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a b s t r a c t

A connected matching in a graph G consists of a set of pairwise disjoint edges whose
covered vertices induce a connected subgraph of G. While finding a connected matching
of maximum cardinality is a well-solved problem, it is NP-hard to determine an optimal
connected matching in an edge-weighted graph, even in the planar bipartite case. We
present two mixed integer programming formulations and a sophisticated branch-and-
cut scheme to find weighted connected matchings in general graphs. The formulations
explore different polyhedra associated to this problem, including strong valid inequalities
both from the matching polytope and from the connected subgraph polytope. We
conjecture that one attains a tight approximation of the convex hull of connected match-
ings using our strongest formulation, and report encouraging computational results
over DIMACS Implementation Challenge benchmark instances. The source code of the
complete implementation is also made available.
© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A P-matching in a graph G consists of a matching M such that the subgraph induced by vertices covered by M has
some property P, e.g. being connected. This paper is devoted to the problem of computing maximum weight connected
matchings in a general graph: a set of pairwise disjoint edges of maximum total weight, whose covered vertices induce a
connected subgraph of G.

Exciting results on the computational tractability of determining connected matchings attract justified attention in the
literature around this appealing generalization of classical matchings, which are already such a fundamental structure in
bridging theory and sophisticated applications across domains that range from early logistics, as the postperson problem
illustrates, to novel programs in kidney paired exchange [23]. A striking dichotomy here is that finding a maximum
cardinality connected matching is a well-solved problem, while the edge-weighted counterpart is NP-hard even in very
restricted graph classes. As we outline below, our contributions represent a step forward in sharpening our ability to
face that challenge, proposing a polyhedral combinatorics framework to actually determine maximum weight connected
matchings in practice.

We remark that work on P-matching problems dates back at least to Stockmeyer and Vazirani [30] on induced
matchings. Increased attention is due to thorough advances by Golumbic et al. [16] on uniquely restricted matchings,
and Goddard et al. [14] contemplating acyclic, connected, and disconnected matchings. More recently, a number of fine-
grained complexity results about the weighted connected matching (WCM) problem were presented by Gomes et al.
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17,18]. They establish the NP-hardness of finding maximum weight connected matchings, for instance, even in planar
raphs of maximum vertex degree 3 and edge weights in {−1, 1}, and in planar bipartite graphs with edge weights in
0, 1}.

In light of that complexity barrier, our hope is to bring the machinery of polyhedral studies and mixed-integer linear
rogramming (MILP) to bear on the investigation of WCM in general graphs. We seek to contribute both to the theoretical
tudy in understanding and approximating the polytope C(G) of connected matchings (i.e. the convex hull of characteristic
ectors in R|E(G)| of connected matchings in G), and to practical algorithms and their computer implementation. We now
tand on decades’ worth of progress in matching theory, in combinatorial optimization problems around connectivity and
etwork design, and in mathematical programming computation. It is therefore expected that we are able to harness the
olyhedral point of view, and evaluate to what extent it leads to the practical solution of the WCM problem.
The main idea in this paper is that there are powerful, elegant polyhedral descriptions of WCM in general graphs, in

he sense that we may expect a strong foundation of polyhedral results and progressively more effective MILP solvers for
his problem. We defend the standpoint that only the combination of theoretical and applied results from communities
n combinatorics and mathematical programming may truly settle (and push) the limitations around finding optimal
eighted connected matchings. From this perspective, the carefully designed formulations and the open-source software
hat we propose are useful ingredients towards that end.

In summary, our main contributions are the following.

1. Polyhedral descriptions yielding exact integer programming algorithms to find weighted connected matchings in
general graphs. We present both a compact, extended formulation that can be easily fed to a black-box solver, and
an exponential formulation in the space of natural variables only, using blossom inequalities from the matching
polytope, and minimal separators and indegree inequalities from the connected subgraph polytope.

2. Detailed presentation of a sophisticated branch-and-cut scheme based on the exponential formulation. The re-
sulting algorithm, as well as the solver based on the compact formulation, attains encouraging computational
performance on four different sets of benchmark instances of connected subgraph problems from the 11th DIMACS
Implementation Challenge, and settles a state-of-the-art baseline for future work.

3. Free, open-source repository with the complete implementation, including a series of useful, general-purpose
algorithmic components.

. Polyhedral descriptions of weighted connected matchings

In this section we present the main idea of the paper. We concentrate here on the polyhedra leading to MILP
ormulations for WCM. Section 3 continues with algorithmic aspects, including our particular design choices based on
reliminary computational evaluations.
Our terminology and notation are standard in algorithmics and graph theory. Note that we write [k] def

= {1, . . . , k}, and
hat we denote by 2S the power set of S, that is, the set of all subsets of S.

.1. Extended formulation

We begin with a compact, extended formulation. That is, a system of inequalities in higher dimensional space which (i)
as a number of variables and constraints that is polynomial in the input size, and (ii) whose orthogonal projection into
he original space contains all (and only those) lattice points corresponding to integer feasible solutions. In particular, we
se the well-known approach of modeling the flow of a commodity in an auxiliary network to impose the connectivity
f the induced subgraph; see [25] for a thorough introduction.
We denote the flow network by D = (V (G)∪{s} ,A) where s is an artificial source vertex, and A contains both orienta-

ions of each original edge in G, besides an arc from s to each other vertex. That is, A def
= {(u, v), (v, u) : for {u, v} ∈ E(G)}∪

(s, u) : u ∈ V (G)}. As usual, let n def
= |V (G)|, m def

= |E(G)|, δ : V (G) → 2E denote the set of edges incident to a vertex of
raph G, and let δ+, δ−

: V (D) → 2A denote the set of arcs leaving (resp. entering) a vertex of network D.
The model we propose imposes connectivity of the solution by requiring that there be an arborescence rooted in s, so

hat there is an arc reaching a given vertex if and only if it is saturated by a matching edge. To accomplish that, we note
hat each matching M covers 2 · |M| vertices, and so determine that exactly 2 · |M| units of flow leave the artificial source
, and that each covered vertex absorbs a flow unit. Specifically, a first MILP formulation of the WCM problem is given by

max

⎧⎨⎩ ∑
e∈E(G)

wexe : (x, y, f) ∈ Pext(G) ∩ {0, 1}m × {0, 1}2m+n
× Q2m+n

+

⎫⎬⎭ , (1)

where Pext(G) is the following polyhedral region:∑
xe ≤ 1 for each u ∈ V (G), (2)
e∈δ(u)
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∑
a∈δ–(u)

ya =

∑
e∈δ(u)

xe for each u ∈ V (G), (3)∑
u∈V (G)

ysu ≤ 1, (4)

yuv ≤

∑
a∈δ–(u)

ya for each u ∈ V (G) and each uv ∈ δ+(u), (5)

fa ≤ n · ya for each a ∈ A, (6)∑
u∈V (G)

fsu = 2 ·

∑
e∈E(G)

xe, (7)∑
a∈δ–(u)

fa −

∑
a∈δ+(u)

fa =

∑
a∈δ–(u)

ya for each u ∈ V (G), (8)

xe ≥ 0 for each e ∈ E(G), (9)

ya ≥ 0 for each a ∈ A, (10)

fa ≥ 0 for each a ∈ A. (11)

Note that variables x determine which edges of G are in the solution matching, variables y determine an orientation
y allowing arcs of D to carry flow, and variables f give the actual flow running on each arc.
The classical degree inequalities in (2) are enough to have integer points where at most one edge reaches each vertex.

onstraints (3) link x and y variables, by setting the number of (directed) arcs entering u as the number of (undirected)
dges incident to it — either zero or one, as enforced by the previous constraints. Constraint (4) establishes that the
rtificial flow source s should be linked to at most one vertex in G; note that we expect exactly one arc leaving s in
nteresting examples, but the model still allows an empty solution (e.g. when the objective coefficients w are negative
verywhere). Constraints (5), which capture that we may only open an out arc from u to v if some arc arrives at u, are

actually implied by the other sets of inequalities but generally perceived as helping solve LP relaxation faster.
The remaining constraints concern the network flow. Inequalities (6) bind y and f variables: nonzero flow is only

llowed in open arcs, and the maximum flow is n = |V (G)|. Constraint (7) establishes that the flow leaving the artificial
ource s is exactly the number of vertices saturated by the matching (i.e. twice as many as there are edges in the matching).
astly, flow balance constraints (8) impose a single connected component in the solution: vertices in the arborescence
namely, those whose number of incoming arcs in the right-hand side is one) consume one unit of flow, while others may
ot interfere either consuming or creating flow.
The main advantage of having a MILP formulation with polynomial number of variables and constraints is the

racticality of just feeding it to a black-box solver, automatically benefiting of increased performance due to software
nd hardware improvement. On the other hand, while an extended formulation may have much smaller number of
acets than its projection, decades of mathematical programming computation led to numerous examples where superior
erformance is attained by branch-and-cut algorithms that dynamically identify and add cutting-planes violated by
elaxation solutions. That is the path we now thread. First, designing a formulation for WCM anchored in solid knowledge
f the underlying connected subgraph polytope and the classical matching polytope. Next, in Section 3, filling in the details
f the best-performing branch-and-cut scheme we devised and offer in our accompanying software repository.

.2. Formulation in the original space of variables

The guiding principle in the design of our second formulation for WCM is to waive the concern about model size and
uild on strong valid inequalities leading to the best-performing solvers for closely related problems, defined over the
arger polytopes of classical matchings and connected subgraphs.

The classical matching polytope is well-known since the very birth of the polyhedral combinatorics field — tied to
he celebrated results of Edmonds [10], and better understood in light of the combinatorial proof of Balinski [3]. Namely,
dmonds showed that, together with degree inequalities in (2) above, blossom inequalities give all the facets missing in a
omplete characterization of the matching polytope, and can be separated efficiently.
On the other hand, as the maximum-weight connected subgraph (MWCS) problem is NP-hard even in very restricted

particular cases [21], there is no hope for an ideal formulation of the connected subgraph polytope under the assumption
that P ̸= NP and the equivalence of separation and optimization. While there are many options for modeling induced
connectivity, a recent performance breakthrough in exact solvers for problems like the MWCS [1,31] and Steiner trees [11]
is attributed to minimal separator inequalities (MSI) on vertex choosing variables y ∈ {0, 1}|V (G)|:

ya + yb −

∑
yu ≤ 1, (12)
u∈S
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f
or each pair of non-adjacent vertices a and b, and each (a, b)-separator S ⊆ V\ {a, b}, i.e. there are no paths connecting
a to b if we remove S from G. The eminently readable paper by Wang et al. [31] includes a proof that (12) defines a facet
of the connected subgraph polytope if and only if the separator S is minimal.

It is worth remarking that the breakthrough we refer to in practical evidence (runtime of resulting MILP solvers) does
not agree with the theoretical intuition given by inclusion of different polyhedral relaxations. In particular, the recent
work of Rehfeldt et al. [28] proves that the LP bound from the MSI relaxation for induced connectivity is weaker than
earlier alternatives based on combining vertex and edge-variables. That is in stark contrast to the experimental results
mentioned above. In particular, the praised solver of Fischetti et al. [11] won most of the categories at the 11th DIMACS
Implementation Challenge [9]. In line with our guiding principle in this section, we follow the standpoint of those authors,
who conclude that a simpler model defined in the natural space of variables and a careful implementation framework
enabled their superior performance.

To define a system of inequalities combining the separation of MSI (12) and only using natural design variables
x ∈ {0, 1}|E(G)| in the original space of polytope C(G), we use the fact that vertex u belongs to the subgraph induced
by matching M if and only if there is exactly one edge in M incident to u. Hence, projecting the MSI onto the space of x
variables using yu ↦→

∑
e∈δ(u) xe, we derive the first IP formulation to find maximum weight connected matchings using

MSI,

max

⎧⎨⎩ ∑
e∈E(G)

wexe : x ∈ Psep(G) ∩ {0, 1}m

⎫⎬⎭ , (13)

with Psep(G) defined by degree inequalities (2), non-negativity bounds (9), and the projection of separator inequali-
ties (12):∑

e∈δ(a)

xe +

∑
e∈δ(b)

xe −

∑
u∈S

∑
e∈δ(u)

xe ≤ 1 for each a, b ∈ V (G), {a, b} /∈ E(G), and each S ∈ C(a, b),

where C(a, b) ⊂ 2V (G) denotes the set of all minimal (a, b)-separators in G.
We reinforce this formulation with two exponential families of valid inequalities. The first is an additional class of

facets of the connected subgraph polytope studied by Wang et al. [31]. The other was already mentioned earlier: blossom
inequalities, which define all remaining facets of the classical matching polytope.

Indegree inequalities A vector d ∈ Zn
+

is called an indegree vector of graph G if there exists an orientation of its edges
such that the indegree of each vertex u is du. Introduced decades earlier in the context of greedoid optimization
and only in the particular case where G is a tree [22, Chapter XI, Theorem 3.6], it was later shown by Wang et al.
[31] that, for each indegree vector d of an arbitrary graph G, inequality∑

u∈V (G)

(1 − du) · yu ≤ 1

is valid for the connected subgraph polytope of G.
Interestingly, the indegree inequalities provide a minimal, complete characterization of that polytope when G is
a tree: each indegree inequality defines a facet, and none is missing. More importantly in the context of our
problem, Wang et al. [31] prove that the indegree inequalities can still define facets in the general case, and may be
separated in time proportional to O(n + m). Again, we shall use the projection of those inequalities in the original
space of the connected matching polytope C(G) by the linear map yu ↦→

∑
e∈δ(u) xe.

Blossom inequalities Finally, to ensure that our formulation is within the tightest possible description of the (classical)
matching relaxation, one would naturally expect the inclusion of blossom inequalities. Namely, for each handle
H ⊂ V (G) of odd cardinality, the inequality∑

e∈E(G[H])

xe ≤
|H| − 1

2

is valid for the matching polytope of G. Besides being sufficient to determine the convex hull of incidence vectors of
matchings in an arbitrary graph, each blossom inequality is also necessary when G is a complete graph, for example.
They are also an important ingredient in state-of-the-art solvers for the traveling salesperson problem [7, Section
7.4].

Putting the inequalities together, the complete formulation on which we base our enhanced branch-and-cut algorithm
to find weighted connected matchings is

max

⎧⎨⎩ ∑
wexe : x ∈ Pfull(G) ∩ {0, 1}m

⎫⎬⎭ , (14)

e∈E(G)
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here Pfull(G) is the following polyhedral region:∑
e∈δ(u)

xe ≤ 1 for each u ∈ V (G), (15)∑
e∈δ(a)

xe +

∑
e∈δ(b)

xe −

∑
u∈S

∑
e∈δ(u)

xe ≤ 1 for each non-adjacent a, b ∈ V (G), and each S ∈ C(a, b), (16)∑
u∈V (G)

(1 − du)
∑
e∈δ(u)

xe ≤ 1 for each indegree vector d of G, (17)

∑
e∈E(G[H])

xe ≤
|H| − 1

2
for each H ⊂ V (G) with |H| odd, (18)

xe ≥ 0 for each e ∈ E(G). (19)

. Branch-and-cut scheme for the exponential formulation

The enhanced WCM formulation (14) is only useful in practice if an implementation of efficient separation procedures
or the (exponentially-many) inequalities in (16), (17) and (18) defining Pfull(G) is available. This section completes our
ain contribution, filling in the algorithmic details and presenting our free, open-source software package with the

esulting solver for WCM in general graphs.
We designed our C++ code with attention to time and space efficiency, and fairly tested it for correctness along months

f development. It is available in the wcm-branch-and-cut repository on GitHub (https://github.com/phillippesamer/wcm-
branch-and-cut), thus welcoming collaboration towards extensions and facilitating the direct comparison with eventual
algorithms designed for the WCM problem in the future. Moreover, the code can be forked and turned into useful
algorithmic components to different problems and applications.

3.1. Separation procedures

Efficient separation algorithms are at the core of a successful branch-and-cut scheme, as they are executed a number
of times in each node of the enumeration tree partitioning the search space. Since the classes of inequalities (16), (17) and
(18) grow exponentially with the size of the input graph, it is not practical to add them in an explicit model a priori for
reasonably sized problems. Except for the last method presented below, the following are exact separation procedures:
oracles that, given a relaxation solution x∗, either identify a specific inequality valid for Pfull(G) that is violated at x∗ (which
can then be added to the formulation and cut off x∗ to continue the search), or certify implicitly that no such inequality
exists. In contrast, when it comes to blossom inequalities (18), we use both an exact and a heuristic separation procedure,
i.e. a faster method to search for a blossom cut, that may fail even when one exists.

MSI cuts
We followed the description of Fischetti et al. [11, Section 2.1] for two exact separation algorithms for MSI in the

award-winning solver mentioned in Section 2.2.
The first algorithm is based on the computation of maximum flows in a support digraph D, whose arc capacities are

defined according to the current relaxation solution. For each pair of non-adjacent vertices u, v ∈ V (G) such that x∗
u+x∗

v > 1
(which is necessary for an MSI to be violated), we calculate a maximum (u, v)-flow f in D. If f < x∗

u + x∗
v − 1, we may

determine a violated separator inequality from the corresponding minimum cut. Two implementation tweaks are worth
mentioning.

(A) As first observed by Miyazawa et al. [26, Section 3.1], we often have a large number of variables in the relaxation
solution x∗ at either 0 or 1, and none of these appear in a (u, v)-separator that gives a violated inequality. We may
therefore contract the corresponding arcs and vertices in D to run the separation algorithm in considerably smaller
support digraphs. Implementing such contractions requires special care to keep track of the original variables that
make up the violated inequality we eventually find.

(B) When we identify a minimum cut C yielding a violated (u, v)-separator inequality, it is in general not a minimal
separator. As mentioned in Section 2.2, we thus have the opportunity to lift the left-hand side towards a minimal
separator S ⊂ C to derive a non-dominated inequality. This can be achieved with a simple graph traversal procedure,
as formalized by Fischetti et al. [11, Section 2.1]. While they refer to a breadth-first search (BFS) and use an edge-
deletion operation, we observe faster runtimes combining (i) a depth-first search that avoids an explicit BFS queue,
and (ii) a boolean mask of active/inactive edges passed as a reference parameter instead of modifying the graph.

The worst-case time complexity of the whole procedure is in O(n2
· g(ñ, m̃)), where n def

= |V (G)|, m def
= |E(G)|, and g(ñ, m̃)

denotes the complexity of a single maximum-flow computation in a digraph with ñ vertices and m̃ arcs. We use the
highly tuned implementation of the preflow-push algorithm of Goldberg and Tarjan [15] in COIN-OR LEMON 1.3.1 — the
147
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ibrary for Efficient Modeling and Optimization in Networks [8], as the responsible team reports that best computational
untimes are attained with that algorithm. Its time complexity g(ñ, m̃) is in O(ñ2

√
m̃). Since the digraph D above is such

that ñ ≤ 2n and m̃ ≤ 2m+n before the contractions due to integer-valued variables, the runtime of our separation is within
O(n4√n + m). Contrary to what one could expect from such a high worst-case time complexity, we had very encouraging
numerical results in practice, which we attribute to the digraph contractions and the particular branch-and-cut scheme
that we outline in Section 3.2 below.

An alternative, more efficient separation procedure is readily available in the particular case where the relaxation
solution x∗ is actually integer-valued. We may resort to a simple depth-first search (DFS) to check connectivity of the
induced solution. In a disconnected solution, inspecting the neighborhood C of any connected component with a vertex
u such that x∗

u = 1 gives a violating (u, v)-separator, for some v in a different component with x∗
v = 1. It is important

to stress that implementation tweak (B) above applies here as well, and that we still need to derive a minimal separator
S ⊂ C to add a stronger inequality. The time complexity of the separation in this particular case is dominated by the DFS
step, and is thus in O(n + m).

It is fair to remark that MSI first appeared in two, earlier papers in applied operations research. Fügenschuh
and Fügenschuh [12] introduced this class of inequalities and their separation algorithm in an intricate, non-linear
programming problem arising in the sheet metal industry. Their work was picked up by Carvajal et al. [6], who extended on
the role of MSI when imposing connectivity in a forestry planning problem. The MSI were also introduced independently
in the polyhedral studies of the convex recoloring problem [5]. We also praise, again, the thorough, instructive chapter
of Álvarez-Miranda et al. [1] on the maximum weight connected subgraph problem more generally.

Indegree cuts
The separation of indegree inequalities is remarkably simple. We implemented the procedure exactly as presented

by Wang et al. [31]. The main point is to consider an orientation maximizing the left-hand side over all indegree vectors,
namely: taking −→uv for {u, v} ∈ E(G) if and only if x∗

u ≥ x∗
v . The worst-case time complexity of the algorithm is in O(n+m).

Blossom cuts
We consider two separation algorithms for blossom inequalities. See Section 3.2 below for the detailed scheme in

which they are used.
The first method is the exact separation procedure of Padberg and Rao [27]. We strictly followed its presentation

cf. [24], who introduced the state-of-the-art algorithm for the more general version of b-matchings with edge capacities.
The separation works on a support graph G′ with n + 1 vertices and m + n edges, whose capacities are determined by
the current relaxation solution x∗. It boils down to determining a cut tree T (G′): an elegant data structure introduced
by Gomory and Hu [19] to encode minimum cuts between all pairs of vertices in the graph, at the expense of computing
only |V (G′)| − 1 maximum flow computations.

We use COIN-OR LEMON 1.3.1 [8] here as well to build the cut tree T (G′). Then, it suffices to verify the blossom
nequality

∑
e∈E(G[H]) x

∗
e ≤ (|H|−1)/2 for at most one handle H ⊂ V (G) per edge of the tree. Constructing the data structure

ominates the worst-case time complexity of the complete algorithm, and is within O(n4) [24]. We remark that an
implementation here may construct the support graph G′ only once, and just update edge capacities according to the
current relaxation values.

Our second method is inspired by the work of Bicalho et al. [4, Section 4.1.2], who observed comparable results using
the exact method above and a separation heuristic for blossom inequalities in a row-and-column generation algorithm for
a different network design problem. We devised a simpler algorithm to try to find blossom cuts in linear time as follows.
Let H denote the support graph induced only from fractional variables in x∗, and let Hi denote the connected components
f H . For each Hi of odd cardinality, we simply inspect the corresponding blossom inequality for violation. The complexity
f this separation heuristic is dominated by the step finding connected components in H , which is in O(n+m) in the worst
ase.

.2. Further algorithmic aspects

We are now ready to depict our complete branch-and-cut scheme. We use the overall framework in the Gurobi 10.0.2
olver [20], with callbacks to implement separation procedures. It is important to distinguish between the specific callback
rom a new MIP incumbent, where only lazy constraints are added (in our case, MSI tailored for integer-valued points),
nd the standard callback from the search at a given MIP node, where we add user cuts (all of MSI, indegree, and blossom
nequalities).

In the beginning, only degree inequalities (15) are included a priori in the model. Instead of relying on the solver
tandard behavior concerning how long to explore the root node relaxation before branching, we designed a strengthened
oot node LP relaxation. Here, we dedicate up to 300 s or 10% of the specified time limit (whichever is shorter) prior to
he main call to the solver, and alternate the solution of an LP relaxation and cut generation observing that:

1. All MSI violated in the current relaxation solution x∗ are added;
2. The exact separation of blossom inequalities is attempted only if x∗ is fractional, no MSI cut was found and the

separation heuristic failed;
148
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3. No indegree cuts are added unless all other separation algorithms failed, to prevent the inclusion of an excessively
large number of constraints.

The reinforced model resulting from this initialization consistently showed the best computational performance across
range of configurations in our preliminary computational evaluation. In particular, we explain in Section 4.2 that a
umber of instances could be solved without resorting to branching — which was not the case before we devised this
trengthened root node relaxation.
The general algorithm continues with the branch-and-cut enumeration tree, partitioning the search space by fixing a

ingle binary variable, xu = 0 or xu = 1, in each branch. In each remaining node below the root relaxation, more attention
is paid to limit the complexity of cut generation, by observing the following:

1. The MSI separation algorithm concludes as soon as any inequality violated at the current relaxation is found,
iterating over the initial source vertex considered for maximum flow computations;

2. The exact separation of blossom inequalities is turned off, and only the heuristic is run;
3. The separation of indegree inequalities is turned off.

4. Experimental evaluation

We conclude our work with the first experimental evaluation of an algorithm for the weighted connected matching
(WCM) problem. The main goal here is to indicate that our polyhedral descriptions and the resulting algorithms constitute
a practical approach to find optimal connected matchings in non-trivial inputs.

4.1. Benchmark design

We hope to set a judicious baseline towards progress in the computation of WCM. Namely, one that is anchored in the
reproducibility of materials and methods, and that reports experimental evidence from respectable, interesting testbeds.

Interlude
At an early stage of our experiments, we considered using binomial (Erdős-Rényi) graphs Gn,p as reported by Wang et al.

[31] when studying the performance of minimal separator and indegree inequalities for the maximum weight connected
subgraph (MWCS) problem. To our surprise, the random graphs in this model resulted in quite simple WCM instances.
Both the compact extended formulation and the exponential one in the original space give so tight bounds that problems
in the order of 105 vertices were solved in negligible time on a desktop computer — whether on sparse or dense Gn,p graphs
(p ∈ [0.01, 0.6]), whether with Gaussian or uniform random weights. The script to produce such instances using the robust
NetworkX Python package is still available in our GitHub repository. Nevertheless, we do not go further in evaluating those
examples in our research. Instead, we choose to proceed by borrowing credibility from a certified source of benchmark
instances of MWCS and similar problems.

Benchmark instances
Our computational evaluation is carried out over benchmark instances from the 11th DIMACS/ICERM Implementation

Challenge. The competition covered several variants around the Steiner tree problem, and we chose to use all three sets
of instances of the MWCS problem, and the one set available for the Generalized Maximum-Weight Connected Subgraph
(GMWCS) problem. Specifically, there are 39 instances in set MWCS-GAM, 72 in MWCS-JMPALMK, 8 in MWCS-ACTMOD,
nd 63 instances in set GMWCS-GAM. Table 1 in the supplementary material (Appendix A) contains the full names, sizes,
nd a numerical ID for ease of reference of the 182 instances. The smallest instances have less than a thousand vertices
nd edges; the largest ones exceed 5.000 vertices and 90.000 edges. See [9] for more information.
Since MWCS instances contain only vertex weights, we determined w(e) def

= w(u)+w(v) for each e = {u, v} ∈ E(G). For
MWCS problems we used the edge weights included in the input instance, and ignored vertex weights. We note that 10
ut of the 63 GMWCS instances have only negative weights, and so the resulting WCM problem has null optimum. We
ecided to keep those instances in the benchmark for the sake of completeness.

latform and settings
We tested the implementation on a desktop machine with an Intel Core i5-8400 processor, with 6 CPU cores at

.80 GHz, and 16 GB of RAM, runnning GNU/Linux kernel 6.2.0–33 under the Ubuntu 22.04.3 LTS distribution. All the
ode is compiled with g++ 11.4.0.
As mentioned in Section 3.2, we use the Gurobi Optimization [20] MILP solver. We set a time limit of 3600 s in all

xecutions, while noting that the solver process may exceed that by a negligible amount. All solver parameters are used in
heir default values, except for setting an extra effort on MIP heuristics when using the exponential formulation with our
ranch-and-cut scheme (MIPFocus = 1 and GRB_DoubleParam_Heuristics = 0.2). In our implementation, we require a violation
y at least 10−5 to add a cutting plane in all separation procedures.
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.2. Discussion

Table 2 in the supplementary material (Appendix A) contains the detailed results of the solver using the extended
ormulation (1), i.e. optimizing over polyhedron Pext, and our enhanced branch-and-cut scheme with formulation (14),
hich is based on the exponential polyhedral description in Pfull. We include information both on the LP relaxation and
he full integer program in the table, and discuss our findings next.

verall performance. A first note is about the actual practicality of the implementations. We were satisfied that the
nhanced branch-and-cut scheme over Pfull concludes with an optimality certificate for 168 out of 182 instances. The
orresponding number for the compact formulation is 151 cases. Taking into account that we use at most one hour of
rocessing by a regular desktop computer, we consider this a rather encouraging conclusion. Practitioners and applications
ith a connected matching subproblem should therefore be able to derive improved runtimes by taking advantage of more
owerful computing platforms.

mpirical approximation of the ideal formulation. Concerning how tightly we approximate the convex hull C(G) with our
ormulations, it is remarkable that the LP relaxation bound of Pfull matches the optimum in 98 out of 168 instances for
hich the optimum is known, and the enhanced branch-and-cut algorithm is able to prove optimality in the root node
elaxation in 111 problems. More generally, the optimum is within 5% of LP bound in 145 of those 168 instances. We
bserve that the LP relaxation bound of Pfull is stronger or equal to that of Pext in all instances. It is 23.9% tighter on
verage, and up to 84% tighter (recall that we impose a time limit for the LP relaxation, so it could be even stronger).

omparing bounds between formulations. As expected, the dual bounds attained with the enhanced branch-and-cut
lgorithm over Pfull are consistently stronger than that of the compact extended formulation, and there is only a single case
here the latter is stronger (namely, the instance of ID 16). Concerning primal bounds, we were surprised positively with 8
xamples where the compact extended formulation does find an integer feasible solution better than the exponential one.
e refer to the results on instances with identifiers 3, 16, 21, 35, 36, 42, 44, 45.

uperiority of exponential formulation in harder instances. Finally, seeking a classification of the instances with respect to
omputational hardness, we find that 123 out of 182 instances could be solved to optimality by both formulations within
min. In the remaining 59 instances, we find good clues of the superiority of Pfull.

i. In 30 of those 59 cases, the exponential formulation does finish within 5 min.
ii. The LP relaxation bound of Pfull is up to 65.0% stronger than that of Pext in this subset; it is 34.7% stronger on

average.
iii. In 11 instances, the exponential formulation solves the problem at the root relaxation node, whereas the compact

one struggles to finish: not even proving optimality before 3600 s in 3 cases; taking 1510 or 2388 s in 2 cases; and
6 other cases taking longer than 5 min.

iv. While there are 14 instances where the solver with the exponential formulation could not prove optimality (i.e.
exceeds the one hour time limit with an open gap), there are 31 such cases for the compact formulation.

. Final remarks

The standing argument behind our work is that polyhedra and MILP should lead to an interesting, useful perspective
o study WCM both in theory and in practice. This complements other methodologies that are currently available to find
eighted connected matchings, which assume restricted input graph classes. Moreover, we hope that our approach also
etermines a solid baseline of comparison for further research crafting WCM algorithms.
Besides their appealing polyhedral structures and intrinsic connections with established problems in combinatorics and

ptimization, both formulations considered here had encouraging computational performance, and could be considered
or eventual applications of the WCM problem as well. On the one hand, having good results from the compact extended
ormulation is an achievement in its own right (we remark that it was able to find better primal feasible solutions in
few examples), as performance improvements in the underlying MILP solver usually leads to better runtimes in such

‘simpler’’ models automatically.
Still, all the work in designing an enhanced formulation did pay off, and we are proud to contribute yet another

uccess story where the theoretical insight gathered from careful polyhedral relaxations translates to strides in practical
omputing experience. Using the exponential description and the resulting branch-and-cut scheme, we provide optimality
ertificates for 168 out of 182 instances. Most noticeable, that formulation solves 111 out of 182 instances in the root
elaxation, without resorting to branching.

We believe that further research should consider only the subset of harder instances discussed here, and investigate
eatures that characterize the most challenging ones before proposing new benchmark sets. It should also be possible to
trengthen the compact extended polyhedron as well, so that more instances could be solved to proven optimality within
imited runtimes.

Finally, our software repository includes not only the implementation of all the methods presented in this paper, but
lso a simple tool using polymake [2,13] to assist one in inspecting the connected matching polytope and finding new
lasses of strong valid inequalities. We had some progress in this direction [29], and trust that many fruitful results could
e derived by further research translating the polyhedral insight to improved WCM algorithms.
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ata availability

The free, open-source code of all algorithms implemented, as well as the benchmark instances, is permanently available
n the GitHub repository mentioned in the paper.
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