budget diagnosis

To understand the different changes in the rainfall  fre-
quency between WRF and MIROC6, we diagnose the mois-
ture budget over the TGR. Figure 10a shows the climatologi-
cal rainfall and other moisture terms in ERA5 and simulations
in 1995–2014 [Eq. (2)]. ERA5 shows that local rainfall is gen-
erally contributed by the vertical moisture advection and evap-
oration term. The other terms contribute little  to the spring
rainfall.  WRF  and  MIROC6  show  similar  contributions  in
reproduced  evaporation.  However,  they  exhibit  differences
in the vertical moisture advection term. In WRF, the contribu-
tion of  vertical  moisture  advection is  3.20 mm d−1,  similar
to that in observation (2.96 mm d−1), while MIROC6 (5.75
mm d−1)  shows  obvious  overestimation  that  is  about  twice
as much as observed. This bias indicates that the rainfall simu-
lation and projection in MIROC6 could bear large uncertain-
ties.

In  ERA5,  the  spatial  pattern  of  the  vertical  moisture
advection  term  is  inhomogeneous  (not  shown).  The  high-
value  centres  are  located  in  the  Wuling  Mountains  as  well
as the southern area, which is similar to the rainfall distribu-
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tion  and  implies  that  the  mountainous  terrain  in  the  south
TGR can enhance the convergence of water vapor flux and
then favour rainfall formation. The spatial pattern of the verti-
cal moisture advection term in WRF is similar to the observa-
tion, while there is an artificial maximum located in the central
TGR in MIROC6.

To  further  illustrate  the  relationship  between  moisture
budget terms and synoptic rainfall in the TGR, we calculate
the  regression  fitting  of  the  individual  terms  to  daily  rain-
fall.  Specifically,  in  ERA5,  the  positive  linear  correlation
between  daily  rainfall  and  the  vertical  moisture  advection
term is significant (R2 = 0.61, p < 0.05), while the relationship
in  WRF is  weaker  than observed but  still  significant  (R2 =
0.38, p <0.05). This indicates that the daily rainfall frequency
is closely tied to the upward motion. The contribution of the
other terms is not obvious. The correlation is relatively low
(R2 = 0.10, p < 0.05) in MIROC6.

To  understand  the  different  trends  in  the  frequency
between WRF and MIROC6, we analyse the change of each
moisture budget term in 2075–94 relative to 1995–2014, as
shown in Fig. 10b [Eq. (5)]. In WRF, the vertical moisture
advection term shows a decrease (−0.73 mm d−1), while evap-
oration and horizontal moisture advection show an increase.

Clearly, the decrease in rainfall can be mainly attributed to
the decline in the vertical moisture advection term. This indi-
cates  that  fewer  rainfall  events  can  be  triggered  as  upward
motion decreases, which leads to a decrease in the rainfall fre-
quency in WRF. We further separate the change in the vertical
moisture advection term into two components, and find that
the decrease in the dynamic component (−0.98 mm d−1) over-
whelms  the  increase  in  the  thermodynamic  component
(0.24 mm d−1), resulting in a decline in the vertical moisture
advection term. Compared to WRF, the changes in the mois-
ture  budget  terms  in  MIROC6  are  somewhat  different.
The  vertical  moisture  advection  term  shows  an  obvious
increase  (1.25  mm  d−1),  which  is  responsible  for  the
increased  rainfall  in  MIROC6.  To  balance  the  increase  in
the  vertical  moisture  advection,  the  horizontal  moisture
advection  exhibits  a  decrease  (−0.73  mm  d−1).  When  we
decompose  the  vertical  moisture  advection  term  into
dynamic and thermodynamic components, we find that both
exhibit an increase (0.84 mm d−1 and 0.36 mm d−1, respec-
tively).

But  how can  we understand  the  change  in  the  vertical
moisture advection term? It may be related to the difference
in the variation of the monsoon. Studies have suggested that
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Fig. 9. Spatial change distributions (2075–94 relative to 1995–2014) of CREs’ (a, e, i, m) occurrence frequency (OCF), (b, f,
j, n) total rainy days (TRD; units: d), (c, g, k, o) accumulated rainfall amount (ACR; units: mm), and (d, h, l, p) mean daily
rainfall intensity (INT; units: mm d−1) over the TGR under the SSP scenarios as projected by WRF and MIROC6. Shading
denotes the ratio 0 (no change) does not fall into the 90% bootstrap confidence intervals range.
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the intensified latent heating released by the warming sea sur-
face temperature over the South China Sea could build and
reinforce the heat-induced atmospheric circulation, suppress
the  ascending  motion  over  south-central  China,  and  thus
lead  to  a  decreasing  trend  of  rainfall  frequency  (Li  et al.,
2016b). This could be responsible for the decreased upward
motion in WRF over the TGR. However,  it  cannot explain
the increased vertical moisture advection in MIROC6.
 

3.3.2.    Projected change in relative humidity

Denson et al. (2021) argued that relative humidity will
play an important role in changes to the climatological rainfall
frequency  at  the  local  scale  in  a  warmer  climate.  Because
atmospheric humidity does not increase at the same rate as
temperature,  there  must  be  a  decrease  in  light-to-moderate
rainfall  and  the  frequency  of  rainfall  events  (Mao  et al.,
2015; Mishra, 2019). Thus, we further check the possible rela-
tionship  between  projected  relative  humidity  and  rainfall
frequency  over  the  TGR.  Generally,  WRF  and  MIROC6
both  show  a  consistent  increase  in  specific  humidity  (by

3.5 g kg−1 and 3.7 g kg−1, respectively) in the TGR; and as
the increase in specific humidity with temperature is slower
than the increase in saturation vapour pressure (Wang et al.,
2020),  a  decrease  in  relative  humidity  is  caused  (Fig.  11a
and b;  decreased  by −7.4  %  and −5.8  %  in  WRF  and
MIROC6, respectively, in the TGR). Cloudiness and associ-
ated  rainfall  are  only  possible  when  relative  humidity
reaches 100% and condenses, which is often induced by air
rising  and  cooling  to  the  dewpoint  temperature  adiabati-
cally. When the average relative humidity is decreased, the
air  will  be  less  likely  to  reach  saturation,  despite  the
increased  water  content,  resulting  in  less  cloud  formation
for  an  equivalent  uplift  in  energy  (Mao et al.,  2015; Wang
et al., 2020; Denson et al., 2021).

To  test  the  above  inference,  we  check  the  simulated
changes  in  cloud  cover  fraction  (Figs.  11c–h).  In  general,
good agreements are found between the two models: warming
leads  to  a  reduction  in  total  cloud  cover  across  eastern
China  in  the  future  (decrease  by −4.8%  and −10.1%  in
MIROC6 and  WRF,  respectively,  over  the  TGR).  When  it
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Fig.  10. (a)  Moisture  budget  for  the  rainfall  climatology  in  1995–2014  and  (b)
moisture  budget  changes  (2075–94  relative  to  1995–2014)  over  the  TGR.  The  bars
indicate  precipitation  (P),  evaporation  (E),  local  moisture  storage  (Dq),  horizontal
moisture  advection  (Vq),  vertical  moisture  advection  (wq),  the  residual  term  (R),
thermodynamic  component  (TH),  and  dynamic  component  (CD)  of  the  vertical
moisture  advection term.  Different  colours  represent  the  results  of  observations  and
simulations.

1552 PROJECTING CONSECUTIVE RAINFALL EVENTS VOLUME 41

 

  



comes to the clouds at different levels,  the decrease in low
cloud (below 2 km) is the most obvious, with an average of
−3.5% (MIROC6) and −6.8% (WRF) within the TGR. The
mid-level cloud (2–6 km) is projected to decrease by −1.6%
and −5.5% in MIROC6 and WRF, respectively. In the TGR,
the  spatial  correlation  between  relative  humidity  and  total
cloud  cover  is  0.87  (0.93),  and  the  temporal  correlation  is
0.94  (0.96),  under  SSP5-8.5  (SSP2-4.5).  This  implies  that
changes  in  cloud  cover  are  closely  associated  with  the
change in relative humidity.

The spring rainfall of the TGR is primarily triggered by
low–mid-level cloud associated with large-scale fronts (Xia
et al., 2016). The study of Mishra (2019) showed the occur-
rence of moderate rainfall can be mainly attributed to mid-
level cloud, while light rainfall is associated with low cloud.
This indicates that the reduction in cloudiness, especially in
low–mid-level cloud, could be responsible for the decrease
in light–moderate rainfall  in WRF (Fig.  7b).  The statistical
relationship  between low–mid-level  cloudiness  and rainfall
frequency anomalies is significant, with a spatial correlation

of 0.54 (0.58), and a temporal correlation of 0.89 (0.90), in
the  TGR,  under  SSP5-8.5  (SSP2-4.5).  Thus,  the  projected
decrease in rainfall frequency in WRF can be explained by
the physical connection to cloudiness and relative humidity.
This result is also consistent with the dynamical mechanism
described above in section 3.3.1, i.e. the less upward motion
would yield lower relative humidity and lower cloud cover.

Despite the cloud cover changes being generally similar
in  WRF and  MIROC6,  the  change  in  rainfall  frequency  in
MIROC6, however, cannot be explained by the cloud cover
decline. This may be because of the differences in the rainfall
schemes.  MIROC6  has  a  limited  ability  to  resolve
convective-scale  rainfall,  because  of  its  coarse  resolution.
Thus, MIROC6 implements a microphysics scheme and a con-
vective parameterization scheme to characterize the rainfall.
Meanwhile,  the  WRF  downscaling  approach  used  in  the
present study has a convection-resolving resolution (4 km in
Domain3), which omits the need for a convection parameteri-
zation  scheme.  We  check  the  frequency  change  in  large-
scale  rainfall  (derived  from  the  microphysics  scheme)  and
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Fig.  11. Spatial  change distributions (2075–94 relative to 1995–2014) of  (a,  b)  relative humidity (%) in the whole
layer below 200 hPa, and (c, d, e, f, g, h) cloud cover fraction (%) in different levels under the SSP5-8.5 scenario as
projected by MIROC6 and WRF.
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convective rainfall (calculated by the convective parameteriza-
tion  scheme)  in  MIROC6.  The  projected  change  of
MIROC6 based on the microphysics scheme shows a slight
decrease  in  rainfall  frequency  under  the  two  SSPs  (by
−0.27/−0.34  days  under  SSP2-4.5/SSP5-8.5),  which  seems
consistent with the decrease in WRF. The slight increase in
the total rainfall frequency in MIROC6 seems dominated by
the  increase  in  the  convective  rainfall  frequency  (by
0.28/1.19 days under SSP2-4.5/SSP5-8.5). Thus, the differ-
ences in rainfall between WRF and MIROC6 are caused by
the convective parameterization scheme of MIROC6. Previ-
ous  studies  have  concluded  that  the  convective  scheme  of
MIROC6  (Chikira–Sugiyama)  tends  to  overestimate  the
change in rainfall frequency in East Asia (Miyakawa et al.,
2018; Tatebe  et al.,  2019),  which  is  similar  to  our  finding.
Therefore,  the  projected  increase  in  rainfall  frequency  in
MIROC6 may not be realistic.
 

4.    Summary and discussion

In  this  study,  a  triple-nested  configuration  of  WRF  is
used to downscale the spring rainfall  over the TGR for the
present  (1995–2014)  under  historical  forcing,  and  future
(2075–94) under SSP scenarios. To obtain a more reasonable
driving  model  of  WRF,  we  first  compare  the  simulated
spring  low-level  winds  of  10  GCMs  with  observations
based  on  an  MR  index.  Generally,  MIROC6  exhibits  the
best  performance among the 10 GCMs,  and thus  it  is  used
for the boundary and initial conditions of WRF. Then, the per-
formance of the downscaled rainfall is validated by compar-
ing observations with the model outputs. The results demon-
strate that, compared to MIROC6, WRF improves the simula-
tion of regional rainfall and associated atmospheric circula-
tion.  Because  of  its  finer  resolution  and  better  represented
physical processes, WRF can simulate more realistic rainfall
patterns and more regional features than MIROC6. In terms
of the monthly evolution, the daily probability distribution,
the  diurnal  cycle,  and  the  duration  of  continuous  rainfall,
WRF also shows significant improvement against MIROC6.
It generally reproduces more reasonable spatial distribution
patterns  by  successfully  eliminating  the  erroneous  rainfall
maximum  simulated  by  MIROC6.  For  the  reproduced
CREs,  WRF displays  visible  advantages  against  MIROC6.
It  presents  a  more  reasonable  regional  average  of  CREs.
WRF also better captures the observed regional features of
CREs, and exhibits higher spatial correlations with observa-
tions.

Under the SSP scenarios,  WRF projects an increase in
rainfall  amount  in  the  central-west  TGR and  a  decrease  in
the east,  while  the rainfall  intensity  is  projected to  become
intensified  over  the  entire  region.  As  for  the  rainfall  fre-
quency, WRF suggests a clear decrease. In terms of the pro-
jected CREs, WRF suggests an overall decreased frequency
over the entire TGR, while it exhibits a regional increase in
the  duration,  rainfall  amount,  and intensity  of  CREs in  the
central-west TGR. These results may imply a higher risk of

geological hazards in the central-west TGR in the future as
far as one individual CRE event is concerned. Additionally,
the  TGR  is  an  important  water  source  for  the  South-to-
North Water Diversion Project,  so the decreased rainfall  in
the east may have decision-making and management implica-
tions for the project. In MIROC6, the change in rainfall fre-
quency is in contrast to that in WRF and has obvious uncer-
tainties. MIROC6 projects a slight change in frequency and
an increase in the strength of CREs.

The inconsistency in the CRE trend between WRF and
MIROC6 highlights the importance of detecting discrepan-
cies in rainfall changes between models, and using downscal-
ing  to  improve  regional  climate  studies.  In  this  study,  the
inconsistency can be attributed to the difference in rainfall fre-
quency.  The  moisture  budget  diagnosis  using  ERA5  data
shows that the rainfall frequency is dominated by the intensity
of vertical moisture advection. Such a synoptic contribution
is  reproduced  well  by  WRF,  which  is  not  the  case  in
MIROC6,  indicating  large  uncertainties  in  the  CREs  pro-
jected by MIROC6. In WRF, the decreased dynamic compo-
nent of the vertical moisture advection term dominates over
the increased thermodynamic component, leading to the weak-
ening  of  upward  motion  and  the  decline  in  rainfall  fre-
quency. In MIROC6, meanwhile, the enhancement of vertical
moisture advection causes the increase in rainfall frequency.
In addition, WRF shows that warming will cause reduced rela-
tive humidity across the TGR, making it harder for the atmo-
sphere  to  become saturated,  thus  reducing  cloud  formation
(especially low and mid-level cloud). The decrease in cloud
cover can physically explain WRF’s decreased rainfall  fre-
quency  (Mishra,  2019).  However,  a  similar  reduction  in
cloud  cover  cannot  explain  the  frequency  changes  in
MIROC6, which is likely due to the convective parameteriza-
tion scheme of MIROC6 overestimating the increase in rain-
fall  frequency.  Moreover,  MIROC6  simulates  too  many
rainy days (using a 1 mm d−1 threshold), which is a common
systemic bias in state-of-the-art GCMs (Feng et al., 2011; Li
et al., 2019a; Zheng et al., 2022). These findings add uncer-
tainties to the simulated rainfall frequency of MIROC6.

Changes in CREs can be useful to qualitatively evaluate
the changes of  geological  hazards in  the TGR (Tang et al.,
2017).  Furthermore,  quantitative  assessment  of  landslides
based on a combination of CRE changes and field geotechni-
cal parameters can greatly support disaster mitigation and pre-
vention.  Using  a  physical  deterministic  landslide  model  is
an effective way to assess landslide changes, because it ade-
quately considers the practical rainfall process and quantita-
tively evaluates the impact of rainfall intensity and duration
on landslide stability.  Thus,  to conduct a quantitative land-
slide projection, it is necessary to couple RCMs and landslide
models. We aim to do this in future work.

It is important to acknowledge some limitations in this
study.  First,  a  clear  relation  between  the  accuracy  of  a
present-day simulation and a future projection is not guaran-
teed. Racherla  et al. (2012)  suggested  that  the  skill  of  an
RCM  in  simulating  the  mean  climate  conditions  is  not
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highly  related  with  the  skill  in  capturing  future  climate
change.  Second,  to save computational  resources,  only one
GCM  is  used  to  drive  WRF.  The  bias  of  MIROC6  is
another  source  of  uncertainty  because  the  RCM’s  skill  is
strongly  limited  by  the  GCM  used  to  drive  it  (Bao  et al.,
2015). Before using a GCM to drive a regional model, correct-
ing the systematic biases of the GCM or employing a multi-
model ensemble output as boundary conditions could be a nec-
essary and affordable way to account for the above projection
uncertainties (Ma et al., 2015a). Alternatively, directly correct-
ing  the  biases  or  adopting  machine  learning  to  reduce  the
biases of downscaling results can also reduce the projection
uncertainties (Zhu et al., 2008; Wang et al., 2021a). 

Data  Availability  Statement  CMFD  is  available  at https://
data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-965612652c
49/.  CN05.1  is  available  at https://ccrc.iap.ac.cn/resource.  The
ERA5 reanalysis products are available at https://cds.climate.coperni-
cus.eu/.  The  outputs  of  MIROC6  are  available  at https://esgf-
node.llnl.gov/. 
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