
University of Bergen
Department of Informatics

Stem cell identification via RNA

sequencing in breast cancer

Author: Cristóbal Giménez Dev́ıs

Supervisors: Pekka Parviainen

June 2024

Abstract

Breast cancer is a complex, heterogeneous disease with distinct cancer subtypes. When

the breast organ develops, it has a large pool of mammary stem cells. These cells have

the potential to give rise to the various cell types that constitute the breast, as such, they

are at risk for acquiring mutations, which can lead to transformed stem cells, thereby pro-

moting the process of tumorigenesis. Among the breast cancer cells, increasing evidence

points to the presence of a rare, small and heterogeneous subpopulation of cancerous cells

termed as breast cancer stem cells (BCSCs), which have unlimited renewal capacity and

are responsible for repopulating and giving rise to the heterogeneous, overly aggressive

tumors. The recent technology of gene expression profiling like RNA-seq has helped some

studies try to figure a way of identifying BCSCs, but there is still much work to be done.

In this work we will use Machine Learning approach together with RNA-seq techonology

in order to try to solve this task.

Acknowledgements

Thank you, Anagha, for your constant tutelage and dedication, for going out of your

way to take on a risky project which could have easily failed.

Thank you Pekka, for providing us with knowledge, and experience in the field, they

say some great ideas spark in the most mundane conversations, and so they did.

Thank you, mother. Thank you, father. Thank you, sister, as time passes, I realize

more and more how nothing I ever made would have been possible without you.

Thank you, to those who saw me start but could not watch me end, wherever you

are, keep watching over us.

”You can never know everything, and part of what you know is always wrong. Perhaps

even the most important part. A portion of wisdom lies in knowing that. A portion of

courage lies in going on anyways.” Lan to Rand - The Eye of the World.

Cristóbal Giménez Devı́s

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 2

1.3 Structure of the thesis . 3

2 State of the art and data description 4

2.1 CytoTRACE . 4

2.2 ORIGINS . 4

2.2.1 Reimplementation of ORIGINS in Python 5

2.2.2 Algorithm rewriting . 5

2.3 Data description . 6

2.3.1 Breast cancer dataset (BCD) . 7

2.3.2 Hematopoietic dataset (HSD) . 7

2.3.3 General dataset (General) . 7

3 Methodology 9

3.1 Theoretical Background . 9

3.1.1 Supervised Learning . 9

3.1.2 Bias-Variance tradeoff . 10

3.1.3 Overfitting and underfitting . 12

3.1.4 Curse of dimensionality . 13

3.2 Machine Learning models . 14

3.2.1 Logistic Regression . 14

3.2.2 Multilayer Perceptrons . 15

3.2.3 Random Forests . 17

3.3 Learning embeddings . 19

3.3.1 ”Meaningful” embeddings . 20

3.3.2 Metric Learning . 20

3.4 Bagging . 23

i

3.5 Performance measures . 24

3.5.1 Precision and Recall . 24

3.5.2 ROC-AUC . 25

4 Experimental Setup 27

4.1 Data management and input size issues 27

4.2 Training formats . 28

4.3 Pipeline and hyperparameters . 28

4.3.1 Logistic Regressors . 29

4.3.2 MLPs . 29

4.3.3 Random Forests . 30

4.3.4 Embeddings . 31

4.3.5 Bagging . 33

4.3.6 Learning rate optimizer and Callbacks 33

5 Results 35

5.1 Performance on the same dataset . 35

5.1.1 Logistic Regressors . 36

5.1.2 MLPs . 38

5.1.3 Random Forest . 42

5.1.4 Embedder and MLP . 43

5.1.5 Bagging . 46

5.2 Performance across datasets . 47

5.2.1 HSD to BSD . 48

5.2.2 General to BSD . 50

5.2.3 BCD to HSD . 53

5.2.4 General to HSD . 55

5.2.5 BCD to General . 57

5.2.6 HSD to General . 58

5.3 Signature overlap . 60

5.4 Discussion . 62

5.4.1 Sources of error . 63

5.4.2 Future work . 64

List of Acronyms and Abbreviations 65

Bibliography 66

ii

A Supplemental figures and discussion 70

A.1 Extra: Feature importance on HSD . 70

A.1.1 Logistic Regressors . 70

A.1.2 MLPs . 72

A.1.3 Random Forest . 74

A.1.4 Embedder . 75

A.2 Extra: Results on General data . 77

A.2.1 Logistic Regressor . 77

A.2.2 MLPs . 78

A.2.3 Random Forest . 80

A.2.4 Embedder . 81

A.2.5 Code Availability . 83

iii

List of Figures

3.1 Illustration of Bias-Variance interaction. 12

3.2 Illustration of Under and Overfitting. 13

3.3 As the dimension increases, the number of datapoints needed grows expo-

nentially. 13

3.4 Illustration of a neuron (without activation function) 15

3.5 Illustration of a neuron (with activation function) 16

3.6 Illustration of an MLP . 17

3.7 Illustration of a decision tree. 18

3.8 Illustration of a Random Forest (each DT learns different rules and pre-

dicts differently, but the global result when aggregating is correct, more

on aggregating to follow). 19

3.9 The core idea is bring together similar datapoints and push away different

datapoints. The anchor is the reference datapoint (the one that is used to

compute which are positives and negatives) 21

3.10 Illustration of ArcFace. X is the embedding, W0 and W1 are the class

vectors. θ0 and θ1 are the angles between X and each class vector. . . . 22

3.11 Illustration of bagging. 23

3.12 Example of a ROC-AUC (not real data). 26

4.1 Embedder - MLP architecutre (the // symbol represents the stop-gradient

operator). 31

4.2 Illustration of batch mining, depending on where we place the negative

example, the triplet becomes an easy, semi-hard or hard triplet. 32

5.1 F1-Score of logistic regressors (best results in red). 36

5.2 Feature importance by logistic regressors on BCD (positive importance,

on top, negative importance on bottom). 37

5.3 F1-Score of linear MLPs (best results in red). 38

5.4 F1-Score of non-linear MLPs (best results in red). 38

iv

5.5 Positive feature importance by both linear (top) and non-linear (bottom)

MLPs in BCD. 39

5.6 Negative feature importance by both linear (top) and non-linear (bottom)

MLPs in BCD. 41

5.7 Results obtained with Random Forests (best results in red). 42

5.8 Average information gain across the random forest. 42

5.9 Results for the combination of embeddings and an MLP (best results in

red). 43

5.10 Original data space (left) versus learned embedding space (right). 44

5.11 Original data space (left) versus learned embedding space (right). 44

5.12 Original data space (left) versus learned embedding space (right). 45

5.13 Feature importance by embedder and MLP on BCD (positive importance,

on top, negative importance on bottom). 46

5.14 Results obtained using bagging (best results in red). 46

5.15 F1-Score obtained by CytoTRACE and ORIGINS on all three datasets. . 47

5.16 F1 Score resulting when transfering from HSD to BSD (StemMarkers). . 48

5.17 F1 Score resulting when transfering from HSD to BSD (AllGenes). 48

5.18 F1 Score resulting when transfering from HSD to BSD (NonStemMarkers). 48

5.19 Precision-Recall Curve of all models and algorithms (All Genes, HSD to

BCD). ORIGINS in grey color. 49

5.20 Precision-Recall Curve of all models and algorithms (All Genes, HSD to

BCD). CytoTRACE in grey color. 49

5.21 ROC-AUC curve of all models and algorithms (HSD to BCD, AllGenes). 50

5.22 F1 Score resulting when transfering from General to BSD (StemMarkers). 50

5.23 F1 Score resulting when transfering from General to BSD (AllGenes). . . 51

5.24 F1 Score resulting when transfering from General to BSD (NonStemMark-

ers). 51

5.25 Precision-Recall Curve of all models and algorithms (General to BCD,

AllGenes). ORIGINS in grey color. 51

5.26 Precision-Recall Curve of all models and algorithms (General to BCD,

AllGenes). CytoTRACE in grey color. 52

5.27 ROC-AUC curve of all models and algorithms (General to BCD, AllGenes). 52

5.28 F1 Score resulting when transfering from BSD to HSD (StemMarkers). . 53

5.29 F1 Score resulting when transfering from BSD to HSD (AllGenes). 53

5.30 F1 Score resulting when transfering from BSD to HSD (NonStemMarkers). 53

5.31 PR curve of all models and algorithms (BCD to HSD, and AllGenes format). 54

v

5.32 ROC-AUC curve of all models and algorithms (BCD to HSD, and AllGenes

format). 54

5.33 F1 Score resulting when transfering from General to HSD (StemMarkers). 55

5.34 F1 Score resulting when transfering from General to HSD (AllGenes). . . 55

5.35 F1 Score resulting when transfering from General to HSD (NonStemMark-

ers). 55

5.36 PR curve of all models and algorithms (General to HSD, and AllGenes

format). 56

5.37 ROC-AUC curve of all models and algorithms (General to HSD, and All-

Genes format). 56

5.38 F1 Score resulting when transfering from BSD to General (StemMarkers). 57

5.39 F1 Score resulting when transfering from BSD to General (AllGenes). . . 57

5.40 F1 Score resulting when transfering from BSD to General (NonStemMark-

ers). 57

5.41 PR curve of all models and algorithms (BCD to General, and NonStem-

Markers format). 58

5.42 F1 Score resulting when transfering from HSD to General (StemMarkers). 58

5.43 F1 Score resulting when transfering from HSD to General (AllGenes). . . 59

5.44 F1 Score resulting when transfering from HSD to General (NonStemMark-

ers). 59

5.45 PR curve of all models and algorithms (HSD to General, and StemMarkers

format). 59

5.46 ROC-AUC curve of all models and algorithms (HSD to General, and Stem-

Markers format). 60

5.47 Average Jaccard index between signatures taking top 100 cells. 61

5.48 Average Jaccard index between signatures taking top 250 cells. 61

5.49 Average Jaccard index between signatures taking top 500 cells. 62

A.1 Feature importance by logistic regressors on HSD (positive importance, on

top, negative importance on bottom). 71

A.2 Positive feature importance by linear MLP (top) and non-linear MLP (bot-

tom). 72

A.3 Negative feature importance by linear MLP (top) and non-linear MLP

(bottom). 73

A.4 Average information gain across the random forest. 74

A.5 Positive and negative feature importance by embedder and mlp architec-

ture (top and bottom, respectively). 75

A.6 Original data space (left) versus learned embedding space (right). 76

vi

A.7 Original data space (left) versus learned embedding space (right). 76

A.8 Original data space (left) versus learned embedding space (right). 76

A.9 Feature importance by logistic regressors on General data (positive impor-

tance, on top, negative importance on bottom). 77

A.10 Positive feature importance by linear MLP (top) and non-linear MLP (bot-

tom). 78

A.11 Negative feature importance by linear MLP (top) and non-linear MLP

(bottom). 79

A.12 Average information gain across the random forest. 80

A.13 Positive and negative feature importance by embedder and mlp architec-

ture (top and bottom, respectively). 81

A.14 Original data space (left) versus learned embedding space (right). 82

A.15 Original data space (left) versus learned embedding space (right). 82

A.16 Original data space (left) versus learned embedding space (right). 82

vii

Chapter 1

Introduction

Breast cancer is one of the most frequently diagnosed malignancies in the world, which

has high rate of metastasis (propagation of cancer) and recurrence (cancer reappearing

after treatment), leading to very low survival rate.

Among the breast cancer cells there is a very small and rare subset of cells called Breast

cancer stem cells (BCSCs), which are very heterogeneous and have stem cell properties

i.e. the capacity to self-renew and differentiate (transform into other cells).

This rare sub-population of tumor cells is characterized with strong tumorigenic ca-

pacity which can promote metastasis and recurrence, and therefore have been associated

with both poor prognosis, and therapy resistance.

RNA-seq is a technology used to extract the gene expression sequences in a biological

sample. In our case, RNA-seq is used to extract the sequences of genes from each cell

individually.

Each sequence (represented as a vector) will contain the expression of the genes (the

activity of the gene in the cell, represented with a numerical value), this, will be the data

we use in this work.

From this point forward, we present a Machine Learning approach at trying to identify

these rare populations of BCSCs with the gene expression sequences.

1

1.1 Motivation

Obtaining the cure for cancer has always been the end goal of modern medicine, and

nowadays we are still far away from obtaining good and general results. So, any light

that can be shined onto this issue is always welcomed.

The increasing power of Machine Learning systems and models have been useful to

solve real world complex tasks in numerous areas, so, Machine Learning could also be

useful in trying to solve the mystery of cancer.

1.2 Objectives

The main objective of this work is to correctly classify a given sequence of genes which

represents the information of a cell, into two different classes:

• Class 0: This class will represent non-stem like cells.

• Class 1: This class will represent stem-like or progenitor cells (our main focus).

More precisely, we are trying to focus on breast cancer, so, our main objective is to

correctly identify BCSCs from non-BCSCs.

Additionally, we add the following sub-objectives:

• Explore different machine learning models and methods to try to solve the task at

hand.

• Interpret what the models learn in order to possible obtain any meaningful biological

information.

• Measure the generalization of the models to different datasets, with different types

of cells and stem cells.

• Check with real data, the claims of recent papers which have identified BCSC

markers. And discuss the result.

2

1.3 Structure of the thesis

This thesis is divided in a total of 5 chapters, which are distributed in the following way:

• Chapter 2: In this chapter we will briefly discuss the state of the art in this task,

along with describing the datasets used for this work.

• Chapter 3: Here, we will talk about the methodology used, a brief theoretical

background in machine learning, and the models used will be explained in good

detail.

• Chapter 4: Will present the experimental setup, along with the libraries used for

the experiments and the hyperparameters of the models.

• Chapter 5: The results will be shown in this chapter, together with a discussion

and a summary.

• Appendix A: Here we will show plots with additional results together with some

discussion that is not in the scope of the main objective.

3

Chapter 2

State of the art and data description

Even though the main problem of this work still hasn’t been resolved, there are some

attempts at trying to solve it. In this chapter we will go over the two main algorithms

which try to identify cancer stem cells.

2.1 CytoTRACE

One of the state of the art methods to identify BCSCs is the CytoTRACE [9] algorithm.

CytoTRACE is based on the experimental finding that stemness (the likelihood of being

a stem cell) is positively correlated with the amount of genes expressed in a cell (we say

if say a gene is expressed if the value is higher than zero).

The algorithm computes the amount of genes expressed for each cell, then performs

some extra steps, like making a nearest neighbor graph and applying non-negative least

squares regression. The final result is a score for each cell between 0 and 1 (0, meaning

unlikely to be a stem cell, and 1, very likely to be a stem cell).

2.2 ORIGINS

Another state of the art method is ORIGINS [26]. This algorithm uses protein-protein

interaction (PPI) data to compute intra-cell gene interactions, in order to compute a

score called activity level between 0 and 1 (0, meaning a less active cell, unlikely to be a

stem cell, and 1, a more active cell, likely to be a stem cell).

4

2.2.1 Reimplementation of ORIGINS in Python

ORIGINS, unlike CytoTRACE, is only implemented in R programming language, since

in this work we will be working in Python, we have to implement the R code of ORIGINS

in Python and optimize it.

The PPI data used consists of a set of pairs P = {(gi, gj) |1 ≤ i, j ≤ |P |} of two genes,

where each pair represents an interaction (gene gi interacts with gene gj and viceversa).

ORIGINS then uses these pairs to build an adjacency matrix A of size Ng × Ng, where

Ng is the number of genes recorded in the dataset on which ORIGINS is applied, and

sets the value 1 to the entries of the matrix where two genes interact.

Then the algorithm computes the activity of each cell by getting the interaction of all

the genes of the same cell (intra-cell interaction) and sums them all:

Algorithm 1 ORIGINS pseudocode

Require: A ▷ Adjacency matrix.
Require: E ▷ Expression matrix (the data, cells by rows and genes by columns).

act← [] ▷ Empty list
for i← 0 to Nc do ▷ Nc is the number of cells

activity ← 0
for j ← 0 to Ng do

interaction← 0
for k ← 0 to Ng do

interaction← interaction+ A[j, k] · E[i, k]
end for
activity ← activity + E[i, j] · interaction

end for
act[i]← activity

end for
act← act−min(act)/(max(act)−min(act)) ▷ This is a broadcast operation

2.2.2 Algorithm rewriting

We can easily notice that this is a high time complexity algorithm, since it uses three

for loops to access the data and operate. Not only that, the original algorithm loads the

entire adjacency and expression matrix (data) in memory, which are both very sparse

matrices (almost all elements are zero) and can take up tens of GB.

5

Also, the adjacency matrix has a shape of Ng×Ng however most of the genes that are

recorded in the data do not exist in the PPI (the set of pairs of genes), this causes that

there are a lot of rows and columns in the adjacency matrix that are completely

zero, and thus, useless to the algorithm. Effectively reducing the shape of the adjancency

matrix.

In our rewriting of the algorithm, the first step is to preprocess the adjacency matrix

by removing all of those zero rows and columns and only leaving only the useful genes.

The second major rewriting is transforming the two internal loops into a dot matrix

product to speed up the computing time, the rewriting results in:

Algorithm 2 ORIGINS rewriting

Require: A ▷ Adjacency matrix.
Require: E ▷ Expression matrix (the data, cells by rows and genes by columns).

act← [] ▷ Empty list
for i← 0 to Nc do ▷ Nc is the number of cells

interaction← E[i, :] · A ▷ E[i, :] means the whole ith row of matrix E
activity ← interaction · E[i, :]T ▷ E[i, :]T means the ith row of E transposed
act[i]← activity

end for
act← act−min(act)/(max(act)−min(act) ▷ This is a broadcast operation

The third and final step is to convert both the expression and adjacency matrix into

sparse matrices to reduce the spatial complexity of the algorithm, for this, we used the

scipy library to convert into sparse matrices to save memory, and use fast and efficient

dot products.

2.3 Data description

In this work, we will use different datasets from which our models will learn. We need

different datasets because one of our objectives is to see if the models can capture any

patterns in the data that are specific to cancer stem cells and then measure how good

the pattern is by checking the generalization of the models across different datasets.

6

2.3.1 Breast cancer dataset (BCD)

The first dataset is data from breast cancer. We will refer to it as breast cancer data

(BCD), and we need it since it’s the core objective of this work. The data is obtained

from [14] with contains approximately 240, 000 cells, of which, only 3, 536 are labeled as

BCSC. Also, each cell has approximately 33, 000 genes (features) recorded.

One important remark, is that, with the current biological knowledge of breast cancer,

there doesn’t exist a ground truth, i.e. no dataset has all the BCSCs labeled, and some

stem cells might be incorrectly labeled. So, we have to carry that error with us, since

there is no way around it.

2.3.2 Hematopoietic dataset (HSD)

The second dataset we will use comes from cells in the human blood system (concretely,

the hematopoietic system, which generates blood cells in the human body).

The reason why we need this data is because the differentiation process (how stem

cells transform into other cell types) of hematopoietic stem cells (HSCs for short) is well

studied and known, however the same cannot be said for BCSCs. This means, that unlike

BCD, the labelling of this dataset is much more reliable.

So, we will use this data to see if models that learn on hematopoietic data where

the differentiation process is clear, can learn any patterns that generalize well to identify

BCSCs.

The HSD is obtained from [23] which contains approximately 266, 000 cells, of which

4, 323 are labeled as HSCs, also, each cell has approximatelly 27, 000 genes (features)

recorded.

2.3.3 General dataset (General)

The third and last dataset comes from a collection of different cells and stem cells in the

entire human body, hence, we will refer to this dataset as General.

This dataset contains a very small portion of HSCs, but not BCSCs, and the labelling

is also reliable.

7

The data is obtained from [33] where the dataset contains approximately 1, 273, 000

cells, from which 83, 871 are labeled as stem cells, this last dataset has genes 51, 383(features)

recorded. we use this data to provide the models with many different types of stem cells

to see if they can capture any pattern specific to stem cells and then generalize to other

datasets.

8

Chapter 3

Methodology

Machine Learning is a branch of Artificial Intelligence whose purpose is to create statis-

tical models that are able to learn patterns and relationships within the data they are

provided with, in order to correctly make predictions. In this work, we will discuss and

show how we used Machine Learning to solve the task at hand.

3.1 Theoretical Background

Before we continue, there are some aspects about Machine Learning that need to be

elaborated to be able to understand our methodology better.

3.1.1 Supervised Learning

As previously described, we currently have both data obtained from different sources, and

some of its medical annotation, which we will now refer to it as labels. This particular

situation, in which we hold both the data and its labels to learn from, is a type of Machine

Learning which is called Supervised Learning.

In Supervised Learning, we try to build a model that maps an input x ∈ Rd to its

correct label y ∈ R, by learning from the dataset X and its labels Y .

Mathematically speaking, we assume that there exists a function f ∗(x) : Rd → R

which perfectly maps inputs to the correct labels. However, such perfect function is

9

out of our reach, uncomputable, but we can make a Machine Learning model which

approximates f ∗, by learning from our dataset such that our model generalizes well to

unseen datapoints (inputs not present in our dataset).

So, to summarize and formalize these concepts:

• We have a datasetX made of a number i of samplesX = {xi | 1 ≤ i ≤ |X|, x ∈ Rd}.
And also a set of labels Y = {yi | 1 ≤ i ≤ |Y |, y ∈ R}.

• We try to build a model f(x) : Rd → R which approximates f ∗ by learning from

the datapoints in our dataset so that it generalizes well to any possible input.

In our work, we are trying to correctly differentiate BCSC from non-BCSC, the output

of our model is a discrete label called a class, and our goal is to correctly classify a cell

into two possible categories: Class 0 (non-BCSC) or Class 1 (BCSC). This, is translated

as a binary classification problem, where all the labels y ∈ {0, 1}.

To proceed, we gather input-output pairs (xi, yi) and feed them to our model. With

this, we obtain a formulation for the model we must build in our work:

f(xi) : X → {0, 1}

yi = f(xi)

3.1.2 Bias-Variance tradeoff

However, the mathematical formulation of our model is still not enough to begin ap-

proaching the problem. Theoretically, any model that follows the previous formulation

would be acceptable, but in practice, reality is different.

Recall, that we are trying to fit the data in our present dataset, which means that

every possible model we use will be different and will perform differently. But what makes

some models better for certain datasets or tasks?

One of the first essential components of a model is Bias, which is defined as the

difference between the expected prediction of the model and the true underlying

value being predicted.

10

In essence, bias is the error caused by the assumptions the models makes about the

data provided to it and its underlying patterns. On one hand, high bias models tend to

make strong assumptions about the data (e.g. assuming the data is linear) and may fail

to correctly capture the patterns because of oversimplification of the problem. On the

other hand low bias models have little to no assumptions, but its possible that they end

up overfitting (more on overfitting to follow).

Bias = E
[
(f(x)− f ∗(x))2

]
Another important component is Variance, which must not be mistaken with statis-

tical variance σ2. Variance refers to the error fluctuation across different datasets,

if we have a model, and we trained the same model with different training datasets, the

error measured is different for every one of those models, this is caused by noise and

random fluctuations in the data.

V ariance = E

[
E
[
(f(x)− E[f(x)])2

]]

where E[f(x)] represents the average prediction of the model over all possible training

datasets.

There is one last important concept, irreducible error ϵ. This, represents the error

that cannot be reduced by any model, no matter how well-fitted or complex a model may

be. This error comes from multiple sources, such as missing data or information, errors

when measuring and taking data or even the natural variability of the task at hand (in

our case, sources of irreducible error are: high variability in gene expression and missing

genes in the sequences).

With all of this, we can decompose the expected error of a model in the following

equation:

Error = Bias2 + V ariance+ ϵ

Now, the only thing that is left is to reduce Bias and Variance until the error is close to

zero. However, it’s not that simple, if we were to reduce Bias (low bias, high complexity

11

model), our model is likely to fit the noise in the training dataset, thus, increasing the

Variance and the expected error. On the other hand, if we reduced Variance the models

may fail to capture complex patterns in the data, increasing Bias and the expected error.

Figure 3.1: Illustration of Bias-Variance interaction.

So, the optimal approach is to find the perfect balance between Bias and Variance so

that our model can fit the data and generalize well.

3.1.3 Overfitting and underfitting

Once we know about the error sources of our model, we must also understand two partic-

ular situations that occur when finding the optimal balance between Bias and Variance.

• Underfitting: Underfitting occurs when a model with high bias and low variance

(simple model, with low complexity) fails to capture the patterns in the data and

fit it properly, thus failing to learn from the data. Signs of underfitting include

the training error being very high.

• Overfitting: Overfitting occurs when a model with low bias and high variance

(complex model, prone to fit errors in the data) fits the training data and the noise,

thus failing to generalize. Signs of overfitting include the training error being

low and the test error being high.

12

Figure 3.2: Illustration of Under and Overfitting.

3.1.4 Curse of dimensionality

In the machine learning field, there is a phenomenon that occurs when working with data

that lives in high dimensional spaces, which can negatively impact the performance of

the models, the curse of dimensionality.

When increasing the number of features (dimensions) in a dataset, the average dis-

tance between observations (datapoints) increases, making the dataset more sparse. This

means, that if we want to keep the average distance constant we need to get more data-

points to fill the ”empty space” in a high-dimensional sparse, dataset.

Figure 3.3: As the dimension increases, the number of datapoints needed grows exponen-
tially.

This affects the main problem in this work, because we will be working with very high

dimensional data, and we will require huge amounts of data (which are not available, or

not many datasets exist). So this will also be a source of error.

13

3.2 Machine Learning models

We will now dive, with enough detail, into the different models that exist in Machine

learning and have been used in this work.

3.2.1 Logistic Regression

Logistic regression is a supervised machine learning algorithm used for classification,

where the goal is to predict the probability that an instance belongs to a given class or

not.

Logistic regression consists in taking the continuous output of a linear regressor,

and then applying a sigmoid function σ to it, in order to transform the output into a

probability ranging from 0 to 1.

σ(x) =
1

1− e−x

Just like in linear regression, we have a data matrix X of shape n ×m, where n is the

number of samples and the m the number of features, and we want to find a vector of

coefficients w = (w1, ..., wm) and vector of biases b = (b1, ..., bm) which minimize error.

And we operate in (almost) the same way:

z = (
m∑
i=1

wi · xi) + b

z = w · x+ b

but we add the extra step:

o = σ(z)

and thus, we transform the output into a probability of belonging to class 1.

14

3.2.2 Multilayer Perceptrons

A multilayer perceptron (MLP for short), consists of a set of neurons (also called per-

ceptrons) which are interconnected and arranged by layers.

A neuron is an information-processing unit which is the basic building block of an

MLP, it is composed of three elements:

• Weights: A set of weights which express the importance of the respective inputs

to the output of the neuron. To operate, the input xi connected to the neuron k is

multiplied by the weight w.

• Adder: An adder for summing the input signals, weighted by the respective

weights of the neuron; the operations here essentially constitute a linear com-

biner.

Figure 3.4: Illustration of a neuron (without activation function) .

The model of a neuron described above, also includes an externally applied bias,

denoted by bk. The bias bk has the effect of increasing or lowering the total output of the

adder, depending on whether it is positive or negative, respectively.

In mathematical terms, the neuron computes the output according to the following

equation:

yk =
(m∑

i=1

wki · xi

)
+ bk

15

Activation functions.

The neuron described above has the issue that it is only suitable to solve linear prob-

lems, and thus, cannot be applied to complex or non-linear problems. However there

exists a solution for this, adding an activation function to the neuron.

An activation function, limits the amplitude of the output of a neuron, and is designed

in such a way that it is usually a non-linear function, in order to allow the neurons to

model non-linear patterns and relationships in the data. The only requirement for this

activation function is that it must be differentiable with respect to the input.

The model of each neuron in the MLP now includes a nonlinear activation function

which allows it to fit data in a non-linear way.

Figure 3.5: Illustration of a neuron (with activation function) .

Now the equation for the output changes to:

vk =
(m∑

i=1

wki · xi

)
+ bk

yk = φ(vk)

where (x1, x2, ... , xm) are the input features; (wk1, wk2, ... , wkm) are the respective

weights of neuron k; vk is the linear combiner output due to the input signals; bk is the

bias and φ(.) is the activation function.

Now, what’s left is distributing all the neurons by layers. Each layer consists of

a number mi of neurons, where each neuron is connected to all the neurons from

16

the previous and the next layer. However, all the neurons from the same layer are

independent (no computing dependencies) of each other. Finally, the model is organized

in the following way:

• Input layer: This layer consists of neurons which receive the raw inputs.

• Hidden layers: These layers are responsible for the main computations of the MLP,

the neurons extract features and patterns from the previous layers, combine them,

and propagate the result forward.

• Output layer: The last layer of the model, which transforms the result from the

hidden layers into a probability.

Figure 3.6: Illustration of an MLP .

3.2.3 Random Forests

Another model for classification in the machine learning field are Random Forests (RF

for short), which are different from MLPs.

RFs are composed by a set of Decision Trees (DT for short), where each DT is a

graph built as a hierarchical spanning tree. In each DT, the internal nodes represent

the input features of the data; the edges (also called branches) represent the decision

rules and each leaf node represents the outcome (in our work and study case a class).

DTs learn decision rules instead of hidden features like MLPs do. A decision rule

consists of selecting an input feature in a way that makes classifying the input

data simpler, this is done by maximizing the information gain.

Information gain measures how much information a feature provides us about a class.

Each internal node creates a decision rule by spliting the data by the feature with the

maximum information gain, which is computed using Shannon’s entropy:

17

E(D) =
C=1∑
i=0

−pi · log(pi)

IG(D,F) = E(D)−
∑ |Ds|
|D|
· E(Ds)

where E is Shannon’s entropy, D is our dataset, F is an input feature, and Ds is the

subset that results when splitting the dataset by feature F.

With all of this, we follow these steps:

• We create the root node of the tree.

• Each node that does not have a decision rule, splits the data according to a feature

that maximizes information gain.

• However, we do not split when the data belongs to only one class (this means

we reached a leaf node, also called a pure node).

Once there are no nodes left to split, we stop the process.

Figure 3.7: Illustration of a decision tree.

Now, to consolidate the definition of RF:

• We must gather a bunch of DTs in parallel, each DT will be independent from the

rest.

18

• We feed to each tree a fraction of the original dataset so that each tree learns

different decision rules. This ensures that each tree in slightly different, reducing

Variance and globally improving the predictive power or performance.

• The result is the aggregation of the independent outputs of each DT.

Figure 3.8: Illustration of a Random Forest (each DT learns different rules and predicts
differently, but the global result when aggregating is correct, more on aggregating to
follow).

3.3 Learning embeddings

When working with very high dimensional data, as we said before, distances between

datapoints become very high, and the task of learning a model that maps inputs to

outputs can carry a lot of error.

So, in Machine Learning, there are techniques that try to reduce this error by per-

forming dimensionality reduction . With this, we try to map the original dataset

to a lower dimensional space, while trying to preserve as much relevant information as

possible.

There are many techniques that can be used, in our case we decided to try to learn

embeddings from the dataset. Embeddings [19] are a type of representation learn-

ing technique used in machine learning that encodes high-dimensional data to a lower-

dimensional space. Each datapoint in the lower-dimensional space is then represented as a

vector (called the embedding) and each vector is computed in a way that the information

is preserved as well as possible.

19

3.3.1 ”Meaningful” embeddings

The question of how to learn embeddings that preserve information inmediatly arises.

In general, one cannot ensure that each of the learned features (dimensions in the

low-dimensional space) holds any meaning or is related in any direct way to the original

features.

However it is possible to add restrictions or formulate the problem in such a way that

the embedding are computed in a useful way.

In our work, we have to distinguish between stem cells and non-stem cells, normally,

one could think that stem cells are similar to other stem cells and non-stem

cells are similar to other non-stem cells. But, we must not forget that in chapter 1

we mentioned that BCSCs are very heterogeneous. However, we could try forcing the

models to learn a representation in such a way that cells which have the same

label have similar embeddings.

In other words, we can make the models learn a representation (embedding) in which

cells from the same class are similar to each other but very different from embeddings

from other classes.

3.3.2 Metric Learning

First, since we want our embeddings to be ”similar” to some other embeddings, we must

define a measure of distance or similarity, in essence, a metric, which tells us how similar

two embeddings are.

The standard approach would be to choose a standard distance metric (Euclidean,

Manhattan, Cosine, etc.) using a priori knowledge of the domain. However, in this case,

there’s no concrete knowledge regarding BCSCs.

Metric learning aims at automatically constructing task-specific distance metrics from

(sometimes weakly) supervised data, in a machine learning manner. The learned distance

metric can then be used to perform classification. But in our case, we will use it to also

learn embeddings.

20

When directly mapping to a lower-dimensional space randomly, the datapoints will

be sparse, spread and without order. Since we want to capture similarities between dat-

apoints, one could try, as we said previously, to preserve similarities by making similar

datapoints (called positives) closer together in the lower-dimensional space

and different datapoints (called negatives) farther away in the low-dimensional

space, and that, is one of the core ideas of metric learning.

Figure 3.9: The core idea is bring together similar datapoints and push away different
datapoints. The anchor is the reference datapoint (the one that is used to compute which
are positives and negatives) .

ArcFace loss

The chosen metric to learn embeddings is the ArcFace [6] loss function. ArcFace tries

to map every embedding (a vector) into a hypersphere (n-dimensional sphere), where

similar embeddings are closer together and different embeddings are far apart.

The way this is done is by computing the angles between the embedding (a vector)

and all the class vectors (can also be called the mean vectors of each class).

If the embedding has a higher projection (small angle) to the class vector of the

class the embedding belongs to then we say it is correctly projected.

LArcFace = −
1

N

N∑
i=1

log
es(cos(θyi,i+m))

es(cos(θyi,i+m)) +
∑

j ̸=yi
es cos(θj,i)

Notice that we also add a margin m, this margin has the function of separating all

the classes and penalizes deeply vectors that are not extremely close to the class vector.

Also, we add a scaling parameter s (called temperature), which encourages models to

be confident in their predictions (in this case, the scaling penalizes a lot if the embedding

is projected to the wrong class).

21

Figure 3.10: Illustration of ArcFace. X is the embedding, W0 andW1 are the class vectors.
θ0 and θ1 are the angles between X and each class vector.

Batch normalization

In order to compute embeddings we used MLPs, with an extra addition, we added batch

normalization which is present in almost all (if not all) metric learning architectures.

Batch normalization consists in normalizing the output of each layer of the MLP with

the following equations:

Bn =
x− µ

σ
· γ + β

µmov = αµmov + (1− α)µ

σmov = ασmov + (1− α)σ

Where γ and β are learnable parameters, and µ and σ are the mean, and standard

deviation, respectively.

When evaluating a model, the mean µ and standard deviation σ are not computed,

instead, the moving average and moving standard deviation is used, since they represent

all the data and not just the current batch.

Batch normalization helps the training process as regularization, preventing overfitting

and stabilizing learning.

22

3.4 Bagging

The last method we will use is called bootstrap aggregating (bagging for short). Bagging,

is an ensembling machine learning technique which aims to reduce the Variance error of

the models.

The first step is to select a base model for learning, in our case we will use as base

models both MLPs and RFs.

Secondly, we perform random sampling with replacement on our dataset (randomly

select a subset of samples from our original data, where each sample may appear more

than once), to create numerous subsets (the same number as base models). This makes the

models have access to different portions of the original data and learn different patterns.

The third step is to independently train each model with their corresponding subset

of data.

Lastly, we aggregate the output of each model, in our case, the final output is the

average of all the outputs.

Bagging helps reduce overfitting by reducing Variance, since the training data for

each independent model is different. Not only that, it can improve the model accuracy

and handles imbalanced data well (which is our case).

Figure 3.11: Illustration of bagging.

23

3.5 Performance measures

We must not forget that after training our model, we must have a method that can

measure the performance of the model, how well it generalizes and how trustworthy the

model’s prediction are, for this, we must define a performance measure.

3.5.1 Precision and Recall

There are multiple performance measures, one of most common ones to use, is accuracy,

however, in our work, we are using datasets which are severely unbalanced, thus, using

accuracy can lead to very optimistic and unrealistic results. So, we will use Preci-

sion and Recall, we will define them according to the four possible predictions of our

model:

• True positive (TP): When the model classifies a cell as a BCSC, and is correct in

its prediction, we call this a true positive.

• False positive (FP): When the model classifies a cell as a BCSC, and is not correct

in its prediction (it was not a BCSC) we call this a false positive.

• True negative (TN): When the model classifies a cell as not a BCSC, and is

correct in its prediction we call this a true negative.

• False negative (FN): When the model classifies a cell not as a BCSC, and is not

correct in its prediction (it was a BCSC) we call this a false positive.

Precision

Precision is defined as the fraction of correctly predicted positives.

Precision =
TP

TP + FP

Recall

Recall on the other hand is defined as the fraction of true positives the model was able

to identify from the dataset.

Recall =
TP

TP + FN

24

F1 - Score

F1 Score is the harmonic mean of the precision and recall, in such a way that gives an

idea of both precision and recall at the same time.

F1 =
2 · Precision ·Recall

Precision+Recall

In our results we will be reporting the F1-Score for only class 1 (BCSCs). And

we will also report precision and recall curves, this curve shows the tradeoff between

precision and recall for different thresholds. A high area under the curve represents both

high recall and high precision, where high precision indicates a low false positive rate,

and high recall means a low false negative rate.

3.5.2 ROC-AUC

Another performance measure is the Receiver Operating Characteristics (ROC) with Area

Under the Curve (AUC).

ROC represents the recall with respect to the specificity of a classifier, it is a proba-

bility curve which represents the true positive rate versus the false positive rate according

to different thresholds.

Specificity is essentially the same a precision but for class 0 (non BCSCs).

Specificity =
TN

TN + FP

AUC measures separability, in other words, how well our model is able to differ-

entiate between classes. The higher the AUC, the better the model is at predicting

correctly classes 0 and 1.

25

Figure 3.12: Example of a ROC-AUC (not real data).

26

Chapter 4

Experimental Setup

In this chapter we are going to describe how we trained our models, the framework used

to operate and more.

4.1 Data management and input size issues

As previously describe before, we will be working with three different datasets, to then

measure the generalization of all models across the datasets. However, there is one issue

we must take care of before continuing.

Each dataset has a different number of recorded genes (features), and models like

MLPs and RFs require a fixed input size which cannot change. Which means that it

is not possible to measure generalization to other datasets because each one

would require a different input size.

Fortunately there are genes (features) that are recorded in every dataset (however

some are not present in every dataset). But, each time they are in a different

position, which is also an issue, since MLPs and RFs also require that each feature must

be always in the same position.

So, before the experiments, we must preprocess the data. We must come up with a

way to create a fixed input size for every dataset and make every gene appear

in the same position everytime.

27

4.2 Training formats

Our solution to this is to create what we called training formats. Essentially, we will

assign to each gene a fixed position (and create a shared gene ordering for all datasets)

and when first loading the data, all genes will be shuffled to the positions according to

the ordering that is established by the training format, so that every gene stays in the

same position everytime.

With this, we fix the gene order issue. We can also fix the input size problem if we

only take genes that are in the training format (this means, ignore genes that are

not in the ordering) and set the missing genes in the format as zero.

In our work, we have established three different formats:

• Stem cell genes format (we will refer to this format in the next chapter as StemMark-

ers): This format is composed of genes that are, according to biological literature,

correlated with stemness (the presence of these genes can identify stem cells, and

these special genes are given the name ”markers”). The list of markers is extracted

from [7], which contains 8547 genes. We create this format to see if only using

these genes is enough for models to correctly predict stem cells.

• Non stem cell genes format (we will refer to this as NonStemMarkers): This format,

on the other hand is composed of every gene that is not in [7]. We create this format

to see if the genes that are not in [7] contain any useful information to

predict stem cells.

• All genes format (we will refer to this as AllGenes): Here we use both the genes con-

tained in Stem Markers format and Non Stem Markers format. We use this format

to check if giving models access to all genes improves the performance.

4.3 Pipeline and hyperparameters

Now, let’s go over the main framework and libraries used for our work:

• PyTorch: PyTorch is the standard machine learning library to train and evaluate

models. We will use this library to create MLPs and compute embeddings.

28

• PyTorch Lightning : PyTorch Lightning is a deep learning framework that offers

maximal flexibility without sacrificing performance, it optimizes the training loops,

and has many options for model selection and logging results.

• XGBoost : XGBoost is one of the many extensions of PyTorch, this library in par-

ticular will be useful to create and train RFs.

• PyTorch Metric Learning : An extension of PyTorch which implements all of the

necessary tools to train models using Metric Learning approaches, we will use it to

compute embeddings.

• Ensemble PyTorch: Ensemble PyTorch is another extension which we will use to

create bagging models using PyTorch as the base.

• Scikit-learn: A library which implements many basic functionalities, in our it will be

useful for us since it implements simple Logistic Regressors and all the performance

measures needed to evaluate our models.

• SciPy : SciPy is a library that offers algorithms for optimization,integration, in-

terpolation, and many more problems. But we will only be interesed in using the

sparse matrices formats to store our data matrices in order to consume far less

memory.

• Captum: Captum is a extensible library for model interpretability built on Py-

Torch. It offers many methods to explain the models and help comprehend them

internally. Captum will be useful to understand MLPs, where we will use Integrated

Gradients [28], these are used to attribute the prediction of a model to its input

features, which helps us uncover which features are most influential in the model.

4.3.1 Logistic Regressors

, There are no major hyperparameters to tune for logistic regressors, except the solver

and the maximum iterations.

The solver used for fitting the data is ”lbfgs” (which is the recommended and default

option), and we have set the maximum iterations of the algorithm to 1000.

4.3.2 MLPs

When training MLPs, the overall design (architecture) affects performance, specially two

choices:

29

• Depth: Depth refers to the number of hidden layers, an MLP with many hidden

layers can capture complex relationships and patterns in the data, however, they

are prone to overfitting and the vanishing gradient problem.

• Width: Width refers to the number of neurons in a single layer. A layer with many

neurons can learn more detailed internal representations of the data, but are also

prone to overfitting.

In our work, not only we will try different combinations of width and depth, also, we will

use MLPs with no activation functions and different training formats.

So, summarizing, the experiments on MLPs will try:

• Different training formats: StemMarkers, NonStemMarkers and AllGenes.

• Activation functions: If no activation function is used, the MLP becomes a linear

model. In case an activation function is used it will be the LeakyReLU .

• Width: The choice for width has been manually fixed. Different values from width

will be drawn from a list in a logarithmic scale, considering also the training format

chosen:

– Stem Markers: In case this training format is chosen, the width is drawn from

the list: [100, 250, 500, 1000, 2500, 5000, 8547], since 8547 is the maximum

amount of genes correlated with BCSCs, taken from [7].

– Non Stem Markers and All Genes: In case this training format is chosen, the

width is drawn from the list: [100, 250, 500, 1000, 2500, 5000, 10000]

• Depth: The number of layers chosen will be between 1 and 4 layers, to avoid

overfitting and vanishing gradient.

4.3.3 Random Forests

In the case of random forests, there are architecture choices similar to depth and width

in MLPs, but slightly different:

• Depth: In this case, depth refers to number of nodes a tree can have. The more

nodes a tree has, the more decision rules it must make, which can allow it to fit the

training data better, but it can also overfit. The chosen experiments will use depth

between 250 and 3000 nodes.

30

• Width: Width is not the same as in MLPs. Now, width refers to the number of

trees working simultaneously, the more trees a RF has, the more it can average over

more diverse decision boundaries, reducing Variance and improving performance.

We will experiment using between 200 and 500 trees in parallel.

• Subsample ratio: One extra hyperparameter is the ratio of the original data that

is given to each tree independently. Giving different portions of data to each tree

can act as regularization and increase performance. In our case the ratios will be

chosen from the list [0.5, 0.75, 1].

4.3.4 Embeddings

As we previously described before, we will use MLPs to learn embeddings. Which means,

that the same hyperparameters used for MLPs will be used to learn the embeddings.

However, the architecture must be slightly modified, this time, two MLPs will be

needed, one will compute embeddings, and the other one will predict a probability based

on those embeddings.

The first MLP, called the Embedder consists of linear layers, with LeakyReLU ac-

tivation function and batch normalization. The second MLP only has linear layers and

LeakyReLU activation functions.

The experiments will try multiple values for the width, depth and training formats

for the embedder.

In the case of the second MLP, the width has to be same one chosen for the embedder

in order to match the shapes of the weight matrices, so, only the depth will be changed.

Figure 4.1: Embedder - MLP architecutre (the // symbol represents the stop-gradient
operator).

31

Batch Miner

When working with Metric Learning loss functions and approaches it is also required to

select a mining strategy.

Essentially, each time we compute embeddings from a batch of data, the loss can be

computed differently according on how we feed the triplets (anchor, positive and negative)

to the loss function. Selecting which triplets to feed to the loss function is called mining,

and can be summarized into three cases:

• Easy triplets: triplets which have a loss of 0, because the distance from the

positive to the anchor is less than the distance from the negative to the anchor.

Df (A,P) +m < Df (A,N)

where m is the margin.

• Semi-hard triplets: triplets where the negative is not closer to the anchor than

the positive, but which still have positive loss.

Df (A,P) < Df (A,N) < Df (A,P) +m

• Hard triplets: triplets where the negative is closer to the anchor than the positive,

with very high loss.

Df (A,N) < Df (A,P)

Figure 4.2: Illustration of batch mining, depending on where we place the negative ex-
ample, the triplet becomes an easy, semi-hard or hard triplet.

32

In our work, we decided to work only with hard triplets, since according to [11] it

usually yields better results. Which means that when mining the triplets, if there are any

hard triplets then we have loss > 0, otherwise, if there are no hard triplets then loss = 0.

4.3.5 Bagging

One of the last methods we will try in this work is bagging. As previously described

before, bagging consists of aggregating the output of a set of classifiers, so, naturally the

architecture and number of classifier will directly affect the performance.

• Architecture: For our experiments, the chosen base model with be both a linear

MLP and a non-linear MLP. However, since this may consume a gigantic amount of

memory, each model will only have only hidden layer where the number of neurons

will be chosen according to the training format:

– StemMarkers: In case this training format is chosen, the width is drawn from

the list: [100, 250, 500, 1000, 2500, 5000, 8547].

– NonStemMarkers and AllGenes: In case this training format is chosen, the

width is drawn from the list: [100, 250, 500, 1000, 2500, 5000, 10000].

• Number of classifiers: Each new classifier we add helps reduce the overall Variance,

however, each new classifier consumes a lot of memory. In our case, we will only

experiment with 5 to 10 independent classifiers.

4.3.6 Learning rate optimizer and Callbacks

Some models, like MLPs, learn from the data by minimizing a loss function, in our case,

the loss function chosen for all the models who need one is the binary cross entropy .

More specifically, in PyTorch is the BCEWithLogitsLoss .

When minimizing a loss function, the weights and biases of the MLP change according

to the gradient of the loss functions with respect to the weights and biases. However,

this change must be regulated with a learning rate.

The learning rate directly affects the speed at which the models learn, if the learning

rate is too low, the training process may take a huge amount of time to converge (if it

does converge at some point). When the learning rate is too high, the weights and biases

33

change drastically every iteration (epoch) and is very unlikely to reach a local minimum

in the loss function. To avoid this, we use a learning rate optimizer which carefully

computes the optimal learning rate to use every time we need to update the weights and

biases.

The optimizer used in this work is AdamW, this optimizer is a version of Adam

with L2 regularization, but with added weight decay to avoid overfitting and improve

generalization since Adam has been observed to produce models which don’t have good

generalization power [16].

Early stopping callback

In order to save time and computing resources we will include an early stopping callback

in every experiment.

After each epoch, we obtain the F1-Score for both the training and validation data,

early stopping consists on finishing the training process if the performance on validation

data doesn’t improve after a set number of epochs (called patience). We have set patience

to be 5 epochs, which means, if performance on validation data doesn’t improve 5 epochs

after the best performance obtained, training stops, and we keep the weights of the

previous 5 epochs.

34

Chapter 5

Results

Finally, we will show the results obtained, along with a discussion.

5.1 Performance on the same dataset

After training, we must measure how well our models generalize, and compare the per-

formance between models.

Here, we want to answer the following questions:

• How well do the models fit the data.

• How well the models generalize to the validation and test partitions.

• Interpret the hidden features the models learn in order to extract any meaningful

biological information.

In this section we will show multiple tables with the F1-Score of the models, each

entry of the table will be a combination of the training format (StemMarkers, AllGenes

and NonStemMarkers) used and the dataset used for training (BCD, HSD, General).

Also, we will analyze the feature importance of each model and discuss the results.

However, we will only discuss the results and importance in BCD, in order

to not artificially extend this section. The rest of the figures and discussion will be

written in the Appendix A

Note: The training, validation and test partition are always the same for all

models.

35

5.1.1 Logistic Regressors

Here we show the results obtained with logistic regressors:

Figure 5.1: F1-Score of logistic regressors (best results in red).

The simplest model possible, a logistic regressor, already performs very well in both

BCD and in HSD, however, struggles when fitting the data in the General dataset (the

training F1 is not very high).

When the model is only trained with stem cell markers (genes used to isolate and

identify stem cells), it also performs well, which confirms that the stem cell markers

are predictive of cancer stem cells (at least, some, maybe not all).

On the other hand, when using only non-stem cell markers, it also has good perfor-

mance:

• In BCD: The performance is worse, but still good, meaning that non-stem cell

markers are also predictive of BCSCs (at least, some, maybe not all).

• In HSD: The performance is better than StemMarkers in both validation and test.

• In General: The performance is almost equal.

In all datasets, when the models has access to all the recorded genes (AllGenes format),

the validation F1 is better than in the other two formats, which hints that combining the

information provided by all the genes, cancer stem cells can be distinguished better.

36

Feature Importance

Now, let’s analyze the feature importance of the logistic regressors, essentially, we take

a look inside the model and get which internal features has the model learned

to identify the stem cells. In the case of logistic regressor we only need to take

the weights (or coefficients) the model learns and see which contribute positively or

negatively, if a coefficient is positive it means that the probability of being a BCSC

increases if the value of the gene also increases, if the coefficient is negative, it means

that the probability decreases if the value increases.

Figure 5.2: Feature importance by logistic regressors on BCD (positive importance, on
top, negative importance on bottom).

37

We can see that, for the logistic regressor, the gene PLCG2 is by far the most im-

portant gene that predicts BCSCs, since the coefficient is higher than 0.5. This gene has

already been identified as related to breast cancer and other diseases in [12].

On the flip side, the gene HMGCS1 predicts non-BCSCs. This gene is known, to be

a BCSC marker, and essential for cancer stem cell activities in breast cancer in general

such as they detail in the study [5]

5.1.2 MLPs

Now, let’s look at the results obtained by linear MLPs:

Figure 5.3: F1-Score of linear MLPs (best results in red).

And the results obtained with non-linear MLPs:

Figure 5.4: F1-Score of non-linear MLPs (best results in red).

38

We can already tell that linear MLPs, have better test F1 than the logistic regressors

in general (not all cases), which means that they generalize a little better. However, the

non-linear MLPs are a little worse.

Similarly, when using the datasets BCD and HSD, they both perform well, however,

the linear one struggles to fit the data in the General dataset, whereas the non-linear

MLP has no issue (high training F1). Also, we can see that in all datasets, non-stem cell

markers also has good performance.

Feature importance

Figure 5.5: Positive feature importance by both linear (top) and non-linear (bottom)
MLPs in BCD.

39

Just like the logistic regressors, the gene PLCG2 is the most predictive of stem cells,

however we must note than in the case of MLPs the importance value is not a coefficient,

now it is an average of the integrated gradients. Even though they can be interpreted

in the same way:

• If the gradient is positive: If the value of the gene increases, then the probability

of being a BCSC also increases.

• If the gradient is negative: If the value of the gene increases, then the probability

of being a BCSC decreases.

Also, the gene SOX4 appears in the top 15 most importante genes, which has been

identified as a very important marker of BCSCs in [21].

40

Figure 5.6: Negative feature importance by both linear (top) and non-linear (bottom)
MLPs in BCD.

With respect to the negative importance, the gene MT2A is the most important gene

with a negative importance (for the linear MLP), since this is an integrated gradient,

this means that if the value of MT2A is high, the probability of being a BCSC is low, if

the value is low however, the probability of BCSC is high. This result is similar to [30]

is which the observe that the gene MT2A has low expression (low value) in both gastric

and colorectal cancer.

For the non-linear MLP, the gene KRT17 takes the first place, leaving MT2A as the

second most important gene with negative importance. Studies confirm that reduced

expression (low value) of KRT17 predicts poor prognosis in breast cancer [25].

41

5.1.3 Random Forest

Figure 5.7: Results obtained with Random Forests (best results in red).

Random Forests fit the data quite well, however, in some cases they fail to generalize well

(validation and test F1 is low compared to training F1).

Again, when the RFs have access to all genes, the performance increases (in the case

of HSD, RFs are close to MLPs or logistic regressors).

Feature Importance

Figure 5.8: Average information gain across the random forest.

42

Once again, the gene PLCG2 is by far the gene that is most predictive of BCSCs. We

can can see KRT17 again as the fourth most important gene. And in this case, the

importance is the average information gain of each gene across all nodes in the

random forest.

5.1.4 Embedder and MLP

Now, the results of the combination of embeddings and an MLP.

Figure 5.9: Results for the combination of embeddings and an MLP (best results in red).

The validation and test F1 here vary, as they are sometimes lower or higher than the

rest of the other models.

In the case of BCD, the embedder and MLP architecture performs worse than linear

and non-linear MLPs. With the other datasets, sometimes the embedder performs better

than linear MLPs but worse than non-linear MLPs.

This drop in performance could be attributed to the training and learning of the em-

beddings, since it’s not uncommon that models learn embeddings which both compress

and lose some information.

However, we would like to also analyze what this can tell us about the structure of

the data:

43

• In both BCD and HSD, the test F1 for the training formats StemMarkers and

NonStemMarkers are very similar. This potentially indicates that both formats

hold the sufficient information to distinguish well between cancer stem cells. But

this doesn’t mean that the features both formats have are independent of

each other, it could happen that are genes correlated with each other across both

formats, so, each format holds similar predictive power.

• In the General dataset, the StemMarkers format achieves more test F1 than Non-

StemMarkers, which means that in this dataset, the StemMarkers hold more pre-

dictive information than the other one in this dataset.

Feature Importance and Embedding space

Now, let’s see what the embedder learned and how the embeddings look (in BCD).

Figure 5.10: Original data space (left) versus learned embedding space (right).

Figure 5.11: Original data space (left) versus learned embedding space (right).

44

Figure 5.12: Original data space (left) versus learned embedding space (right).

We can see the embedder learns to separate well both classes (even though there are

some cells that are not correctly separated).

Feature importance

45

Figure 5.13: Feature importance by embedder and MLP on BCD (positive importance,
on top, negative importance on bottom).

Here, the gene PLCG2 appears again, however, as the 15th most important gene, the first

place is now taken by MALAT1, which is a gene known to induce metastasis in breast

caancer [13], and thus correlated to cancer stem cells.

In the negative importance, we see FTH1 take the lead. Recall that this means that

if the value of FTH1 is high then the probability of BCSC is low. Turns out, that

the study [1] ,finds that FTH1 acts as a tumor suppressor in breast cancer, and that

overexpression (FTH1 having a very high value) of FTH1 often associates with good

prognosis (disease developing favorably, or getting better) in breast cancer.

5.1.5 Bagging

Figure 5.14: Results obtained using bagging (best results in red).

46

When using Bagging, the method outperforms every other one, this boost in performance

(although a very small one) can be attributed to bagging reducing Variance (the error in

the dataset), but not to the architecture of the models, since the base models were MLPs

and bagging neither reduces nor increases Bias.

However, captun does not support integrated gradients for Bagging so we cannot see

the feature importance in this case.

5.2 Performance across datasets

Now, another objective of our work, is to measure the transferability, how well do the

models generalize to other datasets.

First, let’s get our baseline in order to compare to it, we run both CytoTRACE and

ORIGINS algorithm on all three datasets, and measure the F1-Score.

Figure 5.15: F1-Score obtained by CytoTRACE and ORIGINS on all three datasets.

Now, we will gather models trained on one dataset and get the F1-Score on a different

dataset (e.g. get a model trained on HSD and measure the F1 on BCD). In order to see

if the patterns the models learn are transferable to the other dataset, or see if they have

anything in common, potentially indicating that cancer stem cells have a common pattern

or not.

Note: In this chapter all the results of transfering to will be listed, since we considered

them important to discuss.

47

5.2.1 HSD to BSD

Figure 5.16: F1 Score resulting when transfering from HSD to BSD (StemMarkers).

Figure 5.17: F1 Score resulting when transfering from HSD to BSD (AllGenes).

Figure 5.18: F1 Score resulting when transfering from HSD to BSD (NonStemMarkers).

We can see that, again, the AllGenes format is better when generalizing to other datasets,

and the linear MLP is the model that best generalizes.

48

Figure 5.19: Precision-Recall Curve of all models and algorithms (All Genes, HSD to
BCD). ORIGINS in grey color.

Figure 5.20: Precision-Recall Curve of all models and algorithms (All Genes, HSD to
BCD). CytoTRACE in grey color.

Here we can see the precision-recall curve of the models transfered from HSD to

BCD, we show two plots because the curve of CytoTRACE overlaps with the

ORIGINS curve, since they are both below the ”no knowledge” curve, so we

show both, with their positions swapped, to make sure they can be seen. The rest of the

curves also overlap, only the linear MLP, is only one that generalizes to some extent.

49

Figure 5.21: ROC-AUC curve of all models and algorithms (HSD to BCD, AllGenes).

Now, for the ROC-AUC curve, we can see that has the highest AUC is obtained with

Linear MLPs and CytoTRACE and ORIGINS have the lowest AUC in BCD.

We can conclude that only the linear MLP trained on HSD does generalize to BCD,

and somewhat outperforms CytoTRACE and ORIGINS.

5.2.2 General to BSD

Figure 5.22: F1 Score resulting when transfering from General to BSD (StemMarkers).

50

Figure 5.23: F1 Score resulting when transfering from General to BSD (AllGenes).

Figure 5.24: F1 Score resulting when transfering from General to BSD (NonStemMark-
ers).

We can see that, again, the AllGenes format is better when generalizing to other datasets,

and the model that best generalizes is a linear MLP.

Figure 5.25: Precision-Recall Curve of all models and algorithms (General to BCD, All-
Genes). ORIGINS in grey color.

51

Figure 5.26: Precision-Recall Curve of all models and algorithms (General to BCD, All-
Genes). CytoTRACE in grey color.

The precision-recall curve of the models transfered from General to BCD are better

overall than when trained on HSD. Again, notice that, we show two plots because the

curve of CytoTRACE overlaps with the ORIGINS curve.

Here, even though the linear MLP has better F1-Score the precision-recall curve is

better for non-linear MLPs.

Figure 5.27: ROC-AUC curve of all models and algorithms (General to BCD, AllGenes).

In this case, we can see that has the highest AUC is a non-linear MLP and Cyto-

TRACE and ORIGINS have the lowest AUC.

52

Also, models from General to BCD do generalize better than models from HSD, but

they both outperform CytoTRACE and ORIGINS.

5.2.3 BCD to HSD

Figure 5.28: F1 Score resulting when transfering from BSD to HSD (StemMarkers).

Figure 5.29: F1 Score resulting when transfering from BSD to HSD (AllGenes).

Figure 5.30: F1 Score resulting when transfering from BSD to HSD (NonStemMarkers).

We can already tell that models trained with BCD generalize almost nothing to HSD,

with only the logistic regressor having some F1-Score (surprisingly, all the training formats

generalize equally).

53

Figure 5.31: PR curve of all models and algorithms (BCD to HSD, and AllGenes format).

Just as expected, some models are below the ”no knowledge line”. The linear, non-

linear, random forest and bagging models all have an F1-Score of 0 which means that

either their precision or recall is also 0, thus, all of their curves overlap, however, they

way the plots are made, only ”bagging” seems to appear since the its curve is drawn over

the other 3, but they are in the plot.

Figure 5.32: ROC-AUC curve of all models and algorithms (BCD to HSD, and AllGenes
format).

We can inmediatly notice, how CytoTRACE and ORIGINS have a high AUC, but

54

a very low F1-Score, and how in both the precision recall curve and the AUC, only the

embedder and the logistic regressor seem to generalize from BCD to HSD.

5.2.4 General to HSD

Figure 5.33: F1 Score resulting when transfering from General to HSD (StemMarkers).

Figure 5.34: F1 Score resulting when transfering from General to HSD (AllGenes).

Figure 5.35: F1 Score resulting when transfering from General to HSD (NonStemMark-
ers).

55

Figure 5.36: PR curve of all models and algorithms (General to HSD, and AllGenes
format).

We can clearly see that Bagging and the non-linear MLP have very good generalization

from General to HSD, with a very good precision and recall curve. This is expected,

since, as we said in chapter 2, the General dataset contains samples of HSCs. With this

we can confirm that models trained on General data learn patterns that transfer to HSD,

and somewhat transfer to BCD.

Figure 5.37: ROC-AUC curve of all models and algorithms (General to HSD, and All-
Genes format).

Just like the previous one, CytoTRACE and ORIGINS, have high AUC but lower

precision and recall, on the contrary, bagging and the non-linear MLP have an AUC of

almost 1 and also a good precision recall curve.

56

5.2.5 BCD to General

Figure 5.38: F1 Score resulting when transfering from BSD to General (StemMarkers).

Figure 5.39: F1 Score resulting when transfering from BSD to General (AllGenes).

Figure 5.40: F1 Score resulting when transfering from BSD to General (NonStemMark-
ers).

57

Figure 5.41: PR curve of all models and algorithms (BCD to General, and NonStem-
Markers format).

In this case we see the training format is NonStemMarkers, which surprisingly generalizes

better from BCD to the General dataset.

The RF has the best curve, and some other barely go over the ”no knowledge” line,

although the curve for the random forest is almost a straight line.

5.2.6 HSD to General

Figure 5.42: F1 Score resulting when transfering from HSD to General (StemMarkers).

58

Figure 5.43: F1 Score resulting when transfering from HSD to General (AllGenes).

Figure 5.44: F1 Score resulting when transfering from HSD to General (NonStemMark-
ers).

Figure 5.45: PR curve of all models and algorithms (HSD to General, and StemMarkers
format).

59

Lastly, the generalization from HSD to General is good, but not as good as it was from

General to HSD.

In this case, the StemMarker format seems make the models generalize better (the

have better F1-Score over all), with the non-Linear, bagging and linear MLP being a lot

better than the rest.

Figure 5.46: ROC-AUC curve of all models and algorithms (HSD to General, and Stem-
Markers format).

5.3 Signature overlap

One last important result is the poor overlap between gene signatures (a signature is a

set of genes which is used to identify and isolate stem cells).

In [21], a table with the most important signatures to identify BCSCs has been put

together. However, each time, more and more different signatures are discovered, with

each author claiming that their signature identifies cancer stem cells just like the rest, so,

the question of which signature is the best arises.

Here, we will show that it turns out that each signature identifies cancer stem cells

differently, and they have almost nothing in common.

We take the signatures from [21] and our BCD dataset, and we index the cells which

have their gene expression (values) closest to the signature.

60

Essentially, if a signature is ABCG2+ we take all cells that have the gene ABCG2

positively expressed and get the top 100, 250 and 500 cells with the highest expression.

Finally, we measure overlap between signatures, by computing the jaccard index of one

signature with all the rest, and taking the average.

Figure 5.47: Average Jaccard index between signatures taking top 100 cells.

Figure 5.48: Average Jaccard index between signatures taking top 250 cells.

61

Figure 5.49: Average Jaccard index between signatures taking top 500 cells.

With this, we show that each signature completely identifies stem cells differ-

ently than the rest (each signature identifies one group of cells and there is no overlap

between them). This completes our fourth objective.

This might sound obvious considering the previous sections, but this was done just

to prove that the gene signtures by themselves are not enough to solve the problem of

identifying BCSCs, since all signatures have completely different results. And that a

Machine Learning approach was needed.

5.4 Discussion

We conclude this chapter and the work with a summary and discussion of the results

• Both CytoTRACE and ORIGINS perform very poorly in all three datasets. These

two algorithms have the advantage that can be applied to any data given to them

without training, however the actual results leave much room to improve. Our

models, when generalizing, outperform both algorithms (in five out of six cases).

• All models are able to correctly fit each dataset and perform well in it, in the case

of BCD, we can say machine learning can solve the task of predicting BCSC given

a sequence of genes. This completes objective one.

62

• In (almost) all cases, models that learn with the AllGenes format outperform the

other training formats, which potentially indicates that the combination of both

stem cell markers and non-stem cell markers have more information together than

both indepently. This adds to objective two.

• In all models, non-stem cell markers have demostrated to contain infor-

mation useful to predict cancer stem cells. Whether this means that there

are some stem cell markers hidden in those genes that have not been discovered

yet, or the relation / correlation they have with the stem cell markers is beyond

the scope of this work. This could be useful in future work, since this demonstrates

that non-stem cell markers should not be ignored.

• The genes the models learn as most important (feature importance) have also been

identified as related to cancer in medical literature, which confirms both the liter-

ature and the biological validity of what the models learn. This adds to objective

two.

• Across datasets, the feature importance is very different, each dataset has different

positive and negative most important genes, and they seem to have nothing in

common. Also, in some cases, the generalization is very poor, which may point

to the fact that there is no common pattern among cancer stem cells of

different cancer types. This adds to objective two.

• Our models do generalize and transfer between datasets, although they outperform

both CytoTRACE and ORIGINS, in some cases like General to HSD they cleary

improve the algorithms, when transfering to BSD the improvement in very small.

But it is still better, which was our objective. This completes objective three, and

adds to objective one.

5.4.1 Sources of error

Here we will briefly point out some possible sources of error.

• Lack of data: Not many datasets exist where stem cells are labeled, so, there is

little data to work with and the noise in the datasets could be a potential error

source.

• Normalization unknown: When each dataset is created, the authors of the dataset

normalize them in the way they see fitting, but they don’t specify which method

they used. This affects us because all three datasets could potentially have been

normalized differently which affects measuring the transferability across datasets

and the generalization power.

63

• Different genes recorded: In each dataset, there is a number of genes recorded that

is not the same in all datasets (e.g. BCD has 33,000 genes and HSD 27,000).

So, there are genes, and thus, information, that is missing in the rest of the datasets,

the order of the recorded genes is also different which makes training models diffi-

cult.

5.4.2 Future work

In the future, if someone or we were to retake this work, they could try:

• Generate synthetic data using GANs or VAEs.

• Gather more data (although this could be expensive).

• Try more models and hyperparameters (although this will hardly improve the re-

sults, since they are already hard to improve).

• Use domain specific knowledge to further solve the task.

• Study in depth the rest of the genes that have been identified as important by the

models.

64

List of Acronyms and Abbreviations

AUC Area Under the Curve.

BCSC Breast Cancer Stem Cell.

DT Decision Tree.

HSC Hematopoietic Stem Cell.

MLP Multilayer Perceptron.

RF Random Forest.

ROC Receiver Operating Characteristics.

65

Bibliography

[1] Ali A, Shafarin J, Abu Jabal R, Aljabi N, Hamad M, Sualeh Muhammad J, and

Hamad M. Unnikannan H. Ferritin heavy chain (fth1) exerts significant antigrowth

effects in breast cancer cells by inhibiting the expression of c-myc. 2021.

URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8564339/.

[2] Peng B, Hu J, and Fu X. Elane: an emerging lane to selective anticancer therapy.

2021.

URL: https://pubmed.ncbi.nlm.nih.gov/34599140/.

[3] Yang B, Zhang M Luo T, Lu Z, Xue X, and Fang G. The novel long noncoding rna

rp11-357h14.17 acts as an oncogene by promoting cell proliferation and invasion in

diffuse-type gastric cancer. 2017.

URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5442875/.

[4] Guo C, Liu S, Wang J, Sun MZ, and Greenaway FT. Actb in cancer. 2012.

URL: https://pubmed.ncbi.nlm.nih.gov/23266771/.

[5] Walsh CA, Akrap N, Garre E, Magnusson Y, Harrison H, Andersson D, Jonasson

E, Rafnsdottir S, Choudhry H, Buffa F, Ragoussis J, St̊ahlberg A, Harris A, and

Landberg G. The mevalonate precursor enzyme hmgcs1 is a novel marker and key

mediator of cancer stem cell enrichment in luminal and basal models of breast cancer.

2020.

URL: https://pubmed.ncbi.nlm.nih.gov/32692762/.

[6] Jiankang Deng, Jia Guo, Jing Yang, Niannan Xue, Irene Kotsia, and Stefanos

Zafeiriou. Arcface: Additive angular margin loss for deep face recognition. vol-

ume 44, page 5962–5979. Institute of Electrical and Electronics Engineers (IEEE),

October 2022. doi: 10.1109/tpami.2021.3087709.

URL: http://dx.doi.org/10.1109/TPAMI.2021.3087709.

[7] Firdous, Shazia, Ghosh, Abhirupa, and Sudipto Saha. BCSCdb: a database of

biomarkers of cancer stem cells. volume 2022, page baac082, 09 2022. doi: 10.1093/

66

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8564339/
https://pubmed.ncbi.nlm.nih.gov/34599140/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5442875/
https://pubmed.ncbi.nlm.nih.gov/23266771/
https://pubmed.ncbi.nlm.nih.gov/32692762/
http://dx.doi.org/10.1109/TPAMI.2021.3087709

database/baac082.

URL: https://doi.org/10.1093/database/baac082.

[8] L. Gao, X. Nie, and W. et al. Zhang. Identification of long noncoding rna rp11-

89k21.1 and rp11-357h14.17 as prognostic signature of endometrial carcinoma via

integrated bioinformatics analysis. 2020.

URL: https://pubmed.ncbi.nlm.nih.gov/32587476/.

[9] Gunsagar S. Gulati, Shaheen S. Sikandar, Daniel J. Wesche, Anoop Manjunath,

Anjan Bharadwaj, Mark J. Berger, Francisco Ilagan, Angera H. Kuo, Robert W.

Hsieh, Shang Cai, Maider Zabala, Ferenc A. Scheeren, Neethan A. Lobo, Dalong

Qian, Feiqiao B. Yu, Frederick M. Dirbas, Michael F. Clarke, and Aaron M. Newman.

Single-cell transcriptional diversity is a hallmark of developmental potential. volume

367, pages 405–411, 2020. doi: 10.1126/science.aax0249.

URL: https://www.science.org/doi/abs/10.1126/science.aax0249.

[10] Zheng HC, Xue H, Zhang CY, Shi KH, and Zhang R. The roles of btg1 mrna

expression in cancers. 2022.

URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633688/.

[11] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In defense of the triplet loss

for person re-identification. 2017.

[12] Jackson JT, Mulazzani E, Nutt SL, and Masters SL. The role of plcγ2 in immuno-

logical disorders, cancer, and neurodegeneration. 2021.

URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8318911/.

[13] J. Kim, HL. Piao, and BJ. et al. Kim. Long noncoding rna malat1 suppresses breast

cancer metastasis. 2018.

URL: https://doi.org/10.1038/s41588-018-0252-3.

[14] Tapsi Kumar, Kevin Nee, Runmin Wei, Siyuan He, Quy H. Nguyen, Shanshan Bai,

Kerrigan Blake, Yanwen Gong, Maren Pein, Emi Sei, Min Hu, Anna Casasent,

Aatish Thennavan, Jianzhuo Li, Tuan Tran, Ken Chen, Benedikt Nilges, Nachiket

Kashikar, Oliver Braubach, Bassem Ben Cheikh, Nadya Nikulina, Hui Chen, Medi-

get Teshome, Brian Menegaz, Huma Javaid, Chandandeep Nagi, Jessica Montalvan,

Delia F. Tifrea, Robert Edwards, Erin Lin, Ritesh Parajuli, Sebastian Winocour,

Alastair Thompson, Bora Lim, Devon A. Lawson, Kai Kessenbrock, and Nicholas

Navin. A spatially resolved single cell genomic atlas of the adult human breast. Cold

Spring Harbor Laboratory, 2023. doi: 10.1101/2023.04.22.537946.

URL: https://www.biorxiv.org/content/early/2023/04/25/2023.04.22.537946.

67

https://doi.org/10.1093/database/baac082
https://pubmed.ncbi.nlm.nih.gov/32587476/
https://www.science.org/doi/abs/10.1126/science.aax0249
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633688/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8318911/
https://doi.org/10.1038/s41588-018-0252-3
https://www.biorxiv.org/content/early/2023/04/25/2023.04.22.537946

[15] T. Lan, Y. Yan, and D. et al. Zheng. Investigating diagnostic potential of long

non-coding rnas in head and neck squamous cell carcinoma using tcga database and

clinical specimens. 2024.

URL: https://doi.org/10.1038/s41598-024-57987-y.

[16] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. 2019.

[17] Montaño-Samaniego M, Bravo-Estupiñan DM, Méndez-Guerrero O, Alarcón-

Hernández E, and Ibáñez-Hernández M. Strategies for targeting gene therapy in

cancer cells with tumor-specific promoters. 2020.

URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768042/.

[18] Prpić M, Franceschi M, Romić M, Jukić T, and Kusić Z. Thyroglobulin as a tumor

marker in differentiated thyroid cancer - clinical considerations. 2018.

URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6536288/.

[19] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of

word representations in vector space. 2013.

[20] Hassan MK, Kumar D, Naik M, and Dixit M. The expression profile and prognostic

significance of eukaryotic translation elongation factors in different cancers. 2018.

URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5771626/.

[21] Shan NL, Shin Y, Yang G, Furmanski P, Suh N. Breast cancer stem cells: A review

of their characteristics, and the agents that affect them. Mol Carcinog. Breast cancer

stem cells: A review of their characteristics and the agents that affect them. 2021.

doi: doi:10.1002/mc.23277.

URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7855917/.

[22] Singh RK, Saini SK, Prakasam G, Kalairasan P, and Bamezai RNK. Role of ectopi-

cally expressed mtdna encoded cytochrome c oxidase subunit i (mt-coi) in tumori-

genesis. 2019.

URL: https://pubmed.ncbi.nlm.nih.gov/31299394/.

[23] Orit Rozenblatt-Rosen, Aviv Regev, Bo Li, Monika S Kowalczyk, Michal Slyper,

Gaublomme Jellert, Marcin Tabaka, Orr Ashenberg, Julia Waldman, Danielle

Dionne, Knecht Abigail, Ma Hui, Yiming Yang, Orit Rozenblatt-Rosen, Mal-

lory Ann Freeberg, Danielle Welter, and Enrique Sapena Ventura. A single cell

immune cell atlas of human hematopoietic system. 2022.

URL: https://explore.data.humancellatlas.org/projects/cc95ff89-2e68-4a08-a234-

480eca21ce79.

68

https://doi.org/10.1038/s41598-024-57987-y
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768042/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6536288/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5771626/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7855917/
https://pubmed.ncbi.nlm.nih.gov/31299394/
https://explore.data.humancellatlas.org/projects/cc95ff89-2e68-4a08-a234-480eca21ce79
https://explore.data.humancellatlas.org/projects/cc95ff89-2e68-4a08-a234-480eca21ce79

[24] He S, Ding Y, Ji Z, Yuan B, Chen J, and Ren W. Hopx is a tumor-suppressive

biomarker that corresponds to t cell infiltration in skin cutaneous melanoma. 2023.

URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10286411/.

[25] Tang S, Liu W, Yong L, Liu D, Lin X, Huang Y, Wang H, and Cai F. Reduced

expression of krt17 predicts poor prognosis in her2high breast cancer. 2022.

URL: https://pubmed.ncbi.nlm.nih.gov/36139022/.

[26] Daniela Senra, Nara Guisoni, and Luis Diambra. Origins: A protein network-based

approach to quantify cell pluripotency from scrna-seq data. volume 9, page 101778,

2022. doi: https://doi.org/10.1016/j.mex.2022.101778.

URL: https://www.sciencedirect.com/science/article/pii/S2215016122001583.

[27] Höpner SS, Raykova A, Radpour R, Amrein MA, Koller D, Baerlocher GM, Riether

C, and Ochsenbein AF. Light/ltβr signaling regulates self-renewal and differentiation

of hematopoietic and leukemia stem cells. 2021.

URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887212/.

[28] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep

networks. 2017.

[29] Chen X, Zhao L, Yu T, Zeng J, and Chen M. Spink2 is a prognostic biomarker

related to immune infiltration in acute myeloid leukemia. 2022.

URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8829596/.

[30] Liu X, Quan J, Shen Z, Zhang Z, Chen Z, Li L, Li X, Hu G, and Deng X. Met-

allothionein 2a (mt2a) controls cell proliferation and liver metastasis by controlling

the mst1/lats2/yap1 signaling pathway in colorectal cancer. 2022.

URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9158144/.

[31] Tang Y, Peng X, Huang X, and Li J. Actin gamma 1 is a critical regulator of

pancreatic ductal adenocarcinoma. 2021.

URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9212121/.

[32] H. Zhang, B. Cui, and Y. et al. Zhou. B2m overexpression correlates with malignancy

and immune signatures in human gliomas. 2021.

URL: https://doi.org/10.1038/s41598-021-84465-6.

[33] Y. Zhang, H. C. Sun, W. Zhang, T. T. Fu, S. J. Huang, M. J. Mou, J. S. Zhang,

J. Q. Gao, Y. C. Ge, Q. X. Yang, and F. Zhu. Cellstar: a comprehensive resource

for single-cell transcriptomic annotation. nucleic acids research. 2023.

URL: http://cellstar.idrblab.net/download.

69

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10286411/
https://pubmed.ncbi.nlm.nih.gov/36139022/
https://www.sciencedirect.com/science/article/pii/S2215016122001583
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887212/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8829596/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9158144/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9212121/
https://doi.org/10.1038/s41598-021-84465-6
http://cellstar.idrblab.net/download

Appendix A

Supplemental figures and discussion

Here we will show and discuss the feature importance of the rest of the data (HSD and

general):

A.1 Extra: Feature importance on HSD

As we said earlier, in the results section we only focused on BCD in order to not artificially

extend the length of the chapter.

A.1.1 Logistic Regressors

70

Figure A.1: Feature importance by logistic regressors on HSD (positive importance, on
top, negative importance on bottom).

In the haematopoietic data, we can already see that the most important genes are com-

pletely different from BCD, in this case, the SPINK2 gene is the most predictive of HSCs.

This gene has already been identified as related to leukemia in blood cells [29].

On the flip side, the ELANE gene is the gene with the most negative importance.

There is no clear relationship with ELANE and cancer, however, ELANE has already

been observed to selectively kill a wide range of cancer cells while sparing proximal non-

cancer cells and significantly attenuate tumorigenesis [2]. Which would make sense with

the results, since, a high ELANE value means low probability of HSCs, and thus, an HSC

with high ELANE expression would die.

71

A.1.2 MLPs

Figure A.2: Positive feature importance by linear MLP (top) and non-linear MLP (bot-
tom).

We can observe that the positive importance greatly varies in HSD with different models,

with logistic regressors, the biggest predictor of HSCs was SPINK2, here, for both models

is the HOPX gene. It turns out, that HOPX is known to be involved in regulating the

homeostasis (any self-regulating process in order to survive) of hematopoietic stem cells

72

and is closely related to the development of tumors such as breast cancer, nasopharyngeal

carcinoma, and head and neck squamous cell carcinoma [24].

We should also note that the non-linear MLP trained on HSD also identifies the

gene CD44 as the 5th best prediction of HSCs. CD44 is a know very important BCSC

marker [21].

Figure A.3: Negative feature importance by linear MLP (top) and non-linear MLP (bot-
tom).

As for the negative features, the linear MLP identifies the gene LTB as the most

73

important and the non-linear MLP identifies the BTG1 gene (even though for the linear

one, BTG1 is in the 5th position and for the non-linear is 2nd).

The LTB gene has been found to regulate self-renewal and differentiation of

hematopoietic and leukemia stem cells [27]. On the other hand, the BTG1 gene has

been found to inhibit proliferation and cell cycle progression [10]. Since stem cells prolif-

erate and BTG1 inhibits that process it makes sense that the model thinks that a high

BTG1 value correlated with low probability of HSC.

A.1.3 Random Forest

Figure A.4: Average information gain across the random forest.

Just like the logistic regressor, the SPINK2 gene is the most important gene for the RF

(and by a lot). Notice that ELANE and SOX4 (a very important BCSC marker [21]

appear).

74

A.1.4 Embedder

Figure A.5: Positive and negative feature importance by embedder and mlp architecture
(top and bottom, respectively).

The embedder, identifies B2M as the most predictive gene of stem cells. It has been found

that if B2M is over-expressed (very high gene expression), it correlates with malignancy

and immune signatures in human gliomas [32].

On the other hand the ACTB gene has been know for some time that is closely

75

associated with liver, melanoma, renal, colorectal, gastric, pancreatic, esophageal, lung,

breast, prostate, ovarian cancers, leukemia and lymphoma [4]

Now, let’s see how the embeddings look like for HSD:

Figure A.6: Original data space (left) versus learned embedding space (right).

Figure A.7: Original data space (left) versus learned embedding space (right).

Figure A.8: Original data space (left) versus learned embedding space (right).

76

A.2 Extra: Results on General data

A.2.1 Logistic Regressor

Figure A.9: Feature importance by logistic regressors on General data (positive impor-
tance, on top, negative importance on bottom).

In the case of the general data, we find the gene RP11–357H14.17 as the most predictive

of cancer stem cells, there are already some articles and work that indicate that this

77

gene is correlated to gastric cancer [3], endometrial carcinoma [8], and head and neck

squamous cell carcinoma [15], which points this gene is in fact correlated with different

types of cancer (which makes sense considering this is a general dataset).

TG is the gene identified with the most negative importance, this gene has been

identified by some studies as a marker in thyroid cancer [18].

A.2.2 MLPs

Figure A.10: Positive feature importance by linear MLP (top) and non-linear MLP (bot-
tom).

78

In the case of the MLPs, the gene MT-ATP6 is the most predictive of stem cells, although

there seems to be no papers or studies which relate this gene to cancer. However, the

2nd most important gene, ACTG1 is related to pancreatic ductal adenocarcinoma [31].

For the non-linear MLP, MT-CO1 seems to be the most predictive, turns this gene

has been identified as frequent in various cancer types [22].

Figure A.11: Negative feature importance by linear MLP (top) and non-linear MLP
(bottom).

When looking at the negative importance, both MLPs identify LALBA as the most

predictive of non-stem cells, LALBA is known to be a very active gene in breast can-

79

cer [17], but inactive in all the other types. Since the are no examples of BCSC in the

General dataset, this could be the cause of the importance given to this gene, since, for

the models, a low value of LALBA means high probability of being a stem-cell.

A.2.3 Random Forest

Figure A.12: Average information gain across the random forest.

Here, the gene EEF1G seems to be most important gene for the RF, this gene has been

observed to be over-expressed in lung cancer [20].

80

A.2.4 Embedder

Figure A.13: Positive and negative feature importance by embedder and mlp architecture
(top and bottom, respectively).

The embedder, identifies RPL41 as the most predictive gene of stem cells. We should note

that RPL41 is a ribosomal gene, ribosomal genes are a type of general called housekeeping

genes, these genes are always expressed in all cells of an organism, so it’s surprising that

this would be a prediction of stem-cells.

81

On the other hand the B2M gene has appeared as the most predictive gene forHSCs

by the embedder trained on HSD. So it’s very surprising to see that in the General data

it’s the most predictive of non-stem cells.

Lastly we will show how the learned embeddings are distributed for the General

dataset:

Figure A.14: Original data space (left) versus learned embedding space (right).

Figure A.15: Original data space (left) versus learned embedding space (right).

Figure A.16: Original data space (left) versus learned embedding space (right).

82

A.2.5 Code Availability

All the code used in this work, like the ORIGINS re-implementation, machine learning

pipelines, etc is available in: https://github.com/OverKoder/BCSC Identification

The weights of the models will not be uploaded to the repository, but they can be

obtained by contacting the owner of the reporsitory.

83

https://github.com/OverKoder/BCSC_Identification

	Introduction
	Motivation
	Objectives
	Structure of the thesis

	State of the art and data description
	CytoTRACE
	ORIGINS
	Reimplementation of ORIGINS in Python
	Algorithm rewriting

	Data description
	Breast cancer dataset (BCD)
	Hematopoietic dataset (HSD)
	General dataset (General)

	Methodology
	Theoretical Background
	Supervised Learning
	Bias-Variance tradeoff
	Overfitting and underfitting
	Curse of dimensionality

	Machine Learning models
	Logistic Regression
	Multilayer Perceptrons
	Random Forests

	Learning embeddings
	"Meaningful" embeddings
	Metric Learning

	Bagging
	Performance measures
	Precision and Recall
	ROC-AUC

	Experimental Setup
	Data management and input size issues
	Training formats
	Pipeline and hyperparameters
	Logistic Regressors
	MLPs
	Random Forests
	Embeddings
	Bagging
	Learning rate optimizer and Callbacks

	Results
	Performance on the same dataset
	Logistic Regressors
	MLPs
	Random Forest
	Embedder and MLP
	Bagging

	Performance across datasets
	HSD to BSD
	General to BSD
	BCD to HSD
	General to HSD
	BCD to General
	HSD to General

	Signature overlap
	Discussion
	Sources of error
	Future work

	List of Acronyms and Abbreviations
	Bibliography
	Supplemental figures and discussion
	Extra: Feature importance on HSD
	Logistic Regressors
	MLPs
	Random Forest
	Embedder

	Extra: Results on General data
	Logistic Regressor
	MLPs
	Random Forest
	Embedder
	Code Availability

