
University of Bergen
Department of Informatics

A Benchmarking Suite for Persistent

Homology

Author: Sondre Bergsv̊ag Risanger

Supervisor: Nello Blaser

June, 2024

Abstract

Topological data analysis (TDA), which is based on persistent homology, is a way of

examining the underlying topological features of data. Machine learning pipelines based

on TDA have proven effective in several areas of research; despite this, there does not

yet exist a standardized benchmarking suite for TDA-based machine learning, especially

focusing on testing different vectorization methods.

This thesis presents a benchmarking suite with four synthetic tasks, which was de-

veloped to test the ability of TDA pipelines to extract and use topological features of

point clouds in machine learning. The underlying benchmarking tool used by the suite

is an important contribution of this thesis, allowing the user to implement the different

steps of the TDA pipeline separately, such that different combinations of TDA pipeline

components can be tested. The benchmarking tool also reduces the amount of code the

user must implement, as steps like splitting the datasets and performing model selection

is implemented as a part of the benchmarking tool.

The usefulness of the benchmarking suite was evaluated by having it benchmark two

non-TDA pipelines which were used as a baseline, and two TDA pipelines. The non-TDA

pipelines did not perform well on the tasks, while the TDA pipelines performed well,

outperforming the non-TDA pipelines on all tasks. This indicates that the benchmarking

suite is suited for its intended purpose. While the suite was intended to also contain

real-world datasets, that goal was ultimately not reached.

Acknowledgements

I would first like to thank my supervisor, Nello Blaser. His advice and feedback, as well

as our many meetings throughout the writing of this thesis, have been invaluable, helping

me stay on the right course.

I would also like to thank my fellow students, both for their feedback on my thesis,

and for allowing me to hone my skills by letting me give them feedback on their work.

Finally, I would like to thank my friends and family, not only for their support during

the writing of this thesis, but also for their support in all of my endeavors.

Sondre Bergsvåg Risanger

Monday 3rd June, 2024

Contents

1 Introduction 1

1.1 Context and motivation . 1

1.2 Objectives . 2

1.3 Thesis outline . 2

2 Background 3

2.1 Probability theory . 3

2.1.1 Probability distributions . 3

2.1.2 Rejection sampling . 6

2.2 Topology . 7

2.2.1 Manifolds . 10

2.2.2 Simplicial complexes . 12

2.3 Persistent homology . 14

2.3.1 Group theory . 15

2.3.2 Homology . 18

2.3.3 Persistent homology . 22

2.4 Vectorization . 26

2.4.1 Persistence landscape . 26

2.4.2 Persistence image . 28

3 Benchmarking tool implementation 29

3.1 Overview . 29

3.1.1 Usage . 29

3.1.2 Benchmarking process . 31

3.2 Implementation details . 33

3.3 Initial version . 36

3.4 Pipelines . 37

i

4 Synthetic benchmarks 38

4.1 Method . 38

4.1.1 Manifold sampling . 38

4.1.2 Creating benchmarks . 46

4.2 Results . 48

4.2.1 Sphere/torus classification . 48

4.2.2 Sphere/genus g torus binary classification 49

4.2.3 Sphere/genus g torus genus regression 50

4.2.4 Power spherical concentration regression 51

5 Discussion 53

5.1 Thesis objectives . 54

6 Future work 55

Bibliography 57

A Benchmark results 60

B Code repository 70

ii

List of Figures

2.1 The probability density function of the beta distribution for varying values

of a and b. 4

2.2 The probability density function of the standard bivariate normal distri-

bution. 5

2.3 The probability distribution function of β(2, 2) plotted against 1.5 times

the probability distribution function of U((0, 1)). 7

2.4 Continuous deformation between a coffee mug and a torus. 8

2.5 A sphere, a torus, and a genus 2-torus, shaded to convey depth. 11

2.6 The genus 2-torus as the connected sum of two toruses. 11

2.7 The n-simplices for 0 ≤ n ≤ 3, in order. 12

2.8 Alpha complexes with increasing r . 14

2.9 Relationships between chain, cycle, and boundary groups. 19

2.10 Examples of persistence diagrams with different axes. 23

2.11 The persistence diagram for H0 and H1 of the filtration K. 25

2.12 Intuitive explanation of how persistence landscapes are made. 27

2.13 Example of how a persistence image is generated from a persistence diagram. 28

3.1 Flowchart showing the workflow of the benchmarking tool. 32

4.1 2-sphere generated by uniformly sampling the longitudinal and latitudinal

angles for each point. 39

4.2 Top-down view of a 2-sphere generated by normalizing points with coor-

dinates sampled from U((−1, 1)). 40

4.3 Top-down view of a 2-sphere generated by normalizing points sampled

from N (⃗0, I). 40

4.4 2-sphere with points sampled from N ((−1, 1, 0), I), which were then nor-

malized. 41

4.5 2-sphere with points sampled from N (⃗0, diag(1, 10, 1)), which were then

normalized. 41

4.6 The power spherical at various concentration values, with the same direction. 42

iii

4.7 Top-down view of a non-uniformly sampled torus generated using uni-

formly sampled angles. 44

4.8 Top-down view of a uniformly sampled torus. 44

4.9 Toruses with genus 2 and 3. 45

4.10 Genus 2 toruses with cut-offs −0.5, 0.0, and 0.5. 45

iv

Chapter 1

Introduction

1.1 Context and motivation

Topological data analysis (TDA) is a way of analyzing data by looking at its shape rather

than looking at the data directly. Taking a point cloud (a set of points) as an example, one

may use combinations of the points to create a simplicial complex, a sort of generalization

of graphs using components of dimensions higher than 1. The combinations included in

the simplicial complex will vary based on some parameter r, commonly denoting a scale

parameter for maximum distances between the combined points. We can then analyze the

shape of the point cloud by looking at how the simplicial complex evolves as r changes.

Those different simplicial complexes are together called a filtered simplicial complex.

When analyzing the shape, we are more specifically interested in the appearances and

disappearances of holes in the complex. This is known as the persistent homology of

the complex, which is summarized in a persistence diagram. The persistence diagram

is then vectorized to make it more suitable for machine learning [4]. This describes the

general TDA pipeline: Generate a filtered simplicial complex and compute its persistent

homology, which is then vectorized.

The use of TDA in machine learning has proven to be useful in several areas of research,

for example tumor classification [9], neuroscience [19], and genomics [11]. Despite this,

there is, at least to my knowledge, no standardized benchmarking suite for testing the

performance of new TDA methods, in particular new vectorization methods. There does

exist a Python package called giotto-deep which is intended for benchmarking of TDA

pipelines; however, it is not an automated, standardized benchmarking suite, and it is

built specifically for use with PyTorch [3].

1

The existence of standardized benchmarks have contributed to advancements in areas

like object recognition, where ImageNet is a notable example [21]; model architectures

such as AlexNet and ResNet were evaluated using ImageNet, and were winning entries in

the ImageNet Large-Scale Visual Recognition Challenge in their respective years [13, 12].

This thesis therefore aims to make a benchmarking suite for TDA in machine learning

with a predetermined set of tasks intended to test the capabilities of TDA pipelines specif-

ically, allowing for easy comparison between pipelines. The focus will be on supervised

learning.

1.2 Objectives

The objectives of this thesis can be split into two parts: The benchmarking tool itself,

and the tasks it uses for testing.

First, the benchmarking tool should be as flexible as possible, such that most, if not

all, TDA pipelines can be tested. This must be balanced with its ease of use, minimizing

the amount of extra work needed to implement the pipeline for testing.

Second, the tasks included should be a combination of synthetic datasets with known

ground truths, generated as needed by the benchmarking tool, and real-world datasets to

test the pipelines in real-world scenarios. The synthetic tasks should include both clas-

sification tasks and regression tasks where the goal is to distinguish topological features.

The included real-world datasets should be chosen based on the strengths and weaknesses

of TDA pipelines found by the benchmarking results of the synthetic tasks.

1.3 Thesis outline

The rest of the thesis is structured as follows: Chapter 2 introduces the background theory

used in the thesis work; Chapter 3 explains how the benchmarking tool is implemented

and how to use the benchmarking suite, and describes the pipelines used to test the

suite; Chapter 4 details how each of the synthetic datasets is generated and presents the

results of each pipeline on the datasets; Chapter 5 discusses the results and evaluates the

benchmarking suite against the objectives of the thesis; Chapter 6 gives suggestions for

future work on the suite.

2

Chapter 2

Background

2.1 Probability theory

Different probability distributions are used in this thesis, as they are central in the process

of generating data. This section will describe these distributions. It will also describe a

sampling method know as rejection sampling, which is used in one of the data generators.

2.1.1 Probability distributions

The material in this section is based on Castañeda et al. [6] and will introduce the different

probability distributions used in this thesis. The beta distribution and the multivariate

normal distribution will be explained in detail. For the uniform and normal distributions,

however, I assume that the reader is familiar with them and will thus only introduce the

notation used.

The uniform distribution will use the notation U(A) to refer to a uniform distribution

on the set A, e.g. U((0, 1)) for a uniform distribution in the interval (0, 1), or U(Sd) for

a uniform distribution on the d-sphere. The normal distribution will use the notation

N (µ, σ2) with mean µ and standard deviation σ. Lastly, the notation x ∼ D will denote

a variable x sampled from a distribution D.

3

Beta distribution

The beta distribution is a continuous distribution in the interval (0, 1) with the parameters

a, b > 0. This thesis will use the notation β(a, b) when referring to the beta distribution.

To define its probability density function, its beta function has to be defined first,

given by

B(a, b) =
w 1

0
xa−1(1− x)b−1dx.

Using the beta function, the probability density function of the beta distribution is defined

as

f(x) =

{
1

B(a,b)
xa−1(1− x)b−1 if x ∈ (0, 1)

0 otherwise.

Here, the beta function normalizes the expression, making the area under the curve equal

to 1 for valid values of a and b.

Figure 2.1 shows some of the different distributions generated by varying the a and b

values of the beta distribution. For example, β(0.5, 0.5) is U-shaped, β(1, 1) is the same

as U((0, 1)), and β(5, 5) has a bell curve shape.

Figure 2.1: The probability density function of the beta distribution for varying values
of a and b.

Multivariate normal distribution

A multivariate normal distribution is a distribution such that for vectors x⃗ := (x1, ..., xn)

sampled from the distribution, any linear combination
∑n

i=1 αixi has univariate normal

distribution. Note that this section uses row vectors.

4

To generate an n-dimensional normally distributed vector, it uses an n-dimensional

vector µ⃗ as the mean parameter, and a positive semidefinite symmetric n × n matrix Σ

as the variance parameter. With these parameters, the multivariate normal distribution

will use the notation N (µ⃗,Σ).

One way to sample from a multivariate normal distribution is to use the eigendecom-

position of the variance matrix, i.e. Σ = AΛAT , where Λ is the diagonal matrix consisting

of the eigenvalues, and A is the matrix of the corresponding eigenvectors. A vector y⃗ is

generated with components yi ∼ N (0,Λi,i). This vector is then transformed such that

we get a resulting vector

x⃗ ∼ N (µ⃗,Σ) = y⃗A+ µ⃗.

This method can be used to sample from any multivariate distribution.

Figure 2.2: The probability density function of the standard bivariate normal distribution,
where x1 and x2 denote the first and second component of x⃗ respectively, and f(x1, x2)
is f(x⃗). The figure shows the function in the interval x1, x2 ∈ [−4, 4], with the annotated
point at f(0, 0) being the maximum of the function.

The multivariate normal distribution has some useful properties. For example, for a

sampled vector x⃗ ∼ N (µ⃗,Σ) with a diagonal Σ, each vector component xi is independent

5

such that xi ∼ N (µi,Σi,i). This means that a standard multivariate normal distribution

N (⃗0, I) has independent components, each from the standard normal distributionN (0, 1).

The probability density function of the multivariate normal distribution is given by

f(x⃗) =
1

(2π)
n
2

(detΣ)−
1
2 exp

ï
−1

2
(x⃗− µ⃗)Σ−1(x⃗− µ⃗)T

ò
.

Since the function uses the inverse of Σ, it only works for positive definite Σ. To give

an idea of how it looks, figure 2.2 shows the function for the standard bivariate normal

distribution.

2.1.2 Rejection sampling

In computing, random number generators are usually based on a uniform distribution.

Then, to sample from a non-uniform probability density function, some method must be

used to change the final distribution of the generated values. One of the simplest and most

efficient of these is the inversion method. It applies the inverse of a target distribution’s

cumulative density function to uniformly generated values, which results in correctly

distributed random values [15]. This of course assumes that we know the inverse of the

cumulative density function, which is not always the case. We might therefore consider

another method which is more flexible, called rejection sampling.

Rejection sampling only requires that we have a random number generator with prob-

ability density function π(x) and a target distribution D with probability density function

p(x) such that

Mπ(x) ≥ p(x)

for some constant M > 0. If we sample an x′ ∼ π(x) and a y′ ∼ U((0,Mπ(x′))) and

accept x′ only if y′ ≤ p(x′), the accepted values will be distributed according to D. The

probability of x′ being accepted is then the ratio of the value of each of the functions at

x′,
p(x′)

Mπ(x′)
.

In this thesis, the random number generator will have a uniform distribution, which

means that we can view rejection sampling more intuitively as uniformly sampling a

random point in a box, and accepting x′ if the point is under the curve of p [20].

To show how this works, rejection sampling will be shown as a way to sample from the

beta distribution. This only works for a, b ≥ 1, since the density of the beta distribution

6

Figure 2.3: The probability distribution function of β(2, 2), 6x(1−x), plotted against 1.5
times the probability distribution function of U((0, 1)), y = 1.5. Since the scaled function
of the distribution we can sample from has a higher value for all x ∈ (0, 1) than that
of the target distribution, we can use rejection sampling to indirectly sample from the
target distribution.

approaches ∞ for a or b less than 1. This is not a problem however, as this thesis will

only use the beta distribution with a, b ≥ 1.

Using a, b = 2 as an example, the probability density function of β(2, 2) is p(x) =

6x(1 − x), and the probability density function of U((0, 1)) is π(x) = 1. The maximum

of p(x) is 1.5, so p(x) ≤ Mπ(x) for M ≤ 1.5 and we set M = 1.5. The functions p(x)

and 1.5π(x) are plotted in figure 2.3. We can then sample two values, x′ ∼ U((0, 1)) and
y′ ∼ U((0, 1.5)), and accept x′ if y′ ≤ 6x′(1−x′). The accepted x′ will then be distributed

according to β(2, 2).

Note that this is only intended as an example of how to use rejection sampling, and

how to sample from a beta distribution. While this method becomes decreasingly efficient

as a and b increase, much more efficient methods of sampling from the beta distribution

exist [20].

2.2 Topology

Topology is closely related to geometry as both are used to describe shapes, but while

geometry uses metrics like distances and angles to describe objects, topology is more

7

generalized and measures shapes based on invariance under smooth deformations. That

is, if two objects can be ”reshaped” into each other and back without any tearing or

gluing, they are topologically equivalent, and are said to be homeomorphic.

A common example of this is the topological equivalence between a coffee mug and a

donut (more formally known as a torus). The two objects are geometrically distinct, but

if we imagine a coffee cup made of some pliable material, we could reasonably expect to

be able to reshape it into a torus without any gluing or tearing, as shown in figure 2.4.

Our use case for topology is data analysis. Using point clouds as an example, there

are many well-known tools for specific cases of point clouds, like linear regression for

points lying in an approximate line, or clustering algorithms for points in several dis-

tinct clusters. However, each of these situations requires us to choose a suitable way of

analyzing the data, which may become difficult for data with less common or less clear

shapes. Topological data analysis gives us tools to analyze the shape of several types of

data without a priori knowledge [4].

Figure 2.4: The continuous deformation of a coffee mug to a torus. The bottom of the
mug is expanded to fill the cylinder, which is then compressed to match the thickness
and curvature of the handle, resulting in a torus. These operations may also be reversed
to deform a torus to a coffee mug.

To describe topology more formally, we need to define topological spaces. For a set of

points X, we can make a set of its subsets, denoted U , which define the open sets. Here,

U is said to define the topology on X, giving the topological space (X, U). The following
conditions also need to be satisfied for it to be a valid topology:

1. X and the empty set ∅ are in U .

8

2. The intersection of any finite number of sets in U are in U .

3. The union of any number of sets in U are in U .

A simple and useful way of defining a topology is by defining a base for the topology.

For a set X, a collection B of subsets of X is a base given two conditions:

1. For each element x ∈ X, there exists a B ∈ B such that x ∈ B.

2. If x is in an intersection of two elements B1, B2 ∈ B, x must also be in a B3 ∈ B
given by the intersection of B1 and B2.

This base is then said to generate a topology on X where a set U ⊆ X is open if each

x ∈ U is also contained in some B ⊆ X, B ∈ B.

Since this thesis will be mostly concerned with point clouds, it will be helpful to have

some connection between point clouds and topological spaces. The point clouds discussed

here will lie in some space Rn, which is a metric space. A metric space is a set X with a

distance function δX : X× X → R. This distance function must satisfy some conditions:

1. Distances must be non-negative such that δX(x1, x2) ≥ 0.

2. The distance δX(x1, x2) is 0 if and only if x1 and x2 are identical.

3. The function is symmetric, i.e., δX(x1, x2) = δX(x2, x1).

4. The triangle inequality holds, that is, δX(x1, x3) ≤ δX(x1, x2) + δX(x2, x3).

In the case of Rn, the distance function is the Euclidean distance function δRn(x⃗, y⃗) =√∑n
k=1(xk − yk)2.

Metric spaces can be used to define topological spaces. For a metric space with a set

X, open sets of its topological space are given by the U ⊂ X where each element x ∈ U

has some open ball around it contained in U , i.e., Br(x) :=
{
y ∈ X | δX(x, y) < r

}
⊆ U

for some radius r [18].

There are some properties topological spaces may have, Hausdorff and second count-

able, which will be useful to define: If any two points x, y ∈ X, x ̸= y have open sets

x ∈ U1 ∈ U , y ∈ U2 ∈ U with empty intersection, the topological space defined by (X,U)
is said to be Hausdorff. If the base of a topological space is countable, the space is said

to be second countable.

9

2.2.1 Manifolds

This thesis will mostly discuss a type of topological space called (n-)manifolds. These

are spaces which locally, i.e. if we look at the space immediately around a point, are

homeomorphic to an open subset of Rn. To be more specific, it will discuss 2-manifolds

in particular, also known as surfaces, which locally look like the plane [10].

Before describing the manifolds relevant to this thesis, it would be useful to accurately

define manifolds. To do so, we first need the concepts of charts and atlases. Consider a

topological space (X,U). If we have a homeomorphism from an U ∈ U to an open subset

of Rn, we call it a chart. We can then make a collection of charts, called an atlas, such

that each point x ∈ X lies in the domain of at least one chart. An n-manifold can then be

defined as a topological space which has an atlas, and is Hausdorff and second countable

[18].

As the condition of the existence of an atlas may imply, manifolds can be entirely

represented in Euclidean space, which we then call an immersion. If the immersion has

no overlapping points, it is called an embedding.

There are two properties which can be used to tell surfaces apart: the genus g of the

surface, and the orientability. The genus is used to count how many closed curves we can

cut the surface by without separating it into several components. For example, any closed

curve on a sphere will divide it into at least two components, while one may draw a closed

curve around the tube of a torus and get a cylinder which is connected. Orientability

is used to describe whether a surface has an inside and outside or not. A sphere, for

instance, is orientable with a clear inside and outside. The Klein bottle, however, is a

surface with no clear inside or outside, and is therefore non-orientable.

As one might assume from the examples above, the simplest non-trivial n-manifold

is what is known as the n-sphere, being orientable and having genus 0. The most well-

known examples are the circle for n = 1, and the sphere for n = 2. The n-sphere has

several embeddings in Rn, but the most common type of embedding is the set of points

with distance r from the origin. Usually, when discussing the generation of n-spheres in

this thesis, it will be referring to the unit n-sphere, which is the embedding mentioned

above with r = 1.

A torus is the orientable 2-manifold of genus 1, and is often embedded in R3 as a

donut. One may intuitively describe this embedding as the surface of revolution of a

circle.

10

Figure 2.5 shows a unit sphere, a donut embedding of the torus, and an example of a

genus 2-torus.

Figure 2.5: A sphere, a torus, and a genus 2-torus, shaded to convey depth.

To get orientable surfaces of genus g > 1, one may take the connected sum of several

toruses to make a genus g torus. To get the connected sum of two surfaces, one draws

a closed curve on each surface to remove a piece homeomorphic to an open disk, and

connect the two surfaces by the closed curves [10]. An example of this is shown in figure

2.6, where the ends of two toruses are removed such that the toruses can be connected

to make a genus 2-torus.

Figure 2.6: The genus 2-torus as the connected sum of two toruses. A piece homeomorphic
to an open disk is removed from the end of each torus, and they are glued together where
the disks were removed from, resulting in a genus 2-torus.

11

2.2.2 Simplicial complexes

The goal of topological data analysis is to analyze the shape of the data to give some

information about its topology. Point clouds, being just collections of points, do not have

much structure as is. Therefore, the first step in the topological data analysis process is

to generate a simplicial complex based on the data, to give it shape.

Simplicial complexes are collections of n-simplices, which can be viewed as the simplest

n-dimensional objects. For example, for dimensions 0 through 3, their respective n-

simplices are colloquially known as the point, the line segment, the triangle and the

tetrahedron. Figure 2.7 below shows examples of these simplices.

Figure 2.7: The n-simplices for 0 ≤ n ≤ 3, in order.

An n-simplex is denoted by the set of its vertices {x0, x1, . . . , xn} where the vectors

given by xi−x0 are linearly independent, and is formally constructed as the collection of

points given by {∑n
i=0 λixi | λi ≥ 0,

∑
λi = 1

}
.

This is known as the convex hull of the vertices. We can also take convex hulls of proper

subsets of the vertices of an n-simplex to get lower-dimensional simplices, known as its

proper faces, which bound its volume. It is also worth noting that a simplex is a face of

itself, but not a proper face, as its vertices are an improper subset of its vertices [10].

To construct a simplicial complex K, we only need to define a collection of simplices

σi satisfying the following conditions:

1. For each simplex σ ∈ K, all its proper faces τ must also be contained in K.

12

2. The intersection of two simplices in K must either be empty or a face of both

simplices.

With these conditions, it becomes clear that a simplicial complex consisting of only 0-

simplices and 1-simplices is homeomorphic to a graph where the 0-simplices map to the

vertices, and the 1-simplices map to the edges. Thus, one might view simplicial complexes

as generalizations of graphs for higher dimensions [18].

We still need some way to generate simplicial complexes from point clouds. To do this,

we can construct different types of complexes. This thesis will use the alpha complex.

To define the alpha complex, we first need to define Voronoi cells and closed balls. A

Voronoi cell of a point x in a set of points X ⊆ Rn is given by all points in Rn for which

x is the closest point of X, i.e.,

Vx =
{
p ∈ Rn | δ(x, p) ≤ δ(y, p), y ∈ X

}
.

A closed ball is simply all points in Rn within a radius r of x, similar to the open ball

except that it includes the points with distance exactly r.

To get the alpha complex with scale parameter r, we first take the intersection of each

point’s Voronoi cell and closed ball at radius r, denoted Rx(r) for a point x ∈ X. With

these Rx(r), we can define the alpha complex as

Alpha(r) =
{
σ ⊆ X |

⋂
x∈σ

Rx(r) ̸= ∅
}
.

This means that if the Rx(r) of n points overlap, an (n−1)-simplex is created with those

points as vertices; two Rx(r) overlapping creates an edge, three Rx(r) overlapping creates

a triangle, and so on.

13

Figure 2.8: Alpha complexes of the same set of points for r = 0.5, r = 1.0, and r = 1.5.
As the red areas (representing Rx(r)) start to overlap, 1-simplices (lines between points)
and 2-simplices (blue triangles between points) are added.

An example of alpha complexes for increasing r with the same set of points is shown

in figure 2.8. What is interesting to note here is that as r increases and edges are added,

some edges may create cycles in the complex which are not filled in by triangles, as can

be seen with the four rightmost points at r = 1.5. There appears to be a ”hole” in the

complex, analogous to the genus of manifolds, which will disappear as r increases further.

Thus, it is not only interesting to us how the Alpha complex looks, but also how it

changes as r is increased. In fact, for a finite point cloud, the complex will only change a

finite number of times as r approaches infinity. We can then describe a series of complexes

∅ = Alpha0 ⊆ . . . ⊆ Alphak ⊆ . . . ⊆ Alphan (2.1)

with each different Alpha complex as r increases, where Alphan is the complex as r

approaches infinity. This series of complexes is known as a filtration [10]. In particular,

this paper will refer to Alphan and its filtration as a filtered simplicial complex.

Generating these filtered simplicial complexes is the first step of topological data

analysis. The next step is to get topological information from them using persistent

homology, which is covered in the next section.

2.3 Persistent homology

Homology can be viewed as studying the number of holes in a simplicial complex. Using

a filtered simplicial complex, we may compute what are called its homology groups at

14

several values of r to check its ”holedness” at that value. We are, however, unsure about

which value of r is the closest to the ground truth for the point cloud. Therefore, we

instead use persistent homology to study the persistence of the holes as the complex

evolves [18].

This section will first introduce group theory and homology groups, which lay the

foundation for persistent homology.

2.3.1 Group theory

This section, introducing group theory concepts which are either necessary or useful for

constructing homology groups, is based on Ledermann and Weir [14].

Group basics

This section will cover the basics of group theory, i.e., the definitions of groups and

subgroups.

A group G is defined as a set G along with a binary operation which satifies the

following conditions:

Closure: If a and b are in G, their product ab = c must also be in G.

Associativity: For any a, b, c ∈ G, (ab)c = a(bc).

Identity element: G must contain an identity element e such that ae = ea = a for all

a ∈ G.

Inverse element: Each element a ∈ G has an inverse element a−1 ∈ G such that their

product is the identity element, i.e., aa−1 = a−1a = e.

Additionally, an Abelian group is a group where the operation also satisfies commuta-

tivity, that is, ab = ba for any a, b ∈ G. It should also be noted that in cases where the

operation is addition, to avoid confusion, a product ab is instead written explicitly as the

sum a+ b, and an inverse element a−1 is written as −a.

One example of a group is (R,+), the group of real numbers with addition. It is easy

to see that this is a valid group: Any sum of its elements is in R, addition is associative,

15

0 is the identity element such that a+ 0 = a for any a ∈ R, and each element a ∈ R has

an inverse element −a ∈ R such that a + (−a) = 0. We can also see that since addition

is commutative, (R,+) is an Abelian group.

For a group G, we may take a subset H of G and use it along with the operation of

G to define a subgroup H, written as H ≦ G. This subgroup must also satisfy closure,

and contain the identity element of G and the inverse elements.

As an example, the group of integers with addition, (Z,+), is a subgroup of (R,+).

This is easy to check: Z is a subset of R and contains the identity element 0, any sum of

integers is an integer, and the inverse element of an integer is itself an integer.

For the group of integers with addition, note that any element can be made using

1 or its inverse −1 (1 + 1 = 2, (−1) + (−1) = −2, and so on). We can therefore call

1 the generator of Z. In general, for a group generated by elements a, b, . . . ∈ G and

their inverses, we use the notation gp{a, b, . . .}. These elements may be redundant, using

gp{1, 2} = Z as an example.

Quotient groups

This section introduces quotient groups, which is what homology groups are defined as.

We can construct something called cosets based on an element of a group G and a

subgroup H ≦ G. There are left cosets, defined as gH := {gh | h ∈ H} for some element

g ∈ G. Similarly, there are right cosets Hg := {hg | h ∈ H}. When gH = Hg for all

elements of G, we say that H is a normal subset of G, denoted H ⊴ G. The condition of

commutativity means that each subgroup of an Abelian group is trivially normal.

With a group G and a normal subgroup H ⊴ G, we can define a quotient group G
/
H.

Its set is the set of all unique cosets of H, i.e., {gH | g ∈ G}, and the operation is the

multiplication of sets, aHbH := {ah1bh1 | ah1 ∈ aH, ah2 ∈ bH} for two sets aH and bH.

To see that the quotient group satisfies the conditions of a group, it will be useful

to first show that HH = H. H is closed, so any hH, h ∈ H is a subset of H, and H

contains the identity element, so H = eH ⊆ HH ⊆ H. In other words, HH can only

contain elements of H, and it must also contain all elements of H, so HH = H.

We can now check that G
/
H is a group, keeping in mind that aH = Ha since H is

normal:

16

� Closure is given by aHbH = abHH = abH for any a, b ∈ G by the closure of G.

� Associativity, (aHbH)cH = aH(bHcH), a, b, c ∈ G, is satisfied as multiplication of

sets is associative.

� The identity element is H: HaH = aHH = aH for any a ∈ G.

� The inverse of an element aH is a−1H: aHa−1H = aa−1HH = eH = H for any

a ∈ G.

Thus, G
/
H defines a group.

A simple example of a quotient group is Z
/
2Z, where 2Z := {2 · k | k ∈ Z} =

{. . . ,−2, 0, 2, 4, . . .}. The quotient group is then the set {g+2Z | g ∈ Z}, which we quickly

see only contains two cosets, {. . . ,−2, 0, 2, 4, . . .} for even g and {. . . ,−1, 1, 3, 5, . . .} for

odd g.

The elements within each coset are said to be equivalent, relative to the subgroup;

we thus call these cosets equivalence classes. For each equivalence class, we may pick

one element as a representative for the class. In this case, we can use [0] to denote the

coset containing 0, and [1] for the coset containing 1. We then see that these equivalence

classes form the group of integers with addition modulo 2, as 0 ≡ 2 (mod 2) ≡ −2

(mod 2) ≡ . . . and 1 ≡ 3 (mod 2) ≡ −1 (mod 2) ≡

Homomorphisms

This section introduces homomorphisms, which are used to define the groups of which

the homology group is a quotient group.

We can define maps between groups. These maps are called homomorphisms (not to

be confused with homeomorphisms), and are maps θ : G → G′ mapping all elements of

one group to elements of the other. Here, we call θg = g′ ∈ G′ the image of g under θ. A

homomorphism only needs to satisfy one condition: For all a, b ∈ G, (θa)(θb) = θ(ab).

From this condition, we can derive two useful properties of homomorphisms. First,

the identity of G is mapped to the identity of G′ (denoted e′), as shown by (θe)(θg) =

θ(eg) = θg = e′(θg) for g ∈ G. Second, the inverse of an element g ∈ G is mapped to the

inverse of θg. Since (θg)(θg−1) = θ(gg−1) = θ(e) = e′, we see that θg and θg−1 must be

each other’s inverses.

17

There are two sets associated with homomorphisms which will be useful to us, the

kernel and the image. The kernel of a homomorphism θ is denoted as ker θ. We define

it as the set of all elements of G which are mapped to e′, that is, ker θ := {g | g ∈
G, θg = e′}. The image of θ, written as im θ, is the image of the set G under θ, i.e.,

im θ := {g′ | g′ ∈ G′, g′ = θg}.

We will also need to know that the kernel and the image of a homomorphism θ form

groups with the operation of G and G′ respectively. Since their operations come from

groups, we know that they are associative. Both of them have an identity element as

e ∈ G maps to e′ ∈ G′. Closure for the kernel is given by (θa)(θb) = e′e′ = e′ = θ(ab). For

the image, closure is given by (θa)(θb) = a′b′ = θ(ab). The kernel has inverse elements

since (θg)(θg−1) = θ(gg−1) ⇒ e′(θg−1) = e′, meaning that for a g ∈ ker θ, its inverse g−1

must also map to the identity. The inverse elements of the image is trivially given by the

previously stated fact that θg−1 = (g′)−1 for any g ∈ G.

With these group concepts, we can now introduce homology groups.

2.3.2 Homology

Homology is, as mentioned earlier, a way of counting the holes of a simplicial complex.

This is done by computing the homology groups of the complex, which in turn requires

three other kinds of groups: p-chain groups, p-cycle groups, and p-boundary groups. This

section, which is based on Edelsbrunner and Harer [10], will explain these groups, and

show a matrix reduction algorithm for computing homology.

A p-chain is a sum of p-simplices, written with coefficients ai and p-simplices σi as

Σaiσi. The coefficients will in our case be ai ∈ Z2, such that for any p-chain, each

p-simplex is either in it or not.

The p-chain group Cp of a complex K consists of the set of all its p-chains, with the

operation being addition of its coefficients. Thus, the p-chain group can be written as

the group generated by all p-simplices, gr{σ | dimσ = p}. Since each simplex is unique,

none of the generators are redundant. Note that since the operation is addition, the chain

groups are Abelian.

There exist homomorphisms from each chain group of dimension p to the chain group

of dimension (p − 1). These are called boundary homomorphisms, or boundary maps,

18

∂p : Cp → Cp−1, and map each p-simplex to the sum of its dimension (p − 1) faces. The

boundary of a p-simplex σ defined by the vertices {x0, . . . , xp} can be written as

∂pσ =

p∑
i=0

{x0, . . . , xi, . . . , xp}

where the bar denotes that the vertex is not included in the face. Since a p-chain is a

sum of p-simplices, the boundary of a p-chain c can be written as the sum of its simplices’

boundaries,

∂p(c) = ∂p(
i∈I∑

aiσi) =
i∈I∑

ai∂p(σi), I = {i | dimσi = p}

satisfying the homomorphism condition, i.e., θ(a)θ(b) = θ(ab).

With the boundary homomorphisms, we can use the kernel of ∂p and the image of ∂p+1

to form two subgroups of the p-chain group: The p-cycle group Zp and the p-boundary

group Bp, respectively. The p-cycle group consists of all p-chains where the dimension

(p − 1) faces are shared between the simplices an even number of times, such that they

cancel out and the boundary is 0 (making them part of the kernel). The p-boundary

group simply consists of all p-chains that are the boundary (i.e., the image) of some

(p+ 1)-chain.

Figure 2.9: The relationships between the chain, cycle, and boundary groups for dimen-
sions p + 1, p, and p − 1, along with boundary maps. This clearly illustrates how Bp is
a subgroup of Zp, which itself is a subgroup of Cp. It also shows Zp as ker ∂p, and Bp as
im ∂p+1. Figure adapted from Edelsbrunner and Harer [10].

There is an important relationship between the p-chain group, p-cycle group, and

the p-boundary group, namely Bp ⊴ Zp ⊴ Cp, as shown in figure 2.9. The fact that

Bp is a (normal) subgroup of Zp might not be obvious, so it will need to be explained.

Since they are both subgroups of Cp, it is clear that the relationship holds as long as the

19

boundaries are a subset of the cycles. The fundamental lemma of homology states that

∂p(∂p+1σ) = 0, i.e., the boundary of a boundary is zero. We can see this by first writing

the boundary of a simplex as ∂p+1σ =
∑p+1

i=0 τi where τi is the face without vertex xi.

This notation can be extended to τi,j, denoting a dimension (p − 1) face of σ without

vertices xi and xj. It is then easy to see that for any vertices xi, xj ∈ σ, τi,j will be added

to ∂p(∂p+1σ) twice (by ∂pτi and ∂pτj), canceling it out. This means that the fundamental

lemma of homology holds, and im ∂p+1 ⊆ ker ∂p as required.

Using the p-cycle groups and the p-boundary groups, we can finally define the p-th

homology group. It is given by their quotient group, i.e., Hp = Zp

/
Bp. The equivalence

classes of a homology group are called homology classes, and their elements are then the

cycles which are equivalent relative to the boundaries. This means that each homology

class represents a unique combination of holes, such that log2 of the number of p-homology

classes is the number of p-dimensional holes in the complex. This number is commonly

called the p-th Betti number, written as βp.

Each of the groups discussed here has a rank according to its number of irredundant

generators. For the p-chain group, for example, its rank is the number of p-simplices.

The rank of the p-th homology group is rank Zp − rank Bp, and is equivalent to the p-th

Betti number. This means that we may find the number of p-dimensional holes in the

complex by finding the ranks of the p-cycle group and the p-boundary group. To do so,

we need to define boundary matrices, which we will use a matrix reduction algorithm on

to get the ranks.

The boundary matrices of a complex are defined for each dimension, such that the

columns of a p-boundary matrix represent the p-simplices, and the rows represent the

(p − 1)-simplices. The element of each cell is 1 if the row’s simplex is a face of the

column’s simplex, and 0 if it is not. The matrix thus encodes the p-th boundary map,

∂p. As an example, the 1-boundary matrix of a simplicial complex representing a hollow

triangle, K = {{x1}, {x2}, {x3}, {x1, x2}, {x1, x3}, {x2, x3}}, is

{x1, x2} {x1, x3} {x2, x3}

{x1} 1 1 0

{x2} 1 0 1

{x3} 0 1 1

.

The matrix reduction algorithm is used to convert an m× n matrix to Smith normal

form, where the entries e1,1, . . . , ed,d for some d are 1, and the rest of the entries of the

matrix are 0. To perform the algorithm, start with x = 1:

20

� Find k ≥ x, l ≥ x such that ek,l = 1.

– If such an entry does not exist, the algorithm is finished.

� Swap row k with row x, and column l with column x.

� For each row i, x < i ≤ m, if ei,x = 1, add row x to row i.

� For each column j, x < j ≤ n, if ex,j = 1, add column x to column x.

Repeat the steps for x = 2, x = 3, etc., until the algorithm is finished.

The final matrix then provides information about the ranks of some groups the follow-

ing way: As each p-simplex and (p− 1)-simplex respectively corresponds to one column

and one row each, the width n of the matrix is the rank of the p-chain group, and the

height m of the matrix is the rank of the (p − 1)-chain group. The rank of the matrix,

d, is equivalent to the rank of the (p− 1)-boundary group, i.e., the group defined by the

image of the p-th boundary map. The number of zero columns, n− d, is the rank of the

p-cycle group, i.e. the group defined by the kernel of the p-th boundary map.

To show how this works, we will calculate β1 of the simplicial complex K defined

earlier, which will require the rank of Z1 and the rank of B1. Since there are no 2-

simplices and therefore no 2-boundary matrix, rank B1 is trivially zero. To find rank Z1,

we will perform the matrix reduction algorithm on the 1-boundary matrix of K. First,

we perform the steps for x = 1:1 1 0

1 0 1

0 1 1

−−−−−−−−→
r2 = r2 + r1

1 1 0

0 1 1

0 1 1

−−−−−−−−→
c2 = c2 + c1

1 0 0

0 1 1

0 1 1

Note that no row or column swap was performed as e1,1 was already 1. We repeat the

steps for x = 2: 1 0 0

0 1 1

0 1 1

−−−−−−−−→
r3 = r3 + r2

1 0 0

0 1 1

0 0 0

−−−−−−−−→
c3 = c3 + c2

1 0 0

0 1 0

0 0 0

For x = 3, we see that there are no entries ek,l = 1 for k ≥ x, l ≥ x, meaning that the

algorithm is finished. Since there is one zero column in the resulting matrix, rank Z1 = 1,

and β1 = rank Z1 − rank B1 = 1− 0 = 1. This is correct, since K has one 1-dimensional

hole.

21

Now, if we fill the hole by adding the 2-simplex {x1, x2, x3} to K, we get a 2-boundary

matrix which we can reduce:

{x1, x2, x3}

{x1, x2} 1

{x1, x3} 1

{x2, x3} 1

−−−−−−−−→r2 = r2 + r1

10
1

−−−−−−−−→
r3 = r3 + r1

10
0

This means that rank B1 = 1, such that β1 = 1− 1 = 0, and the hole has disappeared as

expected.

Lastly, it should be noted that since the 0-simplices have no proper faces, the boundary

of a 0-chain is always 0. Thus, Z0 = C0, and the rank of the 0-cycle group is equal to the

number of vertices. Additionally, the boundary group contains information about which

vertices are connected by edge paths. This leads to the 0-th homology group encoding

the connected components of the complex; each vertex is in the same homology class as

the vertices it is connected to. This in turn means that the rank of the 0-th homology

group is the number of connected components in the complex, and a 0-dimensional hole

can be intuitively explained as being a connected component.

Now that groups and homology have been defined, persistent homology can be defined.

2.3.3 Persistent homology

The core idea of persistent homology is to examine how the homology of a filtration

changes as the parameter of its complex increases, as opposed to examining the homology

of the complex at one specific parameter value. This makes the analysis less sensitive to

noise in the data [10], and makes it easier to approximate its underlying space [4]. In this

thesis, the complex will be the Alpha complex, the parameter of which is the radius r of

the balls around each point.

The persistence of a hole is calculated as the difference between the value of r when it is

”born” (i.e., when it appears), and the value of r when it ”dies” (i.e., when it disappears).

In this thesis, the persistence information of a filtration will be encoded in a persistence

diagram, where each hole is represented as a point. A persistence diagram most often

has birth-death axes, which means that each point has coordinates (b, d) corresponding

to its hole’s birth and death; this means that all points lie in the upper left triangular,

22

Figure 2.10: Examples of two types of persistence diagrams. The diagram on the left
has points with birth-death coordinates, while the diagram on the right has points with
birth-persistence coordinates.

as a hole cannot die before it is born. Sometimes, a persistence diagram may have birth-

persistence axes instead, where each point has coordinates (b, d − b) corresponding to

its hole’s birth and persistence. Examples of these two types of diagrams are shown in

figure 2.10, both showing the same filtration. Note that if a hole never dies, like the final,

single connected component of a complex, its death value is set to ∞. This is plotted in

a persistence diagram as a point on a line at the top of the diagram representing infinity.

Similarly to Betti numbers in homology, persistent homology has persistent Betti

numbers. The p-th persistent Betti numbers are written as βi,j
p , and denote the number

of p-dimensional holes which are born at r ≤ i, and whose deaths are at r > j. This can

be read from a persistence diagram as the number of points to the upper left of the point

(i, j), that is, all points with b ≤ i and d > j. Persistent Betti numbers can be useful

when analyzing a filtration, as highly persistent holes in an interval may indicate that

the interval is close to a parameter value r approximating the ground truth for the point

cloud being analyzed.

To generate the persistence diagram of the p-th homology group of a filtration, we

need to know when each p-dimensional hole is born and dies. This may be done by

calculating the homology for each complex of the filtration individually. However, there

is a more efficient method for doing this, again using a boundary matrix and a matrix

reduction algorithm.

23

First, we need to define an ordering for the simplices of a filtration. For a filtered

simplicial complex K, we may assign to it a function f from its simplices to R. The value
of the function for each simplex σ will be the lowest value of r for which σ is a part of the

complex. We can then index the simplices in order of appearance. For any two simplices

σi, σj ∈ K, i < j if f(σi) < f(σj) or if σi is a face of σj. In the case where simplices are

tied, they may be indexed in any order. This makes it so that {σi | i ∈ [1, k]} is a valid

subcomplex of K for any k ≤ n [10].

Using the ordered simplices, we can construct a new type of boundary matrix based

on the filtration. For a filtered simplicial complex with m simplices, the boundary matrix

is an m × m matrix where each simplex σi of the complex is represented by row and

column i. In other words, in this boundary matrix, all simplices of all dimensions are in

both the rows and columns. Again, like with the previous boundary matrix, the value of

each element ei,j is 1 if column j represents a p-simplex and row i represents one of its

(p− 1)-dimensional faces, and 0 if not.

The matrix reduction algorithm for persistent homology is simpler than the one for

homology. We first need to define low(j), indicating the highest i (i.e., the visually lowest

row) for which ei,j = 1; if j is a zero column, low(j) is 0. The algorithm is then:

Input: Boundary matrix D
Output: Reduced boundary matrix R
begin

for column j = 1 to m do
while there is a column k < j for which low(k) = low(j) ̸= 0 do

Add column k to column j;
end

end

end

In the reduced matrix, if low(j) ̸= 0 for a column j representing a (p + 1)-simplex, that

means a p-dimensional hole is born at f(σlow(j)) and dies at f(σj) [18]. We thus have

the persistence intervals [b, d) of the filtration, adding an interval [0,∞) for the final

connected component of the filtration.

To demonstrate how this works, we will make the persistence diagram of the point

cloud with points x1 = (−0.5, 1.5), x2 = (−1, 0), and x3 = (1, 0). The filtered sim-

plicial complex is then K = {{x1}, {x2}, {x3}, {x1, x2}, {x2, x3}, {x1, x3}, {x1, x2, x3}},
with f({xi}) = 0 for each vertex {xi}, f({x1, x2}) =

√
0.625, f({x2, x3}) = 1,

24

f({x1, x3}) =
√
1.125, and f({x1, x2, x3}) =

√
1.25. Its boundary matrix is

{x1} {x2} {x3} {x1, x2} {x2, x3} {x1, x3} {x1, x2, x3}
{x1} 0 0 0 1 0 1 0

{x2} 0 0 0 1 1 0 0

{x3} 0 0 0 0 1 1 0

{x1, x2} 0 0 0 0 0 0 1

{x2, x3} 0 0 0 0 0 0 1

{x1, x3} 0 0 0 0 0 0 1

{x1, x2, x3} 0 0 0 0 0 0 0

which we reduce according to the persistent homology algorithm:

0 0 0 1 0 1 0

0 0 0 1 1 0 0

0 0 0 0 1 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 0

−−−−−−−−→
c6 = c6 + c5

0 0 0 1 0 1 0

0 0 0 1 1 1 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 0

−−−−−−−−→
c6 = c6 + c4

0 0 0 1 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 0

This results in the points (f({x2}), f({x1, x2})) = (0,

√
0.625), (f({x3}), f({x2, x3})) =

(0, 1), and (f({x1}),∞) = (0,∞) for H0, and (f({x1, x3}), f({x1, x2, x3})) = (
√
1.125,

√
1.25)

for H1. The resulting persistence diagram is shown in figure 2.11.

Figure 2.11: The persistence diagram for H0 and H1 of the filtration K.

25

There are more efficient algorithms for computing these steps however, implemented

by Python modules such as Gudhi [22] which will used throughout the thesis.

The persistence diagrams are difficult to use directly as input for machine learning.

For example, the number of points may vary between diagrams. Therefore, additional

processing is done to vectorize the diagrams to a predetermined number of features, as

will be detailed in the next section.

2.4 Vectorization

While persistence diagrams are useful for encoding topological information about a

dataset, there are methods to vectorize the diagrams to make them more suitable for

machine learning. Two different vectorization methods will be described here: Persis-

tence landscapes, and persistence images.

2.4.1 Persistence landscape

The persistence landscape was introduced by Bubenik [2] and provides a way to convert

from different discrete topological summaries to a series of continuous functions. The

k-th persistence landscape function of a filtration is given by

λk(r) = sup(m ≥ 0 | βr−m,r+m ≥ k),

where βr−m,r+m is the sum of βr−m,r+m
p for all dimensions p. It is also possible to use

only the persistent Betti numbers for some dimensions, e.g. to generate the persistence

landscape of the first homology group, H1.

In our case however, we want to convert persistence diagrams to persistence land-

scapes. For a birth-death persistence diagram with points (bi, di), the paper defines the

function of the k-th persistence landscape as

λk(r) = k-th largest value of max(min(r − bi, di − r), 0), r ∈ R.

Here, like with the function defined for filtrations, one may choose to either include the

points for all Hp, or only include the points for select Hp.

26

Figure 2.12: The figure on the left shows an H1 persistence diagram. The top-right figure
shows it rotated and scaled. The middle-right figure shows the modified persistence
diagram superposed on the filled persistence landscapes. The bottom-right figure shows
the final persistence landscapes for 1 ≤ k ≤ 3 generated by the original persistence
diagram.

These functions can be explained intuitively by slightly modifying the persistence

diagram and comparing it to its persistence landscapes. First, rotate the diagram by

45 degrees counter-clockwise, then scale it down by a factor of
√
2. Afterwards, draw a

triangle down from each of the points. λk(t) is then given by the highest point at time

step t where at least k triangles overlap. Figure 2.12 demonstrates this process for an H1

persistence diagram.

Note that the landscape functions λk are continuous. To vectorize the functions, a

sample range I ∈ R2 and a resolution r ∈ N are chosen to sample r evenly spaced points

of the function in the interval I. This is done for each desired λk, usually given by the

range 1 ≤ k ≤ kmax for a given number of landscapes kmax. Those vectors are then

concatenated to give the final vectorization.

27

Figure 2.13: Example of how a persistence image is generated from a persistence diagram.
A Gaussian is applied around each point in the persistence diagram to create a persistence
surface, which is then discretized to make a persistence diagram.

2.4.2 Persistence image

The persistence image, developed by Adams et al. [1], is a very intuitive way of vector-

izing a persistence diagram by converting it into an image. First, a persistence surface

ρ(z) : R2 → R is generated by applying a probability distribution function, usually the

Gaussian, centered at each point, and performing a weighted sum of the resulting values.

This may be thought of as applying a Gaussian blur to the persistence diagram; the

variance of the Gaussian should be noted as a parameter of interest. Then, for a given

resolution r ∈ N×N and image range im r ∈ R2×R2, the persistence surface is cropped

to the image range and discretized to an image with dimension r, such that the value

of each pixel is the double integral of the corresponding area of the cropped persistence

surface. An example of this process is shown in figure 2.13. To get the final vectorization,

the pixel values are concatenated.

Additionally, as noted in the paper, the diagram may be preprocessed to better fit

the persistence image method. For example, the lower right triangular of a birth-death

diagram is empty, meaning that the persistence image would gain no information from

that area. Therefore, diagrams are usually transformed to use birth-persistence axes

before generating persistence images.

The weighting function might also be varied by making it constant, i.e. each point

has equal weight, or by making it linear such that each point has weight equal to its

persistence. The latter could be useful for either focusing on more persistent points, or

helping their visibility in diagrams with many points of low persistence.

28

Chapter 3

Benchmarking tool implementation

In this chapter, I will introduce the benchmarking tool and how it is implemented. Note

that this chapter is about the benchmarking tool itself, and not the tasks implemented

as part of the benchmarking suite, as those will be detailed in the next chapter.

First, I will explain how to use the benchmarking tool, and give an overview of how

it works. Afterwards, I will provide a more detailed explanation of the implementation

of the benchmarking tool, along with the reasoning behind the design choices. Then, I

will briefly describe the initial version of the benchmarking tool, which was scrapped in

favor of making the current version. Finally, I will describe the pipelines which will be

used to evaluate the benchmarking suite.

3.1 Overview

3.1.1 Usage

The benchmarking suite is provided as a function benchmark, with required parame-

ters being fscs, phs, and vecs. fscs and phs respectively provide the benchmarking tool

with functions to generate filtered simplicial complexes (FSC) and compute persistent

homology (PH), while vecs provides the benchmarking tool with classes corresponding to

vectorization methods. It should also be noted that the function is seeded to make the

results reproducible, taking an integer as a seed, defaulting to 42.

29

The FSC and PH functions must take two parameters each, the first being the input

data, and the second being the seed, in case the function involves randomness.

The vectorization classes must have fit and transform methods for the vectoriza-

tion methods, attributes classifier and regressor corresponding to model classes for use

with classification and regression tasks, and vectorization parameter ranges and hyperpa-

rameter ranges, available through the attributes vec parameter ranges and hyperparame-

ter ranges. Additionally, its methods and attributes must satisfy certain conditions:

� The initialization method of the class must take the seed as the only parameter.

� The model classes must have two initialization parameters, the first being the hy-

perparameters and the second being the seed.

� The model classes must have fit and predict methods similar to the scikit-learn

interface.

� The fit method of the vectorization class must take two parameters, the first being

the input data on which the vectorizer is fitted and the second being the vectoriza-

tion parameters.

� The vec parameter ranges and hyperparameter ranges attributes must be dictionar-

ies. Each key must be a tuple where the first element is the name of the parameter,

and the second element is one of the strings ”discrete” and ”continuous”, depend-

ing on whether the value of the entry is a list with predefined parameter values

(”discrete”) or a list with the endpoints of a range (”continuous”).

The benchmarking tool contains base classes for the vectorization and model classes,

which can be extended to make it easier for the user to implement them.

Each of the parameters fscs, phs, and vecs must be a list of dictionaries. For fscs and

phs, each dictionary must have the following entries:

� ”fns”, which is itself a dictionary, with the keys being the names of the functions

and the values being the functions.

� ”in”, a string stating the input type of the functions in ”fns”.

� ”out”, a string stating the output type of the functions in ”fns”.

For vecs, each dictionary must have the following entries:

� ”classes”, a dictionary with key-value pairs corresponding to the names of the classes

and the classes themselves (not instances of the classes).

� ”in”, a string stating the input type of the vectorization methods in ”classes”.

30

The ”in” and ”out” entries are used to make combinations consisting of an FSC function,

a PH function, and list of vectorization classes, where the components are compatible;

that is, the output type of the FSC function must match the input type of the PH

function, and the output type of the PH function must match the input type of the

vectorization classes.

3.1.2 Benchmarking process

The benchmarking suite consists of four tasks. The training, validation, and test datasets

for these tasks are generated as needed, based on a handful of parameters. The bench-

marking tool tests the TDA pipelines on each task several times, each time with varying

parameter combinations. What these tasks are and which parameters are used will be

explained in the next chapter. For now, it suffices to know that the tasks and task

parameters are pre-determined.

With the prerequisites explained, I can now go through the process of the benchmark-

ing tool, which is also shown in figure 3.1.

The first step in the benchmarking tool is making the FSC, PH, and vectorization

combinations as described earlier, because each combination of the FSC function, the PH

function, and any of the vectorization classes in the list constitutes a TDA pipeline. Note

that FSC function and PH function combinations may be referred to as FSC + PH.

After making the TDA pipelines, the benchmarking tool iterates over each task and

its parameter combinations, testing the pipelines whose FSC function has input type

corresponding to the task’s data type, e.g. ”pc” for tasks whose datasets consist of point

clouds.

The pipelines are tested by first passing the dataset to the FSC function, then passing

its output to the PH function; this section is timed as the FSC + PH time. Afterwards,

the tool iterates over the vectorization classes associated with the FSC + PH.

For each vectorization class, vectorization parameter and hyperparameter optimiza-

tion is done using random search; a maximum of 20 vectorization parameters combina-

tions and 20 hyperparameter combinations are generated based on the provided ranges.

The tool then iterates over the vectorization parameter combinations, and for each com-

bination, it vectorizes the output from the PH function and iterates over the hyperpa-

rameter combinations.

31

32

Filtration

Persistent
Homology

Vector-
ization

Dataset
generation

Test
performance

Cached

Model fit/
predict

Get val.
scores

Model selection

deep-
copy

deep-
copy

Save scores
and time
taken

PH
functions

FSC
functions

Vectorization
classes

Tasks &
task parameters

Generate
FSC/PH/vec.
combinations

Start

Timed as FSC + PH time

Timed
as vec.
time

Figure 3.1: Flowchart showing the workflow of the benchmarking tool. The boxes with
solid lines indicate that the step is performed by the benchmarking tool, and the boxes
with striped lines indicate steps which use user implemented code. deepcopy next to an
arrow means that data from the preceding step is copied using deepcopy before being
used in the next step.

For each of the hyperparameter combinations, the tool fits the model corresponding

to the task type (i.e., the classifier or the regressor) on the training data. Afterwards, the

trained model is given a validation score based on its predicted values for the validation

data, which is stored as the validation score for that combination of vectorization pa-

rameters and hyperparameters. When each vectorization parameter and hyperparameter

combination has been given a validation score, the combination with the highest score is

chosen for testing. One may therefore view this as an extended model selection.

The dataset is vectorized using the selected vectorization parameters, and a model

with the selected hyperparameters is trained on the combined training and validation

data. Then, the model is given a test score based on its predicted values for the testing

data. The time taken for the model selection and testing is timed as the vectorization

time.

Finally, the best validation score and the test score for the FSC function, PH function,

and vectorization class combination is stored in a scores.json file, along the FSC + PH

time and the vectorization time. Note that the pipelines are scored by accuracy for

classification tasks, and MSE for regression tasks.

The benchmarking tool also caches and copies the data at certain points to speed up

the benchmarking process, and to prevent the pipelines from tampering with the data

given to other pipelines. When each dataset is generated, it is also cached, allowing the

benchmarking tool to quickly reload the dataset for each FSC + PH. Additionally, when

data which is intended to be reused is given to user implemented code, it is first copied

using deepcopy. This most notably happens when the vectorization class uses the output

of the PH function, and when the model uses the vectorized data.

3.2 Implementation details

This section will describe the finer details of the benchmarking tool not explored in the

previous section, while explaining the reasoning behind the design choices.

First, the random number generator used throughout the benchmarking suite, both

in the tool itself and when generating the datasets, is NumPy’s RandomState. It is a

legacy generator, meaning it will not be updated, and is therefore suited for use in the

benchmarking suite to ensure that the results obtained are consistent across multiple

versions of NumPy [17].

33

The perhaps most notable design choice of the benchmarking tool is directly splitting

up the pipeline into the FSC, PH and vectorization parts, as opposed to having the user

implement whole pipelines. There are multiple advantages to this approach.

One advantage is the possibility of implementing multiple FSC functions to handle

different types of data, for example point clouds and images, while still being able to use

the same PH functions and vectorization classes. It also allows the user to test the impact

of using different simplicial complexes without having to re-implement the PH functions

and vectorization classes. Having the user implement the vectorization classes and their

model classes in a standardized way also makes the model selection for each pipeline

more unified, making it easier to compare the pipelines. Most important for this thesis,

however, is the ease with which multiple vectorization methods can be implemented and

tested. The same FSC + PH can be in combination with several vectorization classes,

such that the user only has to implement the different vectorization classes, and not an

entire pipeline for each vectorization method.

Using the same FSC + PH also helps speed up the testing. As mentioned earlier, the

FSC, PH, and vectorization combinations are pre-generated such that each FSC + PH is

associated with their compatible vectorization classes. In addition to allowing pipelines

with the same FSC + PH to reuse its output, as explained in the previous section, it also

simplifies checking if all the vectorization classes have been tested for a particular FSC

+ PH; if they have, the FSC + PH does not need to be run and can safely be skipped,

saving time.

The requirements for implementing the FSC functions, PH functions, and vectoriza-

tion classes were kept somewhat low to allow the pipelines to be sufficiently flexible.

One might for example make a non-TDA pipeline to use as a baseline by simply making

both the FSC and PH functions the identity function, and making the vectorization class

transform the point clouds to the mean and variance of each coordinate.

The tasks have parameters, which are divided into constant parameters and variable

parameters. The constant parameters stay the same for each dataset generated for the

task, while the variable parameters are combined and iterated over. An example of what

a variable parameter might be is the number of points per point cloud, or the amount of

noise applied when generating the dataset.

This approach makes it easier to test for the different pipelines’ stability for varying

amount of noise, and their performance with a varying amount of information available

(e.g., the number of points per point cloud), eliminating the need to add each task and

34

parameter combination individually. The variable parameters might also be applicable to

the tasks based on real-world datasets, for example varying the total size of the dataset

to check the impact on the total running time. It also makes it easier to save and read

the pipelines’ scores for each dataset; this will be explained later.

I should also note that the pre-generation of the task and task parameter combinations

is used to show the current progress of the benchmarking while it is running.

The choice of dividing the timings of the FSC + PH and the vectorization part was

motivated by the fact that the same FSC + PH may be used for different vectorization

methods. It therefore makes sense to look at both the FSC + PH time taken, which is

shared between them, and the vectorization time, which will be different. This makes

it easier to compare the time taken for those different vectorization methods, while still

allowing for comparing the total time taken for a TDA pipeline, and the time taken for

a baseline non-TDA pipeline.

Having the model selection and vectorization so tightly connected was done for sev-

eral reasons: First, one might want to vary the complexity of the model based on the

vectorization method. Second, it easily allows for combining the vectorization parameter

search with the hyperparameter search in a natural way. I should mention here that for

simplicity, the benchmarking tool iterates over the same hyperparameter combinations

for each vectorization parameter combination, as this is not expected to have a significant

impact on the results. Lastly, having the model classes be a part of the vectorization class

allows for model-level vectorization methods such as PersLay [5]. The model can then

be changed by the vectorization class according to the vectorization parameters, and the

benchmarking tool will retrieve the model with the correct parameters.

Including the model selection and testing in the vectorization time was done because

they are majorly decided by the vectorization class. The models and hyperparameters

used can vary significantly between the different vectorization classes. Additionally, the

choice of vectorization method can affect the time taken to train and use the model,

depending on the number of features generated by the vectorization.

The choice of having a maximum of 20 vectorization parameter combinations and 20

hyperparameter combinations was done to keep the total running time of the benchmark

low for the purposes of this thesis; optimally, these numbers would be set higher to

perform more thorough searching.

Using accuracy as the performance measure for classification tasks, and MSE for

regression tasks, was done because they are simple and well-known performance measures

35

for their respective purposes. For the accuracy in particular, it is a reasonable choice

because the datasets used by the benchmarking suite have balanced labels.

Lastly, the scores are saved to scores.json after each pipeline has finished testing. This

allows for continuing the suite if an error occurs, or if the benchmarking is stopped some

other way, without having to rerun tests.

The structure of scores.json is the same as the iterations: The upper level is the task,

followed by a level for each of the variable parameters of the task. The following level

contains each of the pipelines tested, in the form ”FSC name, PH name, vectorization

name”. The scores and the times taken are saved under their respective pipelines, making

it easy to compare their performance.

3.3 Initial version

The initial version of the benchmarking tool differed from the current version in a few

ways.

The largest difference was that it was pipeline-based, instead of having the current

FSC, PH, and vectorization split. That meant that the user would have to implement

the entire pipeline, from the filtration step to the model selection and test set prediction,

for every combination of FSC function, PH function, and vectorization method. When

the possibility came up of having tasks with different types of data, for example images

and point clouds, I started rewriting the benchmarking tool to the current version so this

could be supported.

The initial version of the tool also did not yet have variable parameters for the tasks,

meaning that the logic for handling the tasks also had to be rewritten.

Also majorly impacted by the rewrite was the way the scores were saved. Since each

task only had one parameter combination, and each pipeline was added in its entirety, the

scores were simply saved as each pipeline’s test score and time taken for each task, which

could very easily be converted to a variety of other formats, like an Excel spreadsheet or

a CSV file. This proved unfeasible for the current version, and so JSON was chosen as

the format for the score file.

36

3.4 Pipelines

To evaluate the suitability of the benchmarking suite for testing TDA pipelines, I imple-

mented two non-TDA pipelines, to use as a baseline, and two TDA pipelines, which will

be described in this section.

The model classes and hyperparameter ranges used by the pipelines are the same.

The classification model and the regression model are the MLPClassifier and MLPRe-

gressor of scikit-learn respectively. The hyperparameter ranges are 1-5 hidden layers of

size 32, sampled discretely, and the exponent of the learning rate is between -4 and 0, sam-

pled continuously and uniformly; the learning rate used is then 10x for x ∼ U((−4, 0)).

Additionally, the models use early stopping.

The FSC function and PH function for the non-TDA pipelines is the identity function,

as mentioned earlier. One of the non-TDA pipelines concatenates the points of each point

cloud as its ”vectorization” method, while the other computes the mean and variance of

each coordinate for each point cloud. Neither of these have any vectorization parameters.

The TDA pipelines use the same FSC function and PH function. The FSC function

uses Gudhi’s AlphaComplex class to make a filtration for each point cloud based on

the alpha complex. These filtrations are sent to the PH function, which uses Gudhi to

compute the persistent homology of each filtration. The PH function outputs the H1

persistence intervals, which are used as the input for the vectorization.

The first TDA pipeline uses the persistence image as its vectorization method. Its

parameter ranges are: 4, 8, 10, 12, and 16 for the resolution of both dimension (always

producing a square image), chosen discretely; [−3, 3] for the exponent of the variance of

the Gaussian applied to each point, making the variance 2x for x ∼ U((−3, 3)); [−1, 2] for

the exponent of the weight function applied to each point, making the weight function

pmax (0,x), where p is the persistence of the point and x ∼ U((−1, 2)).

The second TDA pipeline uses the persistence landscape as its vectorization method,

with the following parameter ranges: 1-5 for the number of landscapes, chosen discretely;

32, 64, 128, 256, and 512 for the resolution, chosen discretely.

Note that because the vectorization methods are only used in one pipeline each, the

pipelines will be referred to by their vectorization method.

37

Chapter 4

Synthetic benchmarks

4.1 Method

This section will explore in detail how the benchmarking tasks are created. In the first

section, each of the different point cloud generation methods will be explained, both the

theory behind the implementations and how they work in practice. The second section

will then describe how the generators were used to make the different benchmarks.

4.1.1 Manifold sampling

Generating point clouds on manifolds is generally a simple task, given a parameterization

of the manifold. However, if the parameters are drawn from uniform distributions, the

distribution of the points on the surface of the manifold might not be uniform, depending

on the curvature of the manifold [8]. The reason this is important is because for the point

sampling, the goal is to obtain a uniformly sampled ground truth from which points can

either be evenly or, perhaps more interesting, unevenly downsampled.

A simple example of uniform parameter distributions leading to non-uniform point

distribution is the 2-sphere. It may be parameterized by two angles, one for the longitude

and one for the latitude. For the longitude, if we sample an angle θ ∈ [0, 2π) from

a uniform distribution, we get an evenly distributed circle. When generating an angle

ϕ ∈ [−π
2
, π
2
] for the latitude however, the uniform distribution yields an unevenly sampled

sphere. As the latitude goes further from the equator, the radius of the circle gets smaller

38

while the probability of a point being on that circle stays the same, meaning that points

will be more concentrated around the poles. A sphere sampled this way is shown in figure

4.1.

Figure 4.1: 2-sphere generated by uniformly sampling the longitudinal and latitudinal
angles for each point. The points are colored by their y-value to show the poles more
clearly.

Mathematically, this can be proven by comparing the probabilities and surface areas

for two different sections of the sphere. The probability of 0 ≤ ϕ ≤ π
4
and π

4
≤ ϕ ≤ π

2
is

trivially the same given a uniform distribution. The surface areas can be calculated by

integrating the circles of latitude for the two intervals. For the unit sphere, the radius of

a circle of latitude is given by cosϕ, thus the formula for the circumference is:

2π cosϕ

We then integrate over the two intervals to get their respective surface areas:

w π
4

0
2π cosϕ dϕ = 2π

w π
4

0
cosϕ dϕ

= 2π [sinϕ]π/40

= 2π

Å
1√
2

ã
=

√
2π

w π
2

π
4

2π cosϕ dϕ = 2π
w π

2

π
4

cosϕ dϕ

= 2π [sinϕ]
π/2
π/4

= 2π

Å
1− 1√

2

ã
= (2−

√
2)π

39

Since
√
2π ̸= (2−

√
2)π, and the probability of a point being on either section is the

same, their sampling densities must differ.

n-sphere

There are convenient parameterizations for n-spheres which use n angles; for example

(cos θ sinϕ, sin θ sinϕ, cosϕ) with θ ∈ [0, 2π) and ϕ ∈ [−π
2
, π
2
] generates a unit 2-sphere.

The problem is that, as demonstrated earlier, this results in an uneven sphere (for n > 1).

A much simpler, but perhaps less intuitive way to generate a sphere is to simply draw each

coordinate from a probability distribution and scale the resulting vector to the desired

length. Using the uniform distribution U((−1, 1)) gives a sphere like the one shown in

figure 4.2. Using the normal distribution, however, results in an evenly sampled sphere

(figure 4.3) because of the rotational symmetry of the normal distribution [16].

Figure 4.2: Top-down view of a
2-sphere generated by normalizing
points with coordinates sampled
from U((−1, 1)).

Figure 4.3: Top-down view of a
2-sphere generated by normalizing
points sampled from N (⃗0, I).

My implementation of the n-sphere generator defaults to a standard normal distribu-

tion (mean 0⃗, covariance I), but a custom multivariate generator function may be used

to get other coordinate distributions on the sphere. The examples below show how the

sphere looks for multivariate normal distributions with non-standard mean (figure 4.4),

and non-standard covariance matrix (figure 4.5).

Point sampling with noise is also supported in my implementation, which varies the

distances of the points from the center. The formula used for the final distance rf of each

40

Figure 4.4: 2-sphere with points
sampled from N ((−1, 1, 0), I),
which were then normalized.

Figure 4.5: 2-sphere with points
sampled from N (⃗0, diag(1, 10, 1)),
which were then normalized.

point is rf = r (1 + αx), where x ∼ D for a probability distribution D, with the default

being the standard normal distribution, and α ∈ R is a given noise scale parameter; note

that setting α = 0.0 creates a sphere without noise.

Before settling on the final noise function, a few others were considered. One example

is rf = r · 2αx which forces a positive magnitude, but as it is asymptotic to 0 in the

negative direction, its resulting points tended to be concentrated towards the origin.

Another method tested was to multiply each norm by αx before scaling the point, but this

proved to be very unpredictable; for points with lower norms especially, the probability

was relatively high of a point’s final distance being an order of magnitude larger than r.

Power spherical

The power spherical [7] is an alternative to the standard n-sphere point sampling. It takes

a direction vector and a concentration scalar to generate a point cloud concentrated in

that direction on the sphere. Figures 4.6 below show the power spherical for different

concentrations, with the same direction. Note that a concentration of zero is a special

case, giving a uniform sphere.

To explain how the power spherical works, I will go through the algorithm step by

step, generating an n-sphere with m points, direction µ⃗ ∈ Rn+1, and concentration κ ∈ R.
First, we uniformly sample m points from an (n − 1)-sphere, denoting the collection

of points S, and draw m samples from the beta distribution β
(
n
2
+ κ, n

2

)
which are

41

Figure 4.6: The power spherical at various concentration values, with the same direction.

concatenated to make b⃗. This beta distribution is then transformed to lie in the interval

[−1, 1] using t⃗ = 2⃗b − 1. Then, each point si in S is scaled by
√
1− t2i , resulting in S ′.

The n-sphere itself, Y , is made by concatenating t⃗ and S ′, effectively distributing the

points of S across the n-sphere with the correct concentration.

At this point, the sphere itself is complete, but the concentration is in the ”default”

direction e⃗1 = [1, 0, ..., 0]⊤, so we need to move it to µ⃗. The way this is done in the paper

is by reflecting the sphere about a hyperplane going through the origin.

u⃗ =
e⃗1 − µ⃗

||e⃗1 − µ⃗||2

defines a unit vector which is normal to the plane of reflection. Assuming Y is a d ×m

matrix, the final sphere (with correct concentration and direction) is given by X =

(Id − 2u⃗u⃗⊤)Y .

Noisy point sampling is also possible for the power spherical. Since the sphere is

generated with a radius of 1, each point can be scaled at the end by rf = r (1 + αx), x ∼ D

for some probability distribution D, defaulting to the standard normal distribution, to

get the wanted noise level α (and radius).

Torus

A torus is commonly embedded in R3 as the surface of revolution of an off-center circle.

This means that it can be parameterization with two angles, one for the axis of revolution,

42

and one for the off-center circle. The torus parameterization also relies on two radii. One

is the major radius R, which is the distance of the circle’s translation. The other is the

minor radius r, which is the radius of the revolved circle itself.

Generating a torus may be done using the two angles, θ ∈ [0, 2π) for the revolved

circle and ϕ ∈ [0, 2π) for the revolution, using the parameterizationÖ
(R + (r cos θ)) cosϕ

(R + (r cos θ)) sinϕ

r sin(θ)

è
.

Sampling the angles from uniform distributions results in a non-uniformly sampled

torus, shown in figure 4.7. There is no simple trick to uniformly sample from a torus,

but it is possible by rejection sampling θ (recall the description of rejection sampling in

section 2.1.2). While this wastes a lot of computation, it does result in a uniform torus.

A paper by Diaconis et al. [8] describes the process. They found that the probability

density function of the target distribution from which θ should be sampled is

p(θ) =
1

2π
(1 +

r

R
cos θ), 0 ≤ θ < 2π.

Requiring r and R to satisfy 0 < r ≤ R, p(θ) has a maximum value of 1/π, occurring

when r = R and θ = 0. The probability density function of U((0, 2π)) is π(θ) = 1/2π,

and we can set M = 2 such that 2π(θ) ≥ p(θ). This means that we can use rejection

sampling to sample from p(θ): Sample x′ ∼ U((0, 2π)) and y′ ∼ U((0, 1/π)). If y′ ≤ p(x′),

accept x′.

The paper also included an implementation in R for the rejection sampling, which I

based my Python implementation of the torus point sampler on.

Similarly to the previously described sphere samplers, the torus sampler also supports

noisy sampling. For the toruses, noise is applied to the minor radius r to shift the point

along its surface normal. The final minor radius used is calculated using rf = r (1 + (αx)),

where α ∈ R is the given noise scale and x ∼ D for a probability distribution D,

defaulting to the standard normal distribution. As with the spheres, this formula allows

both for predictable scaling of the noise, and for non-noisy toruses at α = 0.

43

Figure 4.7: Top-down view of a
non-uniformly sampled torus gener-
ated using uniformly sampled an-
gles.

Figure 4.8: Top-down view of a uni-
formly sampled torus. It was gener-
ated with uniformly sampled angles
of revolution and rejection sampled
angles for the revolved circle.

Genus g torus

While the torus itself has genus 1, for g ≥ 1 it is generalizable to any genus g torus by

simply removing adjacent ”caps” of g toruses and gluing them together. Figure 4.9 shows

toruses of genus 2 and 3.

The size of the cap is determined by a cut-off value in the range [−1, 1], corresponding

to the cosine of the revolved circle. That is, −1 removes almost the entire end of the

torus, 1 keeps almost the entire end of the torus, and 0 (the default) cuts off at the middle

of the end piece. Genus 2 toruses with cut-offs -0.5, 0.0, and 0.5 are shown in figure 4.10.

The implementation for the genus g torus uses a modified version of the normal torus

generator. First, the torus to generate a point for is chosen. Then a two-stage rejection

sampling is done, consisting of: 1) the normal rejection sampling; 2) checking that the

point is not a part of one of the removed caps. If the point is accepted, noise is applied

similarly to the normal torus, and the point is moved to the correct torus. If a point is

rejected, the torus for which to generate a point is again chosen at random. This ensures

that each of the toruses has the correct point density, which is important to take into

account as their surface areas are different.

Like the standard torus sampler, the noise is implemented such that the final minor

radius of each point is given by rf = r (1 + αx), x ∼ D, i.e. the point is moved along the

surface normal.

44

45

Figure 4.9: Toruses with genus 2 and 3.

Figure 4.10: Genus 2 toruses with cut-offs −0.5, 0.0, and 0.5.

4.1.2 Creating benchmarks

The different manifold sampling methods detailed in the previous section are used to

generate different synthetic benchmarks, each constructed to test different aspects of the

TDA-based pipelines compared to the baselines. This section will explain in detail each

of the synthetic benchmarks.

First, I should note the parameters which can be varied when generating the datasets:

n clouds, the number of point clouds, as well as n points, the number of points per point

cloud. The split ratios of the dataset can also be varied with the split ratios parameter,

and must be a tuple of three numbers summing to 1. The three numbers represent the

ratios of the dataset to be used for the training set, the validation set, and the test set

respectively. Lastly, the noise scale(s) used when generating the dataset can be varied

with the noise scales parameter. If it is a number, it is used as the noise scale for the

training, validation, and test sets. If it is a tuple of two numbers, the first number will

be used as the noise scale for the training and validation sets, while the second number

will be used for the test set.

Most of these parameters will be shared between the different tasks: 1000 point clouds

are generated for each dataset, with split ratios=(0.6, 0.2, 0.2). Also, each task iterates

over the same set of noise scales:

� 0.0, to test with no noise.

� 0.1, to test how the pipelines handle a small amount of noise.

� (0.1, 0.2), to test how the pipelines handles a higher amount of noise in the test

data than in the training data.

� 0.2, to test how the pipelines handle a larger amount of noise.

� (0.2, 0.4), to test how the pipelines handle a much higher amount of noise in the

test data than in the training data.

Lastly, each individual point cloud will be scaled to have a mean of 0 and a standard

deviation of 1 for all coordinates; the unscaled point clouds diverge significantly enough

in these measures that during the initial testing of the benchmarking suite, the mean/-

variance pipeline outperformed the other pipelines on almost all datasets. The scaling is

therefore applied to remove this information, making the suite more relevant to TDA.

46

Sphere/torus classification

The first benchmarking task is a simple sphere/torus binary classification task. It is

intended as a very simple baseline task where TDA-based pipelines are expected to have

an accuracy close to 1, given sufficiently many points and low noise.

For this task, datasets are generated with 50, 100, and 250 points per point cloud; in

combination with the noise scales, this results in 15 different datasets for the task.

For each point cloud, the dataset generator switches between making a 2-sphere and a

torus, resulting in an even number of spheres and toruses. Additionally, the actual noise

scale n′ for each point cloud is varied such that n′ = n|x| where x ∼ N (0, 1) and n is the

base noise scale for the entire dataset. The goal of this random noise scale is to get more

varied data. This method of varying the actual noise scale is also used when generating

datasets for the other tasks.

Sphere/genus g torus binary classification

The sphere/genus g torus binary classification task is made similarly to the regular

sphere/torus classification task, alternating between generating 2-spheres and toruses.

When it generates a torus, however, it also randomly selects a genus 1 ≤ g ≤ 5 for the

torus. The task is still a binary classification task with equal probability of either class,

but having a random genus for the torus increases the complexity of the task as there are

several different objects corresponding to one class.

This task uses a higher number of points per point cloud to be able to more accurately

represent the toruses of higher genus. The different numbers of points per cloud iterated

over are 250, 500, and 1000; combined with the noise scales, there are 15 different datasets

for this task as well.

It should also be noted that the cut-off for the toruses is chosen at random as

tanh(x), x ∼ N (0, 0.2), providing more variation to the data.

47

Sphere/genus g torus regression

In the sphere/genus g torus regression task, the genus of the manifold from which the

point cloud is sampled is chosen entirely at random using a uniform distribution. In con-

trast to the sphere/genus g torus binary classification task, the task here is to determine

the genus of the surface from which the point cloud is sampled, making it more complex

than both of the previous tasks. Note, however, that the method for choosing the cut-off

for the toruses is the same.

The parameters iterated over for the task are the same as its corresponding classifi-

cation task, again resulting in 15 datasets in total for the task.

Power spherical concentration regression

For this task, each point cloud is sampled based on the 3-dimensional power spherical,

with varying concentration and direction. The goal is to estimate the concentration of

each point cloud. The direction will be sampled uniformly from a 2-sphere, while the

concentration is sampled as the absolute value of x ∼ N (0, 2).

Datasets are generated with 50, 100, and 250 points per point cloud, which combined

with the noise scales again results in 15 datasets.

4.2 Results

The pipelines described in section 3.4 were tested on the tasks detailed in the previous

section. This section will present the results for each of the tasks. The full results can be

found in appendix A.

4.2.1 Sphere/torus classification

This section will present the results for the sphere/torus classification task. The full

results can be found in table A.1.

The non-TDA pipelines had low accuracies: The validation and test accuracies of the

concatenated points pipeline was around 0.5 on all datasets with some variance, though its

48

accuracies were only in the range 0.425-0.58. The mean/variance pipeline had validation

and test accuracies of 0.5 on all datasets.

Both TDA pipelines outperformed the non-TDA pipelines on all datasets. The accu-

racies of the persistence image pipeline were mostly in the range 0.7-1.0; for the datasets

with n points = 100 and noise scales of 0.1 and (0.1, 0.2), it had a validation accuracy

of 0.98 and test accuracies of 0.63 and 0.575 respectively. The persistence landscape

pipeline was generally outperformed by the persistence image pipeline, with accuracies in

the range 0.625-1.0. Its accuracies did, however, decrease less than the persistence image

pipeline’s accuracies as the noise increased, eventually outperforming it on the datasets

with n points = 250 and noise scales 0.2 and (0.2, 0.4). Both of the pipelines achieved

a test accuracy of 1.0 for n points = 250, noise scales = 0.0.

The time taken by the non-TDA pipelines was much lower on all datasets than the

time taken by the TDA pipelines.

The FSC + PH times of the non-TDA pipelines were negligible, while the FSC + PH

times of the TDA pipelines were around 3 seconds for the datasets with n points = 50,

7 seconds for those with n points = 100, and 22 seconds for those with n points = 250.

The concatenated points pipeline had a vectorization time of around 0.6 seconds for

the datasets with n points 50 and 100, increasing to about 1 second for the datasets with

n points = 250. The mean/variance pipeline had a vectorization time of approximately

0.4 seconds on all datasets. The vectorization time of the persistence image pipeline was

around 15, 16, and 21 seconds for the datasets with n points 50, 100, and 250 respectively.

For the persistence landscape, the vectorization time was about 24 seconds on almost all

datasets, with a few taking close to 20 seconds and 27 seconds.

4.2.2 Sphere/genus g torus binary classification

This section will present the results for the sphere/genus g torus binary classification

task. The full results can be found in table A.2.

The non-TDA pipelines’ performance on this task was very similar to their perfor-

mance on the previous task, with the accuracies of the concatenated points pipeline being

around 0.5, and the mean/variance pipeline’s accuracies being 0.5 on all datasets.

49

The overall performance of the TDA pipelines was also comparable to their perfor-

mance on the previous task, with their average accuracies being slightly higher. It should

be noted, however, that the accuracies of the persistence image pipeline decreased less

with increasing noise scales than the persistence landscape pipeline’s accuracies. The

persistence landscape pipeline only outperformed the persistence image pipeline on the

dataset with n points = 1000 and noise scales = 0.0, where it had validation and test ac-

curacies of 1.0, compared to 1.0 and 0.995 respectively for the persistence image pipeline.

The FSC + PH times for the non-TDA pipelines were again close to 0, with a max-

imum of around 0.04 seconds. The TDA pipelines’ FSC + PH times were much higher,

taking around 22, 50, and 105 seconds for the datasets with n points 250, 500, and 1000

respectively.

The vectorization times of the non-TDA pipelines also stayed quite low, with the

concatenated points pipeline taking less than 3 seconds on any dataset, and the mean/-

variance pipeline never taking more than 0.5 seconds.

The TDA pipelines’ vectorization times were quite high. The persistence image

pipeline’s times increased from around 22 seconds on the datasets with n points = 250

to about 78 seconds on the datasets with n points = 1000 and noise scales 0.2 and (0.2,

0.4). For the persistence landscape pipeline, the increase was not as significant, from

about 29 seconds to 55 seconds.

4.2.3 Sphere/genus g torus genus regression

This section will present the results for the sphere/genus g torus genus regression task.

The full results can be found in table A.3.

The MSEs of the non-TDA pipelines were quite high, with the concatenated points

pipeline having MSEs ranging from around 2.5 to 26.6, and the mean/variance pipeline

having much less variance, from about 2.5 to 3.33.

Again, the TDA pipelines performed better than baseline, although in some cases the

difference was small; for example, on the dataset with n points = 250 and noise scales =

(0.2, 0.4), the non-TDA pipelines had test MSEs of about 2.94, while the persistence

image and persistence landscape pipelines had about 2.2 and 2.67 respectively. In other

cases, however, they performed very well, like on the dataset with n points = 1000 and

noise scales = 0.0, where the persistence image pipeline had a test MSE of about 0.11,

50

and the persistence landscape pipeline test MSE was around 0.16. The persistence image

pipeline generally performed better than the persistence landscape pipeline.

The FSC + PH times for each of the pipelines for n points 250, 500, and 1000 were

similar to those in the previous task.

The vectorization times of each pipeline were much higher for this regression task than

for the previous tasks. For the concatenated points pipeline, the vectorization times varied

from around 2.5 seconds on the datasets with n points = 250 to about 8.5 seconds on

the datasets with n points = 1000. The mean/variance pipeline had vectorization times

of about 1.5 seconds on all datasets. The vectorization times of the persistence image

pipeline ranged from about 47 seconds on some of the datasets with n points = 250

to almost 98 seconds on datasets with n points = 1000; for the persistence landscape

pipeline, the vectorization times varied from about 80 seconds at best to almost 146

seconds at worst.

4.2.4 Power spherical concentration regression

This section will present the results for the power spherical concentration regression task.

The full results can be found in table A.4.

The test MSEs of the non-TDA pipelines were around 1.57, 1.56, and 1.24 for n points

50, 100, and 250 respectively, with the concatenated points pipeline having instances of

test MSEs of about 2.0 and 2.5. The TDA pipelines generally performed much better,

with test MSEs ranging from about 0.54 to 1.21 for n points = 50, 0.51 to 1.08 for

n points = 100, and 0.38 to 0.93 for n points = 250; note that this excludes the persis-

tence landscape pipeline’s MSEs on the datasets with n points = 100 and noise scales

0.1 and (0.1, 0.2), where it had validation MSEs of approximately 0.51, and test MSEs

of about 1.53.

In general, the persistence image pipeline performed better than the persistence land-

scape pipeline.

The FSC + PH times for this task were about the same for each pipeline and each of

the n points as those for the sphere/torus classification task.

For the concatenated points pipeline, the vectorization times were about 1.3 seconds,

1.7 seconds, and 2.7 seconds for n points 50, 100, and 250. The vectorization times of

the mean/variance pipeline were about 1.4 seconds for all datasets.

51

The TDA pipelines again had much longer vectorization times than the non-TDA

pipelines. For the persistence image pipeline, they were around 55 seconds for each

dataset. The vectorization times of the persistence landscape pipeline varied more: about

50 seconds, 60 seconds and 73 seconds for n points 50, 100, and 250.

52

Chapter 5

Discussion

This chapter will briefly discuss the results obtained testing the different pipelines using

the benchmarking suite, before discussing the benchmarking suite and the results in light

of the objectives of this thesis. The code repository containing the benchmarking suite

and the files used to run the test can be found in appendix B.

The TDA pipelines were found to perform better than the non-TDA pipelines for

all tasks and task parameters in the benchmarking suite. The non-TDA pipelines were

unable to obtain information from the data. For the concatenated points pipeline, the

issue is likely that the point cloud is invariant to the order of the points, while model used

assumes that the order of the features matters; for the mean/variance pipeline, the issue

is clearly that each point cloud has a mean of 0 and a variance of 1 in all dimensions.

The TDA pipelines, however, were able to use persistent homology to gather information

about the shapes of the point clouds, making it possible for them to perform well; there

were a few cases of the TDA pipelines having high validation performance and low test

performance, indicating overfitting. It is also worth noting that the TDA pipelines often

performed well on the datasets with high noise scales.

The amount of time taken for the TDA pipelines is a clear downside compared to

the non-TDA pipelines tested. However, it is a reasonable trade-off given their relative

performance.

Comparing the performances and time measured for each of the TDA pipelines, it

seems that the persistence image is a better vectorization method overall than the persis-

tence landscape. The vectorization times for the persistence image pipeline was in most

cases lower than those of the persistence landscape pipeline, and it also tended to have

better validation and test performance.

53

5.1 Thesis objectives

The first part of the thesis’ objectives was to make the benchmarking tool flexible and

easy to use, which I think the benchmarking tool presented is.

The way the FSC, PH, and vectorization split is implemented allows the user to test

a wide variety of TDA pipelines, with implicit support for different machine learning

frameworks, like scikit-learn and PyTorch. The benchmarking tool also allows for testing

different compatible FSC function, PH function, and vectorization class combinations, in

case the user wants to test the impact of using different types of simplicial complexes. It

is also flexible enough to allow for the implementation of non-TDA pipelines to use as a

baseline.

The standardized format required for the inputs of the benchmark function helps the

user define which components are compatible in an intuitive way; each component in the

pipeline with a certain input type is compatible with the components of the previous step

with matching output type. This, in addition to the base classes available for the model

classes and vectorization classes, makes it quicker to implement different pipelines. The

fact that the tool performs things such as training/validation/test dataset splitting and

model selection also reduces the amount of code the user has to write.

The second part of the objectives was related to the tasks to be included in the bench-

marking suite. One objective was to include synthetic benchmarks for both classification

and regression tasks, based on distinguishing topological features. This was achieved

with the sphere/torus classification task, the sphere/genus g torus binary classification

task, and the sphere/genus g torus genus regression task, which are generated as needed

with support for a variety of parameters. The TDA pipelines outperformed the non-

TDA pipelines used as the baseline; however, it should be noted that only two non-TDA

methods were tested, and there might be other non-TDA methods with the potential to

outperform the TDA pipelines on the included tasks.

Another objective was to include real-world datasets in the benchmarking suite. In

the end, there was not enough time left to properly search for suitable real-world datasets

and include them, partly due to the shift in development of the benchmarking tool from

the initial version to the final version. The next chapter will, however, include a discussion

about what should be considered when choosing real-world datasets, based on the results

obtained from the synthetic benchmarks.

54

Chapter 6

Future work

The benchmarking suite has a lot of potential for future development, which will be

explored in this chapter.

First, and perhaps most important, is the inclusion of real-world datasets in the

benchmarking suite. While there was not enough time to properly include any, the

results of the synthetic benchmarks help us set a few requirements for potential real-

world datasets.

For the sphere/genus g torus genus regression task, the TDA pipelines took around

two minutes for 1000 point clouds with 1000 points per point cloud. Based on those

times, it is reasonable to limit the potential tasks based on real-world datasets to about

1000 point clouds and 1000 points per point cloud, at least for regression tasks with

point clouds as data; having larger datasets could make the benchmarking take too long,

especially considering the possibility of a higher number of TDA pipelines, or a higher

maximum amount of vectorization parameter and hyperparameter combinations.

It would also be useful to focus on real-world datasets with a probable or proven

correlation between the labels and the underlying shape of the data; more specifically, the

search for real-world datasets should start with those for which TDA-based approaches

have already proven to be effective.

The total running time required for the benchmarking suite could be reduced by

combining the datasets with the same noise scale for the training and validation sets,

for example those with noise scales 0.1 and (0.1, 0.2); assuming that the rest of the

parameters are the same, those datasets will have the same model selection, meaning

55

that the model selection could be performed once per pipeline, and the model could

be tested on test sets with different amounts of noise. This would, however, require a

significant change in the benchmarking tool, and perhaps also the dataset generators.

The benchmarking tool could also provide the user with a couple of options for per-

forming more thorough benchmarking. As mentioned earlier, it could allow the user to

do benchmarking with a higher maximum number of vectorization parameter and hy-

perparameter combinations. The tool currently only supports random search for the

(hyper)parameter optimization; however, it could be useful to have a no max parameter

to allow for grid search, given that all parameter ranges are discrete. Having an n runs

parameter could also be of interest to the user, to perform several runs of the benchmark-

ing suite with a different seed each time. The result could then be the average or the

best of the runs.

While the current suite only uses 3-dimensional point clouds, it would be interesting

and useful to have synthetic benchmarks with manifolds of higher dimensions, to see how

the time taken changes with higher dimensions. Having tasks with manifolds in a variety

of dimensions embedded in the same space, with the task being to find the dimension of

the underlying space, could be useful for testing whether the TDA pipelines are able to

find lower-dimensional features in high-dimensional data.

The TDA pipelines generally performed well on the power spherical concentration

regression task, despite it not being directly related to the topological features of the

underlying space; it would therefore be interesting to look at tasks using different distri-

butions on manifolds, similar to the power spherical.

The benchmarking tool is designed to support testing on different types of data, but

the suite currently only contains data in the form of point clouds. It would therefore

be useful to add datasets with other types of data, for example images, to see how well

TDA-based approaches handle different kinds of data.

Lastly, the benchmarking tool should be updated to support different options for how

the scores.json file should be structured. The current structure makes it easy to compare

the performances of the different pipelines on each of the datasets. However, it could also

be practical for the user to have the results grouped by the pipelines instead of the tasks.

This could potentially make it easier to see how a new vectorization method performs

across different datasets.

56

Bibliography

[1] Henry Adams, Sofya Chepushtanova, Tegan Emerson, Eric Hanson, Michael

Kirby, Francis Motta, Rachel Neville, Chris Peterson, Patrick Shipman, and Lori

Ziegelmeier. Persistence images: A stable vector representation of persistent homol-

ogy. Journal of Machine Learning Research 18 (2017), Number 8, 1-35, July 2015.

doi: 10.48550/ARXIV.1507.06217.

[2] Peter Bubenik. Statistical topological data analysis using persistence landscapes.

Journal of Machine Learning Research, 16 (2015), 77-102, July 2012. doi: 10.48550/

ARXIV.1207.6437.

[3] Matteo Caorsi, Raphael Reinauer, and Nicolas Berkouk. giotto-deep: A python

package for topological deep learning. Journal of Open Source Software, 7(79):4846,

November 2022. ISSN 2475-9066. doi: 10.21105/joss.04846.

[4] Gunnar Carlsson and Mikael Vejdemo-Johansson. Topological data analysis with

applications. Cambridge University Press, 2021. ISBN 9781108838658.

[5] Mathieu Carrière, Frédéric Chazal, Yuichi Ike, Théo Lacombe, Martin Royer, and

Yuhei Umeda. Perslay: A neural network layer for persistence diagrams and new

graph topological signatures. April 2019. doi: 10.48550/ARXIV.1904.09378.

[6] Liliana Blanco Castañeda, Viswanathan Arunachalam, and Delvamuthu Dhar-

maraja. Introduction to Probability and Stochastic Processes with Applications. Wi-

ley, June 2012. ISBN 9781118344972. doi: 10.1002/9781118344972.

[7] Nicola De Cao and Wilker Aziz. The power spherical distribution. June 2020. doi:

10.48550/ARXIV.2006.04437.

[8] Persi Diaconis, Susan Holmes, and Mehrdad Shahshahani. Sampling from a manifold.

June 2012. doi: 10.48550/ARXIV.1206.6913.

57

[9] Olga Dunaeva, Herbert Edelsbrunner, Anton Lukyanov, Michael Machin, Daria

Malkova, Roman Kuvaev, and Sergey Kashin. The classification of endoscopy images

with persistent homology. Pattern Recognition Letters, 83:13–22, November 2016.

ISSN 0167-8655. doi: 10.1016/j.patrec.2015.12.012.

[10] Herbert Edelsbrunner and John L. Harer. Computational Topology: An Introduction.

American Mathematical Society, Providence, R.I, 2010. ISBN 9781470467692.

[11] Georgina Gonzalez, Arina Ushakova, Radmila Sazdanovic, and Javier Arsuaga. Pre-

diction in cancer genomics using topological signatures and machine learning. In

Nils A. Baas, Gunnar E. Carlsson, Gereon Quick, Markus Szymik, and Marius

Thaule, editors, Topological Data Analysis, Abel Symposia, pages 247–276. Springer

International Publishing, 2020. ISBN 9783030434083. doi: 10.1007/978-3-030-

43408-3 10.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. December 2015. doi: 10.48550/ARXIV.1512.03385.

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification

with deep convolutional neural networks. In Proceedings of the 25th International

Conference on Neural Information Processing Systems - Volume 1, NIPS’12, page

1097–1105, Red Hook, NY, USA, 2012. Curran Associates Inc.

[14] Walter Ledermann and Alan J. Weir. Introduction to group theory. Longman math-

ematics series. Longman, Harlow, second edition, 1996. ISBN 0582259541.

[15] Luca Martino, David Luengo, and Joaqúın Mı́guez. Independent Random Sam-

pling Methods. Springer International Publishing, 2018. ISBN 9783319726342. doi:

10.1007/978-3-319-72634-2.

[16] Mervin E. Muller. A note on a method for generating points uniformly on n-

dimensional spheres. Communications of the ACM, 2(4):19–20, apr 1959. doi:

10.1145/377939.377946.

[17] NumPy. Legacy random generation — numpy v1.26 manual.

URL: https://numpy.org/doc/stable/reference/random/legacy.html. Online; accessed

June 1, 2024.

[18] Raúl Rabadán and Andrew J. Blumberg. Topological data analysis for genomics and

evolution. Cambridge University Press, Cambridge, 2019. ISBN 9781107159549.

58

https://numpy.org/doc/stable/reference/random/legacy.html

[19] Bastian Rieck, Tristan Yates, Christian Bock, Karsten Borgwardt, Guy Wolf,

Nicholas Turk-Browne, and Smita Krishnaswamy. Uncovering the topology of

time-varying fmri data using cubical persistence. June 2020. doi: 10.48550/

ARXIV.2006.07882.

[20] Christian P. Robert and George Casella. Monte Carlo statistical methods. Springer

texts in statistics. Springer, New York, NY, 2nd edition, 2004. ISBN 9780387212395.

Literaturverz. S. [591] - 622.

[21] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.

Berg, and Li Fei-Fei. Imagenet large scale visual recognition challenge. International

Journal of Computer Vision, 115(3):211–252, April 2015. ISSN 1573-1405. doi:

10.1007/s11263-015-0816-y.

[22] The GUDHI Project. GUDHI User and Reference Manual. GUDHI Editorial Board,

version 3.9.0, 2023.

URL: https://gudhi.inria.fr/doc/3.9.0/.

59

https://gudhi.inria.fr/doc/3.9.0/

Appendix A

Benchmark results

Sphere/torus classification

Table A.1: The results for each of the pipelines on the sphere/torus classification task.
The five columns are, in order from left to right, the vectorization method used by the
pipeline, its validation accuracy, its test accuracy, its FSC + PH time, and its vectoriza-
tion time. The header above each group of results denotes the dataset from which the
results were obtained.

Vec. method V. accuracy T. accuracy FSC + PH time (s) Vec. time (s)

Sphere/torus classification, n points = 50, noise scales = 0.0

Concat. 0.560000 0.535000 0.001000 0.629048

Mean/var. 0.500000 0.500000 0.001000 0.403031

Pers. Im. 0.975000 0.955000 2.839778 14.907672

Pers. Lsc. 0.750000 0.780000 2.839778 23.181477

Sphere/torus classification, n points = 50, noise scales = 0.1

Concat. 0.570000 0.465000 0.001001 0.607055

Mean/var. 0.500000 0.500000 0.001001 0.391043

Pers. Im. 0.930000 0.850000 3.112748 15.229616

Pers. Lsc. 0.725000 0.705000 3.112748 23.279111

Sphere/torus classification, n points = 50, noise scales = (0.1, 0.2)

Concat. 0.570000 0.460000 0.002001 0.585074

Mean/var. 0.500000 0.500000 0.002001 0.408635

Pers. Im. 0.930000 0.800000 3.106755 15.167710

Pers. Lsc. 0.725000 0.645000 3.106755 23.153241

Sphere/torus classification, n points = 50, noise scales = 0.2

Concat. 0.550000 0.555000 0.001002 0.639049

Mean/var. 0.500000 0.500000 0.001002 0.397038

Pers. Im. 0.795000 0.775000 3.253766 15.363204

Pers. Lsc. 0.675000 0.675000 3.253766 23.370855

Sphere/torus classification, n points = 50, noise scales = (0.2, 0.4)

Concat. 0.550000 0.550000 0.002001 0.646563

60

Mean/var. 0.500000 0.500000 0.002001 0.424050

Pers. Im. 0.795000 0.700000 3.231068 15.312769

Pers. Lsc. 0.675000 0.625000 3.231068 23.081333

Sphere/torus classification, n points = 100, noise scales = 0.0

Concat. 0.530000 0.505000 0.001001 0.629150

Mean/var. 0.500000 0.500000 0.001001 0.398028

Pers. Im. 1.000000 0.995000 6.622982 16.187864

Pers. Lsc. 0.915000 0.920000 6.622982 24.698642

Sphere/torus classification, n points = 100, noise scales = 0.1

Concat. 0.520000 0.545000 0.002001 0.587060

Mean/var. 0.500000 0.500000 0.002001 0.427847

Pers. Im. 0.980000 0.630000 7.241061 16.453200

Pers. Lsc. 0.880000 0.865000 7.241061 26.457679

Sphere/torus classification, n points = 100, noise scales = (0.1, 0.2)

Concat. 0.520000 0.550000 0.001001 0.576054

Mean/var. 0.500000 0.500000 0.001001 0.397032

Pers. Im. 0.980000 0.575000 7.280749 16.435762

Pers. Lsc. 0.880000 0.770000 7.280749 26.346954

Sphere/torus classification, n points = 100, noise scales = 0.2

Concat. 0.515000 0.450000 0.002001 0.651056

Mean/var. 0.500000 0.500000 0.002001 0.400035

Pers. Im. 0.890000 0.830000 7.631363 16.949578

Pers. Lsc. 0.785000 0.780000 7.631363 24.781306

Sphere/torus classification, n points = 100, noise scales = (0.2, 0.4)

Concat. 0.515000 0.425000 0.003001 0.648573

Mean/var. 0.500000 0.500000 0.003001 0.404034

Pers. Im. 0.890000 0.725000 7.783599 16.988455

Pers. Lsc. 0.785000 0.705000 7.783599 24.822800

Sphere/torus classification, n points = 250, noise scales = 0.0

Concat. 0.580000 0.460000 0.004999 0.966611

Mean/var. 0.500000 0.500000 0.004999 0.413031

Pers. Im. 1.000000 1.000000 19.509545 17.953882

Pers. Lsc. 1.000000 1.000000 19.509545 19.675240

Sphere/torus classification, n points = 250, noise scales = 0.1

Concat. 0.540000 0.470000 0.011000 1.077602

Mean/var. 0.500000 0.500000 0.011000 0.422042

Pers. Im. 0.990000 0.995000 21.813271 20.989073

Pers. Lsc. 0.975000 0.980000 21.813271 22.172493

61

Sphere/torus classification, n points = 250, noise scales = (0.1, 0.2)

Concat. 0.540000 0.450000 0.010001 1.071605

Mean/var. 0.500000 0.500000 0.010001 0.410036

Pers. Im. 0.990000 0.835000 22.044628 20.830277

Pers. Lsc. 0.975000 0.815000 22.044628 22.109638

Sphere/torus classification, n points = 250, noise scales = 0.2

Concat. 0.570000 0.455000 0.010000 1.014088

Mean/var. 0.500000 0.500000 0.010000 0.430049

Pers. Im. 0.940000 0.875000 22.837749 23.167748

Pers. Lsc. 0.905000 0.880000 22.837749 26.876685

Sphere/torus classification, n points = 250, noise scales = (0.2, 0.4)

Concat. 0.570000 0.465000 0.009999 0.996089

Mean/var. 0.500000 0.500000 0.009999 0.419111

Pers. Im. 0.940000 0.735000 23.042230 23.111767

Pers. Lsc. 0.905000 0.800000 23.042230 27.129955

Sphere/genus g torus binary classification

Table A.2: The results for each of the pipelines on the sphere/genus g torus binary
classification task. The five columns are, in order from left to right, the vectorization
method used by the pipeline, its validation accuracy, its test accuracy, its FSC + PH
time, and its vectorization time. The header above each group of results denotes the
dataset from which the results were obtained.

Vec. method V. accuracy T. accuracy FSC + PH time (s) Vec. time (s)

Sphere/genus g torus binary classification, n points = 250, noise scales = 0.0

Concat. 0.545000 0.500000 0.006999 0.964096

Mean/var. 0.500000 0.500000 0.006999 0.451060

Pers. Im. 1.000000 1.000000 20.301996 18.357755

Pers. Lsc. 0.995000 0.985000 20.301996 26.201866

Sphere/genus g torus binary classification, n points = 250, noise scales = 0.1

Concat. 0.525000 0.440000 0.006000 0.982092

Mean/var. 0.500000 0.500000 0.006000 0.405028

Pers. Im. 0.975000 0.985000 22.148046 21.892747

Pers. Lsc. 0.965000 0.925000 22.148046 28.939345

Sphere/genus g torus binary classification, n points = 250, noise scales = (0.1, 0.2)

Concat. 0.525000 0.435000 0.010000 0.983086

62

Mean/var. 0.500000 0.500000 0.010000 0.410029

Pers. Im. 0.975000 0.825000 22.185488 21.873529

Pers. Lsc. 0.965000 0.800000 22.185488 29.144387

Sphere/genus g torus binary classification, n points = 250, noise scales = 0.2

Concat. 0.540000 0.465000 0.010000 1.119658

Mean/var. 0.500000 0.500000 0.010000 0.423066

Pers. Im. 0.915000 0.915000 22.967715 23.472778

Pers. Lsc. 0.900000 0.885000 22.967715 28.882437

Sphere/genus g torus binary classification, n points = 250, noise scales = (0.2, 0.4)

Concat. 0.540000 0.475000 0.011000 1.087611

Mean/var. 0.500000 0.500000 0.011000 0.403029

Pers. Im. 0.915000 0.830000 23.219722 23.530050

Pers. Lsc. 0.900000 0.740000 23.219722 28.550457

Sphere/genus g torus binary classification, n points = 500, noise scales = 0.0

Concat. 0.555000 0.500000 0.009000 1.445639

Mean/var. 0.500000 0.500000 0.009000 0.437029

Pers. Im. 1.000000 1.000000 42.947647 26.798304

Pers. Lsc. 1.000000 0.985000 42.947647 23.376776

Sphere/genus g torus binary classification, n points = 500, noise scales = 0.1

Concat. 0.545000 0.515000 0.014508 1.637171

Mean/var. 0.500000 0.500000 0.014508 0.435067

Pers. Im. 0.985000 0.985000 48.564628 36.626728

Pers. Lsc. 0.975000 0.960000 48.564628 30.215218

Sphere/genus g torus binary classification, n points = 500, noise scales = (0.1, 0.2)

Concat. 0.545000 0.495000 0.012000 1.631148

Mean/var. 0.500000 0.500000 0.012000 0.436057

Pers. Im. 0.985000 0.930000 48.794981 36.430006

Pers. Lsc. 0.975000 0.785000 48.794981 29.952077

Sphere/genus g torus binary classification, n points = 500, noise scales = 0.2

Concat. 0.545000 0.505000 0.021000 1.527236

Mean/var. 0.500000 0.500000 0.021000 0.430029

Pers. Im. 0.950000 0.915000 50.375267 41.856408

Pers. Lsc. 0.955000 0.915000 50.375267 36.654224

Sphere/genus g torus binary classification, n points = 500, noise scales = (0.2, 0.4)

Concat. 0.545000 0.500000 0.023505 1.529648

Mean/var. 0.500000 0.500000 0.023505 0.424658

Pers. Im. 0.950000 0.855000 50.461986 41.615478

Pers. Lsc. 0.955000 0.815000 50.461986 36.666449

63

Sphere/genus g torus binary classification, n points = 1000, noise scales = 0.0

Concat. 0.550000 0.440000 0.023002 2.246289

Mean/var. 0.500000 0.500000 0.023002 0.467539

Pers. Im. 1.000000 0.995000 92.323428 49.590144

Pers. Lsc. 1.000000 1.000000 92.323428 34.938439

Sphere/genus g torus binary classification, n points = 1000, noise scales = 0.1

Concat. 0.540000 0.435000 0.027998 2.375285

Mean/var. 0.500000 0.500000 0.027998 0.457540

Pers. Im. 0.975000 1.000000 105.459805 68.313326

Pers. Lsc. 1.000000 1.000000 105.459805 48.661074

Sphere/genus g torus binary classification, n points = 1000, noise scales = (0.1, 0.2)

Concat. 0.540000 0.440000 0.038506 2.415780

Mean/var. 0.500000 0.500000 0.038506 0.474029

Pers. Im. 0.975000 0.940000 104.239886 69.210200

Pers. Lsc. 1.000000 0.930000 104.239886 49.451481

Sphere/genus g torus binary classification, n points = 1000, noise scales = 0.2

Concat. 0.540000 0.450000 0.021998 2.800839

Mean/var. 0.500000 0.500000 0.021998 0.468535

Pers. Im. 0.985000 0.975000 110.940959 78.066266

Pers. Lsc. 0.965000 0.910000 110.940959 54.185399

Sphere/genus g torus binary classification, n points = 1000, noise scales = (0.2, 0.4)

Concat. 0.540000 0.450000 0.019999 2.826986

Mean/var. 0.500000 0.500000 0.019999 0.478031

Pers. Im. 0.985000 0.835000 111.160298 78.294521

Pers. Lsc. 0.965000 0.770000 111.160298 55.055532

Sphere/genus g torus genus regression

Table A.3: The results for each of the pipelines on the sphere/genus g torus genus re-
gression task. The five columns are, in order from left to right, the vectorization method
used by the pipeline, its validation MSE, its test MSE, its FSC + PH time, and its vec-
torization time. The header above each group of results denotes the dataset from which
the results were obtained.

Vec. method V. MSE T. MSE FSC + PH time (s) Vec. time (s)

Sphere/genus g torus genus regression, n points = 250, noise scales = 0.0

Concat. 2.533007 2.944623 0.022999 2.515782

64

Mean/var. 2.534250 2.940057 0.022999 1.717132

Pers. Im. 0.281423 1.551076 21.776293 67.015139

Pers. Lsc. 0.703417 0.697766 21.776293 101.671465

Sphere/genus g torus genus regression, n points = 250, noise scales = 0.1

Concat. 2.570799 2.933698 0.025999 2.553350

Mean/var. 2.534250 2.940057 0.025999 1.680630

Pers. Im. 0.808571 0.863227 22.776890 54.713003

Pers. Lsc. 0.982640 1.346195 22.776890 86.779535

Sphere/genus g torus genus regression, n points = 250, noise scales = (0.1, 0.2)

Concat. 2.570799 2.938824 0.028001 2.506724

Mean/var. 2.534250 2.940057 0.028001 1.691635

Pers. Im. 0.808571 1.333292 22.822453 54.708579

Pers. Lsc. 0.982640 2.143104 22.822453 88.624736

Sphere/genus g torus genus regression, n points = 250, noise scales = 0.2

Concat. 2.536149 2.944653 0.026003 2.544219

Mean/var. 2.534250 2.940057 0.026003 1.783232

Pers. Im. 1.176763 1.401469 23.281565 47.292475

Pers. Lsc. 1.519971 1.716604 23.281565 80.427614

Sphere/genus g torus genus regression, n points = 250, noise scales = (0.2, 0.4)

Concat. 2.536149 2.944653 0.027000 2.539731

Mean/var. 2.534250 2.940057 0.027000 1.675183

Pers. Im. 1.176763 2.204815 23.412917 47.637253

Pers. Lsc. 1.519971 2.666258 23.412917 80.125224

Sphere/genus g torus genus regression, n points = 500, noise scales = 0.0

Concat. 2.721876 3.303597 0.028000 3.585086

Mean/var. 2.590487 3.332027 0.028000 1.486637

Pers. Im. 0.208775 0.234262 46.494550 72.459275

Pers. Lsc. 0.309218 0.343988 46.494550 117.698810

Sphere/genus g torus genus regression, n points = 500, noise scales = 0.1

Concat. 2.695191 26.644284 0.029505 3.577353

Mean/var. 2.590487 3.332027 0.029505 1.478161

Pers. Im. 0.623970 0.597963 49.384149 68.310423

Pers. Lsc. 0.620516 0.840746 49.384149 118.413491

Sphere/genus g torus genus regression, n points = 500, noise scales = (0.1, 0.2)

Concat. 2.695191 26.644284 0.030999 3.654902

Mean/var. 2.590487 3.332027 0.030999 1.465110

Pers. Im. 0.623970 1.151525 49.523718 67.669887

Pers. Lsc. 0.620516 1.553139 49.523718 117.577823

65

Sphere/genus g torus genus regression, n points = 500, noise scales = 0.2

Concat. 2.673796 9.554685 0.031504 3.542438

Mean/var. 2.590487 3.332027 0.031504 1.496243

Pers. Im. 1.133883 1.284909 50.913331 61.476951

Pers. Lsc. 1.402922 1.361152 50.913331 107.181650

Sphere/genus g torus genus regression, n points = 500, noise scales = (0.2, 0.4)

Concat. 2.673796 9.564072 0.031505 3.543358

Mean/var. 2.590487 3.332027 0.031505 1.459675

Pers. Im. 1.133883 2.225023 50.664580 61.867141

Pers. Lsc. 1.402922 2.535438 50.664580 108.438160

Sphere/genus g torus genus regression, n points = 1000, noise scales = 0.0

Concat. 2.871638 4.855017 0.030507 7.842873

Mean/var. 2.803473 2.977581 0.030507 1.512616

Pers. Im. 0.087360 0.105875 102.848403 95.407976

Pers. Lsc. 0.152201 0.155298 102.848403 145.641761

Sphere/genus g torus genus regression, n points = 1000, noise scales = 0.1

Concat. 2.798160 4.811952 0.029999 8.066624

Mean/var. 2.803473 2.977581 0.029999 1.557668

Pers. Im. 0.403862 0.467015 109.281283 94.126250

Pers. Lsc. 0.496314 0.716646 109.281283 140.428404

Sphere/genus g torus genus regression, n points = 1000, noise scales = (0.1, 0.2)

Concat. 2.798160 4.843832 0.043508 8.447542

Mean/var. 2.803473 2.977581 0.043508 1.578140

Pers. Im. 0.403862 1.629145 109.452761 94.443418

Pers. Lsc. 0.496314 2.197214 109.452761 142.148820

Sphere/genus g torus genus regression, n points = 1000, noise scales = 0.2

Concat. 2.861088 4.581490 0.046004 8.943905

Mean/var. 2.803473 2.977581 0.046004 1.573125

Pers. Im. 1.346547 0.901616 112.715025 96.306923

Pers. Lsc. 1.678204 1.334627 112.715025 122.476285

Sphere/genus g torus genus regression, n points = 1000, noise scales = (0.2, 0.4)

Concat. 2.861088 4.617554 0.032508 9.239039

Mean/var. 2.803473 2.977581 0.032508 1.636793

Pers. Im. 1.346547 2.163825 113.689675 97.843237

Pers. Lsc. 1.678204 2.432236 113.689675 121.646036

66

Power spherical concentration regression

Table A.4: The results for each of the pipelines on the power spherical concentration
regression task. The five columns are, in order from left to right, the vectorization
method used by the pipeline, its validation MSE, its test MSE, its FSC + PH time, and
its vectorization time. The header above each group of results denotes the dataset from
which the results were obtained.

Vec. method V. MSE T. MSE FSC + PH time (s) Vec. time (s)

Power spherical concentration regression, n points = 50, noise scales = 0.0

Concat. 1.773554 1.549748 0.041003 1.283187

Mean/var. 1.748508 1.565125 0.041003 1.398116

Pers. Im. 0.511938 0.537841 2.651738 58.637333

Pers. Lsc. 0.741372 0.576489 2.651738 49.222471

Power spherical concentration regression, n points = 50, noise scales = 0.1

Concat. 1.794144 1.802386 0.001000 1.338607

Mean/var. 1.748508 1.565125 0.001000 1.384104

Pers. Im. 0.644236 0.768679 2.930337 58.633793

Pers. Lsc. 0.808097 0.743127 2.930337 48.486941

Power spherical concentration regression, n points = 50, noise scales = (0.1, 0.2)

Concat. 1.794144 1.801468 0.000000 1.361163

Mean/var. 1.748508 1.565125 0.000000 1.389116

Pers. Im. 0.644236 0.858819 2.993226 58.430226

Pers. Lsc. 0.808097 0.743499 2.993226 48.602125

Power spherical concentration regression, n points = 50, noise scales = 0.2

Concat. 1.770820 1.549782 0.001001 1.219614

Mean/var. 1.748508 1.565125 0.001001 1.400128

Pers. Im. 0.722095 0.821064 3.155736 55.915487

Pers. Lsc. 0.846283 0.834495 3.155736 50.185985

Power spherical concentration regression, n points = 50, noise scales = (0.2, 0.4)

Concat. 1.770820 1.549782 0.000000 1.226101

Mean/var. 1.748508 1.565125 0.000000 1.402141

Pers. Im. 0.722095 1.114149 3.141823 56.057408

Pers. Lsc. 0.846283 1.208090 3.141823 47.927477

Power spherical concentration regression, n points = 100, noise scales = 0.0

Concat. 1.527460 1.522628 0.002002 1.855170

Mean/var. 1.527651 1.558181 0.002002 1.432116

Pers. Im. 0.393172 0.516281 6.303984 57.755501

Pers. Lsc. 0.442568 0.676745 6.303984 62.330203

67

Power spherical concentration regression, n points = 100, noise scales = 0.1

Concat. 1.524533 1.522847 0.001000 1.652484

Mean/var. 1.527651 1.558181 0.001000 1.419103

Pers. Im. 0.557579 0.730179 7.071849 53.509495

Pers. Lsc. 0.505433 1.532150 7.071849 62.609599

Power spherical concentration regression, n points = 100, noise scales = (0.1, 0.2)

Concat. 1.524533 1.522847 0.001001 1.678207

Mean/var. 1.527651 1.558181 0.001001 1.414100

Pers. Im. 0.557579 1.080832 7.124576 54.731180

Pers. Lsc. 0.505433 1.532150 7.124576 63.386528

Power spherical concentration regression, n points = 100, noise scales = 0.2

Concat. 1.527458 2.007598 0.018000 1.687656

Mean/var. 1.527651 1.558181 0.018000 1.436134

Pers. Im. 0.745100 0.875043 7.611580 51.259758

Pers. Lsc. 0.708549 0.887840 7.611580 60.194247

Power spherical concentration regression, n points = 100, noise scales = (0.2, 0.4)

Concat. 1.527458 2.515888 0.001000 1.741638

Mean/var. 1.527651 1.558181 0.001000 1.449629

Pers. Im. 0.745100 1.008929 7.625408 51.352604

Pers. Lsc. 0.708549 1.028614 7.625408 60.257998

Power spherical concentration regression, n points = 250, noise scales = 0.0

Concat. 1.707283 1.236698 0.009504 2.814244

Mean/var. 1.693242 1.236744 0.009504 1.454123

Pers. Im. 0.393743 0.384196 18.737776 51.980587

Pers. Lsc. 0.446086 0.394168 18.737776 76.716535

Power spherical concentration regression, n points = 250, noise scales = 0.1

Concat. 1.711469 1.237368 0.022000 2.673320

Mean/var. 1.693242 1.236744 0.022000 1.434118

Pers. Im. 0.601968 0.473908 21.705134 55.377315

Pers. Lsc. 0.675465 0.508252 21.705134 73.608826

Power spherical concentration regression, n points = 250, noise scales = (0.1, 0.2)

Concat. 1.711469 1.237368 0.038000 2.783275

Mean/var. 1.693242 1.236744 0.038000 1.432115

Pers. Im. 0.601968 0.571433 21.680995 55.066148

Pers. Lsc. 0.675465 0.637965 21.680995 71.358160

Power spherical concentration regression, n points = 250, noise scales = 0.2

Concat. 1.905845 1.267326 0.035999 2.747344

Mean/var. 1.693242 1.236744 0.035999 1.454132

68

Pers. Im. 0.720727 0.520395 22.786781 61.716527

Pers. Lsc. 0.795692 0.671828 22.786781 73.215675

Power spherical concentration regression, n points = 250, noise scales = (0.2, 0.4)

Concat. 1.905845 1.277438 0.037510 2.728504

Mean/var. 1.693242 1.236744 0.037510 1.412106

Pers. Im. 0.720727 0.848335 23.129259 61.405952

Pers. Lsc. 0.795692 0.927691 23.129259 73.000244

69

Appendix B

Code repository

The code for the benchmarking suite, as well the files used to run the tests presented in this

thesis, are available on GitHub: https://github.com/sondrebr/MastersThesis.

The benchmarking suite is contained in the BenchTDA folder, which can be imported as a

Python package. The folder contains several files:

� init .py, exporting the benchmark function and the base classes for the model and

vectorization classes.

� base classes.py, containing the base classes for the model and vectorization classes.

� benchmark.py, containing the benchmarking tool itself, along with the different tasks and

task parameters.

� datasets.py, containing the dataset generators for the different tasks.

� manifolds.py, containing the code used to sample from each of the manifolds.

The ExamplePipelines folder includes the files fscs.py, phs.py, and vecs.py, which contain

the FSC function for the TDA pipelines, the PH function for the TDA pipelines, and the model

classes and vectorization classes for all of the pipelines.

The run benchmark.py file can be used to run the tests presented in this thesis, using the

included conda environment in the environment.yml file.

70

https://github.com/sondrebr/MastersThesis

	Introduction
	Context and motivation
	Objectives
	Thesis outline

	Background
	Probability theory
	Probability distributions
	Rejection sampling

	Topology
	Manifolds
	Simplicial complexes

	Persistent homology
	Group theory
	Homology
	Persistent homology

	Vectorization
	Persistence landscape
	Persistence image

	Benchmarking tool implementation
	Overview
	Usage
	Benchmarking process

	Implementation details
	Initial version
	Pipelines

	Synthetic benchmarks
	Method
	Manifold sampling
	Creating benchmarks

	Results
	Sphere/torus classification
	Sphere/genus g torus binary classification
	Sphere/genus g torus genus regression
	Power spherical concentration regression

	Discussion
	Thesis objectives

	Future work
	Bibliography
	Benchmark results
	Code repository

