
Intl. Trans. in Op. Res. 32 (2025) 314–352
DOI: 10.1111/itor.13304

INTERNATIONAL
TRANSACTIONS

IN OPERATIONAL
RESEARCH

Strong bounds and exact solutions to the minimum
broadcast time problem

Marika Ivanovaa,∗ , Dag Hauglandb and Bård Hennning Tvedtc

aDepartment of Theoretical Computer Science and Mathematical Logic, Charles University, Prague, Czech Republic
bDepartment of Informatics, University of Bergen, Norway

cWebstep, Bergen, Norway
E-mail: ivanova@ktiml.mff.cuni.cz [Ivanova]; Dag.Haugland@uib.no [Haugland]; bard.tvedt@webstep.no [Tvedt]

Received 28 December 2022; accepted 20 March 2023

Abstract

Given a graph and a subset of its nodes, referred to as source nodes, the minimum broadcast time problem
asks for the minimum number of steps in which a signal can be transmitted from the sources to all other
nodes in the graph. In each step, the sources and the nodes that already have received the signal can forward
it to at most one of their neighbour nodes. The problem has previously been proved to be NP-hard. In the
current work, we develop a compact integer programming model for the problem. We also devise procedures
for computing lower bounds on the minimum number of steps required, along with methods for constructing
near-optimal solutions. Computational experiments demonstrate that in a wide range of instances, in partic-
ular instances with sufficiently dense graphs, the lower and upper bounds under study collapse. In instances
where this is not the case, the integer programming model proves strong capabilities in closing the remaining
gap and proves to be considerably more efficient than previously studied models.

Keywords: broadcasting; integer programming; bounds; computational experiments

1. Introduction

Fast and efficient distribution of information gives rise to many optimisation problems of growing
interest. Information dissemination processes studied in the mathematical and algorithmic litera-
ture (Hedetniemi et al., 1988; Fraigniaud and Lazard, 1994; Hromkovič et al., 1996; Harutyunyan
et al., 2013) often fall into one of the categories: gossiping or broadcasting. When each network
node controls its own, unique piece of information and all pieces are to be disseminated to all
nodes, the process is called gossiping (Bermond et al., 1995, 1998). Dissemination of the informa-
tion controlled by one particular source node to all network nodes is referred to as broadcasting
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(Ravi, 1994; McGarvey et al., 2016) and multicasting (Bar-Noy et al., 2000) if a subset of the net-
work nodes are information targets. If the information is to be stored at the source and assembled
by pieces stored at all other nodes, then the information flows in the reverse of the broadcasting
direction, and the dissemination process is accumulation. Broadcasting and accumulation can both
be generalised to processes where only a subset of the nodes need to receive/disseminate infor-
mation, while the remaining nodes are available as transit units that pass the information on to
neighbouring nodes.

Information dissemination follows a certain communication model. In the whispering model, each
node sends/receives information to/from at most one other node in its vicinity at a time. The
shouting model corresponds to the case where nodes communicate with all their neighbour nodes
simultaneously. Generalising whispering and shouting, the communication can also be constrained
to neighbour subsets of given cardinality.

In the current work, a problem in the domain of broadcasting is studied. The minimum broadcast
time (MBT) problem is identified by a graph and a subset of its nodes, referred to as source nodes.
Each node in the graph corresponds to a communication unit. The task is to disseminate a signal
from the source nodes to all other nodes in a shortest possible time (broadcast time), while abiding
by communication rules. A node is said to be informed at a given time if it is a source, or if it
already has received the signal from some other node. Otherwise, the node is said to be uninformed.
Consequently, the set of informed nodes is initially exactly the set of sources. Reflecting the fact that
communication can be established only between pairs of nodes that are located within a sufficiently
close vicinity of each other, the edge set of the graph consists of potential communication links
along which the signal can be transmitted.

Consider time represented by integers 1, 2, . . .. Agreeing with the whispering model, every in-
formed node can forward the signal to at most one uninformed neighbour node at a time. There-
fore, the number of informed nodes is at most doubled at any time. This communication protocol
appears in various practical applications, such as communication among computer processors or
telephone networks. In situations where the signals have to travel large distances, it is typically
assumed that the signal is sent to one neighbour at a time. Inter-satellite communication networks
thus constitute a prominent application area (Chu and Chen, 2017). Particularly, the MBT problem
arises when one or a few satellites need to broadcast data quickly by means of time-division multi-
plexing.

Lima et al. (2022) mention several other industrial applications of MBT. Noteworthy among
these is a recent application in peer-to-peer network communication, in which significant improve-
ments over a slow Bluetooth mesh were achieved. According to Lima et al. (2022), the problem
under study also finds applications in wireless sensor networks (Shang et al., 2010), industry 4.0
(Hocaoǧlu and Genç, 2019), surveillance (Dekker, 2002), robotics (Bucantanschi et al., 2007) and
direct memory access (Lazard, 1992).

The current literature on MBT offers some theoretical results, including complexity and approx-
imability theorems. Although inexact solution methods also have been proposed, few attempts seem
to be made in order to compute the exact optimum or to find strong lower bounds on the minimum
broadcast time. The goal of the current text is to fill this gap, and we make the following contribu-
tions in that direction: First, a compact integer linear programming (ILP) model is developed.

Unlike models applied in previous works (de Sousa et al., 2018a, 2018b; Lima et al., 2022), the
ILP model studied in the current text maximises the number of nodes that can be informed within
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a given time t. The optimal solution to the MBT problem is then identified as the minimum value
of t for which the objective function attains a value identical to the vertex cardinality of the graph.
With access to strong lower and upper bounds on the minimum broadcast time, such a model has
to be run for only a few different values of t. The current work demonstrates empirically that such
an approach is, in a large proportion of available instances, considerably faster than solving the
previously studied ILP models.

The benefit of the new ILP approach grows with the increased strength of the bounds on the
minimum broadcast time. Our second contribution is a lower bounding technique, which proves
its merit particularly in instances where all shortest paths from the source set to a non-source have
moderate length. Third, we devise an upper bounding algorithm, which in combination with strong
lower bounds is able to close the optimality gap in a wide range of instances. In summary, the
current work contributes new methods for (1) exact estimates of, (2) lower bounds on and (3) upper
bounds on the minimum broadcast time.

The remainder of the paper is organised as follows: Next, we review the current scientific liter-
ature on MBT and related problems, and in Section 2, a concise problem definition is provided.
The integer linear program is formulated and discussed in Section 3. Lower and upper bounding
methods are derived in Sections 4 and 5, respectively. Computational experiments are reported in
Section 6 before the work is concluded in Section 7.

1.1. Literature overview

Deciding whether an instance of MBT has a solution with broadcast time at most t has been shown
to be NP-complete (Garey and Johnson, 1979; Slater et al., 1981). For bipartite planar graphs
with maximum degree 3, NP-completeness persists even if t = 2 or if there is only one source
(Jansen and Müller, 1995). When t = 2, the problem also remains NP-complete for cubic planar
graphs (Middendorf, 1993), grid graphs with maximum degree 3, complete grid graphs, chordal
graphs and split graphs (Jansen and Müller, 1995). The single-source variant of the decision ver-
sion of MBT is NP-complete for grid graphs with maximum degree 4 and for chordal graphs
(Jansen and Müller, 1995). The problem is known to be polynomial in trees (Slater et al., 1981).
Whether the problem is NP-complete for split graphs with a single source is stated as an open
question by Jansen and Müller (1995) and has to the best of our knowledge not been answered
yet.

A number of inexact methods, for both general and special graph classes, have been proposed
in the literature during the last three decades. One of the first works of this category (Scheuer-
mann and Wu, 1984) introduces a dynamic programming algorithm that identifies all maximum
matchings in an induced bipartite graph. Additional contributions of Scheuermann and Wu (1984)
include heuristic approaches for near-optimal broadcasting. Among more recent works, Hasson
and Sipper (2004) describe a metaheuristic algorithm for MBT and provide a comparison with
other existing methods. The communication model is considered in an existing satellite navigation
system by Chu and Chen (2017), where a greedy inexact method is proposed together with a math-
ematical programming model. Examples of additional efficient heuristics are contributed by, e.g.,
Harutyunyan and Jimborean (2014), Harutyunyan and Shao (2006), Lima et al. (2022), de Sousa
et al. (2018a) and Wanf (2010).
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Approximation algorithms for MBT are studied by Kortsarz and Peleg (1995). The authors argue
that methods presented by Scheuermann and Wu (1984) provide no guarantee of the performance
and show that wheel-graphs are examples of unfavourable instances. Another contribution from
Kortsarz and Peleg (1995) is an O(

√
n)-additive approximation algorithm for broadcasting in gen-

eral graphs with n nodes. The same work also provides approximation algorithms for several graph
classes with small separators with an approximation ratio proportional to the separator size times
log n. An algorithm with O( log n

log log n )-approximation ratio is given by Elkin and Kortsarz (2003).
(Throughout the current text, the symbol log refers to the logarithm with base 2.) Most of the
works cited above consider a single source.

A related problem extensively studied in the literature is the minimum broadcast graph problem
(Grigni and Peleg, 1991; McGarvey et al., 2016). A broadcast graph supports a broadcast from any
node to all other nodes in optimal time �log n�. For a given integer n, a variant of the problem is
to find a broadcast graph of n nodes such that the number of edges in the graph is minimised. In
another variant, the maximum node degree rather than the edge cardinality is subject to minimi-
sation. McGarvey et al. (2016) study ILP models for c-broadcast graphs, which is a generalisation
where signal transmission to at most c neighbours at a time is allowed.

Despite a certain resemblance with MBT, the minimum broadcast graph problem is clearly dis-
tinguished from the problem under study and will consequently not be considered further in the
current work.

2. Network model and definitions

The communication network is represented by a connected graph G = (V, E ) and a subset S ⊆ V
referred to as the set of sources. We denote the number of nodes and the number of sources by
n = |V | and σ = |S|, respectively. The digraph with nodes V and arcs (u, v) and (v, u) for each
{u, v} ∈ E is denoted

−→
G = (V,

−→
E ). Finally, for a node u ∈ V , we define N(u) = {v ∈ V : {u, v} ∈ E}

as the set of neighbours of node u.

Definition 1. The minimum broadcast time τ (G, S) of a node set S ⊆ V in G is defined as the smallest
integer t ≥ 0 for which there exists a sequence V0 ⊆ · · · ⊆ Vt of node sets and a function π : V \ S →
V , such that

1. V0 = S and Vt = V ,
2. for all v ∈ V \ S, {π (v), v} ∈ E,
3. for all k = 1, . . . , t and all v ∈ Vk, π (v) ∈ Vk−1 and
4. for all k = 1, . . . , t and all u, v ∈ Vk \ Vk−1, π (u) = π (v) only if u = v.

Referring to Section 1, the node set Vk is the set of nodes that are informed at time k. Initially,
only the sources are informed (V0 = S), whereas all nodes are informed after time t (Vt = V ), and
the set of informed nodes is monotonously non-decreasing (Vk−1 ⊆ Vk for k = 1, . . . , t). The par-
ent function π maps each node to the node from which it receives the signal. Conditions 2–3 of
Definition 1 thus reflect that the sender is a neighbour node in G, and that it is informed at an
earlier time than the recipient node. Because each node can send to at most one neighbour node
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at a time, condition 4 states that π maps the set of nodes becoming informed at time k to distinct
parent nodes. The preimage of v under π , that is, the set of child nodes of v, is denoted π−1(v).

The optimisation problem in question is formulated as follows:

Problem 1 (Minimum Broadcast Time). Given G = (V, E ) and S ⊆ V , find τ (G, S).

Definition 2. For any V0, . . . ,Vt and π satisfying the conditions of Definition 1, possibly with the
exception of t being minimum, the corresponding broadcast forest is the digraph D = (V, A), where
A = {(π (v), v) : v ∈ V }. If t is minimum, D is referred to as a minimum broadcast forest. Each con-
nected component of D is a communication tree.

It is easily verified that the communication trees are indeed arborescences, rooted at distinct
sources, with arcs pointing away from the source. Let T (s) = (V (s), A(s)) denote the communica-
tion tree in D rooted at source s ∈ S, and let Tk(s) be the subtree of T (s) induced by V (s) ∩ Vk.
Analogously, let Dk be the directed subgraph of D induced by node set Vk. For the sake of no-
tational simplicity, the dependence on (V0, . . . ,Vt, π ) is suppressed when referring to the directed
graphs introduced here.

The degree of node v in graph G is denoted degG(v). For a given subset U ⊆ V of nodes, we
define G[U ] as the subgraph of G induced by U . We let deg+−→

G
(v) and deg−−→

G
(v) denote, respectively,

the out-degree and the in-degree of node v in
−→
G , and we let deg−→

G
(v) = deg+−→

G
(v) + deg−−→

G
(v). When

p is a logical proposition, δp = 1 if p is true and δp = 0, otherwise.

3. Exact methods

In this section, we formulate an ILP model for Problem 1 and discuss possible solution strategies.
First, we give a multi-source version of the model suggested by de Sousa et al. (2018a) and

pursued by Lima et al. (2022), before we show how to formulate some of the constraints more
strongly and how the decision version of the model can be exploited for faster convergence.

3.1. Optimisation version: the broadcast time model of de Sousa et al. (2018a, 2018b)

Given integers t and t̄ such that t ≤ τ (G, S) ≤ t̄, define the binary variables ((u, v) ∈ −→
E , k =

1, . . . , t̄)

xk
uv =

{
1, if v ∈ Vk \ Vk−1 and π (v) = u,

0, otherwise.

The variable xk
uv thus represents the decision whether or not the signal is to be transmitted from

node u to node v at time k.
Let z be an integer variable representing the broadcast time.
Possibly weak bounds t and t̄ on the broadcast time τ (G, S) are easily available. Because G is

connected, the cut between any set Vi of informed nodes and its complement is non-empty, and
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therefore at least one more node can be informed at any time. It follows that τ (G, S) ≤ n − σ . The
bound is tight in the worst-case instance where S = {v1}, and G is a path with v1 as one of its end
nodes. Further, τ (G, S) ≥ δV \S �=∅ is a trivial lower bound. Problem 1 is formulated as follows (de
Sousa et al., 2018a, 2018b):

min z, (1a)

s. t.
∑

v∈N(u)

x1
uv ≤ δu∈S, u ∈ V, (1b)

∑
v∈N(u)

xk
uv ≤ 1, u ∈ V, k = 2, . . . , t̄, (1c)

∑
v∈N(u)

t̄∑
k=1

xk
vu = 1, u ∈ V \ S, (1d)

xk
uv ≤

k−1∑
�=1

∑
w∈N(u)\{v}

x�
wu, u ∈ V \ S, v ∈ N(u), k = 2, . . . , t̄, (1e)

z ≥
t̄∑

k=1

kxk
uv, u ∈ V, v ∈ N(u), (1f)

xk
uv ∈ {0, 1}, t ≤ z ≤ t̄, u ∈ V, v ∈ N(u), k = 1, . . . , t̄. (1g)

By (1b), every source (every non-source) node u sends the signal to at most one neighbour node
v (does not send at all) at time 1. Analogously, constraints (1c) state that no node can send to more
than one neighbour at a time later than 1. Constraints (1d) ensure that all nodes eventually get
informed. The requirement that a non-source node u informs a neighbour v at time k only if u is
informed by some adjacent node w at an earlier time is modelled by (1e). Lastly, constraints (1f) en-
force the broadcast time variable z to take a value no less than k if transmissions take place at time k.

3.2. Decision version: maximising the number of informed nodes

The nature of MBT suggests another modelling approach based on a subset of the binary variables
in model (1). For an integer t ∈ [t, t̄], let ν(t) denote the maximum number of non-source nodes that
can be informed within time t, which means that τ (G, S) = min{t : ν(t) = n − σ }. Hence, τ (G, S)
is found by evaluating ν(t) for t = t, . . . , t̄ − 1, interrupted by the first occurrence of ν(t) = n − σ .
In the worst case, it is observed that ν(t̄ − 1) < n − σ , which leads to the conclusion τ (G, S) = t̄.
The tightness of the upper and lower bound largely affects the computational efficiency of this
procedure. Clearly, the lower bound t allows the omission of the iterations for t < t. Also, if ν(t) <

n − σ is observed for t = t̄ − 1, it is concluded that τ (G, S) = t̄, and so the iteration for t = t̄ does
not have to be performed.

Let spu denote the number of edges on the shortest path in G from S to node u ∈ V . Obvi-
ously, u is informed no earlier than time spu, and at earliest it informs a neighbour node v at time

© 2023 The Authors.
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spu + 1. Let the binary variable xk
uv be defined for all k = spu + 1, . . . , t, and let xk

uv = 0 for k ≤ spu.
Observe that every MBT instance has an optimal solution where no node u is idle at some time
k ∈ (spu, t) while informing some neighbour node at time k + 1. To reduce the redundancy in the
model, this observation is exploited in the decision version. Further, the number of constraints is
reduced from �(t̄|−→E |) (see constraints (1e)) to �(t|V |) in the following formulation of the decision
problem:

ν(t) = max
∑

v∈V \S

∑
u∈N(v)

t∑
k=spu+1

xk
uv, (2a)

s. t.
∑

v∈N(u)

t∑
k=spv+1

xk
vu ≤ 1, u ∈ V \ S, (2b)

∑
v∈N(u)

xk
uv ≤

∑
v∈N(u):spv<k−1

xk−1
vu +

∑
v∈N(u)

xk−1
uv , u ∈ V \ S, k = spu + 1, . . . , t, (2c)

∑
v∈N(u)

x1
uv ≤ 1, u ∈ S, (2d)

∑
v∈N(u)

xk
uv ≤

∑
v∈N(u)

xk−1
uv , u ∈ S, k = 2, . . . , t, (2e)

xk
uv ∈ {0, 1}, (u, v) ∈ −→

E , k = spu + 1, . . . , t. (2f)

In the transition from the optimisation model (1), constraints (1d) are replaced by (2b). The
constraints are inequalities in the decision version, because some nodes may be left uninformed
at time t. Constraints (2c) state that node u informs a neighbour at time k > spu only if it either
did so also at time k − 1 or received the signal at that time. It follows from xspu

uv = 0 and (2b) that
the right-hand side of (2c) is at most 1 for k = spu + 1. A simple induction argument shows that∑

v∈N(u) xk
uv ≤ 1 for all k = spu + 1, . . . , t, and hence (1c) is satisfied. Likewise, summating (2c) over

time yields
∑

v∈N(u) xk
uv ≤ ∑

v∈N(u)

∑k−1
�=spv+1 x�

vu, ensuring that u is informed before informing others.
Because the right-hand side of (2c) is no larger than its counterpart in (1c), (2c) is at least as strong
as (1c). The constraints (2d)–(2e) stating that each source informs at most one neighbour at a time
are formulated analogously.

In summary, τ (G, S) is computed by the following procedure:

Algorithm 1. Exact solution to Minimum Broadcast Time

© 2023 The Authors.
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Remark 1. If Algorithm 1 is interrupted due to an imposed time limit when processing an integer
t ∈ [t, t̄), the broadcast time τ (G, S) is not known, but a (possibly tighter) lower bound t-1 on
τ (G, S) is identified.

Remark 2. Algorithm 1 follows the principle of sequential search. While a worst-case analysis sug-
gests that a binary search concludes in fewer iterations, a sequential search is favoured by smaller
ILP instances to be solved. The number of variables and constraints in (2) increases linearly with t,
and the time needed to compute ν(t) is thus expected to grow exponentially with t.

4. Lower bounds

Strong lower bounds on the minimum objective function value are, in general, of vital importance
to combinatorial optimisation algorithms. Algorithm 1 benefits directly from the bound t ≤ τ (G, S)
by omitting calculations of ν(t) for t < t. In this section, we study three types of lower bounds on
the broadcast time τ (G, S).

4.1. Analytical lower bounds

Any solution (V0, . . . ,Vt, π ) satisfying conditions 1–4 of Definition 1, also satisfies |Vk+1| ≤ 2|Vk|
for all k ≥ 0. Because the signal is passed along some path from S to node v ∈ V \ S, and the length
of the path is at least spv, node v becomes informed at no earlier time than spv (Lima et al., 2022,
Theorem 1). This yields the following lower bound:

Observation 3.

max
{⌈

log
n
σ

⌉
, max

v∈V \S
spv

}
≤ τ (G, S). (3)

Consider the m-step Fibonacci numbers { f m
k }k=1,2,... (Noe and Post, 2005), a generalisation of

the well-known (2-step) Fibonacci numbers, defined by f m
k = 0 for k ≤ 0, f m

1 = 1, and other terms
according to the linear recurrence relation

f m
k =

m∑
j=1

f m
k− j, for k ≥ 2.

Observation 4. f m
k = 2k−2 for k = 2, . . . , m + 1.

The generalised Fibonacci numbers are instrumental in the derivation of a lower bound on
τ (G, S), depending on the maximum node degree d = max{degG(v) : v ∈ V } in G. The idea behind
the bound is that the broadcast time can be no shorter than what is achieved if the following ideal,
but not necessarily feasible, criteria are met: Every source transmits the signal to a neighbour node
at every time 1, . . . , d , and every node u ∈ V \ S transmits the signal to a neighbour node in each
of the first d − 1 periods following the time when u gets informed. An exception possibly occurs in

© 2023 The Authors.
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the last period, as there may be fewer nodes left to be informed than there are nodes available to
inform them.

Proposition 5.

τ (G, S) ≥ min

⎧⎨
⎩t : 2σ

t∑
j=1

f d−1
j ≥ n

⎫⎬
⎭.

Proof. Consider a solution (V0, . . . ,Vt, π ) with associated broadcast graph D, such that V0 � V1 �

· · · � Vt−1 � Vt,

• conditions 1 and 3–4 of Definition 1 are satisfied,
• for each source u ∈ S and each j = 1, . . . , min{d, t − 1}, there exists a node v ∈ Vj \ Vj−1 such

that π (v) = u and
• for each k ∈ {1, . . . , t − 2}, each node u ∈ Vk \ Vk−1, and each j = k + 1, . . . , min{k + d − 1, t −

1}, there exists a node v ∈ Vj \ Vj−1 such that π (v) = u.

That is, all sources send the signal to some uninformed node (not necessarily a neighbour node)
at all times up to min{d, t − 1}. All nodes that received the signal at time k, forward it to some
uninformed node at all times up to min{d − 1, t − 1}, and all nodes are informed at time t. Because
condition 2 of Definition 1, stating that the flow of information follows E , is not imposed, such a
solution (V0, . . . ,Vt, π ) exists for an appropriate choice of t. Since the solution implies that every
node is actively receiving or sending for up to d consecutive periods, until the signal is broadcast
at time t, it follows that τ (G, S) ≥ t. It remains to prove that the chosen t is the smallest value
satisfying 2σ

∑t
k=1 f d−1

k ≥ n, i.e., that 2σ
∑t−1

k=1 f d−1
k < n ≤ 2σ

∑t
k=1 f d−1

k .
For k = 1, . . . , t, let Lk = {v ∈ Vk : degDk

(v) = 1} denote the set of nodes with exactly one out- or
in-neighbour in Dk, and let Lk = ∅ for k ≤ 0. That is, for k > 1, Lk is the set of nodes that receive
the signal at time k, whereas L1 consists of all nodes informed at time 1, including the sources
S. Hence, L1, . . . , Lt−1 are disjoint sets (but Lt may intersect Lt−1), and Vk = L1 ∪ · · · ∪ Lk for all
k = 1, . . . , t.

Consider a time k ∈ {2, . . . , t − 1}. The assumptions on (V0, . . . ,Vt, π ) imply that π is a bijec-
tion from Lk to Lk−1 ∪ · · · ∪ Lk−d+1. Thus, |Lk| = ∑d−1

j=1 |Lk− j|. Since also |L1| = 2σ = 2σ f d−1
1

and |Lj| = f d−1
j = 0 for j ≤ 0, we get |Lk| = 2σ f d−1

k . Further, |Lt| ≤ ∑d−1
j=1 |Lt− j| = 2σ f d−1

t . It

follows that 2σ
∑t−1

k=1 f d−1
k = ∑t−1

k=1 |Lk| = |Vt−1| < n = |Vt| ≤ ∑t
k=1 |Lk| ≤ 2σ

∑t
k=1 f d−1

k , which
completes the proof. �

4.2. Combinatorial relaxations

Lower bounds on the broadcast time τ (G, S) are obtained by replacing one or more of the condi-
tions imposed in Definition 1 by more lenient conditions. Because condition 2 states that source
s ∈ S is the parent of v only if {s, v} ∈ E , the condition implies that s has no more than degG(s)
child nodes. Analogously, for any u ∈ V \ S, the condition implies that u has at most degG(u) − 1

© 2023 The Authors.
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child nodes. As the implications do not apply in the reverse direction, a relaxation is obtained if
condition 2 is replaced by

5. for all v ∈ V , |π−1(v)| ≤ degG(v) − δv∈V \S.

A lower bound on τ (G, S) is then given by the solution to

Problem 2 (Node Degree Relaxation). Find the smallest integer t ≥ 0 for which there exist a se-
quence V0 ⊆ · · · ⊆ Vt of node sets and a function π : V \ S → V , satisfying conditions 1 and 3–5.

Observe that the bound given in Proposition 5 is obtained by exploiting the lower bounding
capabilities of the Node Degree Relaxation. By considering the degree of all nodes v ∈ V , rather
than just the maximum degree, stronger bounds may be achieved in instances where G is not regular
(minv∈V degG(v) < maxv∈V degG(v)).

Denote the source nodes S = {v1, . . . , vσ } and the non-source nodes V \ S = {vσ+1, . . . , vn},
where degG(vσ+1) ≥ degG(vσ+2) ≥ · · · ≥ degG(vn), and let di = degG(vi) (i = 1, . . . , n). Thus,
{d1, . . . , dn} resembles the conventional definition of a non-increasing degree sequence of G, with
the difference that only the subsequence consisting of the final n − σ degrees is required to be non-
increasing.

For a given t ∈ Z+, consider the problem of finding (V0, . . . ,Vt, π ) such that V0 = S, conditions
3–5 are satisfied and |Vt| is maximised. The smallest value of t for which the maximum equals n is
obviously the solution to Problem 2.

The algorithm for Problem 2, to follow later in the section, utilises that the maximum value of |Vt|
is achieved by transmitting the signal to nodes in the non-increasing order of their degrees. Observe
that, contrary to the case of Problem 1, transmissions to non-neighbours are allowed in the relaxed
problem. Any instance of Problem 2 thus has an optimal solution where, for k = 1, . . . , t − 1, u ∈
Vk \ Vk−1 and v ∈ Vk+1 \ Vk implies degG(u) ≥ degG(v).

A rigorous proof of this follows next.

Lemma 6. The maximum value of |Vt| over all (V0, . . . ,Vt, π ) satisfying V0 = S and conditions 3–5, is
attained by some (V0, . . . ,Vt, π ) where min{i : vi ∈ Vk \ Vk−1} > max{i : vi ∈ Vk−1} (k = 1, . . . , t).

Proof. Consider an arbitrary optimal solution (V0, . . . ,Vt, π ) and assume that vi ∈ Vp \ Vp−1, v j ∈
Vq \ Vq−1, i < j and 1 ≤ q < p ≤ t. We prove that the solution obtained by swapping nodes vi and
v j is also optimal. Let V̄k = Vk for k = 0, . . . , q − 1, p, p + 1, . . . , t and V̄k = (Vk \ {v j}) ∪ {vi} for
k = q, . . . , p − 1. Because |V̄t| = |Vt|, we only need to show that (V̄0, . . . , V̄t, π̄ ) is feasible for some
π̄ . In the following, we demonstrate that a valid parent function π̄ can be obtained by swapping
π (vi) and π (v j ), along with a simple adjustment ensuring that |π̄−1(v j )| ≤ |π−1(v j )|.

Define m = max{0, |π−1(vi)| − |π−1(v j )|}. Consider the case where m > 0. Because vi has at most
one child in each Vk \ Vk−1 (k = p + 1, . . . , t), there exist integers p1 > · · · > pm > p and nodes
ur ∈ Vpr \ Vpr−1 (r = 1, . . . , m) such that π (ur) = vi, whereas v j has no child in

⋃m
r=1(Vpr \ Vpr−1).

Let U = {u1, . . . , um}, and let U = ∅ if m = 0.
Let π̄ (v) = vi for all v ∈ U , and π̄ (v) = v j for all v ∈ π−1(vi) \ U . Also, let π̄ (v) = vi for all v ∈

π−1(v j ) \ {vi}. If π (vi) = v j , let π̄ (v j ) = vi, otherwise let π̄ (v j ) = π (vi). Let π̄ (vi) = π (v j ). For all
other non-source nodes, that is, all v ∈ V \ S for which vi �= π (v) �= v j , let π̄ (v) = π (v).

If m > 0, |π̄−1(vi)| = |π−1(vi)| ≤ degG(vi) − 1 and |π̄−1(v j )| = |π−1(v j )| ≤ degG(v j ) − 1. Other-
wise, |π̄−1(vi)| = |π−1(v j )| ≤ degG(v j ) − 1 ≤ degG(vi) − 1, and |π̄−1(v j )| = |π−1(vi)| ≤ |π−1(v j )| ≤
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Algorithm 2. Lower bound exploiting the degree distribution

degG(v j ) − 1. For vi �= v �= v j , |π̄−1(v)| = |π−1(v)|, and thus (V̄0, . . . , V̄t, π̄ ) satisfies condition 5. It
is straightforward to show that (V̄0, . . . , V̄t, π̄ ) also satisfies conditions 3–4. �

Algorithm 2 takes as input the number σ of sources and the number n of nodes, along with the
node degrees d1, . . . , dn, where dσ+1 ≥ · · · ≥ dn. It operates with counters νt of informed nodes at
time t, initiated to ν0 = σ . Thus, nodes v1, . . . , vνt are informed at time t, whereas vνt+1, . . . , vn are
not. A counter denoted ai (i = 1, . . . , n) keeps track of the number of nodes informed by node
vi. The sets Ft consists of indices i of informed nodes that at time t have not sent the signal to
di − 1 nodes (di nodes if i ≤ σ ). In each iteration of the outer loop of the algorithm, all nodes
vi for which i ∈ Ft inform some currently uninformed node and all counters are updated accord-
ingly. The process stops when all n nodes are informed, and the number of performed iterations
is returned.

Proposition 7. Algorithm 2 returns a lower bound on τ (G, S).

Proof. Follows from Lemma 6 and the subsequent discussion. �

It is next proved that the lower bound produced by Algorithm 2, henceforth denoted η, is no
weaker than the Fibonacci bound (Proposition 5) and the logarithmic bound.

Proposition 8. η ≥ max{min{t : 2σ
∑t

j=1 f d−1
j ≥ n}, �log n

σ
�}.

Proof. That η ≥ �log n
σ
� follows immediately from νt = νt−1 + |Ft| ≤ 2νt−1. Because η ≥ η′, where

η′ is the output from Algorithm 2 when the input data are (σ, n, d, . . . , d ) (recall that d =
max{di : i = 1, . . . , n}), it suffices to prove that η′ = min{t : 2σ

∑t
j=1 f d−1

j ≥ n}. To that end, as-

sume d1 = · · · = dn = d . Then, |Ft| = 2t−1σ for t = 1, . . . , d , and by Observation 4, |Ft| = 2σ f d−1
t

for t = 2, . . . , d . For t > d , |Ft| = ∑d−1
j=1 |Ft− j|, which shows that |Ft| is given by the recurrence

formula of the (d − 1)-step Fibonacci sequence. Hence, |Ft| = 2σ f d−1
t for all t ≥ 2. Since also

ν0 + |F1| = 2σ = 2σ f d−1
1 , we get νt = ν0 + ∑t

j=1 |Fj| = 2σ
∑t

j=1 f d−1
j . It follows that η is the small-

est value of t for which 2σ
∑t

j=1 f d−1
j ≥ n, which completes the proof. �
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5. Upper bounds

Access to an upper bound t̄ ≥ τ (G, S) affects the number of variables in the models studied in Sec-
tions 3.1–3.2. Algorithms that output feasible, or even near-optimal solutions, are instrumental in
the computation of upper bounds. Further, such methods are required in sufficiently large instances,
where exact approaches fail to terminate within a practical time.

5.1. Existing heuristic methods

Building on earlier works (Harutyunyan and Shao, 2006; Harutyunyan and Wang, 2010), Haru-
tyunyan and Jimborean (2014) study a heuristic (considering σ = 1) departing from a shortest-path
tree of G. A sequence of local improvements is performed in the bottom-up direction in the tree,
starting by the leafs and terminating at the root node. Rearrangements of the parent assignments
are made in order to reduce the broadcast time needed in subtrees. The heuristic has running time
O(|E | log n).

Alternative heuristic methods have been studied by de Sousa et al. (2018a, 2018b). Hasson and
Sipper (2004) further suggest a metaheuristic belonging to the ant colony paradigm. More recently,
Lima et al. (2022) report comprehensive numerical experiments with a random-key genetic algo-
rithm and provide empirical evidence of competitive computational performance of their method.

5.2. A construction method

Consider an integer t′ ≥ 0, node sets S = V0 ⊆ V1 ⊆ · · · ⊆ Vt′ �= V and a function π : V \ S → V ,
where {π (v), v} ∈ E for all v ∈ Vt′ \ S, and conditions 3–4 of Definition 1 are satisfied for t = t′.
That is, (V0, . . . ,Vt′, π ) defines a broadcast forest corresponding to the instance (G[Vt′ ], S), but the
forest does not cover V . In particular, if t′ = 0, the broadcast forest is a null graph on S, while it is
a matching from S to V1 \ S if t′ = 1.

This section addresses the problem of extending the partial solution (V0, . . . ,Vt′, π ) by another
node set Vt′+1, such that the conditions above also are met for t = t′ + 1. With t′ = 0 as the depar-
ture point, a sequence of extensions results in a broadcast forest corresponding to instance (G, S).
Each extension identifies a matching from Vt′ to V \ Vt′ , and all matched nodes in the latter set are
included in Vt′+1. A key issue is how to determine the matching.

Since the goal is to minimise the time (number of extensions) needed to cover V , a maximum car-
dinality matching between Vt′ and V \ Vt′ is a natural choice. Lack of consideration of the matched
nodes’ capabilities to inform other nodes is, however, an unfavourable property. Each iteration of
Algorithm 3 rather sees κ ≥ 1 time periods ahead and maximises the total number of nodes in
V \ Vt′ that can be informed at time t′ + 1, . . . , t′ + κ. Commitment is made for only one period,
and the matched nodes are those that are informed at time t′ + 1 from some node in Vt′ . The max-
imisation problem in question is exactly the one addressed by model (2), where Vt′ is considered
as sources, κ the upper bound on the broadcast time, and the graph is G with all edges within Vt′

removed. Choosing κ = 1 corresponds to the maximum cardinality matching option.
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Algorithm 3. Computing an upper bound on τ (G, S) through sequences of matchings

Remark 9. Algorithm 3 is developed into an exact method by choosing κ at least as large as any
available upper bound on τ (G, S). If the algorithm returns a value � ≤ κ, it follows that τ (G, S) = �.

Algorithm 3 generates a broadcast forest (V, F ) consisting of |S| trees rooted at distinct sources.
The broadcast time τ ((V, F ), S) of the forest is thus an upper bound on τ (G, S).

In many instances, (2) has multiple optimal solutions. Which of these is assigned to x in line 3 may
affect the bound eventually returned by Algorithm 3. Favourable tie breaking can be approached
heuristically, e.g., by

• discouraging x1
uv = 1 if γu = distu + childu is large, where distu is the distance from S to u in the

directed forest (S′, F ) and childu is the number of child nodes of u in the forest,
• and encouraging x1

uv = 1 if ζv = |N(v) \ S′| is large.

Motivation for the former rule is found in the observation that the value τ ((V, F ), S) returned
from Algorithm 3 is no smaller than maxu∈V (distu + childu). Moreover, including in S′ a node v with
a large neighbourhood in V \ S′ is preferable to including one for which |N(v) \ S′| is small, as such
a choice implies a larger cut set between S′ and V \ S′. The larger the cut set, the more edges there
are for the algorithm to choose from in subsequent iterations. Letting ck

uv = 1 − γu/|V | + ζv/|E | if
k = 1 and ck

uv = 1 otherwise, and multiplying xk
uv by ck

uv in the objective function of model (2) yields
the desired tie breaking. It is readily verified that by the modest weight on γu and ζv, optimality is
preserved for at least one optimal solution to (2).

Remark 10. If κ = 1, then the running time of Algorithm 3 is O(n
3
2 |E |), because the number of

iterations is no more than n, and the maximum cardinality matching is found in O(
√

n|E |) time
(Hopcroft and Karp, 1973). By applying the algorithm by Proskurowski (1981) for computing the
broadcast time of a tree, τ ((V, F ), S) is computed in linear time. For fixed κ ≥ 2, the problem
solved in each iteration is NP-hard (Jansen and Müller, 1995) and the running time of Algorithm 3
is exponential.

Remark 11. If κ = 1, the tie-breaking rule in terms of a modified objective function indicated
above implies that maximum cardinality matching is replaced by maximum vertex-weight matching
(MVM).

© 2023 The Authors.
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The running time of Algorithm 3 increases to O(n2|E |), as MVM is solved in O(n|E |) time
(Dobrian et al., 2019). An approximate MVM-solution within 2

3 of optimality is found in O(|E | +
n log n) time (Dobrian et al., 2019).

6. Experimental results

Results from the following numerical experiments are reported in the current section:

1. The lower bound maxv∈V \S spv (Lima et al., 2022) (see also Observation 3) and the lower bound
computed by Algorithm 2 are compared. They are also compared with the upper bound found
by the fast heuristic method of Harutyunyan and Jimborean (2014). The Fibonacci lower bound
(Proposition 5) is not subject to experiments, since it is dominated by the bound produced by
Algorithm 2 (Proposition 8).

2. The best lower bound, lb, and the upper bound, ub, are submitted to both of the ILP approaches
(direct solution of the model (1) of de Sousa et al. (2018a, 2018b) and Algorithm 1, respectively)
discussed in Section 3. A time limit of one hour is imposed on both. In the case of Algorithm 1,
which runs at most ub − lb iterations, a time limit of 3600s/(ub − lb) applies in each iteration.
Hence, if the time limit is expired when t = lb, while ν(t) = n − σ is observed for t = lb + 1, then
the conclusion lb ≤ τ (G, S) ≤ lb + 1 is drawn. The ability to compute the minimum broadcast
time, or the smallest possible interval containing it, is reported for both approaches.

3. Results from the heuristic upper bounding method, Algorithm 3, are compared with those pro-
duced by the metaheuristic of Lima et al. (2022). The latter heuristic is parameterised by a seed,
taking values between 0 and 20. One run, subject to a time limit of 1 minute for each seed value
is made, and the best result is recorded. Correspondingly, a time limit of 21 minutes is imposed
on Algorithm 3. The tie-breaking rule discussed in Section 5.2 is applied.

All experiments are run on a computer with an Intel(R) Core(TM) i5-7500 3.40 GHz processor
of four cores, each with a single thread. The computer has 16 GByte RAM memory and runs Linux
(Ubuntu 20.04.5 LTS). Algorithms 1 and 3 are implemented in Python 3.10, and the ILP models
(1) and (2) are solved by the Gurobi 9.5.2 solver (Gurobi Optimization, 2022) and implemented
through the Python interface. The C++ implementation of the genetic algorithm of Lima et al.
(2022) is downloaded from the authors’ git repository. Other code, that is the upper bounding
algorithm of Harutyunyan and Jimborean (2014) and the lower bounding methods (Observation
3, Algorithm 2), are implemented in C++. All C++ code is compiled by version 9.4.0 of the GNU
C++ compiler.

6.1. Instances

The experiments are run on a set of randomly generated instances and on all instances studied by
Lima et al. (2022). Unlike the latter reference, the current work includes experiments not only on
single-source instances. For each graph under study, a double-source instance is generated by draw-
ing randomly two source nodes. The graphs belong to standard graph classes from the literature
(e.g., Graham and Harary, 1993), briefly described in the following paragraphs.
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Geometric graph s on the unit sphere. The python library graph-tool (Peixoto, 2014) is used
to generate geometric graphs with nodes embedded in the unit sphere in the three-dimensional
Euclidean space. Two nodes are connected by an edge if the Euclidean distance between them is
no larger than a given bound r. The node coordinates are created by normalising three random
numbers drawn from a Gaussian distribution. For r small, the number of connected components
in the graph output from graph-tool is m > 1. To ensure connectivity, m − 1 additional edges are
added arbitrarily such that the resulting graph becomes connected. The result is a graph where

• If r is sufficiently large, a grid is formed across the unit sphere. This mimics a satellite network,
where the edges represent line-of-sight.

• Otherwise, the arising graph is likely to contain local clusters resembling a satellite network.
• For a sufficiently small value of r, the clusters degenerate to single nodes and the graph is a tree.

Hypercubes. The hypercube graph Qd is the graph formed from the nodes and edges of a hyper-
cube which is a d-dimensional generalisation of a circuit of length four (d = 2) and a cube (d = 3).
Thus, Qd is a d-regular bipartite graph with 2d nodes and d2d−1 edges. With a single source, the
minimum broadcast time of the hypercube Qd = (V, E ) is τ (Qd , {s}) = d for all s ∈ V .

Cube-connected cycles (for brevity, written as ‘CC cycles’ whenever convenient). Consider a
graph G = (V, E ) and an integer d ≥ 3, where |V | = d2d and E defined as follows: Let the nodes
be represented by distinct pairs (x, y) of integers, where 0 ≤ x < 2d and 0 ≤ y < d . Node (x, y) has
exactly three neighbours, namely (x, (y + 1) mod d ), (x, (y − 1) mod d ) and (x ⊕ 2y, y), where
⊕ denotes the exclusive or operation on the binary representation of integers. Thus, G is a cubic
graph, referred to as a cube-connected cycle of order d (Preparata and Vuillemin, 1981). It is dis-
tinguished from the hypercube Qd in that each node in Qd is replaced by a cycle on d nodes, and
the edge set is modified such that 3-regularity is obtained, which in its turn implies |E | = 3d2d−1.

Harary graphs. Harary (1962) proves that for all integers n > k ≥ 1, the minimum edge cardi-
nality of a k-connected graph with n nodes is � nk

2 �. The same reference provides a procedure that
for arbitrary k and n constructs a graph Hkn, referred to as a Harary graph, at which the minimum
is attained. For instance, H2,n and Hn−1,n are, respectively, a circuit and a complete graph, both with
n nodes. The broadcast time in Harary graphs is given particular attention by Bhabak et al. (2014,
2017).

De Bruijn graphs. Each node of a d-dimensional De Bruijn graph is represented by a binary
string of length d . Two distinct nodes u and v are neighbours if and only if the string corresponding
to u is obtained by shifting all binary digits of the string corresponding to v one position either left
or right, and either binary symbol is introduced in the vacant position. Hence, the graph has 2d

nodes, each of which has degree at most 4.

Shuffle exchange graphs. Like in De Bruijn graphs, the nodes of a shuffle exchange graph of or-
der d represent binary strings of length d . There is an edge between two distinct nodes u and v if and
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only if their corresponding strings are identical in all but their last bit, or the string corresponding
to u is obtained by a left or a right cyclic shift of the bits of v. Hence, the graph has 2d nodes, each
of which has degree at most 3.

Synthetic graphs. Lima et al. (2022) have constructed MBT instances for which the minimum
broadcast times are known in the single-source cases. The graphs are designed by adding edges
randomly to trees which are known to have broadcast time �log |V |� for an appropriate choice of
source. In each such instance, |V | is a power of two, ranging from 25 to 210.

Small world graphs. The small world graphs included in the experiments consist of 100 or 1000
nodes with average degree ranging from two to six. All of them are downloaded from the repository
of Rossi and Ahmed (2016).

6.2. Lower and upper bounds computed in polynomial time

Tables A1–A5 in the Appendix show the node and edge cardinalities (columns 2 and 3) of all
graphs in question. For the corresponding single-source MBT instances, column 4 contains the
lower bounds produced by Algorithm 2, column 5 contains the lower bounds maxv∈V spv and col-
umn 6 contains the upper bound found by the method of Harutyunyan and Jimborean (2014). A
lower bound is written in bold if it is the strongest lower bound, and an asterisk accompanies all
upper bounds that coincide with a corresponding lower bound. Analogous results for the double-
source instances are given in columns 7–9.

A summary of the results is given for each set of instances in Table 1. For the instance set iden-
tified by columns 1–3, where columns 2 and 3 give the range of node and edge cardinalities, re-
spectively, column 4 gives the number of instances within the set. Columns 5–7 give the average
score of each lower and upper bound. When applied to a particular instance, the score is defined
as the bound value divided by the best lower bound obtained for that instance. Thus, a score of a
lower bound equal to 1.0 means that it is the best lower bound found, whereas a value smaller than
1.0 implies the converse. Likewise, the score of the upper bound is 1.0 if the bound coincides with
the best lower bound and greater than 1.0 otherwise. Closeness to 1.0 of the average score within
an instance set thus reflects the strength of the bound when applied to the instances in question.
Columns 8–10 finally show the number of instances in which the respective bounds obtained the
score 1.0. For the lower bounds (columns 8 and 9), the number of instances in which it is the unique
bound to obtain this score is given in parentheses.

As could be expected, the tables show that in instances with an eccentric source node, such as
the random geometric instances (rows 1–5 in Table 1 and Table A1) and the small world instances
where |V | = |E | (row −6 and −3 of Table 1; rows 1–3 of Tables A4 and A5), the longest shortest
path bound is largely dominant. The method of Harutyunyan and Jimborean (2014) is also able
to compute an optimal solution in many of these instances, as the provided upper bound coincides
with the best lower bound. In 16 out of 20 (11 out of 20) of the single-source (double-source) ran-
dom geometric instances (Table A1), for example, the broadcast time is computed and proved to be
minimum uniquely by means of procedures with polynomial running time. In instances with a more
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Table 1
Lower and upper bounds and their closeness to the best lower bound (|S| ∈ {1, 2})

Size Relative closeness Number of instances equal

Instance set |V | |E |
Number of
instances Algorithm 2 max sp ub Algorithm 2 max sp ub

Geometric 400 1220–1816 8 0.55 1.00 1.13 0 (0) 8 (8) 2
Geometric 600 1027–1861 8 0.20 1.00 1.01 0 (0) 8 (8) 7
Geometric 800 1034–1871 8 0.07 1.00 1.00 0 (0) 8 (8) 7
Geometric 1000 1447–2827 8 0.14 1.00 1.02 0 (0) 8 (8) 4
Geometric 1200 1940–4075 8 0.18 1.00 1.00 0 (0) 8 (8) 7
Harary 17–100 17–525 32 0.91 0.75 1.10 24 (19) 13 (8) 16
Hypercube 32–1024 80–5120 12 1.00 0.94 1.08 12 (3) 9 (0) 6
CC cycles 24–896 36–1344 10 0.89 1.00 1.15 2 (0) 10 (8) 0
de Bruijn 16–1024 31–2047 14 1.00 0.91 1.36 14 (10) 4 (0) 0
Shuffle

exchange
16–1024 21–1533 14 0.83 0.98 1.08 2 (1) 13 (12) 5

Synthetic 32 31–156 14 1.00 0.69 1.27 14 (12) 2 (0) 2
Synthetic 64 63–558 14 1.00 0.52 1.34 14 (12) 2 (0) 2
Synthetic 128 127–2140 14 1.00 0.47 1.37 14 (12) 2 (0) 2
Synthetic 256 255–8307 14 1.00 0.41 1.38 14 (12) 2 (0) 2
Synthetic 512 511–33,313 14 1.00 0.37 1.41 14 (12) 2 (0) 2
Synthetic 1024 27259–131,643 12 1.00 0.24 1.44 12 (12) 0 (0) 0
Small world 100 100 6 0.33 1.00 1.00 0 (0) 6 (6) 6
Small world 100 200 36 0.94 0.97 1.34 25 (8) 28 (11) 0
Small world 100 300 18 1.00 0.71 1.27 18 (17) 1 (0) 0
Small world 1000 1000 6 0.17 1.00 1.00 0 (0) 6 (6) 6
Small world 1000 2000 36 0.92 0.93 1.30 23 (18) 18 (13) 0
Small world 1000 3000 18 1.00 0.76 1.36 18 (15) 3 (0) 0

centrally located source node, such as the de Bruijn instances (row 9 of Table 1; rows −8, . . . , −14
of Table A2) and the instances on a rather dense small-world graph (row −1 of Table 1; rows −1, −4
and −6 of Table A5), the lower bound of Algorithm 2 dominates both �log n

σ
� and maxv∈V \S spv.

The upper bounding method, however, fails to close the gap in these instances.
A comparison across all 324 instances shows that the bounds collapse in 42 single-source and

34 double-source instances. All such instances are classified as trivial and will not be pursued in
experiments with more time-consuming methods. Although the majority of the trivial instances
have a single source, we find the difference to be too insignificant to conclude whether double-
source instances are generally more challenging than their single-source counterpart.

6.3. Experiments with ILP approaches and upper-bounding heuristics

For all non-trivial instances, Tables B1–B8 in the Appendix show the lower and upper bounds
(optimal solutions if convergence within the time limit) obtained by the model (1) of de Sousa
et al. (2018a, 2018b) and Algorithm 1 (columns 2 and 3 and 4 and 5, respectively). The tables also
contain the upper bounds obtained by the metaheuristic of Lima et al. (2022) (column 6), and the
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Table 2
The table shows the relative closeness within instance sets to the best known lower bound, obtained by ILP approaches
and heuristics. Each set consists of instances where |S| ∈ {1, 2}

ILP approaches Heuristics

Number of de Sousa Algorithm 1 Lima Algorithm 3

Instance set instances lb ub ub ub Ub1 Ub2 Ub3 Ub4

Geometric 13 1.00 1.00 1.00 1.01 1.10 1.11 1.07 1.07
Harary 16 1.00 1.00 1.00 1.00 1.03 1.04 1.01 1.01
Hypercube 6 1.00 1.02 1.02 1.04 1.12 1.12 1.10 1.02
CC cycles 10 1.00 1.00 1.00 1.00 1.11 1.11 1.06 1.09
de Bruijn 14 1.00 1.01 1.01 1.04 1.13 1.12 1.09 1.05
Shuffle exchange 9 1.00 1.00 1.00 1.01 1.11 1.11 1.10 1.12
Synthetic (|V | = 32) 12 1.00 1.00 1.00 1.00 1.13 1.07 1.02 1.00
Synthetic (|V | = 64) 12 1.00 1.00 1.00 1.00 1.03 1.03 1.04 1.00
Synthetic (|V | = 128) 12 1.00 1.00 1.00 1.00 1.01 1.03 1.00 1.00
Synthetic (|V | = 256) 12 1.00 1.04 1.00 1.00 1.00 1.00 1.00 1.00
Synthetic (|V | = 512) 12 1.00 1.48 1.02 1.04 1.00 1.00 1.00 1.00
Synthetic (|V | = 1024) 12 0.99 1.43 1.43 1.05 1.00 1.00 1.00 1.00
Small world (|V | = 102, |E | = 2|V |) 36 1.00 1.00 1.00 1.00 1.11 1.12 1.09 1.05
Small world (|V | = 102, |E | = 3|V |) 18 1.00 1.00 1.00 1.00 1.09 1.11 1.05 1.03
Small world (|V | = 103, |E | = 2|V |) 36 0.99 1.03 1.03 1.12 1.16 1.16 1.15 1.13
Small world (|V | = 103, |E | = 3|V |) 18 0.96 1.08 1.03 1.13 1.11 1.10 1.07 1.05

results from Algorithm 3 with parameter values κ = 1, 2, 3, 4 (columns 7–10, respectively). Bold-
face numbers imply that the bound is no weaker than other bounds reported for the same instance,
and an asterisk signifies that an upper bound is no larger than the sharpest lower bound. A stroke
(–) means that the corresponding method failed to compute the bound in question, while †is given
to indicate that the solver was interrupted before the time limit because it ran out of memory.

A summary of the results is given in Tables 2 and 3. Column 2 of both tables gives the number
of pursued instances within each set. For the former ILP approach, columns 3 and 4 of Table 2
show the computed bounds relative to the lower bound produced by Algorithm 1, averaged over
all instances in the set. Correspondingly, column 5 contains the average value of all upper bounds
produced by Algorithm 1 relative to the lower bound. Analogous results for the heuristic methods
are given in the last five columns of the table. Table 3 has a column ordering consistent with Table 2
and shows the number of instances in which the respective bounds are identical to the lower bound
produced by Algorithm 1.

A comparison between the model (1) of de Sousa et al. (2018a, 2018b) with Algorithm 1 in the
single-source instance of graph SW-1000-6-0d1-trial3 (see Table B4) shows that the former ap-
proach gives a better upper bound. In all other instances, however, Algorithm 1 produces lower and
upper bounds that are level with or better than those obtained by applying model (1). Moreover,
the algorithm successfully finds the minimum broadcast time and proves its validity in all but 31
instances (217 out of 248 non-trivial instances are solved), whereas the corresponding success rate
of model (1) is 197 out of 248. In their recent research, Lima et al. (2022) proved optimality in only
three out of 30 single-source small-world instances with |V | = 1000. By virtue of Algorithm 1, the
minimum broadcast time is now known in 19 more of these instances (see Table B.4).
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Table 3
The table shows the number of instances within a set where the best lower bound is met by ILP approaches and heuristics.
Each set consists of instances where |S| ∈ {1, 2}

ILP approaches Heuristics

Number of de Sousa Algorithm 1 Lima Algorithm 3

Instance set instances lb ub ub ub Ub1 Ub2 Ub3 Ub4

Geometric 13 12 12 13 10 0 0 1 2
Harary 16 16 16 16 16 14 13 15 15
Hypercube 6 6 5 5 4 1 1 2 5
CC cycles 10 10 10 10 10 2 2 4 3
de Bruijn 14 14 12 13 9 3 3 6 8
Shuffle exchange 9 9 9 9 7 0 1 2 1
Synthetic (|V | = 32) 12 12 12 12 12 5 8 11 12
Synthetic (|V | = 64) 12 12 12 12 12 10 10 9 12
Synthetic (|V | = 128) 12 12 12 12 12 11 10 12 12
Synthetic (|V | = 256) 12 11 11 12 12 12 12 12 12
Synthetic (|V | = 512) 12 3 0 10 8 12 12 12 12
Synthetic (|V | = 1024) 12 0 0 0 7 12 12 12 12
Small world (|V | = 102, |E | = 2|V |) 36 36 36 36 36 10 8 15 22
Small world (|V | = 102, |E | = 3|V |) 18 18 18 18 18 9 5 12 14
Small world (|V | = 103, |E | = 2|V |) 36 30 24 26 3 0 0 0 1
Small world (|V | = 103, |E | = 3|V |) 18 12 8 13 0 3 5 9 12

Let ub(α, β ) denote the upper bound output by method α when applied to instance β, and
let ubmin(β ) and ubmax(β ) denote, respectively, the corresponding minimum and maximum val-
ues taken over all methods α. The performance profile of method α is defined as the function
ϕ : [0, 1] → [0, 1], where ϕ(x) equals the proportion of instances β in which

ub(α, β ) − ubmin(β ) ≤
(

ubmax(β ) − ubmin(β )
)

x.

Figure 1 summarises all experiments reported in Tables 2 and 3 in terms of performance profiles.
Two separate sets of profiles are given for the cases σ = 1 and σ = 2 for comparison of all upper
bounding methods (Fig. 1), including the two time-constrained ILP approaches.

The dominance of Algorithm 1 (profile ‘Algorithm 1’) over the model of de Sousa et al. (2018a,
2018b) (profile ‘de Sousa’) is highly visible in Fig. 1. Reflecting the fact that Algorithm 1 solves
most of the instances to optimality and provides the best upper bound in most of the remaining
instances, the ordinate values of the left-most points of the corresponding performance profiles are
larger than 90% and 95% for the single-source and double-source experiments, respectively.

A comparison of the heuristic methods shows that in the single-source instances, the genetic al-
gorithm of Lima et al. (2022) (profile ‘Lima’) performs better than Algorithm 3 (profile ‘Ubκ’) for
all κ = 1, . . . , 4. For σ = 2, however, this is true only when κ ≤ 3 and Algorithm 3 becomes com-
petitive when κ = 4. The favourable performance of the genetic algorithm is also mainly explained
by better results in the smaller instances. Figure 2 depicts the performance profiles confined to the
instances in which |V | ≥ 1000, including both σ = 1 and σ = 2. Among the instances excluded by
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Fig. 1. Performance profiles of the upper bounding methods.

Fig. 2. Performance profiles of the upper bounding methods in instances where |V | ≥ 1000.

this criterion, Algorithm 1 solves to optimality in all but two single-source instances, which justifies
the focus on the restricted instance set.

It is observed from Fig. 2 that Algorithm 3 performs better than the genetic algorithm (Lima
et al., 2022), provided that κ ≥ 3. For κ = 3, the difference is modest, whereas it becomes significant
for κ = 4. Figures 1 and 2 also show that there is no added value of increasing the value of κ from
1 to 2 in Algorithm 3.

6.4. Solution time

Tables C1 and C2 of the Appendix report solution times in seconds for all but one of the methods
analysed in Section 6.3 in all instances of some computational challenge. Since in the majority of
the instances, the method of Lima et al. (2022) continues the search as long as the given time limit
(60 seconds for each of 21 seed values) is not reached, it is excluded from the solution time analysis.
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Table 4
Running times (seconds) averaged over all instances (|S| ∈ {1, 2}) in each set

ILP approaches Heuristics

Instance set de Sousa Algorithm 1 Ub1 Ub2 Ub3 Ub4

Geometric 831.7 162.0 1.0 1.6 2.3 3.2
Harary 0.4 0.1 0.0 0.0 0.0 0.0
Hypercube 675.5 696.4 0.1 0.2 0.5 4.4
CC cycles 4.2 7.7 0.1 0.1 0.2 0.2
de Bruijn 792.3 102.0 0.1 0.1 0.2 0.3
Shuffle exchange 42.1 17.4 0.1 0.2 0.3 0.4
Synthetic (|V | = 32) 0.2 0.1 0.0 0.0 0.0 0.0
Synthetic (|V | = 64) 1.1 0.2 0.0 0.0 0.1 0.1
Synthetic (|V | = 128) 49.7 1.9 0.1 0.1 0.3 0.5
Synthetic (|V | = 256) 1187.7 36.3 0.2 0.6 1.6 3.6
Synthetic (|V | = 512) 3607.2 573.5 0.6 3.2 11.2 29.2
Synthetic (|V | = 1024) 3600.0 3611.2 2.4 18.0 81.2 287.5
Small world (|V | = 102, |E | = 2|V |) 2.6 0.4 0.0 0.0 0.1 0.1
Small world (|V | = 102, |E | = 3|V |) 2.7 0.5 0.0 0.0 0.1 0.2
Small world (|V | = 103, |E | = 2|V |) 2304.7 595.9 0.2 0.4 0.8 3.3
Small world (|V | = 103, |E | = 3|V |) 2596.5 761.0 0.3 0.4 0.9 13.6

In an order consistent with Tables B1–B8, columns 2–7 (columns 8–13) contain the running times
for single-source (double-source) instances. Arguing that running time is unlikely to be an issue
in instances for which optimality is provable in a one-digit number of seconds, we include only
instances in which at least one method needs 10 seconds or more to conclude. A stroke (–) is given
for trivial instances (see Section 6.2), and, in line with Tables B1–B8, the symbol †corresponds to
runs interrupted by memory shortage. For each instance set, average running times are given in
Table 4, where runs exhausting the memory are considered to take 3600 seconds

Computational superiority of Algorithm 1 over model (1) is confirmed by the running
times. The latter approach is, however, faster in 10 instances. The most significant dif-
ference in its favour is found in the double-source instance of graph rgg-1000-2792, in
which Algorithm 1 needed almost seven times the running time of (1). Other instances
that are exceptions to the general rule are the graphs cubeconnectedcycles7 (σ = 1, 2),
shuffle_exchange10 (σ = 1), rgg-1200-3855 (σ = 2), hypercube8 (σ = 2), hypercube9 (σ =
2), SW-1000-4-0d3-trial2 (σ = 1), SW-1000-6-0d2-trial3 (σ = 1), SW-1000-5-0d1-trial3
(σ = 2) and SW-1000-6-0d2-trial3 (σ = 2). But in 52 of the instances that both could solve to
optimality, Algorithm 1 spent less than half the time the solver needed to solve the model of de
Sousa et al. (2018a, 2018b). A graphic illustration is given in Fig. 3, which shows the running time
of Algorithm 1 versus the model of de Sousa et al. (2018a, 2018b) in all said instances.

As expected, the running time of heuristic Algorithm 3 increases with increasing value of the
parameter κ. In all small world instances but one, however, and in all other instances except five (six)
of the more challenging single-source (double-source) instances of synthetic graphs, the running
time is kept below 2 minutes, even for κ = 4.

When comparing the single-source and the double-source instances corresponding to the same
graph, the experiments give no conclusive evidence that either source cardinality is more or less
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Fig. 3. Running times (seconds) of Algorithm 1 (vertical axis) versus running times of model (1) (horizontal axis).

Fig. 4. Running times (seconds) of the ILP approaches applied to double-source instances (vertical axis) versus
single-source instances (horizontal axis).

challenging. For both ILP approaches under consideration, Fig. 4 plots the running times of the
double-source instances against the running time of its single-source counterpart. This is done
for all graphs where the ILP approach was able to solve both instances to optimality within the
time limit. Visual inspection suggests a bias towards the conclusion that the single-source instances
are somewhat more challenging. Algorithm 1 fails to prove optimality in 16 single-source and 15
double-source instances. Out of 40 graphs for which both instances are non-trivial, and the algo-
rithm solves both to optimality and needs at least 10 seconds to do so, the single-source (double-
source) instance is solved faster for 12 (28) graphs.

7. Concluding remarks

This work focuses on the minimum broadcast time problem and presents several techniques for
computing lower bounds, upper bounds as well as optimal solutions. Particular attention is given
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to a procedure which in each iteration solves an ILP model. When run exhaustively, this procedure
solves the problem. Otherwise, it computes a lower bound on the broadcast time. The same proce-
dure applied to the continuous relaxation of the model is also capable of computing a lower bound.
Further, an upper-bounding iterative technique is studied. This method solves a sequence of sub-
problems, each of which is a possibly small instance of the integer program. With its parameter
decisive for the size of the subproblem instances, the upper bounding method offers high flexibility
in the trade-off between sharpness of the bound and computational effort.

For experimental evaluation of the computational procedures, various instance classes of variable
sizes are addressed. While most instance sets are identical to those studied in a recently published
work on the same problem, also new, randomly generated instances are studied. The random in-
stances are intended to simulate real communication networks.

Computational experiments demonstrate that the majority of the instances that cannot be solved
by fast bound-computing algorithms are solved by the procedure generating a sequence of inte-
ger linear programs. When interrupted because the time limit is reached, the procedure produces
bounds that are generally stronger than those produced within the same time limit by a previously
studied ILP model. In such instances, where the exact approach fails to prove optimality, the heuris-
tic developed in the current work outputs solutions superior to those produced by a recently studied
metaheuristic and does so with modest computational effort.

There is a potential for future research in developing stronger upper bounding algorithms and
improving the existing ILP model. Although the model formulation is compact, its size represents
a challenge due to the cubic number of variables. Model improvements can be achieved by not
only the introduction of redundant valid inequalities but also by developing conceptually different
models, where the number of variables is reduced by an order of magnitude.
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Appendix A: Lower and upper bounds

Table A1
Lower and upper bounds: geometric graphs on the unit sphere

Size |S| = 1 |S| = 2

Instance |V | |E | degree max sp ub degree max sp ub

rgg-400-1220 400 1220 9 19 21 8 18 19
rgg-400-1264 400 1264 9 23 23∗ 8 23 23∗

rgg-400-1779 400 1779 9 13 17 8 11 14
rgg-400-1816 400 1816 9 14 16 8 12 14
rgg-600-1027 600 1027 10 208 208∗ 9 140 140∗

rgg-600-1087 600 1087 10 255 255∗ 9 110 110∗

rgg-600-1833 600 1833 10 32 32∗ 9 23 24
rgg-600-1861 600 1861 10 40 40∗ 9 24 24∗

rgg-800-1034 800 1034 11 568 568∗ 10 295 296
rgg-800-1067 800 1067 11 540 540∗ 9 365 365∗

rgg-800-1868 800 1868 10 118 118∗ 9 48 48∗

rgg-800-1871 800 1871 10 97 97∗ 9 86 86∗

rgg-1000-1447 1000 1447 11 598 598∗ 10 525 525∗

rgg-1000-1460 1000 1460 11 591 591∗ 10 492 494
rgg-1000-2792 1000 2792 10 43 44 9 31 32
rgg-1000-2827 1000 2827 11 51 51∗ 10 30 32
rgg-1200-1940 1200 1940 11 603 603∗ 10 368 368∗

rgg-1200-1965 1200 1965 11 573 573∗ 10 495 495∗

rgg-1200-3855 1200 3855 11 36 36∗ 10 28 29
rgg-1200-4075 1200 4075 11 36 36∗ 10 24 24∗
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Table A2
Lower and upper bounds: miscellaneous graphs

Size |S| = 1 |S| = 2

Instance |V | |E | degree max sp ub degree max sp ub

harary17c2 17 17 9 8 9∗ 5 7 7∗

harary17c3 17 26 5 5 6 4 4 5
harary17c5 17 43 5 3 6 4 2 4∗

harary17c6 17 51 5 3 5∗ 4 2 4∗

harary17c7 17 60 5 2 5∗ 4 2 4∗

harary30c2 30 30 15 15 15∗ 8 11 11∗

harary30c3 30 45 6 8 9 5 8 8∗

harary30c8 30 120 5 4 6 4 3 5
harary30c9 30 135 5 3 6 4 2 5
harary30c10 30 150 5 3 6 4 3 5
harary50c2 50 50 25 25 25∗ 13 25 25∗

harary50c3 50 75 7 13 14 6 12 12∗

harary50c11 50 275 6 3 7 5 3 6
harary50c20 50 500 6 3 7 5 3 6
harary50c21 50 525 6 2 8 5 2 5∗

harary100c2 100 100 50 50 50∗ 25 28 28∗

hypercube5 32 80 5 5 5∗ 4 4 5
hypercube6 64 192 6 6 6∗ 5 4 6
hypercube7 128 448 7 7 7∗ 6 4 7
hypercube8 256 1024 8 8 8∗ 7 6 8
hypercube9 512 2304 9 9 9∗ 8 8 9
hypercube10 1024 5120 10 10 10∗ 9 9 10
cubeconnectedcycles3 24 36 5 6 7 4 4 5
cubeconnectedcycles4 64 96 7 8 9 6 6 7
cubeconnectedcycles5 160 240 9 10 12 8 9 10
cubeconnectedcycles6 384 576 11 13 14 10 11 13
cubeconnectedcycles7 896 1344 13 15 17 11 14 15
debruijn04 16 31 4 4 5 3 3 5
debruijn05 32 63 6 5 7 4 4 7
debruijn06 64 127 7 6 8 6 6 7
debruijn07 128 255 8 7 10 7 6 9
debruijn08 256 511 9 8 12 8 7 10
debruijn09 512 1023 10 9 14 9 8 13
debruijn10 1024 2047 11 10 16 10 9 15
shuffle_exchange4 16 21 6 7 7∗ 4 3 4∗

shuffle_exchange5 32 46 7 9 9∗ 5 8 8∗

shuffle_exchange6 64 93 9 11 11∗ 7 7 8
shuffle_exchange7 128 190 10 13 14 8 9 11
shuffle_exchange8 256 381 12 15 16 9 13 14
shuffle_exchange9 512 766 13 17 18 11 12 14
shuffle_exchange10 1024 1533 15 19 20 12 13 17
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Table A3
Lower and upper bounds: synthetic graphs

Size |S| = 1 |S| = 2

Instance |V | |E | degree max sp ub degree max sp ub

BT4 16 15 4 4 4∗ 4 4 4∗

BT5 32 31 5 5 5∗ 5 4 5∗

BT6 64 63 6 6 6∗ 6 6 6∗

BT7 128 127 7 7 7∗ 6 6 6∗

BT8 256 255 8 8 8∗ 8 8 8∗

BT9 512 511 9 9 9∗ 9 9 9∗

BT05_RG050 32 48 5 5 6 4 3 5
BT05_RG075 32 64 5 4 6 4 3 5
BT05_RG100 32 83 5 3 6 4 3 5
BT05_RG150 32 89 5 3 7 4 3 6
BT05_RG200 32 142 5 2 7 4 2 5
BT05_RG250 32 156 5 2 8 4 2 5
BT06_RG050 64 159 6 3 9 6 3 8
BT06_RG075 64 184 6 3 10 6 3 10
BT06_RG100 64 243 6 3 8 5 3 7
BT06_RG150 64 349 6 2 8 5 2 6
BT06_RG200 64 461 6 2 8 5 2 6
BT06_RG250 64 558 6 2 8 5 2 7
BT07_RG050 128 560 7 3 9 7 3 9
BT07_RG075 128 716 7 3 12 6 3 9
BT07_RG100 128 923 7 3 11 6 2 9
BT07_RG150 128 1313 7 3 10 6 2 8
BT07_RG200 128 1742 7 2 10 6 2 8
BT07_RG250 128 2140 7 2 10 6 2 8
BT08_RG050 256 1863 8 3 13 7 3 10
BT08_RG075 256 2657 8 3 12 7 3 11
BT08_RG100 256 3450 8 2 11 7 2 10
BT08_RG150 256 5168 8 2 11 7 2 9
BT08_RG200 256 6691 8 2 11 7 2 10
BT08_RG250 256 8307 8 2 12 7 2 10
BT09_RG050 512 6881 9 3 17 8 3 13
BT09_RG075 512 10,304 9 3 13 8 2 11
BT09_RG100 512 13,444 9 2 12 8 2 11
BT09_RG150 512 20,009 9 2 13 8 2 11
BT09_RG200 512 27,012 9 2 13 8 2 12
BT09_RG250 512 33,313 9 2 13 8 2 12
BT10_RG050 1024 27,259 10 3 16 9 3 13
BT10_RG075 1024 40,222 10 3 14 9 2 13
BT10_RG100 1024 53,480 10 2 14 9 2 12
BT10_RG150 1024 79,574 10 2 14 9 2 13
BT10_RG200 1024 105,448 10 2 15 9 2 13
BT10_RG250 1024 131,643 10 2 15 9 2 12
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Table A4
Lower and upper bounds: small world (|V | = 100) graphs

Size |S| = 1 |S| = 2

Instance |V | |E | degree max sp ub degree max sp ub

SW-100-3-0d1-trial1 100 100 11 61 61∗ 9 22 22∗

SW-100-3-0d2-trial1 100 100 12 31 31∗ 10 31 31∗

SW-100-3-0d2-trial3 100 100 12 31 31∗ 10 31 31∗

SW-100-4-0d1-trial1 100 200 7 7 11 6 7 9
SW-100-4-0d1-trial2 100 200 7 7 10 6 5 8
SW-100-4-0d1-trial3 100 200 7 9 11 6 7 9
SW-100-4-0d2-trial1 100 200 7 7 9 6 6 8
SW-100-4-0d2-trial2 100 200 7 7 10 6 6 9
SW-100-4-0d2-trial3 100 200 7 7 10 6 6 9
SW-100-4-0d3-trial1 100 200 7 6 9 6 6 9
SW-100-4-0d3-trial2 100 200 7 6 9 6 6 9
SW-100-4-0d3-trial3 100 200 7 7 9 6 6 8
SW-100-5-0d1-trial1 100 200 7 8 11 6 7 9
SW-100-5-0d1-trial2 100 200 7 9 10 6 7 9
SW-100-5-0d1-trial3 100 200 7 11 14 6 8 9
SW-100-5-0d2-trial1 100 200 7 8 11 6 5 8
SW-100-5-0d2-trial2 100 200 7 9 10 6 6 9
SW-100-5-0d2-trial3 100 200 7 7 9 6 6 8
SW-100-5-0d3-trial1 100 200 7 6 9 6 5 8
SW-100-5-0d3-trial2 100 200 7 6 9 6 6 8
SW-100-5-0d3-trial3 100 200 7 6 10 6 6 8
SW-100-6-0d1-trial1 100 300 7 5 9 6 4 8
SW-100-6-0d1-trial2 100 300 7 6 9 6 4 8
SW-100-6-0d1-trial3 100 300 7 6 9 6 6 7
SW-100-6-0d2-trial1 100 300 7 6 9 6 4 8
SW-100-6-0d2-trial2 100 300 7 4 8 6 4 8
SW-100-6-0d2-trial3 100 300 7 4 10 6 4 8
SW-100-6-0d3-trial1 100 300 7 4 9 6 4 7
SW-100-6-0d3-trial2 100 300 7 5 9 6 4 8
SW-100-6-0d3-trial3 100 300 7 5 8 6 4 7
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Table A5
Lower and upper bounds: small world (|V | = 1000) graphs

Size |S| = 1 |S| = 2

Instance |V | |E | degree max sp ub degree max sp ub

SW-1000-3-0d2-trial1 1000 1000 14 89 89∗ 13 89 89∗

SW-1000-3-0d2-trial2 1000 1000 14 88 88∗ 13 81 81∗

SW-1000-3-0d3-trial2 1000 1000 13 87 87∗ 12 52 52∗

SW-1000-4-0d1-trial1 1000 2000 11 14 18 10 12 15
SW-1000-4-0d1-trial2 1000 2000 11 15 18 10 14 16
SW-1000-4-0d1-trial3 1000 2000 11 15 18 10 13 16
SW-1000-4-0d2-trial1 1000 2000 11 10 16 10 10 14
SW-1000-4-0d2-trial2 1000 2000 11 10 15 10 9 14
SW-1000-4-0d2-trial3 1000 2000 11 11 16 10 10 14
SW-1000-4-0d3-trial1 1000 2000 11 9 14 10 9 13
SW-1000-4-0d3-trial2 1000 2000 11 11 14 10 9 13
SW-1000-4-0d3-trial3 1000 2000 11 8 14 10 8 13
SW-1000-5-0d1-trial1 1000 2000 11 14 17 10 14 17
SW-1000-5-0d1-trial2 1000 2000 11 15 17 10 12 15
SW-1000-5-0d1-trial3 1000 2000 11 12 16 10 12 15
SW-1000-5-0d2-trial1 1000 2000 11 11 15 10 11 14
SW-1000-5-0d2-trial2 1000 2000 11 10 15 10 9 13
SW-1000-5-0d2-trial3 1000 2000 11 10 15 10 9 13
SW-1000-5-0d3-trial1 1000 2000 11 9 14 10 9 13
SW-1000-5-0d3-trial2 1000 2000 11 9 14 10 8 13
SW-1000-5-0d3-trial3 1000 2000 11 10 15 10 8 14
SW-1000-6-0d1-trial1 1000 3000 10 10 15 9 9 15
SW-1000-6-0d1-trial2 1000 3000 10 10 15 10 9 13
SW-1000-6-0d1-trial3 1000 3000 11 8 15 9 8 13
SW-1000-6-0d2-trial1 1000 3000 10 8 14 9 7 13
SW-1000-6-0d2-trial2 1000 3000 11 8 14 10 7 13
SW-1000-6-0d2-trial3 1000 3000 11 7 14 10 7 12
SW-1000-6-0d3-trial1 1000 3000 10 6 13 9 6 13
SW-1000-6-0d3-trial2 1000 3000 10 6 14 10 6 13
SW-1000-6-0d3-trial3 1000 3000 11 7 13 10 7 12
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Appendix B: ILP approaches and heuristics

Table B1
Results from experiments with ILP approaches and heuristics: miscellaneous single-source instances

ILP approaches Heuristics

de Sousa Algorithm 1 Algorithm 3

Instance lb ub lb ub Lima Ub1 Ub2 Ub3 Ub4

rgg-400-1220 20 20∗ 20 20∗ 20∗ 22 22 22 22
rgg-400-1779 15 15∗ 15 15∗ 15∗ 17 17 16 16
rgg-400-1816 15 15∗ 15 15∗ 16 17 17 17 17
rgg-1000-2792 44 44∗ 44 44∗ 44∗ 45 49 45 45
harary17c3 6 6∗ 6 6∗ 6∗ 6∗ 6∗ 6∗ 6∗

harary17c5 5 5∗ 5 5∗ 5∗ 5∗ 5∗ 5∗ 5∗

harary30c3 9 9∗ 9 9∗ 9∗ 9∗ 9∗ 9∗ 9∗

harary30c8 5 5∗ 5 5∗ 5∗ 6 6 6 6
harary30c9 5 5∗ 5 5∗ 5∗ 5∗ 5∗ 5∗ 5∗

harary30c10 5 5∗ 5 5∗ 5∗ 5∗ 6 5∗ 5∗

harary50c3 14 14∗ 14 14∗ 14∗ 14∗ 14∗ 14∗ 14∗

harary50c11 6 6∗ 6 6∗ 6∗ 6∗ 6∗ 6∗ 6∗

harary50c20 6 6∗ 6 6∗ 6∗ 6∗ 6∗ 6∗ 6∗

harary50c21 6 6∗ 6 6∗ 6∗ 6∗ 6∗ 6∗ 6∗

cubeconnectedcycles3 6 6∗ 6 6∗ 6∗ 7 7 6∗ 7
cubeconnectedcycles4 9 9∗ 9 9∗ 9∗ 10 9∗ 9∗ 9∗

cubeconnectedcycles5 11 11∗ 11 11∗ 11∗ 13 13 12 12
cubeconnectedcycles6 13 13∗ 13 13∗ 13∗ 15 15 15 15
cubeconnectedcycles7 16 16∗ 16 16∗ 16∗ 17 18 17 18
debruijn04 5 5∗ 5 5∗ 5∗ 5∗ 5∗ 5∗ 5∗

debruijn05 6 6∗ 6 6∗ 6∗ 7 7 6∗ 6∗

debruijn06 8 8∗ 8 8∗ 8∗ 8∗ 8∗ 8∗ 8∗

debruijn07 9 9∗ 9 9∗ 9∗ 10 10 9∗ 9∗

debruijn08 10 10∗ 10 10∗ 11 12 12 11 11
debruijn09 12 12∗ 12 12∗ 13 13 13 12∗ 12∗

debruijn10 13 14 13 13∗ 14 15 15 15 14
shuffle_exchange7 13 13∗ 13 13∗ 13∗ 14 14 14 14
shuffle_exchange8 15 15∗ 15 15∗ 15∗ 16 17 18 17
shuffle_exchange9 17 17∗ 17 17∗ 17∗ 19 19 19 19
shuffle_exchange10 19 19∗ 19 19∗ 20 21 21 21 22
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Table B2
Results from experiments with ILP approaches and heuristics: synthetic single-source instances

ILP approaches Heuristics

de Sousa Algorithm 1 Algorithm 3

Instance lb ub lb ub Lima Ub1 Ub2 Ub3 Ub4

BT05_RG050 5 5∗ 5 5∗ 5∗ 6 6 5∗ 5∗

BT05_RG075 5 5∗ 5 5∗ 5∗ 6 6 5∗ 5∗

BT05_RG100 5 5∗ 5 5∗ 5∗ 6 5∗ 5∗ 5∗

BT05_RG150 5 5∗ 5 5∗ 5∗ 5∗ 5∗ 5∗ 5∗

BT05_RG200 5 5∗ 5 5∗ 5∗ 5∗ 5∗ 5∗ 5∗

BT05_RG250 5 5∗ 5 5∗ 5∗ 5∗ 5∗ 5∗ 5∗

BT06_RG050 6 6∗ 6 6∗ 6∗ 7 7 7 6∗

BT06_RG075 6 6∗ 6 6∗ 6∗ 7 6∗ 6∗ 6∗

BT06_RG100 6 6∗ 6 6∗ 6∗ 6∗ 6∗ 7 6∗

BT06_RG150 6 6∗ 6 6∗ 6∗ 6∗ 6∗ 6∗ 6∗

BT06_RG200 6 6∗ 6 6∗ 6∗ 6∗ 6∗ 6∗ 6∗

BT06_RG250 6 6∗ 6 6∗ 6∗ 6∗ 6∗ 6∗ 6∗

BT07_RG050 7 7∗ 7 7∗ 7∗ 7∗ 8 7∗ 7∗

BT07_RG075 7 7∗ 7 7∗ 7∗ 7∗ 7∗ 7∗ 7∗

BT07_RG100 7 7∗ 7 7∗ 7∗ 7∗ 7∗ 7∗ 7∗

BT07_RG150 7 7∗ 7 7∗ 7∗ 7∗ 7∗ 7∗ 7∗

BT07_RG200 7 7∗ 7 7∗ 7∗ 7∗ 7∗ 7∗ 7∗

BT07_RG250 7 7∗ 7 7∗ 7∗ 7∗ 7∗ 7∗ 7∗

BT08_RG050 8 8∗ 8 8∗ 8∗ 8∗ 8∗ 8∗ 8∗

BT08_RG075 8 8∗ 8 8∗ 8∗ 8∗ 8∗ 8∗ 8∗

BT08_RG100 8 8∗ 8 8∗ 8∗ 8∗ 8∗ 8∗ 8∗

BT08_RG150 8 8∗ 8 8∗ 8∗ 8∗ 8∗ 8∗ 8∗

BT08_RG200 8 8∗ 8 8∗ 8∗ 8∗ 8∗ 8∗ 8∗

BT08_RG250 † † 8 8∗ 8∗ 8∗ 8∗ 8∗ 8∗

BT09_RG050 9 – 9 10 10 9∗ 9∗ 9∗ 9∗

BT09_RG075 † † 9 10 10 9∗ 9∗ 9∗ 9∗

BT09_RG100 † † 9 9∗ 9∗ 9∗ 9∗ 9∗ 9∗

BT09_RG150 † † 9 9∗ 9∗ 9∗ 9∗ 9∗ 9∗

BT09_RG200 † † 9 9∗ 9∗ 9∗ 9∗ 9∗ 9∗

BT09_RG250 † † 9 9∗ 9∗ 9∗ 9∗ 9∗ 9∗

BT10_RG050 † † 10 – 11 10∗ 10∗ 10∗ 10∗

BT10_RG075 † † 10 – 11 10∗ 10∗ 10∗ 10∗

BT10_RG100 † † 10 – 10∗ 10∗ 10∗ 10∗ 10∗

BT10_RG150 † † 10 – 10∗ 10∗ 10∗ 10∗ 10∗

BT10_RG200 † † 10 – 10∗ 10∗ 10∗ 10∗ 10∗

BT10_RG250 † † 10 – 10∗ 10∗ 10∗ 10∗ 10∗
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Table B3
Results from experiments with ILP approaches and heuristics: small world (|V | = 100) single-source instances

ILP approaches Heuristics

de Sousa Algorithm 1 Algorithm 3

Instance lb ub lb ub Lima Ub1 Ub2 Ub3 Ub4

SW-100-4-0d1-trial1 9 9∗ 9 9∗ 9∗ 10 10 10 9∗

SW-100-4-0d1-trial2 8 8∗ 8 8∗ 8∗ 9 9 9 9
SW-100-4-0d1-trial3 10 10∗ 10 10∗ 10∗ 11 11 11 10∗

SW-100-4-0d2-trial1 8 8∗ 8 8∗ 8∗ 9 10 9 8∗

SW-100-4-0d2-trial2 8 8∗ 8 8∗ 8∗ 9 9 9 9
SW-100-4-0d2-trial3 9 9∗ 9 9∗ 9∗ 9∗ 10 9∗ 9∗

SW-100-4-0d3-trial1 8 8∗ 8 8∗ 8∗ 9 10 9 9
SW-100-4-0d3-trial2 8 8∗ 8 8∗ 8∗ 8∗ 8∗ 8∗ 8∗

SW-100-4-0d3-trial3 8 8∗ 8 8∗ 8∗ 9 9 9 8∗

SW-100-5-0d1-trial1 9 9∗ 9 9∗ 9∗ 10 10 10 10
SW-100-5-0d1-trial2 10 10∗ 10 10∗ 10∗ 11 11 11 11
SW-100-5-0d1-trial3 12 12∗ 12 12∗ 12∗ 13 13 12∗ 12∗

SW-100-5-0d2-trial1 9 9∗ 9 9∗ 9∗ 11 11 10 10
SW-100-5-0d2-trial2 9 9∗ 9 9∗ 9∗ 11 11 10 10
SW-100-5-0d2-trial3 8 8∗ 8 8∗ 8∗ 9 9 10 9
SW-100-5-0d3-trial1 8 8∗ 8 8∗ 8∗ 9 9 8∗ 8∗

SW-100-5-0d3-trial2 8 8∗ 8 8∗ 8∗ 8∗ 8∗ 8∗ 8∗

SW-100-5-0d3-trial3 8 8∗ 8 8∗ 8∗ 8∗ 9 8∗ 8∗

SW-100-6-0d1-trial1 7 7∗ 7 7∗ 7∗ 8 8 8 8
SW-100-6-0d1-trial2 8 8∗ 8 8∗ 8∗ 8∗ 9 8∗ 8∗

SW-100-6-0d1-trial3 7 7∗ 7 7∗ 7∗ 9 8 8 8
SW-100-6-0d2-trial1 7 7∗ 7 7∗ 7∗ 8 8 8 7∗

SW-100-6-0d2-trial2 7 7∗ 7 7∗ 7∗ 7∗ 7∗ 7∗ 7∗

SW-100-6-0d2-trial3 7 7∗ 7 7∗ 7∗ 8 8 7∗ 7∗

SW-100-6-0d3-trial1 7 7∗ 7 7∗ 7∗ 7∗ 8 7∗ 7∗

SW-100-6-0d3-trial2 7 7∗ 7 7∗ 7∗ 7∗ 8 7∗ 7∗

SW-100-6-0d3-trial3 7 7∗ 7 7∗ 7∗ 7∗ 7∗ 7∗ 7∗
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Table B4
Results from experiments with ILP approaches and heuristics: small world (|V | = 1000) single-source instances

ILP approaches Heuristics

de Sousa Algorithm 1 Algorithm 3

Instance lb ub lb ub Lima Ub1 Ub2 Ub3 Ub4

SW-1000-4-0d1-trial1 15 15∗ 15 15∗ 16 17 18 17 18
SW-1000-4-0d1-trial2 16 16∗ 16 16∗ 17 18 18 19 17
SW-1000-4-0d1-trial3 16 16∗ 16 16∗ 17 18 18 18 18
SW-1000-4-0d2-trial1 12 13 12 13 14 14 14 15 14
SW-1000-4-0d2-trial2 12 13 12 13 14 14 15 14 14
SW-1000-4-0d2-trial3 13 13∗ 13 13∗ 15 15 16 15 15
SW-1000-4-0d3-trial1 11 12 11 12 13 13 13 13 13
SW-1000-4-0d3-trial2 12 12∗ 12 12∗ 14 14 14 14 14
SW-1000-4-0d3-trial3 11 12 11 12 13 14 13 13 12
SW-1000-5-0d1-trial1 16 16∗ 16 16∗ 16∗ 18 18 18 18
SW-1000-5-0d1-trial2 16 16∗ 16 16∗ 16∗ 18 18 18 17
SW-1000-5-0d1-trial3 14 14∗ 14 14∗ 15 16 16 16 16
SW-1000-5-0d2-trial1 13 13∗ 13 13∗ 14 15 15 15 14
SW-1000-5-0d2-trial2 12 13 12 12∗ 14 14 14 14 14
SW-1000-5-0d2-trial3 12 13 12 12∗ 14 14 14 14 13
SW-1000-5-0d3-trial1 11 12∗ 12 12∗ 13 13 13 13 13
SW-1000-5-0d3-trial2 11 12 11 12 13 13 13 13 13
SW-1000-5-0d3-trial3 11 12∗ 12 12∗ 13 14 14 14 13
SW-1000-6-0d1-trial1 12 14 12 12∗ 14 14 14 14 14
SW-1000-6-0d1-trial2 12 14 12 12∗ 14 14 14 14 14
SW-1000-6-0d1-trial3 11 12 11 13 13 13 13 13 12
SW-1000-6-0d2-trial1 10 12 11 12 12 12 12 11∗ 11∗

SW-1000-6-0d2-trial2 11 12 11 12 13 12 13 12 11∗

SW-1000-6-0d2-trial3 11 11∗ 11 11∗ 12 12 12 11∗ 11∗

SW-1000-6-0d3-trial1 10 11∗ 11 11∗ 12 11∗ 11∗ 11∗ 11∗

SW-1000-6-0d3-trial2 10 11∗ 11 11∗ 12 11∗ 11∗ 11∗ 11∗

SW-1000-6-0d3-trial3 11 11∗ 11 11∗ 12 12 11∗ 11∗ 11∗
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Table B5
Results from experiments with ILP approaches and heuristics: miscellaneous double-source instances

ILP approaches Heuristics

de Sousa Algorithm 1 Algorithm 3

Instance lb ub lb ub Lima Ub1 Ub2 Ub3 Ub4

rgg-400-1220 18 18∗ 18 18∗ 18∗ 19 21 19 19
rgg-400-1779 12 12∗ 12 12∗ 12∗ 15 14 14 13
rgg-400-1816 13 13∗ 13 13∗ 14 16 16 15 16
rgg-600-1833 23 23∗ 23 23∗ 23∗ 24 25 23∗ 24
rgg-800-1034 296 296∗ 296 296∗ 296∗ 298 299 298 296∗

rgg-1000-1460 † † 494 494∗ 494∗ 496 500 495 494∗

rgg-1000-2792 31 31∗ 31 31∗ 31∗ 36 33 33 33
rgg-1000-2827 31 31∗ 31 31∗ 31∗ 34 34 33 32
rgg-1200-3855 28 28∗ 28 28∗ 29 31 32 30 31
harary17c3 5 5∗ 5 5∗ 5∗ 5∗ 5∗ 5∗ 5∗

harary30c8 4 4∗ 4 4∗ 4∗ 5 5 4∗ 4∗

harary30c9 4 4∗ 4 4∗ 4∗ 4∗ 4∗ 4∗ 4∗

harary30c10 4 4∗ 4 4∗ 4∗ 4∗ 4∗ 4∗ 4∗

harary50c11 5 5∗ 5 5∗ 5∗ 5∗ 5∗ 5∗ 5∗

harary50c20 5 5∗ 5 5∗ 5∗ 5∗ 5∗ 5∗ 5∗

hypercube5 4 4∗ 4 4∗ 4∗ 4∗ 4∗ 4∗ 4∗

hypercube6 5 5∗ 5 5∗ 5∗ 6 6 6 5∗

hypercube7 6 6∗ 6 6∗ 6∗ 7 7 6∗ 6∗

hypercube8 7 7∗ 7 7∗ 7∗ 8 8 8 7∗

hypercube9 8 8∗ 8 8∗ 9 9 9 9 8∗

hypercube10 9 – 9 – 10 10 10 10 10
cubeconnectedcycles3 5 5∗ 5 5∗ 5∗ 5∗ 5∗ 5∗ 5∗

cubeconnectedcycles4 6 6∗ 6 6∗ 6∗ 7 7 7 7
cubeconnectedcycles5 10 10∗ 10 10∗ 10∗ 10∗ 11 10∗ 10∗

cubeconnectedcycles6 12 12∗ 12 12∗ 12∗ 14 14 13 13
cubeconnectedcycles7 15 15∗ 15 15∗ 15∗ 16 16 16 16
debruijn04 4 4∗ 4 4∗ 4∗ 4∗ 4∗ 4∗ 4∗

debruijn05 5 5∗ 5 5∗ 5∗ 6 6 6 5∗

debruijn06 6 6∗ 6 6∗ 6∗ 7 7 7 7
debruijn07 7 7∗ 7 7∗ 7∗ 8 8 8 8
debruijn08 9 9∗ 9 9∗ 9∗ 10 10 10 9∗

debruijn09 10 10∗ 10 10∗ 11 12 12 12 11
debruijn10 11 12 11 12 13 14 13 13 12
shuffle_exchange6 8 8∗ 8 8∗ 8∗ 9 8∗ 8∗ 8∗

shuffle_exchange7 10 10∗ 10 10∗ 10∗ 11 12 10∗ 11
shuffle_exchange8 13 13∗ 13 13∗ 13∗ 14 14 14 15
shuffle_exchange9 13 13∗ 13 13∗ 13∗ 14 14 15 15
shuffle_exchange10 14 14∗ 14 14∗ 15 17 17 16 17
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Table B6
Results from experiments with ILP approaches and heuristics: synthetic double-source instances

ILP approaches Heuristics

de Sousa Algorithm 1 Algorithm 3

Instance lb ub lb ub Lima Ub1 Ub2 Ub3 Ub4

BT05_RG050 4 4∗ 4 4∗ 4∗ 5 5 5 4∗

BT05_RG075 4 4∗ 4 4∗ 4∗ 5 5 4∗ 4∗

BT05_RG100 4 4∗ 4 4∗ 4∗ 5 4∗ 4∗ 4∗

BT05_RG150 4 4∗ 4 4∗ 4∗ 5 4∗ 4∗ 4∗

BT05_RG200 4 4∗ 4 4∗ 4∗ 4∗ 4∗ 4∗ 4∗

BT05_RG250 4 4∗ 4 4∗ 4∗ 4∗ 4∗ 4∗ 4∗

BT06_RG050 6 6∗ 6 6∗ 6∗ 6∗ 6∗ 6∗ 6∗

BT06_RG075 6 6∗ 6 6∗ 6∗ 6∗ 6∗ 6∗ 6∗

BT06_RG100 5 5∗ 5 5∗ 5∗ 5∗ 6 6 5∗

BT06_RG150 5 5∗ 5 5∗ 5∗ 5∗ 5∗ 5∗ 5∗

BT06_RG200 5 5∗ 5 5∗ 5∗ 5∗ 5∗ 5∗ 5∗

BT06_RG250 5 5∗ 5 5∗ 5∗ 5∗ 5∗ 5∗ 5∗

BT07_RG050 7 7∗ 7 7∗ 7∗ 7∗ 7∗ 7∗ 7∗

BT07_RG075 6 6∗ 6 6∗ 6∗ 7 7 6∗ 6∗

BT07_RG100 6 6∗ 6 6∗ 6∗ 6∗ 6∗ 6∗ 6∗

BT07_RG150 6 6∗ 6 6∗ 6∗ 6∗ 6∗ 6∗ 6∗

BT07_RG200 6 6∗ 6 6∗ 6∗ 6∗ 6∗ 6∗ 6∗

BT07_RG250 6 6∗ 6 6∗ 6∗ 6∗ 6∗ 6∗ 6∗

BT08_RG050 7 7∗ 7 7∗ 7∗ 7∗ 7∗ 7∗ 7∗

BT08_RG075 7 7∗ 7 7∗ 7∗ 7∗ 7∗ 7∗ 7∗

BT08_RG100 7 7∗ 7 7∗ 7∗ 7∗ 7∗ 7∗ 7∗

BT08_RG150 7 7∗ 7 7∗ 7∗ 7∗ 7∗ 7∗ 7∗

BT08_RG200 7 7∗ 7 7∗ 7∗ 7∗ 7∗ 7∗ 7∗

BT08_RG250 7 7∗ 7 7∗ 7∗ 7∗ 7∗ 7∗ 7∗

BT09_RG050 8 – 8 8∗ 9 8∗ 8∗ 8∗ 8∗

BT09_RG075 8 – 8 8∗ 9 8∗ 8∗ 8∗ 8∗

BT09_RG100 † † 8 8∗ 8∗ 8∗ 8∗ 8∗ 8∗

BT09_RG150 † † 8 8∗ 8∗ 8∗ 8∗ 8∗ 8∗

BT09_RG200 † † 8 8∗ 8∗ 8∗ 8∗ 8∗ 8∗

BT09_RG250 † † 8 8∗ 8∗ 8∗ 8∗ 8∗ 8∗

BT10_RG050 † † 9 – 10 9∗ 9∗ 9∗ 9∗

BT10_RG075 † † 9 – 10 9∗ 9∗ 9∗ 9∗

BT10_RG100 † † 10 12 12 10∗ 10∗ 10∗ 10∗

BT10_RG150 † † 9 – 9∗ 9∗ 9∗ 9∗ 9∗

BT10_RG200 † † 9 – 9∗ 9∗ 9∗ 9∗ 9∗

BT10_RG250 † † 9 – 9∗ 9∗ 9∗ 9∗ 9∗
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Table B7
Results from experiments with ILP approaches and heuristics: small world (|V | = 100) double-source instances

ILP approaches Heuristics

de Sousa Algorithm 1 Algorithm 3

Instance lb ub lb ub Lima Ub1 Ub2 Ub3 Ub4

SW-100-4-0d1-trial1 8 8∗ 8 8∗ 8∗ 8∗ 8∗ 8∗ 8∗

SW-100-4-0d1-trial2 7 7∗ 7 7∗ 7∗ 8 7∗ 7∗ 7∗

SW-100-4-0d1-trial3 8 8∗ 8 8∗ 8∗ 9 10 10 9
SW-100-4-0d2-trial1 7 7∗ 7 7∗ 7∗ 8 8 8 8
SW-100-4-0d2-trial2 8 8∗ 8 8∗ 8∗ 9 8∗ 8∗ 8∗

SW-100-4-0d2-trial3 7 7∗ 7 7∗ 7∗ 8 8 8 7∗

SW-100-4-0d3-trial1 7 7∗ 7 7∗ 7∗ 9 9 9 8
SW-100-4-0d3-trial2 7 7∗ 7 7∗ 7∗ 7∗ 7∗ 7∗ 7∗

SW-100-4-0d3-trial3 7 7∗ 7 7∗ 7∗ 8 8 8 8
SW-100-5-0d1-trial1 8 8∗ 8 8∗ 8∗ 9 9 8∗ 8∗

SW-100-5-0d1-trial2 8 8∗ 8 8∗ 8∗ 8∗ 8∗ 8∗ 8∗

SW-100-5-0d1-trial3 9 9∗ 9 9∗ 9∗ 9∗ 10 9∗ 9∗

SW-100-5-0d2-trial1 7 7∗ 7 7∗ 7∗ 8 8 8 7∗

SW-100-5-0d2-trial2 7 7∗ 7 7∗ 7∗ 9 9 8 8
SW-100-5-0d2-trial3 7 7∗ 7 7∗ 7∗ 8 8 7∗ 7∗

SW-100-5-0d3-trial1 7 7∗ 7 7∗ 7∗ 7∗ 7∗ 7∗ 7∗

SW-100-5-0d3-trial2 6 6∗ 6 6∗ 6∗ 8 7 7 7
SW-100-5-0d3-trial3 7 7∗ 7 7∗ 7∗ 7∗ 8 8 7∗

SW-100-6-0d1-trial1 6 6∗ 6 6∗ 6∗ 7 7 7 7
SW-100-6-0d1-trial2 6 6∗ 6 6∗ 6∗ 7 7 7 6∗

SW-100-6-0d1-trial3 6 6∗ 6 6∗ 6∗ 7 7 7 7
SW-100-6-0d2-trial1 6 6∗ 6 6∗ 6∗ 7 7 6∗ 6∗

SW-100-6-0d2-trial2 6 6∗ 6 6∗ 6∗ 6∗ 6∗ 6∗ 6∗

SW-100-6-0d2-trial3 6 6∗ 6 6∗ 6∗ 7 7 6∗ 6∗

SW-100-6-0d3-trial1 6 6∗ 6 6∗ 6∗ 6∗ 6∗ 6∗ 6∗

SW-100-6-0d3-trial2 6 6∗ 6 6∗ 6∗ 6∗ 7 6∗ 6∗

SW-100-6-0d3-trial3 6 6∗ 6 6∗ 6∗ 6∗ 6∗ 6∗ 6∗
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Table B8
Results from experiments with ILP approaches and heuristics: small world (|V | = 1000) double-source instances

ILP approaches Heuristics

de Sousa Algorithm 1 Algorithm 3

Instance lb ub lb ub Lima Ub1 Ub2 Ub3 Ub4

SW-1000-4-0d1-trial1 13 13∗ 13 13∗ 15 15 16 16 15
SW-1000-4-0d1-trial2 15 15∗ 15 15∗ 15∗ 16 16 17 16
SW-1000-4-0d1-trial3 14 14∗ 14 14∗ 15 16 16 16 16
SW-1000-4-0d2-trial1 11 11∗ 11 11∗ 13 13 13 13 13
SW-1000-4-0d2-trial2 10 11∗ 11 11∗ 12 12 12 12 11∗

SW-1000-4-0d2-trial3 11 12∗ 12 12∗ 13 13 13 13 13
SW-1000-4-0d3-trial1 10 11 10 11 12 12 12 12 12
SW-1000-4-0d3-trial2 10 11 10 11 12 13 12 12 11
SW-1000-4-0d3-trial3 10 11 10 11 12 12 12 11 11
SW-1000-5-0d1-trial1 14 14∗ 14 14∗ 16 16 17 16 17
SW-1000-5-0d1-trial2 13 13∗ 13 13∗ 15 16 15 15 15
SW-1000-5-0d1-trial3 13 13∗ 13 13∗ 14 15 15 15 15
SW-1000-5-0d2-trial1 11 12∗ 12 12∗ 13 13 14 13 13
SW-1000-5-0d2-trial2 11 11∗ 11 11∗ 13 13 13 13 12
SW-1000-5-0d2-trial3 11 11∗ 11 11∗ 12 13 12 12 12
SW-1000-5-0d3-trial1 10 11∗ 11 11∗ 12 12 12 12 12
SW-1000-5-0d3-trial2 10 11 10 11 12 12 12 12 12
SW-1000-5-0d3-trial3 10 11 10 11 12 13 12 12 12
SW-1000-6-0d1-trial1 9 – 11 11∗ 13 13 13 13 12
SW-1000-6-0d1-trial2 10 11 10 11 12 12 12 12 12
SW-1000-6-0d1-trial3 10 12 10 11 12 12 12 11 11
SW-1000-6-0d2-trial1 9 11 10 10∗ 11 11 11 11 10∗

SW-1000-6-0d2-trial2 10 10∗ 10 10∗ 11 11 11 11 10∗

SW-1000-6-0d2-trial3 10 10∗ 10 10∗ 11 11 11 10∗ 10∗

SW-1000-6-0d3-trial1 9 11 10 10∗ 11 11 10∗ 10∗ 10∗

SW-1000-6-0d3-trial2 10 10∗ 10 10∗ 11 10∗ 10∗ 10∗ 10∗

SW-1000-6-0d3-trial3 10 10∗ 10 10∗ 11 11 11 10∗ 10∗
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Appendix C: Running time

Table C1
Running times (seconds): miscellaneous graphs

|S| = 1 |S| = 2

de Algorithm 3 de Algorithm 3

Instance Sousa Algorithm 1 Ub1 Ub2 Ub3 Ub4 Sousa Algorithm 1 Ub1 Ub2 Ub3 Ub4

rgg-400-1220 93 76 0 0 1 1 10 3 0 0 1 1
rgg-400-1779 1505 18 0 0 1 1 1294 7 0 0 1 1
rgg-400-1816 1373 10 0 0 1 1 74 7 0 0 1 1
rgg-600-1833 – – – – – – 39 35 0 1 1 1
rgg-800-1034 – – – – – – 1338 11 3 5 6 8
rgg-1000-1460 – – – – – – † 136 6 9 12 15
rgg-1000-2792 63 3 1 2 2 3 118 775 1 1 2 2
rgg-1000-2827 – – – – – – 1080 919 1 1 2 2
rgg-1200-3855 – – – – – – 224 106 1 1 2 3
hypercube8 – – – – – – 11 43 0 0 0 1
hypercube9 – – – – – – 436 533 0 0 1 5
hypercube10 – – – – – – 3604 3600 0 1 2 20
cubeconnectedcycles7 33 63 0 0 1 1 2 4 0 0 0 1
debruijn08 194 12 0 0 0 0 2724 34 0 0 0 0
debruijn09 774 14 0 0 0 0 193 17 0 0 0 0
debruijn10 3602 369 0 0 1 1 3602 981 0 0 1 1
shuffle_exchange10 6 44 0 0 1 1 364 96 0 0 1 1
BT07_RG075 27 1 0 0 0 1 11 3 0 0 0 0
BT07_RG100 70 2 0 0 0 1 19 2 0 0 0 0
BT07_RG150 56 2 0 0 0 1 34 1 0 0 0 0
BT07_RG200 116 3 0 0 0 1 51 1 0 0 0 1
BT07_RG250 121 2 0 0 1 1 83 1 0 0 0 1
BT08_RG050 329 33 0 0 1 2 199 22 0 0 1 2
BT08_RG075 638 104 0 0 1 3 324 42 0 0 1 2
BT08_RG100 875 67 0 0 1 3 430 21 0 0 1 2
BT08_RG150 1482 29 0 1 2 4 543 25 0 1 1 4
BT08_RG200 2119 25 0 1 2 6 1370 16 0 1 2 5
BT08_RG250 † 27 0 1 4 7 2343 23 0 1 3 5
BT09_RG050 3634 684 0 1 3 12 3620 577 0 1 3 9
BT09_RG075 † 1100 0 1 5 13 3632 284 0 1 4 14
BT09_RG100 † 813 0 2 7 25 † 715 0 2 5 17
BT09_RG150 † 380 1 3 15 35 † 203 1 3 12 31
BT09_RG200 † 449 1 6 21 44 † 400 1 5 15 40
BT09_RG250 † 798 1 7 23 63 † 479 1 7 22 47
BT10_RG050 † 3605 1 4 20 84 † 3604 1 4 19 127
BT10_RG075 † 3606 1 8 42 144 † 3606 1 8 42 120
BT10_RG100 † 3608 2 13 56 188 † 3607 2 12 55 198
BT10_RG150 † 3612 3 21 91 319 † 3612 2 20 84 268
BT10_RG200 † 3619 3 28 128 750 † 3615 3 27 128 373
BT10_RG250 † 3623 4 37 169 469 † 3617 4 33 139 409
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Table C2
Running times (seconds): small world graphs

|S| = 1 |S| = 2

de Algorithm 3 de Algorithm 3

Instance Sousa Algorithm 1 Ub1 Ub2 Ub3 Ub4 Sousa Algorithm 1 Ub1 Ub2 Ub3 Ub4

SW-100-4-0d3-trial2 13 1 0 0 0 0 6 0 0 0 0 0
SW-100-5-0d3-trial2 33 3 0 0 0 0 2 0 0 0 0 0
SW-100-6-0d1-trial2 22 0 0 0 0 0 1 1 0 0 0 0
SW-1000-4-0d1-trial1 2448 69 0 1 1 1 810 211 0 0 1 1
SW-1000-4-0d1-trial2 291 59 0 0 1 1 41 30 0 0 1 2
SW-1000-4-0d1-trial3 546 60 0 0 1 2 643 66 0 0 1 1
SW-1000-4-0d2-trial1 3602 1004 0 0 1 2 985 290 0 0 1 3
SW-1000-4-0d2-trial2 3602 2001 0 0 1 3 3602 686 0 0 1 2
SW-1000-4-0d2-trial3 1121 511 0 0 1 2 3602 110 0 0 1 2
SW-1000-4-0d3-trial1 3602 1309 0 0 1 11 3602 1278 0 0 1 6
SW-1000-4-0d3-trial2 361 409 0 0 1 2 3602 1449 0 0 1 2
SW-1000-4-0d3-trial3 3602 1361 0 0 1 2 3602 1416 0 0 1 28
SW-1000-5-0d1-trial1 155 86 0 0 1 1 234 118 0 0 1 2
SW-1000-5-0d1-trial2 91 82 0 0 1 2 282 142 0 0 1 2
SW-1000-5-0d1-trial3 2064 374 0 0 1 2 269 375 0 0 1 2
SW-1000-5-0d2-trial1 2875 930 0 0 1 3 3602 500 0 0 1 2
SW-1000-5-0d2-trial2 3602 515 0 0 1 2 2744 256 0 0 1 1
SW-1000-5-0d2-trial3 3602 349 0 0 1 3 2176 114 0 0 1 2
SW-1000-5-0d3-trial1 3602 396 0 0 1 2 3602 667 0 0 1 3
SW-1000-5-0d3-trial2 3602 1344 0 0 1 5 3602 1297 0 0 1 3
SW-1000-5-0d3-trial3 3602 610 0 1 1 4 3602 982 0 0 1 6
SW-1000-6-0d1-trial1 3604 612 0 0 1 12 3603 396 0 0 1 7
SW-1000-6-0d1-trial2 3604 613 0 1 1 14 3603 1492 0 0 1 9
SW-1000-6-0d1-trial3 3604 1945 0 0 1 8 3603 1326 0 0 1 13
SW-1000-6-0d2-trial1 3603 1504 0 0 1 2 3603 607 0 0 1 2
SW-1000-6-0d2-trial2 3603 1469 0 1 1 138 1556 271 0 0 1 2
SW-1000-6-0d2-trial3 573 910 0 1 1 2 244 268 0 0 1 2
SW-1000-6-0d3-trial1 3603 530 0 1 1 9 3603 349 0 0 1 5
SW-1000-6-0d3-trial2 3603 513 0 0 1 5 309 268 0 0 1 7
SW-1000-6-0d3-trial3 553 388 0 0 1 5 263 235 0 0 1 3

© 2023 The Authors.
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